WorldWideScience

Sample records for cardiac muscle function

  1. Structure and function of the cytoskeleton in cardiac and skeletal muscle

    OpenAIRE

    Balogh, Johanna

    2004-01-01

    We have examined the functional and structural roles of the cytoskeletal protein desmin in cardiac and skeletal muscles using a genetically modified mouse (Des-/-) with the desmin gene ablated. Desmin forms filaments at the Z-disks in the striated muscle sarcomere, have connections to the sarcolemma and most likely align sarcomeres and whole cells. We have shown a decreased contractile function of heart (study I) and skeletal muscle (study II) from Des-/- mice, indicating an important functio...

  2. Scaling functional patterns of skeletal and cardiac muscles: New non-linear elasticity approach

    CERN Document Server

    Kokshenev, Valery B

    2009-01-01

    Responding mechanically to environmental requests, muscles show a surprisingly large variety of functions. The studies of in vivo cycling muscles qualified skeletal muscles into four principal locomotor patterns: motor, brake, strut, and spring. While much effort of has been done in searching for muscle design patterns, no fundamental concepts underlying empirically established patterns were revealed. In this interdisciplinary study, continuum mechanics is applied to the problem of muscle structure in relation to function. The ability of a powering muscle, treated as a homogenous solid organ, tuned to efficient locomotion via the natural frequency is illuminated through the non-linear elastic muscle moduli controlled by contraction velocity. The exploration of the elastic force patterns known in solid state physics incorporated in activated skeletal and cardiac muscles via the mechanical similarity principle yields analytical rationalization for locomotor muscle patterns. Besides the explanation of the origin...

  3. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-01-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial function. Therefore, this study examined mitochondrial respiratory rates in the smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscle. Cardiac, skele...

  4. Impact of aging on mitochondrial function in cardiac and skeletal muscle.

    Science.gov (United States)

    Hepple, R T

    2016-09-01

    Both skeletal muscle and cardiac muscle are subject to marked structural and functional impairment with aging and these changes contribute to the reduced capacity for exercise as we age. Since mitochondria are involved in multiple aspects of cellular homeostasis including energetics, reactive oxygen species signaling, and regulation of intrinsic apoptotic pathways, defects in this organelle are frequently implicated in the deterioration of skeletal and cardiac muscle with aging. On this basis, the purpose of this review is to evaluate the evidence that aging causes dysfunction in mitochondria in striated muscle with a view towards drawing conclusions about the potential of these changes to contribute to the deterioration seen in striated muscle with aging. As will be shown, impairment in respiration and reactive oxygen species emission with aging are highly variable between studies and seem to be largely a consequence of physical inactivity. On the other hand, both skeletal and cardiac muscle mitochondria are more susceptible to permeability transition and this seems a likely cause of the increased recruitment of mitochondrial-mediated pathways of apoptosis seen in striated muscle. The review concludes by examining the role of degeneration of mitochondrial DNA versus impaired mitochondrial quality control mechanisms in the accumulation of mitochondria that are sensitized to permeability transition, whereby the latter mechanism is favored as the most likely cause. PMID:27033952

  5. Effects of protein-calorie restriction on mechanical function of hypertrophied cardiac muscle

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Cicogna

    1999-04-01

    Full Text Available OBJECTIVE: To assess the effect of food restriction (FR on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR. METHODS: Isolated papillary muscle preparations of the left ventricle (LV of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1 reduction in the body weight and LV weight of SHR and WKY rats; 2 increase in the time to peak shortening and the time to peak developed tension (DT in the hypertrophied myocardium of the SHR; 3 diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.

  6. Muscle LIM Protein: Master regulator of cardiac and skeletal muscle functions.

    Science.gov (United States)

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A; Sanoudou, Despina

    2015-07-15

    Muscle LIM Protein (MLP) has emerged as a key regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, are causative of human cardiomyopathies, whereas altered expression patterns are observed in human failing heart and skeletal myopathies. In vitro and in vivo evidences reveal a complex and diverse functional role of MLP in striated muscle, which is determined by its multiple interacting partners and subcellular distribution. Experimental evidence suggests that MLP is implicated in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles still unfolds. PMID:25936993

  7. Endurance training prevents negative effects of the hypoxia mimetic dimethyloxalylglycine on cardiac and skeletal muscle function.

    Science.gov (United States)

    Favier, Francois B; Britto, Florian A; Ponçon, Benjamin; Begue, Gwenaelle; Chabi, Beatrice; Reboul, Cyril; Meyer, Gregory; Py, Guillaume

    2016-02-15

    Hypoxic preconditioning is a promising strategy to prevent hypoxia-induced damages to several tissues. This effect is related to prior stabilization of the hypoxia-inducible factor-1α via inhibition of the prolyl-hydroxylases (PHDs), which are responsible for its degradation under normoxia. Although PHD inhibition has been shown to increase endurance performance in rodents, potential side effects of such a therapy have not been explored. Here, we investigated the effects of 1 wk of dimethyloxalylglycine (DMOG) treatment (150 mg/kg) on exercise capacity, as well as on cardiac and skeletal muscle function in sedentary and endurance-trained rats. DMOG improved maximal aerobic velocity and endurance in both sedentary and trained rats. This effect was associated with an increase in red blood cells without significant alteration of skeletal muscle contractile properties. In sedentary rats, DMOG treatment resulted in enhanced left ventricle (LV) weight together with impairment in diastolic function, LV relaxation, and pulse pressure. Moreover, DMOG decreased maximal oxygen uptake (state 3) of isolated mitochondria from skeletal muscle. Importantly, endurance training reversed the negative effects of DMOG treatment on cardiac function and restored maximal mitochondrial oxygen uptake to the level of sedentary placebo-treated rats. In conclusion, we provide here evidence that the PHD inhibitor DMOG has detrimental influence on myocardial and mitochondrial function in healthy rats. However, one may suppose that the deleterious influence of PHD inhibition would be potentiated in patients with already poor physical condition. Therefore, the present results prompt us to take into consideration the potential side effects of PHD inhibitors when administrated to patients. PMID:26679609

  8. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons

    Science.gov (United States)

    Oh, Yohan; Cho, Gun-Sik; Li, Zhe; Hong, Ingie; Zhu, Renjun; Kim, Min-Jeong; Kim, Yong Jun; Tampakakis, Emmanouil; Tung, Leslie; Huganir, Richard; Dong, Xinzhong; Kwon, Chulan; Lee, Gabsang

    2016-01-01

    Summary Neurons derived from human pluripotent stem cells (hPSCs) are powerful tools for studying human neural development and diseases. Robust functional coupling of hPSC-derived neurons with target tissues in vitro is essential for modeling intercellular physiology in a dish and to further translational studies, but has proven difficult to achieve. Here, we derive sympathetic neurons from hPSCs and show they can form physical and functional connections with cardiac muscle cells. Using multiple hPSC reporter lines, we recapitulated human autonomic neuron development in vitro and successfully isolated PHOX2B:eGFP+ neurons that exhibit sympathetic marker expression and electrophysiological properties, and norepinephrine secretion. Upon pharmacologic and optogenetic manipulation, PHOX:eGFP+ neurons controlled beating rates of cardiomyocytes, and the physical interactions between these cells increased neuronal maturation. This study provides a foundation for human sympathetic neuron specification and for hPSC-based neuronal control of organs in a dish. PMID:27320040

  9. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, Priya; Wang, Li; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Huang, Wenrui; Hernandez, Olga M.; Kawai, Masataka; Irving, Thomas C.; Szczesna-Cordary, Danuta (IIT); (Iowa); (Miami-MED)

    2012-04-02

    The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-{Delta}43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing ({approx} 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I{sub 1,1}/I{sub 1,0}, indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-{Delta}43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-{Delta}43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.

  10. Evaluation of skeletal and cardiac muscle function after chronic administration of thymosin beta-4 in the dystrophin deficient mouse.

    Directory of Open Access Journals (Sweden)

    Christopher F Spurney

    Full Text Available Thymosin beta-4 (Tbeta4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tbeta4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ and mdx mice, 8-10 weeks old, were treated with 150 microg of Tbeta4 twice a week for 6 months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle function were assessed via grip strength and high frequency echocardiography. Localization of Tbeta4 and amount of fibrosis were quantified using immunohistochemistry and Gomori's tri-chrome staining, respectively. Mdx mice treated with Tbeta4 showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tbeta4 stained exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated mdx mice. In exercised dystrophin deficient mice, chronic administration of Tbeta4 increased the number of regenerating fibers in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy.

  11. Extraocular muscle function testing

    Science.gov (United States)

    Extraocular muscle function testing examines the function of the eye muscles. A health care provider observes the movement of ... evaluate weakness or other problem in the extraocular muscles. These problems may result in double vision or ...

  12. Cardiac cachexia and muscle wasting: definition, physiopathology, and clinical consequences

    Directory of Open Access Journals (Sweden)

    Okoshi MP

    2014-11-01

    Full Text Available Marina P Okoshi,1 Fernando G Romeiro,1 Paula F Martinez,1,2 Silvio A Oliveira Jr,1,2 Bertha F Polegato,1 Katashi Okoshi11Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Sao Paulo, Brazil; 2School of Physiotherapy, Federal University of Mato Grosso do Sul, Campo Grande, BrazilAbstract: Cachexia and muscle wasting are frequently observed in heart failure patients. Cachexia is a predictor of reduced survival, independent of important parameters such as age, heart failure functional class, and functional capacity. Muscle and fat wasting can also predict adverse outcome during cardiac failure. Only more recently were these conditions defined in International Consensus. Considering that heart failure is an inflammatory disease, cardiac cachexia has been diagnosed by finding a body weight loss >5%, in the absence of other diseases and independent of other criteria. Muscle wasting has been defined as lean appendicular mass corrected for height squared of 2 standard deviations or more below the mean for healthy individuals between 20 years and 30 years old from the same ethnic group. The etiology of heart failure-associated cachexia and muscle wasting is multifactorial, and the underlying physiopathological mechanisms are not completely understood. The most important factors are reduced food intake, gastrointestinal alterations, immunological activation, neurohormonal abnormalities, and an imbalance between anabolic and catabolic processes. Cachexia and muscle wasting have clinical consequences in several organs and systems including the gastrointestinal and erythropoietic systems, and the heart, previously affected by the primary disease. We hope that a better understanding of the mechanisms involved in their physiopathology will allow the development of pharmacological and nonpharmacological therapies to effectively prevent and treat heart failure-induced cachexia and muscle wasting before significant body

  13. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio.

    Science.gov (United States)

    Furlan, Sandra; Mosole, Simone; Murgia, Marta; Nagaraj, Nagarjuna; Argenton, Francesco; Volpe, Pompeo; Nori, Alessandra

    2016-04-01

    Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located. PMID:26585961

  14. Muscle-derived Stem Cell Sheets Support Pump Function and Prevent Cardiac Arrhythmias in a Model of Chronic Myocardial Infarction

    OpenAIRE

    Sekiya, Naosumi; Tobita, Kimimasa; Beckman, Sarah; Okada, Masaho; Gharaibeh, Burhan; Sawa, Yoshiki; Kormos, Robert L.; Huard, Johnny

    2013-01-01

    Direct intracardiac cell injection for heart repair is hindered by numerous limitations including: cell death, poor spreading of the injected cells, arrhythmia, needle injury, etc. Tissue-engineered cell sheet implantation has the potential to overcome some of these limitations. We evaluated whether the transplantation of a muscle-derived stem cell (MDSC) sheet could improve the regenerative capacity of MDSCs in a chronic model of myocardial infarction. MDSC sheet-implanted mice displayed a r...

  15. Muscle function loss

    Science.gov (United States)

    ... nerve injury, or brain damage ( stroke or other brain injury) The loss of muscle function after these types of events can be severe. Often it will not completely return, even with treatment. Paralysis can be temporary or permanent. It can affect ...

  16. Transplantation of 5-azacytidine treated cardiac fibroblasts improves cardiac function of infarct hearts in rats

    Institute of Scientific and Technical Information of China (English)

    TANG Cheng-chun; MA Gan-shan; CHEN Ji-yuan

    2010-01-01

    Background Cellular cardiomyoplasty by transplantation of various cell types has been investigated as potential treatments for the improvement of cardiac function after myocardial injury. A major barrier for the clinical application of cell transplantation is obtaining sufficiently large quantities of suitable cells. AIIogeneic cellular cardiomyoplasty may provide an alternative source of abundant, transplantable, myogenic cells by in vitro manipulation of cardiac fibroblasts using chemicals including 5-azacytidine. This study evaluated cardiomyogenic differentiation of cardiac fibroblasts, their survival in myocardial scar tissue, and the effect of the implanted cells on heart function.Methods Primary cardiac fibroblasts from neonatal rats were treated with 5-azacytidine (10 μmol/L) or control.Treatment of 5-azacytidine caused myogenic differentiation of cultured cardiac fibroblasts, as defined by elongation and fusion into multinucleated myotubes with sarcomeric structures as identified by electron microscopy, and positive immunostaining for cardiac specific proteins, troponin I and β-myosin heavy chain (β-MHC) and the gap junction protein connexin 43. The myogenic cells (1.0x106) were transplanted into the infarcted myocardium 2 weeks after coronary artery occlusion.Results By 1 month after transplantation, the converted fibroblasts gave rise to a cluster of cardiac-like muscle cells that in the hearts occupied a large part of the scar with positive immunostaining for the myogenic proteins troponin I and β-MHC. Engrafted cells also expressed the gap junction protein connexin 43 in a disorganized manner. There was no positive staining in the control hearts treated with injections of culture medium. Heart function was evaluated at 6 weeks after myocardial injury with echocardiographic and hemodynamic measurements. Improvement in cardiac function was seen in the hearts transplanted with the 5-azacytidine-treated cardiac fibroblasts which was absent in the

  17. Cardiac functional analysis with MRI

    International Nuclear Information System (INIS)

    Cardiovascular diseases (CVD) are among the leading causes of death worldwide. Even in the 21st century CVD will still be the most frequent cause of morbidity and mortality. Precise evaluation of cardiac function is therefore mandatory for therapy planning and monitoring. In this article the contribution of MRI-based analysis of cardiac function will be addressed. Nowadays cine-MRI is considered as the standard of reference (SOR) in cardiac functional analysis. ECG-triggered steady-state free precession (SSFP) sequences are mainly used as they stand out due to short acquisition times and excellent contrast between the myocardium and the ventricular cavity. An indispensible requirement for cardiac functional analysis is an exact planning of the examination and based on that the coverage of the whole ventricle in short axial slices. By means of dedicated post-processing software, manual or semi-automatic segmentation of the endocardial and epicardial contours is necessary for functional analysis. In this way end-diastolic volume (EDV), end-systolic volume (ESV) and the ejection fraction (EF) are defined and regional wall motion abnormalities (RWMA) can be detected. (orig.)

  18. Effect of tighter glycemic control on cardiac function, exercise capacity, and muscle strength in heart failure patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Bent Roni Ranghøj; Wiggers, Henrik; Thomsen, Henrik Holm;

    2016-01-01

    OBJECTIVES: In patients with type 2 diabetes (T2D) and heart failure (HF), the optimal glycemic target is uncertain, and evidence-based data are lacking. Therefore, we performed a randomized study on the effect of optimized glycemic control on left ventricular function, exercise capacity, muscle...

  19. Proteomic responses of skeletal and cardiac muscle to exercise

    Science.gov (United States)

    Burniston, Jatin G.; Hoffman, Eric P.

    2016-01-01

    Summary Regular exercise is effective in the prevention of chronic diseases and confers a lower risk of death in individuals displaying risk factors such as hypertension and dyslipidaemia. Thus, knowledge of the molecular responses to exercise provides a valuable contrast for interpreting investigations of disease and can highlight novel therapeutic targets. While exercise is an everyday experience and can be conceptualized in simple terms, exercise is a complex physiological phenomena and investigation of exercise responses requires sophisticated analytical techniques and careful standardization of the exercise stimulus. Proteomic investigation of exercise is in its infancy but the ability to link changes in function with comprehensive changes in protein expression and post-translational modification holds great promise for advancing physiology. This review highlights recent pioneering work investigating the effects of exercise in skeletal and cardiac muscle that has uncovered novel mechanisms underling the benefits of physical activity. PMID:21679117

  20. Tissue-specific and substrate-specific mitochondrial bioenergetics in feline cardiac and skeletal muscles

    DEFF Research Database (Denmark)

    Christiansen, Liselotte Bruun; Dela, Flemming; Koch, Jørgen;

    2015-01-01

    No studies have investigated the mitochondrial function in permeabilized muscle fiber from cats. The aim of this study was to investigate tissue-specific and substrate-specific characteristics of mitochondrial oxidative phosphorylation (OXPHOS) capacity in feline permeabilized oxidative muscle...... fibers. Biopsies of left ventricular cardiac muscle and soleus muscle, a type I-rich oxidative skeletal muscle, were obtained from 15 healthy domestic cats. Enzymatic activity of citrate synthase (CS), a biomarker of mitochondrial content, was measured. Mitochondrial OXPHOS capacity with various kinds of...... non-fatty-acid substrates and fatty-acid substrate in permeabilized muscle fiber was measured by using high-resolution respirometry. CS activity in the heart was 3 times higher than in the soleus muscle. Mitochondrial state 3 respiration, ADP-stimulated respiration, with complex I-linked and complex I...

  1. Endogenous L-Carnosine Level in Diabetes Rat Cardiac Muscle

    OpenAIRE

    Yali Liu; Dan Su; Ling Zhang; Shaofeng Wei; Kuangyi Liu; Mi Peng; Hanyun Li; Yonggui Song

    2016-01-01

    A novel method for quantitation of cardiac muscle carnosine levels using HPLC-UV is described. In this simple and reliable method, carnosine from the rat cardiac muscle and the internal standard, thymopentin, were extracted by protein precipitation with acetonitrile. The method was linear up to 60.96 μg·mL−1 for L-carnosine. The calibration curve was linear in concentration ranges from 0.5 to 60.96 μg·mL−1. The relative standard deviations obtained for intra- and interday precision were lower...

  2. Endogenous L-Carnosine Level in Diabetes Rat Cardiac Muscle

    Science.gov (United States)

    Liu, Yali; Su, Dan; Zhang, Ling; Wei, Shaofeng; Liu, Kuangyi; Peng, Mi; Li, Hanyun; Song, Yonggui

    2016-01-01

    A novel method for quantitation of cardiac muscle carnosine levels using HPLC-UV is described. In this simple and reliable method, carnosine from the rat cardiac muscle and the internal standard, thymopentin, were extracted by protein precipitation with acetonitrile. The method was linear up to 60.96 μg·mL−1 for L-carnosine. The calibration curve was linear in concentration ranges from 0.5 to 60.96 μg·mL−1. The relative standard deviations obtained for intra- and interday precision were lower than 12% and the recoveries were higher than 90% for both carnosine and internal standard. We successfully applied this method to the analysis of endogenous carnosine in cardiac muscle of the diabetes rats and healthy control rats. The concentration of carnosine was significantly lower in the diabetes rats group, compared to that in the healthy control rats. These results support the usefulness of this method as a means of quantitating carnosine and illustrate the important role of L-carnosine in cardiac muscle.

  3. Endogenous L-Carnosine Level in Diabetes Rat Cardiac Muscle.

    Science.gov (United States)

    Liu, Yali; Su, Dan; Zhang, Ling; Wei, Shaofeng; Liu, Kuangyi; Peng, Mi; Li, Hanyun; Song, Yonggui

    2016-01-01

    A novel method for quantitation of cardiac muscle carnosine levels using HPLC-UV is described. In this simple and reliable method, carnosine from the rat cardiac muscle and the internal standard, thymopentin, were extracted by protein precipitation with acetonitrile. The method was linear up to 60.96 μg·mL(-1) for L-carnosine. The calibration curve was linear in concentration ranges from 0.5 to 60.96 μg·mL(-1). The relative standard deviations obtained for intra- and interday precision were lower than 12% and the recoveries were higher than 90% for both carnosine and internal standard. We successfully applied this method to the analysis of endogenous carnosine in cardiac muscle of the diabetes rats and healthy control rats. The concentration of carnosine was significantly lower in the diabetes rats group, compared to that in the healthy control rats. These results support the usefulness of this method as a means of quantitating carnosine and illustrate the important role of L-carnosine in cardiac muscle. PMID:27190533

  4. Endogenous L-Carnosine Level in Diabetes Rat Cardiac Muscle

    Directory of Open Access Journals (Sweden)

    Yali Liu

    2016-01-01

    Full Text Available A novel method for quantitation of cardiac muscle carnosine levels using HPLC-UV is described. In this simple and reliable method, carnosine from the rat cardiac muscle and the internal standard, thymopentin, were extracted by protein precipitation with acetonitrile. The method was linear up to 60.96 μg·mL−1 for L-carnosine. The calibration curve was linear in concentration ranges from 0.5 to 60.96 μg·mL−1. The relative standard deviations obtained for intra- and interday precision were lower than 12% and the recoveries were higher than 90% for both carnosine and internal standard. We successfully applied this method to the analysis of endogenous carnosine in cardiac muscle of the diabetes rats and healthy control rats. The concentration of carnosine was significantly lower in the diabetes rats group, compared to that in the healthy control rats. These results support the usefulness of this method as a means of quantitating carnosine and illustrate the important role of L-carnosine in cardiac muscle.

  5. Differentiation of troponin in cardiac and skeletal muscles in chicken embryos as studied by immunofluorescence microscopy

    OpenAIRE

    1981-01-01

    The differentiation of troponin (TN) in cardiac and skeletal muscles of chicken embryos was studied by indirect immunofluorescence microscopy. Serial sections of embryos were stained with antibodies specific to TN components (TN-T, -I, and -C) from adult chicken cardiac and skeletal muscles. Cardiac muscle began to be stained with antibodies raised against cardiac TN components in embryos after stage 10 (Hamburger and Hamilton numbering, 1951, J. Morphol. 88:49-92). It reacted also with antis...

  6. Cardiac autoimmunity in HIV related heart muscle disease

    OpenAIRE

    Currie, P; Goldman, J; Caforio, A; Jacob, A.; Baig, M.; Brettle, R; Haven, A; Boon, N.; McKenna, W

    1998-01-01

    Objective—To assess the frequency of circulating cardiac specific autoantibodies in HIV positive patients with and without echocardiographic evidence of left ventricular dysfunction.
Subjects—74 HIV positive patients including 28 with echocardiographic evidence of heart muscle disease, 52 HIV negative people at low risk of HIV infection, and 14 HIV negative drug users who had all undergone non-invasive cardiac assessment were studied along with a group of 200 healthy blood donors.
Results—Car...

  7. In utero undernutrition programs skeletal and cardiac muscle metabolism

    Directory of Open Access Journals (Sweden)

    Brittany eBeauchamp

    2016-01-01

    Full Text Available In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease.

  8. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis

    Science.gov (United States)

    Harel, Itamar; Maezawa, Yoshiro; Avraham, Roi; Rinon, Ariel; Ma, Hsiao-Yen; Cross, Joe W.; Leviatan, Noam; Hegesh, Julius; Roy, Achira; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Carvajal, Jaime; Tole, Shubha; Kioussi, Chrissa; Quaggin, Susan; Tzahor, Eldad

    2012-01-01

    The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects. PMID:23112163

  9. Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering.

    Science.gov (United States)

    Visone, Roberta; Gilardi, Mara; Marsano, Anna; Rasponi, Marco; Bersini, Simone; Moretti, Matteo

    2016-01-01

    In the last few years microfluidics and microfabrication technique principles have been extensively exploited for biomedical applications. In this framework, organs-on-a-chip represent promising tools to reproduce key features of functional tissue units within microscale culture chambers. These systems offer the possibility to investigate the effects of biochemical, mechanical, and electrical stimulations, which are usually applied to enhance the functionality of the engineered tissues. Since the functionality of muscle tissues relies on the 3D organization and on the perfect coupling between electrochemical stimulation and mechanical contraction, great efforts have been devoted to generate biomimetic skeletal and cardiac systems to allow high-throughput pathophysiological studies and drug screening. This review critically analyzes microfluidic platforms that were designed for skeletal and cardiac muscle tissue engineering. Our aim is to highlight which specific features of the engineered systems promoted a typical reorganization of the engineered construct and to discuss how promising design solutions exploited for skeletal muscle models could be applied to improve cardiac tissue models and vice versa. PMID:27571058

  10. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction).

    Science.gov (United States)

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-05-01

    Cardiac miRNAs (miR-1, miR133a, miR-208a/b, and miR-499) are abundantly expressed in the myocardium. They play a central role in cardiogenesis, heart function and pathology. While miR-1 and miR-133a predominantly control early stages of cardiogenesis supporting commitment of cardiac-specific muscle lineage from embryonic stem cells and mesodermal precursors, miR-208 and miR-499 are involved in the late cardiogenic stages mediating differentiation of cardioblasts to cardiomyocytes and fast/slow muscle fiber specification. In the heart, miR-1/133a control cardiac conductance and automaticity by regulating all phases of the cardiac action potential. miR-208/499 located in introns of the heavy chain myosin genes regulate expression of sarcomeric contractile proteins. In cardiac pathology including myocardial infarction (MI), expression of cardiac miRNAs is markedly altered that leads to deleterious effects associated with heart wounding, arrhythmia, increased apoptosis, fibrosis, hypertrophy, and tissue remodeling. In acute MI, circulating levels of cardiac miRNAs are significantly elevated making them to be a promising diagnostic marker for early diagnosis of acute MI. Great cardiospecific capacity of these miRNAs is very helpful for enhancing regenerative properties and survival of stem cell and cardiac progenitor transplants and for reprogramming of mature non-cardiac cells to cardiomyocytes. PMID:27056419

  11. Modelling functional effects of muscle geometry

    NARCIS (Netherlands)

    Linden, van der B.J.J.J.; Koopman, H.F.J.M.; Grootenboer, H.J.; Huijing, P.A.

    1998-01-01

    Muscle architecture is an important aspect of muscle functioning. Hence, geometry and material properties of muscle have great influence on the force–length characteristics of muscle. We compared experimental results for the gastrocnemius medialis muscle (GM) of the rat to model results of simple ge

  12. Effects of growth hormone on morphology of cardiac muscle and skeletal muscle and hormone levels in rats

    International Nuclear Information System (INIS)

    Objective: To study the effects of growth hormone (GH) on morphology of cardiac muscle and skeletal muscle and hormone levels in Wistar rats. Methods: The GH was given with subcutaneous injection for 15 days, the level of serum GH was determined by radiation-immune method; the body weight and the ratio of organ weight to body weight were determined; the cell appearances of cardiac muscle and skeletal muscle were observed under microscope. the control group was set up. Results; The level of serum GH and rat body weight in experimental group were obviously higher than that in the control group, but the ratio of organ weight to body weight was not obviously different in two groups; musculature hypertrophy and cell nucleolus increasing were observed under microscopy, there were no capillary vessel hyperplasia and inflammatory soakage. Conclusion: GH can induce hypertrophy of cardiac muscle cells and skeletal muscle cells but not interstitial proliferation. (authors)

  13. Functional phosphorylation sites in cardiac myofilament proteins are evolutionarily conserved in skeletal myofilament proteins.

