WorldWideScience

Sample records for cardiac neural crest

  1. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    Directory of Open Access Journals (Sweden)

    Paige Snider

    2007-01-01

    Full Text Available Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators. Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest

  2. Cardiac neural crest contributes to cardiomyogenesis in zebrafish.

    Science.gov (United States)

    Sato, Mariko; Yost, H Joseph

    2003-05-01

    In birds and mammals, cardiac neural crest is essential for heart development and contributes to conotruncal cushion formation and outflow tract septation. The zebrafish prototypical heart lacks outflow tract septation, raising the question of whether cardiac neural crest exists in zebrafish. Here, results from three distinct lineage-labeling approaches identify zebrafish cardiac neural crest cells and indicate that these cells have the ability to generate MF20-positive muscle cells in the myocardium of the major chambers during development. Fate-mapping demonstrates that cardiac neural crest cells originate both from neural tube regions analogous to those found in birds, as well as from a novel region rostral to the otic vesicle. In contrast to other vertebrates, cardiac neural crest invades the myocardium in all segments of the heart, including outflow tract, atrium, atrioventricular junction, and ventricle in zebrafish. Three distinct groups of premigratory neural crest along the rostrocaudal axis have different propensities to contribute to different segments in the heart and are correspondingly marked by unique combinations of gene expression patterns. Zebrafish will serve as a model for understanding interactions between cardiac neural crest and cardiovascular development.

  3. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function.

    Science.gov (United States)

    Karunamuni, Ganga H; Ma, Pei; Gu, Shi; Rollins, Andrew M; Jenkins, Michael W; Watanabe, Michiko

    2014-09-01

    Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.

  4. The PAF1 complex component Leo1 is essential for cardiac and neural crest development in zebrafish.

    Science.gov (United States)

    Nguyen, Catherine T; Langenbacher, Adam; Hsieh, Michael; Chen, Jau-Nian

    2010-05-01

    Leo1 is a component of the Polymerase-Associated Factor 1 (PAF1) complex, an evolutionarily conserved protein complex involved in gene transcription regulation and chromatin remodeling. The role of leo1 in vertebrate embryogenesis has not previously been examined. Here, we report that zebrafish leo1 encodes a nuclear protein that has a similar molecular structure to Leo1 proteins from other species. From a genetic screen, we identified a zebrafish mutant defective in the leo1 gene. The truncated Leo1(LA1186) protein lacks a nuclear localization signal and is distributed mostly in the cytoplasm. Phenotypic analysis showed that while the initial patterning of the primitive heart tube is not affected in leo1(LA1186) mutant embryos, the differentiation of cardiomyocytes at the atrioventricular boundary is aberrant, suggesting a requirement for Leo1 in cardiac differentiation. In addition, the expression levels of markers for neural crest-derived cells such as crestin, gch2, dct and mitfa are greatly reduced in leo1(LA1186) mutants, indicating a requirement for Leo1 in maintaining the neural crest population. Consistent with this finding, melanocyte and xanthophore populations are severely reduced, craniofacial cartilage is barely detectable, and mbp-positive glial cells are absent in leo1(LA1186) mutants after three days of development. Taken together, these results provide the first genetic evidence of the requirement for Leo1 in the development of the heart and neural crest cell populations.

  5. FGF Signaling Transforms Non-neural Ectoderm into Neural Crest

    OpenAIRE

    Yardley, Nathan; García-Castro, Martín I.

    2012-01-01

    The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in respons...

  6. Pax7 lineage contributions to the mammalian neural crest.

    Directory of Open Access Journals (Sweden)

    Barbara Murdoch

    Full Text Available Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos. In mammals, Pax7 is also thought to play a role in neural crest development, yet the precise contribution of Pax7 progenitors to the neural crest lineage has not been determined.Here we use Cre/loxP technology in double transgenic mice to fate map the Pax7 lineage in neural crest derivates. We find that Pax7 descendants contribute to multiple tissues including the cranial, cardiac and trunk neural crest, which in the cranial cartilage form a distinct regional pattern. The Pax7 lineage, like the Pax3 lineage, is additionally detected in some non-neural crest tissues, including a subset of the epithelial cells in specific organs.These results demonstrate a previously unappreciated widespread distribution of Pax7 descendants within and beyond the neural crest. They shed light regarding the regionally distinct phenotypes observed in Pax3 and Pax7 mutants, and provide a unique perspective into the potential roles of Pax7 during disease and development.

  7. The neural crest and neural crest cells: discovery and significance for theories of embryonic organization

    Indian Academy of Sciences (India)

    Brian K Hall

    2008-12-01

    The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells.

  8. DNA methyltransferase 3b is dispensable for mouse neural crest development.

    Directory of Open Access Journals (Sweden)

    Bridget T Jacques-Fricke

    Full Text Available The neural crest is a population of multipotent cells that migrates extensively throughout vertebrate embryos to form diverse structures. Mice mutant for the de novo DNA methyltransferase DNMT3b exhibit defects in two neural crest derivatives, the craniofacial skeleton and cardiac ventricular septum, suggesting that DNMT3b activity is necessary for neural crest development. Nevertheless, the requirement for DNMT3b specifically in neural crest cells, as opposed to interacting cell types, has not been determined. Using a conditional DNMT3b allele crossed to the neural crest cre drivers Wnt1-cre and Sox10-cre, neural crest DNMT3b mutants were generated. In both neural crest-specific and fully DNMT3b-mutant embryos, cranial neural crest cells exhibited only subtle migration defects, with increased numbers of dispersed cells trailing organized streams in the head. In spite of this, the resulting cranial ganglia, craniofacial skeleton, and heart developed normally when neural crest cells lacked DNMT3b. This indicates that DNTM3b is not necessary in cranial neural crest cells for their development. We conclude that defects in neural crest derivatives in DNMT3b mutant mice reflect a requirement for DNMT3b in lineages such as the branchial arch mesendoderm or the cardiac mesoderm that interact with neural crest cells during formation of these structures.

  9. Effect of dihydrofolate reductase gene knock-down on the expression of heart and neural crest derivatives expressed transcript 2 in zebrafish cardiac development

    Institute of Scientific and Technical Information of China (English)

    SUN Shu-na; GUI Yong-hao; WANG Yue-xiang; QIAN Lin-xi; JIANG Qiu; LIU Dong; SONG Hou-yan

    2007-01-01

    Background Folic acid is very important for embryonic development and dihydrofolate reductase is one of the key enzymes in the process of folic acid performing its biological function. Therefore, the dysfunction of dihydrofolate reductase can inhibit the function of folic acid and finally cause the developmental malformations. In this study, we observed the abnormal cardiac phenotypes in dihydrofolate reductase (DHFR) gene knock-down zebrafish embryos,investigated the effect of DHFR on the expression of heart and neural crest derivatives expressed transcript 2 (HAND2)and explored the possible mechanism of DHFR knock-down inducing zebrafish cardiac malformations.Methods Morpholino oligonucleotides were microinjected into fertilized eggs to knock down the functions of DHFR or HAND2. Full length of HAND2 mRNA which was transcribed in vitro was microinjected into fertilized eggs to overexpress HAND2. The cardiac morphologies, the heart rates and the ventricular shortening fraction were observed and recorded under the microscope at 48 hours post fertilization. Whole-mount in situ hybridization and real-time PCR were performed to detect HAND2 expression.Results DHFR or HAND2 knock-down caused the cardiac malformation in zebrafish. The expression of HAND2 was obviously reduced in DHFR knock-down embryos (P<0.05). Microinjecting HAND2 mRNA into fertilized eggs can induce HAND2 overexpression. HAND2 overexpression rescued the cardiac malformation phenotypes of DHFR knock-down embryos.Conclusions DHFR plays a crucial role in cardiac development. The down-regulation of HAND2 caused by DHFR knock-down is the possible mechanism of DHFR knock-down inducing the cardiac malformation.

  10. Neural crest contributions to the lamprey head

    Science.gov (United States)

    McCauley, David W.; Bronner-Fraser, Marianne

    2003-01-01

    The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.

  11. A retinoic acid responsive Hoxa3 transgene expressed in embryonic pharyngeal endoderm, cardiac neural crest and a subdomain of the second heart field.

    Directory of Open Access Journals (Sweden)

    Nata Y S-G Diman

    Full Text Available A transgenic mouse line harbouring a β-galacdosidase reporter gene controlled by the proximal 2 kb promoter of Hoxa3 was previously generated to investigate the regulatory cues governing Hoxa3 expression in the mouse. Examination of transgenic embryos from embryonic day (E 8.0 to E15.5 revealed regionally restricted reporter activity in the developing heart. Indeed, transgene expression specifically delineated cells from three distinct lineages: a subpopulation of the second heart field contributing to outflow tract myocardium, the cardiac neural crest cells and the pharyngeal endoderm. Manipulation of the Retinoic Acid (RA signaling pathway showed that RA is required for correct expression of the transgene. Therefore, this transgenic line may serve as a cardiosensor line of particular interest for further analysis of outflow tract development.

  12. A Retinoic Acid Responsive Hoxa3 Transgene Expressed in Embryonic Pharyngeal Endoderm, Cardiac Neural Crest and a Subdomain of the Second Heart Field

    Science.gov (United States)

    Diman, Nata Y. S.-G.; Remacle, Sophie; Bertrand, Nicolas; Picard, Jacques J.; Zaffran, Stéphane; Rezsohazy, René

    2011-01-01

    A transgenic mouse line harbouring a β-galacdosidase reporter gene controlled by the proximal 2 kb promoter of Hoxa3 was previously generated to investigate the regulatory cues governing Hoxa3 expression in the mouse. Examination of transgenic embryos from embryonic day (E) 8.0 to E15.5 revealed regionally restricted reporter activity in the developing heart. Indeed, transgene expression specifically delineated cells from three distinct lineages: a subpopulation of the second heart field contributing to outflow tract myocardium, the cardiac neural crest cells and the pharyngeal endoderm. Manipulation of the Retinoic Acid (RA) signaling pathway showed that RA is required for correct expression of the transgene. Therefore, this transgenic line may serve as a cardiosensor line of particular interest for further analysis of outflow tract development. PMID:22110697

  13. Two developmentally distinct populations of neural crest cells contribute to the zebrafish heart.

    Science.gov (United States)

    Cavanaugh, Ann M; Huang, Jie; Chen, Jau-Nian

    2015-08-15

    Cardiac neural crest cells are essential for outflow tract remodeling in animals with divided systemic and pulmonary circulatory systems, but their contributions to cardiac development in animals with a single-loop circulatory system are less clear. Here we genetically labeled neural crest cells and examined their contribution to the developing zebrafish heart. We identified two populations of neural crest cells that contribute to distinct compartments of zebrafish cardiovascular system at different developmental stages. A stream of neural crest cells migrating through pharyngeal arches 1 and 2 integrates into the myocardium of the primitive heart tube between 24 and 30 h post fertilization and gives rise to cardiomyocytes. A second wave of neural crest cells migrating along aortic arch 6 envelops the endothelium of the ventral aorta and invades the bulbus arteriosus after three days of development. Interestingly, while inhibition of FGF signaling has no effect on the integration of neural crest cells to the primitive heart tube, it prevents these cells from contributing to the outflow tract, demonstrating disparate responses of neural crest cells to FGF signaling. Furthermore, neural crest ablation in zebrafish leads to multiple cardiac defects, including reduced heart rate, defective myocardial maturation and a failure to recruit progenitor cells from the second heart field. These findings add to our understanding of the contribution of neural crest cells to the developing heart and provide insights into the requirement for these cells in cardiac maturation.

  14. Islet1 derivatives in the heart are of both neural crest and second heart field origin

    Science.gov (United States)

    Engleka, Kurt A.; Manderfield, Lauren J.; Brust, Rachael D.; Li, Li; Cohen, Ashley; Dymecki, Susan M.; Epstein, Jonathan A.

    2012-01-01

    Rationale Islet1 (Isl1) has been proposed as a marker of cardiac progenitor cells derived from the second heart field and is utilized to identify and purify cardiac progenitors from murine and human specimens for ex vivo expansion. The use of Isl1 as a specific second heart field marker is dependent on its exclusion from other cardiac lineages such as neural crest. Objective Determine if Isl1 is expressed by cardiac neural crest. Methods and Results We used an intersectional fate-mapping system employing the RC::FrePe allele which reports dual Flpe and Cre recombination. Combining Isl11Cre/+, a SHF driver, and Wnt1::Flpe, a neural crest driver, with Rc::FrePe reveals that some Isl1 derivatives in the cardiac outflow tract derive from Wnt1-expressing neural crest progenitors. In contrast, no overlap was observed between Wnt1-derived neural crest and an alternative second heart field driver, Mef2c-AHF-Cre. Conclusions Isl1 is not restricted to second heart field progenitors in the developing heart but also labels cardiac neural crest. The intersection of Isl1 and Wnt1 lineages within the heart provides a caveat to using Isl1 as an exclusive second heart field cardiac progenitor marker and suggests that some Isl1-expressing progenitor cells derived from embryos, ES or iPS cultures may be of neural crest lineage. PMID:22394517

  15. Vagal neural crest cell migratory behavior: a transition between the cranial and trunk crest.

    Science.gov (United States)

    Kuo, Bryan R; Erickson, Carol A

    2011-09-01

    Migration and differentiation of cranial neural crest cells are largely controlled by environmental cues, whereas pathfinding at the trunk level is dictated by cell-autonomous molecular changes owing to early specification of the premigratory crest. Here, we investigated the migration and patterning of vagal neural crest cells. We show that (1) vagal neural crest cells exhibit some developmental bias, and (2) they take separate pathways to the heart and to the gut. Together these observations suggest that prior specification dictates initial pathway choice. However, when we challenged the vagal neural crest cells with different migratory environments, we observed that the behavior of the anterior vagal neural crest cells (somite-level 1-3) exhibit considerable migratory plasticity, whereas the posterior vagal neural crest cells (somite-level 5-7) are more restricted in their behavior. We conclude that the vagal neural crest is a transitional population that has evolved between the head and the trunk.

  16. Division of labor during trunk neural crest development.

    Science.gov (United States)

    Gammill, Laura S; Roffers-Agarwal, Julaine

    2010-08-15

    Neural crest cells, the migratory precursors of numerous cell types including the vertebrate peripheral nervous system, arise in the dorsal neural tube and follow prescribed routes into the embryonic periphery. While the timing and location of neural crest migratory pathways has been well documented in the trunk, a comprehensive collection of signals that guides neural crest migration along these paths has only recently been established. In this review, we outline the molecular cascade of events during trunk neural crest development. After describing the sequential routes taken by trunk neural crest cells, we consider the guidance cues that pattern these neural crest trajectories. We pay particular attention to segmental neural crest development and the steps and signals that generate a metameric peripheral nervous system, attempting to reconcile conflicting observations in chick and mouse. Finally, we compare cranial and trunk neural crest development in order to highlight common themes.

  17. Defective ALK5 signaling in the neural crest leads to increased postmigratory neural crest cell apoptosis and severe outflow tract defects

    Directory of Open Access Journals (Sweden)

    Sucov Henry M

    2006-11-01

    Full Text Available Abstract Background Congenital cardiovascular diseases are the most common form of birth defects in humans. A substantial portion of these defects has been associated with inappropriate induction, migration, differentiation and patterning of pluripotent cardiac neural crest stem cells. While TGF-β-superfamily signaling has been strongly implicated in neural crest cell development, the detailed molecular signaling mechanisms in vivo are still poorly understood. Results We deleted the TGF-β type I receptor Alk5 specifically in the mouse neural crest cell lineage. Failure in signaling via ALK5 leads to severe cardiovascular and pharyngeal defects, including inappropriate remodeling of pharyngeal arch arteries, abnormal aortic sac development, failure in pharyngeal organ migration and persistent truncus arteriosus. While ALK5 is not required for neural crest cell migration, our results demonstrate that it plays an important role in the survival of post-migratory cardiac neural crest cells. Conclusion Our results demonstrate that ALK5-mediated signaling in neural crest cells plays an essential cell-autonomous role in the pharyngeal and cardiac outflow tract development.

  18. Neural crest: The fourth germ layer

    Directory of Open Access Journals (Sweden)

    K Shyamala

    2015-01-01

    Full Text Available The neural crest cells (NCCs, a transient group of cells that emerges from the dorsal aspect of the neural tube during early vertebrate development has been a fascinating group of cells because of its multipotency, long range migration through embryo and its capacity to generate a prodigious number of differentiated cell types. For these reasons, although derived from the ectoderm, the neural crest (NC has been called the fourth germ layer. The non neural ectoderm, the neural plate and the underlying mesoderm are needed for the induction and formation of NC cells. Once formed, NC cells start migrating as a wave of cells, moving away from the neuroepithelium and quickly splitting into distinct streams. These migrating NCCs home in to different regions and give rise to plethora of tissues. Umpteen number of signaling molecules are essential for formation, epithelial mesenchymal transition, delamination, migration and localization of NCC. Authors believe that a clear understanding of steps and signals involved in NC formation, migration, etc., may help in understanding the pathogenesis behind cancer metastasis and many other diseases. Hence, we have taken this review to discuss the various aspects of the NC cells.

  19. Neural crest cells: from developmental biology to clinical interventions.

    Science.gov (United States)

    Noisa, Parinya; Raivio, Taneli

    2014-09-01

    Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes.

  20. Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell.

    Science.gov (United States)

    Muñoz, William A; Trainor, Paul A

    2015-01-01

    As vertebrates evolved from protochordates, they shifted to a more predatory lifestyle, and radiated and adapted to most niches of the planet. This process was largely facilitated by the generation of novel vertebrate head structures, which were derived from neural crest cells (NCC). The neural crest is a unique vertebrate cell population that is frequently termed the "fourth germ layer" because it forms in conjunction with the other germ layers and contributes to a diverse array of cell types and tissues including the craniofacial skeleton, the peripheral nervous system, and pigment cells among many other tissues and cell types. NCC are defined by their origin at the neural plate border, via an epithelial-to-mesenchymal transition (EMT), together with multipotency and polarized patterns of migration. These defining characteristics, which evolved independently in the germ layers of invertebrates, were subsequently co-opted through their gene regulatory networks to form NCC in vertebrates. Moreover, recent data suggest that the ability to undergo an EMT was one of the latter features co-opted by NCC. In this review, we discuss the potential origins of NCC and how they evolved to contribute to nearly all tissues and organs throughout the body, based on paleontological evidence together with an evaluation of the evolution of molecules involved in NCC development and their migratory cell paths.

  1. Endothelial cells regulate neural crest and second heart field morphogenesis.

    Science.gov (United States)

    Milgrom-Hoffman, Michal; Michailovici, Inbal; Ferrara, Napoleone; Zelzer, Elazar; Tzahor, Eldad

    2014-07-04

    Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio-craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio-craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio-craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  2. Endothelial cells regulate neural crest and second heart field morphogenesis

    Directory of Open Access Journals (Sweden)

    Michal Milgrom-Hoffman

    2014-07-01

    Full Text Available Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1 in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1 along with changes in the extracellular matrix (ECM composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  3. Xenopus reduced folate carrier regulates neural crest development epigenetically.

    Directory of Open Access Journals (Sweden)

    Jiejing Li

    Full Text Available Folic acid deficiency during pregnancy causes birth neurocristopathic malformations resulting from aberrant development of neural crest cells. The Reduced folate carrier (RFC is a membrane-bound receptor for facilitating transfer of reduced folate into the cells. RFC knockout mice are embryonic lethal and develop multiple malformations, including neurocristopathies. Here we show that XRFC is specifically expressed in neural crest tissues in Xenopus embryos and knockdown of XRFC by specific morpholino results in severe neurocristopathies. Inhibition of RFC blocked the expression of a series of neural crest marker genes while overexpression of RFC or injection of 5-methyltetrahydrofolate expanded the neural crest territories. In animal cap assays, knockdown of RFC dramatically reduced the mono- and trimethyl-Histone3-K4 levels and co-injection of the lysine methyltransferase hMLL1 largely rescued the XRFC morpholino phenotype. Our data revealed that the RFC mediated folate metabolic pathway likely potentiates neural crest gene expression through epigenetic modifications.

  4. Trunk neural crest cells: formation, migration and beyond.

    Science.gov (United States)

    Vega-Lopez, Guillermo A; Cerrizuela, Santiago; Aybar, Manuel J

    2017-01-01

    Neural crest cells (NCCs) are a multipotent, migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. The trunk neural crest has long been considered of particular significance. First, it has been held that the trunk neural crest has a morphogenetic role, acting to coordinate the development of the peripheral nervous system, secretory cells of the endocrine system and pigment cells of the skin. Second, the trunk neural crest additionally has skeletal potential. However, it has been demonstrated that a key role of the trunk neural crest streams is to organize the innervation of the intestine. Although trunk NCCs have a limited capacity for self-renewal, sometimes they become neural-crest-derived tumor cells and reveal the fact that that NCCs and tumor cells share the same molecular machinery. In this review we describe the routes taken by trunk NCCs and consider the signals and cues that pattern these trajectories. We also discuss recent advances in the characterization of the properties of trunk NCCs for various model organisms in order to highlight common themes. Finally, looking to the future, we discuss the need to translate the wealth of data from animal studies to the clinical area in order to develop treatments for neural crest-related human diseases.

  5. Migrating neural crest cells in the trunk of the avian embryo are multipotent

    OpenAIRE

    Fraser, Scott E.; Bronner-Fraser, Marianne

    1991-01-01

    Trunk neural crest cells migrate extensively and give rise to diverse cell types, including cells of the sensory and autonomic nervous systems. Previously, we demonstrated that many premigratory trunk neural crest cells give rise to descendants with distinct phenotypes in multiple neural crest derivatives. The results are consistent with the idea that neural crest cells are multipotent prior to their emigration from the neural tube and become restricted in phenotype after leaving the neural t...

  6. Iris sector heterochromia as a marker for neural crest disease.

    Science.gov (United States)

    Brazel, S M; Sullivan, T J; Thorner, P S; Clarke, M P; Hunter, W S; Morin, J D

    1992-02-01

    A 6-month-old female infant with biopsy-proved Hirschsprung's disease had associated sector heterochromia of the irides. The association between sector heterochromia and Hirschsprung's disease has been previously reported and both conditions have been ascribed to neural crest defects. Histologic characteristics of the ocular involvement have not previously been reported, to our knowledge. Histopathologic examination of the globes revealed decreased iris stroma, decreased pigmentation in the anterior stroma, and reduced numbers of pigment-producing cells in the affected areas. Both the ocular and gastrointestinal findings reflect abnormalities in tissues of neural crest origin.

  7. Current perspectives of the signaling pathways directing neural crest induction.

    Science.gov (United States)

    Stuhlmiller, Timothy J; García-Castro, Martín I

    2012-11-01

    The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse.

  8. Expression of chondrogenic potential of mouse trunk neural crest cells by FGF2 treatment.

    Science.gov (United States)

    Ido, Atsushi; Ito, Kazuo

    2006-02-01

    There is a significant difference between the developmental patterns of cranial and trunk neural crest cells in the amniote. Thus, whereas cranial neural crest cells generate bone and cartilage, trunk neural crest cells do not contribute to skeletal derivatives. We examined whether mouse trunk neural crest cells can undergo chondrogenesis to analyze how the difference between the developmental patterns of cranial and trunk neural crest cells arises. Our present data demonstrate that mouse trunk neural crest cells have chondrogenic potential and that fibroblast growth factor (FGF) 2 is an inducing factor for their chondrogenesis in vitro. FGF2 altered the expression patterns of Hox9 genes and Id2, a cranial neural crest cell marker. These results suggest that environmental cues may play essential roles in generating the difference between developmental patterns of cranial and trunk neural crest cells.

  9. Neural crest patterning and the evolution of the jaw.

    Science.gov (United States)

    Kimmel, C B; Miller, C T; Keynes, R J

    2001-01-01

    Here we present ideas connecting the behaviour of the cranial neural crest during development with the venerable, perhaps incorrect, view that gill-supporting cartilages of an ancient agnathan evolved into the skeleton of an early gnathostome's jaw. We discuss the pattern of migration of the cranial neural crest ectomesenchyme in zebrafish, along with the subsequent arrangement of postmigratory crest and head mesoderm in the nascent pharyngeal segments (branchiomeres), in diverse gnathostomes and in lampreys. These characteristics provide for a plausible von Baerian explanation for the problematic inside-outside change in topology of the gills and their supports between these 2 major groups of vertebrates. We consider it likely that the jaw supports did indeed arise from branchiomeric cartilages.

  10. Premigratory and migratory neural crest cells are multipotent in vivo

    NARCIS (Netherlands)

    Baggiolini, Arianna; Varum, Sandra; Mateos, José María; Bettosini, Damiano; John, Nessy; Bonalli, Mario; Ziegler, Urs; Dimou, Leda; Clevers, Hans; Furrer, Reinhard; Sommer, Lukas

    2015-01-01

    The neural crest (NC) is an embryonic stem/progenitor cell population that generates a diverse array of cell lineages, including peripheral neurons, myelinating Schwann cells, and melanocytes, among others. However, there is a long-standing controversy as to whether this broad developmental perspect

  11. Generating trunk neural crest from human pluripotent stem cells

    OpenAIRE

    Miller Huang; Matthew L. Miller; McHenry, Lauren K.; Tina Zheng; Qiqi Zhen; Shirin Ilkhanizadeh; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typi...

  12. Distinct enhancers at the Pax3 locus can function redundantly to regulate neural tube and neural crest expressions.

    Science.gov (United States)

    Degenhardt, Karl R; Milewski, Rita C; Padmanabhan, Arun; Miller, Mayumi; Singh, Manvendra K; Lang, Deborah; Engleka, Kurt A; Wu, Meilin; Li, Jun; Zhou, Diane; Antonucci, Nicole; Li, Li; Epstein, Jonathan A

    2010-03-15

    Pax3 is a transcription factor expressed in somitic mesoderm, dorsal neural tube and pre-migratory neural crest during embryonic development. We have previously identified cis-acting enhancer elements within the proximal upstream genomic region of Pax3 that are sufficient to direct functional expression of Pax3 in neural crest. These elements direct expression of a reporter gene to pre-migratory neural crest in transgenic mice, and transgenic expression of a Pax3 cDNA using these elements is sufficient to rescue neural crest development in mice otherwise lacking endogenous Pax3. We show here that deletion of these enhancer sequences by homologous recombination is insufficient to abrogate neural crest expression of Pax3 and results in viable mice. We identify a distinct enhancer in the fourth intron that is also capable of mediating neural crest expression in transgenic mice and zebrafish. Our analysis suggests the existence of functionally redundant neural crest enhancer modules for Pax3.

  13. Draxin, an axon guidance protein, affects chick trunk neural crest migration.

    Science.gov (United States)

    Su, Yuhong; Naser, Iftekhar B; Islam, Shahidul M; Zhang, Sanbing; Ahmed, Giasuddin; Chen, Sandy; Shinmyo, Yohei; Kawakami, Minoru; Yamamura, Ken-ichi; Tanaka, Hideaki

    2009-12-01

    The neural crest is a multipotent population of migratory cells that arises in the central nervous system and subsequently migrates along defined stereotypic pathways. In the present work, we analyzed the role of a repulsive axon guidance protein, draxin, in the migration of neural crest cells. Draxin is expressed in the roof plate of the chick trunk spinal cord and around the early migration pathway of neural crest cells. Draxin modulates chick neural crest cell migration in vitro by reducing the polarization of these cells. When exposed to draxin, the velocity of migrating neural crest cells was reduced, and the cells changed direction so frequently that the net migration distance was also reduced. Overexpression of draxin also caused some early migrating neural crest cells to change direction to the dorsolateral pathway in the chick trunk region, presumably due to draxin's inhibitory activity. These results demonstrate that draxin, an axon guidance protein, can also affect trunk neural crest migration in the chick embryo.

  14. Involvement of endothelin receptors in normal and pathological development of neural crest cells.

    Science.gov (United States)

    Pla, Patrick; Larue, Lionel

    2003-06-01

    Endothelin receptors (Ednr) are G-protein-coupled receptors with seven membrane-spanning domains and are involved in various physiological processes in adults. We review here the function of these receptors during the development and transformation of the neural crest cell-specific lineage. Neural crest cells (NCC) may be classified according to their location in the body. In particular, there are clear differences between the neural crest cells arising from the cephalic part of the embryo and those arising from the vagal and truncal part. The development of cranial and cardiac NCC requires the endothelin-1/Ednra system to be fully functional whereas the development of more posterior NCC requires full functionality of the endothelin-3/Ednrb system. Mutations have been found in the genes corresponding to these systems in mammals. These mutations principally impair pigmentation and enteric ganglia development. The precise patterns of expression of these receptors and their ligands have been determined in avian and mammalian models. Data obtained in vitro and in vivo have provided insight into the roles of these proteins in cell proliferation, migration, differentiation and transformation.

  15. File list: DNS.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.hESC_derived_neural_crests hg19 DNase-seq Pluripotent stem cell hESC derived neural crest...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  16. File list: DNS.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.hESC_derived_neural_crests hg19 DNase-seq Pluripotent stem cell hESC derived neural crest...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  17. File list: DNS.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.hESC_derived_neural_crests hg19 DNase-seq Pluripotent stem cell hESC derived neural crest...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  18. File list: DNS.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.hESC_derived_neural_crests hg19 DNase-seq Pluripotent stem cell hESC derived neural crest...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  19. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development.

    Science.gov (United States)

    Bohnsack, Brenda L; Kahana, Alon

    2013-01-15

    Craniofacial and ocular morphogenesis require proper regulation of cranial neural crest migration, proliferation, survival and differentiation. Although alterations in maternal thyroid hormone (TH) are associated with congenital craniofacial anomalies, the role of TH on the neural crest has not been previously described. Using zebrafish, we demonstrate that pharmacologic and genetic alterations in TH signaling disrupt cranial neural crest migration, proliferation, and survival, leading to craniofacial, extraocular muscle, and ocular developmental abnormalities. In the rostral cranial neural crest that gives rise to the periocular mesenchyme and the frontonasal process, retinoic acid (RA) rescued migratory defects induced by decreased TH signaling. In the caudal cranial neural crest, TH and RA had reciprocal effects on anterior and posterior pharyngeal arch development. The interactions between TH and RA signaling were partially mediated by the retinoid X receptor. We conclude that TH regulates both rostral and caudal cranial neural crest. Further, coordinated interactions of TH and RA are required for proper craniofacial and ocular development.

  20. Dual function of Slit2 in repulsion and enhanced migration of trunk, but not vagal, neural crest cells

    OpenAIRE

    De Bellard, Maria Elena; Rao, Yi; Bronner-Fraser, Marianne

    2003-01-01

    Neural crest precursors to the autonomic nervous system form different derivatives depending upon their axial level of origin; for example, vagal, but not trunk, neural crest cells form the enteric ganglia of the gut. Here, we show that Slit2 is expressed at the entrance of the gut, which is selectively invaded by vagal, but not trunk, neural crest. Accordingly, only trunk neural crest cells express Robo receptors. In vivo and in vitro experiments demonstrate that trunk, not vagal, crest cell...

  1. Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers.

    Science.gov (United States)

    Plouhinec, Jean-Louis; Roche, Daniel D; Pegoraro, Caterina; Figueiredo, Ana Leonor; Maczkowiak, Frédérique; Brunet, Lisa J; Milet, Cécile; Vert, Jean-Philippe; Pollet, Nicolas; Harland, Richard M; Monsoro-Burq, Anne H

    2014-02-15

    Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulations provide novel tools to understand the neural crest induction network.

  2. The neural crest stem cells: control of neural crest cell fate and plasticity by endothelin-3

    Directory of Open Access Journals (Sweden)

    ELISABETH DUPIN

    2001-12-01

    Full Text Available How the considerable diversity of neural crest (NC-derived cell types arises in the vertebrate embryo has long been a key question in developmental biology. The pluripotency and plasticity of differentiation of the NC cell population has been fully documented and it is well-established that environmental cues play an important role in patterning the NC derivatives throughout the body. Over the past decade, in vivo and in vitro cellular approaches have unravelled the differentiation potentialities of single NC cells and led to the discovery of NC stem cells. Although it is clear that the final fate of individual cells is in agreement with their final position within the embryo, it has to be stressed that the NC cells that reach target sites are pluripotent and further restrictions occur only late in development. It is therefore a heterogenous collection of cells that is submitted to local environmental signals in the various NC-derived structures. Several factors were thus identified which favor the development of subsets of NC-derived cells in vitro. Moreover, the strategy of gene targeting in mouse has led at identifying new molecules able to control one or several aspects of NC cell differentiation in vivo. Endothelin peptides (and endothelin receptors are among those. The conjunction of recent data obtained in mouse and avian embryos and reviewed here contributes to a better understanding of the action of the endothelin signaling pathway in the emergence and stability of NC-derived cell phenotypes.O modo como a diversidade dos tipos celulares derivados da crista neural (CN surge, no embrião de vertebrado, tem sido uma pergunta chave na biologia do desenvolvimento. A pluripotência e a plasticidade na diferenciação da população de células da CN têm sido intensivamente documentadas, ficando deste modo estabelecido que os factores ambientais têm um papel importante na correta diferenciação dos derivados da CN no organismo. Na d

  3. Zebrafish arl6ip1 is required for neural crest development during embryogenesis.

    Directory of Open Access Journals (Sweden)

    Chi-Tang Tu

    Full Text Available BACKGROUND: Although the embryonic expression pattern of ADP ribosylation factor-like 6 interacting protein 1 (Arl6ip1 has been reported, its function in neural crest development is unclear. METHODS/PRINCIPAL FINDINGS: We found that knockdown of Arl6ip1 caused defective embryonic neural crest derivatives that were particularly severe in craniofacial cartilages. Expressions of the ectodermal patterning factors msxb, dlx3b, and pax3 were normal, but the expressions of the neural crest specifier genes foxd3, snai1b, and sox10 were greatly reduced. These findings suggest that arl6ip1 is essential for specification of neural crest derivatives, but not neural crest induction. Furthermore, we revealed that the streams of crestin- and sox10-expressing neural crest cells, which migrate ventrally from neural tube into trunk, were disrupted in arl6ip1 morphants. This migration defect was not only in the trunk neural crest, but also in the enteric tract where the vagal-derived neural crest cells failed to populate the enteric nervous system. We found that this migration defect was induced by dampened Shh signaling, which may have resulted from defective cilia. These data further suggested that arl6ip1 is required for neural crest migration. Finally, by double-staining of TUNEL and crestin, we confirmed that the loss of neural crest cells could not be attributed to apoptosis. CONCLUSIONS/SIGNIFICANCE: Therefore, we concluded that arl6ip1 is required for neural crest migration and sublineage specification.

  4. Slit molecules prevent entrance of trunk neural crest cells in developing gut.

    Science.gov (United States)

    Zuhdi, Nora; Ortega, Blanca; Giovannone, Dion; Ra, Hannah; Reyes, Michelle; Asención, Viviana; McNicoll, Ian; Ma, Le; de Bellard, Maria Elena

    2015-04-01

    Neural crest cells emerge from the dorsal neural tube early in development and give rise to sensory and sympathetic ganglia, adrenal cells, teeth, melanocytes and especially enteric nervous system. Several inhibitory molecules have been shown to play important roles in neural crest migration, among them are the chemorepulsive Slit1-3. It was known that Slits chemorepellants are expressed at the entry to the gut, and thus could play a role in the differential ability of vagal but not trunk neural crest cells to invade the gut and form enteric ganglia. Especially since trunk neural crest cells express Robo receptor while vagal do not. Thus, although we know that Robo mediates migration along the dorsal pathway in neural crest cells, we do not know if it is responsible in preventing their entry into the gut. The goal of this study was to further corroborate a role for Slit molecules in keeping trunk neural crest cells away from the gut. We observed that when we silenced Robo receptor in trunk neural crest, the sympathoadrenal (somites 18-24) were capable of invading gut mesenchyme in larger proportion than more rostral counterparts. The more rostral trunk neural crest tended not to migrate beyond the ventral aorta, suggesting that there are other repulsive molecules keeping them away from the gut. Interestingly, we also found that when we silenced Robo in sacral neural crest they did not wait for the arrival of vagal crest but entered the gut and migrated rostrally, suggesting that Slit molecules are the ones responsible for keeping them waiting at the hindgut mesenchyme. These combined results confirm that Slit molecules are responsible for keeping the timeliness of colonization of the gut by neural crest cells.

  5. Neural Crest As the Source of Adult Stem Cells

    Science.gov (United States)

    Pierret, Chris; Spears, Kathleen; Maruniak, Joel A.; Kirk, Mark D.

    2012-01-01

    Recent studies suggest that adult stem cells can cross germ layer boundaries. For example, bone marrow-derived stem cells appear to differentiate into neurons and glial cells, as well as other types of cells. How can stem cells from bone marrow, pancreas, skin, or fat become neurons and glia; in other words, what molecular and cellular events direct mesodermal cells to a neural fate? Transdifferentiation, dediffereniation, and fusion of donor adult stem cells with fully differentiated host cells have been proposed to explain the plasticity of adult stem cells. Here we review the origin of select adult stem cell populations and propose a unifying hypothesis to explain adult stem cell plasticity. In addition, we outline specific experiments to test our hypothesis. We propose that peripheral, tissue-derived, or adult stem cells are all progeny of the neural crest. PMID:16646675

  6. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration.

    Science.gov (United States)

    Chevalier, N R; Gazguez, E; Bidault, L; Guilbert, T; Vias, C; Vian, E; Watanabe, Y; Muller, L; Germain, S; Bondurand, N; Dufour, S; Fleury, V

    2016-02-18

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  7. Analysis of neural crest-derived clones reveals novel aspects of facial development

    NARCIS (Netherlands)

    Kaucka, Marketa; Ivashkin, Evgeny; Gyllborg, Daniel; Zikmund, Tomas; Tesarova, Marketa; Kaiser, Jozef; Xie, Meng; Petersen, Julian; Pachnis, Vassilis; Nicolis, Silvia K; Yu, Tian; Sharpe, Paul; Arenas, Ernest; Brismar, Hjalmar; Blom, Hans; Clevers, Hans; Suter, Ueli; Chagin, Andrei S; Fried, Kaj; Hellander, Andreas; Adameyko, Igor

    2016-01-01

    Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal

  8. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns

    Science.gov (United States)

    Meulemans, Daniel; Bronner-Fraser, Marianne

    2002-01-01

    The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.

  9. File list: NoD.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.10.AllAg.hESC_derived_neural_crests hg19 No description Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  10. File list: InP.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.20.AllAg.hESC_derived_neural_crests hg19 Input control Pluripotent stem cell hESC derived neural... crests SRX1091573,SRX059369,SRX059361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  11. File list: InP.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.50.AllAg.hESC_derived_neural_crests hg19 Input control Pluripotent stem cell hESC derived neural... crests SRX1091573,SRX059369,SRX059361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  12. File list: NoD.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.05.AllAg.hESC_derived_neural_crests hg19 No description Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  13. File list: InP.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.10.AllAg.hESC_derived_neural_crests hg19 Input control Pluripotent stem cell hESC derived neural... crests SRX1091573,SRX059369,SRX059361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  14. File list: Unc.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.20.AllAg.hESC_derived_neural_crests hg19 Unclassified Pluripotent stem cell hESC derived neural... crests SRX059366 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  15. File list: Pol.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  16. File list: Unc.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.50.AllAg.hESC_derived_neural_crests hg19 Unclassified Pluripotent stem cell hESC derived neural... crests SRX059366 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  17. File list: Unc.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.hESC_derived_neural_crests hg19 Unclassified Pluripotent stem cell hESC derived neural cres...ts SRX059366 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  18. File list: InP.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.05.AllAg.hESC_derived_neural_crests hg19 Input control Pluripotent stem cel...l hESC derived neural crests SRX1091573,SRX059369,SRX059361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  19. File list: Pol.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.10.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem ce...ll hESC derived neural crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  20. File list: NoD.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.20.AllAg.hESC_derived_neural_crests hg19 No description Pluripotent stem ce...ll hESC derived neural crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  1. File list: Pol.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.50.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem ce...ll hESC derived neural crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  2. File list: NoD.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.50.AllAg.hESC_derived_neural_crests hg19 No description Pluripotent stem ce...ll hESC derived neural crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  3. File list: Pol.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem ce...ll hESC derived neural crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  4. Dual function of Slit2 in repulsion and enhanced migration of trunk, but not vagal, neural crest cells.

    Science.gov (United States)

    De Bellard, Maria Elena; Rao, Yi; Bronner-Fraser, Marianne

    2003-07-21

    Neural crest precursors to the autonomic nervous system form different derivatives depending upon their axial level of origin; for example, vagal, but not trunk, neural crest cells form the enteric ganglia of the gut. Here, we show that Slit2 is expressed at the entrance of the gut, which is selectively invaded by vagal, but not trunk, neural crest. Accordingly, only trunk neural crest cells express Robo receptors. In vivo and in vitro experiments demonstrate that trunk, not vagal, crest cells avoid cells or cell membranes expressing Slit2, thereby contributing to the differential ability of neural crest populations to invade and innervate the gut. Conversely, exposure to soluble Slit2 significantly increases the distance traversed by trunk neural crest cells. These results suggest that Slit2 can act bifunctionally, both repulsing and stimulating the motility of trunk neural crest cells.

  5. Neural crest stem cells: discovery, properties and potential for therapy

    Institute of Scientific and Technical Information of China (English)

    Annita Achilleos; Paul A Trainor

    2012-01-01

    Neural crest (NC) cells are a migratory cell population synonymous with vertebrate evolution.They generate a wide variety of cell and tissue types during embryonic and adult development including cartilage and bone,connective tissue,pigment and endocrine cells as well as neurons and glia amongst many others.Such incredible lineage potential combined with a limited capacity for self-renewal,which persists even into adult life,demonstrates that NC cells bear the key hallmarks of stem and progenitor cells.In this review,we describe the identification,characterization and isolation of NC stem and progenitor cells from different tissues in both embryo and adult organisms.We discuss their specific properties and their potential application in cell-based tissue and disease-specific repair.

  6. Review: the role of neural crest cells in the endocrine system.

    Science.gov (United States)

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  7. Divergent roles for Eph and Ephrin in Avian Cranial Neural Crest

    Directory of Open Access Journals (Sweden)

    Burke Robert D

    2008-05-01

    Full Text Available Abstract Background As in other vertebrates, avian hindbrain neural crest migrates in streams to specific branchial arches. Signalling from Eph receptors and ephrins has been proposed to provide a molecular mechanism that guides the cells restricting them to streams. In mice and frogs, cranial neural crest express a combination of Eph receptors and ephrins that appear to exclude cells from adjacent tissues by forward and reverse signalling. The objective of this study was to provide comparative data on the distribution and function of Eph receptors and ephrins in avian embryos. Results To distinguish neural crest from bordering ectoderm and head mesenchyme, we have co-labelled embryos for Eph or ephrin RNA and a neural crest marker protein. Throughout their migration avian cranial neural crest cells express EphA3, EphA4, EphA7, EphB1, and EphB3 and move along pathways bordered by non-neural crest cells expressing ephrin-B1. In addition, avian cranial neural crest cells express ephrin-B2 and migrate along pathways bordered by non-neural crest cells expressing EphB2. Thus, the distribution of avian Eph receptors and ephrins differs from those reported in other vertebrates. In stripe assays when explanted cranial neural crest were given the choice between FN or FN plus clustered ephrin-B1 or EphB2 fusion protein, the cells strongly localize to lanes containing only FN. This preference is mitigated in the presence of soluble ephrin-B1 or EphB2 fusion protein. Conclusion These findings show that avian cranial neural crest use Eph and ephrin receptors as other vertebrates in guiding migration. However, the Eph receptors are expressed in different combinations by neural crest destined for each branchial arch and ephrin-B1 and ephrin-B2 appear to have opposite roles to those reported to guide cranial neural crest migration in mice. Unlike many of the signalling, specification, and effector pathways of neural crest, the roles of Eph receptors and ephrins

  8. Characterization of the trunk neural crest in the bamboo shark, Chiloscyllium punctatum.

    Science.gov (United States)

    Juarez, Marilyn; Reyes, Michelle; Coleman, Tiffany; Rotenstein, Lisa; Sao, Sothy; Martinez, Darwin; Jones, Matthew; Mackelprang, Rachel; De Bellard, Maria Elena

    2013-10-01

    The neural crest is a population of mesenchymal cells that after migrating from the neural tube gives rise to structure and cell types: the jaw, part of the peripheral ganglia, and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with dioctadecyl tetramethylindocarbocyanine perchlorate (DiI) and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, the branchial arches, the gut, the sensory ganglia, and the nerves. Interestingly, C. punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs. The expression of these two SoxE genes in trunk neural crest cells, especially Sox9, matched the Sox10 migratory patterns observed in teleosts. Also of interest, we observed DiI cells and Sox9 labeling along the lateral line, suggesting that in C. punctatum, glial cells in the lateral line are likely of neural crest origin. Although this has been observed in other vertebrates, we are the first to show that the pattern is present in cartilaginous fishes. These findings demonstrate that trunk neural crest cell development in C. punctatum follows the same highly conserved migratory pattern observed in jawed vertebrates.

  9. A novel role for Lh3 dependent ECM modifications during neural crest cell migration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Santanu Banerjee

    Full Text Available During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3-Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.

  10. A novel role for Lh3 dependent ECM modifications during neural crest cell migration in zebrafish.

    Science.gov (United States)

    Banerjee, Santanu; Isaacman-Beck, Jesse; Schneider, Valerie A; Granato, Michael

    2013-01-01

    During vertebrate development, trunk neural crest cells delaminate along the entire length of the dorsal neural tube and initially migrate as a non-segmented sheet. As they enter the somites, neural crest cells rearrange into spatially restricted segmental streams. Extracellular matrix components are likely to play critical roles in this transition from a sheet-like to a stream-like mode of migration, yet the extracellular matrix components and their modifying enzymes critical for this transition are largely unknown. Here, we identified the glycosyltransferase Lh3, known to modify extracellular matrix components, and its presumptive substrate Collagen18A1, to provide extrinsic signals critical for neural crest cells to transition from a sheet-like migration behavior to migrating as a segmental stream. Using live cell imaging we show that in lh3 null mutants, neural crest cells fail to transition from a sheet to a stream, and that they consequently enter the somites as multiple streams, or stall shortly after entering the somites. Moreover, we demonstrate that transgenic expression of lh3 in a small subset of somitic cells adjacent to where neural crest cells switch from sheet to stream migration restores segmental neural crest cell migration. Finally, we show that knockdown of the presumptive Lh3 substrate Collagen18A1 recapitulates the neural crest cell migration defects observed in lh3 mutants, consistent with the notion that Lh3 exerts its effect on neural crest cell migration by regulating post-translational modifications of Collagen18A1. Together these data suggest that Lh3-Collagen18A1 dependent ECM modifications regulate the transition of trunk neural crest cells from a non-segmental sheet like migration mode to a segmental stream migration mode.

  11. Should I stay or should I go? Cadherin function and regulation in the neural crest.

    Science.gov (United States)

    Taneyhill, Lisa A; Schiffmacher, Andrew T

    2017-03-02

    Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial-to-mesenchymal transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest.

  12. Migratory patterns and developmental potential of trunk neural crest cells in the axolotl embryo.

    Science.gov (United States)

    Epperlein, Hans-Henning; Selleck, Mark A J; Meulemans, Daniel; Mchedlishvili, Levan; Cerny, Robert; Sobkow, Lidia; Bronner-Fraser, Marianne

    2007-02-01

    Using cell markers and grafting, we examined the timing of migration and developmental potential of trunk neural crest cells in axolotl. No obvious differences in pathway choice were noted for DiI-labeling at different lateral or medial positions of the trunk neural folds in neurulae, which contributed not only to neural crest but also to Rohon-Beard neurons. Labeling wild-type dorsal trunks at pre- and early-migratory stages revealed that individual neural crest cells migrate away from the neural tube along two main routes: first, dorsolaterally between the epidermis and somites and, later, ventromedially between the somites and neural tube/notochord. Dorsolaterally migrating crest primarily forms pigment cells, with those from anterior (but not mid or posterior) trunk neural folds also contributing glia and neurons to the lateral line. White mutants have impaired dorsolateral but normal ventromedial migration. At late migratory stages, most labeled cells move along the ventromedial pathway or into the dorsal fin. Contrasting with other anamniotes, axolotl has a minor neural crest contribution to the dorsal fin, most of which arises from the dermomyotome. Taken together, the results reveal stereotypic migration and differentiation of neural crest cells in axolotl that differ from other vertebrates in timing of entry onto the dorsolateral pathway and extent of contribution to some derivatives.

  13. A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration.

    Science.gov (United States)

    Banerjee, Santanu; Gordon, Laura; Donn, Thomas M; Berti, Caterina; Moens, Cecilia B; Burden, Steven J; Granato, Michael

    2011-08-01

    Trunk neural crest cells delaminate from the dorsal neural tube as an uninterrupted sheet; however, they convert into segmentally organized streams before migrating through the somitic territory. These neural crest cell streams join the segmental trajectories of pathfinding spinal motor axons, suggesting that interactions between these two cell types might be important for neural crest cell migration. Here, we show that in the zebrafish embryo migration of both neural crest cells and motor axons is temporally synchronized and spatially restricted to the center of the somite, but that motor axons are dispensable for segmental neural crest cell migration. Instead, we find that muscle-specific receptor kinase (MuSK) and its putative ligand Wnt11r are crucial for restricting neural crest cell migration to the center of each somite. Moreover, we find that blocking planar cell polarity (PCP) signaling in somitic muscle cells also results in non-segmental neural crest cell migration. Using an F-actin biosensor we show that in the absence of MuSK neural crest cells fail to retract non-productive leading edges, resulting in non-segmental migration. Finally, we show that MuSK knockout mice display similar neural crest cell migration defects, suggesting a novel, evolutionarily conserved role for MuSK in neural crest migration. We propose that a Wnt11r-MuSK dependent, PCP-like pathway restricts neural crest cells to their segmental path.

  14. Neural crest does not contribute to the neck and shoulder in the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Hans-Henning Epperlein

    Full Text Available BACKGROUND: A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest. The neural crest was suggested to sustain the muscle attachments. How this complex composition of the endochondral shoulder girdle arose during evolution and whether it is shared by all tetrapods is unknown. Salamanders that lack dermal bone within their shoulder girdle were of special interest for a possible contribution of the neural crest to the endochondral elements and muscle attachment sites, and we therefore studied them in this context. RESULTS: We grafted neural crest from GFP+ fluorescent transgenic axolotl (Ambystoma mexicanum donor embryos into white (d/d axolotl hosts and followed the presence of neural crest cells within the cartilage of the shoulder girdle and the connective tissue of muscle attachment sites of the neck-shoulder region. Strikingly, neural crest cells did not contribute to any part of the endochondral shoulder girdle or to the connective tissue at muscle attachment sites in axolotl. CONCLUSIONS: Our results in axolotl suggest that neural crest does not serve a general function in vertebrate shoulder muscle attachment sites as predicted by the "muscle scaffold theory," and that it is not necessary to maintain connectivity of the endochondral shoulder girdle to the skull. Our data support the possibility that the contribution of the neural crest to the endochondral shoulder girdle, which is observed in the mouse, arose de novo in mammals as a developmental basis for their skeletal synapomorphies. This further supports the hypothesis of an increased neural crest diversification during vertebrate evolution.

  15. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Sowa

    Full Text Available Recent studies have shown that adipose-derived stromal/stem cells (ASCs contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs. This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2 and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta. NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.

  16. Trunk lateral cells are neural crest-like cells in the ascidian Ciona intestinalis: insights into the ancestry and evolution of the neural crest.

    Science.gov (United States)

    Jeffery, William R; Chiba, Takuto; Krajka, Florian Razy; Deyts, Carole; Satoh, Nori; Joly, Jean-Stéphane

    2008-12-01

    Neural crest-like cells (NCLC) that express the HNK-1 antigen and form body pigment cells were previously identified in diverse ascidian species. Here we investigate the embryonic origin, migratory activity, and neural crest related gene expression patterns of NCLC in the ascidian Ciona intestinalis. HNK-1 expression first appeared at about the time of larval hatching in dorsal cells of the posterior trunk. In swimming tadpoles, HNK-1 positive cells began to migrate, and after metamorphosis they were localized in the oral and atrial siphons, branchial gill slits, endostyle, and gut. Cleavage arrest experiments showed that NCLC are derived from the A7.6 cells, the precursors of trunk lateral cells (TLC), one of the three types of migratory mesenchymal cells in ascidian embryos. In cleavage arrested embryos, HNK-1 positive TLC were present on the lateral margins of the neural plate and later became localized adjacent to the posterior sensory vesicle, a staging zone for their migration after larval hatching. The Ciona orthologues of seven of sixteen genes that function in the vertebrate neural crest gene regulatory network are expressed in the A7.6/TLC lineage. The vertebrate counterparts of these genes function downstream of neural plate border specification in the regulatory network leading to neural crest development. The results suggest that NCLC and neural crest cells may be homologous cell types originating in the common ancestor of tunicates and vertebrates and support the possibility that a putative regulatory network governing NCLC development was co-opted to produce neural crest cells during vertebrate evolution.

  17. Generating trunk neural crest from human pluripotent stem cells.

    Science.gov (United States)

    Huang, Miller; Miller, Matthew L; McHenry, Lauren K; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R; Bronner, Marianne E; Weiss, William A

    2016-01-27

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior "cranial" NCC form craniofacial bone, whereas solely posterior "trunk" NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages.

  18. Methods for derivation of multipotent neural crest cells derived from human pluripotent stem cells

    Science.gov (United States)

    Avery, John; Dalton, Stephen

    2016-01-01

    Summary Multipotent, neural crest cells (NCCs) produce a wide-range of cell types during embryonic development. This includes melanocytes, peripheral neurons, smooth muscle cells, osteocytes, chondrocytes and adipocytes. The protocol described here allows for highly-efficient differentiation of human pluripotent stem cells to a neural crest fate within 15 days. This is accomplished under feeder-free conditions, using chemically defined medium supplemented with two small molecule inhibitors that block glycogen synthase kinase 3 (GSK3) and bone morphogenic protein (BMP) signaling. This technology is well-suited as a platform to understand in greater detail the pathogenesis of human disease associated with impaired neural crest development/migration. PMID:25986498

  19. Roles of chromatin remodelers in maintenance mechanisms of multipotency of mouse trunk neural crest cells in the formation of neural crest-derived stem cells.

    Science.gov (United States)

    Fujita, Kyohei; Ogawa, Ryuhei; Kawawaki, Syunsaku; Ito, Kazuo

    2014-08-01

    We analyzed roles of two chromatin remodelers, Chromodomain Helicase DNA-binding protein 7 (CHD7) and SWItch/Sucrose NonFermentable-B (SWI/SNF-B), and Bone Morphogenetic Protein (BMP)/Wnt signaling in the maintenance of the multipotency of mouse trunk neural crest cells, leading to the formation of mouse neural crest-derived stem cells (mouse NCSCs). CHD7 was expressed in the undifferentiated neural crest cells and in the dorsal root ganglia (DRG) and sciatic nerve, typical tissues containing NCSCs. BMP/Wnt signaling stimulated the expression of CHD7 and participated in maintaining the multipotency of neural crest cells. Furthermore, the promotion of CHD7 expression maintained the multipotency of these cells. The inhibition of CHD7 and SWI/SNF-B expression significantly suppressed the maintenance of the multipotency of these cells. In addition, BMP/Wnt treatment promoted CHD7 expression and caused the increase of the percentage of multipotent cells in DRG. Thus, the present data suggest that the chromatin remodelers as well as BMP/Wnt signaling play essential roles in the maintenance of the multipotency of mouse trunk neural crest cells and in the formation of mouse NCSCs.

  20. Live image profiling of neural crest lineages in zebrafish transgenic lines.

    Science.gov (United States)

    Kwak, Jina; Park, Ok Kyu; Jung, Yoo Jung; Hwang, Byung Joon; Kwon, Seung-Hae; Kee, Yun

    2013-03-01

    Zebrafish transgenic lines are important experimental tools for lineage tracing and imaging studies. It is crucial to precisely characterize the cell lineages labeled in transgenic lines to understand their limitations and thus properly interpret the data obtained from their use; only then can we confidently select a line appropriate for our particular research objectives. Here we profiled the cell lineages labeled in the closely related neural crest transgenic lines Tg(foxd3:GFP), Tg(sox10:eGFP) and Tg(sox10:mRFP). These fish were crossed to generate embryos, in which foxd3 and sox10 transgenic neural crest labeling could be directly compared at the cellular level using live confocal imaging. We have identified key differences in the cell lineages labeled in each line during early neural crest development and demonstrated that the most anterior cranial neural crest cells initially migrating out of neural tube at the level of forebrain and anterior midbrain express sox10:eGFP and sox10:mRFP, but not foxd3:GFP. This differential profile was robustly maintained in the differentiating progeny of the neural crest lineages until 3.5dpf. Our data will enable researchers to make an informed choice in selecting transgenic lines for future neural crest research.

  1. A potential inhibitory function of draxin in regulating mouse trunk neural crest migration.

    Science.gov (United States)

    Zhang, Sanbing; Su, Yuhong; Gao, Jinbao; Zhang, Chenbing; Tanaka, Hideaki

    2017-01-01

    Draxin is a repulsive axon guidance protein that plays important roles in the formation of three commissures in the central nervous system and dorsal interneuron 3 (dI3) in the chick spinal cord. In the present study, we report the expression pattern of mouse draxin in the embryonic mouse trunk spinal cord. In the presence of draxin, the longest net migration length of a migrating mouse trunk neural crest cell was significantly reduced. In addition, the relative number of apolar neural crest cells increased as the draxin treatment time increased. Draxin caused actin cytoskeleton rearrangement in the migrating trunk neural crest cells. Our data suggest that draxin may regulate mouse trunk neural crest cell migration by the rearrangement of cell actin cytoskeleton and by reducing the polarization activity of these cells subsequently.

  2. Induction of cranial and posterior trunk neural crest by exogenous retinoic acid in zebrafish

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Retinoic acid (RA) plays an important role in development of vertebrate embryos. We demonstrate impacts of exogenous RA on the formation of neural crest cells in zebrafish using specific neural crest markers sox9b and crestin. Treatment with all-trans RA at 10?7 mmol/L at 50% epiboly induces sox9b expression in the forebrain and crestin expression in the forebrain and midbrain, resulting in significant increase of pigment cells in the head derived from the cranial neural crest. In addition, RA treatment induces expression of sox9b and crestin in the caudal marginal cells of the neuroectoderm during early segmentation. Earlier commitment of these cells to the neural crest fate in the posterior margins leads to abnormal development of the posterior body, probably by preventing mingling of ventral derived and dorsal-derived cells during the formation of the tailbud.

  3. Dissecting early regulatory relationships in the lamprey neural crest gene network.

    Science.gov (United States)

    Nikitina, Natalya; Sauka-Spengler, Tatjana; Bronner-Fraser, Marianne

    2008-12-23

    The neural crest, a multipotent embryonic cell type, originates at the border between neural and nonneural ectoderm. After neural tube closure, these cells undergo an epithelial-mesenchymal transition, migrate to precise, often distant locations, and differentiate into diverse derivatives. Analyses of expression and function of signaling and transcription factors in higher vertebrates has led to the proposal that a neural crest gene regulatory network (NC-GRN) orchestrates neural crest formation. Here, we interrogate the NC-GRN in the lamprey, taking advantage of its slow development and basal phylogenetic position to resolve early inductive events, 1 regulatory step at the time. To establish regulatory relationships at the neural plate border, we assess relative expression of 6 neural crest network genes and effects of individually perturbing each on the remaining 5. The results refine an upstream portion of the NC-GRN and reveal unexpected order and linkages therein; e.g., lamprey AP-2 appears to function early as a neural plate border rather than a neural crest specifier and in a pathway linked to MsxA but independent of ZicA. These findings provide an ancestral framework for performing comparative tests in higher vertebrates in which network linkages may be more difficult to resolve because of their rapid development.

  4. An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme.

    Science.gov (United States)

    Lee, Raymond Teck Ho; Knapik, Ela W; Thiery, Jean Paul; Carney, Thomas J

    2013-07-01

    The neural crest is a multipotent stem cell population that arises from the dorsal aspect of the neural tube and generates both non-ectomesenchymal (melanocytes, peripheral neurons and glia) and ectomesenchymal (skeletogenic, odontogenic, cartilaginous and connective tissue) derivatives. In amniotes, only cranial neural crest generates both classes, with trunk neural crest restricted to non-ectomesenchyme. By contrast, it has been suggested that anamniotes might generate derivatives of both classes at all axial levels, with trunk neural crest generating fin osteoblasts, scale mineral-forming cells and connective tissue cells; however, this has not been fully tested. The cause and evolutionary significance of this cranial/trunk dichotomy, and its absence in anamniotes, are debated. Recent experiments have disputed the contribution of fish trunk neural crest to fin osteoblasts and scale mineral-forming cells. This prompted us to test the contribution of anamniote trunk neural crest to fin connective tissue cells. Using genetics-based lineage tracing in zebrafish, we find that these fin mesenchyme cells derive entirely from the mesoderm and that neural crest makes no contribution. Furthermore, contrary to previous suggestions, larval fin mesenchyme cells do not generate the skeletogenic cells of the adult fin, but persist to form fibroblasts associated with adult fin rays. Our data demonstrate that zebrafish trunk neural crest does not generate ectomesenchymal derivatives and challenge long-held ideas about trunk neural crest fate. These findings have important implications for the ontogeny and evolution of the neural crest.

  5. Cranial and trunk neural crest cells use different mechanisms for attachment to extracellular matrices

    OpenAIRE

    Lallier, Thomas; Leblanc, Gabrielle; Artinger, Kristin B.; Bronner-Fraser, Marianne

    1992-01-01

    We have used a quantitative cell attachment assay to compare the interactions of cranial and trunk neural crest cells with the extracellular matrix (ECM) molecules fibronectin, laminin and collagen types I and IV. Antibodies to the β_1 subunit of integrin inhibited attachment under all conditions tested, suggesting that integrins mediate neural crest cell interactions with these ECM molecules. The HNK-1 antibody against a surface carbohydrate epitope under certain conditions inhibited both cr...

  6. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice.

    Directory of Open Access Journals (Sweden)

    Kajohnkiart Janebodin

    Full Text Available Dental pulp stem cells (DPSCs are shown to reside within the tooth and play an important role in dentin regeneration. DPSCs were first isolated and characterized from human teeth and most studies have focused on using this adult stem cell for clinical applications. However, mouse DPSCs have not been well characterized and their origin(s have not yet been elucidated. Herein we examined if murine DPSCs are neural crest derived and determined their in vitro and in vivo capacity. DPSCs from neonatal murine tooth pulp expressed embryonic stem cell and neural crest related genes, but lacked expression of mesodermal genes. Cells isolated from the Wnt1-Cre/R26R-LacZ model, a reporter of neural crest-derived tissues, indicated that DPSCs were Wnt1-marked and therefore of neural crest origin. Clonal DPSCs showed multi-differentiation in neural crest lineage for odontoblasts, chondrocytes, adipocytes, neurons, and smooth muscles. Following in vivo subcutaneous transplantation with hydroxyapatite/tricalcium phosphate, based on tissue/cell morphology and specific antibody staining, the clones differentiated into odontoblast-like cells and produced dentin-like structure. Conversely, bone marrow stromal cells (BMSCs gave rise to osteoblast-like cells and generated bone-like structure. Interestingly, the capillary distribution in the DPSC transplants showed close proximity to odontoblasts whereas in the BMSC transplants bone condensations were distant to capillaries resembling dentinogenesis in the former vs. osteogenesis in the latter. Thus we demonstrate the existence of neural crest-derived DPSCs with differentiation capacity into cranial mesenchymal tissues and other neural crest-derived tissues. In turn, DPSCs hold promise as a source for regenerating cranial mesenchyme and other neural crest derived tissues.

  7. Transcriptome analysis reveals novel players in the cranial neural crest gene regulatory network

    OpenAIRE

    Simões-Costa, Marcos; Tan-Cabugao, Joanne; Antoshechkin, Igor; Sauka-Spengler, Tatjana; Bronner, Marianne E.

    2014-01-01

    The neural crest is an embryonic stem cell population that gives rise to a multitude of derivatives. In particular, the cranial neural crest (CNC) is unique in its ability to contribute to both facial skeleton and peripheral ganglia. To gain further insight into the molecular underpinnings that distinguish the CNC from other embryonic tissues, we have utilized a CNC-specific enhancer as a tool to isolate a pure, region-specific NC subpopulation for transcriptional profiling. The resulting dat...

  8. A PTK7/Ror2 Co-Receptor Complex Affects Xenopus Neural Crest Migration.

    Directory of Open Access Journals (Sweden)

    Martina Podleschny

    Full Text Available Neural crest cells are a highly migratory pluripotent cell population that generates a wide array of different cell types and failure in their migration can result in severe birth defects and malformation syndromes. Neural crest migration is controlled by various means including chemotaxis, repellent guidance cues and cell-cell interaction. Non-canonical Wnt PCP (planar cell polarity signaling has previously been shown to control cell-contact mediated neural crest cell guidance. PTK7 (protein tyrosine kinase 7 is a transmembrane pseudokinase and a known regulator of Wnt/PCP signaling, which is expressed in Xenopus neural crest cells and required for their migration. PTK7 functions as a Wnt co-receptor; however, it remains unclear by which means PTK7 affects neural crest migration. Expressing fluorescently labeled proteins in Xenopus neural crest cells we find that PTK7 co-localizes with the Ror2 Wnt-receptor. Further, co-immunoprecipitation experiments demonstrate that PTK7 interacts with Ror2. The PTK7/Ror2 interaction is likely relevant for neural crest migration, because Ror2 expression can rescue the PTK7 loss of function migration defect. Live cell imaging of explanted neural crest cells shows that PTK7 loss of function affects the formation of cell protrusions as well as cell motility. Co-expression of Ror2 can rescue these defects. In vivo analysis demonstrates that a kinase dead Ror2 mutant cannot rescue PTK7 loss of function. Thus, our data suggest that Ror2 can substitute for PTK7 and that the signaling function of its kinase domain is required for this effect.

  9. An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme

    OpenAIRE

    Lee, Raymond Teck Ho; Knapik, Ela W.; Thiery, Jean Paul; Carney, Thomas J.

    2013-01-01

    The neural crest is a multipotent stem cell population that arises from the dorsal aspect of the neural tube and generates both non-ectomesenchymal (melanocytes, peripheral neurons and glia) and ectomesenchymal (skeletogenic, odontogenic, cartilaginous and connective tissue) derivatives. In amniotes, only cranial neural crest generates both classes, with trunk neural crest restricted to non-ectomesenchyme. By contrast, it has been suggested that anamniotes might generate derivatives of both c...

  10. cMyc Regulates the Size of the Premigratory Neural Crest Stem Cell Pool.

    Science.gov (United States)

    Kerosuo, Laura; Bronner, Marianne E

    2016-12-06

    The neural crest is a transient embryonic population that originates within the central nervous system (CNS) and then migrates into the periphery and differentiates into multiple cell types. The mechanisms that govern neural crest stem-like characteristics and self-renewal ability are poorly understood. Here, we show that the proto-oncogene cMyc is a critical factor in the chick dorsal neural tube, where it regulates the size of the premigratory neural crest stem cell pool. Loss of cMyc dramatically decreases the number of emigrating neural crest cells due to reduced self-renewal capacity, increased cell death, and shorter duration of the emigration process. Interestingly, rather than via E-Box binding, cMyc acts in the dorsal neural tube by interacting with another transcription factor, Miz1, to promote self-renewal. The finding that cMyc operates in a non-canonical manner in the premigratory neural crest highlights the importance of examining its role at specific time points and in an in vivo context.

  11. Tfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population.

    Science.gov (United States)

    Wang, Wen-Der; Melville, David B; Montero-Balaguer, Mercedes; Hatzopoulos, Antonis K; Knapik, Ela W

    2011-12-01

    The neural crest is a stem cell-like population exclusive to vertebrates that gives rise to many different cell types including chondrocytes, neurons and melanocytes. Arising from the neural plate border at the intersection of Wnt and Bmp signaling pathways, the complexity of neural crest gene regulatory networks has made the earliest steps of induction difficult to elucidate. Here, we report that tfap2a and foxd3 participate in neural crest induction and are necessary and sufficient for this process to proceed. Double mutant tfap2a (mont blanc, mob) and foxd3 (mother superior, mos) mob;mos zebrafish embryos completely lack all neural crest-derived tissues. Moreover, tfap2a and foxd3 are expressed during gastrulation prior to neural crest induction in distinct, complementary, domains; tfap2a is expressed in the ventral non-neural ectoderm and foxd3 in the dorsal mesendoderm and ectoderm. We further show that Bmp signaling is expanded in mob;mos embryos while expression of dkk1, a Wnt signaling inhibitor, is increased and canonical Wnt targets are suppressed. These changes in Bmp and Wnt signaling result in specific perturbations of neural crest induction rather than general defects in neural plate border or dorso-ventral patterning. foxd3 overexpression, on the other hand, enhances the ability of tfap2a to ectopically induce neural crest around the neural plate, overriding the normal neural plate border limit of the early neural crest territory. Although loss of either Tfap2a or Foxd3 alters Bmp and Wnt signaling patterns, only their combined inactivation sufficiently alters these signaling gradients to abort neural crest induction. Collectively, our results indicate that tfap2a and foxd3, in addition to their respective roles in the differentiation of neural crest derivatives, also jointly maintain the balance of Bmp and Wnt signaling in order to delineate the neural crest induction domain.

  12. Skeletogenic fate of zebrafish cranial and trunk neural crest.

    Directory of Open Access Journals (Sweden)

    Erika Kague

    Full Text Available The neural crest (NC is a major contributor to the vertebrate craniofacial skeleton, detailed in model organisms through embryological and genetic approaches, most notably in chick and mouse. Despite many similarities between these rather distant species, there are also distinct differences in the contribution of the NC, particularly to the calvariae of the skull. Lack of information about other vertebrate groups precludes an understanding of the evolutionary significance of these differences. Study of zebrafish craniofacial development has contributed substantially to understanding of cartilage and bone formation in teleosts, but there is currently little information on NC contribution to the zebrafish skeleton. Here, we employ a two-transgene system based on Cre recombinase to genetically label NC in the zebrafish. We demonstrate NC contribution to cells in the cranial ganglia and peripheral nervous system known to be NC-derived, as well as to a subset of myocardial cells. The indelible labeling also enables us to determine NC contribution to late-forming bones, including the calvariae. We confirm suspected NC origin of cartilage and bones of the viscerocranium, including cartilages such as the hyosymplectic and its replacement bones (hymandibula and symplectic and membranous bones such as the opercle. The cleithrum develops at the border of NC and mesoderm, and as an ancestral component of the pectoral girdle was predicted to be a hybrid bone composed of both NC and mesoderm tissues. However, we find no evidence of a NC contribution to the cleithrum. Similarly, in the vault of the skull, the parietal bones and the caudal portion of the frontal bones show no evidence of NC contribution. We also determine a NC origin for caudal fin lepidotrichia; the presumption is that these are derived from trunk NC, demonstrating that these cells have the ability to form bone during normal vertebrate development.

  13. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    Science.gov (United States)

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future.

  14. Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest.

    Science.gov (United States)

    Green, Stephen A; Uy, Benjamin R; Bronner, Marianne E

    2017-03-20

    The enteric nervous system of jawed vertebrates arises primarily from vagal neural crest cells that migrate to the foregut and subsequently colonize and innervate the entire gastrointestinal tract. Here we examine development of the enteric nervous system in the basal jawless vertebrate the sea lamprey (Petromyzon marinus) to gain insight into its evolutionary origin. Surprisingly, we find no evidence for the existence of a vagally derived enteric neural crest population in the lamprey. Rather, labelling with the lipophilic dye DiI shows that late-migrating cells, originating from the trunk neural tube and associated with nerve fibres, differentiate into neurons within the gut wall and typhlosole. We propose that these trunk-derived neural crest cells may be homologous to Schwann cell precursors, recently shown in mammalian embryos to populate post-embryonic parasympathetic ganglia, including enteric ganglia. Our results suggest that neural-crest-derived Schwann cell precursors made an important contribution to the ancient enteric nervous system of early jawless vertebrates, a role that was largely subsumed by vagal neural crest cells in early gnathostomes.

  15. File list: His.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neural...30,SRX059362,SRX1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  16. File list: His.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neural...30,SRX059362,SRX1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  17. File list: Oth.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem cell hESC derived neural...X1091546,SRX1091550,SRX059360,SRX059368,SRX059367 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  18. File list: His.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neural...3,SRX1091531,SRX059364,SRX1091530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  19. File list: ALL.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.50.AllAg.hESC_derived_neural_crests hg19 All antigens Pluripotent stem cell hESC derived neural...X1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  20. File list: ALL.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.20.AllAg.hESC_derived_neural_crests hg19 All antigens Pluripotent stem cell hESC derived neural...X1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  1. File list: ALL.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.10.AllAg.hESC_derived_neural_crests hg19 All antigens Pluripotent stem cell hESC derived neural...X059364,SRX1091530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  2. File list: His.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neural...13,SRX1091515,SRX059363,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  3. File list: Oth.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem cell hESC derived neural...X1091546,SRX1091550,SRX059360,SRX059368,SRX059367 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  4. File list: ALL.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.05.AllAg.hESC_derived_neural_crests hg19 All antigens Pluripotent stem cell hESC derived neural cres...RX059366,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  5. File list: Oth.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem ce...X1091550,SRX059360,SRX1091547,SRX059367,SRX059368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.20.AllAg.hESC_derived_neural_crests.bed ... ...ll hESC derived neural crests SRX1091543,SRX1091542,SRX1091549,SRX1091551,SRX131914,SRX1091546,SRX1091541,SR

  6. File list: Oth.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem ce...X1091550,SRX059360,SRX1091547,SRX059367,SRX059368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.50.AllAg.hESC_derived_neural_crests.bed ... ...ll hESC derived neural crests SRX1091543,SRX1091542,SRX1091549,SRX1091551,SRX131914,SRX1091546,SRX1091541,SR

  7. Matrigel supports neural, melanocytic and chondrogenic differentiation of trunk neural crest cells.

    Science.gov (United States)

    Ramos-Hryb, Ana B; Da-Costa, Meline C; Trentin, Andréa G; Calloni, Giordano W

    2013-01-01

    The neural crest (NC) is composed of highly multipotent precursor cells able to differentiate into both neural and mesenchymal phenotypes. Until now, most studies focusing on NC cell differentiation have been performed with traditional two-dimensional (2D) cell culture systems. However, such culture systems do not reflect the complex three-dimensional (3D) microenvironments of in vivo NC cells. To address this limitation, we have developed a method of Matrigel™ coating to create 2D and 3D microenvironments in the same culture well. When we performed cultures of trunk neural crest cells (TNCCs) on three different lots of basement membrane matrix (Matrigel™), we observed that all analyzed Matrigel™ lots were equally efficient in allowing the appearance of glial cells, neurons, melanocytes, smooth muscle cells and chondrocytes. We further observed that chondrocytes were found predominantly in the 3D microenvironment, whereas smooth muscle cells were almost exclusively located in the 2D microenvironment. Glial cells were present in both environments, but with broader quantities on the 2D surface. Melanocytes and neurons were equally distributed in both 2D and 3D microenvironments, but with distinct morphologies. It is worth noting the higher frequency of chondrocytes detected in this study using the 3D Matrigel™ microenvironment compared to previous reports of chondrogenesis obtained from TNCCs on traditional 2D cultures. In conclusion, Matrigel™ represents an attractive scaffold to study NC multipotentiality and differentiation, since it permits the appearance of the major NC phenotypes.

  8. Id expression in amphioxus and lamprey highlights the role of gene cooption during neural crest evolution

    Science.gov (United States)

    Meulemans, Daniel; McCauley, David; Bronner-Fraser, Marianne

    2003-01-01

    Neural crest cells are unique to vertebrates and generate many of the adult structures that differentiate them from their closest invertebrate relatives, the cephalochordates. Id genes are robust markers of neural crest cells at all stages of development. We compared Id gene expression in amphioxus and lamprey to ask if cephalochordates deploy Id genes at the neural plate border and dorsal neural tube in a manner similar to vertebrates. Furthermore, we examined whether Id expression in these cells is a basal vertebrate trait or a derived feature of gnathostomes. We found that while expression of Id genes in the mesoderm and endoderm is conserved between amphioxus and vertebrates, expression in the lateral neural plate border and dorsal neural tube is a vertebrate novelty. Furthermore, expression of lamprey Id implies that recruitment of Id genes to these cells occurred very early in the vertebrate lineage. Based on expression in amphioxus we postulate that Id cooption conferred sensory cell progenitor-like properties upon the lateral neurectoderm, and pharyngeal mesoderm-like properties upon cranial neural crest. Amphioxus Id expression is also consistent with homology between the anterior neurectoderm of amphioxus and the presumptive placodal ectoderm of vertebrates. These observations support the idea that neural crest evolution was driven in large part by cooption of multipurpose transcriptional regulators from other tissues and cell types.

  9. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate?

    Science.gov (United States)

    Holland, L. Z.; Holland, N. D.

    2001-01-01

    Recent studies of protochordates (ascidian tunicates and amphioxus) have given insights into possible ancestors of 2 of the characteristic features of the vertebrate head: neural crest and placodes. The neural crest probably evolved from cells on either side of the neural plate-epidermis boundary in a protochordate ancestral to the vertebrates. In amphioxus, homologues of several vertebrate neural crest marker genes (BMP2/4, Pax3/7, Msx, Dll and Snail) are expressed at the edges of the neural plate and/or adjacent nonneural ectoderm. Some of these markers are also similarly expressed in tunicates. In protochordates, however, these cells, unlike vertebrate neural crest, neither migrate as individuals through embryonic tissues nor differentiate into a wide spectrum of cell types. Therefore, while the protochordate ancestor of the vertebrates probably had the beginnings of a genetic programme for neural crest formation, this programme was augmented in the earliest vertebrates to attain definitive neural crest. Clear homologues of vertebrate placodes are lacking in protochordates. However, both amphioxus and tunicates have ectodermal sensory cells. In tunicates these are all primary neurons, sending axons to the central nervous system, while in amphioxus, the ectodermal sensory cells include both primary neurons and secondary neurons lacking axons. Comparisons of developmental gene expression suggest that the anterior ectoderm in amphioxus may be homologous to the vertebrate olfactory placode, the only vertebrate placode with primary, not secondary, neurons. Similarly, biochemical, morphological and gene expression data suggest that amphioxus and tunicates also have homologues of the adenohypophysis, one of the few vertebrate structures derived from nonneurogenic placodes. In contrast, the origin of the other vertebrate placodes is very uncertain.

  10. Neural crest stem cell population in craniomaxillofacial development and tissue repair

    Directory of Open Access Journals (Sweden)

    M La Noce

    2014-10-01

    Full Text Available Neural crest cells, delaminating from the neural tube during migration, undergo an epithelial-mesenchymal transition and differentiate into several cell types strongly reinforcing the mesoderm of the craniofacial body area – giving rise to bone, cartilage and other tissues and cells of this human body area. Recent studies on craniomaxillofacial neural crest-derived cells have provided evidence for the tremendous plasticity of these cells. Actually, neural crest cells can respond and adapt to the environment in which they migrate and the cranial mesoderm plays an important role toward patterning the identity of the migrating neural crest cells. In our experience, neural crest-derived stem cells, such as dental pulp stem cells, can actively proliferate, repair bone and give rise to other tissues and cytotypes, including blood vessels, smooth muscle, adipocytes and melanocytes, highlighting that their use in tissue engineering is successful. In this review, we provide an overview of the main pathways involved in neural crest formation, delamination, migration and differentiation; and, in particular, we concentrate our attention on the translatability of the latest scientific progress. Here we try to suggest new ideas and strategies that are needed to fully develop the clinical use of these cells. This effort should involve both researchers/clinicians and improvements in good manufacturing practice procedures. It is important to address studies towards clinical application or take into consideration that studies must have an effective therapeutic prospect for humans. New approaches and ideas must be concentrated also toward stem cell recruitment and activation within the human body, overcoming the classical grafting.

  11. Signi fi cance of Neural Crest in Tooth Development: The Molecular Signature

    Directory of Open Access Journals (Sweden)

    VP Jayasekharan

    2014-07-01

    Full Text Available The neural crest originates from cells located along the lateral margins of the neural plate. Neural crest cells arise as the result of an inductive action by the non-neural ectoderm adjacent to the neural plate and possibly by nearby mesoderm as well. As the neural tube forms, a group of cells separate from the neuro- ectoderm. These cells have the capacity to migrate and differen- tiate extensively within the developing embryo and they are the basis of structures such as spinal sensory ganglia, sympathetic neurons, Schwann cells, pigment cells and meninges. Speci fi c interactions occur during the development of tooth and recent research has concentrated more on the molecular aspects of these interactions. Thus, it is highly imperative to understand and digress the complex mechanisms involved in these processes

  12. Role of DNMT3B in the regulation of early neural and neural crest specifiers.

    Science.gov (United States)

    Martins-Taylor, Kristen; Schroeder, Diane I; LaSalle, Janine M; Lalande, Marc; Xu, Ren-He

    2012-01-01

    The de novo DNA methyltransferase DNMT3B functions in establishing DNA methylation patterns during development. DNMT3B missense mutations cause immunodeficiency, centromere instability and facial anomalies (ICF) syndrome. The restriction of Dnmt3b expression to neural progenitor cells, as well as the mild cognitive defects observed in ICF patients, suggests that DNMT3B may play an important role in early neurogenesis. We performed RNAi knockdown of DNMT3B in human embryonic stem cells (hESCs) in order to investigate the mechanistic contribution of DNMT3B to DNA methylation and early neuronal differentiation. While DNMT3B was not required for early neuroepithelium specification, DNMT3B deficient neuroepithelium exhibited accelerated maturation with earlier expression, relative to normal hESCs, of mature neuronal markers (such as NEUROD1) and of early neuronal regional specifiers (such as those for the neural crest). Genome-wide analyses of DNA methylation by MethylC-seq identified novel regions of hypomethylation in the DNMT3B knockdowns along the X chromosome as well as pericentromeric regions, rather than changes to promoters of specific dysregulated genes. We observed a loss of H3K27me3 and the polycomb complex protein EZH2 at the promoters of early neural and neural crest specifier genes during differentiation of DNMT3B knockdown but not normal hESCs. Our results indicate that DNMT3B mediates large-scale methylation patterns in hESCs and that DNMT3B deficiency in the cells alters the timing of their neuronal differentiation and maturation.

  13. Radionuclide diagnosis and therapy of neural crest tumors using iodine-131 metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Hoefnagel, C.A.; Voute, P.A.; de Kraker, J.; Marcuse, H.R.

    1987-03-01

    The successful application of (/sup 131/I)metaiodobenzylguanidine (MIBG) in diagnosis and therapy of pheochromocytoma has led to its use in other tumors which derive from the neural crest and potentially concentrate this radiopharmaceutical as well. In the present series, (/sup 131/)MIBG total-body scintigraphy was used for detection of neuroblastoma in 47 patients and 47 cases of other neural crest tumors. The method was found to be as reliable in neuroblastoma (sensitivity 95%, specificity 100%), as it is in pheochromocytoma. Although other neural crest tumors may concentrate (/sup 131/I)MIBG, this is not a consistent finding; however, it is useful to investigate which tumors do, as this may provide an alternative treatment modality for some patients. Although followup is still very short, preliminary results of therapeutic use of (/sup 131/I) MIBG in 21 patients indicate that this treatment modality may be effective in neuroblastoma and malignant pheochromocytoma.

  14. Wave transmission at low-crested structures using neural networks

    NARCIS (Netherlands)

    Van Oosten, R.P.; Peixó Marco, J.; Van der Meer, J.W.; Van Gent, M.; Verhagen, H.J.

    2006-01-01

    The European Union funded project DELOS was focused on wave transmission and an extensive database on low-crested rubble mound structures was generated. During DELOS, new empirical wave transmission formulae were derived. These formulae still showed a considerable scatter due to a limited number of

  15. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration

    Directory of Open Access Journals (Sweden)

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs, which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases. However, endogenous adult sources of neural stem cells present major drawbacks, such as their scarcity and complicated obtention. In this context, EMSCs from dental tissues emerge as good alternative candidates, since they are preserved in adult human individuals, and retain both high proliferation ability and a neural-like phenotype in vitro. In this paper, we discuss some important aspects of tissue regeneration by cell therapy and point out some advantages that EMSCs provide for dental and neural regeneration. We will finally review some of the latest research featuring experimental approaches and benefits of dental stem cell therapy.

  16. Cdon promotes neural crest migration by regulating N-cadherin localization.

    Science.gov (United States)

    Powell, Davalyn R; Williams, Jason S; Hernandez-Lagunas, Laura; Salcedo, Ernesto; O'Brien, Jenean H; Artinger, Kristin Bruk

    2015-11-15

    Neural crest cells (NCCs) are essential embryonic progenitor cells that are unique to vertebrates and form a remarkably complex and coordinated system of highly motile cells. Migration of NCCs occurs along specific pathways within the embryo in response to both environmental cues and cell-cell interactions within the neural crest population. Here, we demonstrate a novel role for the putative Sonic hedgehog (Shh) receptor and cell adhesion regulator, cdon, in zebrafish neural crest migration. cdon is expressed in developing premigratory NCCs but is downregulated once the cells become migratory. Knockdown of cdon results in aberrant migration of trunk NCCs: crestin positive cells can emigrate out of the neural tube but stall shortly after the initiation of migration. Live cell imaging analysis demonstrates reduced directedness of migration, increased velocity and mispositioned cell protrusions. In addition, transplantation analysis suggests that cdon is required cell-autonomously for directed NCC migration in the trunk. Interestingly, N-cadherin is mislocalized following cdon knockdown suggesting that the role of cdon in NCCs is to regulate N-cadherin localization. Our results reveal a novel role for cdon in zebrafish neural crest migration, and suggest a mechanism by which Cdon is required to localize N-cadherin to the cell membrane in migratory NCCs for directed migration.

  17. Prospect of Human Pluripotent Stem Cell-Derived Neural Crest Stem Cells in Clinical Application

    Science.gov (United States)

    Zhu, Qian; Lu, Qiqi; Gao, Rong

    2016-01-01

    Neural crest stem cells (NCSCs) represent a transient and multipotent cell population that contributes to numerous anatomical structures such as peripheral nervous system, teeth, and cornea. NCSC maldevelopment is related to various human diseases including pigmentation abnormalities, disorders affecting autonomic nervous system, and malformations of teeth, eyes, and hearts. As human pluripotent stem cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can serve as an unlimited cell source to generate NCSCs, hESC/hiPSC-derived NCSCs can be a valuable tool to study the underlying mechanisms of NCSC-associated diseases, which paves the way for future therapies for these abnormalities. In addition, hESC/hiPSC-derived NCSCs with the capability of differentiating to various cell types are highly promising for clinical organ repair and regeneration. In this review, we first discuss NCSC generation methods from human pluripotent stem cells and differentiation mechanism of NCSCs. Then we focus on the clinical application potential of hESC/hiPSC-derived NCSCs on peripheral nerve injuries, corneal blindness, tooth regeneration, pathological melanogenesis, Hirschsprung disease, and cardiac repair and regeneration. PMID:28090209

  18. Prospect of Human Pluripotent Stem Cell-Derived Neural Crest Stem Cells in Clinical Application

    Directory of Open Access Journals (Sweden)

    Qian Zhu

    2016-01-01

    Full Text Available Neural crest stem cells (NCSCs represent a transient and multipotent cell population that contributes to numerous anatomical structures such as peripheral nervous system, teeth, and cornea. NCSC maldevelopment is related to various human diseases including pigmentation abnormalities, disorders affecting autonomic nervous system, and malformations of teeth, eyes, and hearts. As human pluripotent stem cells including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs can serve as an unlimited cell source to generate NCSCs, hESC/hiPSC-derived NCSCs can be a valuable tool to study the underlying mechanisms of NCSC-associated diseases, which paves the way for future therapies for these abnormalities. In addition, hESC/hiPSC-derived NCSCs with the capability of differentiating to various cell types are highly promising for clinical organ repair and regeneration. In this review, we first discuss NCSC generation methods from human pluripotent stem cells and differentiation mechanism of NCSCs. Then we focus on the clinical application potential of hESC/hiPSC-derived NCSCs on peripheral nerve injuries, corneal blindness, tooth regeneration, pathological melanogenesis, Hirschsprung disease, and cardiac repair and regeneration.

  19. Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes

    NARCIS (Netherlands)

    Schriemer, Duco; Sribudiani, Yunia; IJpma, Arne; Natarajan, Dipa; MacKenzie, Katherine C.; Metzger, Marco; Binder, Ellen; Burns, Alan J.; Thapar, Nikhil; Hofstra, Robert M. W.; Eggen, Bart J. L.

    2016-01-01

    The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from Enteric Neural Crest Cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and dif

  20. Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes

    NARCIS (Netherlands)

    Schriemer, Duco; Sribudiani, Yunia; IJpma, Arne; Natarajan, Dipa; MacKenzie, Katherine C; Metzger, Marco; Binder, Ellen; Burns, Alan J; Thapar, Nikhil; Hofstra, Robert M W; Eggen, Bart J L

    2016-01-01

    The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from enteric neural crest cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and dif

  1. Premigratory and migratory neural crest cells are multipotent in vivo

    NARCIS (Netherlands)

    Baggiolini, Arianna; Varum, Sandra; Mateos, José María; Bettosini, Damiano; John, Nessy; Bonalli, Mario; Ziegler, Urs; Dimou, Leda; Clevers, Hans; Furrer, Reinhard; Sommer, Lukas

    2015-01-01

    The neural crest (NC) is an embryonic stem/progenitor cell population that generates a diverse array of cell lineages, including peripheral neurons, myelinating Schwann cells, and melanocytes, among others. However, there is a long-standing controversy as to whether this broad developmental perspect

  2. Evolution of cranial development and the role of neural crest: insights from amphibians.

    Science.gov (United States)

    Hanken, James; Gross, Joshua B

    2005-11-01

    Contemporary studies of vertebrate cranial development document the essential role played by the embryonic neural crest as both a source of adult tissues and a locus of cranial form and patterning. Yet corresponding and basic features of cranial evolution, such as the extent of conservation vs. variation among species in the contribution of the neural crest to specific structures, remain to be adequately resolved. Investigation of these features requires comparable data from species that are both phylogenetically appropriate and taxonomically diverse. One key group are amphibians, which are uniquely able to inform our understanding of the ancestral patterns of ontogeny in fishes and tetrapods as well as the evolution of presumably derived patterns reported for amniotes. Recent data support the hypothesis that a prominent contribution of the neural crest to cranial skeletal and muscular connective tissues is a fundamental property that evolved early in vertebrate history and is retained in living forms. The contribution of the neural crest to skull bones appears to be more evolutionarily labile than that of cartilages, although significance of the limited comparative data is difficult to establish at present. Results underline the importance of accurate and reliable homology assessments for evaluating the contrasting patterns of derivation reported for the three principal tetrapod models: mouse, chicken and frog.

  3. Defining properties of neural crest-derived progenitor cells from the apex of human developing tooth.

    Science.gov (United States)

    Degistirici, Ozer; Jaquiery, Claude; Schönebeck, Bodo; Siemonsmeier, Jürgen; Götz, Werner; Martin, Ivan; Thie, Michael

    2008-02-01

    The connective tissue of the human tooth arises from cells that are derived from the cranial neural crest and, thus, are termed as "ectomesenchymal cells." Here, cells being located in a pad-like tissue adjacent to the apex of the developing tooth, which we designated the third molar pad, were separated by the microexplant technique. When outgrowing from the explant, dental neural crest-derived progenitor cells (dNC-PCs) adhered to plastic, proliferated steadily, and displayed a fibroblast-like morphology. At the mRNA level, dNC-PCs expressed neural crest marker genes like Sox9, Snail1, Snail2, Twist1, Msx2, and Dlx6. Cytofluorometric analysis indicated that cells were positive for CD49d (alpha4 integrin), CD56 (NCAM), and PDGFRalpha, while negative for CD31, CD34, CD45, and STRO-1. dNC-PCs could be differentiated into neurogenic, chondrogenic, and osteogenic lineages and were shown to produce bone matrix in athymic mice. These results demonstrate that human third molar pad possesses neural crest-derived cells that represent multipotent stem/progenitor cells. As a rather large amount of dNC-PCs could be obtained from each single third molar, cells may be used to regenerate a wide range of tissues within the craniofacial region of humans.

  4. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds

    OpenAIRE

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M.

    2012-01-01

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from “local epithelium”, in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, ...

  5. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Ericsson, Rolf; Cerny, Robert; Falck, Pierre; Olsson, Lennart

    2004-10-01

    The role of cranial neural crest cells in the formation of visceral arch musculature was investigated in the Mexican axolotl, Ambystoma mexicanum. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine, perchlorate) labeling and green fluorescent protein (GFP) mRNA injections combined with unilateral transplantations of neural folds showed that neural crest cells contribute to the connective tissues but not the myofibers of developing visceral arch muscles in the mandibular, hyoid, and branchial arches. Extirpations of individual cranial neural crest streams demonstrated that neural crest cells are necessary for correct morphogenesis of visceral arch muscles. These do, however, initially develop in their proper positions also in the absence of cranial neural crest. Visceral arch muscles forming in the absence of neural crest cells start to differentiate at their origins but fail to extend toward their insertions and may have a frayed appearance. Our data indicate that visceral arch muscle positioning is controlled by factors that do not have a neural crest origin. We suggest that the cranial neural crest-derived connective tissues provide directional guidance important for the proper extension of the cranial muscles and the subsequent attachment to the insertion on the correct cartilage. In a comparative context, our data from the Mexican axolotl support the view that the cranial neural crest plays a fundamental role in the development of not only the skeleton of the vertebrate head but also in the morphogenesis of the cranial muscles and that this might be a primitive feature of cranial development in vertebrates.

  6. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.

    Science.gov (United States)

    Anderson, Matthew J; Schimmang, Thomas; Lewandoski, Mark

    2016-05-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is

  7. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.

    Directory of Open Access Journals (Sweden)

    Matthew J Anderson

    2016-05-01

    Full Text Available During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM. Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3

  8. Emergence and migration of trunk neural crest cells in a snake, the California Kingsnake (Lampropeltis getula californiae)

    OpenAIRE

    Desmawati Iska; Zandberg Katrina; Reyes Michelle; de Bellard Maria E

    2010-01-01

    Abstract Background The neural crest is a group of multipotent cells that emerges after an epithelial-to-mesenchymal transition from the dorsal neural tube early during development. These cells then migrate throughout the embryo, giving rise to a wide variety derivatives including the peripheral nervous system, craniofacial skeleton, pigment cells, and endocrine organs. While much is known about neural crest cells in mammals, birds, amphibians and fish, relatively little is known about their ...

  9. Identification and dissection of a key enhancer mediating cranial neural crest specific expression of transcription factor, Ets-1.

    Science.gov (United States)

    Barembaum, Meyer; Bronner, Marianne E

    2013-10-15

    Neural crest cells form diverse derivatives that vary according to their level of origin along the body axis, with only cranial neural crest cells contributing to facial skeleton. Interestingly, the transcription factor Ets-1 is uniquely expressed in cranial but not trunk neural crest, where it functions as a direct input into neural crest specifier genes, Sox10 and FoxD3. We have isolated and interrogated a cis-regulatory element, conserved between birds and mammals, that drives reporter expression in a manner that recapitulates that of endogenous Ets-1 expression in the neural crest. Within a minimal Ets-1 enhancer region, mutation of putative binding sites for SoxE, homeobox, Ets, TFAP2 or Fox proteins results in loss or reduction of neural crest enhancer activity. Morpholino-mediated loss-of-function experiments show that Sox9, Pax7, Msx1/2, Ets-1, TFAP2A and FoxD3, all are required for enhancer activity. In contrast, mutation of a putative cMyc/E-box sequence augments reporter expression, consistent with this being a repressor binding site. Taken together, these results uncover new inputs into Ets-1, revealing critical links in the cranial neural crest gene regulatory network.

  10. Neural crest-derived mesenchymal cells require Wnt signaling for their development and drive invagination of the telencephalic midline.

    Directory of Open Access Journals (Sweden)

    Youngshik Choe

    Full Text Available Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis.

  11. miR-21 promotes the differentiation of hair follicle-derived neural crest stem cells into Schwann cells

    Institute of Scientific and Technical Information of China (English)

    Yuxin Ni; Kaizhi Zhang; Xuejuan Liu; Tingting Yang; Baixiang Wang; Li Fu; Lan A; Yanmin Zhou

    2014-01-01

    Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair folli-cles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regu-lating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.

  12. Isolation and culture of neural crest cells from embryonic murine neural tube.

    Science.gov (United States)

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-06-02

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from

  13. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    Directory of Open Access Journals (Sweden)

    Satoru Morikawa

    2016-01-01

    Full Text Available Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs. The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.

  14. Sox10-dependent neural crest origin of olfactory microvillous neurons in zebrafish.

    Science.gov (United States)

    Saxena, Ankur; Peng, Brian N; Bronner, Marianne E

    2013-03-19

    The sense of smell in vertebrates is detected by specialized sensory neurons derived from the peripheral nervous system. Classically, it has been presumed that the olfactory placode forms all olfactory sensory neurons. In contrast, we show that the cranial neural crest is the primary source of microvillous sensory neurons within the olfactory epithelium of zebrafish embryos. Using photoconversion-based fate mapping and live cell tracking coupled with laser ablation, we followed neural crest precursors as they migrated from the neural tube to the nasal cavity. A subset that coexpressed Sox10 protein and a neurogenin1 reporter ingressed into the olfactory epithelium and differentiated into microvillous sensory neurons. Timed loss-of-function analysis revealed a critical role for Sox10 in microvillous neurogenesis. Taken together, these findings directly demonstrate a heretofore unknown contribution of the cranial neural crest to olfactory sensory neurons in zebrafish and provide important insights into the assembly of the nascent olfactory system. DOI:http://dx.doi.org/10.7554/eLife.00336.001.

  15. Stage-specific control of neural crest stem cell proliferation by the small rho GTPases Cdc42 and Rac1

    DEFF Research Database (Denmark)

    Fuchs, Sebastian; Herzog, Dominik; Sumara, Grzegorz

    2009-01-01

    regulated by small Rho GTPases. Deletion of either Cdc42 or Rac1 in the NC results in size reduction of multiple NC target structures because of increased cell-cycle exit, while NC cells emigrating from the neural tube are not affected. Consistently, Cdc42 or Rac1 inactivation reduces self......The neural crest (NC) generates a variety of neural and non-neural tissues during vertebrate development. Both migratory NC cells and their target structures contain cells with stem cell features. Here we show that these populations of neural crest-derived stem cells (NCSCs) are differentially...

  16. Neural crest and mesoderm lineage-dependent gene expression in orofacial development.

    Science.gov (United States)

    Bhattacherjee, Vasker; Mukhopadhyay, Partha; Singh, Saurabh; Johnson, Charles; Philipose, John T; Warner, Courtney P; Greene, Robert M; Pisano, M Michele

    2007-06-01

    The present study utilizes a combination of genetic labeling/selective isolation of pluripotent embryonic progenitor cells, and oligonucleotide-based microarray technology, to delineate and compare the "molecular fingerprint" of two mesenchymal cell populations from distinct lineages in the developing embryonic orofacial region. The first branchial arches-bi-lateral tissue primordia that flank the primitive oral cavity-are populated by pluripotent mesenchymal cells from two different lineages: neural crest (neuroectoderm)- and mesoderm-derived mesenchymal cells. These cells give rise to all of the connective tissue elements (bone, cartilage, smooth and skeletal muscle, dentin) of the orofacial region (maxillary and mandibular portion), as well as neurons and glia associated with the cranial ganglia, among other tissues. In the present study, neural crest- and mesoderm-derived mesenchymal cells were selectively isolated from the first branchial arch of gestational day 9.5 mouse embryos using laser capture microdissection (LCM). The two different embryonic cell lineages were distinguished through utilization of a novel two component transgenic mouse model (Wnt1Cre/ZEG) in which the neural crest cells and their derivatives are indelibly marked (i.e., expressing enhanced green fluorescent protein, EGFP) throughout the pre- and post-natal lifespan of the organism. EGFP-labeled neural crest-derived, and non-fluorescent mesoderm-derived mesenchymal cells from the first branchial arch were visualized in frozen tissue sections from gestational day 9.5 mouse embryos and independently isolated by LCM under epifluorescence optics. RNA was extracted from the two populations of LCM-procured cells, and amplified by double-stranded cDNA synthesis and in vitro transcription. Gene expression profiles of the two progenitor cell populations were generated via hybridization of the cell-type specific cRNA samples to oligo-based GeneChip microarrays. Comparison of gene expression

  17. An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution

    Science.gov (United States)

    Yu, Jr-Kai; Holland, Nicholas D.; Holland, Linda Z.

    2002-01-01

    During amphioxus development, the neural plate is bordered by cells expressing many genes with homologs involved in vertebrate neural crest induction. However, these amphioxus cells evidently lack additional genetic programs for the cell delaminations, migrations, and differentiations characterizing definitive vertebrate neural crest. We characterize an amphioxus winged helix/forkhead gene (AmphiFoxD) closely related to vertebrate FoxD genes. Phylogenetic analysis indicates that the AmphiFoxD is basal to vertebrate FoxD1, FoxD2, FoxD3, FoxD4, and FoxD5. One of these vertebrate genes (FoxD3) consistently marks neural crest during development. Early in amphioxus development, AmphiFoxD is expressed medially in the anterior neural plate as well as in axial (notochordal) and paraxial mesoderm; later, the gene is expressed in the somites, notochord, cerebral vesicle (diencephalon), and hindgut endoderm. However, there is never any expression in cells bordering the neural plate. We speculate that an AmphiFoxD homolog in the common ancestor of amphioxus and vertebrates was involved in histogenic processes in the mesoderm (evagination and delamination of the somites and notochord); then, in the early vertebrates, descendant paralogs of this gene began functioning in the presumptive neural crest bordering the neural plate to help make possible the delaminations and cell migrations that characterize definitive vertebrate neural crest. Copyright 2002 Wiley-Liss, Inc.

  18. Leader cells define directionality of trunk, but not cranial, neural crest migration

    OpenAIRE

    Richardson, Jo; Gauert, Anton; Montecinos, Luis Briones; Fanlo, Lucía; Alhashem, Zainalabdeen Mohmammed; Assar, Rodrigo; MARTI, ELISA; Kabla, Alexandre; Härtel, Steffen; Linker, Claudia

    2016-01-01

    Summary:Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryo...

  19. Cell Motility and Invasiveness of Neurofibromin-Deficient Neural Crest Cells and Malignant Triton Tumor Lines

    Science.gov (United States)

    2005-06-01

    immunoblotting techniques to characterize signaling pathways activated by TGF-beta and PDGF-BB in MPNST -like sarcoma cell lines isolated from cisNfl+/-;p53...mouse model to include characterizations of genomic instability in the context of malignant transformation, and to test possible modifiers of MPNST ...growth and invasiveness. 15. SUBJECT TERMS neurofibromatosis type 1; neural crest cells; cell motility and Migration; PDGF; TGF-beta; MPNST

  20. Foxc1 and Foxc2 in the Neural Crest Are Required for Ocular Anterior Segment Development

    Science.gov (United States)

    Seo, Seungwoon; Chen, Lisheng; Liu, Wenzhong; Zhao, Demin; Schultz, Kathryn M.; Sasman, Amy; Liu, Ting; Zhang, Hao F.; Gage, Philip J.; Kume, Tsutomu

    2017-01-01

    Purpose The large Forkhead (Fox) transcription factor family has essential roles in development, and mutations cause a wide range of ocular and nonocular disease. One member, Foxc2 is expressed in neural crest (NC)-derived periocular mesenchymal cells of the developing murine eye; however, its precise role in the development, establishment, and maintenance of the ocular surface has yet to be investigated. Methods To specifically delete Foxc2 from NC-derived cells, conditional knockout mice for Foxc2 (NC-Foxc2−/−) were generated by crossing Foxc2F mice with Wnt1-Cre mice. Similarly, we also generated compound NC-specific mutations of Foxc2 and a closely related gene, Foxc1 (NC-Foxc1−/−;NC-Foxc2−/−) in mice. Results Neural crest-Foxc2−/− mice show abnormal thickness in the peripheral-to-central corneal stroma and limbus and displaced pupils with irregular iris. The neural crest-specific mutation in Foxc2 also leads to ectopic neovascularization in the cornea, as well as impaired ocular epithelial cell identity and corneal conjunctivalization. Compound, NC-specific Foxc1; Foxc2 homozygous mutant mice have more severe defects in structures of the ocular surface, such as the cornea and eyelids, accompanied by significant declines in the expression of another key developmental factor, Pitx2, and its downstream effector Dkk2, which antagonizes canonical Wnt signaling. Conclusions The neural crest-Foxc2 mutation is associated with corneal conjunctivalization, ectopic corneal neovascularization, and disrupted ocular epithelial cell identity. Furthermore, Foxc2 and Foxc1 cooperatively function in NC-derived mesenchymal cells to ensure proper morphogenesis of the ocular surface via the regulation of Wnt signaling. Together, Foxc2 is required in the NC lineage for mesenchymal-epithelial interactions in corneal and ocular surface development. PMID:28253399

  1. Neural Crest Cells Isolated from the Bone Marrow of Transgenic Mice Express JCV T-Antigen.

    Directory of Open Access Journals (Sweden)

    Jennifer Gordon

    Full Text Available JC virus (JCV, a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML. In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases

  2. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].

    Science.gov (United States)

    Dupin, Elisabeth

    2011-01-01

    Melanocytes, the pigmented cells of the skin, and the glial Schwann cells lining peripheral nerves are developmentally derived from an early and transient ectodermal structure of the vertebrate embryo, the neural crest, which is also at the origin of multiple neural and non-neural cell types. Besides melanocytes and neural cells of the peripheral nervous system, the neural crest cells give rise to mesenchymal cell types in the head, which form most of the craniofacial skeleton, dermis, fat tissue and vascular musculo-connective components. How such a wide diversity of differentiation fates is established during embryogenesis and is later maintained in adult tissues are among key questions in developmental and stem cell biology. The analysis of the developmental potentials of single neural crest cells cultured in vitro led to characterizing multipotent stem/progenitor cells as well as more restricted precursors in the early neural crest of avian and mammalian embryos. Data support a hierarchical model of the diversification of neural crest lineages through progressive restrictions of multipotent stem cell potentials driven by local environmental factors. In particular, melanocytes and glial Schwann cells were shown to arise from a common bipotent progenitor, which depends upon the peptide endothelin-3 for proliferation and self-renewal ability. In vivo, signaling by endothelin-3 and its receptor is also required for the early development of melanocytes and proper pigmentation of the vertebrate body. It is generally assumed that, after lineage specification and terminal differentiation, specialized cell types, like the melanocytes and Schwann cells, do not change their identity. However, this classic notion that somatic cell differentiation is a stable and irreversible process has been challenged by emerging evidence that dedifferentiation can occur in different biological systems through nuclear transfer, cell fusion, epigenetic modifications and ectopic gene

  3. Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction.

    Science.gov (United States)

    Steventon, Ben; Araya, Claudio; Linker, Claudia; Kuriyama, Sei; Mayor, Roberto

    2009-03-01

    The neural crest is induced by a combination of secreted signals. Although previous models of neural crest induction have proposed a step-wise activation of these signals, the actual spatial and temporal requirement has not been analysed. Through analysing the role of the mesoderm we show for the first time that specification of neural crest requires two temporally and chemically different steps: first, an induction at the gastrula stage dependent on signals arising from the dorsolateral mesoderm; and second, a maintenance step at the neurula stage dependent on signals from tissues adjacent to the neural crest. By performing tissue recombination experiments and using specific inhibitors of different inductive signals, we show that the first inductive step requires Wnt activation and BMP inhibition, whereas the later maintenance step requires activation of both pathways. This change in BMP necessity from BMP inhibition at gastrula to BMP activation at neurula stages is further supported by the dynamic expression of BMP4 and its antagonists, and is confirmed by direct measurements of BMP activity in the neural crest cells. The differential requirements of BMP activity allow us to propose an explanation for apparently discrepant results between chick and frog experiments. The demonstration that Wnt signals are required for neural crest induction by mesoderm solves an additional long-standing controversy. Finally, our results emphasise the importance of considering the order of exposure to signals during an inductive event.

  4. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype

    DEFF Research Database (Denmark)

    Breau, Marie A; Pietri, Thomas; Eder, Olivier

    2006-01-01

    crest cells fail to colonise the gut completely, leading to an aganglionosis of the descending colon, which resembles the human Hirschsprung's disease. Moreover, beta1-null enteric neural crest cells form abnormal aggregates in the gut wall, leading to a severe alteration of the ganglia network...... organisation. Organotypic cultures of gut explants reveal that beta1-null enteric neural crest cells show impaired adhesion on extracellular matrix and enhanced intercellular adhesion properties. They display migration defects in collagen gels and gut tissue environments. We also provide evidence that beta1...

  5. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Directory of Open Access Journals (Sweden)

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  6. Meis3 is required for neural crest invasion of the gut during zebrafish enteric nervous system development.

    Science.gov (United States)

    Uribe, Rosa A; Bronner, Marianne E

    2015-11-01

    During development, vagal neural crest cells fated to contribute to the enteric nervous system migrate ventrally away from the neural tube toward and along the primitive gut. The molecular mechanisms that regulate their early migration en route to and entry into the gut remain elusive. Here we show that the transcription factor meis3 is expressed along vagal neural crest pathways. Meis3 loss of function results in a reduction in migration efficiency, cell number, and the mitotic activity of neural crest cells in the vicinity of the gut but has no effect on neural crest or gut specification. Later, during enteric nervous system differentiation, Meis3-depleted embryos exhibit colonic aganglionosis, a disorder in which the hindgut is devoid of neurons. Accordingly, the expression of Shh pathway components, previously shown to have a role in the etiology of Hirschsprung's disease, was misregulated within the gut after loss of Meis3. Taken together, these findings support a model in which Meis3 is required for neural crest proliferation, migration into, and colonization of the gut such that its loss leads to severe defects in enteric nervous system development.