    Science.gov (United States)

    Gross, Sean M; Lehman, Steven L

    2016-06-01

    Protein phosphorylation plays an important role in regulating cardiac contractile function, but phosphorylation is not thought to play a regulatory role in skeletal muscle. To examine how myofilament phosphorylation arose in the human heart, we analyzed the amino acid sequences of 25 cardiac phosphorylation sites in animals ranging from fruit flies to humans. These analyses indicated that of the 25 human phosphorylation sites examined, 11 have been conserved across vertebrates and four have been sporadically present in vertebrates. Furthermore, all 11 of the cardiac sites found across vertebrates were present in skeletal muscle isoforms, along with three sites that were sporadically present. Based on the conservation of amino acid sequences between cardiac and skeletal contractile proteins, we tested for phosphorylation in mammalian skeletal muscle using several biochemical techniques and found evidence that multiple myofilament proteins were phosphorylated. Several of these phosphorylation sites were validated using mass spectrometry, including one site that is present in slow- and fast-twitch troponin I (TnI), but was lost in cardiac TnI. Thus, several myofilament phosphorylation sites present in the human heart likely arose in invertebrate muscle, have been evolutionarily conserved in skeletal muscle, and potentially have functional effects in both skeletal and cardiac muscle. PMID:26993364

  14. Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle Wehling-Henricks

    Full Text Available BACKGROUND: Duchenne muscular dystrophy (DMD is the most common, lethal disease of childhood. One of 3500 new-born males suffers from this universally-lethal disease. Other than the use of corticosteroids, little is available to affect the relentless progress of the disease, leading many families to use dietary supplements in hopes of reducing the progression or severity of muscle wasting. Arginine is commonly used as a dietary supplement and its use has been reported to have beneficial effects following short-term administration to mdx mice, a genetic model of DMD. However, the long-term effects of arginine supplementation are unknown. This lack of knowledge about the long-term effects of increased arginine metabolism is important because elevated arginine metabolism can increase tissue fibrosis, and increased fibrosis of skeletal muscles and the heart is an important and potentially life-threatening feature of DMD. METHODOLOGY: We use both genetic and nutritional manipulations to test whether changes in arginase metabolism promote fibrosis and increase pathology in mdx mice. Our findings show that fibrotic lesions in mdx muscle are enriched with arginase-2-expressing macrophages and that muscle macrophages stimulated with cytokines that activate the M2 phenotype show elevated arginase activity and expression. We generated a line of arginase-2-null mutant mdx mice and found that the mutation reduced fibrosis in muscles of 18-month-old mdx mice, and reduced kyphosis that is attributable to muscle fibrosis. We also observed that dietary supplementation with arginine for 17-months increased mdx muscle fibrosis. In contrast, arginine-2 mutation did not reduce cardiac fibrosis or affect cardiac function assessed by echocardiography, although 17-months of dietary supplementation with arginine increased cardiac fibrosis. Long-term arginine treatments did not decrease matrix metalloproteinase-2 or -9 or increase the expression of utrophin, which have

  15. Cardiac Rehabilitation: Improving Function and Reducing Risk.

    Science.gov (United States)

    Servey, Jessica T; Stephens, Mark

    2016-07-01

    Cardiac rehabilitation is a comprehensive multidisciplinary program individually tailored to the needs of patients with cardiovascular disease. The overall goals focus on improving daily function and reducing cardiovascular risk factors. Cardiac rehabilitation includes interventions aimed at lowering blood pressure and improving lipid and diabetes mellitus control, with tobacco cessation, behavioral counseling, and graded physical activity. The physical activity component typically involves 36 sessions over 12 weeks, during which patients participate in supervised exercise under cardiac monitoring. There are also intensive programs that include up to 72 sessions lasting up to 18 weeks, although these programs are not widely available. Additional components of cardiac rehabilitation include counseling on nutrition, screening for and managing depression, and assuring up-to-date immunizations. Cardiac rehabilitation is covered by Medicare and recommended for patients following myocardial infarction, bypass surgery, and stent placement, and for patients with heart failure, stable angina, and several other conditions. Despite proven benefits in mortality rates, depression, functional capacity, and medication adherence, rates of referral for cardiac rehabilitation are suboptimal. Groups less likely to be referred are older adults, women, patients who do not speak English, and persons living in areas where cardiac rehabilitation is not locally available. Additionally, primary care physicians refer patients less often than cardiologists and cardiothoracic surgeons. PMID:27386722

  16. Evaluation of peripheral muscle strength of patients undergoing elective cardiac surgery: a longitudinal study

    OpenAIRE

    Kelli Maria Souza Santos; Manoel Luiz de Cerqueira Neto; Vitor Oliveira Carvalho; Valter Joviniano Santana Filho; Walderi Monteiro da Silva Junior; Amaro Afrânio Araújo Filho; Telma Cristina Fontes Cerqueira; Lucas de Assis Pereira Cacau

    2014-01-01

    Introduction: Peripheral muscle strength has been little explored in the literature in the context of cardiac rehabilitation. Objective: To evaluate the peripheral muscle strength of patients undergoing elective cardiac surgery. Methods: This was a longitudinal observational study. The peripheral muscle strength was measured using isometric dynamometry lower limb (knee extensors and flexors) at three different times: preoperatively (M1), the day of discharge (M2) and hospital discharge (M...

  17. Cognitive and Functional Consequence of Cardiac Arrest.

    Science.gov (United States)

    Perez, Claudia A; Samudra, Niyatee; Aiyagari, Venkatesh

    2016-08-01

    Cardiac arrest is associated with high morbidity and mortality. Better-quality bystander cardiopulmonary resuscitation training, cardiocerebral resuscitation principles, and intensive post-resuscitation hospital care have improved survival. However, cognitive and functional impairment after cardiac arrest remain areas of concern. Research focus has shifted beyond prognostication in the immediate post-arrest period to identification of mechanisms for long-term brain injury and implementation of promising protocols to reduce neuronal injury. These include therapeutic temperature management (TTM), as well as pharmacologic and psychological interventions which also improve overall neurological function. Comprehensive assessment of cognitive function post-arrest is hampered by heterogeneous measures among studies. However, the domains of attention, long-term memory, spatial memory, and executive function appear to be affected. As more patients survive cardiac arrest for longer periods of time, there needs to be a greater focus on interventions that can enhance cognitive and psychosocial function post-arrest. PMID:27311306

  18. Inclusion body myositis, muscle blood vessel and cardiac amyloidosis, and transthyretin Val122Ile allele.

    Science.gov (United States)

    Askanas, V; Engel, W K; Alvarez, R B; Frangione, B; Ghiso, J; Vidal, R

    2000-04-01

    Typical of sporadic inclusion body myositis muscle biopsies are vacuolated muscle fibers containing intracellular amyloid deposits and accumulations of "Alzheimer-characteristic" proteins. There is no muscle blood vessel or cardiac amyloidosis. We report on a 70-year-old African-American man homozygous for the transthyretin Val122Ile allele who has both sporadic inclusion body myositis and cardiac amyloidosis. His unique pathological features included transthyretin immunoreactivity in prominent muscle blood vessel amyloid and congophilic amyloid deposits within vacuolated muscle fibers. PMID:10762172

  19. Controlling the structural and functional anisotropy of engineered cardiac tissues

    International Nuclear Information System (INIS)

    The ability to control the degree of structural and functional anisotropy in 3D engineered cardiac tissues would have high utility for both in vitro studies of cardiac muscle physiology and pathology as well as potential tissue engineering therapies for myocardial infarction. Here, we applied a high aspect ratio soft lithography technique to generate network-like tissue patches seeded with neonatal rat cardiomyocytes. Fabricating longer elliptical pores within the patch networks increased the overall cardiomyocyte and extracellular matrix alignment within the patch. Improved uniformity of cell and matrix alignment yielded an increase in anisotropy of action potential propagation and faster longitudinal conduction velocity (LCV). Cardiac tissue patches with a higher degree of cardiomyocyte alignment and electrical anisotropy also demonstrated greater isometric twitch forces. After two weeks of culture, specific measures of electrical and contractile function (LCV = 26.8 ± 0.8 cm s−1, specific twitch force = 8.9 ± 1.1 mN mm−2 for the longest pores studied) were comparable to those of neonatal rat myocardium. We have thus described methodology for engineering of highly functional 3D engineered cardiac tissues with controllable degree of anisotropy. (paper)

  20. Short-term inspiratory muscle training potentiates the benefits of aerobic and resistance training in patients undergoing CABG in phase II cardiac rehabilitation program

    OpenAIRE

    Hermes, Bárbara Maria; Cardoso, Dannuey Machado; Gomes, Tiago José Nardi; dos Santos, Tamires Daros; Vicente, Marília Severo; Pereira, Sérgio Nunes; Barbosa, Viviane Acunha; de Albuquerque, Isabella Martins

    2015-01-01

    Objective To investigate the efficiency of short-term inspiratory muscle training program associated with combined aerobic and resistance exercise on respiratory muscle strength, functional capacity and quality of life in patients who underwent coronary artery bypass and are in the phase II cardiac rehabilitation program. Methods A prospective, quasi-experimental study with 24 patients who underwent coronary artery bypass and were randomly assigned to two groups in the Phase II cardiac rehabi...

  1. Transgenic overexpression of LARGE induces α-dystroglycan hyperglycosylation in skeletal and cardiac muscle.

    Directory of Open Access Journals (Sweden)

    Martin Brockington

    Full Text Available BACKGROUND: LARGE is one of seven putative or demonstrated glycosyltransferase enzymes defective in a common group of muscular dystrophies with reduced glycosylation of α-dystroglycan. Overexpression of LARGE induces hyperglycosylation of α-dystroglycan in both wild type and in cells from dystroglycanopathy patients, irrespective of their primary gene defect, restoring functional glycosylation. Viral delivery of LARGE to skeletal muscle in animal models of dystroglycanopathy has identical effects in vivo, suggesting that the restoration of functional glycosylation could have therapeutic applications in these disorders. Pharmacological strategies to upregulate Large expression are also being explored. METHODOLOGY/PRINCIPAL FINDINGS: In order to asses the safety and efficacy of long term LARGE over-expression in vivo, we have generated four mouse lines expressing a human LARGE transgene. On observation, LARGE transgenic mice were indistinguishable from the wild type littermates. Tissue analysis from young mice of all four lines showed a variable pattern of transgene expression: highest in skeletal and cardiac muscles, and lower in brain, kidney and liver. Transgene expression in striated muscles correlated with α-dystroglycan hyperglycosylation, as determined by immunoreactivity to antibody IIH6 and increased laminin binding on an overlay assay. Other components of the dystroglycan complex and extracellular matrix ligands were normally expressed, and general muscle histology was indistinguishable from wild type controls. Further detailed muscle physiological analysis demonstrated a loss of force in response to eccentric exercise in the older, but not in the younger mice, suggesting this deficit developed over time. However this remained a subclinical feature as no pathology was observed in older mice in any muscles including the diaphragm, which is sensitive to mechanical load-induced damage. CONCLUSIONS/SIGNIFICANCE: This work shows that

  2. Mechanical modeling of skeletal muscle functioning.

    NARCIS (Netherlands)

    Linden, van der Bart Jochem Julius Joost

    1998-01-01

    For movement of body or body segments is combined effort needed of the central nervous system and the muscular-skeletal system. This thesis deals with the mechanical functioning of skeletal muscle. That muscles come in a large variety of geometries, suggest the existence of a relation between muscle

  3. Cardiac mitochondria exhibit dynamic functional clustering

    Directory of Open Access Journals (Sweden)

    FelixTobiasKurz

    2014-09-01

    Full Text Available Multi-oscillatory behavior of mitochondrial inner membrane potential ΔΨm in self-organized cardiac mitochondrial networks can be triggered by metabolic or oxidative stress. Spatio-temporal analyses of cardiac mitochondrial networks have shown that mitochondria are heterogeneously organized in synchronously oscillating clusters in which the mean cluster frequency and size are inversely correlated, thus suggesting a modulation of cluster frequency through local inter-mitochondrial coupling. In this study, we propose a method to examine the mitochondrial network's topology through quantification of its dynamic local clustering coefficients. Individual mitochondrial ΔΨm oscillation signals were identified for each cardiac myocyte and cross-correlated with all network mitochondria using previously described methods (Kurz et al., 2010. Time-varying inter-mitochondrial connectivity, defined for mitochondria in the whole network whose signals are at least 90% correlated at any given time point, allowed considering functional local clustering coefficients. It is shown that mitochondrial clustering in isolated cardiac myocytes changes dynamically and is significantly higher than for random mitochondrial networks that are constructed using the Erdös-Rényi model based on the same sets of vertices. The network's time-averaged clustering coefficient for cardiac myocytes was found to be 0.500 ± 0.051 (N=9 versus 0.061 ± 0.020 for random networks, respectively. Our results demonstrate that cardiac mitochondria constitute a network with dynamically connected constituents whose topological organization is prone to clustering. Cluster partitioning in networks of coupled oscillators has been observed in scale-free and chaotic systems and is therefore in good agreement with previous models of cardiac mitochondrial networks (Aon et al., 2008.

  4. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival

    OpenAIRE

    Oh, Hidemasa; Taffet, George E.; Youker, Keith A.; Entman, Mark L.; Overbeek, Paul A.; Michael, Lloyd H.; Schneider, Michael D.

    2001-01-01

    Cardiac muscle regeneration after injury is limited by “irreversible” cell cycle exit. Telomere shortening is one postulated basis for replicative senescence, via down-regulation of telomerase reverse transcriptase (TERT); telomere dysfunction also is associated with greater sensitivity to apoptosis. Forced expression of TERT in cardiac muscle in mice was sufficient to rescue telomerase activity and telomere length. Initially, the ventricle was hypercellular, with increased myocyte density an...

  5. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages

    International Nuclear Information System (INIS)

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal β III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders

  6. The vascular smooth muscle alpha-actin gene is reactivated during cardiac hypertrophy provoked by load.

    OpenAIRE

    Black, F M; Packer, S E; Parker, T G; Michael, L H; Roberts, R; R J Schwartz; Schneider, M D

    1991-01-01

    Cardiac hypertrophy triggered by mechanical load possesses features in common with growth factor signal transduction. A hemodynamic load provokes rapid expression of the growth factor-inducible nuclear oncogene, c-fos, and certain peptide growth factors specifically stimulate the "fetal" cardiac genes associated with hypertrophy, even in the absence of load. These include the gene encoding vascular smooth muscle alpha-actin, the earliest alpha-actin expressed during cardiac myogenesis; howeve...

  7. Changes in arginase activity and AST enzyme levels in the cardiac andskeletal muscle and liver of lambs with white muscle disease

    OpenAIRE

    HANEDAN, Başak; ERİŞİR, MİNE; KANDEMİR, FATİH MEHMET; ÖZKARACA, MUSTAFA

    2015-01-01

    The aim of this study was to evaluate arginase activity and aspartate aminotransferase (AST) levels in the tissues of the cardiac and skeletal muscle and liver of lambs with white muscle disease (WMD). The cardiac and skeletal muscle and liver tissues were obtained from 8 lambs with WMD and 9 apparently healthy lambs. The diagnosis of WMD was made with the detection of hyaline degeneration upon histopathological examination. A significant increase in arginase activity in the cardiac and skele...

  8. Electropharmacological effects of berberine on canine cardiac Purkinje fibres and ventricular muscle and atrial muscle of the rabbit.

    OpenAIRE

    Riccioppo Neto, F.

    1993-01-01

    1. Conventional microelectrode techniques were used for intracellular recordings of the transmembrane electrical potentials, the effects of berberine were studied on canine cardiac Purkinje and ventricular muscle fibres and on rabbit atrial fibres. 2. Berberine (3-30 microM) increased in a concentration-dependent manner, the action potential duration (APD) in canine Purkinje and ventricular muscle without affecting other parameters of the action potential. 3. The berberine-induced enlargement...

  9. Open-Loop Control of Oxidative Phosphorylation in Skeletal and Cardiac Muscle Mitochondria by Ca(2.).

    Science.gov (United States)

    Vinnakota, Kalyan C; Singhal, Abhishek; Van den Bergh, Françoise; Bagher-Oskouei, Masoumeh; Wiseman, Robert W; Beard, Daniel A

    2016-02-23

    In cardiac muscle, mitochondrial ATP synthesis is driven by demand for ATP through feedback from the products of ATP hydrolysis. However, in skeletal muscle at higher workloads there is an apparent contribution of open-loop stimulation of ATP synthesis. Open-loop control is defined as modulation of flux through a biochemical pathway by a moiety, which is not a reactant or a product of the biochemical reactions in the pathway. The role of calcium, which is known to stimulate the activity of mitochondrial dehydrogenases, as an open-loop controller, was investigated in isolated cardiac and skeletal muscle mitochondria. The kinetics of NADH synthesis and respiration, feedback from ATP hydrolysis products, and stimulation by calcium were characterized in isolated mitochondria to test the hypothesis that calcium has a stimulatory role in skeletal muscle mitochondria not apparent in cardiac mitochondria. A range of respiratory states were obtained in cardiac and skeletal muscle mitochondria utilizing physiologically relevant concentrations of pyruvate and malate, and flux of respiration, NAD(P)H fluorescence, and rhodamine 123 fluorescence were measured over a range of extra mitochondrial calcium concentrations. We found that under these conditions calcium stimulates NADH synthesis in skeletal muscle mitochondria but not in cardiac mitochondria. PMID:26910432

  10. Effect of Cerium on Cardiac Muscle of Rat and Guinea Pig

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of Ce3+ on cardiac muscle of rat and guinea pig was studied. In vitro, 0.05 mmol.L-1 solution of Ce3+ inhibited the contraction of guinea pig atria. The change of action potential duration(APD) of guinea pig papillary muscle exposed to 0.4 mmol·L-1 Ce3+ was significant, and those exposed to 0.1 and 0.2 mmol·L-1 Ce3+ were not significant. In vivo, compared with the control group, the APD for rat cardiac muscle after long-term feed on Ce3+ was significantly delayed in high dose, and that was not significantly delayed in low dose. The results suggest that Ce3+ with long-term high dose intake might affect the influx of Ca2+, Na+ and outflow of K+ for rat cardiac muscle.

  11. Impact of weightlessness on muscle function

    Science.gov (United States)

    Tischler, M. E.; Slentz, M.

    1995-01-01

    The most studied skeletal muscles which depend on gravity, "antigravity" muscles, are located in the posterior portion of the legs. Antigravity muscles are characterized generally by a different fiber type composition than those which are considered nonpostural. The gravity-dependent function of the antigravity muscles makes them particularly sensitive to weightlessness (unweighting) resulting in a substantial loss of muscle protein, with a relatively greater loss of myofibrillar (structural) proteins. Accordingly alpha-actin mRNA decreases in muscle of rats exposed to microgravity. In the legs, the soleus seems particularly responsive to the lack of weight-bearing associated with space flight. The loss of muscle protein leads to a decreased cross-sectional area of muscle fibers, particularly of the slow-twitch, oxidative (SO) ones compared to fast-twitch glycolytic (FG) or oxidative-glycolytic (FOG) fibers. In some muscles, a shift in fiber composition from SO to FOG has been reported in the adaptation to spaceflight. Changes in muscle composition with spaceflight have been associated with decreased maximal isometric tension (Po) and increased maximal shortening velocity. In terms of fuel metabolism, results varied depending on the pathway considered. Glucose uptake, in the presence of insulin, and activities of glycolytic enzymes are increased by space flight. In contrast, oxidation of fatty acids may be diminished. Oxidation of pyruvate, activity of the citric acid cycle, and ketone metabolism in muscle seem to be unaffected by microgravity.

  12. Muscle function in COPD: a complex interplay

    OpenAIRE

    Donaldson, Anna V; Maddocks, Matthew; Martolini, Dario; Polkey, Michael I; Man, William D-C

    2012-01-01

    The skeletal muscles play an essential role in life, providing the mechanical basis for respiration and movement. Skeletal muscle dysfunction is prevalent in all stages of chronic obstructive pulmonary disease (COPD), and significantly influences symptoms, functional capacity, health related quality of life, health resource usage and even mortality. Furthermore, in contrast to the lungs, the skeletal muscles are potentially remedial with existing therapy, namely exercise-training. This review...

  13. Hydatid Cyst in the Cardiac Papillary Muscle of the Tricuspid Valve

    Directory of Open Access Journals (Sweden)

    Morteza Joorabian

    2010-05-01

    Full Text Available Cardiac hydatid cyst is an uncommon lesion, mostly caused by Echinococcus granulosus. Humans are infected by contaminated dogs during their childhood or contaminated uncooked vegetables in sheep-raising areas of the world such as South America, Australia, New Zealand, Philippines, China, Arabia, Eastern Europe, and the Mediterranean coast. We report a case of hydatid cyst in the papillary muscle of the tricuspid valve. To the best of our knowledge, hydatid cyst in the papillary muscles has not been reported and the present case is the first case reported."nKeywords: Cardiac hydatid cyst, Echinococcus granulosus, Tricuspid valve

  14. Interpreting Biomagnetic Fields of Planar Wave Fronts in Cardiac Muscle

    OpenAIRE

    dos Santos, Rodrigo Weber; Koch, Hans

    2005-01-01

    The recent results of Holzer and co-workers reveal the existence of net currents that flow along the front of a planar wave propagating through cardiac tissue. This is an important contribution toward the better understanding of the physics of biomagnetic fields. However, although the authors claim their results reveal particular bidomain properties, we show in this short letter that the results allow multiple interpretations. For instance, cardiac anisotropy by itself may also explain the ex...

  15. Development of aerobic and anaerobic metabolism in cardiac and skeletal muscles from harp and hooded seals.

    Science.gov (United States)

    Burns, J M; Skomp, N; Bishop, N; Lestyk, K; Hammill, M

    2010-03-01

    In diving animals, skeletal muscle adaptations to extend underwater time despite selective vasoconstriction include elevated myoglobin (Mb) concentrations, high acid buffering ability (beta) and high aerobic and anaerobic enzyme activities. However, because cardiac muscle is perfused during dives, it may rely less heavily on Mb, beta and anaerobic pathways to support contractile activity. In addition, because cardiac tissue must sustain contractile activity even before birth, it may be more physiologically mature at birth and/or develop faster than skeletal muscles. To test these hypotheses, we measured Mb levels, beta and the activities of citrate synthase (CS), beta-hydroxyacyl-CoA dehydrogenase (HOAD) and lactate dehydrogenase (LDH) in cardiac and skeletal muscle samples from 72 harp and hooded seals, ranging in age from fetuses to adults. Results indicate that in adults cardiac muscle had lower Mb levels (14.7%), beta (55.5%) and LDH activity (36.2%) but higher CS (459.6%) and HOAD (371.3%) activities (all Pseals had significantly lower [Mb] (44.7%) beta (80.7%) and LDH activity (89.5%) than adults (all Pseal hearts do not exhibit unique adaptations to the challenges of an aquatic existence. PMID:20154189

  16. Technetium-99m labeled 1-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4- (2-mercapto-2-methylp ropylamino)-piperidine and iodine-123 metaiodobenzylguanidine for studying cardiac adrenergic function: a comparison of the uptake characteristics in vascular smooth muscle cells and neonatal cardiac myocytes, and an investigation in rats

    Energy Technology Data Exchange (ETDEWEB)

    Samnick, Samuel E-mail: rassam@uniklinik-saarland.de; Scheuer, Claudia; Muenks, Sven; El-Gibaly, Amr M.; Menger, Michael D.; Kirsch, Carl-Martin

    2004-05-01

    In developing technetium-99m-based radioligands for in vivo studies of cardiac adrenergic neurons, we compared the uptake characteristics of the {sup 99m}Tc-labeled 1-(4-fluorobenzyl)-4-(2-mercapto-2-methyl-4-azapentyl)-4- (2-mercapto-2-methylpropylamino)-piperidine ({sup 99m}Tc-FBPBAT) with those of the clinically established meta-[{sup 123}I]iodobenzylguanidine ({sup 123}I-MIBG) in rat vascular smooth muscle cells and neonatal cardiac myocytes. Furthermore, the cardiac and extracardiac uptake of both radiopharmaceuticals was assessed in intact rats and in rats pretreated with various {alpha}- and {beta}-adrenoceptor drugs, and adrenergic reuptake blocking agents. The uptake of {sup 99m}Tc-FBPBAT and {sup 123}I-MIBG into vascular smooth muscle cells and neonatal cardiac myocytes was rapid; more than 85% of the radioactivity accumulation into the cells occurring within the first 3 minutes. Radioactivity uptake after a 60-minute incubation at 37 degree sign C (pH 7.4) varied from 15% to 65% of the total loaded activity per million cells. In all cases, {sup 99m}Tc-FBPBAT showed the higher uptake, relative to {sup 123}I-MIBG, at any given cell concentration. The cellular uptake of {sup 99m}Tc-FBPBAT was lower at 4 degree sign C and 20 degree sign C than at 37 degree sign C. In contrast, the {sup 123}I-MIBG uptake was only slightly temperature dependent. Inhibition experiments confirmed that the cellular uptake of {sup 123}I-MIBG is mediated by the uptake-I carrier, whereas {alpha}{sub 1}- and {beta}{sub 1}-adrenoceptors were predominantly involved in the uptake of {sup 99m}Tc-FBPBAT into the cardiovascular tissues. Biodistribution studies in rats showed that {sup 99m}Tc-FBPBAT accumulated in myocardium after intravenous injection. Radioactivity in rat heart amounted to 2.32% and 1.91% of the injected dose per gram at 15 and 60 minutes postinjection, compared with 3.10% and 2.21% injected dose per gram of tissue (%ID/g) in the experiment with {sup 123}I

  17. Thermodynamics of calmodulin binding to cardiac and skeletal muscle ryanodine receptor ion channels

    OpenAIRE

    Meissner, Gerhard; Pasek, Daniel A.; Yamaguchi, Naohiro; Ramachandran, Srinivas; Dokholyan, Nikolay V.; Tripathy, Ashutosh

    2009-01-01

    The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [35S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca2+ concentrations from

  18. Hydatid Cyst in the Cardiac Papillary Muscle of the Tricuspid Valve

    OpenAIRE

    Morteza Joorabian; Jamal Hossin; Ahmad Takrity

    2010-01-01

    Cardiac hydatid cyst is an uncommon lesion, mostly caused by Echinococcus granulosus. Humans are infected by contaminated dogs during their childhood or contaminated uncooked vegetables in sheep-raising areas of the world such as South America, Australia, New Zealand, Philippines, China, Arabia, Eastern Europe, and the Mediterranean coast. We report a case of hydatid cyst in the papillary muscle of the tricuspid valve. To the best of our knowledge, hydatid cyst in the papillary muscles has no...

  19. Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice

    OpenAIRE

    Ito Takashi; Oishi Shohei; Takai Mika; Kimura Yasushi; Uozumi Yoriko; Fujio Yasushi; Schaffer Stephen W; Azuma Junichi

    2010-01-01

    Abstract Taurine, a sulfur-containing β-amino acid, is highly contained in heart and skeletal muscle. Taurine has a variety of biological actions, such as ion movement, calcium handling and cytoprotection in the cardiac and skeletal muscles. Meanwhile, taurine deficiency leads various pathologies, including dilated cardiomyopathy, in cat and fox. However, the essential role of taurine depletion on pathogenesis has not been fully clarified. To address the physiological role of taurine in mamma...

  20. Short-term inspiratory muscle training potentiates the benefits of aerobic and resistance training in patients undergoing CABG in phase II cardiac rehabilitation program

    OpenAIRE

    Bárbara Maria Hermes; Dannuey Machado Cardoso; Tiago José Nardi Gomes; Tamires Daros dos Santos; Marília Severo Vicente; Sérgio Nunes Pereira; Viviane Acunha Barbosa; Isabella Martins de Albuquerque

    2015-01-01

    Abstract Objective: To investigate the efficiency of short-term inspiratory muscle training program associated with combined aerobic and resistance exercise on respiratory muscle strength, functional capacity and quality of life in patients who underwent coronary artery bypass and are in the phase II cardiac rehabilitation program. Methods: A prospective, quasi-experimental study with 24 patients who underwent coronary artery bypass and were randomly assigned to two groups in the Phase II c...

  1. Modelling functional effects of muscle geometry.

    Science.gov (United States)

    van der Linden, B J; Koopman, H F; Grootenboer, H J; Huijing, P A

    1998-04-01

    Muscle architecture is an important aspect of muscle functioning. Hence, geometry and material properties of muscle have great influence on the force-length characteristics of muscle. We compared experimental results for the gastrocnemius medialis muscle (GM) of the rat to model results of simple geometric models such as a planimetric model and three-dimensional versions of this model. The capabilities of such models to adequately calculate muscle geometry and force-length characteristics were investigated. The planimetric model with elastic aponeurosis predicted GM muscle geometry well: maximal differences are 6, 1, 4 and 6% for fiber length, aponeurosis length, fiber angle and aponeurosis angle respectively. A slanted cylinder model with circular fiber cross-section did not predict muscle geometry as well as the planimetric model, whereas the geometry results of a second slanted cylinder model were identical to the planimetric model. It is concluded that the planimetric model is capable of adequately calculating the muscle geometry over the muscle length range studied. However, for modelling of force-length characteristics more complex models are needed, as none of the models yielded results sufficiently close to experimental data. Modelled force-length characteristics showed an overestimation of muscle optimum length by 2 mm with respect to experimental data, and the force at the ascending limb of the length force curve was underestimated. The models presented neglect important aspects such as non-linear geometry of muscle, certain passive material properties and mechanical interactions of fibers. These aspects may be responsible for short-comings in the modelling. It is argued that, considering the inability to adequately model muscle length-force characteristics for an isolated maximally activated (in situ) muscle, it is to be expected that prediction will fail for muscle properties in conditions of complex movement with many interacting factors. Therefore

  2. Changes in the cardiac muscle electric activity as a result of Coronary Artery Bypass Graft operation

    Science.gov (United States)

    Grajek, Magdalena; Krzyminiewski, Ryszard; Kalawski, Ryszard; Kulczak, Mariusz

    2008-01-01

    Many bioelectric signals have a complex internal structure that can be a rich source of information on the tissue or cell processes. The structure of such signals can be analysed in detail by applying digital methods of signal processing. Therefore, of substantial use in diagnosis of the coronary arterial disease is the method of digital enhancement of increasing signal resolution ECG (NURSE-ECG), permitting detection of temporary changes in the electric potentials in the cardiac muscle in the process of depolarisation. Thanks to the application of NURSE-ECG it has become possible to detect relatively small changes in the electric activity of particular fragments of the cardiac muscle undetectable by the standard ECG method, caused by ischemia, the effect of a drug or infarct. The aim of this study was to identify and analyse changes in the electric activity of the cardiac muscle as a result of the Coronary Artery Bypass Graft (CABG) operation. In this study the method of NURSE-ECG has been applied in order to identify and analyse changes in the electric activity of the cardiac muscle as a result of the CABG operation. In the study performed in cooperation of the Institute of Physics Adam Mickiewicz University and the Strus Hospital, Cardiac Surgery Ward, 37 patients with advanced coronary arterial disease were asked to participate. The patients were examined prior to the operation, on the day after the operation and two months after the operation and a year after the operation. The ECG recordings were subjected to a numerical procedure of resolution enhancement by a NURSE-ECG program to reveal the tentative changes in the electric potential of the cardiac muscle on its depolarisation. Results of the study have shown that the NURSE ECG method can be applied to monitor changes in the electric activity of the cardiac muscle occurring as a result of CABG operation. One the second day after the operation in the majority of patients (70%) a rapid decrease of the total

  3. Serial block face scanning electron microscopy for the study of cardiac muscle ultrastructure at nanoscale resolutions.

    Science.gov (United States)

    Pinali, Christian; Kitmitto, Ashraf

    2014-11-01

    Electron microscopy techniques have made a significant contribution towards understanding muscle physiology since the 1950s. Subsequent advances in hardware and software have led to major breakthroughs in terms of image resolution as well as the ability to generate three-dimensional (3D) data essential for linking structure to function and dysfunction. In this methodological review we consider the application of a relatively new technique, serial block face scanning electron microscopy (SBF-SEM), for the study of cardiac muscle morphology. Employing SBF-SEM we have generated 3D data for cardiac myocytes within the myocardium with a voxel size of ~15 nm in the X-Y plane and 50 nm in the Z-direction. We describe how SBF-SEM can be used in conjunction with selective staining techniques to reveal the 3D cellular organisation and the relationship between the t-tubule (t-t) and sarcoplasmic reticulum (SR) networks. These methods describe how SBF-SEM can be used to provide qualitative data to investigate the organisation of the dyad, a specialised calcium microdomain formed between the t-ts and the junctional portion of the SR (jSR). We further describe how image analysis methods may be applied to interrogate the 3D volumes to provide quantitative data such as the volume of the cell occupied by the t-t and SR membranes and the volumes and surface area of jSR patches. We consider the strengths and weaknesses of the SBF-SEM technique, pitfalls in sample preparation together with tips and methods for image analysis. By providing a 'big picture' view at high resolutions, in comparison to conventional confocal microscopy, SBF-SEM represents a paradigm shift for imaging cellular networks in their native environment. PMID:25149127

  4. Functional cardiac imaging by random access microscopy

    Directory of Open Access Journals (Sweden)

    Claudia eCrocini

    2014-10-01

    Full Text Available Advances in the development of voltage sensitive dyes and Ca2+ sensors in combination with innovative microscopy techniques allowed researchers to perform functional measurements with an unprecedented spatial and temporal resolution. At the moment, one of the shortcomings of available technologies is their incapability of imaging multiple fast phenomena while controlling the biological determinants involved. In the near future, ultrafast deflectors can be used to rapidly scan laser beams across the sample, performing optical measurements of action potential and Ca2+ release from multiple sites within cardiac cells and tissues. The same scanning modality could also be used to control local Ca2+ release and membrane electrical activity by activation of caged compounds and light-gated ion channels. With this approach, local Ca2+ or voltage perturbations could be induced, simulating arrhythmogenic events, and their impact on physiological cell activity could be explored. The development of this optical methodology will provide fundamental insights in cardiac disease, boosting new therapeutic strategies, and, more generally, it will represent a new approach for the investigation of the physiology of excitable cells.

  5. Abdominal muscle function and incisional hernia

    DEFF Research Database (Denmark)

    Jensen, K K; Kjaer, M; Jorgensen, L N

    2014-01-01

    PURPOSE: Although ventral incisional hernia (VIH) repair in patients is often evaluated in terms of hernia recurrence rate and health-related quality of life, there is no clear consensus regarding optimal operative treatment based on these parameters. It was proposed that health-related quality...... of life depends largely on abdominal muscle function (AMF), and the present review thus evaluates to what extent AMF is influenced by VIH and surgical repair. METHODS: The PubMed and EMBASE databases were searched for articles following a systematic strategy for inclusion. RESULTS: A total of seven...... studies described AMF in relation to VIH. Five studies examined AMF using objective isokinetic dynamometers to determine muscle strength, and two studies examined AMF by clinical examination-based muscle tests. CONCLUSION: Both equipment-related and functional muscle tests exist for use in patients...

  6. Comparison of skeletal muscle strength between cardiac patients and age-matched healthy controls

    Directory of Open Access Journals (Sweden)

    K. Baum, U. Hildebrandt, K. Edel, R. Bertram, H. Hahmann, F.J. Bremer, S. Böhmen, C. Kammerlander, M. Serafin, Th. Rüther, E. Miche

    2009-01-01

    Full Text Available The purpose of the present study was to compare muscular strength of knee extensors and arm flexor muscles of cardiac patients (n = 638 and healthy controls (n = 961 in different age groups. Isometric torques were measured in a sitting position with the elbow, hip, and knee flexed to 900. For statistical analysis, age groups were pooled in decades from the age of 30 to 90 years. Additionally, the influence of physical lifestyle prior to disease on muscular strength was obtained in the patients. For statistical analysis three-way ANOVA (factors age, gender, and physical activity level was used. Both in patients and in controls a significant age-dependent decline in maximal torque could be observed for arm flexors and knee extensors. Maximal leg extensor muscle showed statistically significant differences between healthy controls and cardiac patients as well as between subgroups of patients: Physically inactive patients showed lowest torques (male: 148 ± 18 Nm; female: 82 ± 25 Nm while highest values were measured in control subjects (male: 167 ± 16 Nm; female: 93 ± 17 Nm. In contrast, arm flexor muscles did not show any significant influence of health status or sports history. This qualitative difference between weight-bearing leg muscles and the muscle group of the upper extremity suggest that lower skeletal muscle strength in heart patients is mainly a consequence of selective disuse of leg muscles rather than any pathological skeletal muscle metabolism. Since a certain level of skeletal muscle strength is a prerequisite to cope with everyday activities, strength training is recommended as an important part of cardiac rehabilitation.

  7. Effect of nuclear factor antisense oligonucleotide on cardiac muscle myosin isoenzymes and cytokines in rat models of chronic heart failure

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of nuclear factor kappa B (NF-κB) antisense oligonucleotide (AS-ON) on cardiac muscle myosin isoenzymes (MI) and serum cytokines (TNF-α, IL-1β, Fas) expressions in rat models of chronic heart failure. Methods: Wistar rat models of chronic heart failure were prepared with abdominal aorta constriction. Half of the models were treated with intrapericardial injection of 0.5ml AS-ON at the time of model preparation. Control rats were given intrapericardial injection of normal saline. Non-invasive echocardiographic study or invasive hemodynamic studies with sacrifice of the animal and procurement of left ventricular cardiac muscle for examination of myosin isoenzymes with SDS-PAGE were performed on 10 models each eveny two weeks until six months after establishment of the models. Inner canthus blood aspiration for determination of serum cytokines (TNF -α and IL-1β with RIA and Fas with ELISA) were done at the same time. Results: In the models without AS-ON treatment, cardiac function was deterioated somewhat at 3 months and frank cardiac failure was apparent at 6 months. In the AS-OD treated models, carbiac function parameters were much better, with lower TNF-α, IL-1β and Fas levels as well as less V1→V3 shift in myosin isoenzymes. Conclusion: Intrapericardial injection of AS-ON was of great benefit in prevention of development of cardiac failure in the rat models with abdominal aorta constriction, probably throngh maintainence of normal cytokines network as well as inbibition of V1 →V3 shift of myosin isoenzymes. (authors)

  8. Ryanodine modification of cardiac muscle responses to potassium-free solutions. Evidence for inhibition of sarcoplasmic reticulum calcium release

    OpenAIRE

    1983-01-01

    To test whether ryanodine blocks the release of calcium from the sarcoplasmic reticulum in cardiac muscle, we examined its effects on the aftercontractions and transient depolarizations or transient inward currents developed by guinea pig papillary muscles and voltage-clamped calf cardiac Purkinje fibers in potassium-free solutions. Ryanodine (0.1-1.0 microM) abolished or prevented aftercontractions and transient depolarizations by the papillary muscles without affecting any of the other sequ...

  9. Cellular models and viral vectors for skeletal and cardiac muscle research

    NARCIS (Netherlands)

    Neshati, Zeinab

    2014-01-01

    Skeletal and cardiac muscle disorders are associated with substantial morbidity and mortality. Despite many improvements in the medical and surgical management of these disorders, development of effective treatments has proven to be challenging. This is because of the limited suitability of existing

  10. The morphological development of the locomotor and cardiac muscles of the migratory barnacle goose (Branta leucopsis)

    NARCIS (Netherlands)

    Bishop, CM; Butler, PJ; ElHaj, AJ; Egginton, S; Loonen, MJJE

    1996-01-01

    The masses of the locomotor and cardiac muscles of wild barnacle goose goslings, from a migratory population, were examined systematically during development and their values compared to those of pre-migratory geese. Pre-flight development was typified by approximately linear increases of body, leg,

  11. Influence of vascular function and pulsatile hemodynamics on cardiac function.

    Science.gov (United States)

    Bell, Vanessa; Mitchell, Gary F

    2015-09-01

    Interactions between cardiac and vascular structure and function normally are optimized to ensure delivery of cardiac output with modest pulsatile hemodynamic overhead. Aortic stiffening with age or disease impairs optimal ventricular-vascular coupling, increases pulsatile load, and contributes to left ventricular (LV) hypertrophy, reduced systolic function, and impaired diastolic relaxation. Aortic pulse pressure and timing of peak systolic pressure are well-known measures of hemodynamic ventricular-vascular interaction. Recent work has elucidated the importance of direct, mechanical coupling between the aorta and the heart. LV systolic contraction results in displacement of aortic and mitral annuli, thereby producing longitudinal stretch in the ascending aorta and left atrium, respectively. Force associated with longitudinal stretch increases systolic load on the LV. However, the resulting energy stored in the elastic elements of the proximal aorta during systole facilitates early diastolic LV recoil and rapid filling. This review discusses current views on hemodynamics and mechanics of ventricular-vascular coupling. PMID:26164466

  12. Assessment of pulmonary function tests in cardiac patients

    OpenAIRE

    El-Sobkey, Salwa B.; Gomaa, Magdi

    2011-01-01

    This study was aimed to assess the pulmonary function tests (PFTs) in cardiac patients; with ischemic or rheumatic heart diseases as well as in patients who underwent coronary artery bypass graft (CABG) or valvular procedures. For the forty eligible participants, the pulmonary function was measured using the spirometry test before and after the cardiac surgery. Data collection sheet was used for the patient’s demographic and intra-operative information. Cardiac diseases and surgeries had rest...

  13. Cardiac Function in Young and Old Little Mice

    OpenAIRE

    Reddy, Anilkumar K.; Amador-Noguez, Daniel; Darlington, Gretchen J.; Scholz, Beth A.; Michael, Lloyd H.; Hartley, Craig J.; Mark L Entman; George E. Taffet

    2007-01-01

    We studied cardiac function in young and old, wild-type (WT), and longer-living Little mice using cardiac flow velocities, echocardiographic measurements, and left ventricular (LV) pressure (P) to determine if enhanced reserves were in part responsible for longevity in these mice. Resting/baseline cardiac function, as measured by velocities, LV dimensions, +dP/dtmax, and −dP/dtmax, was significantly lower in young Little mice versus young WT mice. Fractional shortening (FS) increased signific...

  14. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  15. Relationship between cardiac function and resting cerebral blood flow

    DEFF Research Database (Denmark)

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja;

    2014-01-01

    and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l......Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF...... min(-1) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2...

  16. Phthalate Exposure Changes the Metabolic Profile of Cardiac Muscle Cells

    OpenAIRE

    Posnack, Nikki Gillum; Swift, Luther M.; Kay, Matthew W.; Lee, Norman H; Sarvazyan, Narine

    2012-01-01

    Background: Phthalates are common plasticizers present in medical-grade plastics and other everyday products. They can also act as endocrine-disrupting chemicals and have been linked to the rise in metabolic disorders. However, the effect of phthalates on cardiac metabolism remains largely unknown. Objectives: We examined the effect of di(2-ethylhexyl)phthalate (DEHP) on the metabolic profile of cardiomyocytes because alterations in metabolic processes can lead to cell dysfunction. Methods: N...

  17. Redox characterization of functioning skeletal muscle

    Directory of Open Access Journals (Sweden)

    Li eZuo

    2015-11-01

    Full Text Available Skeletal muscle physiology is influenced by the presence of chemically reactive molecules such as reactive oxygen species (ROS. These molecules regulate multiple redox-sensitive signaling pathways that play a critical role in cellular processes including gene expression and protein modification. While ROS have gained much attention for their harmful effects in muscle fatigue and dysfunction, research has also shown ROS to facilitate muscle adaptation after stressors such as physical exercise. This manuscript aims to provide a comprehensive review of the current understanding of redox signaling in skeletal muscle. ROS-induced oxidative stress and its role in the aging process are discussed. Mitochondria have been shown to generate large amounts of ROS during muscular contractions, and thus are susceptible to oxidative stress. ROS can modify proteins located in the mitochondrial membrane leading to cell death and osmotic swelling. ROS also contribute to the necrosis and inflammation of muscle fibers that is associated with muscular diseases including Duchenne muscular dystrophy (DMD. It is imperative that future research continues to investigate the exact role of ROS in normal skeletal muscle function as well as muscular dysfunction and disease.

  18. Cardiac supporting device using artificial rubber muscle: preliminary study to active dynamic cardiomyoplasty.

    Science.gov (United States)

    Saito, Yoshiaki; Suzuki, Yasuyuki; Goto, Takeshi; Daitoku, Kazuyuki; Minakawa, Masahito; Fukuda, Ikuo

    2015-12-01

    Dynamic cardiomyoplasty is a surgical treatment that utilizes the patient's skeletal muscle to support circulation. To overcome the limitations of autologous skeletal muscles in dynamic cardiomyoplasty, we studied the use of a wrapped-type cardiac supporting device using pneumatic muscles. Four straight rubber muscles (Fluidic Muscle, FESTO, Esslingen, Germany) were used and connected to pressure sensors, solenoid valves, a controller and an air compressor. The driving force was compressed air. A proportional-integral-derivative system was employed to control the device movement. An overflow-type mock circulation system was used to analyze the power and the controllability of this new device. The device worked powerfully with pumped flow against afterload of 88 mmHg, and the beating rate and contraction/dilatation time were properly controlled using simple software. Maximum pressure inside the ventricle and maximum output were 187 mmHg and 546.5 ml/min, respectively, in the setting of 50 beats per minute, a contraction/dilatation ratio of 1:2, a preload of 18 mmHg, and an afterload of 88 mmHg. By changing proportional gain, contraction speed could be modulated. This study showed the efficacy and feasibility of a pneumatic muscle for use in a cardiac supporting device. PMID:26253252

  19. Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle.

    Science.gov (United States)

    Murphy, R M; Dutka, T L; Horvath, D; Bell, J R; Delbridge, L M; Lamb, G D

    2013-02-01

    Excessive increases in intracellular [Ca(2+)] in skeletal muscle fibres cause failure of excitation-contraction coupling by disrupting communication between the dihydropyridine receptors in the transverse tubular system and the Ca(2+) release channels (RyRs) in the sarcoplasmic reticulum (SR), but the exact mechanism is unknown. Previous work suggested a possible role of Ca(2+)-dependent proteolysis in this uncoupling process but found no proteolysis of the dihydropyridine receptors, RyRs or triadin. Junctophilin-1 (JP1; ∼90 kDa) stabilizes close apposition of the transverse tubular system and SR membranes in adult skeletal muscle; its C-terminal end is embedded in the SR and its N-terminal associates with the transverse tubular system membrane. Exposure of skeletal muscle homogenates to precisely set [Ca(2+)] revealed that JP1 undergoes Ca(2+)-dependent proteolysis over the physiological [Ca(2+)] range in tandem with autolytic activation of endogenous μ-calpain. Cleavage of JP1 occurs close to the C-terminal, yielding a ∼75 kDa diffusible fragment and a fixed ∼15 kDa fragment. Depolarization-induced force responses in rat skinned fibres were abolished following 1 min exposure to 40 μm Ca(2+), with accompanying loss of full-length JP1. Supraphysiological stimulation of rat skeletal muscle in vitro by repeated tetanic stimulation in 30 mm caffeine also produced marked proteolysis of JP1 (and not RyR1). In dystrophic mdx mice, JP1 proteolysis is seen in limb muscles at 4 and not at 10 weeks of age. Junctophilin-2 in cardiac and skeletal muscle also undergoes Ca(2+)-dependent proteolysis, and junctophilin-2 levels are reduced following cardiac ischaemia-reperfusion. Junctophilin proteolysis may contribute to skeletal muscle weakness and cardiac dysfunction in a range of circumstances. PMID:23148318

  20. Amphibian ryanodine receptor isoforms are related to those of mammalian skeletal or cardiac muscle.

    Science.gov (United States)

    Lai, F A; Liu, Q Y; Xu, L; el-Hashem, A; Kramarcy, N R; Sealock, R; Meissner, G

    1992-08-01

    The ryanodine receptor (RyR)-Ca2+ release channels of frog skeletal muscle have been purified as 30S protein complexes comprised of two high molecular weight polypeptides. The upper and lower bands of the frog doublet comigrated on sodium dodecyl sulfate polyacylamide gels with the mammalian skeletal and cardiac RyR polypeptides, respectively. Immunoblot analysis showed that a polyclonal antiserum to the rat skeletal RyR preferentially cross-reacted with the upper band, whereas monoclonal antibodies to the canine cardiac RyR preferentially cross-reacted with the lower band of the frog receptor doublet. Immunoprecipitation studies indicated the presence of two homooligomer 30S RyR complexes comprised of either the lower or upper polypeptide band of the frog doublet, and immunocytochemical staining revealed their colocalization in frog gastrocnemius muscle. After planar lipid bilayer reconstitution of the 30S frog RyR, single-channel currents were observed that exhibited a Na+ and Ca2+ conductance and pharmacological characteristics similar to those of the mammalian skeletal and cardiac Ca2+ release channels. These results suggest that amphibian skeletal muscle expresses two distinct RyR isoforms that share epitopes in common with the mammalian skeletal or cardiac RyR. PMID:1325114

  1. 38 CFR 4.78 - Muscle function.

    Science.gov (United States)

    2010-07-01

    ... visual acuity for the poorer eye (or the affected eye, if disability of only one eye is service-connected... visual acuity for the poorer eye (or the affected eye, if disability of only one eye is service-connected... DISABILITIES Disability Ratings The Organs of Special Sense § 4.78 Muscle function. (a) Examination of...

  2. Effect of HIV-1-related protein expression on cardiac and skeletal muscles from transgenic rats

    Directory of Open Access Journals (Sweden)

    Guidot David M

    2008-04-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 infection and the consequent acquired immunodeficiency syndrome (AIDS has protean manifestations, including muscle wasting and cardiomyopathy, which contribute to its high morbidity. The pathogenesis of these myopathies remains partially understood, and may include nutritional deficiencies, biochemical abnormalities, inflammation, and other mechanisms due to viral infection and replication. Growing evidence has suggested that HIV-1-related proteins expressed by the host in response to viral infection, including Tat and gp120, may also be involved in the pathophysiology of AIDS, particularly in cells or tissues that are not directly infected with HIV-1. To explore the potentially independent effects of HIV-1-related proteins on heart and skeletal muscles, we used a transgenic rat model that expresses several HIV-1-related proteins (e.g., Tat, gp120, and Nef. Outcome measures included basic heart and skeletal muscle morphology, glutathione metabolism and oxidative stress, and gene expressions of atrogin-1, muscle ring finger protein-1 (MuRF-1 and Transforming Growth Factor-β1 (TGFβ1, three factors associated with muscle catabolism. Results Consistent with HIV-1 associated myopathies in humans, HIV-1 transgenic rats had increased relative heart masses, decreased relative masses of soleus, plantaris and gastrocnemius muscles, and decreased total and myosin heavy chain type-specific plantaris muscle fiber areas. In both tissues, the levels of cystine (Cyss, the oxidized form of the anti-oxidant cysteine (Cys, and Cyss:Cys ratios were significantly elevated, and cardiac tissue from HIV-1 transgenic rats had altered glutathione metabolism, all reflective of significant oxidative stress. In HIV-1 transgenic rat hearts, MuRF-1 gene expression was increased. Further, HIV-1-related protein expression also increased atrogin-1 (~14- and ~3-fold and TGFβ1 (~5-fold and ~3-fold in heart and

  3. One enhancer mediates mafK transcriptional activation in both hematopoietic and cardiac muscle cells

    OpenAIRE

    Katsuoka, Fumiki; Motohashi, Hozumi; Onodera, Ko; Suwabe, Naruyoshi; Engel, James Douglas; Yamamoto, Masayuki

    2000-01-01

    Members of the small Maf family of transcription factors play important roles in hematopoiesis. Using transgenic assays, we discovered a tissue-specific enhancer 3′ to the mafK gene. This enhancer directs mafK transcription in hematopoietic as well as in developing cardiac muscle cells, and was thus designated the hematopoietic and cardiac enhancer of mafK (HCEK). Only two of four GATA consensus motifs identified within HCEK contributed to enhancer activity, and both of these sites were requi...

  4. Targeting of gene expression to skeletal and cardiac muscle of trangenic animals.

    Science.gov (United States)

    Sands, A T; DeMayo, F; Lei, X; Schwartz, R J

    1991-01-01

    The tissue restricted and developmental potentiation of transcription by chicken alpha-skeletal actin promoter regions fused to the reporter gene chloramphenicol acetyl transferase (CAT) were characterized in transgenic mice. Six of eight expressing transgenic mouse lines containing the chicken alpha-skeletal actin promoter fused to CAT resulted in preferential transgene transcription in skeletal muscle tissue, similar to the endogenous mouse alpha-skeletal actin gene. Two of the eight lines departed from the preferred pattern of skeletal muscle expression with primary expression of the transgene in the heart, a tissue containing primarily cardiac actin isoforms. Developmentally, a transition from embryonic heart to fetal and neonatal skeletal muscle expression was produced by the transgene promoter, a pattern of regulation similar to that of the endogenous alpha-skeletal actin gene. Instances of departure of transgene expression from the endogenous gene implied the existance of higher order muscle gene regulatory mechanisms. PMID:1367249

  5. Structure–function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    International Nuclear Information System (INIS)

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure–function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure–function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure–function relationship of skeletal muscle into the design of artificial muscle. (topical review)

  6. Fatty acid oxidation in skeletal and cardiac muscle

    International Nuclear Information System (INIS)

    The biochemical investigations described in this thesis deal with two aspects of fatty acid oxidation in muscle: a comparison of the use of cell-free and cellular systems for oxidation measurements, and studies on the assay and the role of the fatty acid binding protein in fatty acid metabolism. The fatty acid oxidation rates are determined radiochemically by the sum of 14CO2 and 14C-labeled acid-soluble products formed during oxidation of [14C]-fatty acids. A radiochemical procedure for the assay of fatty acid binding by proteins is described. (Auth.)

  7. cap alpha. -skeletal and. cap alpha. -cardiac actin genes are coexpressed in adult human skeletal muscle and heart

    Energy Technology Data Exchange (ETDEWEB)

    Gunning, P.; Ponte, P.; Blau, H.; Kedes, L.

    1983-11-01

    The authors determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes, derived from ..cap alpha.. skeletal, ..beta..- and ..gamma..-actin cDNAs and from an ..cap alpha..-cardiac actin genomic clone, they showed that 28 of the cDNAs correspond to ..cap alpha..-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from ..cap alpha..-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle ..cap alpha..-cardiac actin cDNAs are derived from transcripts of the cloned ..cap alpha..-cardiac actin gene. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. They conclude that ..cap alpha..-skeletal and ..cap alpha..-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (..beta.. and ..gamma..) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, they postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

  8. Effect of xinmailong on ischemic cardiac muscle during hemorrhagic shock

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Xinmailong injection solution was invented at 1988 by prof. Li Shunan in Dali medical college. It was made from the material which has high biological activeness to the cardiac and vascular system. During the experimental shock caused by excessive loss of blood in monkey and dog, it was found by ECG that the T-wave of anterion lead on left chest elevated and became high and sharp after acute blood loss. Arterial blood pressure dropped to 8-5.3 kPa for dog and 8-5.3-2.7 kPa for monkey, changes of T-wave all recovered to near normal level after xinmailong solution was injected intravenously (0.05-0.2 mL/kg). These Results implied that xinmailong might improve the ischemia of myocardium induced by hemorrhagic shock.

  9. Immunolocalization of meta-vinculin in human smooth and cardiac muscles

    OpenAIRE

    1988-01-01

    Meta-vinculin, a vinculin-related protein, has been isolated from human uterus smooth muscle. Specific antibodies to meta-vinculin, which distinguish between meta-vinculin and vinculin, were prepared by absorption of anti-meta-vinculin serum on vinculin coupled to nitrocellulose. Meta-vinculin specific antibody demonstrates only smooth and cardiac muscle specificity and is able to cross-react with a small 21-kD fragment of the meta-vinculin polypeptide chain. This antibody does not interact w...

  10. Cardiac Morphology and Function, and Blood Gas Transport in Aquaporin-1 Knockout Mice

    Science.gov (United States)

    Al-Samir, Samer; Wang, Yong; Meissner, Joachim D.; Gros, Gerolf; Endeward, Volker

    2016-01-01

    We have studied cardiac and respiratory functions of aquaporin-1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals' hearts were analyzed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min−1 and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: (1) left ventricular wall thickness was reduced by 12%, (2) left ventricular mass, normalized to tibia length, was reduced by 10–20%, (3) cardiac muscle fiber cross sectional area was decreased by 17%, and (4) capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wild-type heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output. PMID:27252655

  11. Effects of ischaemia-reperfusion and cyclosporin-A on cardiac muscle ultrastructure

    OpenAIRE

    JURADO, F.; Bellón, J.M.; J. A. Pareja; Golittsin, A.; Millán, L.; Pascual, G.; Buján, J.

    1998-01-01

    The present study investigates the effects on the cardiac muscle cell of two of the determining factors for the success of organ transplant; ischaemia-perfusion and immunosuppressive treatment with cyclosporin-A (CsA). To this end an abdominal, heterotopic heart transplant model in singenic Sprague-Dawley rats was employed. Three study groups were established: Group I (control, n=15) animals undergoing heart transplant without treatment; Group I1 (n=15) ani...

  12. Extracellular Superoxide Dismutase Regulates Cardiac Function and Fibrosis

    Science.gov (United States)

    Kliment, Corrine R; Suliman, Hagir B; Tobolewski, Jacob M; Reynolds, Crystal M; Day, Brian J; Zhu, Xiaodong; McTiernan, Charles F; McGaffin, Kenneth R; Piantadosi, Claude A; Oury, Tim D

    2009-01-01

    Aims Extracellular superoxide dismutase (EC-SOD) is an antioxidant that protects the heart from ischemia and the lung from inflammation and fibrosis. The role of cardiac EC-SOD under normal conditions and injury remains unclear. Cardiac toxicity, a common side effect of doxorubicin, involves oxidative stress. We hypothesize that EC-SOD is critical for normal cardiac function and protects the heart from oxidant-induced fibrosis and loss of function. Methods C57BL/6 and EC-SOD-null mice were treated with doxorubicin, 15 mg/kg (i.p.). After 15 days, echocardiography was used to assess cardiac function. Left ventricle (LV) tissue was used to assess fibrosis and inflammation by staining, western blot, and hydroxyproline analysis. Results At baseline EC-SOD-null mice have LV wall thinning and increases in LV end diastolic dimensions compared to wild type mice, but have normal cardiac function. After doxorubicin, EC-SOD-null mice have decreases in fractional shortening not apparent in WT mice. Lack of EC-SOD also leads to increases in myocardial apoptosis and significantly more LV fibrosis and inflammatory cell infiltration. Administration of the metalloporphyrin AEOL 10150 abrogates the loss of cardiac function, and potentially fibrosis, associated with doxorubicin treatment in both wild type and EC-SOD KO mice. Conclusions EC-SOD is critical for normal cardiac morphology and protects the heart from oxidant-induced fibrosis, apoptosis and loss of function. The antioxidant metalloporphyrin, AEOL 10150 effectively protects cardiac function from doxorubicin-induced oxidative stress, in vivo. These findings identify targets for the use of antioxidant agents in oxidant-induced cardiac fibrosis. PMID:19695260

  13. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    OpenAIRE

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical ...

  14. Hyperammonemia results in reduced muscle function independent of muscle mass.

    Science.gov (United States)

    McDaniel, John; Davuluri, Gangarao; Hill, Elizabeth Ann; Moyer, Michelle; Runkana, Ashok; Prayson, Richard; van Lunteren, Erik; Dasarathy, Srinivasan

    2016-02-01

    The mechanism of the nearly universal decreased muscle strength in cirrhosis is not known. We evaluated whether hyperammonemia in cirrhosis causes contractile dysfunction independent of reduced skeletal muscle mass. Maximum grip strength and muscle fatigue response were determined in cirrhotic patients and controls. Blood and muscle ammonia concentrations and grip strength normalized to lean body mass were measured in the portacaval anastomosis (PCA) and sham-operated pair-fed control rats (n = 5 each). Ex vivo contractile studies in the soleus muscle from a separate group of Sprague-Dawley rats (n = 7) were performed. Skeletal muscle force of contraction, rate of force development, and rate of relaxation were measured. Muscles were also subjected to a series of pulse trains at a range of stimulation frequencies from 20 to 110 Hz. Cirrhotic patients had lower maximum grip strength and greater muscle fatigue than control subjects. PCA rats had a 52.7 ± 13% lower normalized grip strength compared with control rats, and grip strength correlated with the blood and muscle ammonia concentrations (r(2) = 0.82). In ex vivo muscle preparations following a single pulse, the maximal force, rate of force development, and rate of relaxation were 12.1 ± 3.5 g vs. 6.2 ± 2.1 g; 398.2 ± 100.4 g/s vs. 163.8 ± 97.4 g/s; -101.2 ± 22.2 g/s vs. -33.6 ± 22.3 g/s in ammonia-treated compared with control muscle preparation, respectively (P therapeutic target in cirrhotic patients. PMID:26635319

  15. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  16. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    OpenAIRE

    Pearson, William G.; Hindson, David F.; Langmore, Susan E.; Zumwalt, Ann C.

    2012-01-01

    Elevation of the larynx is critical to swallowing function, an observation supported by the fact that radiation therapy-induced dysphagia is associated with reduced laryngeal elevation. We investigated muscles underlying hyolaryngeal elevation by using muscle functional MRI. We acquired scans from 11 healthy subjects to determine whole-muscle T2 signal profiles pre-swallowing, post-swallowing, and after performing swallowing exercises. Results demonstrate muscles essential to laryngeal elevat...