  7. Generation of Neural Crest-Like Cells From Human Periodontal Ligament Cell-Derived Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Tomokiyo, Atsushi; Hynes, Kim; Ng, Jia; Menicanin, Danijela; Camp, Esther; Arthur, Agnes; Gronthos, Stan; Mark Bartold, Peter

    2017-02-01

    Neural crest cells (NCC) hold great promise for tissue engineering, however the inability to easily obtain large numbers of NCC is a major factor limiting their use in studies of regenerative medicine. Induced pluripotent stem cells (iPSC) are emerging as a novel candidate that could provide an unlimited source of NCC. In the present study, we examined the potential of neural crest tissue-derived periodontal ligament (PDL) iPSC to differentiate into neural crest-like cells (NCLC) relative to iPSC generated from a non-neural crest derived tissue, foreskin fibroblasts (FF). We detected high HNK1 expression during the differentiation of PDL and FF iPSC into NCLC as a marker for enriching for a population of cells with NCC characteristics. We isolated PDL iPSC- and FF iPSC-derived NCLC, which highly expressed HNK1. A high proportion of the HNK1-positive cell populations generated, expressed the MSC markers, whilst very few cells expressed the pluripotency markers or the hematopoietic markers. The PDL and FF HNK1-positive populations gave rise to smooth muscle, neural, glial, osteoblastic and adipocytic like cells and exhibited higher expression of smooth muscle, neural, and glial cell-associated markers than the PDL and FF HNK1-negative populations. Interestingly, the HNK1-positive cells derived from the PDL-iPSC exhibited a greater ability to differentiate into smooth muscle, neural, glial cells and adipocytes, than the HNK1-positive cells derived from the FF-iPSC. Our work suggests that HNK1-enriched NCLC from neural crest tissue-derived iPSC more closely resemble the phenotypic and functional hallmarks of NCC compared to the HNK1-low population and non-neural crest iPSC-derived NCLC. J. Cell. Physiol. 232: 402-416, 2017. © 2016 Wiley Periodicals, Inc.

  8. The different effects on cranial and trunk neural crest cell behaviour following exposure to a low concentration of alcohol in vitro.

    Science.gov (United States)

    Czarnobaj, Joanna; Bagnall, Keith M; Bamforth, J Steven; Milos, Nadine C

    2014-05-01

    Embryonic neural crest cells give rise to large regions of the face and peripheral nervous system. Exposure of these cells to high alcohol concentrations leads to cell death in the craniofacial region resulting in facial defects. However, the effects of low concentrations of alcohol on neural crest cells are not clear. In this study, cranial neural crest cells from Xenopus laevis were cultured in an ethanol concentration approximately equivalent to one drink. Techniques were developed to study various aspects of neural crest cell behaviour and a number of cellular parameters were quantified. In the presence of alcohol, a significant number of cranial neural crest cells emigrated from the explant on fibronectin but the liberation of individual cells was delayed. The cells also remained close to the explant and their morphology changed. Cranial neural crest cells did not grow on Type 1 collagen. For the purposes of comparison, the behaviour of trunk neural crest cells was also studied. The presence of alcohol correlated with increased retention of single cells on fibronectin but left other parameters unchanged. The behaviour of trunk neural crest cells growing on Type 1 collagen in the presence of alcohol did not differ from controls. Low concentrations of alcohol therefore significantly affected both cranial and trunk neural crest cells, with a wider variety of effects on cells from the cranial as opposed to the trunk region. The results suggest that low concentrations of alcohol may be more detrimental to early events in organ formation than currently suspected.

  9. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    Science.gov (United States)

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.

  10. Neural Crest Cells Contribute an Astrocyte-like Glial Population to the Spleen

    Science.gov (United States)

    Barlow-Anacker, Amanda J.; Fu, Ming; Erickson, Christopher S.; Bertocchini, Federica; Gosain, Ankush

    2017-01-01

    Neural crest cells (NCC) are multi-potent cells of ectodermal origin that colonize diverse organs, including the gastrointestinal tract to form the enteric nervous system (ENS) and hematopoietic organs (bone marrow, thymus) where they participate in lymphocyte trafficking. Recent studies have implicated the spleen as an anatomic site for integration of inflammatory signals from the intestine with efferent neural inputs. We have previously observed alterations in splenic lymphocyte subsets in animals with defective migration of NCC that model Hirschsprung’s disease, leading us to hypothesize that there may be a direct cellular contribution of NCC to the spleen. Here, we demonstrate that NCC colonize the spleen during embryogenesis and persist into adulthood. Splenic NCC display markers indicating a glial lineage and are arranged anatomically adjacent to blood vessels, pericytes and nerves, suggesting an astrocyte-like phenotype. Finally, we identify similar neural-crest derived cells in both the avian and non-human primate spleen, showing evolutionary conservation of these cells. PMID:28349968

  11. Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells in vivo

    Directory of Open Access Journals (Sweden)

    Sophie R. Miller

    2017-03-01

    Full Text Available Perivascular/mural cells originate from either the mesoderm or the cranial neural crest. Regardless of their origin, Notch signalling is necessary for their formation. Furthermore, in both chicken and mouse, constitutive Notch1 activation (via expression of the Notch1 intracellular domain is sufficient in vivo to convert trunk mesoderm-derived somite cells to perivascular cells, at the expense of skeletal muscle. In experiments originally designed to investigate the effect of premature Notch1 activation on the development of neural crest-derived olfactory ensheathing glial cells (OECs, we used in ovo electroporation to insert a tetracycline-inducible NotchΔE construct (encoding a constitutively active mutant of mouse Notch1 into the genome of chicken cranial neural crest cell precursors, and activated NotchΔE expression by doxycycline injection at embryonic day 4. NotchΔE-targeted cells formed perivascular cells within the frontonasal mesenchyme, and expressed a perivascular marker on the olfactory nerve. Hence, constitutively activating Notch1 is sufficient in vivo to drive not only somite cells, but also neural crest-derived frontonasal mesenchyme and perhaps developing OECs, to a perivascular cell fate. These results also highlight the plasticity of neural crest-derived mesenchyme and glia.

  12. In vitro differentiation of quail neural crest cells into sensory-like neuroblasts

    Science.gov (United States)

    Sieber-Blum, Maya; Kumar, Sanjiv R.; Riley, Danny A.

    1988-01-01

    Data are presented that demonstrate the ability of quail neural-crest embrionic cells grown as primary culture to differentiate in vitro into sensorylike neuroblasts. After 7-14 days of growth as primary culture, many of the putative sensory neuroblasts displayed substance P (SP)-like immunoreactivity and some exhibited histochemical carbonic anhydrase activity. Double staining experiments showed that the SP-like immunoreactive neuroblasts did not contain detectable levels of tyrosine hydroxylase or dopamine-beta-hydroxylase. The neuronal nature of the cultured sensorylike neuroblasts was further documented by double labeling for antibodies against the 68 kDa neurofilament polypeptide and substance P.

  13. Lgr5 Marks Neural Crest Derived Multipotent Oral Stromal Stem Cells.

    Science.gov (United States)

    Boddupally, Keerthi; Wang, Guangfang; Chen, Yibu; Kobielak, Agnieszka

    2016-03-01

    It has been suggested that multipotent stem cells with neural crest (NC) origin persist into adulthood in oral mucosa. However their exact localization and role in normal homeostasis is unknown. In this study, we discovered that Lgr5 is expressed in NC cells during embryonic development, which give rise to the dormant stem cells in the adult tongue and oral mucosa. Those Lgr5 positive oral stromal stem cells display properties of NC stem cells including clonal growth and multipotent differentiation. RNA sequencing revealed that adult Lgr5+ oral stromal stem cells express high number of neural crest related markers like Sox9, Twist1, Snai1, Myc, Ets1, Crabp1, Epha2, and Itgb1. Using lineage-tracing experiments, we show that these cells persist more than a year in the ventral tongue and some areas of the oral mucosa and give rise to stromal progeny. In vivo transplantation demonstrated that these cells reconstitute the stroma. Our studies show for the first time that Lgr5 is expressed in the NC cells at embryonic day 9.5 (E9.5) and is maintained during embryonic development and postnataly in the stroma of the ventral tongue, and some areas of the oral mucosa and that Lgr5+ cells participate in the maintenance of the stroma.

  14. Making Headway: The Roles of Hox Genes and Neural Crest Cells in Craniofacial Development

    Directory of Open Access Journals (Sweden)

    Paul A. Trainor

    2003-01-01

    Full Text Available Craniofacial development is an extraordinarily complex process requiring the orchestrated integration of multiple specialized tissues such as the surface ectoderm, neural crest, mesoderm, and pharyngeal endoderm in order to generate the central and peripheral nervous systems, axial skeleton, musculature, and connective tissues of the head and face. How do the characteristic facial structures develop in the appropriate locations with their correct shapes and sizes, given the widely divergent patterns of cell movements that occur during head development? The patterning information could depend upon localized interactions between the epithelial and mesenchymal tissues or alternatively, the developmental program for the characteristic facial structures could be intrinsic to each individual tissue precursor. Understanding the mechanisms that control vertebrate head development is an important issue since craniofacial anomalies constitute nearly one third of all human congenital defects. This review discusses recent advances in our understanding of neural crest cell patterning and the dynamic nature of the tissue interactions that are required for normal craniofacial development.

  15. Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development.

    Science.gov (United States)

    Luo, Ting; Xu, Yanhua; Hoffman, Trevor L; Zhang, Tailin; Schilling, Thomas; Sargent, Thomas D

    2007-04-01

    Inca (induced in neural crest by AP2) is a novel protein discovered in a microarray screen for genes that are upregulated in Xenopus embryos by the transcriptional activator protein Tfap2a. It has no significant similarity to any known protein, but is conserved among vertebrates. In Xenopus, zebrafish and mouse embryos, Inca is expressed predominantly in the premigratory and migrating neural crest (NC). Knockdown experiments in frog and fish using antisense morpholinos reveal essential functions for Inca in a subset of NC cells that form craniofacial cartilage. Cells lacking Inca migrate successfully but fail to condense into skeletal primordia. Overexpression of Inca disrupts cortical actin and prevents formation of actin "purse strings", which are required for wound healing in Xenopus embryos. We show that Inca physically interacts with p21-activated kinase 5 (PAK5), a known regulator of the actin cytoskeleton that is co-expressed with Inca in embryonic ectoderm, including in the NC. These results suggest that Inca and PAK5 cooperate in restructuring cytoskeletal organization and in the regulation of cell adhesion in the early embryo and in NC cells during craniofacial development.

  16. Using human neural crest-derived progenitor cells to investigate osteogenesis: an in vitro study.

    Science.gov (United States)

    Degistirici, Ozer; Grabellus, Florian; Irsen, Stephan; Schmid, Kurt Werner; Thie, Michael

    2010-04-01

    Human tooth contains a distinct population of neural crest-derived progenitor cells (dNC-PCs) which are known to give rise to specialized daughter cells of an osteogenic lineage. We hypothesised that dNC-PCs could develop into neural crest-derived bone in a self-propagating and extracorporal culture system. Thus, we examined the three-dimensional structure obtained from osteogenic-stimulated dNC-PCs by morphological, biochemical and spectroscopic methods. After the onset of stimulation, cells formed a multilayer with outer cells covering the surface and inner cells secreting a hyaline matrix. With prolonged culture, multilayers contracted and formed a three-dimensional construct which subsequently converted to a calcified mass. Differentiation of progenitor cells was associated with apoptosis. Cell types which survived were smooth muscle actin-positive cells and bone-like cells. The expression of osteoblastic markers and the secretion of a collagenous matrix indicate that the bone cells had acquired their functional phenotype. Furthermore, these cells produced and secreted membrane-bound vesicles into the newly forming matrix. Consequently, an early biomineralized extracellular matrix was found with calcium phosphate deposits being associated with the newly formed collagen matrix framework. The molar calcium-phosphorus-ratio of the mineralized collagen indicated that amorphous calcium phosphate was present within this matrix. The data suggest that stimulated cultures of dNC-PCs are able to recapitulate some processes of the early phase of osteogenesis.

  17. Inhibition of FGF signaling accelerates neural crest cell differentiation of human pluripotent stem cells.

    Science.gov (United States)

    Jaroonwitchawan, Thiranut; Muangchan, Pattamon; Noisa, Parinya

    2016-12-02

    Neural crest (NC) is a transient population, arising during embryonic development and capable of differentiating into various somatic cells. The defects of neural crest development leads to neurocristopathy. Several signaling pathways were revealed their significance in NC cell specification. Fibroblast growth factor (FGF) is recognized as an important signaling during NC development, for instance Xenopus and avian; however, its contributions in human species are remained elusive. Here we used human pluripotent stem cells (hPSCs) to investigate the consequences of FGF inhibition during NC cell differentiation. The specific-FGF receptor inhibitor, SU5402, was used in this investigation. The inhibition of FGF did not found to affect the proliferation or death of hPSC-derived NC cells, but promoted hPSCs to commit NC cell fate. NC-specific genes, including PAX3, SLUG, and TWIST1, were highly upregulated, while hPSC genes, such as OCT4, and E-CAD, rapidly reduced upon FGF signaling blockage. Noteworthy, TFAP-2α, a marker of migratory NC cells, abundantly presented in SU5402-induced cells. This accelerated NC cell differentiation could be due to the activation of Notch signaling upon the blockage of ERK1/2 phosphorylation, since NICD was increased by SU5402. Altogether, this study proposed the contributions of FGF signaling in controlling human NC cell differentiation from hPSCs, the crosstalk between FGF and Notch, and might imply to the influences of FGF signaling in neurocristophatic diseases.

  18. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development.

    Science.gov (United States)

    Teslaa, Jessica J; Keller, Abigail N; Nyholm, Molly K; Grinblat, Yevgenya

    2013-08-01

    Holoprosencephaly (HPE), the most common malformation of the human forebrain, is associated with defects of the craniofacial skeleton. ZIC2, a zinc-finger transcription factor, is strongly linked to HPE and to a characteristic set of dysmorphic facial features in humans. We have previously identified important functions for zebrafish Zic2 in the developing forebrain. Here, we demonstrate that ZIC2 orthologs zic2a and zic2b also regulate the forming zebrafish craniofacial skeleton, including the jaw and neurocranial cartilages, and use the zebrafish to study Zic2-regulated processes that may contribute to the complex etiology of HPE. Using temporally controlled Zic2a overexpression, we show that the developing craniofacial cartilages are sensitive to Zic2 elevation prior to 24hpf. This window of sensitivity overlaps the critical expansion and migration of the neural crest (NC) cells, which migrate from the developing neural tube to populate vertebrate craniofacial structures. We demonstrate that zic2b influences the induction of NC at the neural plate border, while both zic2a and zic2b regulate NC migratory onset and strongly contribute to chromatophore development. Both Zic2 depletion and early ectopic Zic2 expression cause moderate, incompletely penetrant mispatterning of the NC-derived jaw precursors at 24hpf, yet by 2dpf these changes in Zic2 expression result in profoundly mispatterned chondrogenic condensations. We attribute this discrepancy to an additional role for Zic2a and Zic2b in patterning the forebrain primordium, an important signaling source during craniofacial development. This hypothesis is supported by evidence that transplanted Zic2-deficient cells can contribute to craniofacial cartilages in a wild-type background. Collectively, these data suggest that zebrafish Zic2 plays a dual role during craniofacial development, contributing to two disparate aspects of craniofacial morphogenesis: (1) neural crest induction and migration, and (2) early

  19. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells.

    Science.gov (United States)

    Nitzan, Erez; Krispin, Shlomo; Pfaltzgraff, Elise R; Klar, Avihu; Labosky, Patricia A; Kalcheim, Chaya

    2013-06-01

    Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on 'in ovo' lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development.

  20. The membrane disordering effect of ethanol on neural crest cells in vitro and the protective role of GM1 ganglioside.

    Science.gov (United States)

    Chen, S Y; Yang, B; Jacobson, K; Sulik, K K

    1996-01-01

    The teratogenic effect of ethanol appears to be related to excessive cell death in selected cell populations including craniofacial neural crest. Because there is a large body of evidence suggesting that a primary site of action of ethanol is at the membrane level, the current study was designed to examine and attempt to ameliorate ethanol-induced neural crest cell membrane changes that proceed cell death. To this end, neural crest cells were grown as primary cultures from mouse cranial neural tube be explants. In these cultured cells, the relationships between changes in membrane lipid lateral mobility (a measure of membrane fluidity) as determined using the technique of fluorescence recovery after photobleaching (FRAP), ethanol-induced cell death, and the protective role of GM1 ganglioside were examined. A dose-response study showed that treatment with 50, 100, 150, or 200 mM ethanol respectively, for 24 h was positively correlated with membrane lipid lateral mobility and negatively correlated with cell viability. Pre- or co-treatment of the cells with GM1 ganglioside diminished the ethanol-induced increases in membrane fluidity and decreases in cell viability. The results of this study suggest that change in membrane fluidity can account, in part, for ethanol-induced neural crest cell death and that the protection conferred by GM1 ganglioside may result from membrane stabilization and subsequent preservation of the biophysical properties and biological function of the ethanol-exposed cell membranes.

  1. Vangl-dependent planar cell polarity signalling is not required for neural crest migration in mammals.

    Science.gov (United States)

    Pryor, Sophie E; Massa, Valentina; Savery, Dawn; Andre, Philipp; Yang, Yingzi; Greene, Nicholas D E; Copp, Andrew J

    2014-08-01

    The role of planar cell polarity (PCP) signalling in neural crest (NC) development is unclear. The PCP dependence of NC cell migration has been reported in Xenopus and zebrafish, but NC migration has not been studied in mammalian PCP mutants. Vangl2(Lp/Lp) mouse embryos lack PCP signalling and undergo almost complete failure of neural tube closure. Here we show, however, that NC specification, migration and derivative formation occur normally in Vangl2(Lp/Lp) embryos. The gene family member Vangl1 was not expressed in NC nor ectopically expressed in Vangl2(Lp/Lp) embryos, and doubly homozygous Vangl1/Vangl2 mutants exhibited normal NC migration. Acute downregulation of Vangl2 in the NC lineage did not prevent NC migration. In vitro, Vangl2(Lp/Lp) neural tube explants generated emigrating NC cells, as in wild type. Hence, PCP signalling is not essential for NC migration in mammals, in contrast to its essential role in neural tube closure. PCP mutations are thus unlikely to mediate NC-related birth defects in humans.

  2. Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull.

    Science.gov (United States)

    Wada, Naoyuki; Javidan, Yashar; Nelson, Sarah; Carney, Thomas J; Kelsh, Robert N; Schilling, Thomas F

    2005-09-01

    Neural crest cells that form the vertebrate head skeleton migrate and interact with surrounding tissues to shape the skull, and defects in these processes underlie many human craniofacial syndromes. Signals at the midline play a crucial role in the development of the anterior neurocranium, which forms the ventral braincase and palate, and here we explore the role of Hedgehog (Hh) signaling in this process. Using sox10:egfp transgenics to follow neural crest cell movements in the living embryo, and vital dye labeling to generate a fate map, we show that distinct populations of neural crest form the two main cartilage elements of the larval anterior neurocranium: the paired trabeculae and the midline ethmoid. By analyzing zebrafish mutants that disrupt sonic hedgehog (shh) expression, we demonstrate that shh is required to specify the movements of progenitors of these elements at the midline, and to induce them to form cartilage. Treatments with cyclopamine, to block Hh signaling at different stages, suggest that although requirements in morphogenesis occur during neural crest migration beneath the brain, requirements in chondrogenesis occur later, as cells form separate trabecular and ethmoid condensations. Cell transplantations indicate that these also reflect different sources of Shh, one from the ventral neural tube that controls trabecular morphogenesis and one from the oral ectoderm that promotes chondrogenesis. Our results suggest a novel role for Shh in the movements of neural crest cells at the midline, as well as in their differentiation into cartilage, and help to explain why both skeletal fusions and palatal clefting are associated with the loss of Hh signaling in holoprosencephalic humans.

  3. Conditional beta1-integrin gene deletion in neural crest cells causes severe developmental alterations of the peripheral nervous system

    DEFF Research Database (Denmark)

    Pietri, Thomas; Eder, Olivier; Breau, Marie Anne;

    2004-01-01

    Integrins are transmembrane receptors that are known to interact with the extracellular matrix and to be required for migration, proliferation, differentiation and apoptosis. We have generated mice with a neural crest cell-specific deletion of the beta1-integrin gene to analyse the role of beta1-...

  4. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin

    NARCIS (Netherlands)

    C.E. Wong (Christine); S. Paratore (Sabrina); M.T. Dours-Zimmermann (María); T. Rochat (Thierry); T. Pietri (Thomas); U. Suter (Ueli); D. Zimmermann (Dieter); S. Dufour (Sylvie); J.P. Thiery (Joachim); D.N. Meijer (Dies); C. Beermann (Christopher); Y. Barrandon (Yann); L. Sommer (Lukas)

    2006-01-01

    textabstractGiven their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell-like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and di

  5. A spectrum of skeletal anomalies associated with pulmonary agenesis: Possible neural crest injuries

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, J.; Masel, J.; McCredie, J.

    1989-07-01

    Six cases of unilateral pulmonary agenesis with skeletal and other deformities have been diagnosed in our hospitals. The various pulmonary, spinal, rib and limb anomalies with their possible interrelationships were examined and described in detail and comparison with previously reported cases was made. It became apparent that the limb abnormalities which most constantly involved hypoplasia of the phalanges of a thumb with varying metacarpal and radial anomalies, were ipsilateral to the pulmonary agenesis in all cases. The spinal deformities involved degrees of failure of segementation of T1-T3 with other vertebrae randomly involved. Rib abnormalities also varied and did not necessarily correspond to the same side as the pulmonary agenesis. The concept of the anomalies all being part of a group of neural crest injuries was then explored. (orig.).

  6. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration.

    Science.gov (United States)

    Richardson, Jo; Gauert, Anton; Briones Montecinos, Luis; Fanlo, Lucía; Alhashem, Zainalabdeen Mohmammed; Assar, Rodrigo; Marti, Elisa; Kabla, Alexandre; Härtel, Steffen; Linker, Claudia

    2016-05-31

    Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration.

  7. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration

    Directory of Open Access Journals (Sweden)

    Jo Richardson

    2016-05-01

    Full Text Available Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration.

  8. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells.

    Science.gov (United States)

    Schmidt, Jennifer; Piekarski, Nadine; Olsson, Lennart

    2013-01-01

    Our research on the evolution of the vertebrate head focuses on understanding the developmental origins of morphological novelties. Using a broad comparative approach in amphibians, and comparisons with the well-studied quail-chicken system, we investigate how evolutionarily conserved or variable different aspects of head development are. Here we review research on the often overlooked development of cranial muscles, and on its dependence on cranial cartilage development. In general, cranial muscle cell migration and the spatiotemporal pattern of cranial muscle formation appears to be very conserved among the few species of vertebrates that have been studied. However, fate-mapping of somites in the Mexican axolotl revealed differences in the specific formation of hypobranchial muscles (tongue muscles) in comparison to the chicken. The proper development of cranial muscles has been shown to be strongly dependent on the mostly neural crest-derived cartilage elements in the larval head of amphibians. For example, a morpholino-based knock-down of the transcription factor FoxN3 in Xenopus laevis has drastic indirect effects on cranial muscle patterning, although the direct function of the gene is mostly connected to neural crest development. Furthermore, extirpation of single migratory streams of cranial neural crest cells in combination with fate-mapping in a frog shows that individual cranial muscles and their neural crest-derived connective tissue attachments originate from the same visceral arch, even when the muscles attach to skeletal components that are derived from a different arch. The same pattern has also been found in the chicken embryo, the only other species that has been thoroughly investigated, and thus might be a conserved pattern in vertebrates that reflects the fundamental nature of a mechanism that keeps the segmental order of the head in place despite drastic changes in adult anatomy. There is a need for detailed comparative fate-mapping of pre

  9. Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network.

    Science.gov (United States)

    de Crozé, Noémie; Maczkowiak, Frédérique; Monsoro-Burq, Anne H

    2011-01-04

    The neural crest (NC) emerges from combinatorial inductive events occurring within its progenitor domain, the neural border (NB). Several transcription factors act early at the NB, but the initiating molecular events remain elusive. Recent data from basal vertebrates suggest that ap2 might have been critical for NC emergence; however, the role of AP2 factors at the NB remains unclear. We show here that AP2a initiates NB patterning and is sufficient to elicit a NB-like pattern in neuralized ectoderm. In contrast, the other early regulators do not participate in ap2a initiation at the NB, but cooperate to further establish a robust NB pattern. The NC regulatory network uses a multistep cascade of secreted inducers and transcription factors, first at the NB and then within the NC progenitors. Here we report that AP2a acts at two distinct steps of this cascade. As the earliest known NB specifier, AP2a mediates Wnt signals to initiate the NB and activate pax3; as a NC specifier, AP2a regulates further NC development independent of and downstream of NB patterning. Our findings reconcile conflicting observations from various vertebrate organisms. AP2a provides a paradigm for the reiterated use of multifunctional molecules, thereby facilitating emergence of the NC in vertebrates.

  10. Roles of Hoxb5 in the development of vagal and trunk neural crest cells.

    Science.gov (United States)

    Kam, Mandy K M; Lui, Vincent C H

    2015-02-01

    Neural crest cells (NC) are a group of multipotent stem cells uniquely present in vertebrates. They are destined to form various organs according to their anterior-posterior (A-P) levels of origin in the neural tube (NT). They develop into a wide spectrum of cell lineages under the influence of signaling cascades, neural plate border genes and NC specifier genes. Although this complex gene regulatory network (GRN) specifies the fate of NC and the combinatory action of Hox genes executed at the time of NC induction governs the patterning of NC for the formation of specific structures along the A-P axis, not much information on how GRN and Hox genes directly interact and orchestrate is available. This review summarizes recent findings on the multiple roles of Hoxb5 on the survival and cell lineage differentiation of vagal and trunk NC cells during early development, by direct transcriptional regulation of NC specifier genes (Sox9 and Foxd3) of the GRN. We will also review findings on the transcriptional regulation of Ret by Hoxb5 in the population of the vagal NC that are committed to the enteric neuron and glia lineages. Functional redundancy between Hox proteins (Hoxa5 and Hoxc5) from the same paralogue group as Hoxb5, and the cooperative effects of Hox cofactors, collaborators and transcription factors in the Hoxb5 transcriptional regulation of target genes will also be discussed.

  11. Genomic factors that shape craniofacial outcome and neural crest vulnerability in FASD

    Directory of Open Access Journals (Sweden)

    Susan M. Smith

    2014-08-01

    Full Text Available Prenatal alcohol exposure (PAE causes distinctive facial characteristics in some pregnancies and not others; genetic factors may contribute to this differential vulnerability. Ethanol disrupts multiple events of neural crest development including induction, survival, migration, and differentiation. Animal models and genomic approaches have substantially advanced our understanding of the mechanisms underlying these facial changes. PAE during gastrulation produces craniofacial changes corresponding with human fetal alcohol syndrome. These result because PAE reduces prechordal plate extension and suppresses sonic hedgehog, leading to holoprosencephaly and malpositioned facial primordia. Haploinsufficiency in sonic hedgehog signaling increases vulnerability to facial deficits and may influence some PAE pregnancies. In contrast, PAE during early neurogenesis produces facial hypoplasia, preceded by neural crest reductions due to significant apoptosis. Factors mediating this apoptosis include intracellular calcium mobilization, elevated reactive oxygen species, and loss of trophic support from β-catenin/calcium, sonic hedgehog, and mTOR signaling. Genomewide SNP analysis links PDGF receptor genes with facial outcomes in human PAE. Multiple genomic-level comparisons of ethanol-sensitive and –resistant early embryos, in both mouse and chick, independently identify common candidate genes that may potentially modify craniofacial vulnerability, including ribosomal proteins, proteosome, RNA splicing, and focal adhesion. In summary, research using animal models with genome-level differences in ethanol vulnerability, as well as targeted loss- and gain-of-function mutants, has clarified the mechanisms mediating craniofacial change in PAE. The findings additionally suggest that craniofacial deficits may represent a gene-ethanol interaction for some affected individuals. Genetic-level changes may prime individuals toward greater sensitivity or resistance to

  12. Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes.

    Science.gov (United States)

    Quigley, Ian K; Turner, Jessica M; Nuckels, Richard J; Manuel, Joan L; Budi, Erine H; MacDonald, Erin L; Parichy, David M

    2004-12-01

    Latent precursors or stem cells of neural crest origin are present in a variety of post-embryonic tissues. Although these cells are of biomedical interest for roles in human health and disease, their potential evolutionary significance has been underappreciated. As a first step towards elucidating the contributions of such cells to the evolution of vertebrate form, we investigated the relative roles of neural crest cells and post-embryonic latent precursors during the evolutionary diversification of adult pigment patterns in Danio fishes. These pigment patterns result from the numbers and arrangements of embryonic melanophores that are derived from embryonic neural crest cells, as well as from post-embryonic metamorphic melanophores that are derived from latent precursors of presumptive neural crest origin. In the zebrafish D. rerio, a pattern of melanophore stripes arises during the larval-to-adult transformation by the recruitment of metamorphic melanophores from latent precursors. Using a comparative approach in the context of new phylogenetic data, we show that adult pigment patterns in five additional species also arise from metamorphic melanophores, identifying this as an ancestral mode of adult pigment pattern development. By contrast, superficially similar adult stripes of D. nigrofasciatus (a sister species to D. rerio) arise by the reorganization of melanophores that differentiated at embryonic stages, with a diminished contribution from metamorphic melanophores. Genetic mosaic and molecular marker analyses reveal evolutionary changes that are extrinsic to D. nigrofasciatus melanophore lineages, including a dramatic reduction of metamorphic melanophore precursors. Finally, interspecific complementation tests identify a candidate genetic pathway for contributing to the evolutionary reduction in metamorphic melanophores and the increased contribution of early larval melanophores to D. nigrofasciatus adult pigment pattern development. These results

  13. Environmental factors unveil dormant developmental capacities in multipotent progenitors of the trunk neural crest.

    Science.gov (United States)

    Coelho-Aguiar, Juliana M; Le Douarin, Nicole M; Dupin, Elisabeth

    2013-12-01

    The neural crest (NC), an ectoderm-derived structure of the vertebrate embryo, gives rise to the melanocytes, most of the peripheral nervous system and the craniofacial mesenchymal tissues (i.e., connective, bone, cartilage and fat cells). In the trunk of Amniotes, no mesenchymal tissues are derived from the NC. In certain in vitro conditions however, avian and murine trunk NC cells (TNCCs) displayed a limited mesenchymal differentiation capacity. Whether this capacity originates from committed precursors or from multipotent TNCCs was unknown. Here, we further investigated the potential of TNCCs to develop into mesenchymal cell types in vitro. We found that, in fact, quail TNCCs exhibit a high ability to differentiate into myofibroblasts, chondrocytes, lipid-laden adipocytes and mineralizing osteoblasts. In single cell cultures, both mesenchymal and neural cell types coexisted in TNCC clonal progeny: 78% of single cells yielded osteoblasts together with glial cells and neurons; moreover, TNCCs generated heterogenous clones with adipocytes, myofibroblasts, melanocytes and/or glial cells. Therefore, alike cephalic NCCs, early migratory TNCCs comprised multipotent progenitors able to generate both mesenchymal and melanocytic/neural derivatives, suggesting a continuum in NC developmental potentials along the neural axis. The skeletogenic capacity of the TNC, which was present in the exoskeletal armor of the extinct basal forms of Vertebrates and which persisted in the distal fin rays of extant teleost fish, thus did not totally disappear during vertebrate evolution. Mesenchymal potentials of the TNC, although not fulfilled during development, are still present in a dormant state in Amniotes and can be disclosed in in vitro culture. Whether these potentials are not expressed in vivo due to the presence of inhibitory cues or to the lack of permissive factors in the trunk environment remains to be understood.

  14. SOXE neofunctionalization and elaboration of the neural crest during chordate evolution

    Science.gov (United States)

    Tai, Andrew; Cheung, Martin; Huang, Yong-Heng; Jauch, Ralf; Bronner, Marianne E.; Cheah, Kathryn S. E.

    2016-01-01

    During chordate evolution, two genome-wide duplications facilitated acquisition of vertebrate traits, including emergence of neural crest cells (NCCs), in which neofunctionalization of the duplicated genes are thought to have facilitated development of craniofacial structures and the peripheral nervous system. How these duplicated genes evolve and acquire the ability to specify NC and their derivatives are largely unknown. Vertebrate SoxE paralogues, most notably Sox9/10, are essential for NC induction, delamination and lineage specification. In contrast, the basal chordate, amphioxus, has a single SoxE gene and lacks NC-like cells. Here, we test the hypothesis that duplication and divergence of an ancestral SoxE gene may have facilitated elaboration of NC lineages. By using an in vivo expression assay to compare effects of AmphiSoxE and vertebrate Sox9 on NC development, we demonstrate that all SOXE proteins possess similar DNA binding and homodimerization properties and can induce NCCs. However, AmphiSOXE is less efficient than SOX9 in transactivation activity and in the ability to preferentially promote glial over neuronal fate, a difference that lies within the combined properties of amino terminal and transactivation domains. We propose that acquisition of AmphiSoxE expression in the neural plate border led to NCC emergence while duplication and divergence produced advantageous mutations in vertebrate homologues, promoting elaboration of NC traits. PMID:27734831

  15. Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    2005-01-01

    Full Text Available During the early stages of embryogenesis, pluripotent neural crest cells (NCC are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of the peripheral nervous system. The ability to obtain pure NCC populations is essential to enable molecular analyses of neural crest induction, migration, and/or differentiation. Crossing Wnt1-Cre and Z/EG transgenic mouse lines resulted in offspring in which the Wnt1-Cre transgene activated permanent EGFP expression only in NCC. The present report demonstrates a flow cytometric method to sort and isolate populations of EGFP-labeled NCC. The identity of the sorted neural crest cells was confirmed by assaying expression of known marker genes by TaqMan Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR. The molecular strategy described in this report provides a means to extract intact RNA from a pure population of NCC thus enabling analysis of gene expression in a defined population of embryonic precursor cells critical to development.

  16. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton.

    Science.gov (United States)

    Creuzet, Sophie; Couly, Gérard; Vincent, Christine; Le Douarin, Nicole M

    2002-09-01

    Diencephalic, mesencephalic and metencephalic neural crest cells are skeletogenic and derive from neural folds that do not express Hox genes. In order to examine the influence of Hox gene expression on skull morphogenesis, expression of Hoxa2, Hoxa3 and Hoxb4 in conjunction with that of the green fluorescent protein has been selectively targeted to the Hox-negative neural folds of the avian embryo prior to the onset of crest cell emigration. Hoxa2 expression precludes the development of the entire facial skeleton. Transgenic Hoxa2 embryos such as those from which the Hox-negative domain of the cephalic neural crest has been removed have no upper or lower jaws and no frontonasal structures. Embryos subjected to the forced expression of Hoxa3 and Hoxb4 show severe defects in the facial skeleton but not a complete absence of facial cartilage. Hoxa3 prevents the formation of the skeleton derived from the first branchial arch, but allows the development (albeit reduced) of the nasal septum. Hoxb4, by contrast, hampers the formation of the nasal bud-derived skeleton, while allowing that of a proximal (but not distal) segment of the lower jaw. The combined effect of Hoxa3 and Hoxb4 prevents the formation of facial skeletal structures, comparable with Hoxa2. None of these genes impairs the formation of neural derivatives of the crest. These results suggest that over the course of evolution, the absence of Hox gene expression in the anterior part of the chordate embryo was crucial in the vertebrate phylum for the development of a face, jaws and brain case, and, hence, also for that of the forebrain.

  17. Role of DNMT3B in the regulation of early neural and neural crest specifiers

    OpenAIRE

    Martins-Taylor, Kristen; Schroeder, Diane I.; LaSalle, Janine M.; Lalande, Marc; Xu, Ren-He

    2012-01-01

    The de novo DNA methyltransferase DNMT3B functions in establishing DNA methylation patterns during development. DNMT3B missense mutations cause immunodeficiency, centromere instability and facial anomalies (ICF) syndrome. The restriction of Dnmt3b expression to neural progenitor cells, as well as the mild cognitive defects observed in ICF patients, suggests that DNMT3B may play an important role in early neurogenesis. We performed RNAi knockdown of DNMT3B in human embryonic stem cells (hESCs)...

  18. Stem Cells from Human Exfoliated Deciduous Tooth Exhibit Stromal-Derived Inducing Activity and Lead to Generation of Neural Crest Cells from Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Khadijeh Karbalaie

    2015-04-01

    Full Text Available Objective: The neural crest is a transient structure of early vertebrate embryos that generates neural crest cells (NCCs. These cells can migrate throughout the body and produce a diverse array of mature tissue types. Due to the ethical and technical problems surrounding the isolation of these early human embryo cells, researchers have focused on in vitro studies to produce NCCs and increase their knowledge of neural crest development. Materials and Methods: In this experimental study, we cultured human embryonic stem cells (hESCs on stromal stem cells from human exfoliated deciduous teeth (SHED for a two-week period. We used different approaches to characterize these differentiated cells as neural precursor cells (NPCs and NCCs. Results: In the first co-culture week, hESCs appeared as crater-like structures with marginal rosettes. NPCs derived from these structures expressed the early neural crest marker p75 in addition to numerous other genes associated with neural crest induction such as SNAIL, SLUG, PTX3 and SOX9. Flow cytometry analysis showed 70% of the cells were AP2/P75 positive. Moreover, the cells were able to self-renew, sustain multipotent differentiation potential, and readily form neurospheres in suspension culture. Conclusion: SHED, as an adult stem cell with a neural crest origin, has stromal-derived inducing activity (SDIA and can be used as an NCC inducer from hESCs. These cells provide an invaluable resource to study neural crest differentiation in both normal and disordered human neural crest development.

  19. IN VITRO PROPERTIES OF NEURAL CREST-DERIVED MULTIPOTENT STEM CELLS FROM A BULGE REGION OF WHISKER FOLLICLE

    Directory of Open Access Journals (Sweden)

    R. G. Vasyliev

    2014-08-01

    Full Text Available A culture method for multipotent neural crest-derived stem cell isolated from the bulge region of the hair follicle of whisker pad of adult mice has been described and their biological properties have been studied. It was shown that the cells possess a fibroblast-like morphology, they are nestin-positive and cytokeratin-negative, and also express the following surface markers: CD44, CD73, CD90 and Sca-1. This cell type shows the functional properties of stem cells in culture: clonogenicity, self-renewal, sphere-forming capacity and the ability to the directed multilineage differentiation. Due to these properties, neural crest-derived multipotent stem cells are promising for application in the regenerative medicine

  20. Dissecting CNBP, a zinc-finger protein required for neural crest development, in its structural and functional domains.

    Science.gov (United States)

    Armas, Pablo; Agüero, Tristán H; Borgognone, Mariana; Aybar, Manuel J; Calcaterra, Nora B

    2008-10-17

    Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the

  1. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    Directory of Open Access Journals (Sweden)

    Brenda L Bohnsack

    Full Text Available 1-Phenyl 2-thiourea (PTU is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM, PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03% and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf. Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4 in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3 and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  2. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    Science.gov (United States)

    Bohnsack, Brenda L; Gallina, Donika; Kahana, Alon

    2011-01-01

    1-Phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM), PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF) regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03%) and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf). Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4) in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3) and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  3. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Science.gov (United States)

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  4. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Directory of Open Access Journals (Sweden)

    Cécile eCoste

    2015-06-01

    Full Text Available Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL12-abundant reticular (CAR cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs, which have been recently identified as neural crest-derived cells (NCSCs. Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-to-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  5. Controlled levels of canonical Wnt signaling are required for neural crest migration.

    Science.gov (United States)

    Maj, Ewa; Künneke, Lutz; Loresch, Elisabeth; Grund, Anita; Melchert, Juliane; Pieler, Tomas; Aspelmeier, Timo; Borchers, Annette

    2016-09-01

    Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of β-catenin as readout for canonical Wnt activity, we detect nuclear β-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration. To define a possible function of canonical Wnt signaling in Xenopus NC migration, canonical Wnt signaling was modulated at different time points after NC induction. This was accomplished using either chemical modulators affecting β-catenin stability or inducible glucocorticoid fusion constructs of Lef/Tcf transcription factors. In vivo analysis of NC migration by whole mount in situ hybridization demonstrates that ectopic activation of canonical Wnt signaling inhibits cranial NC migration. Further, NC transplantation experiments confirm that this effect is tissue-autonomous. In addition, live-cell imaging in combination with biophysical data analysis of explanted NC cells confirms the in vivo findings and demonstrates that modulation of canonical Wnt signaling affects the ability of NC cells to perform single cell migration. Thus, our data support the hypothesis that canonical Wnt signaling needs to be tightly controlled to enable migration of NC cells.

  6. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development

    Directory of Open Access Journals (Sweden)

    Nikolaos eMandalos

    2014-09-01

    Full Text Available Precise control of self-renewal and differentiation of progenitor cells into the cranial neural crest (CNC pool ensures proper head development, guided by signaling pathways such as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential role in controlling progenitor cell behavior during craniofacial development. A Conditional by Inversion Sox2 allele (Sox2COIN has been employed to generate an epiblast ablation of Sox2 function (Sox2EpINV. Sox2EpINV/+(H haploinsufficient and conditional (Sox2EpINV/mosaic mutant embryos proceed beyond gastrulation and die around E11. These mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal truncations, which could be attributed to the deregulation of CNC progenitor cells during their epithelial to mesenchymal transition. This irregularity results in an exacerbated and aberrant migration of Sox10+ NCC in the branchial arches and frontonasal process of the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator of the epithelial to mesenchymal transitions that are important for the cell flow in the developing head.

  7. MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells.

    Science.gov (United States)

    Zhang, Jie Ting; Weng, Zhi Hui; Tsang, Kam Sze; Tsang, Lai Ling; Chan, Hsiao Chang; Jiang, Xiao Hua

    2016-01-01

    The biologic studies of human neural crest stem cells (hNCSCs) are extremely challenging due to the limited source of hNCSCs as well as ethical and technical issues surrounding isolation of early human embryonic tissues. On the other hand, vast majority of studies on MycN have been conducted in human tumor cells, thus, the role of MycN in normal human neural crest development is completely unknown. In the present study, we determined the role of MycN in hNCSCs isolated from in vitro-differentiating human embryonic stem cells (hESCs). For the first time, we show that suppression of MycN in hNCSCs inhibits cell growth and cell cycle progression. Knockdown of MycN in hNCSCs increases the expression of Cdkn1a, Cdkn2a and Cdkn2b, which encodes the cyclin-dependent kinases p21CIP1, p16 INK4a and p15INK4b. In addition, MycN is involved in the regulation of human sympathetic neurogenesis, as knockdown of MycN enhances the expression of key transcription factors involved in sympathetic neuron differentiation, including Phox2a, Phox2b, Mash1, Hand2 and Gata3. We propose that unlimited source of hNCSCs provides an invaluable platform for the studies of human neural crest development and diseases.

  8. MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells.

    Directory of Open Access Journals (Sweden)

    Jie Ting Zhang

    Full Text Available The biologic studies of human neural crest stem cells (hNCSCs are extremely challenging due to the limited source of hNCSCs as well as ethical and technical issues surrounding isolation of early human embryonic tissues. On the other hand, vast majority of studies on MycN have been conducted in human tumor cells, thus, the role of MycN in normal human neural crest development is completely unknown. In the present study, we determined the role of MycN in hNCSCs isolated from in vitro-differentiating human embryonic stem cells (hESCs. For the first time, we show that suppression of MycN in hNCSCs inhibits cell growth and cell cycle progression. Knockdown of MycN in hNCSCs increases the expression of Cdkn1a, Cdkn2a and Cdkn2b, which encodes the cyclin-dependent kinases p21CIP1, p16 INK4a and p15INK4b. In addition, MycN is involved in the regulation of human sympathetic neurogenesis, as knockdown of MycN enhances the expression of key transcription factors involved in sympathetic neuron differentiation, including Phox2a, Phox2b, Mash1, Hand2 and Gata3. We propose that unlimited source of hNCSCs provides an invaluable platform for the studies of human neural crest development and diseases.

  9. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds.

    Science.gov (United States)

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M

    2012-08-15

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin.

  10. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    Science.gov (United States)

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo.

  11. Sonic hedgehog is a chemotactic neural crest cell guide that is perturbed by ethanol exposure.

    Science.gov (United States)

    Tolosa, Ezequiel J; Fernández-Zapico, Martín E; Battiato, Natalia L; Rovasio, Roberto A

    2016-01-01

    Our aim was to understand the involvement of Sonic hedgehog (Shh) morphogen in the oriented distribution of neural crest cells (NCCs) toward the optic vesicle and to look for potential disorders of this guiding mechanism after ethanol exposure. In vitro directional analysis showed the chemotactic response of NCCs up Shh gradients and to notochord co-cultures (Shh source) or to their conditioned medium, a response inhibited by anti-Shh antibody, receptor inhibitor cyclopamine and anti-Smo morpholino (MO). Expression of the Ptch-Smo receptor complex on in vitro NCCs was also shown. In whole embryos, the expression of Shh mRNA and protein was seen in the ocular region, and of Ptch, Smo and Gli/Sufu system on cephalic NCCs. Anti-Smo MO or Ptch-mutated plasmid (Ptch1(Δloop2)) impaired cephalic NCC migration/distribution, with fewer cells invading the optic region and with higher cell density at the homolateral mesencephalic level. Beads embedded with cyclopamine (Smo-blocking) or Shh (ectopic signal) supported the role of Shh as an in vivo guide molecule for cephalic NCCs. Ethanol exposure perturbed in vitro and in vivo NCC migration. Early stage embryos treated with ethanol, in a model reproducing Fetal Alcohol Syndrome, showed later disruptions of craniofacial development associated with abnormal in situ expression of Shh morphogen. The results show the Shh/Ptch/Smo-dependent migration of NCCs toward the optic vesicle, with the support of specific inactivation with genetic and pharmacological tools. They also help to understand mechanisms of accurate distribution of embryonic cells and of their perturbation by a commonly consumed teratogen, and demonstrate, in addition to its other known developmental functions, a new biological activity of cellular guidance for Shh.

  12. Neural Crest Migration and Survival Are Susceptible to Morpholino-Induced Artifacts

    Science.gov (United States)

    Jette, Cicely A.

    2016-01-01

    The neural crest (NC) is a stem cell-like embryonic population that is essential for generating and patterning the vertebrate body, including the craniofacial skeleton and peripheral nervous system. Defects in NC development underlie many birth defects and contribute to formation of some of the most malignant cancers in humans, such as melanoma and neuroblastoma. For these reasons, significant research efforts have been expended to identify genes that control NC development, as it is expected to lead to a deeper understanding of the genetic mechanisms controlling vertebrate development and identify new treatments for NC-derived diseases and cancers. However, a number of inconsistencies regarding gene function during NC development have emerged from comparative analyses of gene function between mammalian and non-mammalian systems (chick, frog, zebrafish). This poses a significant barrier to identification of single genes and/or redundant pathways to target in NC diseases. Here, we determine whether technical differences, namely morpholino-based approaches used in non-mammalian systems, could contribute to these discrepancies, by examining the extent to which NC phenotypes in fascin1a (fscn1a) morphant embryos are similar to or different from fscn1a null mutants in zebrafish. Analysis of fscn1a morphants showed that they mimicked early NC phenotypes observed in fscn1a null mutants; however, these embryos also displayed NC migration and derivative phenotypes not observed in null mutants, including accumulation of p53-independent cell death. These data demonstrate that morpholinos can cause seemingly specific NC migration and derivative phenotypes, and thus have likely contributed to the inconsistencies surrounding NC gene function between species. We suggest that comparison of genetic mutants between different species is the most rigorous method for identifying conserved genetic mechanisms controlling NC development and is critical to identify new treatments for NC

  13. Specific diagnosis of neural crest tumours by MIBG scintigraphy; Diagnostic specifique des tumeurs issues de la crete neurale par la scintigraphie a la MIBG

    Energy Technology Data Exchange (ETDEWEB)

    Hoefnagel, C.A. [Het Nederlands Kanker Instituut, Amsterdam (Netherlands)

    1995-12-31

    MIBG scintigraphy has been used since 1981 as a diagnostic tool in pheochromocytoma and subsequently in a wide variety of neural crest tumors. The authors give the criteria for the choice between {sup 123}I and {sup 123}I-MIBG, remind drug interactions, report sensitivity and specificity values in main indications and discuss the relative merits of MIBG and pentetreotide scintigraphy. (author). 7 refs., 4 figs., 1 tab.

  14. Analysis of trunk neural crest cell migration using a modified Zigmond chamber assay.

    Science.gov (United States)

    Walheim, Christopher C; Zanin, Juan Pablo; de Bellard, Maria Elena

    2012-01-19

    Neural crest cells (NCCs) are a transient population of cells present in vertebrate development that emigrate from the dorsal neural tube (NT) after undergoing an epithelial-mesenchymal transition. Following EMT, NCCs migrate large distances along stereotypic pathways until they reach their targets. NCCs differentiate into a vast array of cell types including neurons, glia, melanocytes, and chromaffin cells. The ability of NCCs to reach and recognize their proper target locations is foundational for the appropriate formation of all structures containing trunk NCC-derived components. Elucidating the mechanisms of guidance for trunk NCC migration has therefore been a matter of great significance. Numerous molecules have been demonstrated to guide NCC migration. For instance, trunk NCCs are known to be repelled by negative guidance cues such as Semaphorin, Ephrin, and Slit ligands. However, not until recently have any chemoattractants of trunk NCCs been identified. Conventional in vitro approaches to studying the chemotactic behavior of adherent cells work best with immortalized, homogenously distributed cells, but are more challenging to apply to certain primary stem cell cultures that initially lack a homogenous distribution and rapidly differentiate (such as NCCs). One approach to homogenize the distribution of trunk NCCs for chemotaxis studies is to isolate trunk NCCs from primary NT explant cultures, then lift and replate them to be almost 100% confluent. However, this plating approach requires substantial amounts of time and effort to explant enough cells, is harsh, and distributes trunk NCCs in a dissimilar manner to that found in in vivo conditions. Here, we report an in vitro approach that is able to evaluate chemotaxis and other migratory responses of trunk NCCs without requiring a homogenous cell distribution. This technique utilizes time-lapse imaging of primary, unperturbed trunk NCCs inside a modified Zigmond chamber (a standard Zigmond chamber is

  15. Canine epidermal neural crest stem cells: characterization and potential as therapy candidate for a large animal model of spinal cord injury.

    Science.gov (United States)

    Gericota, Barbara; Anderson, Joseph S; Mitchell, Gaela; Borjesson, Dori L; Sturges, Beverly K; Nolta, Jan A; Sieber-Blum, Maya

    2014-03-01

    The discovery of multipotent neural crest-derived stem cells, named epidermal neural crest stem cells (EPI-NCSC), that persist postnatally in an easy-to-access location-the bulge of hair follicles-opens a spectrum of novel opportunities for patient-specific therapies. We present a detailed characterization of canine EPI-NCSC (cEPI-NCSC) from multiple dog breeds and protocols for their isolation and ex vivo expansion. Furthermore, we provide novel tools for research in canines, which currently are still scarce. In analogy to human and mouse EPI-NCSC, the neural crest origin of cEPI-NCSC is shown by their expression of the neural crest stem cell molecular signature and other neural crest-characteristic genes. Similar to human EPI-NCSC, cEPI-NCSC also expressed pluripotency genes. We demonstrated that cEPI-NCSC can generate all major neural crest derivatives. In vitro clonal analyses established multipotency and self-renewal ability of cEPI-NCSC, establishing cEPI-NCSC as multipotent somatic stem cells. A critical analysis of the literature on canine spinal cord injury (SCI) showed the need for novel treatments and suggested that cEPI-NCSC represent viable candidates for cell-based therapies in dog SCI, particularly for chondrodystrophic dogs. This notion is supported by the close ontological relationship between neural crest stem cells and spinal cord stem cells. Thus, cEPI-NCSC promise to offer not only a potential treatment for canines but also an attractive and realistic large animal model for human SCI. Taken together, we provide the groundwork for the development of a novel cell-based therapy for a condition with extremely poor prognosis and no available effective treatment.

  16. Efficient animal-serum free 3D cultivation method for adult human neural crest-derived stem cell therapeutics

    Directory of Open Access Journals (Sweden)

    JFW Greiner

    2011-12-01

    Full Text Available Due to their broad differentiation potential and their persistence into adulthood, human neural crest-derived stem cells (NCSCs harbour great potential for autologous cellular therapies, which include the treatment of neurodegenerative diseases and replacement of complex tissues containing various cell types, as in the case of musculoskeletal injuries. The use of serum-free approaches often results in insufficient proliferation of stem cells and foetal calf serum implicates the use of xenogenic medium components. Thus, there is much need for alternative cultivation strategies. In this study we describe for the first time a novel, human blood plasma based semi-solid medium for cultivation of human NCSCs. We cultivated human neural crest-derived inferior turbinate stem cells (ITSCs within a blood plasma matrix, where they revealed higher proliferation rates compared to a standard serum-free approach. Three-dimensionality of the matrix was investigated using helium ion microscopy. ITSCs grew within the matrix as revealed by laser scanning microscopy. Genetic stability and maintenance of stemness characteristics were assured in 3D cultivated ITSCs, as demonstrated by unchanged expression profile and the capability for self-renewal. ITSCs pre-cultivated in the 3D matrix differentiated efficiently into ectodermal and mesodermal cell types, particularly including osteogenic cell types. Furthermore, ITSCs cultivated as described here could be easily infected with lentiviruses directly in substrate for potential tracing or gene therapeutic approaches. Taken together, the use of human blood plasma as an additive for a completely defined medium points towards a personalisable and autologous cultivation of human neural crest-derived stem cells under clinical grade conditions.

  17. Analyses of fugu hoxa2 genes provide evidence for subfunctionalization of neural crest cell and rhombomere cis-regulatory modules during vertebrate evolution.

    Science.gov (United States)

    McEllin, Jennifer A; Alexander, Tara B; Tümpel, Stefan; Wiedemann, Leanne M; Krumlauf, Robb

    2016-01-15

    Hoxa2 gene is a primary player in regulation of craniofacial programs of head development in vertebrates. Here we investigate the evolution of a Hoxa2 neural crest enhancer identified originally in mouse by comparing and contrasting the fugu hoxa2a and hoxa2b genes with their orthologous teleost and mammalian sequences. Using sequence analyses in combination with transgenic regulatory assays in zebrafish and mouse embryos we demonstrate subfunctionalization of regulatory activity for expression in hindbrain segments and neural crest cells between these two fugu co-orthologs. hoxa2a regulatory sequences have retained the ability to mediate expression in neural crest cells while those of hoxa2b include cis-elements that direct expression in rhombomeres. Functional dissection of the neural crest regulatory potential of the fugu hoxa2a and hoxa2b genes identify the previously unknown cis-element NC5, which is implicated in generating the differential activity of the enhancers from these genes. The NC5 region plays a similar role in the ability of this enhancer to mediate reporter expression in mice, suggesting it is a conserved component involved in control of neural crest expression of Hoxa2 in vertebrate craniofacial development.