  17. Simultaneous measurement of cerebral and muscle tissue parameters during cardiac arrest and cardiopulmonary resuscitation

    Science.gov (United States)

    Nosrati, Reyhaneh; Ramadeen, Andrew; Hu, Xudong; Woldemichael, Ermias; Kim, Siwook; Dorian, Paul; Toronov, Vladislav

    2015-03-01

    In this series of animal experiments on resuscitation after cardiac arrest we had a unique opportunity to measure hyperspectral near-infrared spectroscopy (hNIRS) parameters directly on the brain dura, or on the brain through the intact pig skull, and simultaneously the muscle hNIRS parameters. Simultaneously the arterial blood pressure and carotid and femoral blood flow were recorded in real time using invasive sensors. We used a novel hyperspectral signalprocessing algorithm to extract time-dependent concentrations of water, hemoglobin, and redox state of cytochrome c oxidase during cardiac arrest and resuscitation. In addition in order to assess the validity of the non-invasive brain measurements the obtained results from the open brain was compared to the results acquired through the skull. The comparison of hNIRS data acquired on brain surface and through the adult pig skull shows that in both cases the hemoglobin and the redox state cytochrome c oxidase changed in similar ways in similar situations and in agreement with blood pressure and flow changes. The comparison of simultaneously measured brain and muscle changes showed expected differences. Overall the results show feasibility of transcranial hNIRS measurements cerebral parameters including the redox state of cytochrome oxidase in human cardiac arrest patients.

  18. Lower limb asymmetry in mechanical muscle function

    DEFF Research Database (Denmark)

    Jordan, M J; Aagaard, Per; Herzog, W

    2015-01-01

    Due to a high incidence of anterior cruciate ligament (ACL) re-injury in alpine ski racers, this study aims to assess functional asymmetry in the countermovement jump (CMJ), squat jump (SJ), and leg muscle mass in elite ski racers with and without anterior cruciate ligament reconstruction (ACL......-R). Elite alpine skiers with ACL-R (n = 9; 26.2 ± 11.8 months post-op) and uninjured skiers (n = 9) participated in neuromuscular screening. Vertical ground reaction force during the CMJ and SJ was assessed using dual force plate methodology to obtain phase-specific bilateral asymmetry indices (AIs) for...... kinetic impulse (CMJ and SJ phase-specific kinetic impulse AI). Dual x-ray absorptiometry scanning was used to assess asymmetry in lower body muscle mass. Compared with controls, ACL-R skiers had increased AI in muscle mass (P < 0.001), kinetic impulse AI in the CMJ concentric phase (P < 0.05), and the...

  19. Role of Biological Sex in Normal Cardiac Function and in its Disease Outcome – A Review

    OpenAIRE

    Prabhavathi, K.; Selvi, K.Tamarai; Poornima, K.N.; Sarvanan, A.

    2014-01-01

    Biological sex plays an important role in normal cardiac physiology as well as in the heart‘s response to cardiac disease. Women generally have better cardiac function and survival than do men in the face of cardiac disease; however, this is progressively lost when comparing postmenopausal women with age matched men. Animal model of cardiac disease mirror what is seen in humans. Sex hormones contribute significantly to sex based difference in cardiac functioning and in its disease outcome. Es...

  20. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging

    OpenAIRE

    Umanskaya, Alisa; Santulli, Gaetano; Xie, Wenjun; Andersson, Daniel C; Reiken, Steven R.; Marks, Andrew R.

    2014-01-01

    Age-related muscle weakness has major adverse consequences on quality of life, increasing the risk of falls, fractures, and movement impairments. Albeit an increased oxidative state has been shown to contribute to age-dependent reduction in skeletal muscle function, little is known about the mechanisms connecting oxidation and muscle weakness. We show here that genetically enhancing mitochondrial antioxidant activity causes improved skeletal muscle function and voluntary exercise in aged mice...

  1. Neonatal epicardial-derived progenitors aquire myogenic traits in skeletal muscle, but not cardiac muscle

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Skovrind, Ida;

    2016-01-01

    , in contrast to the adult heart. METHODS: Highly purified mouse EPDCs were transplanted into damaged neonatal and adult myocardium as well as regenerating skeletal muscle. Co-cultures with skeletal myoblasts were used to distinguish fusion independent myogenic conversion. RESULTS: No donor EPDC...... EPDCs may be more myogenic than previously anticipated. But, the heart may lack factors for induction of myogenesis of EPDCs, a scenario that should be taken into consideration when aiming for repair of damaged myocardium by stem cell transplantation....

  2. Impaired exercise capacity and skeletal muscle function in a mouse model of pulmonary inflammation

    OpenAIRE

    Tang, Kechun; Murano, George; Wagner, Harrieth; Nogueira, Leonardo; Wagner, Peter D.; Tang, Alisa; Dalton, Nancy D.; Gu, Yusu; Peterson, Kirk L.; Breen, Ellen C.

    2013-01-01

    Pulmonary TNFα has been linked to reduced exercise capacity in a subset of patients with moderate to severe chronic obstructive pulmonary disease (COPD). We hypothesized that prolonged, high expression of pulmonary TNFα impairs cardiac and skeletal muscle function, and both contribute to exercise limitation. Using a surfactant protein C promoter-TNFα construct, TNFα was overexpressed throughout life in mouse lungs (SP-C/TNFα+). TNFα levels in wild-type (WT) female serum and lung were two- and...

  3. Early remodeling of rat cardiac muscle induced by swimming training

    Directory of Open Access Journals (Sweden)

    Verzola R.M.M.

    2006-01-01

    Full Text Available The aim of the present investigation was to study the effect of acute swimming training with an anaerobic component on matrix metallopeptidase (MMP activity and myosin heavy chain gene expression in the rat myocardium. Animals (male Wistar rats, weighing approximately 180 g were trained for 6 h/day in 3 sessions of 2 h each for 1 to 5 consecutive days (N = 5 rats per group. Rats swam in basins 47 cm in diameter and 60 cm deep filled with water at 33 to 35ºC. After the training period a significant increase (P < 0.05 was observed in the heart weight normalized to body weight by about 22 and 35% in the groups that trained for 96 and 120 h, respectively. Blood lactate levels were significantly increased (P < 0.05 in all groups after all training sessions, confirming an anaerobic component. However, lactate levels decreased (P < 0.05 with days of training, suggesting that the animals became adapted to this protocol. Myosin heavy chain-ß gene expression, analyzed by real time PCR and normalized with GAPDH gene expression, showed a significant two-fold increase (P < 0.01 after 5 days of training. Zymography analysis of myocardium extracts indicated a single ~60-kDa activity band that was significantly increased (P < 0.05 after 72, 96, and 120 h, indicating an increased expression of MMP-2 and suggesting precocious remodeling. Furthermore, the presence of MMP-2 was confirmed by Western blot analysis, but not the presence of MMP-1 and MMP-3. Taken together, our results indicate that in these training conditions, the rat heart undergoes early biochemical and functional changes required for the adaptation to the new physiological condition by tissue remodeling.

  4. Phosphorylation of Titin Modulates Passive Stiffness of Cardiac Muscle in a Titin Isoform-dependent Manner

    OpenAIRE

    Fukuda, Norio; Wu, Yiming; Nair, Preetha; Granzier, Henk L.

    2005-01-01

    We investigated the effect of protein kinase A (PKA) on passive force in skinned cardiac tissues that express different isoforms of titin, i.e., stiff (N2B) and more compliant (N2BA) titins, at different levels. We used rat ventricular (RV), bovine left ventricular (BLV), and bovine left atrial (BLA) muscles (passive force: RV > BLV > BLA, with the ratio of N2B to N2BA titin, ∼90:10, ∼40:60, and ∼10:90%, respectively) and found that N2B and N2BA isoforms can both be phosphorylated by PKA. Und...

  5. Physical basis of SATRO - a new method for analysis of the cardiac muscle depolarisation

    CERN Document Server

    Janicki, J S

    2006-01-01

    On the basis of the model of the current flow through a single fibre, changes in the electric charge density over the myocardium are described. With the use of relevant analytic formulae, supported with numerical calculations, the distribution and time dependencies of electric potentials on the surface of the thorax have been determined. The results obtained are compared with empirical data. A strong correlation between the theoretical predictions and the experimental data has been obtained. The model in question permits examination of instantaneous potentials resulting from electrical activation of particular segments of the cardiac muscle.

  6. Dietary nitrate reduces skeletal muscle oxygenation response to physical exercise: a quantitative muscle functional MRI study

    OpenAIRE

    Bentley, Rachel; Gray, Stuart R.; Schwarzbauer, Christian; Dawson, Dana; Frenneaux, Michael; He, Jiabao

    2014-01-01

    Abstract Dietary inorganic nitrate supplementation (probably via conversion to nitrite) increases skeletal muscle metabolic efficiency. In addition, it may also cause hypoxia‐dependent vasodilation and this has the potential to augment oxygen delivery to exercising skeletal muscle. However, direct evidence for the latter with spatial localization to exercising muscle groups does not exist. We employed quantitative functional MRI (fMRI) to characterize skeletal muscle oxygen utilization and re...

  7. Dietary nitrate reduces skeletal muscle oxygenation response to physical exercise: a quantitative muscle functional MRI study

    OpenAIRE

    Bentley, R; Gray, S. R.; Schwarzbauer, C.; Dawson, D; Frenneaux, M; He, J.

    2014-01-01

    Dietary inorganic nitrate supplementation (probably via conversion to nitrite) increases skeletal muscle metabolic efficiency. In addition, it may also cause hypoxia‐dependent vasodilation and this has the potential to augment oxygen delivery to exercising skeletal muscle. However, direct evidence for the latter with spatial localization to exercising muscle groups does not exist. We employed quantitative functional MRI (fMRI) to characterize skeletal muscle oxygen utilization and replenishme...

  8. The specific case: cardiac amyloidosis as differential diagnosis in case of restricted cardiac pump function

    International Nuclear Information System (INIS)

    The NMR imaging data in combination with clinical characterization and echocardiography are consistent with the diagnosis of a cardiac amyloidosis. The article describes disease pattern and diagnosis based on contrast agent accumulation and diastolic functional disturbances. CT was performed to exclude pulmonary embolism.

  9. Differential response of rat cardiac and skeletal muscle glycogen to glucocorticoids.

    Science.gov (United States)

    Poland, J L; Poland, J W; Honey, R N

    1982-05-01

    Though glucocorticoids were previously implicated in the support of myocardial glycogen supercompensation after exercise, it was unclear why skeletal muscle glycogen did not simultaneously supercompensate since it was also exposed to the exercise-induced glucocorticoid increases. The current study shows that glucocorticoids differentially affect cardiac and skeletal muscle glycogen. Following dexamethasone administration (400 micrograms i.p.) myocardial glycogen peaked at 6 h while glycogen in the soleus, red vastus lateralis, and white vastus lateralis increased more slowly and reached the highest values 17 h postinjection. Concurrently, blood glucose, insulin, and glucagon remained at control levels. Liver glycogen increased within 2 h and continued to rise with a peak value at 17 h. Plasma free fatty acid (FFA) levels increased and remained high throughout the 26-h experimental period. High FFA levels inhibit glycogenolysis and thus could be partially responsible for glucocorticoid-induced glycogen increases. It is postulated that glycogen supercompensation does not readily occur in skeletal muscles after exercise because of the brevity of the corticosterone and FFA increases and the slowness of the skeletal muscle glycogen response to glucocorticoids. PMID:7104851

  10. Systems analysis of biological networks in skeletal muscle function.

    Science.gov (United States)

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  11. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  12. Channels Active in the Excitability of Nerves and Skeletal Muscles across the Neuromuscular Junction: Basic Function and Pathophysiology

    Science.gov (United States)

    Goodman, Barbara E.

    2008-01-01

    Ion channels are essential for the basic physiological function of excitable cells such as nerve, skeletal, cardiac, and smooth muscle cells. Mutations in genes that encode ion channels have been identified to cause various diseases and disorders known as channelopathies. An understanding of how individual ion channels are involved in the…

  13. Resistance training induces qualitative changes in muscle morphology, muscle architecture, and muscle function in elderly postoperative patients

    DEFF Research Database (Denmark)

    Suetta, Charlotte; Andersen, Jesper L; Dalgas, Ulrik;

    2008-01-01

    beneficial qualitative changes in muscle fiber morphology and muscle architecture in elderly postoperative patients. In contrast, rehabilitation regimes based on functional exercises and neuromuscular electrical stimulation had no effect. The present data emphasize the importance of resistance training in......Although the negative effects of bed rest on muscle strength and muscle mass are well established, it still remains a challenge to identify effective methods to restore physical capacity of elderly patients recovering from hospitalization. The present study compared different training regimes with...... respect to muscle strength, muscle fiber size, muscle architecture, and stair walking power in elderly postoperative patients. Thirty-six patients (60-86 yr) scheduled for unilateral hip replacement surgery due to hip osteoarthritis were randomized to either 1) resistance training (RT: 3/wk x 12 wk), 2...

  14. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration.

    Science.gov (United States)

    Condorelli, G; Borello, U; De Angelis, L; Latronico, M; Sirabella, D; Coletta, M; Galli, R; Balconi, G; Follenzi, A; Frati, G; Cusella De Angelis, M G; Gioglio, L; Amuchastegui, S; Adorini, L; Naldini, L; Vescovi, A; Dejana, E; Cossu, G

    2001-09-11

    The concept of tissue-restricted differentiation of postnatal stem cells has been challenged by recent evidence showing pluripotency for hematopoietic, mesenchymal, and neural stem cells. Furthermore, rare but well documented examples exist of already differentiated cells in developing mammals that change fate and trans-differentiate into another cell type. Here, we report that endothelial cells, either freshly isolated from embryonic vessels or established as homogeneous cells in culture, differentiate into beating cardiomyocytes and express cardiac markers when cocultured with neonatal rat cardiomyocytes or when injected into postischemic adult mouse heart. Human umbilical vein endothelial cells also differentiate into cardiomyocytes under similar experimental conditions and transiently coexpress von Willebrand factor and sarcomeric myosin. In contrast, neural stem cells, which efficiently differentiate into skeletal muscle, differentiate into cardiomyocytes at a low rate. Fibroblast growth factor 2 and bone morphogenetic protein 4, which activate cardiac differentiation in embryonic cells, do not activate cardiogenesis in endothelial cells or stimulate trans-differentiation in coculture, suggesting that different signaling molecules are responsible for cardiac induction during embryogenesis and in successive periods of development. The fact that endothelial cells can generate cardiomyocytes sheds additional light on the plasticity of endothelial cells during development and opens perspectives for cell autologous replacement therapies. PMID:11535818

  15. Influence of chronic kidney disease on cardiac structure and function.

    Science.gov (United States)

    Matsushita, Kunihiro; Ballew, Shoshana H; Coresh, Josef

    2015-09-01

    Chronic kidney disease (CKD), the presence of kidney dysfunction and/or damage, is a worldwide public health issue. Although CKD is independently associated with various subtypes of cardiovascular diseases, a recent international collaborative meta-analysis demonstrates that CKD is particularly strongly associated with heart failure, suggesting its critical impact on cardiac structure and function. Although numerous studies have investigated the association of CKD and cardiac structure and function, these studies substantially vary regarding source populations and methodology (e.g., measures of CKD and/or parameters of cardiac structure and function), making it difficult to reach universal conclusions. Nevertheless, in this review, we comprehensively examine relevant studies, discuss potential mechanisms linking CKD to alteration of cardiac structure and function, and demonstrate clinical implications as well as potential future research directions. We exclusively focus on studies investigating both CKD measures, kidney function (i.e., glomerular filtration rate [GFR], creatinine clearance, or levels of filtration markers), and kidney damage represented by albuminuria, since current international clinical guidelines of CKD recommend staging CKD and assessing its clinical risk based on both GFR and albuminuria. PMID:26194332

  16. Healthy older humans exhibit augmented carotid-cardiac baroreflex sensitivity with aspirin during muscle mechanoreflex and metaboreflex activation.

    Science.gov (United States)

    Drew, Rachel C; Blaha, Cheryl A; Herr, Michael D; Stocker, Sean D; Sinoway, Lawrence I

    2015-10-01

    Low-dose aspirin inhibits thromboxane production and augments the sensitivity of carotid baroreflex (CBR) control of heart rate (HR) during concurrent muscle mechanoreflex and metaboreflex activation in healthy young humans. However, it is unknown how aging affects this response. Therefore, the effect of low-dose aspirin on carotid-cardiac baroreflex sensitivity during muscle mechanoreflex with and without metaboreflex activation in healthy older humans was examined. Twelve older subjects (6 men and 6 women, mean age: 62 ± 1 yr) performed two trials during two visits preceded by 7 days of low-dose aspirin (81 mg) or placebo. One trial involved 3 min of passive calf stretch (mechanoreflex) during 7.5 min of limb circulatory occlusion (CO). In another trial, CO was preceded by 1.5 min of 70% maximal voluntary contraction isometric calf exercise (mechanoreflex and metaboreflex). HR (ECG) and mean arterial blood pressure (MAP; Finometer) were recorded. CBR function was assessed using rapid neck pressure application (+40 to -80 mmHg). Aspirin significantly decreased baseline thromboxane B2 production by 83 ± 4% (P aspirin, CBR-HR maximal gain and operating point gain were significantly higher during stretch with metabolite accumulation compared with placebo (maximal gain: -0.23 ± 0.03 vs. -0.14 ± 0.02 and operating point gain: -0.11 ± 0.03 vs. -0.04 ± 0.01 beats·min(-1)·mmHg(-1) for aspirin and placebo, respectively, P aspirin augments CBR-HR sensitivity during concurrent muscle mechanoreflex and metaboreflex activation in healthy older humans. This increased sensitivity appears linked to reduced thromboxane sensitization of muscle mechanoreceptors, which consequently improves CBR-HR control. PMID:26371168

  17. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy; Catalán, Mabel; Vivar, Raúl; Ayala, Pedro; Humeres, Claudio; Aránguiz, Pablo [Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); García, Lorena [Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Velarde, Victoria [Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (Chile); Díaz-Araya, Guillermo, E-mail: gadiaz@ciq.uchile.cl [Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile)

    2013-10-15

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF were treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac

  18. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    International Nuclear Information System (INIS)

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF were treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac

  19. Acupuncture Effects on Cardiac Functions Measured by Cardiac Magnetic Resonance Imaging in a Feline Model

    Directory of Open Access Journals (Sweden)

    Jen-Hsou Lin

    2010-01-01

    Full Text Available The usefulness of acupuncture (AP as a complementary and/or alternative therapy in animals is well established but more research is needed on its clinical efficacy relative to conventional therapy, and on the underlying mechanisms of the effects of AP. Cardiac magnetic resonance imaging (CMRI, an important tool in monitoring cardiovascular diseases, provides a reliable method to monitor the effects of AP on the cardiovascular system. This controlled experiment monitored the effect electro-acupuncture (EA at bilateral acupoint Neiguan (PC6 on recovery time after ketamine/xylazine cocktail anesthesia in healthy cats. The CMRI data established the basic feline cardiac function index (CFI, including cardiac output and major vessel velocity. To evaluate the effect of EA on the functions of the autonomic nervous and cardiovascular systems, heart rate, respiration rate, electrocardiogram and pulse rate were also measured. Ketamine/xylazine cocktail anesthesia caused a transient hypertension in the cats; EA inhibited this anesthetic-induced hypertension and shortened the post-anesthesia recovery time. Our data support existing knowledge on the cardiovascular benefits of EA at PC6, and also provide strong evidence for the combination of anesthesia and EA to shorten post-anesthesia recovery time and counter the negative effects of anesthetics on cardiac physiology.

  20. Acupuncture effects on cardiac functions measured by cardiac magnetic resonance imaging in a feline model.

    Science.gov (United States)

    Lin, Jen-Hsou; Shih, Chen-Haw; Kaphle, Krishna; Wu, Leang-Shin; Tseng, Weng-Yih; Chiu, Jen-Hwey; Lee, Tzu-Chi; Wu, Ying-Ling

    2010-06-01

    The usefulness of acupuncture (AP) as a complementary and/or alternative therapy in animals is well established but more research is needed on its clinical efficacy relative to conventional therapy, and on the underlying mechanisms of the effects of AP. Cardiac magnetic resonance imaging (CMRI), an important tool in monitoring cardiovascular diseases, provides a reliable method to monitor the effects of AP on the cardiovascular system. This controlled experiment monitored the effect electro-acupuncture (EA) at bilateral acupoint Neiguan (PC6) on recovery time after ketamine/xylazine cocktail anesthesia in healthy cats. The CMRI data established the basic feline cardiac function index (CFI), including cardiac output and major vessel velocity. To evaluate the effect of EA on the functions of the autonomic nervous and cardiovascular systems, heart rate, respiration rate, electrocardiogram and pulse rate were also measured. Ketamine/xylazine cocktail anesthesia caused a transient hypertension in the cats; EA inhibited this anesthetic-induced hypertension and shortened the post-anesthesia recovery time. Our data support existing knowledge on the cardiovascular benefits of EA at PC6, and also provide strong evidence for the combination of anesthesia and EA to shorten post-anesthesia recovery time and counter the negative effects of anesthetics on cardiac physiology. PMID:18955311

  1. Short-term inspiratory muscle training potentiates the benefits of aerobic and resistance training in patients undergoing CABG in phase II cardiac rehabilitation program

    Directory of Open Access Journals (Sweden)

    Bárbara Maria Hermes

    2015-08-01

    Full Text Available Abstract Objective: To investigate the efficiency of short-term inspiratory muscle training program associated with combined aerobic and resistance exercise on respiratory muscle strength, functional capacity and quality of life in patients who underwent coronary artery bypass and are in the phase II cardiac rehabilitation program. Methods: A prospective, quasi-experimental study with 24 patients who underwent coronary artery bypass and were randomly assigned to two groups in the Phase II cardiac rehabilitation program: inspiratory muscle training program associated with combined training (aerobic and resistance group (GCR + IMT, n=12 and combined training with respiratory exercises group (GCR, n=12, over a period of 12 weeks, with two sessions per week. Before and after intervention, the following measurements were obtained: maximal inspiratory and expiratory pressures (PImax and PEmax, peak oxygen consumption (peak VO2 and quality of life scores. Data were compared between pre- and post-intervention at baseline and the variation between the pre- and post-phase II cardiac rehabilitation program using the Student's t-test, except the categorical variables, which were compared using the Chi-square test. Values of P<0.05 were considered statistically significant. Results: Compared to GCR, the GCR + IMT group showed larger increments in PImax (P<0.001, PEmax (P<0.001, peak VO2 (P<0.001 and quality of life scores (P<0.001. Conclusion: The present study demonstrated that the addition of inspiratory muscle training, even when applied for a short period, may potentiate the effects of combined aerobic and resistance training, becoming a simple and inexpensive strategy for patients who underwent coronary artery bypass and are in phase II cardiac rehabilitation.

  2. Positive Inotropic Effects of Low dATP/ATP Ratios on Mechanics and Kinetics of Porcine Cardiac Muscle

    OpenAIRE

    Schoffstall, Brenda; Clark, Amanda; Chase, P. Bryant

    2006-01-01

    Substitution of 2′-deoxy ATP (dATP) for ATP as substrate for actomyosin results in significant enhancement of in vitro parameters of cardiac contraction. To determine the minimal ratio of dATP/ATP (constant total NTP) that significantly enhances cardiac contractility and obtain greater understanding of how dATP substitution results in contractile enhancement, we varied dATP/ATP ratio in porcine cardiac muscle preparations. At maximum Ca2+ (pCa 4.5), isometric force increased linearly with dAT...

  3. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    International Nuclear Information System (INIS)

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [3H]glucose and 2-deoxy[14C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats

  4. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States); Martyn, J.A. Jeevendra, E-mail: jmartyn@partners.org [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States)

    2013-02-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.

  5. EANM/ESC guidelines for radionuclide imaging of cardiac function

    DEFF Research Database (Denmark)

    Hesse, B.; Lindhardt, T.B.; Acampa, W.; Anagnostopoulos, C.; Ballinger, J.; Bax, J.J.; Edenbrandt, L.; Flotats, A.; Germano, G.; Stopar, T.G.; Franken, P.; Kelion, A.; Kjaer, A.; Guludec, D. Le; Ljungberg, M.; Maenhout, A.F.; Marcassa, C.; Marving, J.; McKiddie, F.; Schaefer, W.M.; Stegger, L.; Underwood, R.

    2008-01-01

    Radionuclide imaging of cardiac function represents a number of well-validated techniques for accurate determination of right (RV) and left ventricular (LV) ejection fraction (EF) and LV volumes. These first European guidelines give recommendations for how and when to use first-pass and equilibri...

  6. Evaluation of Muscle Function of the Extensor Digitorum Longus Muscle Ex vivo and Tibialis Anterior Muscle In situ in Mice

    OpenAIRE

    Hakim, Chady H.; Wasala, Nalinda B.; Duan, Dongsheng

    2013-01-01

    Body movements are mainly provided by mechanical function of skeletal muscle. Skeletal muscle is composed of numerous bundles of myofibers that are sheathed by intramuscular connective tissues. Each myofiber contains many myofibrils that run longitudinally along the length of the myofiber. Myofibrils are the contractile apparatus of muscle and they are composed of repeated contractile units known as sarcomeres. A sarcomere unit contains actin and myosin filaments that are spaced by the Z disc...

  7. Physical activity, muscle function, falls and fractures

    OpenAIRE

    Karlsson, Magnus K; Nordqvist, Anders; Karlsson, Caroline

    2008-01-01

    Study design: A thematic review. Objectives: To evaluate if physical activity enhances muscle strength, improves balance, and reduces the fall frequency and the fracture incidence. Background: One of the major medical problems of today is the increasing incidence of fragility fractures. Muscle strength and fall is one of the major determinants of a fracture. If physical activity could increase muscle strength, improve balance and reduce the fall frequency, then training could be recommended a...

  8. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2013-12-01

    Full Text Available The heart and head muscles share common developmental origins and genetic underpinnings in vertebrates, including humans. Parts of the heart and cranio-facial musculature derive from common mesodermal progenitors that express NKX2-5, ISL1, and TBX1. This ontogenetic kinship is dramatically reflected in the DiGeorge/Cardio-Velo-Facial syndrome (DGS/CVFS, where mutations of TBX1 cause malformations in the pharyngeal apparatus and cardiac outflow tract. Cardiac progenitors of the first heart field (FHF do not require TBX1 and segregate precociously from common progenitors of the second heart field (SHF and pharyngeal muscles. However, the cellular and molecular mechanisms that govern heart versus pharyngeal muscle specification within this lineage remain elusive. Here, we harness the simplicity of the ascidian larva to show that, following asymmetric cell division of common progenitors, NK4/NKX2-5 promotes GATAa/GATA4/5/6 expression and cardiac specification in the second heart precursors by antagonizing Tbx1/10-mediated inhibition of GATAa and activation of Collier/Olf/EBF (COE, the determinant of atrial siphon muscle (ASM specification. Our results uncover essential regulatory connections between the conserved cardio-pharyngeal factor Tbx1/10 and muscle determinant COE, as well as a mutual antagonism between NK4 and Tbx1/10 activities upstream of GATAa and COE. The latter cross-antagonism underlies a fundamental heart versus pharyngeal muscle fate choice that occurs in a conserved lineage of cardio-pharyngeal progenitors. We propose that this basic ontogenetic motif underlies cardiac and pharyngeal muscle development and evolution in chordates.

  9. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.

    Directory of Open Access Journals (Sweden)

    Elliott M McMillan

    Full Text Available Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY and spontaneously hypertensive rats (SHR were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG of hypertensive rats had higher (p<0.05 caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05 ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05 Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05 Beclin-1 and ATG7 protein, as well as decreased (p<0.05 caspase-3, calpain, and cathepsin activity. Left ventricle (LV of hypertensive rats had reduced (p<0.05 AMPKα and LC3II protein, as well as elevated (p<0.05 p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05 proteasome activity but reduced (p<0.05 caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.

  10. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease

    DEFF Research Database (Denmark)

    Berchtold, M W; Brinkmeier, H; Müntener, M

    2000-01-01

    proteins involved in Ca(2+) signaling and handling. Molecular diversity of the main proteins in the Ca(2+) signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca(2+) signaling apparatus includes 1) the ryanodine receptor that is the......+)-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca(2+) signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca(2+) handling seem to be......Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based...

  11. Functional role of anion channels in cardiac diseases

    Institute of Scientific and Technical Information of China (English)

    Da-yue DUAN; Luis LH LIU; Nathan BOZEAT; Z Maggie HUANG; Sunny Y XIANG; Guan-lei WANG; Linda YE; Joseph R HUME

    2005-01-01

    In comparison to cation (K+, Na+, and Ca2+) channels, much less is currently known about the functional role of anion (Cl-) channels in cardiovascular physiology and pathophysiology. Over the past 15 years, various types of Cl- currents have been recorded in cardiac cells from different species including humans. All cardiac Cl- channels described to date may be encoded by five different Cl- channel genes: the PKA- and PKC-activated cystic fibrosis tansmembrane conductance regulator (CFTR), the volume-regulated ClC-2 and ClC-3, and the Ca2+-activated CLCA or Bestrophin. Recent studies using multiple approaches to examine the functional role of Cl- channels in the context of health and disease have demonstrated that Cl- channels might contribute to: 1) arrhythmogenesis in myocardial injury; 2) cardiac ischemic preconditioning; and 3) the adaptive remodeling of the heart during myocardial hypertrophy and heart failure. Therefore,anion channels represent very attractive novel targets for therapeutic approaches to the treatment of heart diseases. Recent evidence suggests that Cl- channels,like cation channels, might function as a multiprotein complex or functional module.In the post-genome era, the emergence of functional proteomics has necessitated a new paradigm shift to the structural and functional assessment of integrated Cl- channel multiprotein complexes in the heart, which could provide new insight into our understanding of the underlying mechanisms responsible for heart disease and protection.

  12. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Nelson, Christopher E; Hakim, Chady H; Ousterout, David G; Thakore, Pratiksha I; Moreb, Eirik A; Castellanos Rivera, Ruth M; Madhavan, Sarina; Pan, Xiufang; Ran, F Ann; Yan, Winston X; Asokan, Aravind; Zhang, Feng; Duan, Dongsheng; Gersbach, Charles A

    2016-01-22

    Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD. PMID:26721684

  13. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, William G., E-mail: bp1@bu.edu [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States); Hindson, David F. [Department of Radiology, Boston Medical Center, Boston, Massachusetts (United States); Langmore, Susan E. [Department of Otolaryngology, Boston Medical Center, Boston, Massachusetts (United States); Speech and Hearing Sciences, Boston University, Boston, Massachusetts (United States); Zumwalt, Ann C. [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States)

    2013-03-01

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions

  14. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions

  15. The integrated function of muscles and tendons during locomotion.

    Science.gov (United States)

    Roberts, Thomas J

    2002-12-01

    The mechanical roles of tendon and muscle contractile elements during locomotion are often considered independently, but functionally they are tightly integrated. Tendons can enhance muscle performance for a wide range of locomotor activities because muscle-tendon units shorten and lengthen at velocities that would be mechanically unfavorable for muscle fibers functioning alone. During activities that require little net mechanical power output, such as steady-speed running, tendons reduce muscular work by storing and recovering cyclic changes in the mechanical energy of the body. Tendon stretch and recoil not only reduces muscular work, but also allows muscle fibers to operate nearly isometrically, where, due to the force-velocity relation, skeletal muscle fibers develop high forces. Elastic energy storage and recovery in tendons may also provide a key mechanism to enable individual muscles to alter their mechanical function, from isometric force-producers during steady speed running to actively shortening power-producers during high-power activities like acceleration or uphill running. Evidence from studies of muscle contraction and limb dynamics in turkeys suggests that during running accelerations work is transferred directly from muscle to tendon as tendon stretch early in the step is powered by muscle shortening. The energy stored in the tendon is later released to help power the increase in energy of the body. These tendon length changes redistribute muscle power, enabling contractile elements to shorten at relatively constant velocities and power outputs, independent of the pattern of flexion/extension at a joint. Tendon elastic energy storage and recovery extends the functional range of muscles by uncoupling the pattern of muscle fiber shortening from the pattern of movement of the body. PMID:12485693

  16. Effect of pelvic floor muscle exercises on pulmonary function.

    Science.gov (United States)

    Han, DongWook; Ha, Misook

    2015-10-01

    [Purpose] This study aimed to determine the correlation between pelvic floor muscle strength and pulmonary function. In particular, we examined whether pelvic floor muscle exercises can improve pulmonary function. [Subjects] Thirty female college students aged 19-21 with no history of nervous or musculoskeletal system injury were randomly divided into experimental and control groups. [Methods] For the pulmonary function test, spirometry items included forced vital capacity and maximal voluntary ventilation. Pelvic floor muscle exercises consisted of Kegel exercises performed three times daily for 4 weeks. [Results] Kegel exercises performed in the experimental group significantly improved forced vital capacity, forced expiratory volume in 1 second, PER, FEF 25-75%, IC, and maximum voluntary ventilation compared to no improvement in the control group. [Conclusion] Kegel exercises significantly improved pulmonary function. When abdominal pressure increased, pelvic floor muscles performed contraction at the same time. Therefore, we recommend that the use of pelvic floor muscle exercises be considered for improving pulmonary function. PMID:26644681

  17. Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets

    Science.gov (United States)

    Wacker, Michael J.; Touchberry, Chad D.; Silswal, Neerupma; Brotto, Leticia; Elmore, Chris J.; Bonewald, Lynda F.; Andresen, Jon; Brotto, Marco

    2016-01-01

    Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL–slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary

  18. Skeletal muscle, but not cardiovascular function, is altered in a mouse model of autosomal recessive hypophosphatemic rickets

    Directory of Open Access Journals (Sweden)

    Michael J. Wacker

    2016-05-01

    Full Text Available Autosomal recessive hypophosphatemic rickets (ARHR is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL- fast-twitch muscle, soleus (SOL- slow-twitch muscle, heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2a or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In

  19. Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets.

    Science.gov (United States)

    Wacker, Michael J; Touchberry, Chad D; Silswal, Neerupma; Brotto, Leticia; Elmore, Chris J; Bonewald, Lynda F; Andresen, Jon; Brotto, Marco

    2016-01-01

    Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL-slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these

  20. Effect of Hypoxia on Ca2+ Concentration in Broiler's Cardiac Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The purpose of this research was to study the effect of hypoxia on the Ca2+ concentration in broiler's cardiac muscle cells (CMCs). The concentration of Ca2+ in the CMC was observed using a laser scanning confocal microscope (LSCM). The results showed that hypoxia could significantly increase intracellular Ca2+ (normal oxygen, 99.3 ± 13.1; hypoxia, 129.4±24.3, P<0.01) in CMCs. The Ca2+ antagonist (nifedipine, verapamil) could significantly restrain the Ca2+ influx across the cell membrane of CMC treated by hypoxia (CMC: hypoxia + verapamil, 100.9 ± 28.2; hypoxia + nifedipine, 107.6± 27.7;P < 0.01). The results showed hypoxia could increase intracellular Ca2+ concentration of CMC, and the Ca2+ antagonist could restrain the Ca2+ influx across the cell membrane of CMC treated by hypoxia.

  1. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E;

    2012-01-01

    Previous studies have investigated if cryopreservation is a viable approach for functional mitochondrial analysis. Different tissues have been studied, and conflicting results have been published. The aim of the present study was to investigate if mitochondria in human skeletal muscle maintain...... functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...... of oxidative phosphorylation was significantly (P skeletal muscle samples. Cryopreservation impaired respiration with substrates linked to Complex I more than for Complex II (P

  2. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis.

    Science.gov (United States)

    Tunwell, R E; Wickenden, C; Bertrand, B M; Shevchenko, V I; Walsh, M B; Allen, P D; Lai, F A

    1996-09-01

    Rapid Ca2+ efflux from intracellular stores during cardiac muscle excitation-contraction coupling is mediated by the ryanodine-sensitive calcium-release channel, a large homotetrameric complex present in the sarcoplasmic reticulum. We report here the identification, primary structure and topological analysis of the ryanodine receptor-calcium release channel from human cardiac muscle (hRyR-2). Consistent with sedimentation and immunoblotting studies on the hRyR-2 protein, sequence analysis of ten overlapping cDNA clones reveals an open reading frame of 14901 nucleotides encoding a protein of 4967 amino acid residues with a predicted molecular mass of 564 569 Da for hRyR-2. In-frame insertions corresponding to eight and ten amino acid residues were found in two of the ten cDNAs isolated, suggesting that novel, alternatively spliced transcripts of the hRyR-2 gene might exist. Six hydrophobic stretches, which are present within the hRyR-2 C-terminal 500 amino acids and are conserved in all RyR sequences, may be involved in forming the transmembrane domain that constitutes the Ca(2+)-conducting pathway, in agreement with competitive ELISA studies with a RyR-2-specific antibody. Sequence alignment of hRyR-2 with other RyR isoforms indicates a high level of overall identity within the RyR family, with the exception of two important regions that exhibit substantial variability. Phylogenetic analysis suggests that the RyR-2 isoform diverged from a single ancestral gene before the RyR-1 and RyR-3 isoforms to form a distinct branch of the RyR family tree. PMID:8809036

  3. Evaluation of cardiac function in SLE using radionuclide ventriculography

    International Nuclear Information System (INIS)

    Purpose: To evaluate the left ventricular function of systemic lupus erythematosus (SLE) patients by equilibrium radionuclide ventriculography. Methods: 20 normal controls and 30 SLE patients were studied by gated cardiac blood pool imaging and gated myocardial imaging and the left ventricular systolic and diastolic parameters were analysed. Results: The LVEF, SH, PER and PFR of 30 SLE patients were 0.52 +- 0.11, 60.89 +- 12.12 degree, 3.08 +- 0.48 EDV/s and 2.88 +- 0.47EDV/s. While those parameters of 20 normal controls were 0.68 +- 0.02, 53.25 +- 5.26 degree, 3.66 +- 0.51 EDV/s and 3.34 +- 0.88 EDV/s, respectively. The parameters of systolic and diastolic function were significantly lower in patients than those in controls (t 4.50, 3.11, 5.80 and 4.60, P<0.01). Conclusions: The cardiac function of SLE patients was lower (poorer) as compared with that of normal population. Radionuclide ventriculography is useful to evaluating cardiac function in SLE patients and thereby helps with the diagnosis of the myocardial damage in the disease and guides the treatment of it

  4. Skeletal Muscle Mitochondrial Function in Polycystic Ovarian Syndrome

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Svendsen, Pernille Maj; Skovbro, Mette;

    2011-01-01

    Objective Polycystic ovarian syndrome (PCOS) is associated with skeletal muscle insulin resistance, which has been linked to decreased mitochondrial function. We measured mitochondrial respiration in lean and obese women with and without PCOS using high-resolution respirometry. Methods Hyperinsul......Objective Polycystic ovarian syndrome (PCOS) is associated with skeletal muscle insulin resistance, which has been linked to decreased mitochondrial function. We measured mitochondrial respiration in lean and obese women with and without PCOS using high-resolution respirometry. Methods...... mitochondrial function and indices of insulin sensitivity. Conclusions In contrast to previous reports we found no evidence that skeletal muscle mitochondrial respiration is reduced in skeletal muscle of women with PCOS compared to control subjects. Furthermore, mitochondrial content did not differ between our...... control and PCOS groups. These results question the causal relationship between reduced mitochondrial function and skeletal muscle insulin resistance in PCOS....

  5. Functional muscle synergies constrain force production during postural tasks

    OpenAIRE

    McKay, J. Lucas; Ting, Lena H.

    2007-01-01

    We recently demonstrated that a set of five functional muscle synergies were sufficient to characterize both hindlimb muscle activity and active forces during automatic postural responses in cats standing at multiple postural configurations. This characterization depended critically upon the assumption that the endpoint force vector (synergy force vector) produced by the activation of each muscle synergy rotated with the limb axis as the hindlimb posture varied in the sagittal plane. Here, we...

  6. Skeletal muscle microvascular function in girls with Turner syndrome

    OpenAIRE

    West, Sarah L.; Clodagh S. O'Gorman; Elzibak, Alyaa H.; Jessica Caterini; Noseworthy, Michael D.; Tammy Rayner; Jill Hamilton; Wells, Greg D

    2015-01-01

    Background: Exercise intolerance is prevalent in individuals with Turner Syndrome (TS). We recently demonstrated that girls with TS have normal aerobic but altered skeletal muscle anaerobic metabolism compared to healthy controls (HC). The purpose of this study was to compare peripheral skeletal muscle microvascular function in girls with TS to HC after exercise. We hypothesized that girls with TS would have similar muscle blood-oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) s...

  7. Functional morphology of the radialis muscle in shark tails.

    Science.gov (United States)

    Flammang, Brooke E

    2010-03-01

    The functional morphology of intrinsic caudal musculature in sharks has not been studied previously, though the kinematics and function of body musculature have been the focus of a great deal of research. In the tail, ventral to the axial myomeres, there is a thin strip of red muscle with fibers angled dorsoposteriorly, known as the radialis. This research gives the first anatomical description of the radialis muscle in sharks, and addresses the hypothesis that the radialis muscle provides postural stiffening in the tail of live swimming sharks. The radialis muscle fibers insert onto the deepest layers of the stratum compactum, the more superior layers of which are orthogonally arrayed and connect to the epidermis. The two deepest layers of the stratum compactum insert onto the proximal ends of the ceratotrichia of the caudal fin. This anatomical arrangement exists in sharks and is modified in rays, but was not found in skates or chimaeras. Electromyography of the caudal muscles of dogfish swimming steadily at 0.25 and 0.5 body lengths per second (Ls(-1)) exhibited a pattern of anterior to posterior activation of the radialis muscle, followed by activation of red axial muscle in the more anteriorly located ipsilateral myomeres of the caudal peduncle; at 0.75 L s(-1), only the anterior portion of the radialis and white axial muscle of the contralateral peduncular myomeres were active. Activity of the radialis muscle occurred during periods of the greatest drag incurred by the tail during the tail beat and preceded the activity of more anteriorly located axial myomeres. This nonconformity to the typical anterior to posterior wave of muscle activation in fish swimming, in combination with anatomical positioning of the radialis muscles and stratum compactum, suggests that radialis activity may have a postural function to stiffen the fin, and does not function as a typical myotomal muscle. PMID:19827156

  8. Muscle mass and function after total hip arthroplasty

    OpenAIRE

    Rasch, Anton

    2009-01-01

    Osteoarthritis (OA) of the hip is a common disease among elderly causing pain, joint stiffness and reduced mobility. Outcome studies have shown total hip arthroplasy (THA) to be a successful surgical procedure. Studies of muscle strength and function after THA are more scarce and results vary. It has been suggested that unloading of the OA limb due to pain, results in hip and thigh muscle weakness and atrophy causing an abnormal gait and impaired postural control. Muscle atr...

  9. Recovery of impaired muscle function in severe sciatica.

    Science.gov (United States)

    Balagué, F; Nordin, M; Sheikhzadeh, A; Echegoyen, A C; Skovron, M L; Bech, H; Chassot, D; Helsen, M

    2001-06-01

    This is a prospective cohort study of patients with acute treated severe sciatica. The objectives of the study are, firstly, to describe the recovery of muscle performance by manual and isokinetic muscle testing in patients with acute severe sciatica over 1 year, and secondly, to discuss the potential clinical relevance of the isokinetic testing of the ankle for patients with acute sciatica. In clinical daily practice, muscle performance is evaluated by means of isometric manual tests. Different authors using manual muscle tests have reported the long-term outcome of the muscle function in patients with sciatica. Overall, the results are good in terms of the recovery of muscle strength. However, it is not clear whether the isometric strength is sufficiently relevant to evaluate the more complete muscle performance of the affected muscles in patients with sciatica. This study presents data on the muscle recovery measured with manual testing and isokinetic testing of patients with severe sciatica. Consecutive patients admitted to the Cantonal Hospital for conservative management of severe acute sciatica were eligible for inclusion in the study. Patients were evaluated at admission, discharge, and follow-up at 3, 6, and 12 months. All the visits included a standardized clinical examination and the completion of questionnaires. Imaging and electromyography were conducted at the first visit. Isokinetic muscle tests at 30 degrees/s and 120 degrees/s were performed at discharge and follow-up visits. Manual and isokinetic tests were performed on foot and ankle flexor and extensor muscles. Eighty-two consecutive patients (66% men), with a mean age of 43 (+/-10.3) years, entered the study. The prevalence of major muscle weakness was low, with 7% of patients unable to perform toe walking and 11% unable to walk on the heel at visit one. Moreover, motor deficit defined as a score of 4 or less (out of 5) was found in 15% of subjects at the first evaluation. Such severe deficits

  10. Osteoprotegerin Levels Change During STEMI and Reflect Cardiac Function

    DEFF Research Database (Denmark)

    Lindberg, Søren; Jensen, Jan S; Hoffmann, Søren; Iversen, Allan Z; Pedersen, Sune H; Mogelvang, Rasmus; Galatius, Søren; Flyvbjerg, Allan; Bjerre, Mette

    2014-01-01

    BACKGROUND: High levels of circulating osteoprotegerin (OPG) predicts long-term outcome in patients with ST-elevation myocardial infarction (STEMI), possibly because of increased vascular inflammation resulting in myocardial damage. In the present study we aimed at elucidating the dynamic progress...... of OPG levels during STEMI treated with percutaneous coronary intervention (PCI) and additionally, the effect of OPG levels on cardiac function. METHODS: We prospectively included 42 patients with STEMI treated with primary PCI. Four consecutive blood samples were obtained before and after PCI...... treatment. Plasma OPG levels were determined using an in-house immunoassay. Cardiac function was increased according to echocardiography, estimating left ventricular ejection fraction (LVEF) 1-3 days after STEMI. RESULTS: During STEMI, OPG levels peaked after PCI and then decreased; mean concentrations (95...

  11. Estrogen modulates the influence of cardiac inflammatory cells on function of cardiac fibroblasts

    Directory of Open Access Journals (Sweden)

    McLarty JL

    2013-08-01

    Full Text Available Jennifer L McLarty,1 Jianping Li,2 Scott P Levick,3 Joseph S Janicki2 1Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; 2Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA; 3Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA Background: Inflammatory cells play a major role in the pathology of heart failure by stimulating cardiac fibroblasts to regulate the extracellular matrix in an adverse way. In view of the fact that inflammatory cells have estrogen receptors, we hypothesized that estrogen provides cardioprotection by decreasing the ability of cardiac inflammatory cells to influence fibroblast function. Methods: Male rats were assigned to either an untreated or estrogen-treated group. In the treated group, estrogen was delivered for 2 weeks via a subcutaneous implanted pellet containing 17β-estradiol. A mixed population of cardiac inflammatory cells, including T-lymphocytes (about 70%, macrophages (about 12%, and mast cells (about 12%, was isolated from each rat and cultured in a Boyden chamber with cardiac fibroblasts from untreated adult male rats for 24 hours. To examine if tumor necrosis factor-alpha (TNF-α produced by inflammatory cells represents a mechanism contributing to the stimulatory effects of inflammatory cells on cardiac fibroblasts, inflammatory cells from the untreated group were incubated with cardiac fibroblasts in a Boyden chamber system for 24 hours in the presence of a TNF-α -neutralizing antibody. Cardiac fibroblasts were also incubated with 5 ng/mL of TNF-α for 24 hours. Fibroblast proliferation, collagen synthesis, matrix metalloproteinase activity, β1 integrin protein levels, and the ability of fibroblasts to contract collagen gels were determined in all groups and statistically compared via one-way analysis of variance. Results: Inflammatory cells from the

  12. The effect of age on the relationship between cardiac and vascular function

    OpenAIRE

    Houghton, David; Jones, Thomas W.; Cassidy, Sophie; Siervo, Mario; MacGowan, Guy A.; Trenell, Michael I; Jakovljevic, Djordje G.

    2016-01-01

    Age-related changes in cardiac and vascular function are associated with increased risk of cardiovascular mortality and morbidity. The aim of the present study was to define the effect of age on the relationship between cardiac and vascular function. Haemodynamic and gas exchange measurements were performed at rest and peak exercise in healthy individuals. Augmentation index was measured at rest. Cardiac power output, a measure of overall cardiac function, was calculated as the product of car...

  13. Overhydration, cardiac function and survival in hemodialysis patients

    OpenAIRE

    Mihai Onofriescu; Dimitrie Siriopol; Luminita Voroneanu; Simona Hogas; Ionut Nistor; Mugurel Apetrii; Laura Florea; Gabriel Veisa; Irina Mititiuc; Mehmet Kanbay; Radu Sascau; Adrian Covic

    2015-01-01

    RESEARCH ARTICLE Overhydration, Cardiac Function and Survival in Hemodialysis Patients Mihai Onofriescu1☯, Dimitrie Siriopol1☯, Luminita Voroneanu1, Simona Hogas1, Ionut Nistor1, Mugurel Apetrii1, Laura Florea1, Gabriel Veisa1, Irina Mititiuc1, Mehmet Kanbay3, Radu Sascau2, Adrian Covic1* 1 Department of Nephrology, University of Medicine and Pharmacy “Gr. T. Popa”, Iasi, Romania, 2 Department of Cardiology, University of Medicine and Pharmacy “Gr. T. Popa”, Iasi, Romania...

  14. Adaptive servoventilation improves cardiac function and respiratory stability

    OpenAIRE

    Oldenburg, Olaf; Bitter, Thomas; Lehmann, Roman; Korte, Stefan; Dimitriadis, Zisis; Faber, Lothar; Schmidt, Anke; Westerheide, Nina; Horstkotte, Dieter

    2010-01-01

    Cheyne–Stokes respiration (CSR) in patients with chronic heart failure (CHF) is of major prognostic impact and expresses respiratory instability. Other parameters are daytime pCO2, VE/VCO2-slope during exercise, exertional oscillatory ventilation (EOV), and increased sensitivity of central CO2 receptors. Adaptive servoventilation (ASV) was introduced to specifically treat CSR in CHF. Aim of this study was to investigate ASV effects on CSR, cardiac function, and respiratory stability. A total ...

  15. Fibroblast Growth Factor–23 and Cardiac Structure and Function

    OpenAIRE

    Agarwal, Isha; Ide, Noriko; Ix, Joachim H.; Kestenbaum, Bryan; Lanske, Beate; Schiller, Nelson B.; Mary A Whooley; Mukamal, Kenneth J.

    2014-01-01

    Background: Fibroblast growth factor–23 (FGF‐23) is a phosphaturic factor previously associated with left ventricular hypertrophy and systolic dysfunction among individuals with chronic kidney disease. Whether FGF‐23 acts directly to induce left ventricular hypertrophy, potentially independent of its klotho coreceptor, remains uncertain. We investigated associations of FGF‐23 with cardiac structural abnormalities among individuals with a broad range of kidney function and explored potential b...

  16. Subclinical hypothyroidism effects on cardiac function.

    Science.gov (United States)

    Niafar, M; Toufan, M; Ghafoori, S; Aghamohammadzadeh, N

    2009-08-01

    To evaluate heart function in subclinical hypothyroid women in comparison with healthy subjects, a prospective study was performed on newly detected subclinical hypothyroid women presenting to endocrinology clinic of Tabriz Sina Hospital from October 2007 to February 2008. Thirty five women with Subclinical Hypothyroidism (SH) in case group were matched with 35 healthy euthyroid women in control group. All patients in both groups were studied by two dimensional echocardiography and Tissue Doppler Imaging (TDI) in Tabriz Shahid Madani Hospital. The FT4 and TSH levels were measured. Comparison of TDI results in Right Ventricle (RV) showed the significantly lower mean T(v) excursion in case group with no significant difference in other parameters. In Left Ventricle (LV), the mean A(m), A(v) and E(v)/E(m) were significantly higher and E/A was lower in the case group, but there was no significant difference in other parameters. No RV diastolic dysfunction was documented in both groups. There was no case with LV systolic dysfunction in both groups. There were 21 (60%) patients with LV diastolic dysfunction in the case group comparing with 11 (31.4%) cases in the control group (p = 0.016, OR = 0.306). Frequency of LV diastolic dysfunction was significantly higher in the case group in patients aged > or = 40 years (94.1% vs. 53.3%; p = 0.013). There was no case of pericardial effusion in the studied population. According to our results, SH may cause LV diastolic dysfunction. Likewise, minor RV systolic dysfunction might be seen in these patients. PMID:19943461

  17. Evaluation of the left cardiac function obtained by cardiac pool imaging

    International Nuclear Information System (INIS)

    In 13 patients with angina pectoris (AP) (mean age : 68.1 +- 11.3), 13 patients with myocardial infarction (MI) (mean age : 62.0 +- 15.7), 9 patients with hypertension (HT) (mean age: 72.6 +- 7.5) and other patients with cardiac diseases (Mis) (mean age: 60.9 +- 15.4), totalling 61, who had all been treated in the First Department of the Internal Medicine of the Nissei Hospital between April, 1982 and February, 1983, the left venticle ejection frequency was determined by cardiac pool method by the use of Simis 3, data processing system of Informatek Co. Of those patients, CAG and LVG were carried on in 14, and through the comparison with LVEF obtained by cardiac pool method, the results described below were obtained: 1) In 14 patients in whom LVG was carried on, comparison between contrast EF and EF by RI produced the correlation index r = 0.87, showing favorable agreement (P < 0.01). 2) EF by diseases show 46.1 +- 18.5 % in MI, 64.5 +- 14.0 % in AP, 70.6 +- 11.3 % in HT and 66.8 +- 18.4 % in Mis. MI group showed statistically significant (P < 0.01) low value in comparison with other 3 groups. 3) The patients were divided into a group in which ST depression was recognized and another group in which the same was not recognized, and LVEF of the two groups were compared. The former represented 57.6 +- 20.0 % while the latter 70.7 +- 12.6 %, showing statistically significant (P < 0.01) difference recognized between them. 4) As calculation of LVEF by the present method allows the evaluation of cardiac function non invasively (in combination), it is useful test method if carried on simultaneously with the observation of the wall motion. (author)

  18. Isoproterenol directs hair follicle-associated pluripotent (HAP) stem cells to differentiate in vitro to cardiac muscle cells which can be induced to form beating heart-muscle tissue sheets.

    Science.gov (United States)

    Yamazaki, Aiko; Yashiro, Masateru; Mii, Sumiyuki; Aki, Ryoichi; Hamada, Yuko; Arakawa, Nobuko; Kawahara, Katsumasa; Hoffman, Robert M; Amoh, Yasuyuki

    2016-03-01

    Nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of the follicle. Previous studies have shown that HAP stem cells can differentiate to neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. HAP stem cells effected nerve and spinal cord regeneration in mouse models. Recently, we demonstrated that HAP stem cells differentiated to beating cardiac muscle cells. The differentiation potential to cardiac muscle cells was greatest in the upper part of the follicle. The beat rate of the cardiac muscle cells was stimulated by isoproterenol. In the present study, we observed that isoproterenol directs HAP stem cells to differentiate to cardiac muscle cells in large numbers in culture compared to HAP stem cells not supplemented with isoproterenol. The addition of activin A, bone morphogenetic protein 4, and basic fibroblast growth factor, along with isoproternal, induced the cardiac muscle cells to form tissue sheets of beating heart muscle cells. These results demonstrate that HAP stem cells have great potential to form beating cardiac muscle cells in tissue sheets. PMID:27104748

  19. Effect of MicroRNA Modulation on Bioartificial Muscle Function

    OpenAIRE

    Rhim, Caroline; Cheng, Cindy S.; Kraus, William E.; Truskey, George A.

    2010-01-01

    Cellular therapies have recently employed the use of small RNA molecules, particularly microRNAs (miRNAs), to regulate various cellular processes that may be altered in disease states. In this study, we examined the effect of transient muscle-specific miRNA inhibition on the function of three-dimensional skeletal muscle cultures, or bioartificial muscles (BAMs). Skeletal myoblast differentiation in vitro is enhanced by inhibiting a proliferation-promoting miRNA (miR-133) expressed in muscle t...

  20. Pelvic floor muscle function in women with pelvic floor dysfunction

    DEFF Research Database (Denmark)

    Tibaek, Sigrid; Dehlendorff, Christian

    2014-01-01

    The objectives of this study were to investigate the level of pelvic floor muscle (PFM) function in women with pelvic floor dysfunction (PFD) referred by gynaecologists and urologists for in-hospital pelvic floor muscle training (PFMT), and to identity associated factors for a low level of PFM...

  1. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, S; Wright-Paradis, C; Gnaiger, E;

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity of...

  2. Muscle function and origin of pain in fibromyalgia

    DEFF Research Database (Denmark)

    Bennett, R M; Jacobsen, Søren

    1994-01-01

    It may be concluded that both peripheral and central mechanisms may operate in the pathophysiology of both impaired muscle function and pain in FM. These mechanisms may in part be attributable to physical deconditioning and disuse of muscle secondary to the characteristic pain and fatigue so ofte...

  3. The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat

    International Nuclear Information System (INIS)

    Deaths from microcystin toxication have widely been attributed to hypovolemic shock due to hepatic interstitial hemorrhage, while some recent studies suggest that cardiogenic complication is also involved. So far, information on cardiotoxic effects of MC has been rare and the underlying mechanism is still puzzling. The present study examined toxic effects of microcystins on heart muscle of rats intravenously injected with extracted MC at two doses, 0.16LD50 (14 μg MC-LReq kg-1 body weight) and 1LD50 (87 μg MC-LReq kg-1 body weight). In the dead rats, both TTC staining and maximum elevations of troponin I levels confirmed myocardial infarction after MC exposure, besides a serious interstitial hemorrhage in liver. In the 1LD50 dose group, the coincident falls in heart rate and blood pressure were related to mitochondria dysfunction in heart, while increases in creatine kinase and troponin I levels indicated cardiac cell injury. The corresponding pathological alterations were mainly characterized as loss of adherence between cardiac myocytes and swollen or ruptured mitochondria at the ultrastructural level. MC administration at a dose of 1LD50 not only enhanced activities and up-regulated mRNA transcription levels of antioxidant enzymes, but also increased GSH content. At both doses, level of lipid peroxides increased obviously, suggesting serious oxidative stress in mitochondria. Simultaneously, complex I and III were significantly inhibited, indicating blocks in electron flow along the mitochondrial respiratory chain in heart. In conclusion, the findings of this study implicate a role for MC-induced cardiotoxicity as a potential factor that should be considered when evaluating the mechanisms of death associated with microcystin intoxication in Brazil

  4. Effect of pelvic floor muscle exercises on pulmonary function

    OpenAIRE

    Han, Dongwook; Ha, Misook

    2015-01-01

    [Purpose] This study aimed to determine the correlation between pelvic floor muscle strength and pulmonary function. In particular, we examined whether pelvic floor muscle exercises can improve pulmonary function. [Subjects] Thirty female college students aged 19–21 with no history of nervous or musculoskeletal system injury were randomly divided into experimental and control groups. [Methods] For the pulmonary function test, spirometry items included forced vital capacity and maximal volunta...