  18. Neural crest-mediated bone resorption is a determinant of species-specific jaw length.

    Science.gov (United States)

    Ealba, Erin L; Jheon, Andrew H; Hall, Jane; Curantz, Camille; Butcher, Kristin D; Schneider, Richard A

    2015-12-01

    Precise control of jaw length during development is crucial for proper form and function. Previously we have shown that in birds, neural crest mesenchyme (NCM) confers species-specific size and shape to the beak by regulating molecular and histological programs for the induction and deposition of cartilage and bone. Here we reveal that a hitherto unrecognized but similarly essential mechanism for establishing jaw length is the ability of NCM to mediate bone resorption. Osteoclasts are considered the predominant cells that resorb bone, although osteocytes have also been shown to participate in this process. In adults, bone resorption is tightly coupled to bone deposition as a means to maintain skeletal homeostasis. Yet, the role and regulation of bone resorption during growth of the embryonic skeleton have remained relatively unexplored. We compare jaw development in short-beaked quail versus long-billed duck and find that quail have substantially higher levels of enzymes expressed by bone-resorbing cells including tartrate-resistant acid phosphatase (TRAP), Matrix metalloproteinase 13 (Mmp13), and Mmp9. Then, we transplant NCM destined to form the jaw skeleton from quail to duck and generate chimeras in which osteocytes arise from quail donor NCM and osteoclasts come exclusively from the duck host. Chimeras develop quail-like jaw skeletons coincident with dramatically elevated expression of TRAP, Mmp13, and Mmp9. To test for a link between bone resorption and jaw length, we block resorption using a bisphosphonate, osteoprotegerin protein, or an MMP13 inhibitor, and this significantly lengthens the jaw. Conversely, activating resorption with RANKL protein shortens the jaw. Finally, we find that higher resorption in quail presages their relatively lower adult jaw bone mineral density (BMD) and that BMD is also NCM-mediated. Thus, our experiments suggest that NCM not only controls bone resorption by its own derivatives but also modulates the activity of mesoderm

  19. Revised lineage of larval photoreceptor cells in Ciona reveals archetypal collaboration between neural tube and neural crest in sensory organ formation.

    Science.gov (United States)

    Oonuma, Kouhei; Tanaka, Moeko; Nishitsuji, Koki; Kato, Yumiko; Shimai, Kotaro; Kusakabe, Takehiro G

    2016-12-01

    The Ciona intestinalis larva has two distinct photoreceptor organs, a conventional pigmented ocellus and a nonpigmented ocellus, that are asymmetrically situated in the brain. The ciliary photoreceptor cells of these ocelli resemble visual cells of the vertebrate retina. Precise elucidation of the lineage of the photoreceptor cells will be key to understanding the developmental mechanisms of these cells as well as the evolutionary relationships between the photoreceptor organs of ascidians and vertebrates. Photoreceptor cells of the pigmented ocellus have been thought to develop from anterior animal (a-lineage) blastomeres, whereas the developmental origin of the nonpigmented ocellus has not been determined. Here, we show that the photoreceptor cells of both ocelli develop from the right anterior vegetal hemisphere: those of the pigmented ocellus from the right A9.14 cell and those of the nonpigmented ocellus from the right A9.16 cell. The pigmented ocellus is formed by a combination of two lineages of cells with distinct embryonic origins: the photoreceptor cells originate from a medial portion of the A-lineage neural plate, while the pigment cell originates from the lateral edge of the a-lineage neural plate. In light of the recently proposed close evolutionary relationship between the ocellus pigment cell of ascidians and the cephalic neural crest of vertebrates, the ascidian ocellus may represent a prototypic contribution of the neural crest to a cranial sensory organ.

  20. Stem cell property of postmigratory cranial neural crest cells and their utility in alveolar bone regeneration and tooth development.

    Science.gov (United States)

    Chung, Il-Hyuk; Yamaza, Takayoshi; Zhao, Hu; Choung, Pill-Hoon; Shi, Songtao; Chai, Yang

    2009-04-01

    The vertebrate neural crest is a multipotent cell population that gives rise to a variety of different cell types. We have discovered that postmigratory cranial neural crest cells (CNCCs) maintain mesenchymal stem cell characteristics and show potential utility for the regeneration of craniofacial structures. We are able to induce the osteogenic differentiation of postmigratory CNCCs, and this differentiation is regulated by bone morphogenetic protein (BMP) and transforming growth factor-beta signaling pathways. After transplantation into a host animal, postmigratory CNCCs form bone matrix. CNCC-formed bones are distinct from bones regenerated by bone marrow mesenchymal stem cells. In addition, CNCCs support tooth germ survival via BMP signaling in our CNCC-tooth germ cotransplantation system. Thus, we conclude that postmigratory CNCCs preserve stem cell features, contribute to craniofacial bone formation, and play a fundamental role in supporting tooth organ development. These findings reveal a novel function for postmigratory CNCCs in organ development, and demonstrate the utility of these CNCCs in regenerating craniofacial structures.

  1. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Directory of Open Access Journals (Sweden)

    Myron S Ignatius

    Full Text Available The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382 mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382 mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382 mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382 defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  2. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves.

    Science.gov (United States)

    Jiao, Jiao; Xiong, Wei; Wang, Lunchang; Yang, Jiong; Qiu, Ping; Hirai, Hiroyuki; Shao, Lina; Milewicz, Dianna; Chen, Y Eugene; Yang, Bo

    2016-08-01

    Individuals with bicuspid aortic valves (BAV) are at a higher risk of developing thoracic aortic aneurysms (TAA) than patients with trileaflet aortic valves (TAV). The aneurysms associated with BAV most commonly involve the ascending aorta and spare the descending aorta. Smooth muscle cells (SMCs) in the ascending and descending aorta arise from neural crest (NC) and paraxial mesoderm (PM), respectively. We hypothesized defective differentiation of the neural crest stem cells (NCSCs)-derived SMCs but not paraxial mesoderm cells (PMCs)-derived SMCs contributes to the aortopathy associated with BAV. When induced pluripotent stem cells (iPSCs) from BAV/TAA patients were differentiated into NCSC-derived SMCs, these cells demonstrated significantly decreased expression of marker of SMC differentiation (MYH11) and impaired contraction compared to normal control. In contrast, the PMC-derived SMCs were similar to control cells in these aspects. The NCSC-SMCs from the BAV/TAA also showed decreased TGF-β signaling based on phosphorylation of SMAD2, and increased mTOR signaling. Inhibition of mTOR pathway using rapamycin rescued the aberrant differentiation. Our data demonstrates that decreased differentiation and contraction of patient's NCSC-derived SMCs may contribute to that aortopathy associated with BAV.

  3. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves

    Directory of Open Access Journals (Sweden)

    Jiao Jiao

    2016-08-01

    Full Text Available Individuals with bicuspid aortic valves (BAV are at a higher risk of developing thoracic aortic aneurysms (TAA than patients with trileaflet aortic valves (TAV. The aneurysms associated with BAV most commonly involve the ascending aorta and spare the descending aorta. Smooth muscle cells (SMCs in the ascending and descending aorta arise from neural crest (NC and paraxial mesoderm (PM, respectively. We hypothesized defective differentiation of the neural crest stem cells (NCSCs-derived SMCs but not paraxial mesoderm cells (PMCs-derived SMCs contributes to the aortopathy associated with BAV. When induced pluripotent stem cells (iPSCs from BAV/TAA patients were differentiated into NCSC-derived SMCs, these cells demonstrated significantly decreased expression of marker of SMC differentiation (MYH11 and impaired contraction compared to normal control. In contrast, the PMC-derived SMCs were similar to control cells in these aspects. The NCSC-SMCs from the BAV/TAA also showed decreased TGF-β signaling based on phosphorylation of SMAD2, and increased mTOR signaling. Inhibition of mTOR pathway using rapamycin rescued the aberrant differentiation. Our data demonstrates that decreased differentiation and contraction of patient's NCSC-derived SMCs may contribute to that aortopathy associated with BAV.

  4. The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals

    Science.gov (United States)

    Sánchez-Villagra, Marcelo R.; Geiger, Madeleine; Schneider, Richard A.

    2016-06-01

    Studies on domestication are blooming, but the developmental bases for the generation of domestication traits and breed diversity remain largely unexplored. Some phenotypic patterns of human neurocristopathies are suggestive of those reported for domesticated mammals and disrupting neural crest developmental programmes have been argued to be the source of traits deemed the `domestication syndrome'. These character changes span multiple organ systems and morphological structures. But an in-depth examination within the phylogenetic framework of mammals including domesticated forms reveals that the distribution of such traits is not universal, with canids being the only group showing a large set of predicted features. Modularity of traits tied to phylogeny characterizes domesticated mammals: through selective breeding, individual behavioural and morphological traits can be reordered, truncated, augmented or deleted. Similarly, mammalian evolution on islands has resulted in suites of phenotypic changes like those of some domesticated forms. Many domesticated mammals can serve as valuable models for conducting comparative studies on the evolutionary developmental biology of the neural crest, given that series of their embryos are readily available and that their phylogenetic histories and genomes are well characterized.

  5. Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest.

    Directory of Open Access Journals (Sweden)

    Ankita Das

    Full Text Available Cranial neural crest cells (CNCCs have the remarkable capacity to generate both the non-ectomesenchyme derivatives of the peripheral nervous system and the ectomesenchyme precursors of the vertebrate head skeleton, yet how these divergent lineages are specified is not well understood. Whereas studies in mouse have indicated that the Twist1 transcription factor is important for ectomesenchyme development, its role and regulation during CNCC lineage decisions have remained unclear. Here we show that two Twist1 genes play an essential role in promoting ectomesenchyme at the expense of non-ectomesenchyme gene expression in zebrafish. Twist1 does so by promoting Fgf signaling, as well as potentially directly activating fli1a expression through a conserved ectomesenchyme-specific enhancer. We also show that Id2a restricts Twist1 activity to the ectomesenchyme lineage, with Bmp activity preferentially inducing id2a expression in non-ectomesenchyme precursors. We therefore propose that the ventral migration of CNCCs away from a source of Bmps in the dorsal ectoderm promotes ectomesenchyme development by relieving Id2a-dependent repression of Twist1 function. Together our model shows how the integration of Bmp inhibition at its origin and Fgf activation along its migratory route would confer temporal and spatial specificity to the generation of ectomesenchyme from the neural crest.

  6. Search for the Missing lncs: Gene Regulatory Networks in Neural Crest Development and Long Non-coding RNA Biomarkers of Hirschsprung's Disease

    Science.gov (United States)

    Hirschsprung’s disease (HSCR), a birth defect characterized by variable aganglionosis of the gut, affects about 1 in 5000 births, and is a consequence of abnormal development of neural crest cells, from which enteric ganglia derive. In the companion article in this issue (S...

  7. Face off against ROS: Tcof1/Treacle safeguards neuroepithelial cells and progenitor neural crest cells from oxidative stress during craniofacial development.

    Science.gov (United States)

    Sakai, Daisuke; Trainor, Paul A

    2016-09-01

    One-third of all congenital birth defects affect the head and face, and most craniofacial anomalies are considered to arise through defects in the development of cranial neural crest cells. Cranial neural crest cells give rise to the majority of craniofacial bones, cartilages and connective tissues. Therefore, understanding the events that control normal cranial neural crest and subsequent craniofacial development is important for elucidating the pathogenetic mechanisms of craniofacial anomalies and for the exploring potential therapeutic avenues for their prevention. Treacher Collins syndrome (TCS) is a congenital disorder characterized by severe craniofacial anomalies. An animal model of TCS, generated through mutation of Tcof1, the mouse (Mus musculus) homologue of the gene primarily mutated in association with TCS in humans, has recently revealed significant insights into the pathogenesis of TCS. Apoptotic elimination of neuroepithelial cells including neural crest cells is the primary cause of craniofacial defects in Tcof1 mutant embryos. However, our understanding of the mechanisms that induce tissue-specific apoptosis remains incomplete. In this review, we describe recent advances in our understanding of the pathogenesis TCS. Furthermore, we discuss the role of Tcof1 in normal embryonic development, the correlation between genetic and environmental factors on the severity of craniofacial abnormalities, and the prospect for prenatal prevention of craniofacial anomalies.

  8. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development:do all roads lead to Mitf?

    Institute of Scientific and Technical Information of China (English)

    Ling Hou; William J Pavan

    2008-01-01

    Human neurocristopathies include a number of syndromes,tumors,and dysmorphologies of neural crest (NC) stem cell derivatives.In recent years,many white spotting genes have been associated with hypopigmentary disorders and deafness in neurocristopathies resulting from NC stem cell-derived melanocyte deficiency during development.These include PAX3,SOX10,MITF,SNAI2,EDNRB,EDN3,KIT,and KITL.Recent studies have revealed surprising new insights into a central role of MITF in the complex network of interacting genes in melanocyte development.In this perspective,we provide an overview of some of the current findings and explore complex functional roles of these genes during NC stem cell-derived melanocyte development.

  9. Dental anomalies in different cleft groups related to neural crest developmental fields contributes to the understanding of cleft aetiology

    DEFF Research Database (Denmark)

    Riis, Louise Claudius; Kjær, Inger; Mølsted, Kirsten

    2014-01-01

    , radiographs, dental casts, and medical records. PATIENTS: Ninety individuals (30 cleft lip, 30 cleft palate, and 30 combined cleft lip and palate), aged 5-27 years. MAIN OUTCOME MEASURES: Visual evaluation of tooth number and tooth morphology. RESULTS: Cleft lip: Dental deviations were predominantly observed...... in the frontonasal field. Supernumerary lateral incisors occurred significantly more often in cleft lip compared to other cleft types. Cleft palate: Dental deviations were observed in the maxillary and palatal fields indicating that both fields are involved in the development of cleft palate. Malformed roots were...... seen significantly more often in cleft palate. Combined cleft lip and palate: Number and type of dental deviations differed significantly from deviations in other cleft types, e.g. significantly more ageneses. CONCLUSIONS: Cleft lip seems to be caused by a disorder in neural crest migration...

  10. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis.

    Science.gov (United States)

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A; Whatcott, Clifford; Soh, Katherine K; Warner, Steven; Bearss, David; Jette, Cicely A; Stewart, Rodney A

    2016-04-01

    The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, calledTg(snai1b:GFP), which labels epithelial cells undergoing EMT to producesox10-positive neural crest (NC) cells. Time-lapse and lineage analysis ofTg(snai1b:GFP)embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. TreatingTg(snai1b:GFP)embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RAin vivoand raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells.

  11. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis

    Directory of Open Access Journals (Sweden)

    Laura Jimenez

    2016-04-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP, which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC cells. Time-lapse and lineage analysis of Tg(snai1b:GFP embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells.

  12. miR-204 targeting of Ankrd13A controls both mesenchymal neural crest and lens cell migration.

    Directory of Open Access Journals (Sweden)

    Raffaella Avellino

    Full Text Available Loss of cell adhesion and enhancement of cell motility contribute to epithelial-to-mesenchymal transition during development. These processes are related to a rearrangement of cell-cell and cell-substrate adhesion molecules; b cross talk between extra-cellular matrix and internal cytoskeleton through focal adhesion molecules. Focal adhesions are stringently regulated transient structures implicated in cell adhesion, spreading and motility during tissue development. Importantly, despite the extensive elucidation of the molecular composition of focal adhesions, the complex regulation of their dynamics is largely unclear. Here, we demonstrate, using live-imaging in medaka, that the microRNA miR-204 promotes both mesenchymal neural crest and lens cell migration and elongation. Overexpression of miR-204 results in upregulated cell motility, while morpholino-mediated ablation of miR-204 activity causes abnormal lens morphogenesis and neural crest cell mislocalization. Using a variety of in vivo and in vitro approaches, we demonstrate that these actions are mediated by the direct targeting of the Ankrd13A gene, which in turn controls focal cell adhesion formation and distribution. Significantly, in vivo restoration of abnormally elevated levels of Ankrd13A resulting from miR-204 inactivation rescued the aberrant lens phenotype in medaka fish. These data uncover, for the first time in vivo, the role of a microRNA in developmental control of mesenchymal cell migration and highlight miR-204 as a "master regulator" of the molecular networks that regulate lens morphogenesis in vertebrates.

  13. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.

    Science.gov (United States)

    Parada, Carolina; Han, Dong; Grimaldi, Alexandre; Sarrión, Patricia; Park, Shery S; Pelikan, Richard; Sanchez-Lara, Pedro A; Chai, Yang

    2015-11-01

    Disrupted ERK1/2 signaling is associated with several developmental syndromes in humans. To understand the function of ERK2 (MAPK1) in the postmigratory neural crest populating the craniofacial region, we studied two mouse models: Wnt1-Cre;Erk2(fl/fl) and Osr2-Cre;Erk2(fl/fl). Wnt1-Cre;Erk2(fl/fl) mice exhibited cleft palate, malformed tongue, micrognathia and mandibular asymmetry. Cleft palate in these mice was associated with delay/failure of palatal shelf elevation caused by tongue malposition and micrognathia. Osr2-Cre;Erk2(fl/fl) mice, in which the Erk2 deletion is restricted to the palatal mesenchyme, did not display cleft palate, suggesting that palatal clefting in Wnt1-Cre;Erk2(fl/fl) mice is a secondary defect. Tongues in Wnt1-Cre;Erk2(fl/fl) mice exhibited microglossia, malposition, disruption of the muscle patterning and compromised tendon development. The tongue phenotype was extensively rescued after culture in isolation, indicating that it might also be a secondary defect. The primary malformations in Wnt1-Cre;Erk2(fl/fl) mice, namely micrognathia and mandibular asymmetry, are linked to an early osteogenic differentiation defect. Collectively, our study demonstrates that mutation of Erk2 in neural crest derivatives phenocopies the human Pierre Robin sequence and highlights the interconnection of palate, tongue and mandible development. Because the ERK pathway serves as a crucial point of convergence for multiple signaling pathways, our study will facilitate a better understanding of the molecular regulatory mechanisms of craniofacial development.

  14. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.

    Science.gov (United States)

    Song, Zhongchen; Liu, Chao; Iwata, Junichi; Gu, Shuping; Suzuki, Akiko; Sun, Cheng; He, Wei; Shu, Rong; Li, Lu; Chai, Yang; Chen, YiPing

    2013-04-12

    Cleft palate represents one of the most common congenital birth defects in humans. TGFβ signaling, which is mediated by Smad-dependent and Smad-independent pathways, plays a crucial role in regulating craniofacial development and patterning, particularly in palate development. However, it remains largely unknown whether the Smad-independent pathway contributes to TGFβ signaling function during palatogenesis. In this study, we investigated the function of TGFβ activated kinase 1 (Tak1), a key regulator of Smad-independent TGFβ signaling in palate development. We show that Tak1 protein is expressed in both the epithelium and mesenchyme of the developing palatal shelves. Whereas deletion of Tak1 in the palatal epithelium or mesenchyme did not give rise to a cleft palate defect, inactivation of Tak1 in the neural crest lineage using the Wnt1-Cre transgenic allele resulted in failed palate elevation and subsequently the cleft palate formation. The failure in palate elevation in Wnt1-Cre;Tak1(F/F) mice results from a malformed tongue and micrognathia, resembling human Pierre Robin sequence cleft of the secondary palate. We found that the abnormal tongue development is associated with Fgf10 overexpression in the neural crest-derived tongue tissue. The failed palate elevation and cleft palate were recapitulated in an Fgf10-overexpressing mouse model. The repressive effect of the Tak1-mediated noncanonical TGFβ signaling on Fgf10 expression was further confirmed by inhibition of p38, a downstream kinase of Tak1, in the primary cell culture of developing tongue. Tak1 thus functions to regulate tongue development by controlling Fgf10 expression and could represent a candidate gene for mutation in human PRS clefting.

  15. In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety.

    Directory of Open Access Journals (Sweden)

    Julie E Cooper

    Full Text Available Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety.Neurospheres generated from yellow fluorescent protein (YFP expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B. Intestines were then assessed for ENCC integration and differentiation using immunohistochemistry, cell function using calcium imaging, and long-term safety using PCR to detect off-target YFP expression.YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within recipient ganglionic gut. Transplanted cells and their projections spread along the endogenous myenteric plexus to form branching networks. Electrical point stimulation of endogenous nerve fibres resulted in calcium transients (F/F0 = 1.16 ± 0.01;43 cells, n = 6 in YFP+ transplanted ENCCs (abolished with TTX. Long-term follow-up (24 months showed transplanted ENCCs did not give rise to tumours or spread to other organs (PCR negative in extraintestinal sites. In aganglionic gut ENCCs similarly spread and differentiated to form neuronal and glial networks with projections closely associated with endogenous neural networks of the transition zone.Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut showing appropriate spread, localisation and, importantly, functional integration without any long-term safety issues. This study provides key support for the development and use of enteric neural stem cell therapies.

  16. The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Bernd Willems

    Full Text Available During vertebrate neurulation, cranial neural crest cells (CNCCs undergo epithelial to mesenchymal transition (EMT, delaminate from the neural plate border, and migrate as separate streams into different cranial regions. There, they differentiate into distinct parts of the craniofacial skeleton. Canonical Wnt signaling has been shown to be essential for this process at different levels but the involved receptors remained unclear. Here we show that the frizzled co-receptor low-density-lipoprotein (LDL receptor-related protein 5 (Lrp5 plays a crucial role in CNCC migration and morphogenesis of the cranial skeleton. Early during induction and migration of CNCCs, lrp5 is expressed ubiquitously but later gets restricted to CNCC derivatives in the ventral head region besides different regions in the CNS. A knock-down of lrp5 does not interfere with induction of CNCCs but leads to reduced proliferation of premigratory CNCCs. In addition, cell migration is disrupted as CNCCs are found in clusters at ectopic positions in the dorsomedial neuroepithelium after lrp5 knock-down and transient CRISPR/Cas9 gene editing. These migratory defects consequently result in malformations of the craniofacial skeleton. To date, Lrp5 has mainly been associated with bone homeostasis in mammals. Here we show that in zebrafish, lrp5 also controls cell migration during early morphogenetic processes and contributes to shaping the craniofacial skeleton.

  17. The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish.

    Science.gov (United States)

    Willems, Bernd; Tao, Shijie; Yu, Tingsheng; Huysseune, Ann; Witten, Paul Eckhard; Winkler, Christoph

    2015-01-01

    During vertebrate neurulation, cranial neural crest cells (CNCCs) undergo epithelial to mesenchymal transition (EMT), delaminate from the neural plate border, and migrate as separate streams into different cranial regions. There, they differentiate into distinct parts of the craniofacial skeleton. Canonical Wnt signaling has been shown to be essential for this process at different levels but the involved receptors remained unclear. Here we show that the frizzled co-receptor low-density-lipoprotein (LDL) receptor-related protein 5 (Lrp5) plays a crucial role in CNCC migration and morphogenesis of the cranial skeleton. Early during induction and migration of CNCCs, lrp5 is expressed ubiquitously but later gets restricted to CNCC derivatives in the ventral head region besides different regions in the CNS. A knock-down of lrp5 does not interfere with induction of CNCCs but leads to reduced proliferation of premigratory CNCCs. In addition, cell migration is disrupted as CNCCs are found in clusters at ectopic positions in the dorsomedial neuroepithelium after lrp5 knock-down and transient CRISPR/Cas9 gene editing. These migratory defects consequently result in malformations of the craniofacial skeleton. To date, Lrp5 has mainly been associated with bone homeostasis in mammals. Here we show that in zebrafish, lrp5 also controls cell migration during early morphogenetic processes and contributes to shaping the craniofacial skeleton.

  18. Folic acid and homocysteine affect neural crest and neuroepithelial cell outgrowth and differentiation in vitro.

    NARCIS (Netherlands)

    Boot, M.J.; Steegers-Theunissen, R.P.M.; Poelmann, R.E.; Iperen, L. van; Lindemans, J.; Groot, A. de

    2003-01-01

    The beneficial effect of additional folic acid in the periconceptional period to prevent neural tube defects, orofacial clefts, and conotruncal heart defects in the offspring has been shown. Folate shortage results in homocysteine accumulation. Elevated levels of homocysteine have been related to ne

  19. Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung's Disease.

    Directory of Open Access Journals (Sweden)

    Ankush Gosain

    Full Text Available Hirschsprung's disease (HSCR is characterized by aganglionosis from failure of neural crest cell (NCC migration to the distal hindgut. Up to 40% of HSCR patients suffer Hirschsprung's-associated enterocolitis (HAEC, with an incidence that is unchanged from the pre-operative to the post-operative state. Recent reports indicate that signaling pathways involved in NCC migration may also be involved in the development of secondary lymphoid organs. We hypothesize that gastrointestinal (GI mucosal immune defects occur in HSCR that may contribute to enterocolitis. EdnrB was deleted from the neural crest (EdnrBNCC-/- resulting in mutants with defective NCC migration, distal colonic aganglionosis and the development of enterocolitis. The mucosal immune apparatus of these mice was interrogated at post-natal day (P 21-24, prior to histological signs of enterocolitis. We found that EdnrBNCC-/- display lymphopenia of their Peyer's Patches, the major inductive site of GI mucosal immunity. EdnrBNCC-/- Peyer's Patches demonstrate decreased B-lymphocytes, specifically IgM+IgDhi (Mature B-lymphocytes, which are normally activated and produce IgA following antigen presentation. EdnrBNCC-/- animals demonstrate decreased small intestinal secretory IgA, but unchanged nasal and bronchial airway secretory IgA, indicating a gut-specific defect in IgA production or secretion. In the spleen, which is the primary source of IgA-producing Mature B-lymphocytes, EdnrBNCC-/- animals display decreased B-lymphocytes, but an increase in Mature B-lymphocytes. EdnrBNCC-/- spleens are also small and show altered architecture, with decreased red pulp and a paucity of B-lymphocytes in the germinal centers and marginal zone. Taken together, these findings suggest impaired GI mucosal immunity in EdnrBNCC-/- animals, with the spleen as a potential site of the defect. These findings build upon the growing body of literature that suggests that intestinal defects in HSCR are not restricted

  20. Autonomic cardiac innervation

    OpenAIRE

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targe...

  1. Neural Crest Stem Cells Persist in the Adult Gut but Undergo Changes in Self-Renewal, Neuronal Subtype Potential, and Factor Responsiveness

    OpenAIRE

    2002-01-01

    We found neural crest stem cells (NCSCs) in the adult gut. Postnatal gut NCSCs were isolated by flow-cytometry and compared to fetal gut NCSCs. They self-renewed extensively in culture but less than fetal gut NCSCs. Postnatal gut NCSCs made neurons that expressed a variety of neurotransmitters but lost the ability to make certain subtypes of neurons that are generated during fetal development. Postnatal gut NCSCs also differed in their responsiveness to lineage determination factors, affectin...

  2. A Human Neural Crest Stem Cell-Derived Dopaminergic Neuronal Model Recapitulates Biochemical Abnormalities in GBA1 Mutation Carriers

    Directory of Open Access Journals (Sweden)

    Shi-Yu Yang

    2017-03-01

    Full Text Available Numerically the most important risk factor for the development of Parkinson's disease (PD is the presence of mutations in the glucocerebrosidase GBA1 gene. In vitro and in vivo studies show that GBA1 mutations reduce glucocerebrosidase (GCase activity and are associated with increased α-synuclein levels, reflecting similar changes seen in idiopathic PD brain. We have developed a neural crest stem cell-derived dopaminergic neuronal model that recapitulates biochemical abnormalities in GBA1 mutation-associated PD. Cells showed reduced GCase protein and activity, impaired macroautophagy, and increased α-synuclein levels. Advantages of this approach include easy access to stem cells, no requirement to reprogram, and retention of the intact host genome. Treatment with a GCase chaperone increased GCase protein levels and activity, rescued the autophagic defects, and decreased α-synuclein levels. These results provide the basis for further investigation of GCase chaperones or similar drugs to slow the progression of PD.

  3. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells.

    Science.gov (United States)

    Hagiwara, Kunie; Obayashi, Takeshi; Sakayori, Nobuyuki; Yamanishi, Emiko; Hayashi, Ryuhei; Osumi, Noriko; Nakazawa, Toru; Nishida, Kohji

    2014-01-01

    The outstanding differentiation capacities and easier access from adult tissues, cells derived from neural crest cells (NCCs) have fascinated scientists in developmental biology and regenerative medicine. Differentiation potentials of NCCs are known to depend on their originating regions. Here, we report differential molecular features between craniofacial (cNCCs) and trunk (tNCCs) NCCs by analyzing transcription profiles and sphere forming assays of NCCs from P0-Cre/floxed-EGFP mouse embryos. We identified up-regulation of genes linked to carcinogenesis in cNCCs that were not previously reported to be related to NCCs, which was considered to be, an interesting feature in regard with carcinogenic potentials of NCCs such as melanoma and neuroblastoma. Wnt signal related genes were statistically up-regulated in cNCCs, also suggesting potential involvement of cNCCs in carcinogenesis. We also noticed intense expression of mesenchymal and neuronal markers in cNCCs and tNCCs, respectively. Consistent results were obtained from in vitro sphere-forming and differentiation assays. These results were in accordance with previous notion about differential potentials of cNCCs and tNCCs. We thus propose that sorting NCCs from P0-Cre/floxed-EGFP mice might be useful for the basic and translational research of NCCs. Furthermore, these newly-identified genes up-regulated in cNCC would provide helpful information on NC-originating tumors, developmental disorders in NCC derivatives, and potential applications of NCCs in regenerative medicine.

  4. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats.

    Science.gov (United States)

    Müller, Janine; Ossig, Christiana; Greiner, Johannes F W; Hauser, Stefan; Fauser, Mareike; Widera, Darius; Kaltschmidt, Christian; Storch, Alexander; Kaltschmidt, Barbara

    2015-01-01

    Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model.

  5. Augmented Indian hedgehog signaling in cranial neural crest cells leads to craniofacial abnormalities and dysplastic temporomandibular joint in mice.

    Science.gov (United States)

    Yang, Ling; Gu, Shuping; Ye, Wenduo; Song, Yingnan; Chen, YiPing

    2016-04-01

    Extensive studies have pinpointed the crucial role of Indian hedgehog (Ihh) signaling in the development of the appendicular skeleton and the essential function of Ihh in the formation of the temporomandibular joint (TMJ). In this study, we have investigated the effect of augmented Ihh signaling in TMJ development. We took a transgenic gain-of-function approach by overexpressing Ihh in the cranial neural crest (CNC) cells using a conditional Ihh transgenic allele and the Wnt1-Cre allele. We found that Wnt1-Cre-mediated tissue-specific overexpression of Ihh in the CNC lineage caused severe craniofacial abnormalities, including cleft lip/palate, encephalocele, anophthalmos, micrognathia, and defective TMJ development. In the mutant TMJ, the glenoid fossa was completely absent, whereas the condyle and the articular disc appeared relatively normal with slightly delayed chondrocyte differentiation. Our findings thus demonstrate that augmented Ihh signaling is detrimental to craniofacial development, and that finely tuned Ihh signaling is critical for TMJ formation. Our results also provide additional evidence that the development of the condyle and articular disc is independent of the glenoid fossa.

  6. Design of a high-throughput human neural crest cell migration assay to indicate potential developmental toxicants.

    Science.gov (United States)

    Nyffeler, Johanna; Karreman, Christiaan; Leisner, Heidrun; Kim, Yong Jun; Lee, Gabsang; Waldmann, Tanja; Leist, Marcel

    2017-01-01

    Migration of neural crest cells (NCCs) is one of the pivotal processes of human fetal development. Malformations arise if NCC migration and differentiation are impaired genetically or by toxicants. In the currently available test systems for migration inhibition of NCC (MINC), the manual generation of a cell-free space results in extreme operator dependencies, and limits throughput. Here a new test format was established. The assay avoids scratching by plating cells around a commercially available circular stopper. Removal of the stopper barrier after cell attachment initiates migration. This microwell-based circular migration zone NCC function assay (cMINC) was further optimized for toxicological testing of human pluripotent stem cell (hPSC)-derived NCCs. The challenge of obtaining data on viability and migration by automated image processing was addressed by developing a freeware. Data on cell proliferation were obtained by labelling replicating cells, and by careful assessment of cell viability for each experimental sample. The role of cell proliferation as an experimental confounder was tested experimentally by performing the cMINC in the presence of the proliferation-inhibiting drug cytosine arabinoside (AraC), and by a careful evaluation of mitotic events over time. Data from these studies led to an adaptation of the test protocol, so that toxicant exposure was limited to 24 h. Under these conditions, a prediction model was developed that allows classification of toxicants as either inactive, leading to unspecific cytotoxicity, or specifically inhibiting NC migration at non-cytotoxic concentrations.

  7. Strict perpendicular orientation of neural crest-derived neurons in vitro is dependent on an extracellular gradient of voltage.

    Science.gov (United States)

    Pan, Linjie; Borgens, Richard Ben

    2012-07-01

    We report extraordinary perpendicular orientations of neurons dependent on the presence of an external direct current (DC) voltage gradient. We chose chick dorsal root and postganglionic sympathetic neurons to evaluate. These were cultured in observation chambers in which the cells were separated from electrode products or substrate effects and maintained at 35°C. Both types of neurons showed a rapid restructuring of their anatomy. Typically, neurites that were not perpendicular to the voltage gradient were quickly resorbed into the cell body within a few minutes. Over 3-6 hr, significant new neurite growth occurred and was patterned perpendicular to the DC electrical field (Ef). This preferred asymmetry was dependent on the Ef, as was the initial retrograde degeneration of fibers. At 400-500 mV/mm, over 90% of the cells in culture assumed this orientation. Removal of the DC Ef led to a loss of the preferred orientation, with further random growth within the chambers. This is the first report of such responses in dorsal root ganglion neurons. We also used sympathetic neurons as a meaningful comparison to analyze whether there were any qualitative or quantitative differences between these two cell types of neural crest origin. We discuss the means by which these orientations were achieved.

  8. Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.

    Science.gov (United States)

    Iwata, Jun-ichi; Suzuki, Akiko; Pelikan, Richard C; Ho, Thach-Vu; Chai, Yang

    2013-10-11

    Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor β (TGFβ) type II receptor in CNC cells in mice (Tgfbr2(fl/fl);Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development. However, it is still unclear how TGFβ signaling in CNC cells regulates the fate of mesoderm-derived myoblasts during tongue development. Here we show that activation of the cytoplasmic and nuclear tyrosine kinase 1 (ABL1) cascade in Tgfbr2(fl/fl);Wnt1-Cre mice results in a failure of CNC-derived cell differentiation followed by a disruption of TGFβ-mediated induction of growth factors and reduction of myogenic cell proliferation and differentiation activities. Among the affected growth factors, the addition of fibroblast growth factor 4 (FGF4) and neutralizing antibody for follistatin (FST; an antagonist of bone morphogenetic protein (BMP)) could most efficiently restore cell proliferation, differentiation, and organization of muscle cells in the tongue of Tgfbr2(fl/fl);Wnt1-Cre mice. Thus, our data indicate that CNC-derived fibroblasts regulate the fate of mesoderm-derived myoblasts through TGFβ-mediated regulation of FGF and BMP signaling during tongue development.

  9. The facial neural crest controls fore- and midbrain patterning by regulating Foxg1 expression through Smad1 activity.

    Science.gov (United States)

    Aguiar, Diego P; Sghari, Soufien; Creuzet, Sophie

    2014-06-01

    The facial neural crest (FNC), a pluripotent embryonic structure forming craniofacial structures, controls the activity of brain organisers and stimulates cerebrum growth. To understand how the FNC conveys its trophic effect, we have studied the role of Smad1, which encodes an intracellular transducer, to which multiple signalling pathways converge, in the regulation of Foxg1. Foxg1 is a transcription factor essential for telencephalic specification, the mutation of which leads to microcephaly and mental retardation. Smad1 silencing, based on RNA interference (RNAi), was performed in pre-migratory FNC cells. Soon after electroporation of RNAi molecules, Smad1 inactivation abolished the expression of Foxg1 in the chick telencephalon, resulting in dramatic microcephaly and partial holoprosencephaly. In addition, the depletion of Foxg1 activity altered the expression Otx2 and Foxa2 in di/mesencephalic neuroepithelium. However, when mutated forms of Smad1 mediating Fgf and Wnt signalling were transfected into FNC cells, these defects were overcome. We also show that, downstream of Smad1 activity, Dkk1, a Wnt antagonist produced by the FNC, initiated the specification of the telencephalon by regulating Foxg1 activity. Additionally, the activity of Cerberus in FNC-derived mesenchyme synergised with Dkk1 to control Foxg1 expression and maintain the balance between Otx2 and Foxa2.

  10. Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation.

    Directory of Open Access Journals (Sweden)

    Lu Li

    Full Text Available The importance of BMP receptor Ia (BMPRIa mediated signaling in the development of craniofacial organs, including the tooth and palate, has been well illuminated in several mouse models of loss of function, and by its mutations associated with juvenile polyposis syndrome and facial defects in humans. In this study, we took a gain-of-function approach to further address the role of BMPR-IA-mediated signaling in the mesenchymal compartment during tooth and palate development. We generated transgenic mice expressing a constitutively active form of BmprIa (caBmprIa in cranial neural crest (CNC cells that contributes to the dental and palatal mesenchyme. Mice bearing enhanced BMPRIa-mediated signaling in CNC cells exhibit complete cleft palate and delayed odontogenic differentiation. We showed that the cleft palate defect in the transgenic animals is attributed to an altered cell proliferation rate in the anterior palatal mesenchyme and to the delayed palatal elevation in the posterior portion associated with ectopic cartilage formation. Despite enhanced activity of BMP signaling in the dental mesenchyme, tooth development and patterning in transgenic mice appeared normal except delayed odontogenic differentiation. These data support the hypothesis that a finely tuned level of BMPRIa-mediated signaling is essential for normal palate and tooth development.

  11. Calponin 2 Acts As an Effector of Noncanonical Wnt-Mediated Cell Polarization during Neural Crest Cell Migration

    Directory of Open Access Journals (Sweden)

    Bärbel Ulmer

    2013-03-01

    Full Text Available Neural crest cells (NCCs migrate throughout the embryo to differentiate into cell types of all germ layers. Initial directed NCC emigration relies on planar cell polarity (PCP, which through the activity of the small GTPases RhoA and Rac governs the actin-driven formation of polarized cell protrusions. We found that the actin binding protein calponin 2 (Cnn2 was expressed in protrusions at the leading edge of migratory NCCs in chicks and frogs. Cnn2 knockdown resulted in NCC migration defects in frogs and chicks and randomized outgrowth of cell protrusions in NCC explants. Morphant cells showed central stress fibers at the expense of the peripheral actin network. Cnn2 acted downstream of Wnt/PCP, as migration defects induced by dominant-negative Wnt11 or inhibition of RhoA function were rescued by Cnn2 knockdown. These results suggest that Cnn2 modulates actin dynamics during NCC migration as an effector of noncanonical Wnt/PCP signaling.

  12. Perturbation of Hoxb5 signaling in vagal and trunk neural crest cells causes apoptosis and neurocristopathies in mice.

    Science.gov (United States)

    Kam, M K M; Cheung, M C H; Zhu, J J; Cheng, W W C; Sat, E W Y; Tam, P K H; Lui, V C H

    2014-02-01

    Neural crest cells (NCCs) migrate from different regions along the anterior-posterior axis of the neural tube (NT) to form different structures. Defective NCC development causes congenital neurocristopathies affecting multiple NCC-derived tissues in human. Perturbed Hoxb5 signaling in vagal NCC causes enteric nervous system (ENS) defects. This study aims to further investigate if perturbed Hoxb5 signaling in trunk NCC contributes to defects of other NCC-derived tissues besides the ENS. We perturbed Hoxb5 signaling in NCC from the entire NT, and investigated its impact in the development of tissues derived from these cells in mice. Perturbation of Hoxb5 signaling in these NCC resulted in Sox9 downregulation, NCC apoptosis, hypoplastic sympathetic and dorsal root ganglia, hypopigmentation and ENS defects. Mutant mice with NCC-specific Sox9 deletion also displayed some of these phenotypes. In vitro and in vivo assays indicated that the Sox9 promoter was bound and trans-activated by Hoxb5. In ovo studies further revealed that Sox9 alleviated apoptosis induced by perturbed Hoxb5 signaling, and Hoxb5 induced ectopic Sox9 expression in chick NT. This study demonstrates that Hoxb5 regulates Sox9 expression in NCC and disruption of this signaling causes Sox9 downregulation, NCC apoptosis and multiple NCC-developmental defects. Phenotypes such as ENS deficiency, hypopigmentation and some of the neurological defects are reported in patients with Hirschsprung disease (HSCR). Whether dysregulation of Hoxb5 signaling and early depletion of NCC contribute to ENS defect and other neurocristopathies in HSCR patients deserves further investigation.

  13. Functional constraints on SoxE proteins in neural crest development: The importance of differential expression for evolution of protein activity.

    Science.gov (United States)

    Lee, Eric M; Yuan, Tian; Ballim, Reyna D; Nguyen, Kristy; Kelsh, Robert N; Medeiros, Daniel M; McCauley, David W

    2016-10-01

    Vertebrate SoxE genes (Sox8, 9, and 10) are key regulators of neural crest cell (NCC) development. These genes arose by duplication from a single SoxE gene in the vertebrate ancestor. Although SoxE paralogs are coexpressed early in NCC development, later, Sox9 is restricted to skeletogenic lineages in the head, and Sox10 to non-skeletogenic NCC in the trunk and head. When this subfunctionalization evolved and its possible role in the evolution of the neural crest are unknown. Sea lampreys are basal vertebrates that also possess three SoxE genes, while only a single SoxE is present in the cephalochordate amphioxus. In order to address the functional divergence of SoxE genes, and to determine if differences in their biochemical functions may be linked to changes in neural crest developmental potential, we examined the ability of lamprey and amphioxus SoxE genes to regulate differentiation of NCC derivatives in zebrafish colourless (cls) mutants lacking expression of sox10. Our findings suggest that the proto-vertebrate SoxE gene possessed both melanogenic and neurogenic capabilities prior to SoxE gene duplication. Following the agnathan-gnathostome split, lamprey SoxE1 and SoxE3 largely lost their melanogenic and/or enteric neurogenic properties, while gnathostome SoxE paralogs have retained functional conservation. We posit that this difference in protein subfunctionalization is a direct consequence of the independent regulation of SoxE paralog expression between the two lineages. Specifically, we propose that the overlapping expression of gnathostome SoxE paralogs in early neural crest largely constrained the function of gnathostome SoxE proteins. In contrast, the largely non-overlapping expression of lamprey SoxE paralogs allowed them to specialize with regard to their DNA-binding and/or protein interaction properties. Restriction of developmental potential among cranial and trunk neural crest in lampreys may be related to constraints on SoxE activity among

  14. Transforming growth factor beta1 regulates melanocyte proliferation and differentiation in mouse neural crest cells via stem cell factor/KIT signaling.

    Science.gov (United States)

    Kawakami, Tamihiro; Soma, Yoshinao; Kawa, Yoko; Ito, Masaru; Yamasaki, Emiko; Watabe, Hidenori; Hosaka, Eri; Yajima, Kenji; Ohsumi, Kayoko; Mizoguchi, Masako

    2002-03-01

    Stem cell factor is essential to the migration and differentiation of melanocytes during embryogenesis based on the observation that mutations in either the stem cell factor gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Stem cell factor is also required for the survival of melanocyte precursors while they are migrating towards the skin. Transforming growth factor beta1 has been implicated in the regulation of both cellular proliferation and differentiation. NCC-melb4, an immortal cloned cell line, was cloned from a mouse neural crest cell. NCC-melb4 cells provide a model to study the specific stage of differentiation and proliferation of melanocytes. They also express KIT as a melanoblast marker. Using the NCC-melb4 cell line, we investigated the effect of transforming growth factor beta1 on the differentiation and proliferation of immature melanocyte precursors. Immunohistochemically, NCC-melb4 cells showed transforming growth factor beta1 expression. The anti-transforming growth factor beta1 antibody inhibited the cell growth, and downregulated the KIT protein and mRNA expression. To investigate further the activation of autocrine transforming growth factor beta1, NCC-melb4 cells were incubated in nonexogenous transforming growth factor beta1 culture medium. KIT protein decreased with anti-transforming growth factor beta1 antibody concentration in a concentration-dependent manner. We concluded that in NCC-melb4 cells, transforming growth factor beta1 promotes melanocyte precursor proliferation in autocrine and/or paracrine regulation. We further investigated the influence of transforming growth factor beta1 in vitro using a neural crest cell primary culture system from wild-type mice. Anti-transforming growth factor beta1 antibody decreased the number of KIT positive neural crest cell. In addition, the anti-transforming growth factor beta1 antibody supplied within the wild-type neural crest explants abolished the growth of the neural

  15. The neuro-glial properties of adipose-derived adult stromal (ADAS cells are not regulated by Notch 1 and are not derived from neural crest lineage.

    Directory of Open Access Journals (Sweden)

    Philip C Wrage

    Full Text Available We investigated whether adipose-derived adult stromal (ADAS are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca(2+ transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH; and lineage tracing analyses using Wnt1-Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be

  16. Novel migrating mouse neural crest cell assay system utilizing P0-Cre/EGFP fluorescent time-lapse imaging

    Directory of Open Access Journals (Sweden)

    Kawakami Minoru

    2011-11-01

    Full Text Available Abstract Background Neural crest cells (NCCs are embryonic, multipotent stem cells. Their long-range and precision-guided migration is one of their most striking characteristics. We previously reported that P0-Cre/CAG-CAT-lacZ double-transgenic mice showed significant lacZ expression in tissues derived from NCCs. Results In this study, by embedding a P0-Cre/CAG-CAT-EGFP embryo at E9.5 in collagen gel inside a culture glass slide, we were able to keep the embryo developing ex vivo for more than 24 hours; this development was with enough NCC fluorescent signal intensity to enable single-cell resolution analysis, with the accompanying NCC migration potential intact and with the appropriate NCC response to the extracellular signal maintained. By implantation of beads with absorbed platelet-derived growth factor-AA (PDGF-AA, we demonstrated that PDGF-AA acts as an NCC-attractant in embryos. We also performed assays with NCCs isolated from P0-Cre/CAG-CAT-EGFP embryos on culture plates. The neuromediator 5-hydroxytryptamine (5-HT has been known to regulate NCC migration. We newly demonstrated that dopamine, in addition to 5-HT, stimulated NCC migration in vitro. Two NCC populations, with different axial levels of origins, showed unique distribution patterns regarding migration velocity and different dose-response patterns to both 5-HT and dopamine. Conclusions Although avian species predominated over the other species in the NCC study, our novel system should enable us to use mice to assay many different aspects of NCCs in embryos or on culture plates, such as migration, division, differentiation, and apoptosis.

  17. Simple in vitro migration assay for neural crest cells and the opposite effects of all-trans-retinoic acid on cephalic- and trunk-derived cells.

    Science.gov (United States)

    Usami, Makoto; Mitsunaga, Katsuyoshi; Irie, Tomohiko; Miyajima, Atsuko; Doi, Osamu

    2014-08-01

    Here, we describe a simple in vitro neural crest cell (NCC) migration assay and the effects of all-trans-retinoic acid (RA) on NCCs. Neural tubes excised from the rhombencephalic or trunk region of day 10.5 rat embryos were cultured for 48 h to allow emigration and migration of NCCs. Migration of NCCs was measured as the change in the radius (radius ratio) calculated from the circular spread of NCCs between 24 and 48 h of culture. RA was added to the culture medium after 24 h at embryotoxic concentrations determined by rat whole embryo culture. RA (10 μM) reduced the migration of cephalic NCCs, whereas it enhanced the migration of trunk NCCs, indicating that RA has opposite effects on these two types of NCCs.

  18. Mice with DNA repair gene Ercc1 deficiency in a neural crest lineage are a model for late-onset Hirschsprung disease.

    Science.gov (United States)

    Selfridge, Jim; Song, Liang; Brownstein, David G; Melton, David W

    2010-06-04

    The Ercc1 gene is essential for nucleotide excision repair and is also important in recombination repair and the repair of interstrand crosslinks. We have previously used a floxed Ercc1 allele with a keratinocyte-specific Cre recombinase transgene to inactivate Ercc1 in the epidermal layer of the skin and so generate a mouse model for UV-induced non-melanoma skin cancer. Now, in an attempt to generate a model for UV-induced melanoma, we have used the floxed Ercc1 allele in combination with a Cre transgene under the control of the tyrosinase gene promoter to produce mice with Ercc1-deficient melanocytes that are hypersensitive to UV irradiation. These animals developed normally, but died when 4-6 months old with severe colonic obstruction. Melanocytes are derived from the neural crest and the tyrosinase promoter is also expressed in additional neural crest-derived lineages, including the progenitors of the parasympathetic nervous system that innervates the gastrointestinal tract and controls gut peristalsis. A functional enteric nervous system developed in floxed Ercc1 mice with the tyrosinase Cre transgene, but was found to have degenerated in the colons of affected mice. We suggest that accumulating unrepaired endogenous DNA damage in the Ercc1-deficient colonic parasympathetic ganglia leads to the degeneration of this network and results in a colonic obstructive disorder that resembles late-onset Hirschsprung disease in man.

  19. Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts.

    Directory of Open Access Journals (Sweden)

    Shuli Li

    Full Text Available Neural crest-derived (FOb and mesoderm-derived (POb calvarial osteoblasts are characterized by distinct differences in their osteogenic potential. We have previously demonstrated that enhanced activation of endogenous FGF and Wnt signaling confers greater osteogenic potential to FOb. Apoptosis, a key player in bone formation, is the main focus of this study. In the current work, we have investigated the apoptotic activity of FOb and POb cells during differentiation. We found that lower apoptosis, as measured by caspase-3 activity is a major feature of neural crest-derived osteoblast which also have higher osteogenic capacity. Further investigation indicated TGF-β signaling as main positive regulator of apoptosis in these two populations of calvarial osteoblasts, while BMP and canonical Wnt signaling negatively regulate the process. By either inducing or inhibiting these signaling pathways we could modulate apoptotic events and improve the osteogenic potential of POb. Taken together, our findings demonstrate that integration of multiple signaling pathways contribute to imparting greater osteogenic potential to FOb by decreasing apoptosis.

  20. Formation of a “Pre-mouth Array” from the Extreme Anterior Domain Is Directed by Neural Crest and Wnt/PCP Signaling

    Directory of Open Access Journals (Sweden)

    Laura Jacox

    2016-08-01

    Full Text Available The mouth arises from the extreme anterior domain (EAD, a region where the ectoderm and endoderm are directly juxtaposed. Here, we identify a “pre-mouth array” in Xenopus that forms soon after the cranial neural crest has migrated to lie on either side of the EAD. Initially, EAD ectoderm comprises a wide and short epithelial mass that becomes narrow and tall with cells and nuclei changing shape, a characteristic of convergent extension. The resulting two rows of cells—the pre-mouth array—later split down the midline to surround the mouth opening. Neural crest is essential for convergent extension and likely signals to the EAD through the Wnt/planar cell polarity (PCP pathway. Fzl7 receptor is locally required in EAD ectoderm, while Wnt11 ligand is required more globally. Indeed, heterologous cells expressing Wnt11 can elicit EAD convergent extension. The study reveals a precise cellular mechanism that positions and contributes to the future mouth.

  1. Dysregulation of Wnt-Signaling and a Candidate Set of miRNAs Underlie the Effect of Metformin on Neural Crest Cell Development.

    Science.gov (United States)

    Banerjee, Poulomi; Dutta, Sunit; Pal, Rajarshi

    2016-02-01

    Neural crest cells (NCC) are a population of epithelial cells that arise from the dorsal tube and undergo epithelial-mesenchymal transition (EMT) eventually generating tissues from peripheral nervous system, melanocytes, craniofacial cartilage, and bone. The antidiabetic drug metformin reportedly inhibits EMT in physiological conditions like cancer and fibrosis. We hypothesize that perturbation of EMT may also contribute to developmental disabilities associated with neural crest (NC) development. To understand the molecular network underlying metformin action during NC formation, we first differentiated murine embryonic stem (ES) cells into NCC and characterized them by demonstrating spatiotemporal regulation of key markers. Metformin treatment prompted a delay in delamination of NCC by inhibiting key markers like Sox-1, Sox-9, HNK-1, and p-75. We then revealed that metformin impedes Wnt axis, a major signaling pathway active during NC formation via DVL-3 inhibition and impairment in nuclear translocation of β-catenin. Concomitantly we identified and tested a candidate set of miRNAs that play a crucial role in NC cell fate determination. Further studies involving loss and gain of function confirmed that NCC specifiers like Sox-1 and Sox-9 are direct targets of miR-200 and miR-145, respectively and that they are essentially modulated by metformin. Our in vitro findings were strongly supported by in vivo studies in zebrafish. Given that metformin is a widely used drug, for the first time we demonstrate that it can induce a delayed onset of developmental EMT during NC formation by interfering with canonical Wnt signaling and mysregulation of miR-145 and miR-200.

  2. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75{sup +} stem cells with dental follicle cell conditioned medium

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Liu, Rui; Zhang, Li; Nie, Xin, E-mail: dr.xinnie@gmail.com

    2015-09-10

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75{sup +}) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75{sup +} CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75{sup +} cells, suggesting their differentiation along cementoblast-like lineage. p75{sup +} stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75{sup +}) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75{sup +} CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75{sup +} cells express cementoblast specific mineralization

  3. Evolution of vertebrates as viewed from the crest.

    Science.gov (United States)

    Green, Stephen A; Simoes-Costa, Marcos; Bronner, Marianne E

    2015-04-23

    The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural-crest-specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analysis of the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives.

  4. EGF–FGF{sub 2} stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bressan, Raul Bardini; Melo, Fernanda Rosene; Almeida, Patricia Alves; Bittencourt, Denise Avani; Visoni, Silvia; Jeremias, Talita Silva [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Costa, Ana Paula; Leal, Rodrigo Bainy [Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Trentin, Andrea Gonçalves, E-mail: andrea.trentin@ufsc.br [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil)

    2014-09-10

    Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF{sub 2}) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF{sub 2}, however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF{sub 2} in neuronal differentiation protocols. - Highlights: • EPI

  5. Neonatal lethality of neural crest cell-specific Rest knockout mice is associated with gastrointestinal distension caused by aberrations of myenteric plexus.

    Science.gov (United States)

    Aoki, Hitomi; Hara, Akira; Oomori, Yoshiyuki; Shimizu, Yasutake; Yamada, Yasuhiro; Kunisada, Takahiro

    2014-10-01

    RE1-silencing transcription factor (REST), also known as NRSF (neuron-restrictive silencer factor), is a well-known transcriptional repressor of neural genes. Rest null mice have embryonic lethality which prevents further investigations of the functions of the Rest gene in vivo. We studied neonatal but not embryonic lethality that was characterized by gastrointestinal tract dilation in the neural crest cell (NCC)-specific Rest conditional knockout (CKO) mice. While no histological abnormalities except the thinning of the digestive tract as a consequence of the gas accumulation were found in the digestive tract of the mutant mice, they do not have proper gastric retention after oral dye administration and the reduction of acetylcholinesterase (AChE) activity in NCC-derived myenteric plexus in the stomach was detected. High CO2 concentration in the dilated digestive tract of the Rest CKO mice indicates a failure of gut function by underdeveloped cholinergic transmission in the enteric nervous system. The observed gastrointestinal distension phenotype provides a model for understanding the genetic and molecular basis of NCC defects in humans.