  5. Poloxamer [corrected] 188 has a deleterious effect on dystrophic skeletal muscle function.

    Directory of Open Access Journals (Sweden)

    Rebecca L Terry

    Full Text Available Duchenne muscular dystrophy (DMD is an X-linked, fatal muscle wasting disease for which there is currently no cure and limited palliative treatments. Poloxomer 188 (P188 is a tri-block copolymer that has been proposed as a potential treatment for cardiomyopathy in DMD patients. Despite the reported beneficial effects of P188 on dystrophic cardiac muscle function, the effects of P188 on dystrophic skeletal muscle function are relatively unknown. Mdx mice were injected intraperitoneally with 460 mg/kg or 30 mg/kg P188 dissolved in saline, or saline alone (control. The effect of single-dose and 2-week daily treatment was assessed using a muscle function test on the Tibialis Anterior (TA muscle in situ in anaesthetised mice. The test comprises a warm up, measurement of the force-frequency relationship and a series of eccentric contractions with a 10% stretch that have previously been shown to cause a drop in maximum force in mdx mice. After 2 weeks of P188 treatment at either 30 or 460 mg/kg/day the drop in maximum force produced following eccentric contractions was significantly greater than that seen in saline treated control mice (P = 0.0001. Two week P188 treatment at either dose did not significantly change the force-frequency relationship or maximum isometric specific force produced by the TA muscle. In conclusion P188 treatment increases susceptibility to contraction-induced injury following eccentric contractions in dystrophic skeletal muscle and hence its suitability as a potential therapeutic for DMD should be reconsidered.

  6. The Insular Cortex and the Regulation of Cardiac Function.

    Science.gov (United States)

    Oppenheimer, Stephen; Cechetto, David

    2016-04-01

    Cortical representation of the heart challenges the orthodox view that cardiac regulation is confined to stereotyped, preprogrammed and rigid responses to exteroceptive or interoceptive environmental stimuli. The insula has been the region most studied in this regard; the results of clinical, experimental, and functional radiological studies show a complex interweave of activity with patterns dynamically varying regarding lateralization and antero-posterior distribution of responsive insular regions. Either acting alone or together with other cortical areas including the anterior cingulate, medial prefrontal, and orbito-frontal cortices as part of a concerted network, the insula can imbue perceptions with autonomic color providing emotional salience, and aiding in learning and behavioral decision choice. In these functions, cardiovascular input and the right anterior insula appear to play an important, if not pivotal role. At a more basic level, the insula gauges cardiovascular responses to exteroceptive and interoceptive stimuli, taking into account memory, cognitive, and reflexive constructs thereby ensuring appropriate survival responses and maintaining emotional and physiological homeostasis. When acquired derangements to the insula occur after stroke, during a seizure or from abnormal central processing of interoceptive or exteroceptive environmental cues as in psychiatric disorders, serious consequences can arise including cardiac electrophysiological, structural and contractile dysfunction and sudden cardiac death. PMID:27065176

  7. Functional Echomyography of the human denervated muscle: first results

    Directory of Open Access Journals (Sweden)

    Riccardo Zanato

    2011-03-01

    . The very high energy needed to stimulate the denervated muscles according to the Vienna home-based Functional Electrical Stimulation (h-b FES strategy demonstrates that the explored muscles are denervated. This pilot study confirms the usefulness of Functional EchoMyography in the follow-up and the positive effects of h-b FES of denervated/reinnervating muscles.

  8. The accommodative ciliary muscle function is preserved in older humans

    OpenAIRE

    Tabernero, Juan; Chirre, Emmanuel; Hervella, Lucia; Prieto, Pedro; Artal, Pablo

    2016-01-01

    Presbyopia, the loss of the eye’s accommodation capability, affects all humans aged above 45–50 years old. The two main reasons for this to happen are a hardening of the crystalline lens and a reduction of the ciliary muscle functionality with age. While there seems to be at least some partial accommodating functionality of the ciliary muscle at early presbyopic ages, it is not yet clear whether the muscle is still active at more advanced ages. Previous techniques used to visualize the accomm...

  9. The role of the N-terminus of the myosin essential light chain in cardiac muscle contraction

    OpenAIRE

    Kazmierczak, Katarzyna; Xu, Yuanyuan; Jones, Michelle; Guzman, Georgianna; Hernandez, Olga M.; Kerrick, W. Glenn L.; Szczesna-Cordary, Danuta

    2009-01-01

    To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43 amino acid N-terminal truncation mutant (Tg-Δ43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle and the ELC pro...

  10. Resistance Exercise Reduces Skeletal Muscle Cachexia and Improves Muscle Function in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Salaheddin Sharif

    2011-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic, systemic, autoimmune, inflammatory disease associated with cachexia (reduced muscle and increased fat. Although strength-training exercise has been used in persons with RA, it is not clear if it is effective for reducing cachexia. A 46-year-old woman was studied to determine: (i if resistance exercise could reverse cachexia by improving muscle mass, fiber cross-sectional area, and muscle function; and (2 if elevated apoptotic signaling was involved in cachexia with RA and could be reduced by resistance training. A needle biopsy was obtained from the vastus lateralis muscle of the RA subject before and after 16 weeks of resistance training. Knee extensor strength increased by 13.6% and fatigue decreased by 2.8% Muscle mass increased by 2.1%. Average muscle fiber cross-sectional area increased by 49.7%, and muscle nuclei increased slightly after strength training from 0.08 to 0.12 nuclei/μm2. In addition, there was a slight decrease (1.6% in the number of apoptotic muscle nuclei after resistance training. This case study suggests that resistance training may be a good tool for increasing the number of nuclei per fiber area, decreasing apoptotic nuclei, and inducing fiber hypertrophy in persons with RA, thereby slowing or reversing rheumatoid cachexia.

  11. Transient impairments in single muscle fibre contractile function after prolonged cycling in elite endurance athletes

    DEFF Research Database (Denmark)

    Hvid, L G; Gejl, Kasper Degn; Bech, R D;

    2013-01-01

    Prolonged muscle activity impairs whole-muscle performance and function. However, little is known about the effects of prolonged muscle activity on the contractile function of human single muscle fibres. The purpose of this study was to investigate the effects of prolonged exercise and subsequent...... recovery on the contractile function of single muscle fibres obtained from elite athletes....

  12. Study of the Effect of Stress on Skeletal Muscle Function in Geriatrics

    OpenAIRE

    Poornima, K.N.; Karthick, N.; Sitalakshmi, R.

    2014-01-01

    Background: Old age is associated with weakness of skeletal muscles and decrease in muscle functions. Usually in old-age, people undergo wasting of muscles, so they are more prone for fall and fracture. It has been stated that stress and cognition has an impact on muscle functions. This study was intended to demonstrate the effect of stress in muscle function in geriatrics.

  13. Squalene Modulates Radiation-Induced Structural, Ultrastructural And Biochemical Changes In Cardiac Muscles Of Male Albino Rats

    International Nuclear Information System (INIS)

    The failing heart represents an enormous clinical problem and is a major cause of death throughout the world. Hyperlipidemia and oxidative stress have been shown to contribute to heart failure. Squalene is a remarkable bioactive substance that belongs to a class of antioxidants called isoprenoids, which neutralize the harmful effect of excessive free radicals production in the body.The present study was designed to determine the possible protective effect of squalene against oxidative cardiac muscle damage induced by gamma irradiation.Rats were treated daily by gavage with 0.4 ml/kg squalene for 42 days before whole body gamma irradiation at a dose of 4 Gy and continued until animals were sacrificed 3 days post irradiation.Histological examination of cardiac muscles sections by using light and electron microscopes showed that exposure of rats to ionizing radiation has provoked a severe architecture damage such as necrotic nuclei, nuclei located at the periphery, alteration in chromatin distribution, ruptured cell and mitochondrial membranes, cristae of mitochondria disappeared, sticking mitochondria and ruptured myofibers. Structural and ultra-structural changes were associated with severe oxidative stress. Significant increase of lipid peroxidation products (malondialdehyde) (MDA) along with reduction in the activity of the antioxidant enzymes; superoxide dismutase (SOD) and catalse (CAT), and glutathione content (GSH), were recorded.Treatment of rats with squalene has significantly attenuated the radiation-induced oxidative damage and histopathological changes in cardiac muscle which was substantiated by a significant amelioration in the activity of plasma lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and aspartate transaminase (AST). Furthermore, administration of squalene to rats has adjusted the radiation-induced increase in plasma triglycerides (TG), total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). Based on these results, it

  14. Muscle function in COPD: a complex interplay

    OpenAIRE

    Man, William

    2012-01-01

    Anna V Donaldson,1,* Matthew Maddocks,2,* Dario Martolini,1,* Michael I Polkey,1 William D-C Man,1,3 1NIHR Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College, London; 2King's College London, Cicely Saunders Institute; London; 3Harefield Pulmonary Rehabilitation Unit, Harefield, United Kingdom*These authors contributed equally to this reviewAbstract: The skeletal muscles play an essential role in life, providing the mechanical b...

  15. Dietary Nitrate and Skeletal Muscle Contractile Function in Heart Failure.

    Science.gov (United States)

    Coggan, Andrew R; Peterson, Linda R

    2016-08-01

    Heart failure (HF) patients suffer from exercise intolerance that diminishes their ability to perform normal activities of daily living and hence compromises their quality of life. This is due largely to detrimental changes in skeletal muscle mass, structure, metabolism, and function. This includes an impairment of muscle contractile performance, i.e., a decline in the maximal force, speed, and power of muscle shortening. Although numerous mechanisms underlie this reduction in contractility, one contributing factor may be a decrease in nitric oxide (NO) bioavailability. Consistent with this, recent data demonstrate that acute ingestion of NO3 (-)-rich beetroot juice, a source of NO via the NO synthase-independent enterosalivary pathway, markedly increases maximal muscle speed and power in HF patients. This review discusses the role of muscle contractile dysfunction in the exercise intolerance characteristic of HF, and the evidence that dietary NO3 (-) supplementation may represent a novel and simple therapy for this currently underappreciated problem. PMID:27271563

  16. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    Science.gov (United States)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  17. Erythropoietin treatment enhances mitochondrial function in human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Ulla ePlenge

    2012-03-01

    Full Text Available Abstract Erythropoietin (Epo treatment has been shown to induce mitochondrial biogenesis in cardiac muscle along with enhanced mitochondrial capacity in mice. We hypothesized that recombinant human Epo (rhEpo treatment enhances skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS capacity in humans. In six healthy volunteers rhEpo was administered by sub-cutaneous injection over eight weeks with oral iron (100 mg supplementation taken daily. Mitochondrial OXPHOS was quantified by high-resolution respirometry in saponin-permeabilized muscle fibers obtained from biopsies of the vastus lateralis before and after rhEpo treatment. OXPHOS was determined with the mitochondrial complex I substrates malate, glutamate, pyruvate and complex II substrate succinate in the presence of saturating ADP concentrations, while maximal electron transport capacity (ETS was assessed by addition of an uncoupler. rhEpo treatment increased OXPHOS (from 92±5 to 113±7 pmol.sec-1.mg-1 and ETS (107±4 to 143±14 pmol.sec-1.mg-1, P<0.05, demonstrating that Epo treatment induces an upregulation of OXPHOS and ETS in human skeletal muscle.

  18. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  19. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function.

    Science.gov (United States)

    Chiellini, Grazia; Frascarelli, Sabina; Ghelardoni, Sandra; Carnicelli, Vittoria; Tobias, Sandra C; DeBarber, Andrea; Brogioni, Simona; Ronca-Testoni, Simonetta; Cerbai, Elisabetta; Grandy, David K; Scanlan, Thomas S; Zucchi, Riccardo

    2007-05-01

    3-Iodothyronamine T1AM is a novel endogenous thyroid hormone derivative that activates the G protein-coupled receptor known as trace anime-associated receptor 1 (TAAR1). In the isolated working rat heart and in rat cardiomyocytes, T1AM produced a reversible, dose-dependent negative inotropic effect (e.g., 27+/-5, 51+/-3, and 65+/-2% decrease in cardiac output at 19, 25, and 38 microM concentration, respectively). An independent negative chronotropic effect was also observed. The hemodynamic effects of T1AM were remarkably increased in the presence of the tyrosine kinase inhibitor genistein, whereas they were attenuated in the presence of the tyrosine phosphatase inhibitor vanadate. No effect was produced by inhibitors of protein kinase A, protein kinase C, calcium-calmodulin kinase II, phosphatidylinositol-3-kinase, or MAP kinases. Tissue cAMP levels were unchanged. In rat ventricular tissue, Western blot experiments with antiphosphotyrosine antibodies showed reduced phosphorylation of microsomal and cytosolic proteins after perfusion with synthetic T1AM; reverse transcriptase-polymerase chain reaction experiments revealed the presence of transcripts for at least 5 TAAR subtypes; specific and saturable binding of [125I]T1AM was observed, with a dissociation constant in the low micromolar range (5 microM); and endogenous T1AM was detectable by tandem mass spectrometry. In conclusion, our findings provide evidence for the existence of a novel aminergic system modulating cardiac function. PMID:17284482

  20. Smooth muscle cells largely develop independently of functional hemogenic endothelium

    Directory of Open Access Journals (Sweden)

    Monika Stefanska

    2014-01-01

    Full Text Available Vascular smooth muscle cells represent a major component of the cardiovascular system. In vitro studies have shown that FLK1+ cells derived from embryonic stem (ES cells can differentiate into both endothelial and smooth muscle cells. These FLK1+ cells also contain a mesodermal precursor, the hemangioblast, able to produce endothelial, blood and smooth muscle cells. The generation of blood precursors from the hemangioblast was recently shown to occur through a transient cell population of specialised endothelium, a hemogenic endothelium. To date, the lineage relationship between this cell population and smooth muscle cell progenitors has not been investigated. In this study, we generated a reporter ES cell line in which expression of the fluorescent protein H2B-VENUS is driven by the α-smooth muscle actin (α-SMA regulatory sequences. We demonstrated that this reporter cell line efficiently trace smooth muscle development during ES cell differentiation. Although some smooth muscle cells are associated with broad endothelial development, we established that smooth muscle cells are mostly generated independently from a specialised functional hemogenic endothelium. This study provides new and important insights into hematopoietic and vascular development, which may help in driving further progress towards the development of bioengineered vascular grafts for regenerative medicine.

  1. Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training

    OpenAIRE

    Salvadego, Desy; Domenis, Rossana; Lazzer, Stefano; Porcelli, Simone; Rittweger, Jörn; Rizzo, Giovanni; Mavelli, Irene; Šimunicˇ, Bostjan; Pišot, Rado; Grassi, Bruno

    2013-01-01

    RESISTANCE TRAINING PROGRAMS have been developed with the aim of improving variables of muscle function such as strength, power, speed, local muscular endurance, coordination, and flexibility (21). Resistance training is now considered an important part of training and rehabilitation programs for healthy subjects and for various types of patients, such as cardiac patients (45), patients with pulmonary diseases (10), patients undergoing prolonged bed-rest periods (2), or e...

  2. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats.

    Science.gov (United States)

    Sung, Bokyung; Hwang, Seong Yeon; Kim, Min Jo; Kim, Minjung; Jeong, Ji Won; Kim, Cheol Min; Chung, Hae Young; Kim, Nam Deuk

    2015-09-01

    A main characteristic of aging is the debilitating, progressive and generalized impairment of biological functions, resulting in an increased vulnerability to disease and death. Skeletal muscle comprises approximately 40% of the human body; thus, it is the most abundant tissue. At the age of 30 onwards, 0.5‑1% of human muscle mass is lost each year, with a marked acceleration in the rate of decline after the age of 65. Thus, novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function are required to improve the quality of life of older subjects. The aim of the present study was to determine whether loquat (Eriobotrya japonica) leaf extract (LE) can prevent the loss of skeletal muscle function in aged rats. Young (5-month-old) and aged (18‑19-month-old) rats were fed LE (50 mg/kg/day) for 35 days and the changes in muscle mass and strength were evaluated. The age‑associated loss of grip strength was attenuated, and muscle mass and muscle creatine kinase (CK) activity were enhanced following the administration of LE. Histochemical analysis also revealed that LE abrogated the age‑associated decrease in cross‑sectional area (CSA) and decreased the amount of connective tissue in the muscle of aged rats. To investigate the mode of action of LE, C2C12 murine myoblasts were used to evaluate the myogenic potential of LE. The expression levels of myogenic proteins (MyoD and myogenin) and functional myosin heavy chain (MyHC) were measured by western blot analysis. LE enhanced MyoD, myogenin and MyHC expression. The changes in the expression of myogenic genes corresponded with an increase in the activity of CK, a myogenic differentiation marker. Finally, LE activated the Akt/mammalian target of rapamycin (mTOR) signaling pathway, which is involved in muscle protein synthesis during myogenesis. These findings suggest that LE attenuates sarcopenia by promoting myogenic differentiation and subsequently promoting muscle protein synthesis

  3. Sex steroids do not affect muscle weight, oxidative metabolism or cytosolic androgen reception binding of functionally overloaded rat Plantaris muscles

    Science.gov (United States)

    Max, S. R.; Rance, N.

    1983-01-01

    The effects of sex steroids on muscle weight and oxidative capacity of rat planaris muscles subjected to functional overload by removal of synergistic muscles were investigated. Ten weeks after bilateral synergist removal, plantaris muscles were significantly hypertrophic compared with unoperated controls. After this period, the ability of the muscles to oxide three substrates of oxidative metabolism was assessed. Experimental procedures are discussed and results are presented herein. Results suggest a lack of beneficial effect of sex hormone status on the process of hypertrophy and on biochemical changes in overloaded muscle. Such findings are not consistent with the idea of synergistic effects of sex steroids and muscle usage.

  4. μ-Crystallin controls muscle function through thyroid hormone action.

    Science.gov (United States)

    Seko, Daiki; Ogawa, Shizuka; Li, Tao-Sheng; Taimura, Akihiro; Ono, Yusuke

    2016-05-01

    μ-Crystallin (Crym), a thyroid hormone-binding protein, is abnormally up-regulated in the muscles of patients with facioscapulohumeral muscular dystrophy, a dominantly inherited progressive myopathy. However, the physiologic function of Crym in skeletal muscle remains to be elucidated. In this study, Crym was preferentially expressed in skeletal muscle throughout the body. Crym-knockout mice exhibited a significant hypertrophy of fast-twitch glycolytic type IIb fibers, causing an increase in grip strength and high intensity running ability in Crym-null mice. Genetic inactivation of Crym or blockade of Crym by siRNA-mediated knockdown up-regulated the gene expression of fast-glycolytic contractile fibers in satellite cell-derived myotubes in vitro These alterations in Crym-inactivated muscle were rescued by inhibition of thyroid hormone, even though Crym is a positive regulator of thyroid hormone action in nonmuscle cells. The results demonstrated that Crym is a crucial regulator of muscle plasticity, controlling metabolic and contractile properties of myofibers, and thus the selective inactivation of Crym may be a potential therapeutic target for muscle-wasting diseases, such as muscular dystrophies and age-related sarcopenia.-Seko, D., Ogawa, S., Li, T.-S., Taimura, A., Ono, Y. μ-Crystallin controls muscle function through thyroid hormone action. PMID:26718889

  5. Cardiac autonomic functions in children with familial Mediterranean fever.

    Science.gov (United States)

    Şahin, Murat; Kır, Mustafa; Makay, Balahan; Keskinoğlu, Pembe; Bora, Elçin; Ünsal, Erbil; Ünal, Nurettin

    2016-05-01

    Familial Mediterranean fever (FMF) is the most common inherited autoinflammatory disease in the world. The long-term effects of subclinical inflammation in FMF are not well recognized. Some studies have suggested that FMF is associated with cardiac autonomic dysfunction in adult FMF patients. The objective of this study was to investigate the cardiac autonomic functions in pediatric FMF patients by using several autonomic tests. Thirty-five patients with FMF and 35 healthy controls were enrolled in this cross-sectional study. Demographic data, disease-specific data, and orthostatic symptoms were recorded. In all participants, 12-lead electrocardiography (ECG), 24 h ambulatory electrocardiographic monitoring, transthoracic echocardiography, treadmill exercise test, and head upright tilt-table (HUTT) test were performed. The heart rate recovery (HRR) indices of the two groups were similar. Also, chronotropic response was similar in both groups. The time-domain parameters of heart rate variability (HRV) were similar in both groups, except mean RR (p = 0.024). Frequencies of ventricular and supraventricular ectopic stimuli were similar in both groups. There were no statistically significant differences between the groups in average QT and average corrected QT interval length, average QT interval dispersion, and average QT corrected dispersion. There was no significant difference between the two groups regarding the ratio of clinical dysautonomic reactions on HUTT. However, we observed a significantly higher rate of dysautonomic reactions on HUTT in patients with exertional leg pain than that in patients without (p = 0.013). When the fractal dimension of time curves were compared, FMF patients exhibited significantly lower diastolic blood pressure parameters than controls in response to HUTT. Cardiovascular autonomic dysfunction in children with FMF is not prominent. Particularly, patients with exertional leg pain are more prone to have dysautonomic features

  6. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    International Nuclear Information System (INIS)

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications

  7. Resistance training, insulin sensitivity and muscle function in the elderly

    DEFF Research Database (Denmark)

    Dela, Flemming; Kjaer, Michael

    2006-01-01

    Ageing is associated with a loss in both muscle mass and in the metabolic quality of skeletal muscle. This leads to sarcopenia and reduced daily function, as well as to an increased risk for development of insulin resistance and type 2 diabetes. A major part, but not all, of these changes are...... associated with an age-related decrease in the physical activity level and can be counteracted by increased physical activity of a resistive nature. Strength training has been shown to improve insulin-stimulated glucose uptake in both healthy elderly individuals and patients with manifest diabetes, and...... likewise to improve muscle strength in both elderly healthy individuals and in elderly individuals with chronic disease. The increased strength is coupled to improved function and a decreased risk for fall injuries and fractures. Elderly individuals have preserved the capacity to improve muscle strength...

  8. Muscle glycogen and cell function - Location, location, location

    DEFF Research Database (Denmark)

    Ørtenblad, N; Nielsen, Joachim

    2015-01-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available...... immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that...... the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the...

  9. Scaffold Proteins Regulating Extracellular Regulated Kinase Function in Cardiac Hypertrophy and Disease

    OpenAIRE

    Liang, Yan; Sheikh, Farah

    2016-01-01

    The mitogen activated protein kinase (MAPK)-extracellular regulated kinase 1/2 (ERK1/2) pathway is a central downstream signaling pathway that is activated in cardiac muscle cells during mechanical and agonist-mediated hypertrophy. Studies in genetic mouse models deficient in ERK-associated MAPK components pathway have further reinforced a direct role for this pathway in stress-induced cardiac hypertrophy and disease. However, more recent studies have highlighted that these signaling pathways...

  10. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function.

    Directory of Open Access Journals (Sweden)

    Nathan Y Weltman

    Full Text Available Thyroid hormones (THs play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH. LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.

  11. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    International Nuclear Information System (INIS)

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  12. Aspirin augments carotid-cardiac baroreflex sensitivity during muscle mechanoreflex and metaboreflex activation in humans.

    Science.gov (United States)

    Drew, Rachel C; Muller, Matthew D; Blaha, Cheryl A; Mast, Jessica L; Herr, Michael D; Stocker, Sean D; Sinoway, Lawrence I

    2013-10-15

    Muscle mechanoreflex activation decreases the sensitivity of carotid baroreflex (CBR)-heart rate (HR) control during local metabolite accumulation in humans. However, the contribution of thromboxane A2 (TXA2) toward this response is unknown. Therefore, the effect of inhibiting TXA2 production via low-dose aspirin on CBR-HR sensitivity during muscle mechanoreflex and metaboreflex activation in humans was examined. Twelve young subjects performed two trials during two visits, preceded by 7 days' low-dose aspirin (81 mg) or placebo. One trial involved 3-min passive calf stretch (mechanoreflex) during 7.5-min limb circulatory occlusion (CO). In another trial, CO was preceded by 1.5 min of 70% maximal voluntary contraction isometric calf exercise to accumulate metabolites during CO and stretch (mechanoreflex and metaboreflex). HR (ECG) and mean arterial pressure (Finometer) were recorded. CBR function was assessed using rapid neck pressures ranging from +40 to -80 mmHg. Aspirin significantly decreased baseline thromboxane B2 production by 84 ± 4% (P aspirin, stretch with metabolite accumulation significantly augmented maximal gain (GMAX) and operating point gain (GOP) of CBR-HR (GMAX; -0.71 ± 0.14 vs. -0.37 ± 0.08 and GOP; -0.69 ± 0.13 vs. -0.35 ± 0.12 beats·min(-1)·mmHg(-1) for aspirin and placebo, respectively; P aspirin and placebo during stretch with metabolite accumulation. In conclusion, these findings suggest that low-dose aspirin augments CBR-HR sensitivity during concurrent muscle mechanoreflex and metaboreflex activation in humans. This increased sensitivity appears linked to reduced TXA2 production, which likely plays a role in metabolite sensitization of muscle mechanoreceptors. PMID:23970529

  13. Impact of detubulation on force and kinetics of cardiac muscle contraction.

    Science.gov (United States)

    Ferrantini, Cecilia; Coppini, Raffaele; Sacconi, Leonardo; Tosi, Benedetta; Zhang, Mei Luo; Wang, Guo Liang; de Vries, Ewout; Hoppenbrouwers, Ernst; Pavone, Francesco; Cerbai, Elisabetta; Tesi, Chiara; Poggesi, Corrado; ter Keurs, Henk E D J

    2014-06-01

    Action potential-driven Ca(2+) currents from the transverse tubules (t-tubules) trigger synchronous Ca(2+) release from the sarcoplasmic reticulum of cardiomyocytes. Loss of t-tubules has been reported in cardiac diseases, including heart failure, but the effect of uncoupling t-tubules from the sarcolemma on cardiac muscle mechanics remains largely unknown. We dissected intact rat right ventricular trabeculae and compared force, sarcomere length, and intracellular Ca(2+) in control trabeculae with trabeculae in which the t-tubules were uncoupled from the plasma membrane by formamide-induced osmotic shock (detubulation). We verified disconnection of a consistent fraction of t-tubules from the sarcolemma by two-photon fluorescence imaging of FM4-64-labeled membranes and by the absence of tubular action potential, which was recorded by random access multiphoton microscopy in combination with a voltage-sensitive dye (Di-4-AN(F)EPPTEA). Detubulation reduced the amplitude and prolonged the duration of Ca(2+) transients, leading to slower kinetics of force generation and relaxation and reduced twitch tension (1 Hz, 30°C, 1.5 mM [Ca(2+)]o). No mechanical changes were observed in rat left atrial trabeculae after formamide shock, consistent with the lack of t-tubules in rodent atrial myocytes. Detubulation diminished the rate-dependent increase of Ca(2+)-transient amplitude and twitch force. However, maximal twitch tension at high [Ca(2+)]o or in post-rest potentiated beats was unaffected, although contraction kinetics were slower. The ryanodine receptor (RyR)2 Ca-sensitizing agent caffeine (200 µM), which increases the velocity of transverse Ca(2+) release propagation in detubulated cardiomyocytes, rescued the depressed contractile force and the slower twitch kinetics of detubulated trabeculae, with negligible effects in controls. We conclude that partial loss of t-tubules leads to myocardial contractile abnormalities that can be rescued by enhancing and accelerating the

  14. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex

    OpenAIRE

    Li, Hui-Hua; Kedar, Vishram; Zhang, Chunlian; McDonough, Holly; Arya, Ranjana; Wang, Da-Zhi; Patterson, Cam

    2004-01-01

    Calcineurin, which binds to the Z-disc in cardiomyocytes via α-actinin, promotes cardiac hypertrophy in response to numerous pathologic stimuli. However, the endogenous mechanisms regulating calcineurin activity in cardiac muscle are not well understood. We demonstrate that a muscle-specific F-box protein called atrogin-1, or muscle atrophy F-box, directly interacts with calcineurin A and α-actinin-2 at the Z-disc of cardiomyocytes. Atrogin-1 associates with Skp1, Cul1, and Roc1 to assemble a...

  15. The accommodative ciliary muscle function is preserved in older humans.

    Science.gov (United States)

    Tabernero, Juan; Chirre, Emmanuel; Hervella, Lucia; Prieto, Pedro; Artal, Pablo

    2016-01-01

    Presbyopia, the loss of the eye's accommodation capability, affects all humans aged above 45-50 years old. The two main reasons for this to happen are a hardening of the crystalline lens and a reduction of the ciliary muscle functionality with age. While there seems to be at least some partial accommodating functionality of the ciliary muscle at early presbyopic ages, it is not yet clear whether the muscle is still active at more advanced ages. Previous techniques used to visualize the accommodation mechanism of the ciliary muscle are complicated to apply in the older subjects, as they typically require fixation stability during long measurement times and/or to have an ultrasound probe directly in contact with the eye. Instead, we used our own developed method based on high-speed recording of lens wobbling to study the ciliary muscle activity in a small group of pseudophakic subjects (around 80 years old). There was a significant activity of the muscle, clearly able to contract under binocular stimulation of accommodation. This supports a purely lenticular-based theory of presbyopia and it might stimulate the search for new solutions to presbyopia by making use of the remaining contraction force still presented in the aging eye. PMID:27151778

  16. Evaluating muscle function in mice lacking myostatin by functional Nuclear Magnetic Resonance in vivo: preliminary results.

    OpenAIRE

    Balligand, C.; Gilson, H.; Ménard, J.-C.; Schakman, Olivier; Warry, C.; Thissen, Jean-Paul; Carlier, P. G.; 14th International congress of the World Muscle Society”

    2009-01-01

    Deletion of the myostatin gene (mstn-/-) results in spectacular increase in muscle mass, and opened the path to therapeutic approaches. Yet improvement in strength does not necessarily match the observed increase in mass. If function is to be preserved in hypertrophic muscle, adequate oxygen supply and substrate utilization should also be maintained. Multi-parametric functional (mpf) NMR can explore these aspects in vivo and non-invasively. In this work, we simultaneously assessed muscle perf...

  17. Propagation velocity profile in a cross-section of a cardiac muscle bundle from PSpice simulation

    Directory of Open Access Journals (Sweden)

    Sperelakis Nicholas

    2006-08-01

    Full Text Available Abstract Background The effect of depth on propagation velocity within a bundle of cardiac muscle fibers is likely to be an important factor in the genesis of some heart arrhythmias. Model and methods The velocity profile of simulated action potentials propagated down a bundle of parallel cardiac muscle fibers was examined in a cross-section of the bundle using a PSpice model. The model (20 × 10 consisted of 20 chains in parallel, each chain being 10 cells in length. All 20 chains were stimulated simultaneously at the left end of the bundle using rectangular current pulses (0.25 nA, 0.25 ms duration applied intracellularly. The simulated bundle was symmetrical at the top and bottom (including two grounds, and voltage markers were placed intracellularly only in cells 1, 5 and 10 of each chain to limit the total number of traces to 60. All electrical parameters were standard values; the variables were (1 the number of longitudinal gap-junction (G-j channels (0, 1, 10, 100, (2 the longitudinal resistance between the parallel chains (Rol2 (reflecting the closeness of the packing of the chains, and (3 the bundle termination resistance at the two ends of the bundle (RBT. The standard values for Rol2 and RBT were 200 KΩ. Results The velocity profile was bell-shaped when there was 0 or only 1 gj-channel. With standard Rol2 and RBT values, the velocity at the surface of the bundle (θ1 and θ20 was more than double (2.15 × that at the core of the bundle (θ10, θ11. This surface:core ratio of velocities was dependent on the values of Rol2 and RBT. When Rol2 was lowered 10-fold, θ1 increased slightly and θ2decreased slightly. When there were 100 gj-channels, the velocity profile was flat, i.e. the velocity at the core was about the same as that at the surface. Both velocities were more than 10-fold higher than in the absence of gj-channels. Varying Rol2 and RBT had almost no effect. When there were 10 gj-channels, the cross-sectional velocity profile

  18. Exercise ameliorates chronic kidney disease–induced defects in muscle protein metabolism and progenitor cell function

    OpenAIRE

    Wang, Xiaonan H.; Du, Jie; Klein, Janet D.; Bailey, James L; Mitch, William E.

    2009-01-01

    Chronic kidney disease (CKD) impairs muscle protein metabolism leading to muscle atrophy, and exercise can counteract this muscle wasting. Here we evaluated how resistance exercise (muscle overload) and endurance training (treadmill running) affect CKD-induced abnormalities in muscle protein metabolism and progenitor cell function using mouse plantaris muscle. Both exercise models blunted the increase in disease-induced muscle proteolysis and improved phosphorylation of Akt and the forkhead t...

  19. PDK1 plays a critical role in regulating cardiac function in mice and human

    Institute of Scientific and Technical Information of China (English)

    DI Ruo-min; FENG Qiu-ting; CHANG Zai; LUAN Qing; ZHANG Yang-yang; HUANG Jun; LI Xin-li; YANG Zhong-zhou

    2010-01-01

    Background PDK1 is an essential protein kinase that plays a critical role in mammalian development. Mouse lacking PDK1 leads to multiple abnormalities and embryonic lethality at E9.5. To elucidate the role of PDK1 in the heart, we investigated the cardiac phenotype of mice that lack PDK1 in the heart in different growth periods and the alteration of PDK1 signaling in human failing heart.Methods We employed Cre/loxP system to generate PDK1flox/flox: α-MHC-Cre mice, which specifically deleted PDK1 in cardiac muscle at birth, and tamoxifen-inducible heart-specific PDK1 knockout mice (PDK1flox/flox:MerCreMer mice), in which PDK1 was deleted in myocardium in response to the treatment with tamoxifen. Transmural myocardial tissues from human failing hearts and normal hearts were sampled from the left ventricular apex to analyze the activity of PDK1/Akt signaling pathways by Western blotting.Results PDK1flox/flox: α-MHC-Cre mice died of heart failure at 5 and 10 weeks old. PDK1flox/flox-MerCreMer mice died of heart failure from 5 to 21 weeks after the initiation of tamoxifen treatment at 8 weeks old. We found that expression levels of PDK1 in human failing heart tissues were significantly decreased compared with control hearts.Conclusion Our results suggest that PDK1 signaling network takes part in regulating cardiac viability and function in mice, and may be also involved in human heart failure disease.

  20. Automated Segmentation of Cardiac Magnetic Resonance Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Nilsson, Jens Chr.; Grønning, Bjørn A.

    2001-01-01

    Magnetic resonance imaging (MRI) has been shown to be an accurate and precise technique to assess cardiac volumes and function in a non-invasive manner and is generally considered to be the current gold-standard for cardiac imaging [1]. Measurement of ventricular volumes, muscle mass and function...

  1. Functional cardiac MRI for assessment of aortic valve disease

    International Nuclear Information System (INIS)

    Aortic valve disease shows a rising incidence with the increasing mean age of Western populations. The detection of hemodynamic parameters, which transcends the mere assessment of valve morphology, has an important future potential concerning classification of the severity of disease. MRI allows a non-invasive and a spatially flexible view of the aortic valve and the adjacent anatomic region, left ventricular outflow tract (LVOT) and ascending aorta. Moreover, the technique allows the determination of functional hemodynamic parameters, such as flow velocities and effective orifice areas. The new approach of a serial systolic planimetry velocity-encoded MRI sequence (VENC-MRI) facilitates the sizing of blood-filled cardiac structures with the registration of changes in magnitude during systole. Additionally, the subvalvular VENC-MRI measurements improve the clinically important exact determination of the LVOT area with respect to its specific eccentric configuration and its systolic deformity. (orig.)

  2. Membrane muscle function in the compliant wings of bats.

    Science.gov (United States)

    Cheney, J A; Konow, N; Middleton, K M; Breuer, K S; Roberts, T J; Giblin, E L; Swartz, S M

    2014-06-01

    Unlike flapping birds and insects, bats possess membrane wings that are more similar to many gliding mammals. The vast majority of the wing is composed of a thin compliant skin membrane stretched between the limbs, hand, and body. Membrane wings are of particular interest because they may offer many advantages to micro air vehicles. One critical feature of membrane wings is that they camber passively in response to aerodynamic load, potentially allowing for simplified wing control. However, for maximum membrane wing performance, tuning of the membrane structure to aerodynamic conditions is necessary. Bats possess an array of muscles, the plagiopatagiales proprii, embedded within the wing membrane that could serve to tune membrane stiffness, or may have alternative functions. We recorded the electromyogram from the plagiopatagiales proprii muscles of Artibeus jamaicensis, the Jamaican fruit bat, in flight at two different speeds and found that these muscles were active during downstroke. For both low- and high-speed flight, muscle activity increased between late upstroke and early downstroke and decreased at late downstroke. Thus, the array of plagiopatagiales may provide a mechanism for bats to increase wing stiffness and thereby reduce passive membrane deformation. These muscles also activate in synchrony, presumably as a means to maximize force generation, because each muscle is small and, by estimation, weak. Small differences in activation timing were observed when comparing low- and high-speed flight, which may indicate that bats modulate membrane stiffness differently depending on flight speed. PMID:24855069

  3. Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias

    Science.gov (United States)

    Levine, Benjamin D.; Bungo, Michael W.; Platts, Steven H.; Hamilton, Douglas R.; Johnston, Smith L.

    2009-01-01

    Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias (Integrated Cardiovascular) will quantify the extent of long-duration space flightassociated cardiac atrophy (deterioration) on the International Space Station crewmembers.

  4. Dietary nitrate reduces skeletal muscle oxygenation response to physical exercise: a quantitative muscle functional MRI study.

    Science.gov (United States)

    Bentley, Rachel; Gray, Stuart R; Schwarzbauer, Christian; Dawson, Dana; Frenneaux, Michael; He, Jiabao

    2014-07-01

    Dietary inorganic nitrate supplementation (probably via conversion to nitrite) increases skeletal muscle metabolic efficiency. In addition, it may also cause hypoxia-dependent vasodilation and this has the potential to augment oxygen delivery to exercising skeletal muscle. However, direct evidence for the latter with spatial localization to exercising muscle groups does not exist. We employed quantitative functional MRI (fMRI) to characterize skeletal muscle oxygen utilization and replenishment by assessment of tissue oxygenation maximal change and recovery change, respectively. Eleven healthy subjects were enrolled, of whom 9 (age 33.3 ± 4.4 years, five males) completed the study. Each subject took part in three MRI visits, with dietary nitrate (7cl concentrated beetroot juice) consumed before the third visit. During each visit fMRIs were conducted concurrently with plantar flexion exercise at workloads of 15% and 25% maximum voluntary contraction (MVC). No significant changes were found between visits 1 and 2 in the fMRI measures. A decrease in maximal change was found at 15% MVC in soleus between visits 2 and 3 (5.12 ± 2.36 to 2.55 ± 1.42, P = 0.004) and between visits 1 and 3 (4.43 ± 2.12 to 2.55 ± 1.42, P = 0.043), but not at 25% MVC or within gastrocnemius. There was no difference in recovery change between visits. We found that dietary nitrate supplementation reduces tissue oxygenation alterations during physical exercise in skeletal muscle. This effect is more prominent in muscles with predominantly type 1 fibers and at lower workloads. This indicates that in healthy subjects dietary nitrate predominantly affects skeletal muscle energy efficiency with no change in oxygen delivery. PMID:25052493

  5. Evolution, Regulation, and Function of N-terminal Variable Region of Troponin T: Modulation of Muscle Contractility and Beyond.

    Science.gov (United States)

    Jin, Jian-Ping

    2016-01-01

    Troponin T (TnT) is the tropomyosin-binding and thin filament-anchoring subunit of the troponin complex in skeletal and cardiac muscles. At the center of the sarcomeric thin filament regulatory system of striated muscles, TnT plays an essential role in transducing Ca(2+) signals in the regulation of contraction. Having emerged predating the history of vertebrates, TnT has gone through more than 500 million years of evolution that resulted in three muscle-type-specific isoforms and numerous alternative RNA splicing variants. The N-terminal region of TnT is a hypervariable structure responsible for the differences among the TnT isoforms and splice forms. This focused review summarizes our current knowledge of the molecular evolution of the N-terminal variable region and its role in the structure and function of TnT. In addition to the physiologic and pathophysiologic significances in modifying the contractility of skeletal and cardiac muscles during development and in adaptation to stress and disease conditions, the hyperplasticity of the N-terminal region of TnT demonstrates an informative example for the evolution of protein three-dimensional structure and provides insights into the molecular evolution and functional potential of proteins. PMID:26811285

  6. Evaluation of Copper Concentration in Subclinical Cases of White Muscle Disease and Its Relationship with Cardiac Troponin I

    OpenAIRE

    Forough Ataollahi; Mehrdad Mohri; Hesam A Seifi; Belinda Pingguan-Murphy; Wan Abu Bakar Wan Abas; Noor Azuan Abu Osman

    2013-01-01

    The present study aims to evaluate the serum level of copper (Cu) in lambs suffering from subclinical forms of white muscle disease (WMD) and its relationship with cardiac troponin I (cTn-I) as a novel biomarker of cardiovascular disorders. Ten milliliters of jugular blood were taken from 200 lambs less than one year old to measure serum concentrations of Cu, selenium (Se), and cTn-I. The subjects were divided into 2 groups, namely, the deficient group which included 36 lambs, and the control...

  7. Structure and function relationships of the respiratory muscles.

    Science.gov (United States)

    Sauleda, J; Gea, J; Orozco-Levi, M; Corominas, J; Minguella, J; Aguar, C; Broquetas, J; Agustí, A G

    1998-04-01

    Potential relationships between the structure of the diaphragm and external intercostals and several indices of respiratory muscle function, lung function and nutrition in 27 patients (61+/-10 yrs of age) subjected to thoracotomy as a result of a lung neoplasm have been investigated. Prior to surgery the nutritional status of the patients was assessed and lung function (spirometry, lung volumes, transfer factor of the lungs for carbon monoxide, arterial blood gases) and respiratory muscle function (maximal inspiratory pressure (MIP) and diaphragmatic function were measured). Biopsies of the diaphragm (and external intercostals) were obtained during surgery. On average, patients showed mild airflow limitation (forced expiratory volume in one second (FEV1), 70+/-14% of predicted value, FEV1/forced vital capacity (FVC), 70+/-9%) with some air trapping (residual volume (RV), 139+/-50% pred) and normal gas exchange (arterial oxygen tension (Pa,O2), 11.3+/-1.33 kPa (85+/-10 mmHg)) and arterial carbon dioxide tension (Pa,CO2) 5.4+/-0.5 kPa (40.6+/-4 mmHg). MIP was 77+/-25% pred; maximal transdiaphragmatic pressure was 90+/-27 cmH2O. Most morphometric measurements of the diaphragm and external intercostals were within the range of values reported previously in other skeletal muscles. The size of the fibres of these two respiratory muscles was positively related (p<0.05) to MIP (% pred). There were no significant relationships between the structure of both muscles and nutritional status or any index of lung function. In conclusion, in the population studied, the fibre size of the diaphragm and external intercostals appears to relate to their ability to generate force. PMID:9623696

  8. Patient specific identification of the cardiac driver function in a cardiovascular system model.

    Science.gov (United States)

    Hann, C E; Revie, J; Stevenson, D; Heldmann, S; Desaive, T; Froissart, C B; Lambermont, B; Ghuysen, A; Kolh, P; Shaw, G M; Chase, J G

    2011-02-01

    The cardiac muscle activation or driver function, is a major determinant of cardiovascular dynamics, and is often approximated by the ratio of the left ventricle pressure to the left ventricle volume. In an intensive care unit, the left ventricle pressure is usually never measured, and the left ventricle volume is only measured occasionally by echocardiography, so is not available real-time. This paper develops a method for identifying the driver function based on correlates with geometrical features in the aortic pressure waveform. The method is included in an overall cardiovascular modelling approach, and is clinically validated on a porcine model of pulmonary embolism. For validation a comparison is done between the optimized parameters for a baseline model, which uses the direct measurements of the left ventricle pressure and volume, and the optimized parameters from the approximated driver function. The parameters do not significantly change between the two approaches thus showing that the patient specific approach to identifying the driver function is valid, and has potential clinically. PMID:20621383

  9. Cardiac conduction system

    Science.gov (United States)

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals ... to contract. The main components of the cardiac conduction system are the SA node, AV node, bundle ...

  10. Changes of Cardiac Function During Ultradistance Trail Running.

    Science.gov (United States)

    Jouffroy, Romain; Caille, Vincent; Perrot, Stéphane; Vieillard-Baron, Antoine; Dubourg, Olivier; Mansencal, Nicolas

    2015-10-15

    Previous studies have noted reversible cardiac dysfunction during marathon races, but few data are available concerning ultradistance trail running. The aim of this study was to assess echocardiographic parameters during ultradistance trail running. We performed an observational study in 66 participants to the 80-km Ecotrail of Paris Ile de France. All subjects had echocardiographic examinations before the race and on arrival, and 28 of them underwent serial echocardiographic examinations during the race (21 and 53 km). A single experienced physician performed all echocardiographic examinations, and the same protocol was always used (conventional 2-dimensional and Doppler left ventricular parameters and longitudinal strain). All echocardiographic parameters of left ventricular (LV) systolic function were significantly decreased on arrival (p ≤0.002). A significant reduction of LV systolic function was observed in 48% of study subjects on arrival. No significant modification was observed at 21 or at 53 km, and only global longitudinal strain was significantly decreased (p = 0.0008). At arrival, mitral E/A ratio and average mitral tissue Doppler imaging e' wave were significantly decreased (p = 0.0001 and p = 0.0004, respectively), but these changes were observed from 21 km. In conclusion, ultradistance trail running can lead to abnormalities of LV systolic and diastolic functions in amateur runners. Diastolic dysfunction arises earlier than systolic dysfunction. Left ventricular systolic dysfunction occurred in 48% of the study subjects and was detected early by assessment of longitudinal strain. PMID:26294134

  11. Evaluation of cardiac function in patients with Duchenne's muscular dystrophy by single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    The extent of myocardial ischemia was evaluated in 20 patients with Duchenne's muscular dystrophy (DMD) by using Bull's eye method of thallium-201 myocardial SPECT. It was examined in relation to skeletal muscle involvement, age, left ventricular (LV) ejection fraction and ventricular premature contractions (VPCs). Myocardial ischemia was detected in all of patients with DMD. Ischemic lesion was mostly detected in the apical side of the LV lateral wall and interventricular septum, while the extent of myocardial ischemia had no correlations with either the stage of functional disability of skeletal muscle or age. The more ischemic ratio was higher, the more LV ejection fraction decreased. The total number of VPCs was relatively small and it did not have any relation to myocardial ischemic ratio. These results suggest that younger DMD patients having extensive myocardial ischemia and/or ventricular tachycardia will have a high risk of cardiac death. (author)

  12. Interoception across modalities: on the relationship between cardiac awareness and the sensitivity for gastric functions.

    Directory of Open Access Journals (Sweden)

    Beate M Herbert

    Full Text Available The individual sensitivity for ones internal bodily signals ("interoceptive awareness" has been shown to be of relevance for a broad range of cognitive and affective functions. Interoceptive awareness has been primarily assessed via measuring the sensitivity for ones cardiac signals ("cardiac awareness" which can be non-invasively measured by heartbeat perception tasks. It is an open question whether cardiac awareness is related to the sensitivity for other bodily, visceral functions. This study investigated the relationship between cardiac awareness and the sensitivity for gastric functions in healthy female persons by using non-invasive methods. Heartbeat perception as a measure for cardiac awareness was assessed by a heartbeat tracking task and gastric sensitivity was assessed by a water load test. Gastric myoelectrical activity was measured by electrogastrography (EGG and subjective feelings of fullness, valence, arousal and nausea were assessed. The results show that cardiac awareness was inversely correlated with ingested water volume and with normogastric activity after water load. However, persons with good and poor cardiac awareness did not differ in their subjective ratings of fullness, nausea and affective feelings after drinking. This suggests that good heartbeat perceivers ingested less water because they subjectively felt more intense signals of fullness during this lower amount of water intake compared to poor heartbeat perceivers who ingested more water until feeling the same signs of fullness. These findings demonstrate that cardiac awareness is related to greater sensitivity for gastric functions, suggesting that there is a general sensitivity for interoceptive processes across the gastric and cardiac modality.

  13. Functional conservation between rodents and chicken of regulatory sequences driving skeletal muscle gene expression in transgenic chickens

    Directory of Open Access Journals (Sweden)

    Taylor Lorna

    2010-02-01

    Full Text Available Abstract Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species.

  14. Reduced Right Ventricular Function Predicts Long-Term Cardiac Re-Hospitalization after Cardiac Surgery.

    Directory of Open Access Journals (Sweden)

    Leela K Lella

    Full Text Available The significance of right ventricular ejection fraction (RVEF, independent of left ventricular ejection fraction (LVEF, following isolated coronary artery bypass grafting (CABG and valve procedures remains unknown. The aim of this study is to examine the significance of abnormal RVEF by cardiac magnetic resonance (CMR, independent of LVEF in predicting outcomes of patients undergoing isolated CABG and valve surgery.From 2007 to 2009, 109 consecutive patients (mean age, 66 years; 38% female were referred for pre-operative CMR. Abnormal RVEF and LVEF were considered 30 days outcomes included, cardiac re-hospitalization, worsening congestive heart failure and mortality. Mean clinical follow up was 14 months.Forty-eight patients had reduced RVEF (mean 25% and 61 patients had normal RVEF (mean 50% (p<0.001. Fifty-four patients had reduced LVEF (mean 30% and 55 patients had normal LVEF (mean 59% (p<0.001. Patients with reduced RVEF had a higher incidence of long-term cardiac re-hospitalization vs. patients with normal RVEF (31% vs.13%, p<0.05. Abnormal RVEF was a predictor for long-term cardiac re-hospitalization (HR 3.01 [CI 1.5-7.9], p<0.03. Reduced LVEF did not influence long-term cardiac re-hospitalization.Abnormal RVEF is a stronger predictor for long-term cardiac re-hospitalization than abnormal LVEF in patients undergoing isolated CABG and valve procedures.

  15. A Cycling Movement Based System for Real-Time Muscle Fatigue and Cardiac Stress Monitoring and Analysis.

    Directory of Open Access Journals (Sweden)

    Szi-Wen Chen

    Full Text Available In this study, we defined a new parameter, referred to as the cardiac stress index (CSI, using a nonlinear detrended fluctuation analysis (DFA of heart rate (HR. Our study aimed to incorporate the CSI into a cycling based fatigue monitoring system developed in our previous work so the muscle fatigue and cardiac stress can be both continuously and quantitatively assessed for subjects undergoing the cycling exercise. By collecting electrocardiogram (ECG signals, the DFA scaling exponent α was evaluated on the RR time series extracted from a windowed ECG segment. We then obtained the running estimate of α by shifting a one-minute window by a step of 20 seconds so the CSI, defined as the percentage of all the less-than-one α values, can be synchronously updated every 20 seconds. Since the rating of perceived exertion (RPE scale is considered as a convenient index which is commonly used to monitor subjective perceived exercise intensity, we then related the Borg RPE scale value to the CSI in order to investigate and quantitatively characterize the relationship between exercise-induced fatigue and cardiac stress. Twenty-two young healthy participants were recruited in our study. Each participant was asked to maintain a fixed pedaling speed at a constant load during the cycling exercise. Experimental results showed that a decrease in DFA scaling exponent α or an increase in CSI was observed during the exercise. In addition, the Borg RPE scale and CSI were positively correlated, suggesting that the factors due to cardiac stress might also contribute to fatigue state during physical exercise. Since the CSI can effectively quantify the cardiac stress status during physical exercise, our system may be used in sports medicine, or used by cardiologists who carried out stress tests for monitoring heart condition in patients with heart diseases.

  16. Regular Football Practice Improves Autonomic Cardiac Function in Male Children

    Directory of Open Access Journals (Sweden)

    Fernandes

    2015-09-01

    Full Text Available Background The role of the autonomic nervous system (ANS in the cardiovascular regulation is of primal importance. Since it has been associated with adverse conditions such as cardiac arrhythmias, sudden death, sleep disorders, hypertension and obesity. Objectives The present study aimed to investigate the impact of recreational football practice on the autonomic cardiac function of male children, as measured by heart rate variability. Patients and Methods Forty-seven male children aged 9 - 12 years were selected according to their engagement with football oriented practice outside school context. The children were divided into a football group (FG; n = 22 and a control group (CG; n = 25. The FG had regular football practices, with 2 weekly training sessions and occasional weekend matches. The CG was not engaged with any physical activity other than complementary school-based physical education classes. Data from physical activity, physical fitness, and heart rate variability measured in time and frequency domains were obtained. Results The anthropometric and body composition characteristics were similar in both groups (P > 0.05. The groups were also similar in time spent daily on moderate-to-vigorous physical activities (FG vs. CG: 114 ± 64 vs. 87 ± 55 minutes; P > 0.05. However, the FG performed better (P < 0.05 in Yo-Yo intermittent endurance test (1394 ± 558 vs. 778 ± 408 m and 15-m sprint test (3.06 ± 0.17 vs. 3.20 ± 0.23 s. Also, the FG presented enhanced autonomic function. Significant differences were detected (P < 0.05 between groups for low frequency normalized units (38.0 ± 15.2 vs. 47.3 ± 14.2 n.u (normalized units, high frequency normalized units (62.1 ± 15.2 vs. 52.8 ± 14.2 n.u., and LF:HF ratio (0.7 ± 0.4 vs. 1.1 ± 0.6 ms2. Conclusions Children engaged with regular football practice presented enhanced physical fitness and autonomic function, by increasing vagal tone at rest.

  17. Cardiac Autonomic Function in Patients With Ankylosing Spondylitis

    Science.gov (United States)

    Wei, Cheng-Yu; Kung, Woon-Man; Chou, Yi-Sheng; Wang, Yao-Chin; Tai, Hsu-Chih; Wei, James Cheng-Chung

    2016-01-01

    Abstract Ankylosing spondylitis (AS) is a chronic inflammatory disease involing spine and enthesis. The primary aim of this study is to investigate the autonomic nervous system (ANS) function and the association between ANS and the functional status or disease activity in AS. The study included 42 AS patients, all fulfilling the modified New York criteria. All the patients are totally symptom free for ANS involvement and had normal neurological findings. These AS patients and 230 healthy volunteers receive analysis of 5 minutes heart rate variability (HRV) in lying posture. In addition, disease activity and functional status of these AS patients are assessed by Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), and Bath Ankylosing Spondylitis Global Score (BAS-G). Both groups were age and sex-matched. Although the HRV analysis indicates that the peaks of total power (TP, 0–0.5 Hz) and high-frequency power (HF, 0.15–0.40 Hz) are similar in both groups, the activities of low-frequency power (LF, 0.04–0.15 Hz), LF in normalized units (LF%), and the ratio of LF to HF (LF/HF) in AS patients are obviously lower than healthy controls. The erythrocyte sedimentation rate and C-reactive protein revealed negative relationship with HF. The AS patients without peripheral joint disease have higher LF, TP, variance, LF%, and HF than the patients with peripheral joint disease. The AS patients without uvetis have higher HF than the patients with uvetis. The total scores of BASDI, BASFI, and BAS-G do not show any association to HRV parameters. AS patients have significantly abnormal cardiac autonomic regulation. This is closely related with some inflammatory activities. Reduced autonomic function may be one of the factors of high cardiovascular risk in AS patients. PMID:27227940

  18. Monitoring and management of right ventricular function following cardiac transplantation

    Directory of Open Access Journals (Sweden)

    F. Wagner

    2011-12-01

    Full Text Available In cardiac transplantation postoperative right ventricular dysfunction is a major cause of morbidity and mortality. Recipients with pulmonary hypertension due to end-stage heart failure and a donor heart, fragile because of ischemia-reperfusion injury, and not previously adapted to an elevated pulmonary resistance are the causes of right ventricular dysfunction, that unless aggressively treated may progress to overt right ventricular failure. Dysfunctional pulmonary vascular endothelium with diminished release of NO and increased expression of endothelin-1 is considered to be the primary pathophysiology that induces pulmonary hypertension. New therapeutic approaches are aimed at ameliorating endothelial dysfunction. How extensively pulmonary hypertension has to be treated depends on the degree of functional impairment of the right ventricle resulting from the acute increase of right ventricular afterload at heart transplantation. Mainstays in the treatment of pulmonary hypertension are optimizing right ventricular preload, increasing contractility, lowering right ventricular afterload, improving coronary perfusion and failing these therapeutic interventions mechanical circulatory support. Judicious use of volume therapy is mandatory to avoid volume overload in the postoperative setting. As a general rule to explore right ventricular preload reserve volume should only be carefully administered by observing filling pressures up to a maximum of a central venous pressure of 10 mm Hg. Volume administration is not indicated if it only increases right atrial filling pressure without subsequently increasing cardiac output. In most cases relative volume overload is the clinical problem and not hypovolemia. In this situation aggressive diuretic therapy and in cases of acute renal failure renal replacement therapy is mandatory.Positive inotropic therapy is indicated to treat consecutive right ventricular dysfunction. Dobutamine may be a choice in the

  19. High Interleukin 17 Expression Is Correlated With Better Cardiac Function in Human Chagas Disease

    OpenAIRE

    Magalhães, Luisa M. D.; Villani, Fernanda N. A.; Nunes, Maria do Carmo P.; Gollob, Kenneth J.; Rocha, Manoel O. C.; Dutra, Walderez O.

    2012-01-01

    This study was designed to investigate whether the expression of interleukin 17 (IL-17) is associated with the indeterminate or cardiac clinical forms of Chagas disease and whether IL-17 expression can be correlated with patients' cardiac function. Our results demonstrated that cardiac Chagas patients have a lower intensity of expression of IL-17 by total lymphocytes and lower frequency of circulating T helper 17 cells. Correlative analysis showed that high IL-17 expression was associated wit...

  20. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    C.A. Remme; C.R. Bezzina

    2010-01-01

    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation an

  1. Renal replacement therapy after cardiac surgery; renal function recovers

    DEFF Research Database (Denmark)

    Steinthorsdottir, Kristin Julia; Kandler, Kristian; Agerlin Windeløv, Nis;

    2013-01-01

    To assess renal outcome in patients discharged from hospital following cardiac surgery-associated acute kidney injury (CSA-AKI) with need for renal replacement therapy.......To assess renal outcome in patients discharged from hospital following cardiac surgery-associated acute kidney injury (CSA-AKI) with need for renal replacement therapy....

  2. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Shin Fujimaki

    2016-01-01

    Full Text Available Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise.

  3. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle.

    Science.gov (United States)

    Fujimaki, Shin; Machida, Masanao; Wakabayashi, Tamami; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2016-01-01

    Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise. PMID:26779264

  4. Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization

    Science.gov (United States)

    Fitts, R. H.; Brimmer, C. J.

    1985-01-01

    The effect of three-month hindlimb immobilization (IM) in rats on contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus, and fast-twitch superficial region of the vastus lateralis were measured after 0, 14, 28, 60, and 90 days of recovery on excized, horizontally suspended muscles stimulated electrically to maximal twitch tension. IM caused decreases in muscle-to-body weight ratios for all muscles, with no complete recovery even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than those of the slow-twitch SOL. The SOL isometric twitch duration was shortened, due to reduced contraction and half-relaxation time, both of which returned to control levels after 14 days of recovery. The peak tetanic tension, P(O), g/sq cm,, decreased with IM by 46 percent in the SOL, but recovered by the 28th day. The maximum shortening velocity was not altered by IM in any of the muscles. Thus, normal contractile function could recover after prolonged limb IM.