  6. Mouse Dac, a novel nuclear factor with homology to Drosophila dachshund shows a dynamic expression in the neural crest, the eye, the neocortex, and the limb bud.

    Science.gov (United States)

    Caubit, X; Thangarajah, R; Theil, T; Wirth, J; Nothwang, H G; Rüther, U; Krauss, S

    1999-01-01

    Dac is a novel nuclear factor in mouse and humans that shares homology with Drosophila dachshund (dac). Alignment with available sequences defines a conserved box of 117 amino acids that shares weak homology with the proto-oncogene Ski and Sno. Dac expression is found in various neuroectodermal and mesenchymal tissues. At early developmental stages Dac is expressed in lateral mesoderm and in neural crest cells. In the neural plate/tube Dac expression is initially seen in the prosencephalon and gets gradually restricted to the presumptive neocortex and the distal portion of the outgrowing optic vesicle. Furthermore, Dac transcripts are detected in the mesenchyme underlying the Apical Ectodermal Ridge (AER) of the extending limb bud, the dorsal root ganglia and chain ganglia, and the mesenchyme of the growing genitalia. Dac expression in the Gli 3 mutant extra toes (Xt/Xt) shows little difference compared to the expression in wild-type limb buds. In contrast, a significant expansion of Dac expression are observed in the anterior mesenchyme of the limb buds of hemimelic extra toes (Hx/+) mice. FISH analysis reveals that human DAC maps to chromosome 13q22.3-23 and further fine-mapping defined a position of the DAC gene at 54cM or 13q21.1, a locus that associates with mental retardation and skeletal abnormalities.

  7. The morphology of the sella turcica in velocardiofacial syndrome suggests involvement of a neural crest developmental field

    DEFF Research Database (Denmark)

    Mølsted, Kirsten; Boers, Maria; Kjaer, Inger

    2010-01-01

    . The deviations were mostly in the posterior part of the dorsum sellae. Individuals with VCFS had increased cranial base angles. The results of this study combined with the information in the literature on the main defects in VCFS (palatal abnormalities, cardiac anomalies, thymic hypoplasia or aplasia...

  8. Implementation study of an analog spiking neural network for assisting cardiac delay prediction in a cardiac resynchronization therapy device.

    Science.gov (United States)

    Sun, Qing; Schwartz, François; Michel, Jacques; Herve, Yannick; Dalmolin, Renzo

    2011-06-01

    In this paper, we aim at developing an analog spiking neural network (SNN) for reinforcing the performance of conventional cardiac resynchronization therapy (CRT) devices (also called biventricular pacemakers). Targeting an alternative analog solution in 0.13- μm CMOS technology, this paper proposes an approach to improve cardiac delay predictions in every cardiac period in order to assist the CRT device to provide real-time optimal heartbeats. The primary analog SNN architecture is proposed and its implementation is studied to fulfill the requirement of very low energy consumption. By using the Hebbian learning and reinforcement learning algorithms, the intended adaptive CRT device works with different functional modes. The simulations of both learning algorithms have been carried out, and they were shown to demonstrate the global functionalities. To improve the realism of the system, we introduce various heart behavior models (with constant/variable heart rates) that allow pathologic simulations with/without noise on the signals of the input sensors. The simulations of the global system (pacemaker models coupled with heart models) have been investigated and used to validate the analog spiking neural network implementation.

  9. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75(+) stem cells with dental follicle cell conditioned medium.

    Science.gov (United States)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Liu, Rui; Zhang, Li; Nie, Xin

    2015-09-10

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial-mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75(+)) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75(+) CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75(+) cells, suggesting their differentiation along cementoblast-like lineage. p75(+) stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial-mesenchymal interactions in tooth morphogenesis.

  10. ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions.

    Science.gov (United States)

    Han, Arum; Zhao, Hu; Li, Jingyuan; Pelikan, Richard; Chai, Yang

    2014-08-01

    The development of the craniofacial muscles requires reciprocal interactions with surrounding craniofacial tissues that originate from cranial neural crest cells (CNCCs). However, the molecular mechanism involved in the tissue-tissue interactions between CNCCs and muscle progenitors during craniofacial muscle development is largely unknown. In the current study, we address how CNCCs regulate the development of the tongue and other craniofacial muscles using Wnt1-Cre; Alk5(fl/fl) mice, in which loss of Alk5 in CNCCs results in severely disrupted muscle formation. We found that Bmp4 is responsible for reduced proliferation of the myogenic progenitor cells in Wnt1-Cre; Alk5(fl/fl) mice during early myogenesis. In addition, Fgf4 and Fgf6 ligands were reduced in Wnt1-Cre; Alk5(fl/fl) mice and are critical for differentiation of the myogenic cells. Addition of Bmp4 or Fgf ligands rescues the proliferation and differentiation defects in the craniofacial muscles of Alk5 mutant mice in vitro. Taken together, our results indicate that CNCCs play critical roles in controlling craniofacial myogenic proliferation and differentiation through tissue-tissue interactions.

  11. Requirement for frzb and fzd7a in cranial neural crest convergence and extension mechanisms during zebrafish palate and jaw morphogenesis.

    Science.gov (United States)

    Kamel, George; Hoyos, Tatiana; Rochard, Lucie; Dougherty, Max; Kong, Yawei; Tse, William; Shubinets, Valeriy; Grimaldi, Michael; Liao, Eric C

    2013-09-15

    Regulation of convergence and extension by wnt-frizzled signaling is a common theme in embryogenesis. This study examines the functional requirements of frzb and fzd7a in convergence and extension mechanisms during craniofacial development. Using a morpholino knockdown approach, we found that frzb and fzd7a are dispensable for directed migration of the bilateral trabeculae, but necessary for the convergence and extension of the palatal elements, where the extension process is mediated by chondrocyte proliferation, morphologic change and intercalation. In contrast, frzb and fzd7a are required for convergence of the mandibular prominences, where knockdown of either frzb or fzd7a resulted in complete loss of lower jaw structures. Further, we found that bapx1 was specifically downregulated in the wnt9a/frzb/fzd7a morphants, while general neural crest markers were unaffected. In addition, expression of wnt9a and frzb was also absent in the edn-/- mutant. Notably, over-expression of bapx1 was sufficient to partially rescue mandibular elements in the wnt9a/frzb/fzd7a morphants, demonstrating genetic epistasis of bapx1 acting downstream of edn1 and wnt9a/frzb/fzd7a in lower jaw development. This study underscores the important role of wnt-frizzled signaling in convergence and extension in palate and craniofacial morphogenesis, distinct regulation of upper vs. lower jaw structures, and integration of wnt-frizzled with endothelin signaling to coordinate shaping of the facial form.

  12. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut.

    Directory of Open Access Journals (Sweden)

    Johanna E Simkin

    Full Text Available Vagal neural crest cells (VNCCs arise in the hindbrain, and at (avian embryonic day (E 1.5 commence migration through paraxial tissues to reach the foregut as chains of cells 1-2 days later. They then colonise the rest of the gut in a rostrocaudal wave. The chains of migrating cells later resolve into the ganglia of the enteric nervous system. In organ culture, E4.5 VNCCs resident in the gut (termed enteric or ENCC which have previously encountered vagal paraxial tissues, rapidly colonised aneural gut tissue in large numbers as chains of cells. Within the same timeframe, E1.5 VNCCs not previously exposed to paraxial tissues provided very few cells that entered the gut mesenchyme, and these never formed chains, despite their ability to migrate in paraxial tissue and in conventional cell culture. Exposing VNCCs in vitro to paraxial tissue normally encountered en route to the foregut conferred enteric migratory ability. VNCC after passage through paraxial tissue developed elements of retinoic acid signalling such as Retinoic Acid Binding Protein 1 expression. The paraxial tissue's ability to promote gut colonisation was reproduced by the addition of retinoic acid, or the synthetic retinoid Am80, to VNCCs (but not to trunk NCCs in organ culture. The retinoic acid receptor antagonist CD 2665 strongly reduced enteric colonisation by E1.5 VNCC and E4.5 ENCCs, at a concentration suggesting RARα signalling. By FACS analysis, retinoic acid application to vagal neural tube and NCCs in vitro upregulated Ret; a Glial-derived-neurotrophic-factor receptor expressed by ENCCs which is necessary for normal enteric colonisation. This shows that early VNCC, although migratory, are incapable of migrating in appropriate chains in gut mesenchyme, but can be primed for this by retinoic acid. This is the first instance of the characteristic form of NCC migration, chain migration, being attributed to the application of a morphogen.

  13. The morphology of the sella turcica in velocardiofacial syndrome suggests involvement of a neural crest developmental field.

    Science.gov (United States)

    Mølsted, Kirsten; Boers, Maria; Kjaer, Inger

    2010-06-01

    We described the morphology of the sella turcica in individuals with velocardiofacial syndrome (VCFS), also known as chromosome 22q11.2 deletion syndrome, and compared the morphology with that of a control group of individuals from the Oslo University Craniofacial Growth Archive. The aim was to measure the cranial base angles in individuals with VCFS and, if possible, to discover the developmental field that may be involved in the condition. The study included 33 patients with VCFS from the Copenhagen Cleft Palate Center, Denmark. The genotype was confirmed by fluorescence in situ hybridization. The morphology of the sella turcica was described and measurements of the cranial base angles were performed on lateral cephalometric radiographs. The VCFS individuals had larger deviations in the morphology of the sella turcica compared to individuals from the Oslo University Craniofacial Growth archive. The deviations were mostly in the posterior part of the dorsum sellae. Individuals with VCFS had increased cranial base angles. The results of this study combined with the information in the literature on the main defects in VCFS (palatal abnormalities, cardiac anomalies, thymic hypoplasia or aplasia, hypothyroidism, and posterior brain abnormality), suggest involvement of a specific developmental field.

  14. Musculocontractural Ehlers–Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin

    Directory of Open Access Journals (Sweden)

    Nadège Gouignard

    2016-06-01

    Full Text Available Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC. Musculocontractural Ehlers–Danlos syndrome (MCEDS is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE. Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial–mesenchymal transition (EMT and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo. Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and

  15. Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media.

    Directory of Open Access Journals (Sweden)

    Makoto Fukuta

    Full Text Available Neural crest cells (NCCs are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton, cornea, peripheral nervous system, and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs from human pluripotent stem cells (hPSCs, such as embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, further modifications are required to improve the robustness, efficacy, and simplicity of these methods. Chemically defined medium (CDM was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions, the combination of the GSK3β inhibitor and TGFβ inhibitor with a minimum growth factor (insulin very efficiently induced hNCCs (70-80% from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons, glia, melanocytes, and corneal endothelial cells. In addition, cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.

  16. Lack of organ specific commitment of vagal neural crest cell derivatives as shown by back-transplantation of GFP chicken tissues.

    Science.gov (United States)

    Freem, Lucy J; Delalande, Jean Marie; Campbell, Alison M; Thapar, Nikhil; Burns, Alan J

    2012-01-01

    Neural crest cells (NCC) are multipotent progenitors that migrate extensively throughout the developing embryo and generate a diverse range of cell types. Vagal NCC migrate from the hindbrain into the foregut and from there along the gastrointestinal tract to form the enteric nervous system (ENS), the intrinsic innervation of the gut, and into the developing lung buds to form the intrinsic innervation of the lungs. The aim of this study was to determine the developmental potential of vagal NCC that had already colonised the gut or the lungs. We used transgenic chicken embryos that ubiquitously express green fluorescent protein (GFP) to permanently mark and fate-map vagal NCC using intraspecies grafting. This was combined with back-transplantation of gut and lung segments, containing GFP-positive NCC, into the vagal region of a second recipient embryo to determine, using immunohistochemical staining, whether gut or lung NCC are competent of re-colonising both these organs, or whether their fate is restricted. Chick(GFP)-chick intraspecies grafting efficiently labelled NCC within the gut and lung of chick embryos. When segments of embryonic day (E)5.5 pre-umbilical midgut containing GFP-positive NCC were back-transplanted into the vagal region of E1.5 host embryos, the GFP-positive NCC remigrated to colonise both the gut and lungs and differentiated into neurons in stereotypical locations. However, GFP-positive lung NCC did not remigrate when back-transplanted. Our studies suggest that gut NCC are not restricted to colonising only this organ, since upon back-transplantation GFP-positive gut NCC colonised both the gut and the lung.

  17. Ultrastructural and tissue-culture studies on the role of fibronectin, collagen and glycosaminoglycans in the migration of neural crest cells in the fowl embryo.

    Science.gov (United States)

    Newgreen, D F; Gibbins, I L; Sauter, J; Wallenfels, B; Wütz, R

    1982-01-01

    The initial migration of neural crest (NC) cells into cell-free space was studied by transmission electron microscopy at trunk levels of fowl embryos, some of which were fixed in the presence of ruthenium red. Migrating NC cells occurred in zones which contained fewer ruthenium-red stained 15-40nm diameter granules than other regions. The ruthenium-red stained granules were linked by similarly stained thin (greater than 3nm diameter) microfibrils. The granules resemble proteoglycan and the microfibrils may be hyaluronate. NC cells contacted thicker (greater than 10 nm diameter) fibrils and interstitial bodies, which did not require ruthenium red for visualization. Cytoplasmic microfilaments were sometimes aligned at the point of contact with the extracellular fibrils, which may be fibronectin and collagen. Phase-contrast time-lapse videotaping and scanning electron microscopy showed that NC cells of the fowl embryo in vitro migrated earlier and more extensively on glass coated with fibronectin-rich fibrous material and adsorbed fibronectin molecules than on glass coated with collagen type I (fibres and adsorbed molecules). NC cells became completely enmeshed in fibronectin-rich fibres, but generally remained on the surface of collagen-fibre gels. When given a choice, NC cells strongly preferred fibronectin coatings to plain glass, and plain glass to dried collagen gels. NC cells showed a slight preference for plain glass over glass to which collagen was adsorbed. Addition to the culture medium of hyaluronate (initial conc. 20 mg/ml), chondroitin (5 mg/ml) and fully sulphated chondroitin sulphate and dermatan sulphate (up to 10 mg/ml) did not drastically alter NC cell migration on fibronectin-rich fibrous substrates.

  18. Heart and Neural Crest Derivatives Expressed Transcript 2 (HAND2): a novel biomarker for the identification of atypical hyperplasia and Type I endometrial carcinoma.

    Science.gov (United States)

    Buell-Gutbrod, Rebecca; Cavallo, Allison; Lee, Nita; Montag, Anthony; Gwin, Katja

    2015-01-01

    Progesterone inhibits the proliferative growth effects of estrogen in the endometrium and prevents the development of endometrial hyperplasia and Type I adenocarcinoma. The exact mechanism of this action is unknown. The progesterone-induced helix-loop-helix transcription factor Heart and Neural Crest Derivatives Expressed 2 (Hand2) was recently shown to suppress production of growth factors in the endometrium. In Hand2 knockout mice, continuous proliferation of the endometrium was observed. In this study, archival paraffin-embedded tissue from 56 hysterectomy specimens was examined by immunohistochemistry for the expression and localization of Hand2, estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Diagnoses included disordered proliferative endometrium, simple and complex hyperplasia with or without atypia, and endometrioid adenocarcinoma. Hand2 expression is localized to endometrial stromal nuclei. In benign endometrium, Hand2 expression was moderate to strong (10/11; 91%), with weak Hand2 expression in only 1 case (1/11; 9%). Similar Hand2 expression patterns were observed in disordered proliferative endometrium and simple hyperplasia without atypia, with moderate to strong expression in 91% of cases (10/11) and weak expression in 9% of cases (1/11). In contrast, simple and complex hyperplasia with atypia exhibited moderate to strong Hand2 expression in 8% of cases (1/12) and a loss of expression or weak expression in 92% of cases (11/12). In endometrioid adenocarcinomas, Hand2 expression was absent in all cases (22/22). Hand2 is expressed in the stroma of benign endometrium, but expression is significantly reduced or lost in atypical hyperplasia and endometrioid carcinoma. Thus, the absence of Hand2 expression may be a useful biomarker for atypical hyperplasia and endometrioid carcinoma.

  19. Genetic background impacts developmental potential of enteric neural crest-derived progenitors in the Sox10Dom model of Hirschsprung disease.

    Science.gov (United States)

    Walters, Lauren C; Cantrell, V Ashley; Weller, Kevin P; Mosher, Jack T; Southard-Smith, E Michelle

    2010-11-15

    Abnormalities in the development of enteric neural crest-derived progenitors (ENPs) that generate the enteric nervous system (ENS) can lead to aganglionosis in a variable portion of the distal gastrointestinal tract. Cumulative evidence suggests that variation of aganglionosis is due to gene interactions that modulate the ability of ENPs to populate the intestine; however, the developmental processes underlying this effect are unknown. We hypothesized that differences in enteric ganglion deficits could be attributable to the effects of genetic background on early developmental processes, including migration, proliferation, or lineage divergence. Developmental processes were investigated in congenic Sox10(Dom) mice, an established Hirschsprung disease (HSCR) model, on distinct inbred backgrounds, C57BL/6J (B6) and C3HeB/FeJ (C3Fe). Immuno-staining on whole-mount fetal gut tissue and dissociated cell suspensions was used to assess migration and proliferation. Flow cytometry utilizing the cell surface markers p75 and HNK-1 was used to isolate live ENPs for analysis of developmental potential. Frequency of ENPs was reduced in Sox10(Dom) embryos relative to wild-type embryos, but was unaffected by genetic background. Both migration and developmental potential of ENPs in Sox10(Dom) embryos were altered by inbred strain background with the most highly significant differences seen for developmental potential between strains and genotypes. In vivo imaging of fetal ENPs and postnatal ganglia demonstrates that altered lineage divergence impacts ganglia in the proximal intestine. Our analysis demonstrates that genetic background alters early ENS development and suggests that abnormalities in lineage diversification can shift the proportions of ENP populations and thus may contribute to ENS deficiencies in vivo.

  20. Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin.

    Science.gov (United States)

    Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Gazquez, Elodie; Heysch, Julie; Piel, Matthieu; Mayor, Roberto; Lambris, John D; Dufour, Sylvie

    2016-06-01

    We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cadherin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cadherin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders.

  1. Macro-micro imaging of cardiac-neural circuits in co-cultures from normal and diseased hearts.

    Science.gov (United States)

    Bub, Gil; Burton, Rebecca-Ann B

    2015-07-15

    The autonomic nervous system plays an important role in the modulation of normal cardiac rhythm, but is also implicated in modulating the heart's susceptibility to re-entrant ventricular and atrial arrhythmias. The mechanisms by which the autonomic nervous system is pro-arrhythmic or anti-arrhythmic is multifaceted and varies for different types of arrhythmia and their cardiac substrates. Despite decades of research in this area, fundamental questions related to how neuron density and spatial organization modulate cardiac wave dynamics remain unanswered. These questions may be ill-posed in intact tissues where the activity of individual cells is often experimentally inaccessible. Development of simplified biological models that would allow us to better understand the influence of neural activation on cardiac activity can be beneficial. This Symposium Review summarizes the development of in vitro cardiomyocyte cell culture models of re-entrant activity, as well as challenges associated with extending these models to include the effects of neural activation.

  2. Optogenetic stimulation of multiwell MEA plates for neural and cardiac applications

    Science.gov (United States)

    Clements, Isaac P.; Millard, Daniel C.; Nicolini, Anthony M.; Preyer, Amanda J.; Grier, Robert; Heckerling, Andrew; Blum, Richard A.; Tyler, Phillip; McSweeney, K. M.; Lu, Yi-Fan; Hall, Diana; Ross, James D.

    2016-03-01

    Microelectrode array (MEA) technology enables advanced drug screening and "disease-in-a-dish" modeling by measuring the electrical activity of cultured networks of neural or cardiac cells. Recent developments in human stem cell technologies, advancements in genetic models, and regulatory initiatives for drug screening have increased the demand for MEA-based assays. In response, Axion Biosystems previously developed a multiwell MEA platform, providing up to 96 MEA culture wells arrayed into a standard microplate format. Multiwell MEA-based assays would be further enhanced by optogenetic stimulation, which enables selective excitation and inhibition of targeted cell types. This capability for selective control over cell culture states would allow finer pacing and probing of cell networks for more reliable and complete characterization of complex network dynamics. Here we describe a system for independent optogenetic stimulation of each well of a 48-well MEA plate. The system enables finely graded control of light delivery during simultaneous recording of network activity in each well. Using human induced pluripotent stem cell (hiPSC) derived cardiomyocytes and rodent primary neuronal cultures, we demonstrate high channel-count light-based excitation and suppression in several proof-of-concept experimental models. Our findings demonstrate advantages of combining multiwell optical stimulation and MEA recording for applications including cardiac safety screening, neural toxicity assessment, and advanced characterization of complex neuronal diseases.

  3. Retinol dehydrogenase, RDH1l, is essential for the heart development and cardiac performance in zebrafish

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; ZHANG Li-feng; GUI Yong-hao; SONG Hou-yan

    2013-01-01

    Background Retinoic acid (RA) is a potent signaling molecule that plays pleiotropic roles in patterning,morphogenesis,and organogenesis during embryonic development.The synthesis from retinol (vitamin A) to retinoic acid requires two sequential oxidative steps.The first step involves the oxidation of retinol to retinal through the action of retinol dehydrogenases.Retinol dehydrogenases1l (RDH1l) is a novel zebrafish retinol dehydrogenase.Herein we investigated the role of zebrafish RDH1l in heart development and cardiac performance in detail.Methods RDH1l specific morpholino was used to reduce the function of RDH1l in zebrafish.The gene expressions were observed by using whole mount in situ hybridization.Heart rates were observed and recorded under the microscope from 24 to 72 hours post fertilization (hpf).The cardiac performance was analyzed by measuring ventricular shortening fraction (VSF).Results The knock-down of RDH1l led to abnormal neural crest cells migration and reduced numbers of neural crest cells in RDH1l morphant embryos.The reduced numbers of cardiac neural crest cells also can be seen in RDH1l morphant embryos.Furthermore,the morpholino-mediated knock-down of RDH1l resulted in the abnormal heart loop.The left-right determining genes expression pattern was altered in RDH1l morphant embryos.The impaired cardiac performance was observed in RDH1l morphant embryos.Taken together,these data demonstrate that RDH1l is essential for the heart development and cardiac performance in zebrafish.Conclusions RDH1l plays a important role in the neural crest cells development,and then ultimately affects the heart loop and cardiac performance.These results show for the first time that an enzyme involved in the retinol to retinaldehyde conversion participate in the heart development and cardiac performance in zebrafish.

  4. Effect of Tbxl knock-down on cardiac performance in zebrafish

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-feng; GUI Yong-hao; WANG Yue-xiang; JIANG Qiu; SONG Hou-yan

    2010-01-01

    Background Tbxl is the major candidate gene for DiGeorge syndrome (DGS). Similar to defects observed in DGS patients, the structures disrupted in Tbxl-/- animal models are derived from the neural crest cells during development. Although the morphological phenotypes of some Tbxl knock-down animal models have been well described, analysis of the cardiac performance is limited. Therefore, myocardial performance was explored in Tbxl morpholino injected zebrafish embryos. Methods To elucidate these issues, Tbxl specific morpholino was used to reduce the function of Tbxl in zebrafish. The differentiation of the myocardial cells was observed using whole mount in situ hybridization. Heart rates were observed and recorded under the microscope from 24 to 72 hours post fertilization (hpf). The cardiac performance was analyzed by measuring ventricular shortening fraction and atrial shortening fraction.Results Tbxl morpholino injected embryos were characterized by defects in the pharyngeal arches, otic vesicle, aortic arches and thymus. In addition, Tbxl knock down reduced the amount of pharyngeal neural crest cells in zebrafish. Abnormal cardiac morphology was visible in nearly 20% of the Tbxl morpholino injected embryos. The hearts in these embryos did not loop or loop incompletely. Importantly, cardiac performance and heart rate were reduced in Tbxl morpholino injected embryos.Conclusions Tbxl might play an essential role in the development of pharyngeal neural crest cells in zebrafish. Cardiac performance is impaired by Tbxl knock down in zebrafish.

  5. CLASSIFICATION OF CARDIAC ARRHYTHMIAS WITH ARTIFICIAL NEURAL NETWORKS ACCORDING TO GENDER DIFFERENCES

    Directory of Open Access Journals (Sweden)

    KASIM SERBEST

    2015-09-01

    Full Text Available Cardiac arrhythmias are common heart diseases. Electrocardiography (ECG is an important measure for diagnosing arrhythmias. Researchers use the ECG signals in order to train artificial neural networks (ANN. In previous studies the ECG signals of males and females were analysed together. We know that there are some differences between male and female ECG signals. This paper suggests that classifying the arrhythmias according to gender differences gives more accurate results. In this study we classify the subjects as normal and right bundle branch block (RBBB using cascade forward back algorithm in MATLAB. The accuracy of network simulations are as follow: 81.25% only male, 80% only female, 40% male and female together.

  6. Dpysl2 (CRMP2) and Dpysl3 (CRMP4) phosphorylation by Cdk5 and DYRK2 is required for proper positioning of Rohon-Beard neurons and neural crest cells during neurulation in zebrafish.

    Science.gov (United States)

    Tanaka, Hideomi; Morimura, Rii; Ohshima, Toshio

    2012-10-15

    Dpysl2 (CRMP2) and Dpysl3 (CRMP4) are involved in neuronal polarity and axon elongation in cultured neurons. These proteins are expressed in various regions of the developing nervous system, but their roles in vivo are largely unknown. In dpysl2 and dpysl3 double morphants, Rohon-Beard (RB) primary sensory neurons that were originally located bilaterally along the midline shifted their position to a more medial location in the dorsal-most part of spinal cord. A similar phenotype was observed in the cdk5 and dyrk2 double morphants. Dpysl2 and Dpysl3 phosphorylation mimics recovered this phenotype. Cell transplantation analysis demonstrated that this ectopic RB cell positioning was non-cell autonomous and correlated with the abnormal position of neural crest cells (NCCs), which also occupied the dorsal-most part of the spinal cord during the neural rod formation stage. The cell position of other interneuron and motor neurons within the central nervous system was normal in these morphants. These results suggest that the phosphorylation of Dpysl2 and Dpysl3 by Cdk5 and DYRK2 is required for the proper positioning of RB neurons and NCCs during neurulation in zebrafish embryos.

  7. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep.

    Science.gov (United States)

    Lecci, Sandro; Fernandez, Laura M J; Weber, Frederik D; Cardis, Romain; Chatton, Jean-Yves; Born, Jan; Lüthi, Anita

    2017-02-01

    Rodents sleep in bouts lasting minutes; humans sleep for hours. What are the universal needs served by sleep given such variability? In sleeping mice and humans, through monitoring neural and cardiac activity (combined with assessment of arousability and overnight memory consolidation, respectively), we find a previously unrecognized hallmark of sleep that balances two fundamental yet opposing needs: to maintain sensory reactivity to the environment while promoting recovery and memory consolidation. Coordinated 0.02-Hz oscillations of the sleep spindle band, hippocampal ripple activity, and heart rate sequentially divide non-rapid eye movement (non-REM) sleep into offline phases and phases of high susceptibility to external stimulation. A noise stimulus chosen such that sleeping mice woke up or slept through at comparable rates revealed that offline periods correspond to raising, whereas fragility periods correspond to declining portions of the 0.02-Hz oscillation in spindle activity. Oscillations were present throughout non-REM sleep in mice, yet confined to light non-REM sleep (stage 2) in humans. In both species, the 0.02-Hz oscillation predominated over posterior cortex. The strength of the 0.02-Hz oscillation predicted superior memory recall after sleep in a declarative memory task in humans. These oscillations point to a conserved function of mammalian non-REM sleep that cycles between environmental alertness and internal memory processing in 20- to 25-s intervals. Perturbed 0.02-Hz oscillations may cause memory impairment and ill-timed arousals in sleep disorders.

  8. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks.

    Science.gov (United States)

    Wolterink, Jelmer M; Leiner, Tim; de Vos, Bob D; van Hamersvelt, Robbert W; Viergever, Max A; Išgum, Ivana

    2016-12-01

    The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events. CAC is clinically quantified in cardiac calcium scoring CT (CSCT), but it has been shown that cardiac CT angiography (CCTA) may also be used for this purpose. We present a method for automatic CAC quantification in CCTA. This method uses supervised learning to directly identify and quantify CAC without a need for coronary artery extraction commonly used in existing methods. The study included cardiac CT exams of 250 patients for whom both a CCTA and a CSCT scan were available. To restrict the volume-of-interest for analysis, a bounding box around the heart is automatically determined. The bounding box detection algorithm employs a combination of three ConvNets, where each detects the heart in a different orthogonal plane (axial, sagittal, coronal). These ConvNets were trained using 50 cardiac CT exams. In the remaining 200 exams, a reference standard for CAC was defined in CSCT and CCTA. Out of these, 100 CCTA scans were used for training, and the remaining 100 for evaluation of a voxel classification method for CAC identification. The method uses ConvPairs, pairs of convolutional neural networks (ConvNets). The first ConvNet in a pair identifies voxels likely to be CAC, thereby discarding the majority of non-CAC-like voxels such as lung and fatty tissue. The identified CAC-like voxels are further classified by the second ConvNet in the pair, which distinguishes between CAC and CAC-like negatives. Given the different task of each ConvNet, they share their architecture, but not their weights. Input patches are either 2.5D or 3D. The ConvNets are purely convolutional, i.e. no pooling layers are present and fully connected layers are implemented as convolutions, thereby allowing efficient voxel classification. The performance of individual 2.5D and 3D ConvPairs with input sizes of 15 and 25 voxels, as well as the performance of ensembles of these Conv

  9. Creative Copper Crests

    Science.gov (United States)

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  10. Automatic coronary calcium scoring in cardiac CT angiography using convolutional neural networks

    NARCIS (Netherlands)

    Wolterink, Jelmer M.; Leiner, Tim; Viergever, Max A.; Isgum, I

    2015-01-01

    The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events. Non-contrast enhanced cardiac CT is considered a reference for quantification of CAC. Recently, it has been shown that CAC may be quantified in cardiac CT angiography (CCTA). We present

  11. Why are enteric ganglia so small? Role of differential adhesion of enteric neurons and enteric neural crest cells. [v1; ref status: indexed, http://f1000r.es/59q

    Directory of Open Access Journals (Sweden)

    Benjamin N. Rollo

    2015-05-01

    Full Text Available The avian enteric nervous system (ENS consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca2+ -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates.  This suggests a novel mechanism for control of ENS ganglion morphogenesis where i differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface.

  12. Cardiac Arrhythmias Classification Method Based on MUSIC, Morphological Descriptors, and Neural Network

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available An electrocardiogram (ECG beat classification scheme based on multiple signal classification (MUSIC algorithm, morphological descriptors, and neural networks is proposed for discriminating nine ECG beat types. These are normal, fusion of ventricular and normal, fusion of paced and normal, left bundle branch block, right bundle branch block, premature ventricular concentration, atrial premature contraction, paced beat, and ventricular flutter. ECG signal samples from MIT-BIH arrhythmia database are used to evaluate the scheme. MUSIC algorithm is used to calculate pseudospectrum of ECG signals. The low-frequency samples are picked to have the most valuable heartbeat information. These samples along with two morphological descriptors, which deliver the characteristics and features of all parts of the heart, form an input feature vector. This vector is used for the initial training of a classifier neural network. The neural network is designed to have nine sample outputs which constitute the nine beat types. Two neural network schemes, namely multilayered perceptron (MLP neural network and a probabilistic neural network (PNN, are employed. The experimental results achieved a promising accuracy of 99.03% for classifying the beat types using MLP neural network. In addition, our scheme recognizes NORMAL class with 100% accuracy and never misclassifies any other classes as NORMAL.

  13. Cardiac Arrhythmias Classification Method Based on MUSIC, Morphological Descriptors, and Neural Network

    Science.gov (United States)

    Naghsh-Nilchi, Ahmad R.; Kadkhodamohammadi, A. Rahim

    2009-12-01

    An electrocardiogram (ECG) beat classification scheme based on multiple signal classification (MUSIC) algorithm, morphological descriptors, and neural networks is proposed for discriminating nine ECG beat types. These are normal, fusion of ventricular and normal, fusion of paced and normal, left bundle branch block, right bundle branch block, premature ventricular concentration, atrial premature contraction, paced beat, and ventricular flutter. ECG signal samples from MIT-BIH arrhythmia database are used to evaluate the scheme. MUSIC algorithm is used to calculate pseudospectrum of ECG signals. The low-frequency samples are picked to have the most valuable heartbeat information. These samples along with two morphological descriptors, which deliver the characteristics and features of all parts of the heart, form an input feature vector. This vector is used for the initial training of a classifier neural network. The neural network is designed to have nine sample outputs which constitute the nine beat types. Two neural network schemes, namely multilayered perceptron (MLP) neural network and a probabilistic neural network (PNN), are employed. The experimental results achieved a promising accuracy of 99.03% for classifying the beat types using MLP neural network. In addition, our scheme recognizes NORMAL class with 100% accuracy and never misclassifies any other classes as NORMAL.

  14. An Unusual Cause of Cardiac Arrhythmias; Mediastinal Schwannoma

    Directory of Open Access Journals (Sweden)

    Serdar Ozkan

    2014-02-01

    Full Text Available Schwannomas are rare tumours, which originated from neural crest cells. Thoracic schwannomas are very rare and most commonly seen in posterior mediastinum. In a 39 year old female patient whose tumor story dated back to 4 years, a 14 cm extra parenchymal intrathoracic tumor was observed to put minimal pressure on the heart. The patient%u2019s arrhythmia, who had preoperative complaints of palpitations, was improved after tumor excision. Although schwannomas generally are asympthomatic masses, they can lead mass effect according to their localization. In this study, patient with thoracic schwannoma presented with cardiac arrhythmia which never reported in literature so far.

  15. Co-culture of neural crest stem cells (NCSC and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death.

    Directory of Open Access Journals (Sweden)

    Anongnad Ngamjariyawat

    Full Text Available PURPOSE: Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta-cells. Recently we have shown that co-transplantation of neural crest stem cells (NCSCs together with the islet cells improves transplantation outcome. The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta-cell death. PROCEDURES: Beta-TC6 and NCSC cells were cultured either alone or together, and either with or without cell culture inserts. The cultures were then exposed to the pro-inflammatory cytokines IL-1β and IFN-γ for 48 hours followed by analysis of cell death rates (flow cytometry, nitrite production (Griess reagent, protein localization (immunofluorescence and protein phosphorylation (flow cytometry. RESULTS: We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell death, but not when separated by cell culture inserts. This occurred in parallel with (i augmented production of nitrite from beta-TC6 cells, indicating that increased cell survival allows a sustained production of nitric oxide; (ii NCSC-derived laminin production; (iii decreased phospho-FAK staining in beta-TC6 cell focal adhesions, and (iv decreased beta-TC6 cell phosphorylation of ERK(T202/Y204, FAK(Y397 and FAK(Y576. Furthermore, co-culture also resulted in cadherin and beta-catenin accumulations at the NCSC/beta-TC6 cell junctions. Finally, the gap junction inhibitor carbenoxolone did not affect cytokine-induced beta-cell death during co-culture with NCSCs. CONCLUSION: In summary, direct contacts, but not soluble factors, promote improved beta-TC6 viability when co-cultured with NCSCs. We hypothesize that cadherin junctions between NCSC and beta-TC6 cells promote powerful signals that maintain beta

  16. Complementary Detection of Embryotoxic Properties of Substances in the Neural and Cardiac Embryonic Stem Cell Tests

    NARCIS (Netherlands)

    Theunissen, P.T.; Pennings, J.L.A.; Dartel, van D.A.M.; Robinson, J.F.; Kleinjans, J.C.S.; Piersma, A.H.

    2013-01-01

    In developmental toxicity testing, in vitro screening assays are highly needed to increase efficiency and to reduce animal use. A promising in vitro assay is the cardiac embryonic stem cell test (ESTc), in which the effect of developmental toxicants on cardiomyocyte differentiation is assessed. Rece

  17. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function.

    Science.gov (United States)

    Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew

    2015-11-15

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy.

  18. Percutaneous autonomic neural modulation: A novel technique to treat cardiac arrhythmia

    Energy Technology Data Exchange (ETDEWEB)

    DeSimone, Christopher V.; Madhavan, Malini [Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN (United States); Venkatachalam, Kalpathi L. [Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Jacksonville, FL (United States); Knudson, Mark B. [Mayo Clinic, Rochester, MN (United States); EnteroMedics, EnteroMedics, St. Paul, MN (United States); Asirvatham, Samuel J., E-mail: asirvatham.samuel@mayo.edu [Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN (United States); Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN (United States)

    2013-05-15

    Ablation and anti-arrhythmic medications have shown promise but have been met with varying success and unwanted side effects such as myocardial injury, arrhythmias, and morbidity from invasive surgical intervention. The answer to improving efficacy of ablation may include modulation of the cardiac aspect of the autonomic nervous system. Our lab has developed a novel approach and device to navigate the oblique sinus and to use DC current and saline/alcohol irrigation to selectively stimulate and block the autonomic ganglia found on the epicardial side of the heart. This novel approach minimizes myocardial damage from thermal injury and provides a less invasive and targeted approach. For feasibility, proof-of-concept, and safety monitoring, we carried out canine studies to test this novel application. Our results suggest a safer and less invasive way of modulating arrhythmogenic substrate that may lead to improved treatment of AF in humans.

  19. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine.

    Science.gov (United States)

    Skalova, Stepanka; Svadlakova, Tereza; Shaikh Qureshi, Wasay Mohiuddin; Dev, Kapil; Mokry, Jaroslav

    2015-02-13

    Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson's, Alzheimer's and Huntington's disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges.

  20. Numerical Simulation of 3-D Wave Crests

    Institute of Scientific and Technical Information of China (English)

    YU Dingyong; ZHANG Hanyuan

    2003-01-01

    A clear definition of 3-D wave crest and a description of the procedures to detect the boundary of wave crest are presented in the paper. By using random wave theory and directional wave spectrum, a MATLAB-platformed program is designed to simulate random wave crests for various directional spectral conditions in deep water. Statistics of wave crests with different directional spreading parameters and different directional functions are obtained and discussed.

  1. MicroRNA-21 can promote the differentiation of neural crest stem cells from human follicle into Schwann cells%miR-21促进毛囊神经嵴干细胞分化为许旺细胞

    Institute of Scientific and Technical Information of China (English)

    王艳华; 刘浩; 辛红; 白晓雪; 刘学娟; 倪宇昕

    2014-01-01

    BACKGROUND:MicroRNAs are a class of non-coding single-stranded smal RNA molecules containing 18–25 nucleotides that can bind to the 3’UTR of the mRNA molecules and regulate the protein expression of target genes. Studies have shown that microRNAs could regulate Schwann cel differentiation, myelination maturation and growth of the peripheral nerve. OBJECTIVE: To observe the expression of miR-21 during the differentiation of neural crest stem cels from human folicle into Schwann cels. METHODS: Hair folicle stem cels were cultured and neural crest stem cels were separated from human hair folicles by flow cytometry. Then, the neural crest stem cels were induced to differentiate into Schwann cels. qRT-PCR was used to detect the expression of miR-21 in the process of induction. Neural crest stem cels from hair folicles were divided into control group, agomir-21 group, agomir-NC group, antagomir-21 group and antagomir-NC group. The control group was without intervention. Agomir-21 group was transfected with miR-21 agonist, whereas Antagomir-21 group was transfected with miR-21 antagonist. agomir-NC group and antagomir-NC group were respectively negative controls of agomir-21 group and antagomir-21 group. Finaly, the possible target of miR-21 was searched in database. RESULTS AND CONCLUSION: Neural crest stem cels were successfuly separated from human hair folicles using flow cytometry and induced to differentiate into Schwann cels. In the process of cel differentiation, miR-21 expression was upregulated gradualy. Transfection of miR-21 agonist could enhance the stem cel differentiation into Schwann cels, whereas transfection of miR-21 antagonist could weaken the differentiation capacity of stem cels. Furthermore, we found via database searching that SOX2 maybe a target of miR-21 and participate in the regulatory role of miR-21. This study suggested that hair folicle neural crest stem cels can be used as an important source of Schwann cels and miR-21 can promote the

  2. Crested Ibis%朱鹮

    Institute of Scientific and Technical Information of China (English)

    丁长青

    2010-01-01

    @@ The Crested Ibis(Nipponia nippon,Plates Ⅰ and Ⅱ)(Ciconiiformes: Threskiomithidae)is a mediumsized wading bird,ranging in length from 57.5 to 84.0 cm,with a longish neck and legs,a red featherless face with a crested white head.Its most distinctive morphological character is the long,slender and decurved bill,perfectly adapted for probing in water and mud,or even in cracks on dry ground.The nonbreeding adult is white,with orange cinnamon tones in the tail and flight-feathers.The long bill is black with a red tip.Its red legs do not extend beyond the tail in flight(Hoyo et al.,1992).

  3. Classification of Atrial Septal Defect and Ventricular Septal Defect with Documented Hemodynamic Parameters via Cardiac Catheterization by Genetic Algorithms and Multi-Layered Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Mustafa Yıldız

    2012-08-01

    Full Text Available Introduction: We aimed to develop a classification method to discriminate ventricular septal defect and atrial septal defect by using severalhemodynamic parameters.Patients and Methods: Forty three patients (30 atrial septal defect, 13 ventricular septal defect; 26 female, 17 male with documentedhemodynamic parameters via cardiac catheterization are included to study. Such parameters as blood pressure values of different areas,gender, age and Qp/Qs ratios are used for classification. Parameters, we used in classification are determined by divergence analysismethod. Those parameters are; i pulmonary artery diastolic pressure, ii Qp/Qs ratio, iii right atrium pressure, iv age, v pulmonary arterysystolic pressure, vi left ventricular sistolic pressure, vii aorta mean pressure, viii left ventricular diastolic pressure, ix aorta diastolicpressure, x aorta systolic pressure. Those parameters detected from our study population, are uploaded to multi-layered artificial neuralnetwork and the network was trained by genetic algorithm.Results: Trained cluster consists of 14 factors (7 atrial septal defect and 7 ventricular septal defect. Overall success ratio is 79.2%, andwith a proper instruction of artificial neural network this ratio increases up to 89%.Conclusion: Parameters, belonging to artificial neural network, which are needed to be detected by the investigator in classical methods,can easily be detected with the help of genetic algorithms. During the instruction of artificial neural network by genetic algorithms, boththe topology of network and factors of network can be determined. During the test stage, elements, not included in instruction cluster, areassumed as in test cluster, and as a result of this study, we observed that multi-layered artificial neural network can be instructed properly,and neural network is a successful method for aimed classification.

  4. Morbidity from iliac crest bone harvesting

    NARCIS (Netherlands)

    Kalk, WWI; Raghoebar, GM; Jansma, J; Boering, G

    1996-01-01

    Purpose: The iliac crest is the most common donor site for autogenous bone grafting in maxillofacial surgery. The aim of this study was to evaluate retrospectively the morbidity of bone harvesting from the inner table of the anterior iliac crest. Patients and Methods: Sixty-five patients were recall

  5. Design Guidelines for Low Crested Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Lamberti, Alberto

    2004-01-01

    The paper presents an overview of the design guidelines for low crested structures (LCS's) to be applied in coastal protection schemes. The design guidelines are formulated as a part of the research project: Environmental Design of Low Crested Coastal Defence Structures (DELOS) within the EC 5FP ...

  6. 基于BP神经网络对七里街测站洪峰的预报与分析%The analysis and forecast of flood crest in Qilij ie Station based on the BP neural network

    Institute of Scientific and Technical Information of China (English)

    肖恭伟; 刘国林; 曹淑敏; 孙志阳

    2016-01-01

    According to the recursion in different section of time,and the monitoring data of wa-ter level in three hydrological sites including the east reach of Jianxi,Shuiji,and Jianyang,we find that the optimal node number of hidden layer of BP neural network is 10 through complex calculation,and establish a mathematical model to forecast the water level in Qilij ie Station using the BP neural network.On this basis,we can amend the forecast results with recursion in differ-ent section of time.The caculation results show that this method improves the forecast accuracy. It can be pointed out through calculation that the correction method of recursion in different sec-tion of time is a better choice due to the coincidence between results and facts.%在分析预报误差的时间分段递推修正方法的基础上,以建溪流域东游、水吉、建阳三个水文站点的水位监测数据为基础,计算得到BP神经网络隐含层最优节点数目为10,建立了 BP 神经网络对七里街测站水位预报的数学模型。在此基础上,利用时间分段递推修正方法对预报的结果进行修正,计算结果表明,时间分段递推修正方法使得预报精度提高很多,其结果与实际更加符合。

  7. Stability of Low-Crested Breakwaters in Shallow Water Short Crested Waves

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Burcharth, Hans Falk

    2003-01-01

    The paper presents results of 3D laboratory experiments on low-crested breakwaters. Two typical structural layouts were tested at model scale in a wave basin at Aalborg University, Denmark, to identify and quantify the influence of various hydrodynamic conditions (obliquity of short crested waves......, wave hight and wave steepness) and structural geometries (crest width and freeboard) on the stability of low-crested breakwaters. Results are given in terms of recommendations for design guidelines for structure stability. Damage parameters for the trunk and the roundhead are proposed based on analysis...

  8. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart.

    Science.gov (United States)

    Bulatovic, Ivana; Månsson-Broberg, Agneta; Sylvén, Christer; Grinnemo, Karl-Henrik

    2016-02-01

    The human fetal heart is formed early during embryogenesis as a result of cell migrations, differentiation, and formative blood flow. It begins to beat around gestation day 22. Progenitor cells are derived from mesoderm (endocardium and myocardium), proepicardium (epicardium and coronary vessels), and neural crest (heart valves, outflow tract septation, and parasympathetic innervation). A variety of molecular disturbances in the factors regulating the specification and differentiation of these cells can cause congenital heart disease. This review explores the contribution of different cardiac progenitors to the embryonic heart development; the pathways and transcription factors guiding their expansion, migration, and functional differentiation; and the endogenous regenerative capacity of the adult heart including the plasticity of cardiomyocytes. Unfolding these mechanisms will become the basis for understanding the dynamics of specific congenital heart disease as well as a means to develop therapy for fetal as well as postnatal cardiac defects and heart failure.

  9. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development.

    Directory of Open Access Journals (Sweden)

    S Leah Etheridge

    2008-11-01

    Full Text Available Dishevelled (Dvl proteins are important signaling components of both the canonical beta-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3(-/- mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+. Although neurulation appeared normal in both Dvl3(-/- and LtapLp/+ mutants, Dvl3(+/-;LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant.

  10. Combining Amplitude Spectrum Area with Previous Shock Information Using Neural Networks Improves Prediction Performance of Defibrillation Outcome for Subsequent Shocks in Out-Of-Hospital Cardiac Arrest Patients.

    Directory of Open Access Journals (Sweden)

    Mi He

    Full Text Available Quantitative ventricular fibrillation (VF waveform analysis is a potentially powerful tool to optimize defibrillation. However, whether combining VF features with additional attributes that related to the previous shock could enhance the prediction performance for subsequent shocks is still uncertain.A total of 528 defibrillation shocks from 199 patients experienced out-of-hospital cardiac arrest were analyzed in this study. VF waveform was quantified using amplitude spectrum area (AMSA from defibrillator's ECG recordings prior to each shock. Combinations of AMSA with previous shock index (PSI or/and change of AMSA (ΔAMSA between successive shocks were exercised through a training dataset including 255shocks from 99patientswith neural networks. Performance of the combination methods were compared with AMSA based single feature prediction by area under receiver operating characteristic curve(AUC, sensitivity, positive predictive value (PPV, negative predictive value (NPV and prediction accuracy (PA through a validation dataset that was consisted of 273 shocks from 100patients.A total of61 (61.0% patients required subsequent shocks (N = 173 in the validation dataset. Combining AMSA with PSI and ΔAMSA obtained highest AUC (0.904 vs. 0.819, p<0.001 among different combination approaches for subsequent shocks. Sensitivity (76.5% vs. 35.3%, p<0.001, NPV (90.2% vs. 76.9%, p = 0.007 and PA (86.1% vs. 74.0%, p = 0.005were greatly improved compared with AMSA based single feature prediction with a threshold of 90% specificity.In this retrospective study, combining AMSA with previous shock information using neural networks greatly improves prediction performance of defibrillation outcome for subsequent shocks.

  11. Predicting the physiological response of Tivela stultorum hearts with digoxin from cardiac parameters using artificial neural networks.

    Science.gov (United States)

    Flores, Dora-Luz; Gómez, Claudia; Cervantes, David; Abaroa, Alberto; Castro, Carlos; Castañeda-Martínez, Rubén A

    2017-01-01

    Multi-layer perceptron artificial neural networks (MLP-ANNs) were used to predict the concentration of digoxin needed to obtain a cardio-activity of specific biophysical parameters in Tivela stultorum hearts. The inputs of the neural networks were the minimum and maximum values of heart contraction force, the time of ventricular filling, the volume used for dilution, heart rate and weight, volume, length and width of the heart, while the output was the digoxin concentration in dilution necessary to obtain a desired physiological response. ANNs were trained, validated and tested with the dataset of the in vivo experiment results. To select the optimal network, predictions for all the dataset for each configuration of ANNs were made, a maximum 5% relative error for the digoxin concentration was set and the diagnostic accuracy of the predictions made was evaluated. The double-layer perceptron had a barely higher performance than the single-layer perceptron; therefore, both had a good predictive ability. The double-layer perceptron was able to obtain the most accurate predictions of digoxin concentration required in the hearts of T. stultorum using MLP-ANNs.

  12. Mechanisms of cardiac pain.

    Science.gov (United States)

    Foreman, Robert D; Garrett, Kennon M; Blair, Robert W

    2015-04-01

    Angina pectoris is cardiac pain that typically is manifested as referred pain to the chest and upper left arm. Atypical pain to describe localization of the perception, generally experienced more by women, is referred to the back, neck, and/or jaw. This article summarizes the neurophysiological and pharmacological mechanisms for referred cardiac pain. Spinal cardiac afferent fibers mediate typical anginal pain via pathways from the spinal cord to the thalamus and ultimately cerebral cortex. Spinal neurotransmission involves substance P, glutamate, and transient receptor potential vanilloid-1 (TRPV1) receptors; release of neurokinins such as nuclear factor kappa b (NF-kb) in the spinal cord can modulate neurotransmission. Vagal cardiac afferent fibers likely mediate atypical anginal pain and contribute to cardiac ischemia without accompanying pain via relays through the nucleus of the solitary tract and the C1-C2 spinal segments. The psychological state of an individual can modulate cardiac nociception via pathways involving the amygdala. Descending pathways originating from nucleus raphe magnus and the pons also can modulate cardiac nociception. Sensory input from other visceral organs can mimic cardiac pain due to convergence of this input with cardiac input onto spinothalamic tract neurons. Reduction of converging nociceptive input from the gallbladder and gastrointestinal tract can diminish cardiac pain. Much work remains to be performed to discern the interactions among complex neural pathways that ultimately produce or do not produce the sensations associated with cardiac pain.

  13. Effects of Serial Passage on the Characteristics and Cardiac and Neural Differentiation of Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Jianchun Lian

    2016-01-01

    Full Text Available Background and Objective. It is important to guarantee the quality of stem cells. Serial passage is the main approach to expand stem cells. This study evaluated effects of serial passage on the biological characteristics of human umbilical cord Wharton’s jelly-derived MSCs (WJ MSCs. Methods. Biological properties of WJ MSCs in the early (less than 10 passages, P10, middle (P11–20, and late (more than P20 phases including cell proliferation, cell cycle, phenotype, senescence, oncogene expression, stemness marker expression, and differentiation capacity were evaluated using flow cytometry, real-time PCR, immunocytofluorescence, and western blot. Results. It was found that there were no significant differences in cell proliferation, cell cycle, phenotype, and stemness marker expression in different phases. However, the expression of senescence-related gene, p21, and oncogene, c-Myc, was significantly upregulated in the late phase, which had close relations with the obviously increased cell senescence. Moreover, cardiac differentiation capability of WJ MSCs decreased whereas the propensity for neural differentiation increased significantly in the middle phase. Conclusions. This study reveals that WJ MSCs in the early and middle phases are relatively stable, and effect of serial passage on the lineage-specific differentiation should be considered carefully.

  14. Generalized crested products of Markov chains

    CERN Document Server

    D'Angeli, Daniele

    2010-01-01

    We define a finite Markov chain, called generalized crested product, which naturally appears as a generalization of the first crested product of Markov chains. A complete spectral analysis is developed and the $k$-step transition probability is given. It is important to remark that this Markov chain describes a more general version of the classical Ehrenfest diffusion model. As a particular case, one gets a generalization of the classical Insect Markov chain defined on the ultrametric space. Finally, an interpretation in terms of representation group theory is given, by showing the correspondence between the spectral decomposition of the generalized crested product and the Gelfand pairs associated with the generalized wreath product of permutation groups.

  15. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells.

    Science.gov (United States)

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-03-29

    The 'neural plate border' of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure.

  16. Structural Stability of Low-Crested Breakwaters

    DEFF Research Database (Denmark)

    Kramer, Morten

    A more and more widespread way to protect the coast against ongoing erosion is to build so called Low Crested Structures (LCS’s). Despite a large number of coast parallel LCS’s exist, the structural performance of these structures are not fully clarified. The LCS’s dealt with are coast parallel...

  17. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...... to generate power. Model tests have been performed using scale models (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept....... of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate mechanical power available to the power take off....

  18. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development.

    Science.gov (United States)

    Baardman, Maria E; Zwier, Mathijs V; Wisse, Lambertus J; Gittenberger-de Groot, Adriana C; Kerstjens-Frederikse, Wilhelmina S; Hofstra, Robert M W; Jurdzinski, Angelika; Hierck, Beerend P; Jongbloed, Monique R M; Berger, Rolf M F; Plösch, Torsten; DeRuiter, Marco C

    2016-04-01

    Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts ofLrp2knockout (KO) mice have not yet been investigated. We studied the cardiovascular development ofLrp2KO mice between embryonic day 10.5 (E10.5) and E15.5, applying morphometry and immunohistochemistry, using antibodies against Tfap2α (neural crest cells), Nkx2.5 (second heart field), WT1 (epicardium derived cells), tropomyosin (myocardium) and LRP2. TheLrp2KO mice display a range of severe cardiovascular abnormalities, including aortic arch anomalies, common arterial trunk (persistent truncus arteriosus) with coronary artery anomalies, ventricular septal defects, overriding of the tricuspid valve and marked thinning of the ventricular myocardium. Both the neural crest cells and second heart field, which are essential for the lengthening and growth of the right ventricular outflow tract, are abnormally positioned in theLrp2KO. This explains the absence of the aorto-pulmonary septum, which leads to common arterial trunk and ventricular septal defects. Severe blebbing of the epicardial cells covering the ventricles is seen. Epithelial-mesenchymal transition does occur; however, there are fewer WT1-positive epicardium-derived cells in the ventricular wall as compared to normal, coinciding with the myocardial thinning and deep intertrabecular spaces. LRP2 plays a crucial role in cardiovascular development in mice. This corroborates findings of cardiac anomalies in humans withLRP2mutations. Future studies should reveal the underlying signaling mechanisms in which LRP2 is involved during cardiogenesis.

  19. Signaling pathways and tissue interactions in neural plate border formation.

    Science.gov (United States)

    Schille, Carolin; Schambony, Alexandra

    2017-01-01

    The neural crest is a transient cell population that gives rise to various cell types of multiple tissues and organs in the vertebrate embryo. Neural crest cells arise from the neural plate border, a region localized at the lateral borders of the prospective neural plate. Temporally and spatially coordinated interaction with the adjacent tissues, the non-neural ectoderm, the neural plate and the prospective dorsolateral mesoderm, is required for neural plate border specification. Signaling molecules, namely BMP, Wnt and FGF ligands and corresponding antagonists are derived from these tissues and interact to induce the expression of neural plate border specific genes. The present mini-review focuses on the current understanding of how the NPB territory is formed and accentuates the need for coordinated interaction of BMP and Wnt signaling pathways and precise tissue communication that are required for the definition of the prospective NC in the competent ectoderm.

  20. Laboratory Experiments on Low-crested Breakwaters

    DEFF Research Database (Denmark)

    Kramer, Morten; Zanuttigh, B.; van der Meer, J.W.

    2005-01-01

    New unique laboratory experiments on low-crested structures (LCSs) have been performed within the DELOS project. The experiments were carried out in three European laboratories aiming at extending and completing existing available information with respect to a wide range of engineering design...... in a wave channel at small scale, and scale effects regarding wave transmission and reflection were studied in a wave channel at a large scale facility. The paper describes the experiments and associated databank with respect to objectives, test program, set-ups and measurements. Results, guidelines...

  1. Taxonomy Icon Data: crested porcupine [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available crested porcupine Hystrix cristata Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Hystrix_cristata..._L.png Hystrix_cristata_NL.png Hystrix_cristata_S.png Hystrix_cristata_NS.png http://biosc...iencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata...&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hystrix+cristata&t=NS ...

  2. Stability of Cubipod Armoured Roundheads in Short Crested Waves

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Medina, Josep R.

    2011-01-01

    The paper presents a comparison of the stability of concrete cube armour and Cubipod armour in a breakwater roundhead with slope 1:1.5, exposed to both 2-D (long-crested) and 3-D (short-crested) waves. The model tests were performed at the Hydraulics and Coastal Engineering Laboratory at Aalborg ...

  3. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling

    Science.gov (United States)

    Kodo, Kazuki; Nishizawa, Tsutomu; Furutani, Michiko; Arai, Shoichi; Yamamura, Eiji; Joo, Kunitaka; Takahashi, Takao; Matsuoka, Rumiko; Yamagishi, Hiroyuki

    2009-01-01

    Congenital heart diseases (CHD) occur in nearly 1% of all live births and are the major cause of infant mortality and morbidity. Although an improved understanding of the genetic causes of CHD would provide insight into the underlying pathobiology, the genetic etiology of most CHD remains unknown. Here we show that mutations in the gene encoding the transcription factor GATA6 cause CHD characteristic of a severe form of cardiac outflow tract (OFT) defect, namely persistent truncus arteriosus (PTA). Two different GATA6 mutations were identified by systematic genetic analysis using DNA from patients with PTA. Genes encoding the neurovascular guiding molecule semaphorin 3C (SEMA3C) and its receptor plexin A2 (PLXNA2) appear to be regulated directly by GATA6, and both GATA6 mutant proteins failed to transactivate these genes. Transgenic analysis further suggests that, in the developing heart, the expression of SEMA3C in the OFT/subpulmonary myocardium and PLXNA2 in the cardiac neural crest contributing to the OFT is dependent on GATA transcription factors. Together, our data implicate mutations in GATA6 as genetic causes of CHD involving OFT development, as a result of the disruption of the direct regulation of semaphorin-plexin signaling. PMID:19666519

  4. Experimental evidence for mutual inter- and intrasexual selection favouring a crested auklet ornament.

    Science.gov (United States)

    Jones; Hunter

    1999-03-01

    During the breeding season, female and male crested auklets Aethia cristatella (Alcidae), display similar conspicuous crest ornaments composed of elongated forward-curving feathers on their foreheads. Based on quantifications of brief agonistic interactions at a large breeding colony, we found that crest length was strongly correlated with dominance within both sexes. Across the full range of crest length, individuals with longer crests were dominant over shorter-crested individuals in agonistic interactions involving same-sex adults. Within subadults (2-year-olds of unknown sex), there was a similar trend towards longer-crested individuals being dominant. In agonistic interactions involving individuals of different sex and age, adult males were dominant over adult females and adults were dominant over subadults, regardless of crest length. In an experiment in which we manipulated crest length using life-size realistic models, male auklets that responded were less aggressive to male models with longer crests than to models with normal or shorter crests, confirming that crest length by itself signals dominance status. In a related experiment in which we controlled intrasexual competition, both males and females responded to opposite-sex models with more frequent sexual displays when the models had long crests compared with those having short crests, suggesting that crested auklets also have mating preferences that favour long crest ornaments. Taken together, these results support the idea that the crest ornament is favoured by both intra- and intersexual selection. Copyright 1999 The Association for the Study of Animal Behaviour.

  5. Cardiac arrest

    Science.gov (United States)

    ... Article.jsp. Accessed June 16, 2014. Myerburg RJ, Castellanos A. Approach to cardiac arrest and life-threatening ... PA: Elsevier Saunders; 2011:chap 63. Myerburg RJ, Castellanos A. Cardiac arrest and audden aardiac death. In: ...

  6. Cryoglobulinemic vasculitis in a patient with CREST syndrome.

    Science.gov (United States)

    Hurst, Rebecca L; Berianu, Florentina; Ginsburg, William W; Klein, Christopher J; Englestad, Janean K; Kennelly, Kathleen D

    2014-10-01

    Cryoglobulinemic vasculitis is a rare entity. Although it has been reported in diffuse systemic sclerosis, it has not been reported in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia (CREST) syndrome. We report a patient with cryoglobulinemic vasculitis with CREST syndrome who did not have typical clinical features of vasculitis. This 58-year-old woman presented with mild generalized weakness and a diagnosis of CREST syndrome, which included Raynaud's syndrome, dysphagia and telangiectasias. She was positive for serum cryoglobulins, which led to a sural nerve biopsy. The biopsy results were consistent with cryoglobulinemic vasculitis. Cryoglobulinemic vasculitis has not been previously reported in CREST syndrome to our knowledge. Additionally, the patient also had limited clinical symptoms. Our patient displays the importance of checking for cryoglobulins and obtaining a nerve biopsy when the serum is positive. Both of these diagnostic tests were integral for directing appropriate treatment for this patient.

  7. Crested wheatgrass control and monitoring Benton Lake Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Crested wheatgrass (CWG) was planted on Benton Lake NWR at least 30 years ago, presumably to stabilize the soil where it had been disturbed in the process of...

  8. Flow structure in front of the broad-crested weir

    Directory of Open Access Journals (Sweden)

    Zachoval Zbyněk

    2015-01-01

    Full Text Available The paper deals with research focused on description of flow structure in front of broad-crested weir. Based on experimental measurement, the flow structure in front of the weir (the recirculation zone of flow and tornado vortices and flow structure on the weir crest has been described. The determined flow character has been simulated using numerical model and based on comparing results the suitable model of turbulence has been recommended.

  9. CREST syndrome and periodontal surgery: a case report.

    Science.gov (United States)

    Stanford, T W; Peterson, J; Machen, R L

    1999-05-01

    CREST syndrome is a slowly progressive form of systemic scleroderma. It is characterized by calcinosis cutis, Raynaud's phenomenon, esophageal involvement, sclerodactyly, and telangiectasia. There are limited reports of dental treatment for patients with this syndrome, and no reports of periodontal surgical procedures. This paper presents a case report of periodontal surgical treatment in a 38-year-old female patient with CREST syndrome, and a discussion of the clinical manifestations of the syndrome as they relate to dental treatment.

  10. Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension.

    Science.gov (United States)

    Davidson, L A; Keller, R E

    1999-10-01

    We have characterized the cell movements and prospective cell identities as neural folds fuse during neural tube formation in Xenopus laevis. A newly developed whole-mount, two-color fluorescent RNA in situ hybridization method, visualized with confocal microscopy, shows that the dorsal neural tube gene xpax3 and the neural-crest-specific gene xslug are expressed far lateral to the medial site of neural fold fusion and that expression moves medially after fusion. To determine whether cell movements or dynamic changes in gene expression are responsible, we used low-light videomicroscopy followed by fluorescent in situ and confocal microscopy. These methods revealed that populations of prospective neural crest and dorsal neural tube cells near the lateral margin of the neural plate at the start of neurulation move to the dorsal midline using distinctive forms of motility. Before fold fusion, superficial neural cells apically contract, roll the neural plate into a trough and appear to pull the superficial epidermal cell sheet medially. After neural fold fusion, lateral deep neural cells move medially by radially intercalating between other neural cells using two types of motility. The neural crest cells migrate as individual cells toward the dorsal midline using medially directed monopolar protrusions. These movements combine the two lateral populations of neural crest into a single medial population that form the roof of the neural tube. The remaining cells of the dorsal neural tube extend protrusions both medially and laterally bringing about radial intercalation of deep and superficial cells to form a single-cell-layered, pseudostratified neural tube. While ours is the first description of medially directed cell migration during neural fold fusion and re-establishment of the neural tube, these complex cell behaviors may be involved during cavitation of the zebrafish neural keel and secondary neurulation in the posterior axis of chicken and mouse.

  11. Comparing Effects of Four Toothpaste Types (Nasim, Crest 7, Crest Sensitivity and Daroghar3) on Rate of Enamel Abrasion

    OpenAIRE

    2016-01-01

    Introduction: Toothpaste should have the most plaque removal efficacy with the least abrasiveness. The aim of this study was to evaluate enamel abrasion induced by four toothpaste types. Methods: In this in vitro experimental study, 24 dental samples were divided into four groups of six. The initial surface roughness was measured with the roughness measuring device. Regarding abrasion test with Daroghar3, Nasim, Crest7 and Crest sensitivity toothpastes, samples were located in V8cross brus...

  12. CREST--classification resources for environmental sequence tags.

    Directory of Open Access Journals (Sweden)

    Anders Lanzén

    Full Text Available Sequencing of taxonomic or phylogenetic markers is becoming a fast and efficient method for studying environmental microbial communities. This has resulted in a steadily growing collection of marker sequences, most notably of the small-subunit (SSU ribosomal RNA gene, and an increased understanding of microbial phylogeny, diversity and community composition patterns. However, to utilize these large datasets together with new sequencing technologies, a reliable and flexible system for taxonomic classification is critical. We developed CREST (Classification Resources for Environmental Sequence Tags, a set of resources and tools for generating and utilizing custom taxonomies and reference datasets for classification of environmental sequences. CREST uses an alignment-based classification method with the lowest common ancestor algorithm. It also uses explicit rank similarity criteria to reduce false positives and identify novel taxa. We implemented this method in a web server, a command line tool and the graphical user interfaced program MEGAN. Further, we provide the SSU rRNA reference database and taxonomy SilvaMod, derived from the publicly available SILVA SSURef, for classification of sequences from bacteria, archaea and eukaryotes. Using cross-validation and environmental datasets, we compared the performance of CREST and SilvaMod to the RDP Classifier. We also utilized Greengenes as a reference database, both with CREST and the RDP Classifier. These analyses indicate that CREST performs better than alignment-free methods with higher recall rate (sensitivity as well as precision, and with the ability to accurately identify most sequences from novel taxa. Classification using SilvaMod performed better than with Greengenes, particularly when applied to environmental sequences. CREST is freely available under a GNU General Public License (v3 from http://apps.cbu.uib.no/crest and http://lcaclassifier.googlecode.com.

  13. Comparison of standard TEC models with a Neural Network based TEC model using multistation GPS TEC around the northern crest of Equatorial Ionization Anomaly in the Indian longitude sector during the low and moderate solar activity levels of the 24th solar cycle

    Science.gov (United States)

    Sur, D.; Paul, A.

    2013-09-01

    The highest Total Electron Content (TEC) values in the world normally occur at Equatorial Ionization Anomaly (EIA) region resulting in largest ionospheric range delay values observed for any potential Space Based Augmentation System (SBAS). Reliable forecasting of TEC is crucial for satellite based navigation systems. The day to day variability of the location of the anomaly peak and its intensity is very large. This imposes severe limitations on the applicability of commonly used ionospheric models to the low latitude regions. It is necessary to generate a mathematical ionospheric forecasting and mapping model for TEC based on physical ionospheric influencing parameters. A model, IRPE-TEC, has been developed based on real time low latitude total electron content data using GPS measurements from a number of stations situated around the northern crest of the EIA during 2007 through 2011 to predict the vertical TEC values during the low and moderate solar activity levels of the 24th solar cycle. This model is compared with standard ionospheric models like International Reference Ionosphere (IRI) and Parameterized Ionospheric Model (PIM) to establish its applicability in the equatorial region for accurate predictions.

  14. Cardiac Sarcoidosis.

    Science.gov (United States)

    Birnie, David; Ha, Andrew C T; Gula, Lorne J; Chakrabarti, Santabhanu; Beanlands, Rob S B; Nery, Pablo

    2015-12-01

    Studies suggest clinically manifest cardiac involvement occurs in 5% of patients with pulmonary/systemic sarcoidosis. The principal manifestations of cardiac sarcoidosis (CS) are conduction abnormalities, ventricular arrhythmias, and heart failure. Data indicate that an 20% to 25% of patients with pulmonary/systemic sarcoidosis have asymptomatic (clinically silent) cardiac involvement. An international guideline for the diagnosis and management of CS recommends that patients be screened for cardiac involvement. Most studies suggest a benign prognosis for patients with clinically silent CS. Immunosuppression therapy is advocated for clinically manifest CS. Device therapy, with implantable cardioverter defibrillators, is recommended for some patients.

  15. Cardiac Malpositions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Shi Joon; Im, Chung Gie; Yeon, Kyung Mo; Hasn, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    Cardiac Malposition refers to any position of the heart other than a left-sided heart in a situs solitus individual. Associated cardiac malformations are so complex that even angiocardiographic and autopsy studies may not afford an accurate information. Although the terms and classifications used to describe the internal cardiac anatomy and their arterial connections in cardiac malpositions differ and tend to be confusing, common agreement exists on the need for a segmental approach to diagnosis. Authors present 18 cases of cardiac malpositions in which cardiac catheterization and angiocardiography were done at the Department of Radiology, Seoul National University Hospital between 1971 and 1979. Authors analyzed the clinical, radiographic, operative and autopsy findings with the emphasis on the angiocardiographic findings. The results are as follows: 1. Among 18 cases with cardiac malpositions, 6 cases had dextrocardia with situs inversus, 9 cases had dextrocardia with situs solitus and 3 cases had levocardia with situs inversus. 2. There was no genuine exception to visceroatrial concordance rule. 3. Associated cardiac malpositions were variable and complex with a tendency of high association of transposition and double outlet varieties with dextrocardia in situs solitus and levocardia in situs inversus. Only one in 6 cases of dextrocardia with situs inversus had pure transposition. 4. In two cases associated pulmonary atresia was found at surgery which was not predicted by angiocardiography. 5. Because many of the associated complex lesions can be corrected surgically provided the diagnosis is accurate, the selective biplane angiocardiography with or without cineradiography is essential.

  16. Observations of highly localized oscillons with multiple crests and troughs

    CERN Document Server

    LI, Xiaochen; Liao, Shijun

    2014-01-01

    Stable, highly localized Faraday's resonant standing waves with multiple crests and troughs were observed in the alcoholic solution partly filled in a Hele-Shaw cell vertically oscillated with a single frequency. Two types of oscillons were observed. The influence of the experimental parameters (such as the concentration of alcoholic solution, the water depth, the frequency and acceleration amplitude of oscillation) on these oscillons were investigated in details. In the same experimental parameters, all of these oscillons have the almost same wave height but rather irregular crest-to-crest distances. Our experiments highly suggest that the complicated oscillons can be regarded as combination of the two elementary oscillons discovered by Rajchenbach et al. (Physical Review Letters, 107, 2011).

  17. Flow characteristics at trapezoidal broad-crested side weir

    Directory of Open Access Journals (Sweden)

    Říha Jaromír

    2015-06-01

    Full Text Available Broad-crested side weirs have been the subject of numerous hydraulic studies; however, the flow field at the weir crest and in front of the weir in the approach channel still has not been fully described. Also, the discharge coefficient of broad-crested side weirs, whether slightly inclined towards the stream or lateral, still has yet to be clearly determined. Experimental research was carried out to describe the flow characteristics at low Froude numbers in the approach flow channel for various combinations of in- and overflow discharges. Three side weir types with different oblique angles were studied. Their flow characteristics and discharge coefficients were analyzed and assessed based on the results obtained from extensive measurements performed on a hydraulic model. The empirical relation between the angle of side weir obliqueness, Froude numbers in the up- and downstream channels, and the coefficient of obliqueness was derived.

  18. Surface Roughness Effects on Discharge Coefficient of Broad Crested Weir

    Directory of Open Access Journals (Sweden)

    Shaker A. Jalil

    2014-06-01

    Full Text Available The aim of this study is to investigate the effects of surface roughness sizes on the discharge coefficient for a broad crested weirs. For this purpose, three models having different lengths of broad crested weirs were tested in a horizontal flume. In each model, the surface was roughed four times. Experimental results of all models showed that the logical negative effect of roughness increased on the discharge (Q for different values of length. The performance of broad crested weir improved with decrease ratio of roughness to the weir height (Ks/P and with the increase of the total Head to the Length (H/L. An empirical equation was obtained to estimate the variation of discharge coefficient Cd in terms total head to length ratio, with total head to roughness ratio.

  19. Iliac Crest Avulsion Fracture in a Young Sprinter.

    Science.gov (United States)

    Casabianca, L; Rousseau, R; Loriaut, P; Massein, A; Mirouse, G; Gerometta, A; Khiami, F

    2015-01-01

    Avulsion fracture of the iliac crest is an uncommon pathology. It usually occurs in teenagers during sport activities, more common in boys. We report a case of 16-year-old male competitive sprinter, who had an avulsion of a part of the iliac crest and the anterior-superior iliac spine during a competition. The traumatism occurred during the period of acceleration phase out of the blocks which corresponds to the maximum traction phase on the tendons. Then a total loss of function of the lower limb appears forcing him to stop the run. X-ray and CT scan confirmed the rare diagnosis of avulsion of the quasitotality of the iliac crest apophysis, corresponding to Salter 2 fracture. We performed an open reduction and internal fixation with two screws, allowing a return to sport after 3 months and his personal best record in the 100 meters at the 6th postoperative month.

  20. Iliac Crest Avulsion Fracture in a Young Sprinter

    Directory of Open Access Journals (Sweden)

    L. Casabianca

    2015-01-01

    Full Text Available Avulsion fracture of the iliac crest is an uncommon pathology. It usually occurs in teenagers during sport activities, more common in boys. We report a case of 16-year-old male competitive sprinter, who had an avulsion of a part of the iliac crest and the anterior-superior iliac spine during a competition. The traumatism occurred during the period of acceleration phase out of the blocks which corresponds to the maximum traction phase on the tendons. Then a total loss of function of the lower limb appears forcing him to stop the run. X-ray and CT scan confirmed the rare diagnosis of avulsion of the quasitotality of the iliac crest apophysis, corresponding to Salter 2 fracture. We performed an open reduction and internal fixation with two screws, allowing a return to sport after 3 months and his personal best record in the 100 meters at the 6th postoperative month.

  1. Conversion of neural plate explants to pre-placodal ectoderm-like tissue in vitro.

    Science.gov (United States)

    Shigetani, Yasuyo; Wakamatsu, Yoshio; Tachibana, Toshiaki; Okabe, Masataka

    2016-09-02

    Neural crest and cranial sensory placodes arise from ectodermal epithelium lying between the neural plate and non-neural ectoderm (neural border). BMP signaling is important for both an induction of the neural border and a subsequent induction of the neural crest within the neural border. In contrast, FGF signaling is important for the neural border induction and the following induction of the pre-placodal ectoderm (PPE), which later gives rise to the cranial sensory placodes. While previous studies have demonstrated that the neural plate explants could be converted to the neural crest cells by adding BMP4 in a culture medium, there is no report showing a similar conversion of the neural plate to the PPE. We therefore examined the effect of FGF2 along with BMP4 on the rostral neural plate explants and found that the explants became the simple squamous epithelia, which were characterized by the desmosomes/tonofilaments in membranes of adjacent cells. Such epithelia expressed sets of neural border markers and the PPE genes, suggesting that the neural plate explants were converted to a PPE-like tissue. This method will be useful for further studying mechanisms of PPE induction and subsequent specifications of the cranial placodes.

  2. The CREST reactive-burn model for explosives

    Directory of Open Access Journals (Sweden)

    Maheswaran M-A.

    2011-01-01

    Full Text Available CREST is an innovative reactive-burn model that has been developed at AWE for simulating shock initiation and detonation propagation behaviour in explosives. The model has a different basis from other reactive-burn models in that its reaction rate is independent of local flow variables behind the shock wave e.g. pressure and temperature. The foundation for CREST, based on a detailed analysis of data from particle-velocity gauge experiments, is that the reaction rate depends only on the local shock strength and the time since the shock passed. Since a measure of shock strength is the entropy of the non-reacted explosive, which remains constant behind a shock, CREST uses an entropy-dependent reaction rate. This paper will provide an overview of the CREST model and its predictive capability. In particular, it will be shown that the model can predict a wide range of experimental phenomena for both shock initiation (e.g. the effects of porosity and initial temperature on sustained-shock and thin-flyer initiation and detonation propagation (e.g. the diameter effect curve and detonation failure cones using a single set of coefficients.

  3. Cardiac cameras.

    Science.gov (United States)

    Travin, Mark I

    2011-05-01

    Cardiac imaging with radiotracers plays an important role in patient evaluation, and the development of suitable imaging instruments has been crucial. While initially performed with the rectilinear scanner that slowly transmitted, in a row-by-row fashion, cardiac count distributions onto various printing media, the Anger scintillation camera allowed electronic determination of tracer energies and of the distribution of radioactive counts in 2D space. Increased sophistication of cardiac cameras and development of powerful computers to analyze, display, and quantify data has been essential to making radionuclide cardiac imaging a key component of the cardiac work-up. Newer processing algorithms and solid state cameras, fundamentally different from the Anger camera, show promise to provide higher counting efficiency and resolution, leading to better image quality, more patient comfort and potentially lower radiation exposure. While the focus has been on myocardial perfusion imaging with single-photon emission computed tomography, increased use of positron emission tomography is broadening the field to include molecular imaging of the myocardium and of the coronary vasculature. Further advances may require integrating cardiac nuclear cameras with other imaging devices, ie, hybrid imaging cameras. The goal is to image the heart and its physiological processes as accurately as possible, to prevent and cure disease processes.

  4. A Comparative Experimental Study of Wave Forces on a Vertical Cylinder in Long-Crested and Short-Crested Seas

    DEFF Research Database (Denmark)

    Frigaard, Peter; Burcharth, Hans F.

    1988-01-01

    An experimental study is carried out to investigate the wave forces on a slender cylinder. Special attention is given to the wave forces in the surface zone and correlation of forces along the cylinder. The experiments consider the effects of both long and short-crested irregular waves....

  5. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells

    Science.gov (United States)

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-01-01

    The ‘neural plate border’ of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure. DOI: http://dx.doi.org/10.7554/eLife.21620.001 PMID:28355135

  6. GDNF is required for neural colonization of the pancreas.

    Science.gov (United States)

    Muñoz-Bravo, José Luis; Hidalgo-Figueroa, María; Pascual, Alberto; López-Barneo, José; Leal-Cerro, Alfonso; Cano, David A

    2013-09-01

    The mammalian pancreas is densely innervated by both the sympathetic and parasympathetic nervous systems, which control exocrine and endocrine secretion. During embryonic development, neural crest cells migrating in a rostrocaudal direction populate the gut, giving rise to neural progenitor cells. Recent studies in mice have shown that neural crest cells enter the pancreatic epithelium at E11.5. However, the cues that guide the migration of neural progenitors into the pancreas are poorly defined. In this study we identify glial cell line-derived neurotrophic factor (GDNF) as a key player in this process. GDNF displays a dynamic expression pattern during embryonic development that parallels the chronology of migration and differentiation of neural crest derivatives in the pancreas. Conditional inactivation of Gdnf in the pancreatic epithelium results in a dramatic loss of neuronal and glial cells and in reduced parasympathetic innervation in the pancreas. Importantly, the innervation of other regions of the gut remains unaffected. Analysis of Gdnf mutant mouse embryos and ex vivo experiments indicate that GDNF produced in the pancreas acts as a neurotrophic factor for gut-resident neural progenitor cells. Our data further show that exogenous GDNF promotes the proliferation of pancreatic progenitor cells in organ culture. In summary, our results point to GDNF as crucial for the development of the intrinsic innervation of the pancreas.

  7. Thin hard crest on the edge of ceramic acetabular liners accelerates wear in edge loading.

    Science.gov (United States)

    Sanders, Anthony P; Dudhiya, Parth J; Brannon, Rebecca M

    2012-01-01

    Ceramic acetabular liners may exhibit a small, sharp crest-an artifact of discontinuous machining steps--at the junction between the concave spherical surface and the interior edge. On 3 ceramic liners, this crest was found to form a 9° to 11° deviation from tangency. Edge loading wear tests were conducted directly on this crest and on a smoother region of the edge. The crest elicited 2 to 15 times greater volumetric wear on the femoral head. The propensity of the crest to rapidly (machining protocols might be a root cause of stripe wear and squeaking in ceramic acetabular bearings.

  8. Flexibility of neural stem cells

    Directory of Open Access Journals (Sweden)

    Eumorphia eRemboutsika

    2011-04-01

    Full Text Available Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neurospheres are heterogeneous with regard to Sox2 expression and contain astrocytes, neural stem cells and neural progenitor cells sufficiently plastic to give rise to neural crest cells when transplanted into the hindbrain of E1.5 chick and E8 mouse embryos. However, when neurospheres are maintained under lineage selection, such that all cells express Sox2, neural stem cells maintain their Pax6+ cortical radial glia identity and exhibit a more restricted fate in vitro and after transplantation. These data demonstrate that Sox2 preserves the cortical identity and regulates the plasticity of self-renewing Pax6+ radial glia cells.

  9. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  10. Aerodynamic Characteristics of the Crest with Membrane Attachment on Cretaceous Pterodactyloid Nyctosaurus

    Institute of Scientific and Technical Information of China (English)

    XING Lida; WU Jianghao; LU Yi; L(U) Junchang; JI Qiang

    2009-01-01

    The Nyctosaurus specimen KJ1 was reconstructed under the hypothesis that there is a membrane attached to the crest;the so-called headsail crest.The aerodynamic forces and moment acting on the headsail crest were analyzed.It was shown that KJ1 might adjust the angle of the headsail crest relative to the air current as one way to generate thrust(one of the aerodynamic forces,used to overcome body drag in forward flight)and that the magnitude of the thrust and moment could vary with the gesture angle and the relative locafion between the aerodynamic center of the headsail crest and body's center of gravity.Three scenarios were tested for comparison:the crest with membrane attachment,the crest without membrane attachment and the absence of a cranial crest.It was shown that the aerodynamic characteristics(increasing.maintaining and decreasing thrusts and moment) would have almost disappear in flight for the crest without membrane attachment and Was non-existent without the cranial crest.It is suggested from aerodynamics evidence alone that Nyctosaurus specimen KJ1 had a membrane attached to the crest and used this reconstructed form for auxiliary flight control.

  11. Numerical analysis of divertor plasma for demo-CREST

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, M.; Maeki, K.; Hatayama, A. [Graduate School of Fundamental Science and Technology, Keio University, Yokohama (Japan); Hiwatari, R. [Central Research Institute of Electric Power Industry (CRIEPI), Tokyo (Japan); Bonnin, X. [LIMHP-CNRS, Universite Paris 13, Villetaneuse (France); Zhu, S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Schneider, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany); Coster, D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany)

    2010-05-15

    The numerical analysis of the demonstration fusion reactor Demo-CREST has been carried out; this analysis focuses on impurity seeding. Several design activities for DEMO have been carried out; however, its detailed divertor plasma analysis remains to be carried out. Therefore, in this study, we discuss the possibility of neon puffing in demo-CREST to decrease the power load to the divertor plate by using the B2-EIRENE code. It has been shown that the radiation power loss by neon increases with upstream plasma density and that the peak power load to the divertor plate comes close to the allowable level by using the preliminary divertor configuration (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scale...... model (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept. of Civil Engineering, Aalborg (Frigaard et al., 2008......). The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate total power take off....

  13. Medical image of the week: CREST plus ILD

    OpenAIRE

    Oliva I; Knox KS

    2013-01-01

    A 60 year old female with a history of fibromyalgia presented with dyspnea and skin changes, predominantly on the hands. Physical exam and imaging showed classic findings of limited cutaneous systemic sclerosis (scleroderma) CREST syndrome. Calcinosis cutis (Figure 1A), Raynaud’s (not shown but endorsed by the patient), Esophageal dysmotility (Figure 1B, dilated esophagus), Sclerodactyly (Figure 1C), and Teleganectasias (Figure 1D) were all present. Ground glass opacities were seen predomi...

  14. Environmental correlates of breeding in the Crested Caracara (Caracara Cheriway)

    Science.gov (United States)

    Morrison, J.L.; Pias, Kyle E.; Cohen, J.B.; Catlin, D.H.

    2009-01-01

    We evaluated the influence of weather on reproduction of the Crested Caracara (Caracara cheriway) in an agricultural landscape in south-central Florida. We used a mixed logistic-regression modeling approach within an information-theoretic framework to examine the influence of total rainfall, rainfall frequency, and temperature on the number of breeding pairs, timing of breeding, nest success, and productivity of Crested Caracaras during 1994-2000. The best models indicated an influence of rainfall frequency and laying period on reproduction. More individuals nested and more pairs nested earlier during years with more frequent rainfall in late summer and early fall. Pairs that nested later in each breeding season had smaller clutches, lower nest success and productivity, and higher probability of nest failure. More frequent rainfall during early spring months that are usually characterized by water deficit (March-May), more frequent rainfall during the fall drawdown period (September-November), and a shorter winter dry period showed some association with higher probability of brood reduction and lower nest success. The proportion of nests that failed was higher in "wet" years, when total rainfall during the breeding season (September-April) was >10% above the 20-year average. Rainfall may influence reproduction in Crested Caracaras indirectly through food resources. As total rainfall increased during February-April, when most pairs are feeding nestlings or dependent fledglings, the proportion of drawdown-dependent species (those that become available as rainfall decreases and wetlands become isolated and shallow) in the diet of Crested Caracaras declined, which may indicate reduced availability of foraging habitat for this primarily terrestrial raptor. ?? The American Ornithologists' Union, 2009.

  15. MR imaging findings of medial tibial crest friction

    Energy Technology Data Exchange (ETDEWEB)

    Klontzas, Michail E., E-mail: miklontzas@gmail.com; Akoumianakis, Ioannis D., E-mail: ioannis.akoumianakis@gmail.com; Vagios, Ilias, E-mail: iliasvagios@gmail.com; Karantanas, Apostolos H., E-mail: akarantanas@gmail.com

    2013-11-01

    Objective: Medial tibial condyle bone marrow edema (BME), associated with soft tissue edema (STe) surrounding the medial collateral ligament, was incidentally observed in MRI examinations of young and athletic individuals. The aim of the present study was to 1. Prospectively investigate the association between these findings and coexistence of localized pain, and 2. Explore the possible contribution of the tibial morphology to its pathogenesis. Methods: The medial tibial condyle crest was evaluated in 632 knee MRI examinations. The angle and depth were measured by two separate evaluators. The presence of STe and BME was recorded. A third evaluator blindly assessed the presence of pain at this site. Results: BME associated with STe was found in 24 patients (with no history of previous trauma, osteoarthritis, tumor or pes anserine bursitis). The mean crest angle was 151.3° (95%CI 147.4–155.3°) compared to 159.4° (95%CI 158.8–160°) in controls (Mann–Whitney test, P < 0.0001). MRI findings were highly predictive of localized pain (sensitivity 92% specificity 99%, Fisher's exact test, P < 0.0001). Conclusion: Friction at the medial tibial condyle crest is a painful syndrome. MRI is a highly specific and sensitive imaging modality for its diagnosis.

  16. Cardiac Rehabilitation

    Science.gov (United States)

    ... your risk of future heart problems, and to improve your health and quality of life. Cardiac rehabilitation programs increase ... exercise routine at home or at a local gym. You may also continue to ... health concerns. Education about nutrition, lifestyle and weight loss ...

  17. Cardiac Calcification

    Directory of Open Access Journals (Sweden)

    Morteza Joorabian

    2011-05-01

    Full Text Available There is a spectrum of different types of cardiac"ncalcifications with the importance and significance"nof each type of cardiac calcification, especially"ncoronary artery calcification. Radiologic detection of"ncalcifications within the heart is quite common. The"namount of coronary artery calcification correlates"nwith the severity of coronary artery disease (CAD."nCalcification of the aortic or mitral valve may indicate"nhemodynamically significant valvular stenosis."nMyocardial calcification is a sign of prior infarction,"nwhile pericardial calcification is strongly associated"nwith constrictive pericarditis. A spectrum of different"ntypes of cardiac calcifications (linear, annular,"ncurvilinear,... could be seen in chest radiography and"nother imaging modalities. So a carful inspection for"ndetection and reorganization of these calcifications"nshould be necessary. Numerous modalities exist for"nidentifying coronary calcification, including plain"nradiography, fluoroscopy, intravascular ultrasound,"nMRI, echocardiography, and conventional, helical and"nelectron-beam CT (EBCT. Coronary calcifications"ndetected on EBCT or helical CT can be quantifie,"nand a total calcification score (Cardiac Calcification"nScoring may be calculated. In an asymptomatic"npopulation and/or patients with concomitant risk"nfactors like diabetes mellitus, determination of the"npresence of coronary calcifications identifies the"npatients at risk for future myocardial infarction and"ncoronary artery disease. In patients without coronary"ncalcifications, future cardiovascular events could"nbe excluded. Therefore, detecting and recognizing"ncalcification related to the heart on chest radiography"nand other imaging modalities such as fluoroscopy, CT"nand echocardiography may have important clinical"nimplications.

  18. CREST maps somatic structural variation in cancer genomes with base-pair resolution.

    Science.gov (United States)

    Wang, Jianmin; Mullighan, Charles G; Easton, John; Roberts, Stefan; Heatley, Sue L; Ma, Jing; Rusch, Michael C; Chen, Ken; Harris, Christopher C; Ding, Li; Holmfeldt, Linda; Payne-Turner, Debbie; Fan, Xian; Wei, Lei; Zhao, David; Obenauer, John C; Naeve, Clayton; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Zhang, Jinghui

    2011-06-12

    We developed 'clipping reveals structure' (CREST), an algorithm that uses next-generation sequencing reads with partial alignments to a reference genome to directly map structural variations at the nucleotide level of resolution. Application of CREST to whole-genome sequencing data from five pediatric T-lineage acute lymphoblastic leukemias (T-ALLs) and a human melanoma cell line, COLO-829, identified 160 somatic structural variations. Experimental validation exceeded 80%, demonstrating that CREST had a high predictive accuracy.

  19. Hydraulic evaluation of the Crest Wing wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Kofoed, J.P.; Antonishen, M.

    2008-09-15

    The Crest Wing Wave Energy Converter is currently being developed by Henning Pilgaard, of WaveEnergyFyn, Denmark. It is meant to act like a carpet on the water, conforming to the shape of each wave and using that movement to generate power. The thought of making a WEC that acts like a carpet on top of the waves is not new; ongoing or past projects such as the Pelamis and Cockerel Raft were designed with this thought in mind. The real difference with the Crest Wing is that it has skirt drafts, that extend down into the water and create suction; this increases the effective mass of the WEC while minimizing the material use. Special attention was given to the design of the first and last floaters as they are meant to act as a smooth transition between wave and machine. Their purpose is to make sure that no air gets under the two middle floaters so that suction is not broken and the device continues to function well. In summary the Crest Wing functions and is able to produce power with a good overall efficiency. The configuration with relative reference PTO (Power Take Off) is superior. It has not been proven that the idea of mounting skirts on the floaters is leading to a better performance. Thus, the study leads to the conclusion that the idea of making a simple hinged raft type device is good, and it is likely that the construction cost for a device of this type can be kept down. However, the study also leaves the chance that some limited draft of skirts in combination with inlet/outlet devices, could prove beneficial. In case of further testing on this device, an effort should be made to design and construct a more easily and accurately controlled PTO model in the test setup. This could greatly improve the quality of the output of such tests. (ln)

  20. Crested wheatgrass (Agropyron cristatum seedings in Western Colorado: What can we learn?

    Directory of Open Access Journals (Sweden)

    James Dollerschell

    2012-12-01

    Full Text Available Non-native species have been widely transported, becoming components of ecosystems worldwide. In some cases this can change thestructure and function of an ecosystem. Crested wheatgrass (Agropyron cristatum, Agropyron spp. was introduced into the Western U.S. inthe late 18th and early 19th centuries. Since introduction, it has been planted in western rangelands currently occupying millions of acres.Crested wheatgrass causes significant changes in areas where it dominates the vegetation, and restoring rangelands planted with crested wheatgrass to higher plant diversity and ecosystem function has been met with limited success. Here we revisit historical frequency monitoring data collected in western Colorado on public lands that were planted with crested wheatgrass between 1940 and 1980. We also monitored vegetation before and after mechanical treatment (removal of vegetation with the use of a dixie harrow pulled behind a tractor and re-seeding of desirable species in three areas dominated by crested wheatgrass. We looked for increasing or decreasing trends in plant species, and for plant species that persist with crested wheatgrass. We found that crested wheatgrass increased significantly (p=0.09 over time, we also found five species of grasses, two shrub species, and one forb species that were persistent in areas planted with crested wheatgrass. We found that in mechanically treated areas, the only significant trend was a reduction of native grasses (p<0.05. Our findings suggest that in areas planted with crested wheatgrass, frequency of crested wheatgrass can increase over time. Further, mechanical treatments coupled with seeding were not effective at reducing crested wheatgrass cover, or at increasing native and desirable species. These sites may have experienced a shift to a stable state.

  1. 76 FR 15971 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Teleconference

    Science.gov (United States)

    2011-03-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy... Eagle Crest Energy as part of its on-going Section 7 Endangered Species Act consultation efforts. e....

  2. 76 FR 22699 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Teleconference

    Science.gov (United States)

    2011-04-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy... Eagle Crest Energy as part of its on-going Section 7 Endangered Species Act consultation efforts. e....

  3. 75 FR 3217 - Eagle Crest Energy Company; Notice of Application Ready for Environmental Analysis and Soliciting...

    Science.gov (United States)

    2010-01-20

    ... Energy Regulatory Commission Eagle Crest Energy Company; Notice of Application Ready for Environmental... filed: June 23, 2009. d. Applicant: Eagle Crest Energy Company. e. Name of Project: Eagle Mountain... Eagle Mountain Mine in Riverside County, California, near the Town of Desert Center, California,...

  4. ghrelin调控神经生长因子信号途径介导心肌梗死后神经重构%Ghrelin inhibits cardiac neural remodeling after myocardial infarction in rats

    Institute of Scientific and Technical Information of China (English)

    王广丽; 刘磊; 邓笑伟

    2011-01-01

    Objective Ghrelin is a newly discovered peptide as an endogenous ligand for the growth hormone secretagogue receptor,and has been demonstrated to exert beneficial effect in the cardiovascular system.In the present study,we investigated whether ghrelin administration could inhibit cardiac neural remodeling and sympathetic hyperinnervation after myocardial infarction(MI).Methods Sprague-Dawley rats underwent coronary ligation to induce MI and received rat ghrelin(100μg/kg SC BID)or saline(control).Four weeks after treatment,rats were sacrificed.We examined the expression of nerve growth factor and never markers as well as the mRNA expressions of proinflammatory mediators.We also examined the NF-κB p65 protein and IκBα protein levels by western blot analysis.Results Compared to the control group,ghrelin administration significantly decreased the density of nerve fibers with positive immunostaining for GAP43 and TH,and decreased NGF mRNA and protein levels.Ghrelin also significantly suppressed interleukin-1β,tumor necrosis factor-α,and endothelin-1 mRNA expression,and inhibited NF-κB activation.In the MI rats,the mRNA expression of ET-1 at the non-infarcted zones had a significantly positive correlation with the NGF protein levels.Conclusion Treatment with ghrelin inhibited neural remodeling and sympathetic hyperinnervation,the process may be associated with the inhibition of proinflammatory response and NGF signaling.%目的 ghrelin是最近在胃中分离出来的生长激素释放肽受体的内源性配体,在心血管系统显示出了保护效应.本实验探讨了ghrelin对心肌梗死(MI)后大鼠神经重构的影响及其作用机制.方法 SD大鼠结扎冠状动脉制作MI模型作为对照组,干预组在手术后第1天开始给予ghrelin皮下注射,剂量为100μg/kg,每天两次.对照组开胸后在冠状动脉下穿线,但不结扎,给予盐水作皮下注射.经过4个星期治疗后,处死动物.检测梗死区及梗死边缘区神经生长

  5. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival

    Directory of Open Access Journals (Sweden)

    Sebastian Dworkin

    2016-08-01

    Full Text Available Craniofacial defects (CFD are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog (Shh, a vertebrate orthologue of Drosophila hedgehog, is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla and lower jaw (mandible.

  6. Generation of Induced Pluripotent Stem Cells from Hair Follicle Bulge Neural Crest Stem Cells

    NARCIS (Netherlands)

    Ma, Ming-San; Czepiel, Marcin; Krause, Tina; Schaefer, Karl-Herbert; Boddeke, Erik; Copray, Sjef

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising candidates for the study of disease models as well as for tissue engineering purposes. Part of a strategy to develop safe reprogramming technique is reducing the number of exogenous reprogramming factors. Some cells types are more prone to reprogr

  7. The hindbrain neural crest and the development of the enteric nervous system

    NARCIS (Netherlands)

    M.J.H. van der Sanden (Marjo)

    1994-01-01

    textabstractThe wonder of things is the beginning of knowledge, as was already stated by Aristotle, the fIrst embryologist known to history. Embryology has remained a source of wonder ever since. It all starts with the fusion of the female egg and the male sperm. Sperm cells were first described by

  8. The Development of a Primary Neural Crest Assay for Neuroblastoma Oncogenesis

    Science.gov (United States)

    2015-09-01

    p53  compromised  NCCs  (Figure  3B)  that   there...establishing  the   molecular  etiology  of  this   disease  and  finding  tractable  therapeutic  targets  are  key   challenges...6E).      We  have  also  established  that  we  can  take   NCC  with  N-­‐Myc  overexpression  in  a   p53

  9. Stroke and cardiac cell death: Two peas in a pod.

    Science.gov (United States)

    Gonzales-Portillo, Chiara; Ishikawa, Hiroto; Shinozuka, Kazutaka; Tajiri, Naoki; Kaneko, Yuji; Borlongan, Cesar V

    2016-03-01

    A close pathological link between stroke brain and heart failure may exist. Here, we discuss relevant laboratory and clinical reports demonstrating neural and cardiac myocyte cell death following ischemic stroke. Although various overlapping risk factors exist between cerebrovascular incidents and cardiac incidents, stroke therapy has largely neglected the cardiac pathological consequences. Recent preclinical stroke studies have implicated an indirect cell death pathway, involving toxic molecules, that originates from the stroke brain and produces cardiac cell death. In concert, previous laboratory reports have revealed a reverse cell death cascade, in that cardiac arrest leads to ischemic cell death in the brain. A deeper understanding of the crosstalk of cell death pathways between stroke and cardiac failure will facilitate the development of novel treatments designed to arrest the global pathology of both diseases thereby improving the clinical outcomes of patients diagnosed with stroke and heart failure.

  10. MultiNeuron - Neural Networks Simulator for Medical, Physiological, and Psychological Applications

    OpenAIRE

    Gorban, A. N.; Rossiyev, D. A.; M. G. Dorrer

    1995-01-01

    This work describes neural software applied in medicine and physiology to: - investigate and diagnose immune deficiencies; diagnose and study allergic and pseudoallergic reactions; forecast emergence or aggravation of stagnant cardiac insufficiency in patients with cardiac rhythm disorders; forecast development of cardiac arrhythmia after myocardial infarction; reveal relationships between the accumulated radiation dose and a set of immunological, hormonal, and bio-chemical parameters of ...

  11. Cardiac MRI in Athletes

    NARCIS (Netherlands)

    Luijkx, T.

    2012-01-01

    Cardiac magnetic resonance imaging (CMR) is often used in athletes to image cardiac anatomy and function and is increasingly requested in the context of screening for pathology that can cause sudden cardiac death (SCD). In this thesis, patterns of cardiac adaptation to sports are investigated with C

  12. CREST: Center for Renewable Energy Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Billo, Richard E. [Univ. of Texas, Arlington, TX (United States); Rajeshwar, Krishnan [Univ. of Texas, Arlington, TX (United States)

    2012-03-20

    The DOE project addressed an approach to the hydrogen economy by researching hydrogen generation from low cost domestic fossil fuel sources. Specifically, the CREST research team developed new processes for extracting hydrogen from southwestern lignite for the production of clean synthetic fuels such as synthetic crude oil that is free of sulfur, carbon dioxide and other pollutants that can be shipped to nearby Texas refineries and power plants for development of transportation fuels and power generation. Research was also undertaken to convert any potential by-products of this process such as CO2 to useful chemicals and gases which may be recycled and used as feedstock to the synthetic fuel process. Finally, to ensure the proposed process is functional beyond bench scale, a detailed design of a pilot plant was completed. The overall project was divided into five tasks including a management task as outlined below.

  13. Medical image of the week: CREST plus ILD

    Directory of Open Access Journals (Sweden)

    Oliva I

    2013-06-01

    Full Text Available A 60 year old female with a history of fibromyalgia presented with dyspnea and skin changes, predominantly on the hands. Physical exam and imaging showed classic findings of limited cutaneous systemic sclerosis (scleroderma CREST syndrome. Calcinosis cutis (Figure 1A, Raynaud’s (not shown but endorsed by the patient, Esophageal dysmotility (Figure 1B, dilated esophagus, Sclerodactyly (Figure 1C, and Teleganectasias (Figure 1D were all present. Ground glass opacities were seen predominantly in the bilateral lower lung zones, associated with increased reticular markings (Figure 2A, and traction bronchiectasis (Figure 2B. Pulmonary involvement is noted in the majority of scleroderma patients. Interstitial lung disease (ILD is common and often portends a poor prognosis.

  14. 76 FR 5580 - Eagle Crest Energy Company; Notice of Applicant-Proposed Water Pipeline Route for the Proposed...

    Science.gov (United States)

    2011-02-01

    ... Energy Regulatory Commission Eagle Crest Energy Company; Notice of Applicant-Proposed Water Pipeline Route for the Proposed Eagle Mountain Pumped Storage Hydroelectric Project and Notice of Public Meetings January 21, 2011. On June 22, 2009, Eagle Crest Energy Company (Eagle Crest or applicant) filed...

  15. A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border.

    Science.gov (United States)

    Reichert, Sabine; Randall, Rebecca A; Hill, Caroline S

    2013-11-01

    During ectodermal patterning the neural crest and preplacodal ectoderm are specified in adjacent domains at the neural plate border. BMP signalling is required for specification of both tissues, but how it is spatially and temporally regulated to achieve this is not understood. Here, using a transgenic zebrafish BMP reporter line in conjunction with double-fluorescent in situ hybridisation, we show that, at the beginning of neurulation, the ventral-to-dorsal gradient of BMP activity evolves into two distinct domains at the neural plate border: one coinciding with the neural crest and the other abutting the epidermis. In between is a region devoid of BMP activity, which is specified as the preplacodal ectoderm. We identify the ligands required for these domains of BMP activity. We show that the BMP-interacting protein Crossveinless 2 is expressed in the BMP activity domains and is under the control of BMP signalling. We establish that Crossveinless 2 functions at this time in a positive-feedback loop to locally enhance BMP activity, and show that it is required for neural crest fate. We further demonstrate that the Distal-less transcription factors Dlx3b and Dlx4b, which are expressed in the preplacodal ectoderm, are required for the expression of a cell-autonomous BMP inhibitor, Bambi-b, which can explain the specific absence of BMP activity in the preplacodal ectoderm. Taken together, our data define a BMP regulatory network that controls cell fate decisions at the neural plate border.

  16. Quill injury - cause od death of captive indian crested porcupine(Hystrix indica, Kerr, 1792

    Directory of Open Access Journals (Sweden)

    Tanja Švara

    2015-03-01

    Full Text Available Indian crested porcupine (Hystrix indica is a member of the family of Old World porcupines (Hystricidae. Its body is covered with multiple layers of quills, which serve for warning and attack if animal is threatened. However, the literature data on injuries caused by Indian crested porcupine are absent. We describe pathomorphological lesions in an Indian crested porcupine from the Ljubljana Zoo, which died after a fight with a younger male that caused a perforative quill injury of the thoracic wall, followed by septicaemia. Macroscopic, microscopic and bacteriological findings were detailed

  17. Ror2 signaling is required for local upregulation of GDF6 and activation of BMP signaling at the neural plate border.

    Science.gov (United States)

    Schille, Carolin; Bayerlová, Michaela; Bleckmann, Annalen; Schambony, Alexandra

    2016-09-01

    The receptor tyrosine kinase Ror2 is a major Wnt receptor that activates β-catenin-independent signaling and plays a conserved role in the regulation of convergent extension movements and planar cell polarity in vertebrates. Mutations in the ROR2 gene cause recessive Robinow syndrome in humans, a short-limbed dwarfism associated with craniofacial malformations. Here, we show that Ror2 is required for local upregulation of gdf6 at the neural plate border in Xenopus embryos. Ror2 morphant embryos fail to upregulate neural plate border genes and show defects in the induction of neural crest cell fate. These embryos lack the spatially restricted activation of BMP signaling at the neural plate border at early neurula stages, which is required for neural crest induction. Ror2-dependent planar cell polarity signaling is required in the dorsolateral marginal zone during gastrulation indirectly to upregulate the BMP ligand Gdf6 at the neural plate border and Gdf6 is sufficient to rescue neural plate border specification in Ror2 morphant embryos. Thereby, Ror2 links Wnt/planar cell polarity signaling to BMP signaling in neural plate border specification and neural crest induction.

  18. Apollo 15 Onboard Photo: Earth's Crest Over the Lunar Horizon

    Science.gov (United States)

    1971-01-01

    This view of the Earth's crest over the lunar horizon was taken during the Apollo 15 lunar landing mission. Apollo 15 launched from the Kennedy Space Center (KSC) on July 26, 1971 via a Saturn V launch vehicle. Aboard was a crew of three astronauts including David R. Scott, Mission Commander; James B. Irwin, Lunar Module Pilot; and Alfred M. Worden, Command Module Pilot. The first mission designed to explore the Moon over longer periods, greater ranges and with more instruments for the collection of scientific data than on previous missions, the mission included the introduction of a $40,000,000 lunar roving vehicle (LRV) that reached a top speed of 16 kph (10 mph) across the Moon's surface. The successful Apollo 15 lunar landing mission was the first in a series of three advanced missions planned for the Apollo program. The primary scientific objectives were to observe the lunar surface, survey and sample material and surface features in a preselected area of the Hadley-Apennine region, setup and activation of surface experiments and conduct in-flight experiments and photographic tasks from lunar orbit. Apollo 15 televised the first lunar liftoff and recorded a walk in deep space by Alfred Worden. Both the Saturn V rocket and the LRV were developed at the Marshall Space Flight Center.

  19. [Incidence of Upupicola upupae in the crest of the hoopoe].

    Science.gov (United States)

    Mester, H

    1977-11-01

    Hopoes belonging to waves of migrants through the Balearic Islands in August and September showed high rates of infestation by Upupicola upupae (77--85 p. c.). The parasite species was almost exclusively confined to the long and mobile feathers of the bird's crown. And at this time of the year the Mallophaga had put their egg cases on the crest feathers, too. A mean of 7 feather-lice was found at this localisation in 8 positive cases sampled. As some of the birds were moulting just these parts of their plumage, a relative high loss of the lice egg masses had to be expected. Evidently, in these cases, the lice didn't adaptively synchronise laying with the period during which moulting occurs. The wings of hopoes are conspiciously barred glossy-black and white. Here the relative dark coloured lice were sitting predominantly in a dark feather area. In these places they were much less visble than on a neighbouring white area. Thus the parasites hide themselves according to their colour.

  20. Distress prevention by grooming others in crested black macaques.

    Science.gov (United States)

    Aureli, Filippo; Yates, Kerrie

    2010-02-23

    Allogrooming is probably one of the most common and most studied social behaviours in a variety of animals. Whereas the short-term benefits for the groomee have often been investigated, little is known about the effects for the groomer. Our study focused on the short-term effects of grooming another group member in seven adult female crested black macaques (Macaca nigra). We found reductions in self-directed behaviour, an indicator of anxiety, and aggressive tendencies soon after grooming, when compared to matched-control periods. These findings can be interpreted as evidence of distress prevention, possibly mediated by an increase in tolerance. Indeed, a former groomee was more likely to be the nearest neighbour of the former groomer in the 10 min after grooming ended. Thus, the role of grooming in short-term distress alleviation can be applicable to the groomer as well as the groomee. These short-term effects, together with the longer-term effects of large and/or strong grooming networks confirm that grooming, as well as receiving grooming, has great importance for social dynamics.

  1. 76 FR 22393 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Cancellation...

    Science.gov (United States)

    2011-04-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy... and Wildlife Service for the proposed Eagle Mountain Pumped Storage Hydroelectric Project....

  2. 77 FR 47628 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting...

    Science.gov (United States)

    2012-08-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy... Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage Hydroelectric...

  3. 2011 update to crested wheatgrass control and monitoring Benton Lake Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Crested wheatgrass (CWG) was planted on Benton Lake NWR at least 30 years ago, presumably to stabilize the soil where it had been disturbed in the process of...

  4. 2010 update to crested wheatgrass control and monitoring Benton Lake Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Crested wheatgrass (CWG) was planted on Benton Lake NWR at least 30 years ago, presumably to stabilize the soil where it had been disturbed in the process of...

  5. 2009 update to crested wheatgrass control and monitoring Benton Lake Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Crested wheatgrass (CWG) was planted on Benton Lake NWR at least 30 years ago, presumably to stabilize the soil where it had been disturbed in the process of...

  6. Sex-related gene and sex identification of Crested Ibis Nipponia nippon (Ciconiiformes: Threskiornithidae)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Crested Ibis (Nipponia nippon) is a critical endangeredspecies of the world. At present, a reintroduction program will be conducted to save this species essentially. However, because the Crested Ibise is a sexual alike bird, it is very difficult to identify the sex from the morphological character. In order to identify the sex easily and select the right individuals for captive breeding and reintroduction, the sex related gene on W chromosome was amplified and the sex of three Crested Ibises were also identified in the present study. The 262bp fragment was also sequenced, and we found that there were 13 different nucleotide sites with 2.25 of transition/transversion based on the comparison with that of the Oriental White Stork. The sequence will also provide a theoretic base for further designing specific primer for sex related gene in the Crested Ibis.

  7. Project proposal : control of crested wheatgrass by relocation of black-tailed prairie dogs

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Proposal for research at the Rocky Mountain Arsenal to examine experimental means of controlling crested wheatgrass while establishing relocated prairie dog colonies...

  8. Static histomorphometry of human iliac crest and vertebral trabecular bone: a comparative study

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Ebbesen, Ebbe Nils; Mosekilde, Lis

    2002-01-01

    the histomorphometric measures at the iliac crest and the vertebral body. The material comprised matched sets of unilateral transiliac crest bone biopsies and lumbar vertebral bodies (L-2) from 24 women (19-96 years) and 24 men (23-95 years) selected from a larger autopsy material. Three female subjects (80, 88, and 90...... years) had a known vertebral fracture of L-2. The iliac crest biopsies and 9-mm-thick mediolateral slices of half the entire vertebral bodies were embedded in methylmetacrylate, stained with aniline blue, and scanned into a computer with a flatbed image scanner at a high resolution. With a custom....... In addition, connectivity density was measured (ConnEulor method). The results showed that the age-related changes in the static histomorphometric measures are generally similar in the iliac crest and the vertebral body, and that these age-related changes are independent of gender. An exception, however...

  9. A Comparative Study of Growth Patterns in Crested Langurs and Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Debra R. Bolter

    2011-01-01

    Full Text Available The physical growth patterns of crested langurs and vervet monkeys are investigated for several unilinear dimensions. Long bone lengths, trunk height, foot length, epiphyseal fusion of the long bones and the pelvis, and cranial capacity are compared through six dental growth stages in male Trachypithecus cristatus (crested langurs and Cercopithecus aethiops (vervet monkeys. Results show that the body elements of crested langurs mature differently than those of vervets. In some dimensions, langurs and vervets grow comparably, in others vervets attain adult values in advance of crested langurs, and in one feature the langurs are accelerated. Several factors may explain this difference, including phylogeny, diet, ecology, and locomotion. This study proposes that locomotor requirements affect differences in somatic growth between the species.

  10. 78 FR 26358 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Science.gov (United States)

    2013-05-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy...), on the Eagle Mountain Pumped Storage Hydroelectric Project. e. All local, state, and federal...

  11. Cardiac tamponade (image)

    Science.gov (United States)

    Cardiac tamponade is a condition involving compression of the heart caused by blood or fluid accumulation in the space ... they cannot adequately fill or pump blood. Cardiac tamponade is an emergency condition that requires hospitalization.

  12. What Is Cardiac Rehabilitation?

    Science.gov (United States)

    ANSWERS by heart Treatments + Tests What Is Cardiac Rehabilitation? A cardiac rehabilitation (rehab) program takes place in a hospital or ... special help in making lifestyle changes. During your rehabilitation program you’ll… • Have a medical evaluation to ...

  13. Crested wheatgrass (Agropyron cristatum) seedings in Western Colorado: What can we learn?

    OpenAIRE

    James Dollerschell; Anna Lincoln; Amanda Clements; M. Nikki Grant-Hoffman

    2012-01-01

    Non-native species have been widely transported, becoming components of ecosystems worldwide. In some cases this can change thestructure and function of an ecosystem. Crested wheatgrass (Agropyron cristatum, Agropyron spp.) was introduced into the Western U.S. inthe late 18th and early 19th centuries. Since introduction, it has been planted in western rangelands currently occupying millions of acres.Crested wheatgrass causes significant changes in areas where it dominates the vegetation, and ...

  14. CREST maps somatic structural variation in cancer genomes with base-pair resolution

    OpenAIRE

    2011-01-01

    We developed CREST (Clipping REveals STructure), an algorithm that uses next-generation sequencing reads with partial alignments to a reference genome to directly map structural variations at the nucleotide level of resolution. Application of CREST to whole-genome sequencing data from five pediatric T-lineage acute lymphoblastic leukemias (T-ALLs) and a human melanoma cell line, COLO-829, identified 160 somatic structural variations. Experimental validation exceeded 80% demonstrating that CRE...

  15. Dance Drama Crested Ibises Staged at National Center for the Performing Arts

    Institute of Scientific and Technical Information of China (English)

    Our; Staff; Reporter

    2015-01-01

    "By the floating mist of the lake,several pink feathered crested ibises are flying slowly across the crimson rays of the setting sun,causing rhythmic ripples with their red feet,quietly and elegantly……"The premiere of a fascinating and poetic dance drama was staged at the Opera House of the National Center for the Performing Arts(NCPA)on December 9,2014.Crested Ibises,jointly

  16. BASIC CRITERIA OF IRANIAN COMMERCIAL TOOTHPASTES AND AN ADA APPROVED BRAND (CREST)

    OpenAIRE

    2003-01-01

    Introduction: The effectiveness of fluorided toothpastes in reducing dental caries is well-documented, However not all fluorided toothpastes are equally effective. The objective of this study was to compare some essential criteria of six different toothpastes manufactured in Iran with one brand of ADA approved toothpaste (Crest). Methods. Six commercial toothpastes produced in Iran named as Paveh, Puneh, Nasim, Darugar, golpasand and saviz were compared with Crest in three subjects as fo...

  17. Cardiac sodium channelopathies

    NARCIS (Netherlands)

    Amin, A.S.; Asghari-Roodsari, A.; Tan, H.L.

    2010-01-01

    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I-Na) during phase 0 of the cardiac action potential. The importance of I-Na for normal cardiac electrical activity is reflected by the high incidence of

  18. STUDY ON THE RELATIONSHIP AMONG THE HEART MERIDIAN,CARDIAC REFERRED PAIN AND THE HEART

    Institute of Scientific and Technical Information of China (English)

    RONG Peijing; ZHU Bing

    2002-01-01

    @@ Purpose: The referred pain of the somatic structure, a response of the visceralgia, is often seen in clinic. But its underlying mechanisms are poorly understood. It is interested that cardiac referred pain often appears along the running course of the Heart Meridian (HM), while acupuncture of the acupoints of HM can effectively relieve cardiac pain. In the present study, the neural basis of the relationship among the HM, cardiac referred pain and the heart is investigated by using tri-labeling technique.

  19. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development

    NARCIS (Netherlands)

    T. Baardman (Taco); M.V. Zwier (Mathijs V.); L.J. Wisse (Lambertus); A.C. Gittenberger-De Groot (Adriana); W.S. Kerstjens-Frederikse (Wilhelmina); R.M.W. Hofstra (Robert); A. Jurdzinski (Angelika); B.P. Hierck (Beerend); M.R.M. Jongbloed (Monique); R.M.F. Berger (Rolf); T. Plösch (Torsten); M.C. DeRuiter (Marco)

    2016-01-01

    textabstractLipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the

  20. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development

    NARCIS (Netherlands)

    Baardman, Maria E.; Zwier, Mathijs V.; Wisse, Lambertus J.; Gittenberger-de Groot, Adriana C.; Kerstjens-Frederikse, Wilhelmina S.; Hofstra, Robert M. W.; Jurdzinski, Angelika; Hierck, Beerend P.; Jongbloed, Monique R. M.; Berger, Rolf M. F.; Plosch, Torsten; DeRuiter, Marco C.

    2016-01-01

    Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the cardiovascul

  1. Heart-brain interactions in cardiac arrhythmia.

    Science.gov (United States)

    Taggart, P; Critchley, H; Lambiase, P D

    2011-05-01

    This review examines current knowledge of the effects of higher brain centres and autonomic control loops on the heart with particular relevance to arrhythmogenesis. There is now substantial evidence that higher brain function (cortex), the brain stem and autonomic nerves affect cardiac electrophysiology and arrhythmia, and that these may function as an interactive system. The roles of mental stress and emotion in arrhythmogenesis and sudden cardiac death are no longer confined to the realms of anecdote. Advances in molecular cardiology have identified cardiac cellular ion channel mutations conferring vulnerability to arrhythmic death at the myocardial level. Indeed, specific channelopathies such as long QT syndrome and Brugada syndrome are selectively sensitive to either sympathetic or vagal stimulation. There is increasing evidence that afferent feedback from the heart to the higher centres may affect efferent input to the heart and modulate the cardiac electrophysiology. The new era of functional neuroimaging has identified the central neural circuitry in this brain-heart axis. Since precipitants of sudden fatal arrhythmia are frequently environmental and behavioural, central pathways translating stress into autonomic effects on the heart might be considered as therapeutic targets. These brain-heart interactions help explain the apparent randomness of sudden cardiac events and provide new insights into future novel therapies to prevent sudden death.

  2. Marek’s disease in the holland white crested chickens

    Directory of Open Access Journals (Sweden)

    Spalević Ljiljana

    2016-01-01

    Full Text Available Marek’s disease is a viral lymphoproliferative disease of poultry characterized by the creation of lymphoma in muscle, skin, eye or internal organs. Virus maturing into infective forms in follicular epithelium from where enters in the external environment where long time remains infectious. Poultry are infected by dust and remains the holder of the virus throughout their lives. The virus is transmitted vertically. The disease can occur in three forms: nervous, visceral and skin. Affected poultry may have any shape or combination of these. The aim of this study was to determine the cause of the disorder the health status in the flock of holland white crested chickens. Flock had 25 chickens whose ages ranged from 4-16 weeks. Observation, we noticed that the chickens are cachectic, showing signs of sporadic diarrhea and died 3 hens and 2 roosters. Pathoanatomical examination is ascertained changes in certain internal organs. The liver was enlarged with lymphoid proliferate on the surface and in the parenchyma, spleen increased several times and marbled, glandular stomach (proventriculus dilated with petechial hemorrhages on mucose. Changed organs was examination histopathological. In the liver were observed multifocal lymphoid infiltration with subsequent atrophy of the parenchyma, in addition to spleen lymphoid proliferation heterophyllus and histiocytic infiltrates, in proventriculus lymphoblastic infiltration with congestion of capillaries and small haemorrhages. In samples pathologically altered organs PCR method proved the genome of Marek’s disease virus serotype 1 . Based on these results we concluded that the livestock were sick from Marek’s disease, which is expressed in visceral form.

  3. The Investigation of EM Scattering from the Time-Varying Overturning Wave Crest Model by the IEM

    Directory of Open Access Journals (Sweden)

    Xiao Meng

    2016-01-01

    Full Text Available Investigation of the electromagnetic (EM scattering of time-varying overturning wave crests is a worthwhile endeavor. Overturning wave crest is one of the reasons of sea spike generation, which increases the probability of false radar alarms and reduces the performance of multitarget detection in the environment. A three-dimensional (3D time-varying overturning wave crest model is presented in this paper; this 3D model is an improvement of the traditional two-dimensional (2D time-varying overturning wave crest model. The integral equation method (IEM was employed to investigate backward scattering radar cross sections (RCS at various incident angles of the 3D overturning wave crest model. The super phenomenon, where the intensity of horizontal polarization scattering is greater than that of vertical polarization scattering, is an important feature of sea spikes. Simulation results demonstrate that super phenomena may occur in some time samples as variations in the overturning wave crest.

  4. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  5. Predictive Modeling of Cardiac Ischemia

    Science.gov (United States)

    Anderson, Gary T.

    1996-01-01

    The goal of the Contextual Alarms Management System (CALMS) project is to develop sophisticated models to predict the onset of clinical cardiac ischemia before it occurs. The system will continuously monitor cardiac patients and set off an alarm when they appear about to suffer an ischemic episode. The models take as inputs information from patient history and combine it with continuously updated information extracted from blood pressure, oxygen saturation and ECG lines. Expert system, statistical, neural network and rough set methodologies are then used to forecast the onset of clinical ischemia before it transpires, thus allowing early intervention aimed at preventing morbid complications from occurring. The models will differ from previous attempts by including combinations of continuous and discrete inputs. A commercial medical instrumentation and software company has invested funds in the project with a goal of commercialization of the technology. The end product will be a system that analyzes physiologic parameters and produces an alarm when myocardial ischemia is present. If proven feasible, a CALMS-based system will be added to existing heart monitoring hardware.

  6. Assessing Donor Site Complications of Iliac Crest Bone Graft in Treatment of Scaphoid Nonunion

    Directory of Open Access Journals (Sweden)

    Davod Jafari

    2016-07-01

    Full Text Available Background Bone grafting is a common surgical technique to augment bone regeneration in orthopedic surgery. Autologous bone graft harvesting is the reliable treatment option and iliac crest is the most common harvesting site for healing bone fractures. However, the results of iliac crest bone graft harvesting are associated with morbidity and a number of complications. Objectives The aim of this study was to assess donor site complications of scaphoid nonunion, to find clinical outcomes and the impact of iliac crest bone graft on age, gender, pain, numbness, itching, nerve injury and scar appearance of patients. Methods In a prospective review of 61 cases of iliac crest bone graft procedures at the Shafa hospital from 2013 to 2014, complications including pain, infection, hematoma, stress fracture, hypertrophic scars, numbness area and itching were assessed clinically. Results Pain identified as the most common complication. The most common complications following postoperative pain at the donor site that reduced after six weeks were: numbness 3.27%, unsatisfactory scar appearance 3.27% and itching discomfort 1.63%. Conclusions Harvesting of iliac crest bone graft can be the ideal way to prepare graft procedures required surgery scaphoid nonunion fractures with minimal complications. Nevertheless, with an adequate preoperative planning and appropriate surgical technique, the prevalence of these complications can be reduced.

  7. Adenocarcinoma of the third portion of the duodenum in a man with CREST syndrome

    Directory of Open Access Journals (Sweden)

    Fragulidis Georgios

    2008-10-01

    Full Text Available Abstract Background CREST (Calcinosis, Raynaud's phenomenon, Esophageal dysmotility, Sclerodactyly and Telangiectasias syndrome has been rarely associated with other malignancies (lung, esophagus.This is the first report of a primary adenocarcinoma of the third portion of the duodenum in a patient with CREST syndrome. Case presentation A 54-year-old male patient with CREST syndrome presented with colicky postprandial pain of the upper abdomen, diminished food uptake and a 6-Kg-body weight loss during the previous 2 months. An ulcerative lesion in the third portion of the duodenum was revealed during duodenoscopy, with a diagnosis of adenocarcinoma on biopsy specimen histology. The patient underwent a partial pancreatoduodenectomy. No adjuvant therapy was instituted and follow-up is negative for local recurrence or metastases 21 months postoperatively. Conclusion CREST syndrome has been associated with colon cancer, gastric polyps, familial adenomatous polyposis (FAP syndrome and Crohn's disease; however, this is the first report of a primary adenocarcinoma of the duodenum in a patient with CREST syndrome. However, any etiologic relationship remains to be further investigated.

  8. Pig Induced Pluripotent Stem Cell-Derived Neural Rosettes Parallel Human Differentiation Into Sensory Neural Subtypes.

    Science.gov (United States)

    Webb, Robin L; Gallegos-Cárdenas, Amalia; Miller, Colette N; Solomotis, Nicholas J; Liu, Hong-Xiang; West, Franklin D; Stice, Steven L

    2017-04-01

    The pig is the large animal model of choice for study of nerve regeneration and wound repair. Availability of porcine sensory neural cells would conceptually allow for analogous cell-based peripheral nerve regeneration in porcine injuries of similar severity and size to those found in humans. After recently reporting that porcine (or pig) induced pluripotent stem cells (piPSCs) differentiate into neural rosette (NR) structures similar to human NRs, here we demonstrate that pig NR cells could differentiate into neural crest cells and other peripheral nervous system-relevant cell types. Treatment with either bone morphogenetic protein 4 or fetal bovine serum led to differentiation into BRN3A-positive sensory cells and increased expression of sensory neuron TRK receptor gene family: TRKA, TRKB, and TRKC. Porcine sensory neural cells would allow determination of parallels between human and porcine cells in response to noxious stimuli, analgesics, and reparative mechanisms. In vitro differentiation of pig sensory neurons provides a novel model system for neural cell subtype specification and would provide a novel platform for the study of regenerative therapeutics by elucidating the requirements for innervation following injury and axonal survival.

  9. Marketing cardiac CT programs.

    Science.gov (United States)

    Scott, Jason

    2010-01-01

    There are two components of cardiac CT discussed in this article: coronary artery calcium scoring (CACS) and coronary computed tomography angiography (CCTA).The distinctive advantages of each CT examination are outlined. In order to ensure a successful cardiac CT program, it is imperative that imaging facilities market their cardiac CT practices effectively in order to gain a competitive advantage in this valuable market share. If patients receive quality care by competent individuals, they are more likely to recommend the facility's cardiac CT program. Satisfied patients will also be more willing to come back for any further testing.

  10. Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2

    Science.gov (United States)

    Ziemke, Robert A.

    2013-01-01

    In June 2011, the multi-university sponsored Cosmic Ray Electron Synchrotron Telescope (CREST) has undergone thermal-vacuum qualification testing at the NASA Glenn Research Center (GRC), Plum Brook Station, Sandusky, Ohio. The testing was performed in the B- 2 Space Propulsion Facility vacuum chamber. The CREST was later flown over the Antarctic region as the payload of a stratospheric balloon. Solar simulation was provided by a system of planar infrared lamp arrays specifically designed for CREST. The lamp arrays, in conjunction with a liquid-nitrogen-cooled cryoshroud, achieved the required thermal conditions for the qualification tests. This report focuses on the design and analysis of the planar arrays based on first principles. Computational spreadsheets are included in the report.

  11. Age-related plasma chemistry findings in the buff-crested bustard (Eupodotis ruficrista gindiana).

    Science.gov (United States)

    Bailey, T A; Wernery, U; Howlett, J; Naldo, J; Samour, J H

    1998-12-01

    Blood samples were obtained from adult (> 1.5 years) and juvenile (2-8 weeks, 9-16 weeks and 17-24 weeks) captive buff-crested bustards (Eupodotis ruficrista gindiana) to study age-related changes. A total of twelve different tests were conducted using a Hitachi 90011 wet chemistry analyzer. A comparison of the values obtained was made between adult and juvenile buff-crested bustards and from the literature with other bustard species. Significant differences between adult and juvenile buff-crested bustards were found for glucose, uric acid, total protein, alkaline phosphatase, asparatate amino transferase and calcium. The results obtained from this study provide blood chemistry values for this species and demonstrate age-related differences between adult and juvenile birds.

  12. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    Energy Technology Data Exchange (ETDEWEB)

    Colleoni, Silvia, E-mail: silviacolleoni@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Galli, Cesare [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Dipartimento Clinico Veterinario, Universita di Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (Italy); Giannelli, Serena G. [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Armentero, Marie-Therese; Blandini, Fabio [Laboratory of Functional Neurochemistry, Interdepartmental Research Center for Parkinson' s Disease, Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia (Italy); Broccoli, Vania, E-mail: broccoli.vania@hsr.it [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Lazzari, Giovanna, E-mail: giovannalazzari@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy)

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  13. Conditional short-crested waves in shallow water and with superimposed current

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2002-01-01

    For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes´ wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean...... wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected linear short-crested wave riding on a uniform current is given. The analysis is based on the conventional shallow water Airy wave theory and the direction of the main wind...

  14. Density of bunches of native bluebunch wheatgrass and alien crested wheatgrass

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, W.H.

    1985-10-01

    The density of bunches of bluebunch wheatgrass in a natural undisturbed stand averaged 3.28 per m/sup 2/ as compared to 2.96 per m/sup 2/ for a nearby stand of crested wheatgrass that was planted 30 years ago. Bunch density was similar in both stands indicating that spacing is a response to an environment deficient in soil water. Bunches of crested wheatgrass on the average weighed 3.5 times more than bunches of bluebunch wheatgrass and they also produced a greater weight of seedheads.

  15. Conditional Second Order Short-crested Water Waves Applied to Extreme Wave Episodes

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2005-01-01

    A derivation of the mean second order short-crested wave pattern and associated wave kinematics, conditional on a given magnitude of the wave crest, is presented. The analysis is based on the second order Sharma and Dean finite water wave theory. A comparison with a measured extreme wave profile......, the Draupner New Year Wave, shows a good agreement in the mean, indicating that this second order wave can be a good identifier of the shape and occurrence of extreme wave events. A discussion on its use as an initial condition for a fully non-linear three-dimensional surface wave analysis is given....

  16. Nuchal crest avulsion fracture in 2 horses : a cause of headshaking : clinical communication

    Directory of Open Access Journals (Sweden)

    A. Voigt

    2009-05-01

    Full Text Available The medical records of 2 Thoroughbred horses that developed headshaking after blunt trauma to the occipital region are reviewed. The history, signalment, clinical signs, diagnostic methods, diagnosis and treatment were recorded in each case. Both horses displayed headshaking, while one horse repeatedly lifted its upper lip and pawed excessively at the ground. In both horses, diagnostic imaging of the occipital region revealed avulsion fragments of the nuchal crest and a nuchal desmitis in association with hyperfibrinogenaemia. The presence of an avulsion fragment of the nuchal crest with associated nuchal desmitis should be considered in horses presenting with headshaking and may respond favourably to conservative therapy.

  17. Cardiac Procedures and Surgeries

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Cardiac Procedures and Surgeries Updated:Sep 16,2016 If you've had ... degree of coronary artery disease (CAD) you have. Cardiac Procedures and Surgeries Angioplasty Also known as Percutaneous Coronary Interventions [PCI], ...

  18. [Advances in cardiac pacing].

    Science.gov (United States)

    de Carranza, María-José Sancho-Tello; Fidalgo-Andrés, María Luisa; Ferrer, José Martínez; Mateas, Francisco Ruiz

    2012-01-01

    This article contains a review of the current status of remote monitoring and follow-up involving cardiac pacing devices and of the latest developments in cardiac resynchronization therapy. In addition, the most important articles published in the last year are discussed.

  19. Incisional Colopexy for Treatment of Chronic, Recurrent Colocloacal Prolapse in a Sulphur-Crested Cockatoo (Cacatua galerita)

    NARCIS (Netherlands)

    van Zeeland, Yvonne; Schoemaker, Nico; van Sluijs, Freek

    2014-01-01

    Objective To report a surgical technique for treatment of chronic, recurrent cloacal prolapse in a sulphur-crested cockatoo (Cacatua galerita). Study Design Clinical report Animals Sulphur-crested cockatoo (n = 1) Methods The bird was admitted with a 2-year history of periodic lethargy, decreased ap

  20. 76 FR 30757 - Endangered and Threatened Wildlife and Plants; Listing the Salmon-Crested Cockatoo as Threatened...

    Science.gov (United States)

    2011-05-26

    ... and Plant Health Inspection Service requires veterinary health certificates and health inspections for... salmon-crested cockatoo is endemic to the island of Seram (alternate spelling, Ceram), with records from...; Isherwood et al. 1998, p. 18). For a listing of specific distribution records of the salmon-crested...

  1. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  2. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  3. Interaction among cardiac, respiratory, and locomotor rhythms during cardiolocomotor synchronization.

    Science.gov (United States)

    Niizeki, K; Kawahara, K; Miyamoto, Y

    1993-10-01

    The nature of entrainment between cardiac and locomotor rhythms was investigated while normal human subjects walked or ran on a treadmill. To detect the incidence of entrainment occurrence, the phase relationships among cardiac, respiratory, and locomotor rhythms were analyzed. The phase relationship between heartbeats and gait signals showed that entrainment of cardiac rhythm to locomotor rhythm occurred in all subjects at one or more treadmill speeds. To elucidate interactions among cardiac, respiratory, and locomotor rhythms during the cardiolocomotor synchronization, spectral and coherence analyses were done for these three rhythms. Spectral and coherence analyses on fluctuations in the heart period and respiratory rhythms revealed that the strength of coupling between cardiac and respiratory rhythms decreased in the presence of cardiolocomotor synchronization. In addition, the coupling of cardiac and locomotor rhythms appeared to induce dissociation of coupling between respiratory and locomotor rhythms. These results were similar to those observed when stepping was voluntarily synchronized with cardiac rhythm. Possible mechanisms to explain coordination and interaction among the neural oscillators innervating these three rhythms are discussed.

  4. T-CREST: Time-predictable multi-core architecture for embedded systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Abbaspourseyedi, Sahar; Jordan, Alexander

    2015-01-01

    Real-time systems need time-predictable platforms to allow static analysis of the worst-case execution time (WCET). Standard multi-core processors are optimized for the average case and are hardly analyzable. Within the T-CREST project we propose novel solutions for time-predictable multi-core ar...

  5. Overtopping Flow Impact on a Vertical Wall on a Dike Crest

    NARCIS (Netherlands)

    Chen, X.; Hofland, B.; Altomare, C.; Uijttewaal, J.S.W.

    2014-01-01

    In this paper the impact process and mechanism of overtopping flow on a vertical wall on a dike crest are investigated by means of a series of physical model tests. A double-peaked force was recognized in a time series of an overtoping flow. Four stages were summarized for the whole overtopping flow

  6. 77 FR 43280 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Science.gov (United States)

    2012-07-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy... Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage Hydroelectric Project. e....

  7. Nesting habitat requirements and nestling diet in the Mediterranean populations of Crested Tits Lophophanes cristatus

    NARCIS (Netherlands)

    Atienzar, F.; Barba, E.; Holleman, L.J.M.; Belda, E.J.

    2009-01-01

    Most bird species show specific habitat requirements for breeding and feeding. We studied the pattern of habitat occupation, nestling diet and breeding performance of Crested Tits Lophophanes cristatus in a “typical” (coniferous) and an “atypical” (Holm Oak Quercus ilex) forest in eastern Spain duri

  8. Crew Escape Technologies (CREST) Mission Area Requirements Study Current and Future Crew Escape Requirements

    Science.gov (United States)

    1992-02-01

    anthropometry and the type and location of the equipment worn by the test suboect. Based upon the data taken In the early nineteen sixties it was...3.1.1 of the CREST Specification describes the system as having -Flow stagnation fence to reduce windblast Induced loads on the head, torso and upper

  9. Nest box use and productivity of great crested flycatchers in prescribed-burned longleaf pine forests

    Science.gov (United States)

    White, D.H.; Seginak, J.T.

    2000-01-01

    Managing for the endangered Red-cockaded Woodpecker (Picoides borealis) on federal lands requires burning large tracts of mature pine forests every 3-5 yr. Many cavity trees that serve as potential nest sites for primary and secondary hole-nesting birds are destroyed by fire. We assessed the efficacy of a nest box program for the Great Crested Flycatcher (Myiarchus crinitus) at Carolina Sandhills National Wildlife Refuge, an area intensively managed for Red-cockaded Woodpeckers. During 1996-1998, we installed and monitored 330 (30 in each of 11 sites) nest boxes in mature (>60 yr) longleaf pine (Pinus palustris) tracts that were burned either in April-June (warm season) or December-March (cool season). Prescribed-burned sites were nearly devoid of snags; we estimated only 0.8/ ha in cool-season burns and 1.7/ha in warm-season burns. Great Crested Flycatchers built nests in 20% of the boxes available to them. Clutch sizes were larger in warm-season burns than in cool-season burns, but fledging success (fledglings/nest hatching -1 egg) was lower. Twenty-two of 59 Great Crested Flycatcher nests were depredated and the proportions in each burn class were similar. We recommend the installation of nest boxes for Great Crested Flycatchers in prescribed-burned pine forests, but additional research is needed in these habitats on nest depredation rates and causes.

  10. A numerical study of lowest-order short-crested water wave instabilities

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.

    2005-01-01

    This work presents the first numerical simulations of the long-term evolution of doubly-periodic short-crested wave instabilities, which are the simplest cases involving the three-dimensional instability of genuinely three-dimensional progressive water waves. The simulated evolutions reveal...

  11. Decline of traditional rice farming constrains the recovery of the endangered Asian crested ibis (Nipponia nippon).

    Science.gov (United States)

    Sun, Yiwen; Wang, Tiejun; Skidmore, Andrew K; Wang, Qi; Ding, Changqing

    2015-12-01

    Traditional agriculture benefits a rich diversity of plants and animals. The winter-flooded rice fields in the Qinling Mountains, China, are the last refuge for the endangered Asian crested ibis (Nipponia nippon), and intensive efforts have been made to protect this anthropogenic habitat. Analyses of multi-temporal satellite data indicate that winter-flooded rice fields have been continuously reduced across the current range of crested ibis during the past two decades. The rate of loss of these fields in the core-protected areas has unexpectedly increased to a higher level than that in non-protected areas in the past decade. The best fit (R (2) = 0.87) numerical response model of the crested ibis population shows that a reduction of winter-flooded rice fields decreases population growth and predicts that the population growth will be constrained by the decline of traditional winter-flooded rice fields in the coming decades. Our findings suggest that the decline of traditional rice farming is likely to continue to pose a threat to the long-term survival and recovery of the crested ibis population in China.

  12. CSUB CREST Research on Climate Change and the San Joaquin Valley, CA

    Science.gov (United States)

    Krugh, W. C.; Negrini, R. M.; Baron, D.; Gillespie, J.; Horton, R. A.; Montoya, E.; Cruz-Boone, C.; Andrews, G. D.; Guo, J.

    2015-12-01

    As part of the NSF-supported Centers for Excellence in Science and Technology (CREST), student and faculty researchers at California State University, Bakersfield (CSUB) have been investigating the regional impacts of climate change as well as evaluating the potential of local contributions to its abatement. Highlights of this research include; 1) the development of a high-resolution climate record from Tulare Lake sediments that spans the past 20,000 years, 2) the quantitative analysis and prediction of climate change impacts on Sierra Nevada snowpack, 3) the detailed subsurface characterization of San Joaquin Valley oilfields targeted for CO2 sequestration, and 4) the evaluation of proposed host rock suitability under simulated CO2 injection conditions. To date, CSUB CREST supported research has resulted in 26 contributions to peer-reviewed journals (currently published or in-review). A primary goal of CSUB CREST is to improve the recruitment, retention, and success of students from the local community, the majority of whom are from backgrounds under-represented in STEM disciplines. More than 28 students have been directly involved in the basic and applied research projects supported by this program. The majority of these students have received, or are on track to receive, an M.S. degree and have ultimately gained employment in a STEM field or been accepted into a Ph.D. program. This presentation, and others in this session, will focus on the accomplishments, challenges, and strategies for success gleaned from CSUB CREST Phase 1.

  13. 78 FR 25263 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting With...

    Science.gov (United States)

    2013-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy... Power Act), on the Eagle Mountain Pumped Storage Hydroelectric Project. e. All local, state, and...

  14. 77 FR 5505 - Eagle Crest Energy Company; Notice of Availability of the Final Environmental Impact Statement...

    Science.gov (United States)

    2012-02-03

    ... Energy Regulatory Commission Eagle Crest Energy Company; Notice of Availability of the Final Environmental Impact Statement for the Eagle Mountain Pumped Storage Hydroelectric Project In accordance with... of Energy Projects has reviewed the application for license for the Eagle Mountain Pumped...

  15. 76 FR 1149 - Eagle Crest Energy Company; Notice of Availability of the Draft Environmental Impact Statement...

    Science.gov (United States)

    2011-01-07

    ... Federal Energy Regulatory Commission Eagle Crest Energy Company; Notice of Availability of the Draft Environmental Impact Statement for the Eagle Mountain Pumped Storage Hydroelectric Project and Notice of Public... for the Eagle Mountain Pumped Storage Hydroelectric Project (FERC No. 13123), located on the site...

  16. Pelvic instability after bone graft harvesting from posterior iliac crest: report of nine patients

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.; Pathria, M.; Jacobson, J. [Dept. of Radiology, Univ. of California, San Diego, CA (United States); Resnick, D. [Dept. of Radiology, Veterans Affairs Medical Center, San Diego, CA (United States)

    2001-05-01

    Objective. To report the imaging findings in nine patients who developed pelvic instability after bone graft harvest from the posterior aspect of the iliac crest.Design and patients. A retrospective study was performed of the imaging studies of nine patients who developed pelvic pain after autologous bone graft was harvested from the posterior aspect of the ilium for spinal arthrodesis. Plain films, bone scans, and CT and MR examinations of the pelvis were reviewed. Pertinent aspects of the clinical history of these patients were noted, including age, gender and clinical symptoms.Results. The age of the patients ranged from 52 to 77 years (average 69 years) and all were women. The bone graft had been derived from the posterior aspect of the iliac crest about the sacroiliac joint. All patients subsequently developed subluxation of the pubic symphysis. Eight patients had additional insufficiency fractures of the iliac crest adjacent to the bone graft donor site, and five patients also revealed subluxation of the sacroiliac joint. Two had insufficiency fractures of the sacrum and one had an additional fracture of the pubic ramus.Conclusions. Pelvic instability is a potential complication of bone graft harvesting from the posterior aspect of the iliac crest. The pelvic instability is manifested by insufficiency fractures of the ilium and subluxation of the sacroiliac joints and pubic symphysis. (orig.)

  17. Computerized determination of 3-D connectivity density in human iliac crest bone biopsies

    DEFF Research Database (Denmark)

    Thomsen, J.S.; Mosekilde, Li.; Barlach, J.;

    1996-01-01

    Combining the physical disector principle with an algorithm for automatic non-linear alignment of disector pairs we have developed a software system for direct measurement of 3D connectivity densities in iliac crest bone biopsies. The method was applied to biopsies from 14 non-selected autopsy...

  18. Static histomorphometry of human iliac crest and vertebral trabecular bone: a comparative study.

    Science.gov (United States)

    Thomsen, J S; Ebbesen, E N; Mosekilde, Li

    2002-01-01

    We recently developed a new, rapid method for conducting static histomorphometry on large histologic sections. This method has now been applied on both iliac crest and lumbar vertebral bone to compare the age-related changes at these two skeletal sites and to investigate the correlation between the histomorphometric measures at the iliac crest and the vertebral body. The material comprised matched sets of unilateral transiliac crest bone biopsies and lumbar vertebral bodies (L-2) from 24 women (19-96 years) and 24 men (23-95 years) selected from a larger autopsy material. Three female subjects (80, 88, and 90 years) had a known vertebral fracture of L-2. The iliac crest biopsies and 9-mm-thick mediolateral slices of half the entire vertebral bodies were embedded in methylmetacrylate, stained with aniline blue, and scanned into a computer with a flatbed image scanner at a high resolution. With a custom-made computer program the following static histomorphometric measures were determined: trabecular bone volume; marrow and bone space star volume; node-strut analysis; trabecular bone pattern factor; trabecular thickness; trabecular number; trabecular separation; and anisotropy of bone and marrow phase. In addition, connectivity density was measured (ConnEulor method). The results showed that the age-related changes in the static histomorphometric measures are generally similar in the iliac crest and the vertebral body, and that these age-related changes are independent of gender. An exception, however, is connectivity density, where the age-related changes are similar for women and men in the vertebral body but significantly different in the iliac crest. Furthermore, the results showed that the histomorphometric measures were weakly intercorrelated between the iliac crest and the vertebral body, despite the generally similar pattern in age-related changes at these two skeletal sites. The highest correlation coefficient was found for trabecular separation (Tb.Sp; r = 0

  19. Cardiac tumors: echo assessment.

    Science.gov (United States)

    Mankad, Rekha; Herrmann, Joerg

    2016-12-01

    Cardiac tumors are exceedingly rare (0.001-0.03% in most autopsy series). They can be present anywhere within the heart and can be attached to any surface or be embedded in the myocardium or pericardial space. Signs and symptoms are nonspecific and highly variable related to the localization, size and composition of the cardiac mass. Echocardiography, typically performed for another indication, may be the first imaging modality alerting the clinician to the presence of a cardiac mass. Although echocardiography cannot give the histopathology, certain imaging features and adjunctive tools such as contrast imaging may aid in the differential diagnosis as do the adjunctive clinical data and the following principles: (1) thrombus or vegetations are the most likely etiology, (2) cardiac tumors are mostly secondary and (3) primary cardiac tumors are mostly benign. Although the finding of a cardiac mass on echocardiography may generate confusion, a stepwise approach may serve well practically. Herein, we will review such an approach and the role of echocardiography in the assessment of cardiac masses.

  20. Oral Crest Lengthening for Increasing Removable Denture Retention by Means of CO2 Laser

    Directory of Open Access Journals (Sweden)

    Samir Nammour

    2014-01-01

    Full Text Available The loss of teeth and their replacement by artificial denture is associated with many problems. The denture needs a certain amount of ridge height to give it retention and a long-term function. Crest lengthening procedures are performed to provide a better anatomic environment and to create proper supporting structures for more stability and retention of the denture. The purpose of our study is to describe and evaluate the effectiveness of CO2 laser-assisted surgery in patients treated for crest lengthening (vestibular deepening. There have been various surgical techniques described in order to restore alveolar ridge height by pushing muscles attaching of the jaws. Most of these techniques cause postoperative complications such as edemas, hemorrhage, pain, infection, slow healing, and rebound to initial position. Our clinical study describes the treatment planning and clinical steps for the crest lengthening with the use of CO2 laser beam (6–15 Watts in noncontact, energy density range: 84.92–212.31 J/cm2, focus, and continuous mode with a focal point diameter of 0.3 mm. At the end of each surgery, dentures were temporarily relined with a soft material. Patients were asked to mandatorily wear their relined denture for a minimum of 4–6 weeks and to remove it for hygienic purposes. At the end of each surgery, the deepest length of the vestibule was measured by the operator. No sutures were made and bloodless wounds healed in second intention without grafts. Results pointed out the efficiency of the procedure using CO2 laser. At 8 weeks of post-op, the mean of crest lengthening was stable without rebound. Only a loss of 15% was noticed. To conclude, the use of CO2 laser is an effective option for crest lengthening.

  1. Novel structural components of the ventral disc and lateral crest in Giardia intestinalis.

    Directory of Open Access Journals (Sweden)

    Kari D Hagen

    2011-12-01

    Full Text Available Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment.

  2. A pilot study investigating the utilization of crest pads for treatment of toe callus and ulceration.

    Science.gov (United States)

    Melo, Monica; Bernecker, Tricia; McCullough, James; Hong, John; Trumbauer, Jane Scott; Miller, Mary Ellen

    2015-12-01

    Patients with lesser-toe deformities are at increased risk of developing calluses and ulcers on the distal ends of the affected digits because of the increased pressures applied to these areas. The number of diabetic patients in the United States continues to increase, along with associated comorbidities such as peripheral vascular disease and peripheral neuropathy. These conditions predispose patients to developing foot ulcerations, especially if foot deformities are present. Crest pads are a simple-to-make, inexpensive option to treat calluses and ulcerations on the distal ends of digits; however, there is no research available that support their use. Crest pads consist of rolled gauze covered in moleskin, with a large opening that fits over several toes and lies on the dorsal aspect of the foot, with the padded portion resting under the toes. Over several days of use, the pad molds to the plantar aspect of the toes, offloading pressure from the distal end of the affected digit(s). The sample was obtained through a retrospective chart review of patients identified as having had at least one nail care visit and at least one follow-up visit at a vascular surgery practice between August 2011 and December 2014. Potential subjects with toe deformities who presented with callus or ulcer on the distal end of a digit were considered for inclusion, if they received a crest pad as part of their treatment plan. The scholarly project was a preintervention or postintervention design with subjects acting as their own controls. McNemar's test was used to analyze the results which were statistically significant (P ulcer improvement following the crest pad intervention. The results of this scholarly project support the use of crest pads in patients with lesser-toe deformities to treat distal toe calluses and/or ulcerations.

  3. Prospective use of skin-derived precursors in neural regeneration

    Institute of Scientific and Technical Information of China (English)

    LU Xiao-cheng; TAO Yi; LI Li-xin

    2012-01-01

    Objective To review recent studies concerning the origins of skin-derived precursors (SKPs),their differentiation characteristics,and their potential application in neural regenerative medicine.Data sources Data were retrieved from studies reported in PubMed published between April,1974 and June,2012.The search terms used were "skin-derived precursors","stem cells",and "neural diseases".Study selection Articles were included in the review if they were relevant to SKPs as stem cells,as well as their applications in neural regenerative medicine,such as in the treatment of spinal cord injury,Parkinson's disease,spinal muscular atrophy and Shah-Waardenburg syndrome.Results SKPs are a novel population of neural crest-derived precursors that arise during embryogenesis and persist into adulthood.They can generate both neural cells and mesodermal lineage cells (including smooth muscle cells and adipocytes).Compared with other stem cells,SKPs are abundant in adult skin,can differentiate easily into neural cells,and are not associated with any ethical controversies.Conclusion SKPs may provide an alternative source of stem cells to embryonic stem cells for transplantation therapy for neurological diseases.

  4. Molecular Basis of Cardiac Myxomas

    Directory of Open Access Journals (Sweden)

    Pooja Singhal

    2014-01-01

    Full Text Available Cardiac tumors are rare, and of these, primary cardiac tumors are even rarer. Metastatic cardiac tumors are about 100 times more common than the primary tumors. About 90% of primary cardiac tumors are benign, and of these the most common are cardiac myxomas. Approximately 12% of primary cardiac tumors are completely asymptomatic while others present with one or more signs and symptoms of the classical triad of hemodynamic changes due to intracardiac obstruction, embolism and nonspecific constitutional symptoms. Echocardiography is highly sensitive and specific in detecting cardiac tumors. Other helpful investigations are chest X-rays, magnetic resonance imaging and computerized tomography scan. Surgical excision is the treatment of choice for primary cardiac tumors and is usually associated with a good prognosis. This review article will focus on the general features of benign cardiac tumors with an emphasis on cardiac myxomas and their molecular basis.

  5. Cardiac Tumors; Tumeurs cardiaques

    Energy Technology Data Exchange (ETDEWEB)

    Laissy, J.P.; Fernandez, P. [Centre Hospitalier Universitaire Bichat Claude Bernard, Service d' Imagerie, 76 - Rouen (France); Mousseaux, E. [Hopital Europeen Georges Pompidou (HEGP), Service de Radiologie Cardio Vasculaire et Interventionnelle, 75 - Paris (France); Dacher, J.N. [Centre Hospitalier Universitaire Charles Nicolle, 75 - Rouen (France); Crochet, D. [Centre Hospitalier Universitaire, Hopital Laennec, Centre Hemodynamique, Radiologie Thoracique et Vasculaire, 44 - Nantes (France)

    2004-04-01

    Metastases are the most frequent tumors of the heart even though they seldom are recognized. Most primary cardiac tumors are benign. The main role of imaging is to differentiate a cardiac tumor from thrombus and rare pseudo-tumors: tuberculoma, hydatid cyst. Echocardiography is the fist line imaging technique to detect cardiac tumors, but CT and MRl arc useful for further characterization and differential diagnosis. Myxoma of the left atrium is the most frequent benign cardiac tumor. It usually is pedunculated and sometimes calcified. Sarcoma is the most frequent primary malignant tumor and usually presents as a sessile infiltrative tumor. Lymphoma and metastases are usually recognized by the presence of known tumor elsewhere of by characteristic direct contiguous involvement. Diagnosing primary and secondary pericardial tumors often is difficult. Imaging is valuable for diagnosis, characterization, pre-surgical evaluation and follow-up. (author)

  6. Socially differentiated cardiac rehabilitation

    DEFF Research Database (Denmark)

    Meillier, Lucette Kirsten; Nielsen, Kirsten Melgaard; Larsen, Finn Breinholt;

    2012-01-01

    to a standard rehabilitation programme (SRP). If patients were identified as socially vulnerable, they were offered an extended version of the rehabilitation programme (ERP). Excluded patients were offered home visits by a cardiac nurse. Concordance principles were used in the individualised programme elements......%. Patients were equally distributed to the SRP and the ERP. No inequality was found in attendance and adherence among referred patients. Conclusions: It seems possible to overcome unequal referral, attendance, and adherence in cardiac rehabilitation by organisation of systematic screening and social......Aim: The comprehensive cardiac rehabilitation (CR) programme after myocardial infarction (MI) improves quality of life and results in reduced cardiac mortality and recurrence of MI. Hospitals worldwide face problems with low participation rates in rehabilitation programmes. Inequality...

  7. A statistical study of single crest phenomenon in the equatorial ionospheric anomaly region using Swarm A satellite

    Science.gov (United States)

    Fathy, Adel; Ghamry, Essam

    2017-03-01

    Though the Equatorial Ionospheric Anomaly (EIA) is represented by two crests within ±15° latitude, a single crest is also observed in the entire ionosphere. Few studies have addressed single crest phenomena. A statistical study of 2237 single crest phenomenon from the in situ electron density measurements of Swarm A satellite was investigated during December 2013-December 2015. Our analysis focused on local time, seasonal, and both geographic and geomagnetic latitudinal variations. Our results show the following observations: 1 - The maximum number of events peaks mainly in the dayside region around 0800-1200 LT and these occur mainly within the magnetic equator. 2 - The maximum amplitude of the single crests take place most prominently during equinoxes. 3 - The majority of single crests occur in the northern hemisphere. 4 - The seasonal distribution of the events shows that the summer events are located further from the magnetic equator in the northern hemisphere and shift their locations into the southern hemisphere in winter, while spring events are centered along the magnetic equator. 5 - Dayside single crest events appear close to the magnetic equator and more centered on the equator in winter season. 6 - Dawn, night and dusk side events reverse their location from northern hemisphere in summer to southern hemisphere in winter.

  8. Cardiac arrest - cardiopulmonary resuscitation

    Institute of Scientific and Technical Information of China (English)

    Basri Lenjani; Besnik Elshani; Nehat Baftiu; Kelmend Pallaska; Kadir Hyseni; Njazi Gashi; Nexhbedin Karemani; Ilaz Bunjaku; Taxhidin Zaimi; Arianit Jakupi

    2014-01-01

    Objective:To investigate application of cardiopulmonary resuscitation(CPR) measures within the golden minutes inEurope.Methods:The material was taken from theUniversityClinical Center ofKosovo -EmergencyCentre inPristina, during the two(2) year period(2010-2011).The collected date belong to the patients with cardiac arrest have been recorded in the patients' log book protocol at the emergency clinic.Results:During the2010 to2011 in the emergency center of theCUCK inPristina have been treated a total of269 patients with cardiac arrest, of whom159 or59.1% have been treated in2010, and110 patients or40.9% in2011.Of the269 patients treated in the emergency centre,93 or34.6% have exited lethally in the emergency centre, and176 or 65.4% have been transferred to other clinics.In the total number of patients with cardiac arrest, males have dominated with186 cases, or69.1%.The average age of patients included in the survey was56.7 year oldSD±16.0 years.Of the269 patients with cardiac arrest, defibrillation has been applied for93 or34.6% of patients.In the outpatient settings defibrillation has been applied for3 or3.2% of patients.Patients were defibrillated with application of one to four shocks. Of27 cases with who have survived cardiac arrest, none of them have suffered cardiac arrest at home,3 or11.1% of them have suffered cardiac arrest on the street, and24 or88.9% of them have suffered cardiac arrest in the hospital.5 out of27 patients survived have ended with neurological impairment.Cardiac arrest cases were present during all days of the week, but frequently most reported cases have been onMonday with32.0% of cases, and onFriday with24.5% of cases. Conclusions:All survivors from cardiac arrest have received appropriate medical assistance within10 min from attack, which implies that if cardiac arrest occurs near an institution health care(with an opportunity to provide the emergent health care) the rate of survival is higher.

  9. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  10. Cardiac imaging in adults

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  11. Port Access Cardiac Surgery.

    Science.gov (United States)

    Viganó, Mario; Minzioni, Gaetano; Spreafico, Patrizio; Rinaldi, Mauro; Pasquino, Stefano; Ceriana, Piero; Locatelli, Alessandro

    2000-10-01

    The port-access technique for cardiac surgery was recently developed at Stanford University in California as a less invasive method to perform some cardiac operations. The port-access system has been described in detail elsewhere. It is based on femoral arterial and venous access for cardiopulmonary bypass (CPB) and on the adoption of a specially designed triple-lumen catheter described originally by Peters, and subsequently modified and developed in the definitive configuration called the endoaortic clamp.

  12. Awareness in cardiac anesthesia.

    LENUS (Irish Health Repository)

    Serfontein, Leon

    2010-02-01

    Cardiac surgery represents a sub-group of patients at significantly increased risk of intraoperative awareness. Relatively few recent publications have targeted the topic of awareness in this group. The aim of this review is to identify areas of awareness research that may equally be extrapolated to cardiac anesthesia in the attempt to increase understanding of the nature and significance of this scenario and how to reduce it.

  13. Post cardiac injury syndrome

    DEFF Research Database (Denmark)

    Nielsen, S L; Nielsen, F E

    1991-01-01

    The post-pericardiotomy syndrome is a symptom complex which is similar in many respects to the post-myocardial infarction syndrome and these are summarized under the diagnosis of the Post Cardiac Injury Syndrome (PCIS). This condition, which is observed most frequently after open heart surgery, i...... on the coronary vessels, with cardiac tamponade and chronic pericardial exudate. In the lighter cases, PCIS may be treated with NSAID and, in the more severe cases, with systemic glucocorticoid which has a prompt effect....

  14. Infected cardiac hydatid cyst

    OpenAIRE

    Ceviz, M; Becit, N; Kocak, H.

    2001-01-01

    A 24 year old woman presented with chest pain and palpitation. The presence of a semisolid mass—an echinococcal cyst or tumour—in the left ventricular apex was diagnosed by echocardiography, computed tomography, and magnetic resonance imaging. The infected cyst was seen at surgery. The cyst was removed successfully by using cardiopulmonary bypass with cross clamp.


Keywords: cardiac hydatid cyst; infected cardiac hydatid cyst

  15. A New Brachylophosaurin Hadrosaur (Dinosauria: Ornithischia with an Intermediate Nasal Crest from the Campanian Judith River Formation of Northcentral Montana.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Freedman Fowler

    Full Text Available Brachylophosaurini is a clade of hadrosaurine dinosaurs currently known from the Campanian (Late Cretaceous of North America. Its members include: Acristavus gagslarsoni, which lacks a nasal crest; Brachylophosaurus canadensis, which possesses a flat paddle-shaped nasal crest projecting posteriorly over the dorsal skull roof; and Maiasaura peeblesorum, which possesses a dorsally-projecting nasofrontal crest. Acristavus, from the lower Two Medicine Formation of Montana (~81-80 Ma, is hypothesized to be the ancestral member of the clade. Brachylophosaurus specimens are from the middle Oldman Formation of Alberta and equivalent beds in the Judith River Formation of Montana; the upper Oldman Formation is dated 77.8 Ma.A new brachylophosaurin hadrosaur, Probrachylophosaurus bergei (gen. et sp. nov. is described and phylogenetically analyzed based on the skull and postcranium of a large individual from the Judith River Formation of northcentral Montana (79.8-79.5 Ma; the horizon is equivalent to the lower Oldman Formation of Alberta. Cranial morphology of Probrachylophosaurus, most notably the nasal crest, is intermediate between Acristavus and Brachylophosaurus. In Brachylophosaurus, the nasal crest lengthens and flattens ontogenetically, covering the supratemporal fenestrae in large adults. The smaller nasal crest of Probrachylophosaurus is strongly triangular in cross section and only minimally overhangs the supratemporal fenestrae, similar to an ontogenetically earlier stage of Brachylophosaurus. Sutural fusion and tibial osteohistology reveal that the holotype of Probrachylophosaurus was relatively more mature than a similarly large Brachylophosaurus specimen; thus, Probrachylophosaurus is not simply an immature Brachylophosaurus.The small triangular posteriorly oriented nasal crest of Probrachylophosaurus is proposed to represent a transitional nasal morphology between that of a non-crested ancestor such as Acristavus and the large flat

  16. Cardiac applications of optogenetics.

    Science.gov (United States)

    Ambrosi, Christina M; Klimas, Aleksandra; Yu, Jinzhu; Entcheva, Emilia

    2014-08-01

    In complex multicellular systems, such as the brain or the heart, the ability to selectively perturb and observe the response of individual components at the cellular level and with millisecond resolution in time, is essential for mechanistic understanding of function. Optogenetics uses genetic encoding of light sensitivity (by the expression of microbial opsins) to provide such capabilities for manipulation, recording, and control by light with cell specificity and high spatiotemporal resolution. As an optical approach, it is inherently scalable for remote and parallel interrogation of biological function at the tissue level; with implantable miniaturized devices, the technique is uniquely suitable for in vivo tracking of function, as illustrated by numerous applications in the brain. Its expansion into the cardiac area has been slow. Here, using examples from published research and original data, we focus on optogenetics applications to cardiac electrophysiology, specifically dealing with the ability to manipulate membrane voltage by light with implications for cardiac pacing, cardioversion, cell communication, and arrhythmia research, in general. We discuss gene and cell delivery methods of inscribing light sensitivity in cardiac tissue, functionality of the light-sensitive ion channels within different types of cardiac cells, utility in probing electrical coupling between different cell types, approaches and design solutions to all-optical electrophysiology by the combination of optogenetic sensors and actuators, and specific challenges in moving towards in vivo cardiac optogenetics.

  17. [Psychosomatic aspects of cardiac arrhythmias].

    Science.gov (United States)

    Siepmann, Martin; Kirch, Wilhelm

    2010-07-01

    Emotional stress facilitates the occurrence of cardiac arrhythmias including sudden cardiac death. The prevalence of anxiety and depression is increased in cardiac patients as compared to the normal population. The risk of cardiovascular mortality is enhanced in patients suffering from depression. Comorbid anxiety disorders worsen the course of cardiac arrhythmias. Disturbance of neurocardiac regulation with predominance of the sympathetic tone is hypothesized to be causative for this. The emotional reaction to cardiac arrhythmias is differing to a large extent between individuals. Emotional stress may result from coping with treatment of cardiac arrhythmias. Emotional stress and cardiac arrhythmias may influence each other in the sense of a vicious circle. Somatoform cardiac arrhythmias are predominantly of psychogenic origin. Instrumental measures and frequent contacts between physicians and patients may facilitate disease chronification. The present review is dealing with the multifaceted relationships between cardiac arrhythmias and emotional stress. The underlying mechanisms and corresponding treatment modalities are discussed.

  18. Conditional Short-crested second order waves in shallow water and with superimposed current

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2004-01-01

    wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected second order short-crested wave riding on a uniform current is given. The analysis is based on the second order Sharma and Dean shallow water wave theory and the direction......For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes' wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean...... waves is poorly represented, as the shape of the wave spectrum does not enter the wave kinematics. To overcome this problem and still keep the simplicity of a deterministic approach, Tromans, Anaturk and Hagemeijer (1991) suggested the use of a deterministic wave, defined as the expected linear Airy...

  19. Linear surface capillary-gravity short-crested waves on a current

    Institute of Scientific and Technical Information of China (English)

    HUANG Hu

    2008-01-01

    One of the forward situations in the study of water waves is the basic three-dimensional surface wave motion of short-crested waves. Capillary waves result in rich effects concerned closely with remote sensing in the open ocean. Ocean currents experience a complete process in surface wave motion. Based on the above ideas, a linear dynamical system of surface capillary-gravity short-crested waves is developed by considering the current effects, thus leading to the following analytical expressions of the kinematic and dynamic variables: the wave height, the wave steepness, the phase velocity, the wave-particle velocities, accelerations and trajectories and the wave pressure. A number of the classi-cal, typical and latest special wave cases can arise from these expressions.

  20. Implant-Prosthetic Rehabilitation in Bilateral Agenesis of Maxillary Lateral Incisors with a Mini Split Crest

    Directory of Open Access Journals (Sweden)

    M. M. Figliuzzi

    2016-01-01

    Full Text Available The reported clinical case describes the surgical procedure of ridge augmentation by using a “split crest” technique with a partial thickness flap and a subsequent implant-prosthetic rehabilitation aimed at treating a bilateral agenesis of the upper lateral incisors. In such cases with vestibule-palatal and mesial-distal scarce bone thicknesses associated with the need of a proper functional and aesthetic rehabilitation, the split crest technique is particularly suitable. In the case we reported, because of the poor bone thicknesses, we performed a minimally invasive split crest which allowed a correct insertion of the fixtures. This technique allowed us to achieve an optimal functional and aesthetic rehabilitation; moreover, we obtained a good emergency profile, ensuring the vitality of the close teeth and ensuring a good primary stability and the following osseointegration of dental implants.

  1. Disproportionately severe calcinosis cutis in an 88-year-old patient with CREST syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Buchowski, J.M.; Ahn, N.U.; Ahn, U.M. [Dept. of Orthopaedic Surgery, Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); McCarthy, E.F. [Dept. of Orthopaedic Surgery, Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Mehta, M.B. [Clinical Associates, Good Samaritan Hospital, Baltimore, MD (United States)

    2001-08-01

    An 88-year-old woman with CREST syndrome (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasias) presented with hyperglycemia, intravascular depletion, and atrial fibrillation. The patient was found to have unusually severe calcinosis cutis in both legs extending from the knees to the ankles bilaterally, as well as Raynaud's phenomenon, sclerodactyly, and telangiectasias. The patient was normocalcemic and normophosphatemic. Although subcutaneous calcification is often seen with CREST syndrome, this case is unusual in that the area of involvement was much larger than previously described. Furthermore, the amount of calcinosis was disproportionately severe and was the major cause of symptoms and disability compared with the other components of the syndrome. (orig.)

  2. Genomic diversity and evolution of the head crest in the rock pigeon

    Science.gov (United States)

    Shapiro, Michael D.; Kronenberg, Zev; Li, Cai; Domyan, Eric T.; Pan, Hailin; Campbell, Michael; Tan, Hao; Huff, Chad D.; Hu, Haofu; Vickrey, Anna I.; Nielsen, Sandra C.A.; Stringham, Sydney A.; Hu, Hao; Willerslev, Eske; Gilbert, M. Thomas P.; Yandell, Mark; Zhang, Guojie; Wang, Jun

    2013-01-01

    The geographic origins of breeds and genetic basis of variation within the widely distributed and phenotypically diverse domestic rock pigeon (Columba livia) remain largely unknown. We generated a rock pigeon reference genome and additional genome sequences representing domestic and feral populations. We find evidence for the origins of major breed groups in the Middle East, and contributions from a racing breed to North American feral populations. We identify EphB2 as a strong candidate for the derived head crest phenotype shared by numerous breeds, an important trait in mate selection in many avian species. We also find evidence that this trait evolved just once and spread throughout the species, and that the crest originates early in development by the localized molecular reversal of feather bud polarity. PMID:23371554

  3. Neural Network Applications

    NARCIS (Netherlands)

    Vonk, E.; Jain, L.C.; Veelenturf, L.P.J.

    1995-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  4. Traumatic lumbar hernia repair: a laparoscopic technique for mesh fixation with an iliac crest suture anchor.

    Science.gov (United States)

    Links, D J R; Berney, C R

    2011-12-01

    Traumatic lumbar hernia (TLH) is a rare presentation. Traditionally, these have been repaired via an open approach. Recurrence can be a problem due to the often limited tissue available for mesh fixation at the inferior aspect of the hernia defect. We report the successful use of bone suture anchors placed in the iliac crest during transperitoneal laparoscopy for mesh fixation to repair a recurrent TLH. This technique may be particularly useful after previous failed attempts at open TLH repair.

  5. Crest lines extraction in volume 3D medical images : a multi-scale approach

    OpenAIRE

    Monga, Olivier; Lengagne, Richard; Deriche, Rachid

    1994-01-01

    Projet SYNTIM; Recently, we have shown that the differential properties of the surfaces represented by 3D volumic images can be recovered using their partial derivatives. For instance, the crest lines can be characterized by the first, second and third partial derivatives of the grey level function $I(x,y,z)$. In this paper, we show that~: - the computation of the partial derivatives of an image can be improved using recursive filters which approximate the Gaussian filter, - a multi-scale app...

  6. The iliac crest in forensic age diagnostics: evaluation of the apophyseal ossification in conventional radiography.

    Science.gov (United States)

    Wittschieber, Daniel; Vieth, Volker; Domnick, Christoph; Pfeiffer, Heidi; Schmeling, Andreas

    2013-03-01

    Due to the increasing significance of forensic age estimations in the age of globalisation, novel radiographic criteria besides clavicles and hand bones may provide additional certainty for forensic age expertises. The present study analyses the suitability of the iliac crest apophysis by means of 643 pelvic radiographs of patients between 10 and 30 years of age. Retrospective assessments were carried out according to the forensically established classification and sub-classification systems modified after Kreitner et al. (Rofo 166(6):481-486, 1997) and Kellinghaus et al. (Int J Legal Med 124(4):321-325, 2010). The basic ossification stages range from 1 to 4, and the sub-stages of stage 2 and 3 range from a to c. While stage 3c was first achieved at the age of 15 by both sexes, stage 4 was first observed in females at the age of 16 and in males at the age of 17. This indicates the possibility of a valid diagnosis of both the age of 14 and the age of 16 years which represent legally relevant age thresholds in numerous countries. Applied as targeted radiography on the iliac crest, the exposure to radiation would range between other radiographic techniques recently applied. Therefore, the iliac crest apophysis appears principally suitable as novel possible criterion for forensic age estimation in the living. However, for the establishment of the iliac crest apophysis in routine diagnostics, further studies are needed focussing on the comparison of different grading systems and different radiological techniques.

  7. Computed tomography evaluation of the iliac crest apophysis: age estimation in living individuals.

    Science.gov (United States)

    Ekizoglu, Oguzhan; Inci, Ercan; Erdil, Irem; Hocaoglu, Elif; Bilgili, Mustafa Gokhan; Kazimoglu, Cemal; Reisoglu, Ali; Can, Ismail Ozgur

    2016-07-01

    Determination of the ossification properties of the iliac apophysis is important not only in the clinical evaluation of patients undergoing orthopedic surgery but also in age estimation studies for forensic purposes. The literature includes both anthropological and radiological (conventional radiography, ultrasonography, and magnetic resonance imaging modalities) investigations of the different staging systems used for these purposes. In this study, we assessed the utility of computed tomography (CT) of the iliac crest apophysis in estimating forensic age. CT scans of the iliac crest apophysis of 380 patients (187 females, 193 males, and 10-29 years of age) were evaluated according to the four-stage system. Further subclassification did not give data properly due to the reference length measurement of the iliac wing with CT. Thus, in our series, stage 2 was first seen in 12 years of age and stage 3 in those 14 years of age in both sexes and on both sides of the pelvis. Stage 4 was first seen in 17 years of both sexes but only on the right side; on the left side, it appeared in females 18 years of age and in males 17 years of age. Present data was found consistent with previous pelvic radiographic findings. First seen ages for stage 2 and 3 are 12 and 14 years respectively which presented valuable information for legally important age thresholds. However, disadvantages of CT, including high-dose radiation exposure to gonads, the difficulty of evaluating the iliac crest, and the age boundary of 17 years, could make this method infeasible, as compared with hand wrist and pelvic radiographic methods. CT of the iliac crest has probably a greater utility where preexisting CT scans of the pelvic region are available, and it may be considered as a supportive method for age-estimation purposes.

  8. Estimation of Overtopping Rates on Slopes in Wave Power Devices and Other Low Crested Structures

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Burcharth, Hans Falk

    2002-01-01

    Motivated by questions raised by developers of wave energy devices based on wave overtopping concepts, model tests have been performed to study overtopping of structures with limited draught, low crest freeboards and slope geometries designed to increase overtopping and thereby also the captured ...... amount of wave energy. The test results have been incorporated in an existing overtopping prediction formula by application of correction factors presented in the paper...

  9. What Crested Butte Mountain Resort Feels the Ski Industry Is, In General, Looking for in College Graduates.

    Science.gov (United States)

    Jernigan, Rick

    This paper describes general employment requirements for employment candidates in the skiing industry, as seen by Crested Butte Mountain Resort personnel. General educational requirements are primarily business skills, including: communications, computers, math, finance, accounting, economics, personnel administration, and psychology. Other…

  10. Laboratory Research on Effective Test Area of Short-Crested Waves Generated by Two-Sided Segmented Wavemakers

    Institute of Scientific and Technical Information of China (English)

    李俊; 陈刚; 杨建民; 彭涛

    2014-01-01

    The size and shape of the effective test area are crucial to consider when short-crested waves are created by segmented wavemakers. The range of the effective test area of short-crested waves simulated by two-sided segmented wavemakers is analyzed in this paper. The experimental investigation on the wave field distribution of short-crested waves generated by two-sided segmented wavemakers is conducted by using an array of wave gauges. Wave spectra and directional spreading function are analyzed and the results show that when the main direction is at a certain angle with the normal line of wave generators, the wave field of 3D short-crested waves generated by two-sided segmented wavemakers has good spatial uniformity within the model test area. The effective test area can provide good wave environments for seakeeping model tests of various ocean engineering structures in the deep ocean engineering basin.

  11. Theoretical Investigation of Peak-Delay Force Reduction for Caissons Exposed to Non-breaking Short-Crested Waves

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.

    In nature coastal structures are exposed to oblique short-crested waves. The effect of wave incident angle on total wave force on a long caisson are twofold. The one is the force reduction due to the reduction of instantaneous point pressure on the caisson, named point-pressure force reduction...... on the peak-delay force reduction of caissons exposed to non-breaking short-crested waves. Battjes (1982) has investigated theoretically the peak-delay force reduction of shortcrested waves with only one frequency component. Such a force reduction factor cannot be applied because in nature waves are composed...... of many linear components with various frequencies. In this paper the peak-delay force reduction factor is defined on basis of zero-moment of the force spectrum. Based on linear wave theory, formulae for calculation of peakdelay force reduction factor for linear, long-crested and short-crested non-breaking...

  12. The double-crested cormorant in Lake Michigan: A review of population trends, ecology and current management

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Double-crested Cormorant, or DCCO, is the most widely distributed cormorant of the six North American cormorant species. This work is an attempt to review and...

  13. Cardiac radiology: centenary review.

    Science.gov (United States)

    de Roos, Albert; Higgins, Charles B

    2014-11-01

    During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.

  14. Role of the autonomic nervous system in modulating cardiac arrhythmias.

    Science.gov (United States)

    Shen, Mark J; Zipes, Douglas P

    2014-03-14

    The autonomic nervous system plays an important role in the modulation of cardiac electrophysiology and arrhythmogenesis. Decades of research has contributed to a better understanding of the anatomy and physiology of cardiac autonomic nervous system and provided evidence supporting the relationship of autonomic tone to clinically significant arrhythmias. The mechanisms by which autonomic activation is arrhythmogenic or antiarrhythmic are complex and different for specific arrhythmias. In atrial fibrillation, simultaneous sympathetic and parasympathetic activations are the most common trigger. In contrast, in ventricular fibrillation in the setting of cardiac ischemia, sympathetic activation is proarrhythmic, whereas parasympathetic activation is antiarrhythmic. In inherited arrhythmia syndromes, sympathetic stimulation precipitates ventricular tachyarrhythmias and sudden cardiac death except in Brugada and J-wave syndromes where it can prevent them. The identification of specific autonomic triggers in different arrhythmias has brought the idea of modulating autonomic activities for both preventing and treating these arrhythmias. This has been achieved by either neural ablation or stimulation. Neural modulation as a treatment for arrhythmias has been well established in certain diseases, such as long QT syndrome. However, in most other arrhythmia diseases, it is still an emerging modality and under investigation. Recent preliminary trials have yielded encouraging results. Further larger-scale clinical studies are necessary before widespread application can be recommended.

  15. Free iliac crest grafts with periosteum for treatment of old acetabular defects

    Institute of Scientific and Technical Information of China (English)

    ZHAO De-wei; SUN Qiang; WANG Ben-jie; CUI Da-ping

    2006-01-01

    Objective: To inquire into the therapeutic effectiveness of free iliac crest grafts with periosteum on old acetabular defects.Methods: From February 1996 to June 2005, 9 patients were treated with free iliac crest grafts with periosteum to reconstruct old acetabular defects. There were 7 males and 2 females and the average age was 41.3 years. The acetabular defects were caused by traffic accidents in 6 cases and fall injury in 3 cases. The time from injury to treatment was 4-13 months and averaged 8 months. Intraoperatively we firstly removed the acetabular fracture fragments of the posterior wall. The femoral head was then reducted. Bone graft was harvested from the iliac crest with periosteum, which was sculpted with a rongeur to conform to the defect. The concave (iliac fossa) side of the graft was placed toward the femoral head. The graft was securedly fixed by two to three leg screws.Results: Postoperative syndrome was not found in any of the cases. Harris' score system showed that the score raised from 32. 3 points preoperatively to 81 points postoperatively. The hip function was evaluated as excellent in 3 cases, good in 4 cases and fair in 2 cases.Conclusions: Although this procedure could not exactly reproduce the anatomy of the hip joint, it enables to restore the posterior stability, provide bone-stock for the hip joints and prevent dislocation of the femoral head.

  16. EXTRACTION, QUANTIFICATION, AND MOLAR MASS DETERMINATION OF HYALURONIC ACID EXTRACTED FROM CHICKEN CREST

    Directory of Open Access Journals (Sweden)

    C. S. ROSA

    2008-11-01

    Full Text Available

    Hyaluronic acid (HA is part of the connective tissue. The polymer is composed of alternating units of ß-d-glucuronic acid and N-acetyl-ß-d-glucosamine linked, respectively, via 1-3 and 1-4 bonds. The chicken crest is one of the richest tissues in this polysaccharide. Since Brazil is one of the main chicken exporters in the world, the utilization of the crests of abated animals for the HA obtaining is particularly attractive. The present work sought to extract HA from chicken crest and to determine the molar mass of the extracted acid. Extraction was accomplished by proteolytic digestion with papain during 24 h at 60oC, followed by precipitation with cetylpyridinium chloride (CPC. Hexuronic acid content was determined via the carbazole method, the intrinsic viscosity was measured using the ball viscosimeter, and the molar mass was calculated by extrapolating the calibration line to zero. In addition, qualitative infrared spectroscopy was carried out on the sample using the Bomem MB spectrophotometer. The results show that the extraction method was effective: the extracted acid possesses a large molecular mass, and the extract contains a signifi cant amount of HA.

  17. Evaluating 3D registration of CT-scan images using crest lines

    Science.gov (United States)

    Ayache, Nicholas; Gueziec, Andre P.; Thirion, Jean-Philippe; Gourdon, A.; Knoplioch, Jerome

    1993-06-01

    We consider the issue of matching 3D objects extracted from medical images. We show that crest lines computed on the object surfaces correspond to meaningful anatomical features, and that they are stable with respect to rigid transformations. We present the current chain of algorithmic modules which automatically extract the major crest lines in 3D CT-Scan images, and then use differential invariants on these lines to register together the 3D images with a high precision. The extraction of the crest lines is done by computing up to third order derivatives of the image intensity function with appropriate 3D filtering of the volumetric images, and by the 'marching lines' algorithm. The recovered lines are then approximated by splines curves, to compute at each point a number of differential invariants. Matching is finally performed by a new geometric hashing method. The whole chain is now completely automatic, and provides extremely robust and accurate results, even in the presence of severe occlusions. In this paper, we briefly describe the whole chain of processes, already presented to evaluate the accuracy of the approach on a couple of CT-scan images of a skull containing external markers.

  18. Pediatric cardiac postoperative care

    Directory of Open Access Journals (Sweden)

    Auler Jr. José Otávio Costa

    2002-01-01

    Full Text Available The Heart Institute of the University of São Paulo, Medical School is a referral center for the treatment of congenital heart diseases of neonates and infants. In the recent years, the excellent surgical results obtained in our institution may be in part due to modern anesthetic care and to postoperative care based on well-structured protocols. The purpose of this article is to review unique aspects of neonate cardiovascular physiology, the impact of extracorporeal circulation on postoperative evolution, and the prescription for pharmacological support of acute cardiac dysfunction based on our cardiac unit protocols. The main causes of low cardiac output after surgical correction of heart congenital disease are reviewed, and methods of treatment and support are proposed as derived from the relevant literature and our protocols.

  19. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O;

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed...... for the situation at hand. Due to challenging circumstances, the cost assessment turned out to be ex-post and top-down. RESULTS: Cost per treatment sequence is estimated to be approximately euro 976, whereas the incremental cost (compared with usual care) is approximately euro 682. The cost estimate is uncertain...... and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  20. Toothache of cardiac origin.

    Science.gov (United States)

    Kreiner, M; Okeson, J P

    1999-01-01

    Pain referred to the orofacial structures can sometimes be a diagnostic challenge for the clinician. In some instances, a patient may complain of tooth pain that is completely unrelated to any dental source. This poses a diagnostic and therapeutic problem for the dentist. Cardiac pain most commonly radiates to the left arm, shoulder, neck, and face. In rare instances, angina pectoris may present as dental pain. When this occurs, an improper diagnosis frequently leads to unnecessary dental treatment or, more significantly, a delay of proper treatment. This delay may result in the patient experiencing an acute myocardial infarction. It is the dentist's responsibility to establish a proper diagnosis so that the treatment will be directed toward the source of pain and not to the site of pain. This article reviews the literature concerning referred pain of cardiac origin and presents a case report of toothache of cardiac origin.

  1. Rare and private variations in neural crest, apoptosis and sarcomere genes define the polygenic background of isolated Tetralogy of Fallot

    DEFF Research Database (Denmark)

    Grunert, Marcel; Dorn, Cornelia; Schueler, Markus;

    2014-01-01

    Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Its genetic basis is demonstrated by an increased recurrence risk in siblings and familial cases. However, the majority of TOF are sporadic, isolated cases of undefined origin and it had been postulated that rare and ...

  2. Zebrafish ("Danio rerio") endomembrane antiporter similar to a yeast cation/H(+) transporter is required for neural crest development

    Science.gov (United States)

    CAtion/H (+) eXchangers (CAXs) are integral membrane proteins that transport Ca (2+) or other cations by exchange with protons. While several yeast and plant CAX proteins have been characterized, no functional analysis of a vertebrate CAX homologue has yet been reported. In this study, we further ch...

  3. From stem cells to Schwann cells : potential applications of iPS cells and neural crest stem cells

    NARCIS (Netherlands)

    Ma, Ming San

    2015-01-01

    Geïnduceerde pluripotente stamcellen, oftewel iPS-cellen, zijn stamcellen met soortgelijke eigenschappen als embryonale stamcellen. iPS-cellen kunnen gegenereerd worden uit somatische cellen door deze met specifieke pluripotentiefactoren te reprogrammeren tot een basale stamceltoestand. Onze resulta

  4. Multipotent Neural Crest Stem Cell-Like Cells from Rat Vibrissa Dermal Papilla Induce Neuronal Differentiation of PC12 Cells

    Directory of Open Access Journals (Sweden)

    Meiying Li

    2014-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs transplants have been approved for treating central nervous system (CNS injuries and diseases; however, their clinical applications are limited. Here, we model the therapeutic potential of dermal papilla cells (DPCs in vitro. DPCs were isolated from rat vibrissae and characterized by immunocytofluorescence, RT-PCR, and multidifferentiation assays. We examined whether these cells could secrete neurotrophic factors (NTFs by using cocultures of rat pheochromocytoma cells (PC12 with conditioned medium and ELISA assay. DPCs expressed Sox10, P75, Nestin, Sox9, and differentiated into adipocytes, osteoblasts, smooth muscle cells, and neurons under specific inducing conditions. The DPC-conditioned medium (DPC-CM induced neuronal differentiation of PC12 cells and promoted neurite outgrowth. Results of ELISA assay showed that compared to BMSCs, DPCs secreted more brain-derived neurotrophic factor (BDNF and glial cell line-derived neurotrophic factor (GDNF. Moreover, we observed that, compared with the total DPC population, sphere-forming DPCs expressed higher levels of Nestin and P75 and secreted greater amounts of GDNF. The DPCs from craniofacial hair follicle papilla may be a new and promising source for treating CNS injuries and diseases.

  5. Cell Motility and Invasiveness of Neurofibromin-Deficient Neural Crest Cells and Malignant Triton Tumor Lines. Addendum

    Science.gov (United States)

    2006-06-01

    potentially affect the establishment and growth of neurofibromas and café-au-lait macules, metastasis of malignant peripheral nerve sheath tumors ( MPNST ), and...influence the invasiveness of MPNST cell lines derived from spontaneous tumors in cisNf1+/-;p53+/- mice. Over the past year, we completed our...factor (PDGF) and PDGF receptor signaling pathways that influence proliferation and migration of MPNST cell lines. In addition, we have continued to

  6. The cardiac anxiety questionnaire: cross-validation among cardiac inpatients

    NARCIS (Netherlands)

    Beek, M.H. van; Oude Voshaar, R.C.; Deelen, F.M. van; Balkom, A.J. van; Pop, G.A.; Speckens, A.E.

    2012-01-01

    OBJECTIVE: General anxiety symptoms are common in patients with cardiac disease and considered to have an adverse effect on cardiac prognosis. The role of specific cardiac anxiety, however, is still unknown. The aim of this study is to examine the factor structure, reliability, and validity of the D

  7. THE CARDIAC ANXIETY QUESTIONNAIRE : CROSS-VALIDATION AMONG CARDIAC INPATIENTS

    NARCIS (Netherlands)

    van Beek, M. H. C. T.; Voshaar, R. C. Oude; van Deelen, F. M.; van Balkom, A. J. L. M.; Pop, G.; Speckens, A. E. M.

    2012-01-01

    Objective: General anxiety symptoms are common in patients with cardiac disease and considered to have an adverse effect on cardiac prognosis. The role of specific cardiac anxiety, however, is still unknown. The aim of this study is to examine the factor structure, reliability, and validity of the D

  8. Patterns of neural differentiation in melanomas

    Directory of Open Access Journals (Sweden)

    Singh Avantika V

    2010-11-01

    Full Text Available Abstract Background Melanomas, highly malignant tumors arise from the melanocytes which originate as multipotent neural crest cells during neural tube genesis. The purpose of this study is to assess the pattern of neural differentiation in relation to angiogenesis in VGP melanomas using the tumor as a three dimensional system. Methods Tumor-vascular complexes [TVC] are formed at the tumor-stroma interphase, by tumor cells ensheathing angiogenic vessels to proliferate into a mantle of 5 to 6 layers [L1 to L5] forming a perivascular mantle zone [PMZ]. The pattern of neural differentiation is assessed by immunopositivity for HMB45, GFAP, NFP and synaptophysin has been compared in: [a] the general tumor [b] tumor-vascular complexes and [c] perimantle zone [PC] on serial frozen and paraffin sections. Statistical Analysis: ANOVA: Kruskal-Wallis One Way Analysis of Variance; All Pairwise Multiple Comparison Procedures [Tukey Test]. Results The cells abutting on the basement membrane acquire GFAP positivity and extend processes. New layers of tumor cells show a transition between L2 to L3 followed by NFP and Syn positivity in L4&L5. The level of GFAP+vity in L1&L2 directly proportionate to the percentage of NFP/Syn+vity in L4&L5, on comparing pigmented PMZ with poorly pigmented PMZ. Tumor cells in the perimantle zone show high NFP [65%] and Syn [35.4%] positivity with very low GFAP [6.9%] correlating with the positivity in the outer layers. Discussion From this study it is seen that melanoma cells revert to the embryonic pattern of differentiation, with radial glial like cells [GFAP+ve] which further differentiate into neuronal positive cells [NFP&Syn+ve] during angiogenic tumor-vascular interaction, as seen during neurogenesis, to populate the tumor substance.

  9. Perioperative management of cardiac disease.

    Science.gov (United States)

    Aresti, N A; Malik, A A; Ihsan, K M; Aftab, S M E; Khan, W S

    2014-01-01

    Pre-existing cardiac disease contributes significantly to morbidity and mortality amongst patients undergoing non cardiac surgery. Patients with pre-existing cardiac disease or with risk factors for it, have as much as a 3.9% risk of suffering a major perioperative cardiac event (Lee et al 1999, Devereaux 2005). Furthermore, the incidence of perioperative myocardial infarction (MI) is increased 10 to 50 fold in patients with previous coronary events (Jassal 2008).

  10. Data analysis in cardiac arrhythmias.

    Science.gov (United States)

    Rodrigo, Miguel; Pedrón-Torecilla, Jorge; Hernández, Ismael; Liberos, Alejandro; Climent, Andreu M; Guillem, María S

    2015-01-01

    Cardiac arrhythmias are an increasingly present in developed countries and represent a major health and economic burden. The occurrence of cardiac arrhythmias is closely linked to the electrical function of the heart. Consequently, the analysis of the electrical signal generated by the heart tissue, either recorded invasively or noninvasively, provides valuable information for the study of cardiac arrhythmias. In this chapter, novel cardiac signal analysis techniques that allow the study and diagnosis of cardiac arrhythmias are described, with emphasis on cardiac mapping which allows for spatiotemporal analysis of cardiac signals.Cardiac mapping can serve as a diagnostic tool by recording cardiac signals either in close contact to the heart tissue or noninvasively from the body surface, and allows the identification of cardiac sites responsible of the development or maintenance of arrhythmias. Cardiac mapping can also be used for research in cardiac arrhythmias in order to understand their mechanisms. For this purpose, both synthetic signals generated by computer simulations and animal experimental models allow for more controlled physiological conditions and complete access to the organ.

  11. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...

  12. Cardiac troponins and high-sensitivity cardiac troponin assays.

    Science.gov (United States)

    Conrad, Michael J; Jarolim, Petr

    2014-03-01

    Measurement of circulating cardiac troponins I and T has become integral to the diagnosis of myocardial infarction. This article discusses the structure and function of the troponin complex and the release of cardiac troponin molecules from the injured cardiomyocyte into the circulation. An overview of current cardiac troponin assays and their classification according to sensitivity is presented. The diagnostic criteria, role, and usefulness of cardiac troponin for myocardial infarction are discussed. In addition, several examples are given of the usefulness of high-sensitivity cardiac troponin assays for short-term and long-term prediction of adverse events.

  13. A comparative evaluation of the in vitro penetration performance of the improved Crest complete toothbrush versus the Current Crest complete toothbrush, the Colgate Precision toothbrush and the Oral-B P40 toothbrush.

    Science.gov (United States)

    Volpenhein, D W; Handel, S E; Hughes, T J; Wild, J

    1996-01-01

    Removal of plaque and debris from interproximal surfaces during toothbrushing has generally been difficult to achieve, in large part because traditional flat-bristled toothbrushes do not offer good interproximal penetration. As a result, a number of varying bristle designs have been developed, with the rippled-design brush shown to be particularly effective at removing interproximal plaque. Recently, an existing brush, the original Crest Complete, was modified to offer a more deeply rippled version. This study evaluated the interproximal penetration of four bristle designs: rippled pattern (original Crest Complete), deeper rippled pattern (improved Crest Complete), multi-level (Colgate Precision), and flat-tufted (Oral-B P40). The study used a previously reported in vitro model for determining interproximal penetration of manual toothbrushes (J Clin Dent 5:27-33, 1994). In order to effectively mimic the in-use characteristics of toothbrushing, this model is based on analysis of videotaped consumer brushing habits, tooth morphology, and in vivo plaque tenacity characteristics and uses the three most predominantly used brushing techniques (circular, up-and-down, and back-and-forth, with the brush held at both 45 and 90 degrees to the tooth surface). In addition, the model's brush stroke length, brush force, and brush speed are likewise based on analysis of consumer brushing patterns. The results of the study indicate that the new Crest Complete with deeper rippled bristles provided significantly superior (p Colgate Precision and Oral-B brushes overall and for three of the four brush strokes tested. In addition, the new Crest Complete was found to provide significantly superior interproximal penetration to the original Crest Complete overall and in circular and up-and-down strokes, and the original Crest Complete provided superior overall interproximal penetration to the Colgate and Oral-B brushes.

  14. Changes in the osmolarity of the embryonic microenvironment induce neural tube defects.

    Science.gov (United States)

    Jin, Yi-Mei; Wang, Guang; Zhang, Nuan; Wei, Yi-Fan; Li, Shuai; Chen, You-Peng; Chuai, Manli; Lee, Henry Siu Sum; Hocher, Berthold; Yang, Xuesong

    2015-05-01

    Many maternal disorders that modify the embryonic microenvironment, such as a change in osmolarity, can affect development, but how these changes influence the early embryo remains obscure. Neural tube defects, for example, are common congenital disorders found in fetus and neonates. In this study, we investigated the impact of anisotonic osmolarity (unequal osmotic pressures) on neural tube development in the early chick embryo, finding that neuronal cell differentiation was impaired in the neural tube due to enhanced apoptosis and repressed cell proliferation. Anisotonic osmolarity also affected normal development of the neural crest, which in turn influenced abnormal development of the neural tube. As neural tube development is highly dependent on the proper expression of bone morphogenetic protein 4 (BMP4), paired box 7 (PAX7), and sonic hedgehog (SHH) genes in the dorsal and ventral regions along the tube, we investigated the impact of anisotonic osmolarity on their expression. Indeed, small changes in osmolarity could positively and negatively impact the expression of these regulatory genes, which profoundly affected neural tube development. Thus, both the central and peripheral nervous systems were perturbed by anisotonic consitions as a consequence of the abnormal expression of key genes within the developing neural tube.

  15. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...

  16. Cardiac Risk Assessment

    Science.gov (United States)

    ... Risk Assessment Related tests: Lipid Profile , VLDL Cholesterol , hs-CRP , Lp(a) Overview | Common Questions | Related Pages What ... cardiac risk include: High-sensitivity C-reactive protein (hs-CRP) : Studies have shown that measuring CRP with a ...

  17. The cardiac malpositions.

    Science.gov (United States)

    Perloff, Joseph K

    2011-11-01

    Dextrocardia was known in the 17th century and was 1 of the first congenital malformations of the heart to be recognized. Fifty years elapsed before Matthew Baillie published his account of complete transposition in a human of the thoracic and abdominal viscera to the opposite side from what is natural. In 1858, Thomas Peacock stated that "the heart may be congenitally misplaced in various ways, occupying either an unusual position within the thorax, or being situated external to that cavity." In 1915, Maude Abbott described ectopia cordis, and Richard Paltauf's remarkable illustrations distinguished the various types of dextrocardia. In 1928, the first useful classification of the cardiac malpositions was proposed, and in 1966, Elliott et al's radiologic classification set the stage for clinical recognition. The first section of this review deals with the 3 basic cardiac malpositions in the presence of bilateral asymmetry. The second section deals with cardiac malpositions in the presence of bilateral left-sidedness or right-sidedness. Previous publications on cardiac malpositions are replete with an arcane vocabulary that confounds rather than clarifies. Even if the terms themselves are understood, inherent complexity weighs against clarity. This review was designed as a guided tour of an unfamiliar subject.

  18. Hepato-cardiac disorders

    Institute of Scientific and Technical Information of China (English)

    Yasser; Mahrous; Fouad; Reem; Yehia

    2014-01-01

    Understanding the mutual relationship between the liver and the heart is important for both hepatologists and cardiologists. Hepato-cardiac diseases can be classified into heart diseases affecting the liver, liver diseases affecting the heart, and conditions affecting the heart and the liver at the same time. Differential diagnoses of liver injury are extremely important in a cardiologist’s clinical practice calling for collaboration between cardiologists and hepatologists due to the many other diseases that can affect the liver and mimic haemodynamic injury. Acute and chronic heart failure may lead to acute ischemic hepatitis or chronic congestive hepatopathy. Treatment in these cases should be directed to the primary heart disease. In patients with advanced liver disease, cirrhotic cardiomyopathy may develop including hemodynamic changes, diastolic and systolic dysfunctions, reduced cardiac performance and electrophysiological abnormalities. Cardiac evaluation is important for patients with liver diseases especially before and after liver transplantation. Liver transplantation may lead to the improvement of all cardiac changes and the reversal of cirrhotic cardiomyopathy. There are systemic diseases that may affect both the liver and the heart concomitantly including congenital, metabolic and inflammatory diseases as well as alcoholism. This review highlights these hepatocardiac diseases

  19. High glucose suppresses embryonic stem cell differentiation into neural lineage cells.

    Science.gov (United States)

    Yang, Penghua; Shen, Wei-bin; Reece, E Albert; Chen, Xi; Yang, Peixin

    2016-04-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system.

  20. High glucose suppresses embryonic stem cell differentiation into neural lineage cells

    Science.gov (United States)

    Yang, Penghua; Shen, Wei-bin; Reece, E. Albert; Chen, Xi; Yang, Peixin

    2017-01-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system. PMID:26940741

  1. Cardiac arrest during gamete release in chum salmon regulated by the parasympathetic nerve system.

    Directory of Open Access Journals (Sweden)

    Yuya Makiguchi

    Full Text Available Cardiac arrest caused by startling stimuli, such as visual and vibration stimuli, has been reported in some animals and could be considered as an extraordinary case of bradycardia and defined as reversible missed heart beats. Variability of the heart rate is established as a balance between an autonomic system, namely cholinergic vagus inhibition, and excitatory adrenergic stimulation of neural and hormonal action in teleost. However, the cardiac arrest and its regulating nervous mechanism remain poorly understood. We show, by using electrocardiogram (ECG data loggers, that cardiac arrest occurs in chum salmon (Oncorhynchus keta at the moment of gamete release for 7.39+/-1.61 s in females and for 5.20+/-0.97 s in males. The increase in heart rate during spawning behavior relative to the background rate during the resting period suggests that cardiac arrest is a characteristic physiological phenomenon of the extraordinarily high heart rate during spawning behavior. The ECG morphological analysis showed a peaked and tall T-wave adjacent to the cardiac arrest, indicating an increase in potassium permeability in cardiac muscle cells, which would function to retard the cardiac action potential. Pharmacological studies showed that the cardiac arrest was abolished by injection of atropine, a muscarinic receptor antagonist, revealing that the cardiac arrest is a reflex response of the parasympathetic nerve system, although injection of sotalol, a beta-adrenergic antagonist, did not affect the cardiac arrest. We conclude that cardiac arrest during gamete release in spawning release in spawning chum salmon is a physiological reflex response controlled by the parasympathetic nervous system. This cardiac arrest represents a response to the gaping behavior that occurs at the moment of gamete release.

  2. Yes-associated protein 65 (YAP expands neural progenitors and regulates Pax3 expression in the neural plate border zone.

    Directory of Open Access Journals (Sweden)

    Stephen T Gee

    Full Text Available Yes-associated protein 65 (YAP contains multiple protein-protein interaction domains and functions as both a transcriptional co-activator and as a scaffolding protein. Mouse embryos lacking YAP did not survive past embryonic day 8.5 and showed signs of defective yolk sac vasculogenesis, chorioallantoic fusion, and anterior-posterior (A-P axis elongation. Given that the YAP knockout mouse defects might be due in part to nutritional deficiencies, we sought to better characterize a role for YAP during early development using embryos that develop externally. YAP morpholino (MO-mediated loss-of-function in both frog and fish resulted in incomplete epiboly at gastrulation and impaired axis formation, similar to the mouse phenotype. In frog, germ layer specific genes were expressed, but they were temporally delayed. YAP MO-mediated partial knockdown in frog allowed a shortened axis to form. YAP gain-of-function in Xenopus expanded the progenitor populations in the neural plate (sox2(+ and neural plate border zone (pax3(+, while inhibiting the expression of later markers of tissues derived from the neural plate border zone (neural crest, pre-placodal ectoderm, hatching gland, as well as epidermis and somitic muscle. YAP directly regulates pax3 expression via association with TEAD1 (N-TEF at a highly conserved, previously undescribed, TEAD-binding site within the 5' regulatory region of pax3. Structure/function analyses revealed that the PDZ-binding motif of YAP contributes to the inhibition of epidermal and somitic muscle differentiation, but a complete, intact YAP protein is required for expansion of the neural plate and neural plate border zone progenitor pools. These results provide a thorough analysis of YAP mediated gene expression changes in loss- and gain-of-function experiments. Furthermore, this is the first report to use YAP structure-function analyzes to determine which portion of YAP is involved in specific gene expression changes and the

  3. Neural Induction, Neural Fate Stabilization, and Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Sally A. Moody

    2002-01-01

    Full Text Available The promise of stem cell therapy is expected to greatly benefit the treatment of neurodegenerative diseases. An underlying biological reason for the progressive functional losses associated with these diseases is the extremely low natural rate of self-repair in the nervous system. Although the mature CNS harbors a limited number of self-renewing stem cells, these make a significant contribution to only a few areas of brain. Therefore, it is particularly important to understand how to manipulate embryonic stem cells and adult neural stem cells so their descendants can repopulate and functionally repair damaged brain regions. A large knowledge base has been gathered about the normal processes of neural development. The time has come for this information to be applied to the problems of obtaining sufficient, neurally committed stem cells for clinical use. In this article we review the process of neural induction, by which the embryonic ectodermal cells are directed to form the neural plate, and the process of neural�fate stabilization, by which neural plate cells expand in number and consolidate their neural fate. We will present the current knowledge of the transcription factors and signaling molecules that are known to be involved in these processes. We will discuss how these factors may be relevant to manipulating embryonic stem cells to express a neural fate and to produce large numbers of neurally committed, yet undifferentiated, stem cells for transplantation therapies.

  4. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)

    2014-09-15

    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  5. Backfill for iliac-crest donor sites: a prospective, randomized study of coralline hydroxyapatite.

    Science.gov (United States)

    Bojescul, John A; Polly, David W; Kuklo, Timothy R; Allen, Thomas W; Wieand, Kay E

    2005-08-01

    We report on a prospective randomized study of coralline hydroxyapatite (CH) used as backfill for iliac-crest donor sites. Autogenous iliac-crest bone graft is routinely harvested for spinal fusion. Donor-site morbidity is underappreciated; the presumption is that donor sites regenerate. In this study, we assessed the biological viability of the backfill CH (Pro OsteonTM Implant 500 Hydroxyapatite Bone Void Filler; Interpore, Irvine, Calif) and compared donor-site morbidity after harvest. Twelve patients (11 men, 1 woman) were enrolled: 5 in the backfill group and 7 in the no-backfill group. As part of routine evaluations done preoperatively and 6 weeks, 3 months, 6 months, and 1 year postoperatively, plain radiographs and computed tomography (CT) scans were used to assess bone ingrowth, and technetium bone scans were used to assess biological activity. Postoperative pain analysis was also done. Ten patients (9 men, 1 woman) completed the study. Of the 4 completers in the backfill group, 3 (75%) showed bony ingrowth on plain radiographs and CT scans at 1 year; the fourth patient showed bony ingrowth only on plain radiographs. All 4 patients showed biological activity on bone scans and reported mild pain to no pain. Of the 6 completers in the no-backfill group, 1 (17%) showed bony ingrowth on plain radiographs and CT scans. No patient showed biological activity on bone scans at 1 year. CH aids in iliac-crest healing after bone-graft harvesting by acting as a biological osteoconductive matrix. Postoperative pain at the bone-graft site is potentially reduced. More studies of larger numbers of patients are needed to assess the true long-term benefits of this material in a clinical setting.

  6. Iliac crest allograft glenoid reconstruction for recurrent anterior shoulder instability in athletes: Surgical technique and results

    Directory of Open Access Journals (Sweden)

    Randy Mascarenhas

    2014-01-01

    Full Text Available Performing a labral repair alone in patients with recurrent anterior instability and a large glenoid defect has led to poor outcomes. We present a technique involving the use of the iliac crest allograft inserted into the glenoid defect in athletes with recurrent anterior shoulder instability and large bony defects of the glenoid (>25% of glenoid diameter. All athletes with recurrent anterior shoulder instability and a large glenoid defect that underwent open anterior shoulder stabilization and glenoid reconstruction with the iliac crest allograft were followed over a 4-year period. Preoperatively, a detailed history and physical exam were obtained along with standard radiographs and magnetic resonance imaging of the affected shoulder. All patients also completed the Simple Shoulder Test (SST and American Shoulder and Elbow Surgeons (ASES evaluation forms preoperatively. A computed tomography scan was obtained postoperatively to assess osseous union of the graft and the patient again went through a physical exam in addition to completing the SST, ASES, and Western Ontario Shoulder Instability Index (WOSI forms. 10 patients (9 males, 1 female were followed for an average of 16 months (4-36 months and had a mean age of 24.4 years. All patients exhibited a negative apprehension/relocation test and full shoulder strength at final follow-up. Eight of 10 patients had achieved osseous union at 6 months (80.0%. ASES scores improved from 64.3 to 97.8, and SST scores improved from 66.7 to 100. Average postoperative WOSI scores were 93.8%. The use of the iliac crest allograft provides a safe and clinically useful alternative compared to previously described procedures for recurrent shoulder instability in the face of glenoid deficiency.

  7. Comparison of NOAA-CREST Soil Moisture Measurements with SMOS Products

    Science.gov (United States)

    Norouzi, H.; Forbes, A.

    2014-12-01

    In October 2014, the Soil Moisture Active and Passive mission (SMAP) will launch into a near-polar and sun- synchronous orbit. SMAP includes the first 3 KM resolution product, by both radar and radiometer sensors which will transmit useful information concentrating on the global measurements of soil moisture and freeze/thaw cycles. NOAA- CREST (National Oceanic and Atmospheric Administration- Cooperative Remote Sensing Science and Technology) deploys a series of in-situ devices into the soil, and an L-BAND Radiometer close to the site ground at the Cary Institute in Millbrook, NY. The site is important for future validation of SMAP mission. Comparing mathematical and ground based remote sensing of soil moisture is beneficial to ensure the accuracy of the measurements. The focus of this research is to analyze and compare soil moisture from ESA- SMOS (Europe Space Agency- Soil Moisture Ocean Salinity) mission and the Cary Institute's soil moisture measurements within the same time period, and location. In the interest of establishing superb authentication; comparing SMOS and ground measurements will justify the accuracy of the newly launch satellite. Discrepancies can be found between field point measurement and relatively large footprint of SMOS, which affects comparison and validation. Several techniques and statistical methods will provide a more meaningful comparison to analyze soil moisture data. The results of this project will help to provide a useful method to compare the NOAA-CREST soil moisture measurements and SMAP measurements. In conclusion, the SMAP advance technology will provide more accurate feedback for modeling numerical weather and climate models. Keywords: Soil Moisture, Precipitation, CREST-SMART, Cary Institute, In-situ, Remote Sensors Accurate Soil Moisture Data, Millbrook, N.Y., CATDS, Hydrology is the branch of science concerning properties of earth's water especially its movement in relation to land. SMOS MIRAS, SMAP, Sensors (Underground)

  8. Population structure and mating system of the Red-crested Korhaan (Lophotis ruficrista) in South Africa

    Institute of Scientific and Technical Information of China (English)

    Johann H van Niekerk

    2015-01-01

    Background:The mating system of the korhaans and bustards in southern Africa is either based on polygyny or monogamy. The Red-crested Korhaan (Lophotis ruficrista) has been described as polygynous but otherwise very little is known about its breeding biology. The aims were to describe the population structure and male behavior during breeding. Methods:The data collected for this paper was mainly based on field transect surveys carried out in 2009, 2010 and 2011. The population structure of the Red-crested Korhaan in the temperate Borakalalo Game Reserve (BGR) was compared with that in the arid Molopo Nature Reserve (MNR) (both situated in the North West province of South Africa). The study was mainly conducted in the BGR but additional work was conducted in the MNR for comparison. Results:The difference in mean group sizes between MNR (1.03) and BGR (1.07) was statistically not significant. Group sizes were not affected by climate despite the fact that the BGR received about 650 mm precipitation per annum and the MNR about 200 mm. In both reserves the apparent sex ratios were skewed in favor of males (1:0.29 in the BGR and 1:0.1 in the MNR). The population was dispersed in a clumped manner which is ascribed to the formation of leks. Leks were positioned in open habitat while females invariably concealed themselves under cover. Conclusions:The leks formed the pivot of the mating system of the Red-crested Korhaan and are identifiable social structures that field ecologists can use to monitor population stability.

  9. Sensing and stimulation of the vagus nerve for artificial cardiac control

    NARCIS (Netherlands)

    Ordelman, Simone Cornelia Maria Anna

    2012-01-01

    This thesis focuses on sensing cardiovascular signals from the vagus nerve and electrically stimulating the vagus nerve for cardiovascular effects. Sensing cardiovascular signals was attempted on both spontaneous and evoked neural activity. A cardiac-modulated vagus nerve activity pattern was found

  10. Numerical simulation of lowest-order short-crested wave instabilities

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.; Bingham, Harry

    2006-01-01

    A numerical study of doubly periodic deep-water short-crested wave instabilities, arising from various quartet resonant interactions, is conducted using a high-order Boussinesq-type model. The model is first verified through a series of simulations involving classical class I plane wave...... demonstrates a reasonably similar evolution. These simulations consider the simplest physical situations involving three-dimensional instabilities of genuinely three-dimensional progressive waves, revealing qualitative differences from classical two-dimensional descriptions. This study is therefore...

  11. Short-crested waves in deep water: a numerical investigation of recent laboratory experiments

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.

    2006-01-01

    A numerical study of quasi-steady, doubly-periodic monochromatic short-crested wave patterns in deep water is conducted using a high-order Boussinesq-type model. Simulations using linear wavemaker conditions in the nonlinear model are initially used to approximate conditions from recent laboratory...... inclusion of steady third-order components in the wave generation is shown to significantly reduce the modulations (and other unsteady features), further confirming the explanation. This numerical work makes apparent some previously unknown difficulties associated with the physical generation of even...

  12. The Crest of the Peacock Non-European Roots of Mathematics (Third Edition)

    CERN Document Server

    Joseph, George Gheverghese

    2011-01-01

    From the Ishango Bone of central Africa and the Inca quipu of South America to the dawn of modern mathematics, The Crest of the Peacock makes it clear that human beings everywhere have been capable of advanced and innovative mathematical thinking. George Gheverghese Joseph takes us on a breathtaking multicultural tour of the roots and shoots of non-European mathematics. He shows us the deep influence that the Egyptians and Babylonians had on the Greeks, the Arabs' major creative contributions, and the astounding range of successes of the great civilizations of India and China. The third editio

  13. Resurrection of Bronchocela burmana Blanford, 1878 for the Green Crested Lizard (Squamata, Agamidae) of southern Myanmar

    Science.gov (United States)

    Zug, George R.; Mulcahy, Daniel G.; Vindum, Jens V.

    2017-01-01

    Abstract Recent fieldwork in southern Tanintharyi revealed the presence of a small Green Crested Lizard in the wet evergreen forest. We generated mtDNA sequence data (ND2) that demonstrates that this population’s nearest relative is Bronchocela rayaensis Grismer et al., 2015 of Pulau Langkawi, northwestern Peninsular Malaysia and Phuket Island. Morphologically the Burmese Bronchocela shares many features with Bronchocela rayaensis, which potentially would make this recently described Thai-Malay species a synonym of Bronchocela burmana Blanford, 1878; however, we interpret the genetic and morphological differences to reflect evolutionary divergence and recommend the recognition of both species.

  14. Resurrection of Bronchocela burmana Blanford, 1878 for the Green Crested Lizard (Squamata, Agamidae of southern Myanmar

    Directory of Open Access Journals (Sweden)

    George R. Zug

    2017-02-01

    Full Text Available Recent fieldwork in southern Tanintharyi revealed the presence of a small Green Crested Lizard in the wet evergreen forest. We generated mtDNA sequence data (ND2 that demonstrates that this population’s nearest relative is Bronchocela rayaensis Grismer et al., 2015 of Pulau Langkawi, northwestern Peninsular Malaysia and Phuket Island. Morphologically the Burmese Bronchocela shares many features with B. rayaensis, which potentially would make this recently described Thai-Malay species a synonym of Bronchocela burmana Blanford, 1878; however, we interpret the genetic and morphological differences to reflect evolutionary divergence and recommend the recognition of both species.

  15. Applicability of tooth derived stem cells in neural regeneration

    Institute of Scientific and Technical Information of China (English)

    Ludovica Parisi; Edoardo Manfredi

    2016-01-01

    Within the nervous system, regeneration is limited, and this is due to the small amount of neural stem cells, the inhibitory origin of the stem cell niche and otfen to the development of a scar which constitutes a mechanical barrier for the regeneration. Regarding these aspects, many efforts have been done in the re-search of a cell component that combined with scaffolds and growth factors could be suitable for nervous regeneration in regenerative medicine approaches. Autologous mesenchymal stem cells represent nowa-days the ideal candidate for this aim, thank to their multipotency and to their amount inside adult tissues. However, issues in their harvesting, through the use of invasive techniques, and problems involved in their ageing, require the research of new autologous sources. To this purpose, the recent discovery of a stem cells component in teeth, and which derive from neural crest cells, has came to the light the possibility of using dental stem cells in nervous system regeneration. In this work, in order to give guidelines on the use of dental stem cells for neural regeneration, we brielfy introduce the concepts of regeneration and regenerative medicine, we then focus the attention on odontogenesis, which involves the formation and the presence of a stem component in different parts of teeth, and ifnally we describe some experimental approaches which are exploiting dental stem cells for neural studies.

  16. Reconstruction of iliac crest with rib to prevent donor site complications: A prospective study of 26 cases

    Directory of Open Access Journals (Sweden)

    Dave B

    2007-01-01

    Full Text Available Background: The tricortical bone graft from the iliac crest are used to reconstruct the post corpectomy spinal defects. The donor iliac area defect is large and may give rise to pain at donor site, instability of pelvis, fracture of ilium, donor site muscle herniation or abdominal content herniation. Rib removed during thoracotomy was used by us to reconstruct the iliac crest defect. Materials and Methods: Twenty-six patients who underwent thoracotomy for dorsal spine corpectomy or curettage for various spinal pathologies from June 2002 to May 2004 were included in the study. After adequate decompression the spine was reconstructed by tricortical bone graft from iliac crest and reconstruction of the iliac crest was done with the rib removed for exposure during thoracotomy. Results: The mean follow up was 15 months. All patients had good graft incorporation which was evaluated on the basis of local tenderness and radiographs. One patient had graft displacement. Conclusion: The reconstruction of iliac crest by rib is a simple and effective procedure to prevent donor site complications.

  17. Comparison of outcome of microvascular bony head and neck reconstructions using the fibular free flap and the iliac crest flap.

    Science.gov (United States)

    Mücke, Thomas; Loeffelbein, Denys J; Kolk, Andreas; Wagenpfeil, Stefan; Kanatas, Anastasios; Wolff, Klaus-Dietrich; Mitchell, David A; Kesting, Marco R

    2013-09-01

    Several microvascular free flaps are available for reconstruction of the osseous components after resections for head and neck cancer. We have prospectively evaluated patients treated by bony microsurgical reconstruction to identify predictors of adverse outcomes for delayed wound healing and failure of free flaps. All patients from July 2007 to June 2011 who had reconstructions with microvascular fibular or iliac crest flaps immediately after resection of the tumour were evaluated. There were a total of 156 bony free flaps: 120 (77%) fibular and 36 (23%) iliac crest flaps. A total of 133 (85%) were successful. Delayed wound healing was more common with the iliac crest flap (p=0.01) at the intraoral site (p=0.04). Significantly more iliac crest free flaps failed (p=0.02). Anastomosis to the facial artery (p=0.05) and facial vein (p=0.04), and duration of overall operating time were associated with a significantly higher risk of failure of the flap. Patients with cancer of the head and neck who require microsurgical bony reconstruction are at increased risk of postoperative complications. Significantly more complications were found with the iliac crest flap, whereas the fibular flap was associated with a significantly longer operating time.

  18. Cardiac nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gerson, M.C.

    1987-01-01

    The book begins with a review of the radionuclide methods available for evaluating cardiac perfusion and function. The authors discuss planar and tomographic thallium myocardial imaging, first-pass and equilibrium radionuclide angiography, and imaging with infarct-avid tracers. Several common but more specialized procedures are then reviewed: nonogemetric measurement of left ventricular volume, phase (Fourier) analysis, stroke volume ratio, right ventricular function, and diastolic function. A separate chapter is devoted to drug interventions and in particular the use of radionuclide ventriculography to monitor doxorubicin toxicity and therapy of congestive heart failure. The subsequent chapters provide a comprehensive guide to test selection, accuracy, and results in acute myocardial infarction, in postmyocardial infarction, in chronic coronary artery disease, before and after medical or surgical revascularization, in valvular heart disease, in cardiomyopathies, and in cardiac trauma.

  19. Sudden Cardiac Death

    Directory of Open Access Journals (Sweden)

    Yipsy María Gutiérrez Báez

    2015-09-01

    Full Text Available Since the second half of the twentieth century, dying suddenly due to heart-related problems has become the main health issue in all countries where infectious diseases are not prevalent. Sudden death from cardiac causes is an important global health problem. Major databases were searched for the leading causes of sudden cardiac death. It has been demonstrated that there is a group of hereditary diseases with structural alterations or without apparent organic cause that explains many cases of sudden death in young people, whether related or not to physical exertion. Certain population groups are at higher risk for this disease. They are relatively easy to identify and can be the target of primary prevention measures.

  20. Cardiac arrhythmias in pregnancy.

    Science.gov (United States)

    Knotts, Robert J; Garan, Hasan

    2014-08-01

    As more women with repaired congenital heart disease survive to their reproductive years and many other women are delaying pregnancy until later in life, a rising concern is the risk of cardiac arrhythmias during pregnancy. Naturally occurring cardiovascular changes during pregnancy increase the likelihood that a recurrence of a previously experienced cardiac arrhythmia or a de novo arrhythmia will occur. Arrhythmias should be thoroughly investigated to determine if there is a reversible etiology, and risks/benefits of treatment options should be fully explored. We discuss the approach to working up and treating various arrhythmias during pregnancy with attention to fetal and maternal risks as well as treatment of fetal arrhythmias. Acute management in stable patients includes close monitoring and intravenous pharmacologic therapy, while DC cardioversion should be used to terminate arrhythmias in hemodynamically unstable patients. Long-term management may require continued oral antiarrhythmic therapy, with particular attention to fetal safety, to prevent complications associated with arrhythmias.