  5. Skeletal muscle microvascular function in girls with Turner syndrome

    Science.gov (United States)

    West, Sarah L.; O'Gorman, Clodagh S.; Elzibak, Alyaa H.; Caterini, Jessica; Noseworthy, Michael D.; Rayner, Tammy; Hamilton, Jill; Wells, Greg D.

    2014-01-01

    Background Exercise intolerance is prevalent in individuals with Turner Syndrome (TS). We recently demonstrated that girls with TS have normal aerobic but altered skeletal muscle anaerobic metabolism compared to healthy controls (HC). The purpose of this study was to compare peripheral skeletal muscle microvascular function in girls with TS to HC after exercise. We hypothesized that girls with TS would have similar muscle blood-oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) signal responses during recovery from exercise compared to HC. Methods Thirteen TS participants and 8 HC completed testing. BOLD MRI was used to measure skeletal muscle microvascular response during 60 second recovery, following 60 s of exercise at 65% of maximal workload. Exercise and recovery were repeated four times, and the BOLD signal time course was fit to a four-parameter sigmoid function. Results Participants were 13.7 ± 3.1 years old and weighed 47.9 ± 14.6 kg. The mean change in BOLD signal intensity following exercise at the end of recovery, the mean response time of the function/the washout of deoxyhemoglobin, and the mean half-time of recovery were similar between the TS and HC groups. Conclusions Our results demonstrate that compared to HC, peripheral skeletal muscle microvascular function following exercise in girls with TS is not impaired. General significance This study supports the idea that the aerobic energy pathway is not impaired in children with TS in response to submaximal exercise. Other mechanisms are likely responsible for exercise intolerance in TS; this needs to be further investigated. PMID:26676172

  6. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    OpenAIRE

    Guttridge Denis C; Peterson Jennifer M; Xu Ying; Delfín Dawn A; Rafael-Fortney Jill A; Janssen Paul ML

    2011-01-01

    Abstract Background Duchenne muscular dystrophy (DMD) is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain), targeted at blunting Nuclear F...

  7. Effect of expiratory muscle strength training on elderly cough function.

    Science.gov (United States)

    Kim, Jaeock; Davenport, Paul; Sapienza, Christine

    2009-01-01

    Age-related loss of muscle strength, known as sarcopenia, in the expiratory muscles, along with reductions in lung elastic recoil and chest wall compliance decreases the intrathoacic airway pressure as well as expiratory flow rates and velocity, greatly impacting an elderly person's ability to generate the forces essential for cough. This study examined the effects of a 4-week expiratory muscle strength training (EMST) program on maximum expiratory pressure (MEP) and cough function in 18 healthy but sedentary elderly adults. MEP significantly increased after the EMST program from 77.14+/-20.20 to 110.83+/-26.11cmH(2)O. Parameters measured during reflexive coughs produced by capsaicin challenge, indicated that compression phase duration significantly decreased (from 0.35+/-0.19 to 0.16+/-0.17s), peak expiratory flow rate decreased (from 4.98+/-2.18 to 8.00+/-3.05l/s) and post-peak plateau integral amplitude significantly increased (from 3.49+/-2.46 to 6.83+/-4.16l/ss) with the EMST program. EMST seems to be an effective program to increase the expiratory muscle strength in the sedentary elderly, which contribute to an enhanced cough function. PMID:18457885

  8. Comparative cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD)

    DEFF Research Database (Denmark)

    Yousaf, Muhammad Naveed; Koppang, Erling Olaf; Skjødt, Karsten;

    2013-01-01

    The heart is considered the powerhouse of the cardiovascular system. Heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD) are cardiac diseases of marine farmed Atlantic salmon (Salmo salar) which commonly affect the heart in addition to the skeletal...... muscle, liver and pancreas. The main findings of these diseases are necrosis and inflammatory cells infiltrates affecting different regions of the heart. In order to better characterize the cardiac pathology, study of the inflammatory cell characteristics and cell cycle protein expression was undertaken...

  9. Cardiac cytoarchitecture - why the "hardware" is important for heart function!

    Science.gov (United States)

    Ehler, Elisabeth

    2016-07-01

    Cells that constitute fully differentiated tissues are characterised by an architecture that makes them perfectly suited for the job they have to do. This is especially obvious for cardiomyocytes, which have an extremely regular shape and display a paracrystalline arrangement of their cytoplasmic components. This article will focus on the two major cytoskeletal multiprotein complexes that are found in cardiomyocytes, the myofibrils, which are responsible for contraction and the intercalated disc, which mediates mechanical and electrochemical contact between individual cardiomyocytes. Recent studies have revealed that these two sites are also crucial in sensing excessive mechanical strain. Signalling processes will be triggered that## lead to changes in gene expression and eventually lead to an altered cardiac cytoarchitecture in the diseased heart, which results in a compromised function. Thus, understanding these changes and the signals that lead to them is crucial to design treatment strategies that can attenuate these processes. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26577135

  10. Anti-rat soluble IL-6 receptor antibody down-regulates cardiac IL-6 and improves cardiac function following trauma-hemorrhage.

    Science.gov (United States)

    Yang, Shaolong; Hu, Shunhua; Choudhry, Mashkoor A; Rue, Loring W; Bland, Kirby I; Chaudry, Irshad H

    2007-03-01

    Although anti-IL-6-mAb down-regulates cardiac IL-6 and attenuates IL-6-mediated cardiac dysfunction following trauma-hemorrhage, it is not known whether blockade of IL-6 receptor will down-regulate cardiac IL-6 and improve cardiac function under those conditions. Six groups of male adult rats (275-325 g) were used: sham/trauma-hemorrhage+vehicle, sham/trauma-hemorrhage+IgG, sham/trauma-hemorrhage+anti-rat sIL-6R. Rats underwent trauma-hemorrhage (removal of 60% of the circulating blood volume and fluid resuscitation after 90 min). Vehicle (V), normal goat IgG or anti-rat sIL-6R (16.7 microg/kg BW) was administered intra-peritoneally in the middle of resuscitation. Two hours later, cardiac function was measured by ICG dilution technique; blood samples collected, cardiomyocytes isolated, and cardiomyocyte nuclei were then extracted. Cardiac IL-6, IL-6R, gp130, IkappaB-alpha/P-IkappaB-alpha, NF-kappaB, and ICAM-1 expressions were measured by immunoblotting. Plasma IL-6 and cardiomyocyte NF-kappaB DNA-binding activity were determined by ELISA. In additional animals, heart harvested and cardiac MPO activity and CINC-1 and -3 were also measured. In another group of rats, cardiac function was measure by microspheres at 24 h following trauma-hemorrhage. Cardiac function was depressed and cardiac IL-6, P-IkappaB-alpha, NF-kappaB and its DNA-binding activity, ICAM-1, MPO activity, and CINC-1 and -3 were markedly increased after trauma-hemorrhage. Moreover, cardiac dysfunction was evident even 24 h after trauma-hemorrhage. Administration of sIL-6R following trauma-hemorrhage: (1) improved cardiac output at 2 h and 24 h (p<0.05); (2) down-regulated both cardiac IL-6 and IL-6R (p<0.05); and (3) attenuated cardiac P-IkappaB-alpha, NF-kappaB, NF-kappaB DNA-binding activity, ICAM-1, CINC-1, -3, and MPO activity (p<0.05). IgG did not significantly influence the above parameters. Thus, IL-6-mediated up-regulation of cardiac NF-kappaB, ICAM-1, CINC-1, -3, and MPO activity likely

  11. Effects of ACE2 deficiency on physical performance and physiological adaptations of cardiac and skeletal muscle to exercise.

    Science.gov (United States)

    Motta-Santos, Daisy; Dos Santos, Robson Augusto Souza; Oliveira, Marilene; Qadri, Fatimunnisa; Poglitsch, Marko; Mosienko, Valentina; Kappes Becker, Lenice; Campagnole-Santos, Maria Jose; M Penninger, Joseph; Alenina, Natalia; Bader, Michael

    2016-07-01

    The renin-angiotensin system (RAS) is related to physiological adaptations induced by exercise. Angiotensin-converting enzyme (ACE) 2 is a major regulator of the RAS in tissues, as it metabolizes angiotensin (Ang) II to Ang-(1-7). The aim of this study was to determine the effects of ACE2 deficiency on physical performance and physiological adaptations induced by voluntary running. Physical performance, body composition and plasma angiotensin levels, as well as tissue morphology and gene expression of RAS components in the left ventricle (LV) and skeletal muscle (gastrocnemius), were evaluated in ACE2-deficient (ACE2(-/y)) and wild-type (ACE2(+/y)) mice after 6 weeks of voluntary wheel running. ACE2(-/y) mice run less than ACE2(+/y) mice (19±4.7 vs. 26±12.6 revolutions per day × 100, Pmuscle mass (76.6±1.6%) after 6 weeks of voluntary running compared with the sedentary control group (fat mass: 18.3±2.1%; muscle mass: 72.7±2.2). However, no change in body composition was observed in ACE2(-/y) mice after exercise. Heart and skeletal muscle hypertrophy was observed only in trained ACE2(+/y) mice. Besides a small decrease in Ang I in ACE2(-/y) mice, plasma levels of angiotensin peptides remained unchanged by exercise or ACE2 deficiency. In the LV of trained animals, AT2 gene expression was higher in ACE2(+/y) compared with ACE2(-/y) mice. ACE2 deficiency leads to an increase in AT1 gene expression in skeletal muscle. ACE expression in soleus was increased in all exercised groups. ACE2 deficiency affects physical performance and impairs cardiac and skeletal muscle adaptations to exercise. PMID:27053009

  12. Peripheral Nerve Function and Lower Extremity Muscle Power in Older Men

    DEFF Research Database (Denmark)

    Ward, Rachel E; Caserotti, Paolo; Faulkner, Kimberly; Boudreau, Robert M; Zivkovic, Sasa; Lee, Christine; Goodpaster, Bret H; Cawthon, Peggy M; Newman, Anne B; Cauley, Jane A; Strotmeyer, Elsa S

    2014-01-01

    To assess whether sensorimotor peripheral nerve function is associated with muscle power in community-dwelling older men.......To assess whether sensorimotor peripheral nerve function is associated with muscle power in community-dwelling older men....

  13. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation.

    Science.gov (United States)

    Homburger, Julian R; Green, Eric M; Caleshu, Colleen; Sunitha, Margaret S; Taylor, Rebecca E; Ruppel, Kathleen M; Metpally, Raghu Prasad Rao; Colan, Steven D; Michels, Michelle; Day, Sharlene M; Olivotto, Iacopo; Bustamante, Carlos D; Dewey, Frederick E; Ho, Carolyn Y; Spudich, James A; Ashley, Euan A

    2016-06-14

    Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within β-cardiac myosin. We first developed computational models of the human β-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease. PMID:27247418

  14. Age-related normal structural and functional ventricular values in cardiac function assessed by magnetic resonance

    International Nuclear Information System (INIS)

    The heart is subject to structural and functional changes with advancing age. However, the magnitude of cardiac age-dependent transformation has not been conclusively elucidated. This retrospective cardiac magnetic resonance (CMR) study included 183 subjects with normal structural and functional ventricular values. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were obtained from the left and the right ventricle in breath-hold cine CMR. Patients were classified into four age groups (20–29, 30–49, 50–69, and ≥70 years) and cardiac measurements were compared using Pearson’s rank correlation over the four different groups. With advanced age a slight but significant decrease in ESV (r=−0.41 for both ventricles, P<0.001) and EDV (r=−0.39 for left ventricle, r=−0.35 for right ventricle, P<0.001) were observed associated with a significant increase in left (r=0.28, P<0.001) and right (r=0.27, P<0.01) ventricular EF reaching a maximal increase in EF of +8.4% (P<0.001) for the left and +6.1% (P<0.01) for the right ventricle in the oldest compared to the youngest patient group. Left ventricular myocardial mass significantly decreased over the four different age groups (P<0.05). The aging process is associated with significant changes in left and right ventricular EF, ESV and EDV in subjects with no cardiac functional and structural abnormalities. These findings underline the importance of using age adapted values as standard of reference when evaluating CMR studies

  15. Effects of Kinesio Tape application to quadriceps muscles on isokinetic muscle strength, gait, and functional parameters in patients with stroke

    Directory of Open Access Journals (Sweden)

    Timur Ekiz, MD

    2015-06-01

    Full Text Available The aim of this study was to evaluate the effects of Kinesio Tape (KT application to quadriceps muscles on isokinetic muscle strength, gait, and functional parameters in patients with stroke. Twenty-four patients were allocated into KT and control groups. All patients participated in the same conventional rehabilitation program 5 times/wk for 4 wk. In addition, KT was applied to quadriceps muscles bilaterally to the patients in the KT group. Compared with baseline, peak torque levels increased significantly in both groups (all p 0.05. KT application to quadriceps muscles in addition to conventional exercises for 4 wk is effective on isokinetic but not functional parameters.

  16. Effects of Kinesio Tape application to quadriceps muscles on isokinetic muscle strength, gait, and functional parameters in patients with stroke.

    Science.gov (United States)

    Ekiz, Timur; Aslan, Meryem Doğan; Özgirgin, Neşe

    2015-01-01

    The aim of this study was to evaluate the effects of Kinesio Tape (KT) application to quadriceps muscles on isokinetic muscle strength, gait, and functional parameters in patients with stroke. Twenty-four patients were allocated into KT and control groups. All patients participated in the same conventional rehabilitation program 5 times/wk for 4 wk. In addition, KT was applied to quadriceps muscles bilaterally to the patients in the KT group. Compared with baseline, peak torque levels increased significantly in both groups (all p 0.05). KT application to quadriceps muscles in addition to conventional exercises for 4 wk is effective on isokinetic but not functional parameters. PMID:26220179

  17. Cardiac function and hypertension in patients with obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Bertolami A

    2014-08-01

    Full Text Available Adriana Bertolami, Carolina Gonzaga, Celso AmodeoSleep Laboratory of Dante Pazzanese Institute of Cardiology, Sao Paulo, BrazilAbstract: Cardiovascular disease is one of the major causes of death worldwide. Among its risk factors, obstructive sleep apnea (OSA is a common but still underestimated condition. OSA often coexists and interacts with obesity, sharing multiple pathophysiological mechanisms and subsequent cardiovascular risk factors, such as type 2 diabetes, dyslipidemia, systemic inflammation, and in particular hypertension. There is also evidence suggesting an increased risk of arrhythmia, heart failure, renal failure, acute myocardial infarction, stroke, and death. OSA is characterized by recurrent episodes of partial (hypopnea or complete interruption (apnea of breathing during sleep due to airway collapse in the pharyngeal region. The main mechanisms linking OSA to impaired cardiovascular function are secondary to hypoxemia and reoxygenation, arousals, and negative intrathoracic pressure. Consequently, the sympathetic nervous and the renin-angiotensin-aldosterone systems may be overestimulated, and blood pressure increased. Resistance to treatment for hypertension represents a growing issue, and given that OSA has been recognized as the major secondary cause of resistant hypertension, clinical investigation for apnea is mandatory in this population. Standard diagnosis includes polysomnography, and treatment for OSA should include control of risk factors for cardiovascular disease, including obesity. So far, continuous positive airway pressure is the treatment of choice for OSA, impacting positively on blood pressure goals; however, the impact on long-term follow-up and on cardiovascular disease should be better assessed.Keywords: obstructive sleep apnea, hypertension, cardiac function

  18. Acceleration of Ca(2+) repletion in the junctional sarcoplasmic reticulum and alternation of the Ca(2+)-induced Ca(2+)-release mechanism in hypertensive rat (SHR) cardiac muscle.

    Science.gov (United States)

    Tanaka, Midori; Tameyasu, Tsukasa

    2008-04-01

    We estimated the time taken for a repletion of the junctional sarcoplasmic reticulum (JSR) Ca(2+) stores from a family of mechanical restitution curves after twitches of various magnitudes in the cardiac muscle of hypertensive rats (SHR), using a method described previously (Tameyasu et al. Jpn J Physiol. 2004;54:209-19), to evaluate abnormality in Ca(2+) handling by cardiac JSR in hypertension. We found no differences in contractility or in the time course of mechanical restitution between SHR and the controls (WKY) at 3 weeks of age. In comparison to WKY, 7- and 20-week-old SHR showed a greater rested state contraction (RST) and similar or smaller rapid cooling contracture, suggesting that their JSR contains a similar amount of Ca(2+) at saturation, but releases more Ca(2+) upon stimulation. The adult SHR and WKY showed similar mechanical restitution time courses, but the adults had longer pretwitch latencies. The function G(t) representing the time course of JSR Ca(2+) store repletion in adult SHR exceeded the WKY value at t JSR [Ca(2+)] change corresponding to the mechanical restitution after RST was smaller in the adult SHR at t JSR Ca(2+) store repletion and an alternation of the Ca(2+)-induced release of Ca(2+ )from the JSR in young adult SHR. PMID:18312741

  19. Effect of exercise on muscle function decline with aging.

    OpenAIRE

    Gersten, J. W.

    1991-01-01

    As people age, changes in muscle occur that are associated with a decrease in strength and endurance. These changes result in decreased functional capacity and quality of life. A substantial portion of this decrease is the result not of aging but of the sedentary life-style so frequently associated with aging. In "healthy old" persons and in older animals in experiments, an appropriate exercise program can result in increased strength and endurance. This is true both in longitudinal and short...

  20. Functional effects of KCNQ K+ channels in airway smooth muscle

    OpenAIRE

    AlexeyIEvseev; IuriiSemenov; JorgeMedina

    2013-01-01

    KCNQ (Kv7) channels underlie a voltage-gated K+ current best known for control of neuronal excitability, and its inhibition by Gq/11-coupled, muscarinic signaling. Studies have indicated expression of KCNQ channels in airway smooth muscle (ASM), a tissue that is predominantly regulated by muscarinic receptor signaling. Therefore we investigated the function of KCNQ channels in rodent ASM and their interplay with Gq/11-coupled M3 muscarinic receptors. Perforated-patch clamp of dissociated ASM...

  1. Functional effects of KCNQ K+ channels in airway smooth muscle

    OpenAIRE

    Evseev, Alexey I.; Semenov, Iurii; Archer, Crystal R.; Medina, Jorge L.; Dube, Peter H.; Shapiro, Mark S.; Brenner, Robert

    2013-01-01

    KCNQ (Kv7) channels underlie a voltage-gated K+ current best known for control of neuronal excitability, and its inhibition by Gq/11-coupled, muscarinic signaling. Studies have indicated expression of KCNQ channels in airway smooth muscle (ASM), a tissue that is predominantly regulated by muscarinic receptor signaling. Therefore, we investigated the function of KCNQ channels in rodent ASM and their interplay with Gq/11-coupled M3 muscarinic receptors. Perforated-patch clamp of dissociated ASM...

  2. Recovery of Muscle Function Following Strength Training in Rowers

    OpenAIRE

    Gee, Thomas

    2012-01-01

    Strength training using free weights is performed by athletes in many sports as a means of enhancing performance. However, there is a dearth of research investigating the acute impact of bouts of this form of strength training on muscle function, which closely mimics the athletes’ sport or event. High forces are produced during a rowing race and subsequently strength training forms an integral part of the overall training programme for rowers. However, there is little documented evidence r...

  3. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining

    DEFF Research Database (Denmark)

    Hvid, Lars; Aagaard, Per; Justesen, Lene;

    2010-01-01

    Very little attention has been given to the combined effects of aging and disuse as separate factors causing deterioration in muscle mechanical function. Thus the purpose of this study was to investigate the effects of 2 wk of immobilization followed by 4 wk of retraining on knee extensor muscle...... mechanical function (e.g., maximal strength and rapid force capacity) and muscle fiber morphology in 9 old (OM: 67.3 ± 1.3 yr) and 11 young healthy men (YM: 24.4 ± 0.5 yr) with comparable levels of physical activity. Following immobilization, OM demonstrated markedly larger decreases in rapid force capacity...... deleterious effects of short-term muscle disuse on muscle fiber size and rapid force capacity than YM. Furthermore, OM seems to require longer time to recover and regain rapid muscle force capacity, which may lead to a larger risk of falling in aged individuals after periods of short-term disuse....

  4. Functional Relevance of Coronary Artery Disease by Cardiac Magnetic Resonance and Cardiac Computed Tomography: Myocardial Perfusion and Fractional Flow Reserve

    Directory of Open Access Journals (Sweden)

    Gianluca Pontone

    2015-01-01

    Full Text Available Coronary artery disease (CAD is one of the leading causes of morbidity and mortality and it is responsible for an increasing resource burden. The identification of patients at high risk for adverse events is crucial to select those who will receive the greatest benefit from revascularization. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography, but the diagnostic yield of elective invasive coronary angiography remains unfortunately low. Stress myocardial perfusion imaging by cardiac magnetic resonance (stress-CMR has emerged as an accurate technique for diagnosis and prognostic stratification of the patients with known or suspected CAD thanks to high spatial and temporal resolution, absence of ionizing radiation, and the multiparametric value including the assessment of cardiac anatomy, function, and viability. On the other side, cardiac computed tomography (CCT has emerged as unique technique providing coronary arteries anatomy and more recently, due to the introduction of stress-CCT and noninvasive fractional flow reserve (FFR-CT, functional relevance of CAD in a single shot scan. The current review evaluates the technical aspects and clinical experience of stress-CMR and CCT in the evaluation of functional relevance of CAD discussing the strength and weakness of each approach.

  5. Effects of Massage on Delayed-Onset Muscle Soreness, Swelling, and Recovery of Muscle Function

    OpenAIRE

    Zainuddin, Zainal; Newton, Mike; Sacco, Paul; Nosaka, Kazunori

    2005-01-01

    Context: Delayed-onset muscle soreness (DOMS) describes muscle pain and tenderness that typically develop several hours postexercise and consist of predominantly eccentric muscle actions, especially if the exercise is unfamiliar. Although DOMS is likely a symptom of eccentric-exercise–induced muscle damage, it does not necessarily reflect muscle damage. Some prophylactic or therapeutic modalities may be effective only for alleviating DOMS, whereas others may enhance recovery of muscle functio...

  6. Functional changes of human quadriceps muscle injured by eccentric exercise

    Directory of Open Access Journals (Sweden)

    F.V. Serrão

    2003-06-01

    Full Text Available The present study evaluated functional changes of quadriceps muscle after injury induced by eccentric exercise. Maximal isometric torque of quadriceps and the surface electromyography (root mean square, RMS, and median frequency, MDF of the vastus medialis oblique (VMO and vastus lateralis (VL muscles were examined before, immediately after and during the first 7 days after injury. Serum creatine kinase (CK levels and magnetic resonance imaging (MRI were used to identify muscle injury. The subject was used as her own control and percent refers to pre-injury data. Experiments were carried out with a sedentary 23-year-old female. Injury was induced by 4 bouts of 15 maximal isokinetic eccentric contractions (angular velocity of 5º/s; range of motion from 40º to 110º of knee flexion. The isometric torque of the quadriceps (knee at 90º flexion decreased 52% immediately after eccentric exercise and recovered on the 5th day. The highest reduction of RMS occurred on the 2nd day after injury in both VL (63% and VMO (66% and only VL recovered to the pre-injury level on the 7th day. Immediately after injury, the MDF decreased by 5 and 3% (VMO and VL, respectively and recovered one day later. Serum CK levels increased by 109% on the 2nd day and were still increased by 32% on the 7th day. MRI showed large areas of injury especially in the deep region of quadriceps. In conclusion, eccentric exercise decreased the isometric torque and electromyographic signals of quadriceps muscle, which were recovered in one week, despite the muscle regeneration signals.

  7. Inappropriate shocks delivered by implantable cardiac defibrillators during oversensing of activity of diaphagmatic muscle

    Science.gov (United States)

    Babuty, D; Fauchier, L; Cosnay, P

    1999-01-01

    Two cases are reported (both men, one 72 and one 54 years old) of inappropriate shocks delivered by an implantable cardiac defibrillator (ICD) device, which oversensed the myopotentials induced by deep breathing and Valsalva manoeuvre. No damage to leads was associated with the oversensing of myopotentials. The mechanism of the inappropriate shocks was determined using real time electrograms. Modification of the duration of ventricular detection and decrease in sensitivity made it possible to avoid the oversensing of myopotentials and to deliver ICD treatment.

 Keywords: implantable cardiac defibrillator;  inappropriate shocks;  myopotentials PMID:10220554

  8. Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function

    Directory of Open Access Journals (Sweden)

    GiancarloForte

    2014-07-01

    Full Text Available The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction – which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs - would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli.The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors.

  9. Automated Functional Morphology Measurement Using Cardiac SPECT Images

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seok Yoon; Ko, Seong Jin; Kang, Se Sik; Kim, Chang Soo; Kim, Jung Hoon [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Pusan (Korea, Republic of)

    2012-06-15

    For the examination of nuclear medicine, myocardial scan is a good method to evaluate a hemodynamic importance of coronary heart disease. but, the automatized qualitative measurement is additionally necessary to improve the decoding efficiency. we suggests the creation of cardiac three-dimensional model and model of three-dimensional cardiac thickness as a new measurement. For the experiment, cardiac reduced cross section was obtained from SPECT. Next, the pre-process was performed and image segmentation was fulfilled by level set. for the modeling of left cardiac thickness, it was realized by applying difference equation of two-dimensional laplace equation. As the result of experiment, it was successful to measure internal wall and external wall and three-dimensional modeling was realized by coordinate. and, with laplace formula, it was successful to develop the thickness of cardiac wall. through the three-dimensional model, defects were observed easily and position of lesion was grasped rapidly by the revolution of model. The model which was developed as the support index of decoding will provide decoding information to doctor additionally and reduce the rate of false diagnosis as well as play a great role for diagnosing IHD early.

  10. Recipient origin of neointimal vascular smooth muscle cells in cardiac allografts with transplant arteriosclerosis

    NARCIS (Netherlands)

    Hillebrands, JL; van den Hurk, BMH; Klatter, FA; Popa, ER; Nieuwenhuis, P; Rozing, J

    2000-01-01

    Background: Coronary artery disease is today's most important post-heart transplantation problem after the first perioperative year. Histologically, coronary artery disease is characterized by transplant arteriosclerosis. The current view on this vasculopathy is that vascular smooth muscle (VSM) cel

  11. Relationship between adductor pollicis muscle thickness and subjective global assessment in a cardiac intensive care unit

    OpenAIRE

    Karst, Fernanda Pickrodt; Vieira, Renata Monteiro; Barbiero, Sandra

    2015-01-01

    Objective To verify the relationship between the adductor pollicis muscle thickness test and the subjective global assessment and to correlate it with other anthropometric methods. Methods This observational cross-sectional study was conducted in the intensive care unit of a cardiology hospital in the state of Rio Grande do Sul, Brazil. The hospitalized patients underwent subjective global assessment and adductor pollicis muscle thickness tests on both hands, along with measurement of the rig...

  12. Cardiac function in survivors of childhood acute myeloid leukemia treated with chemotherapy only

    DEFF Research Database (Denmark)

    Jarfelt, Marianne; Andersen, Niels Holmark; Glosli, Heidi;

    2015-01-01

    OBJECTIVES: We report cardiac function of patients treated for Childhood acute myeloid leukemia with chemotherapy only according to three consecutive Nordic protocols. METHODS: Ninety-eight of 138 eligible patients accepted examination with standardized echocardiography. Results were compared with...

  13. Acupuncture Effects on Cardiac Functions Measured by Cardiac Magnetic Resonance Imaging in a Feline Model

    OpenAIRE

    Tzu-chi Lee; Jen-Hwey Chiu; Weng-Yih Tseng; Leang-Shin Wu; Krishna Kaphle; Jen-Hsou Lin; Chen-Haw Shih; Ying-Ling Wu

    2010-01-01

    The usefulness of acupuncture (AP) as a complementary and/or alternative therapy in animals is well established but more research is needed on its clinical efficacy relative to conventional therapy, and on the underlying mechanisms of the effects of AP. Cardiac magnetic resonance imaging (CMRI), an important tool in monitoring cardiovascular diseases, provides a reliable method to monitor the effects of AP on the cardiovascular system. This controlled experiment monitored the effect electro-a...

  14. Postoperative Recovery of Mechanical Muscle Function in Hip Replacement Patients

    DEFF Research Database (Denmark)

    Jensen, Carsten; Aagaard, Per; Overgaard, Søren

    2011-01-01

    weeks post surgery for both the affected (AF) as well as the non-affected (NA) side. Protocol: All contractions were performed ad libitum and for each muscle group 3 trails of 4s duration were performed. The trail with highest peak torque was used for further analysis. Statistics: Paired students t......INTRODUCTION Muscle function in patients with hip osteoarthritis (OA) is not well-studied. We established a new setup of tests in order to monitor patients before and after surgery. Our novel setup was used to evaluate single- and multi-joint strength (torque) and power in a group of 40 – 65 year...... old hip patients.   MATERIAL AND METHODS Patients: Forty elderly patients (age 55 ± 6, BMI 27.5 ± 4.1) with unilateral osteoarthritis participated in this prospectively study and were randomized to either total or resurfacing hip replacement. All implants inserted by two senior surgeons using only the...

  15. Nuclear Factor of Activated T cells (NFAT): key regulator of cardiac hypertrophy and skeletal muscle adaptation

    NARCIS (Netherlands)

    Bourajjaj, M.

    2008-01-01

    Despite significant progress in the prevention and treatment of cardiovascular diseases, heart failure is still a leading cause of morbidity and mortality in industrial countries. Sustained cardiac hypertrophy, which is defined as an increase in heart size resulting from an increase in cardiomyocyte

  16. Evaluation of cardiac blood blow, metabolism and sympathetic nerve function in patients with cardiac failure using PET and SPECT. Prognostic diagnosis based on the analysis of aggravating factors of the disease

    International Nuclear Information System (INIS)

    Focusing on the failure of energy metabolism, which is assumed to be attributed to the cardiac muscle disorder of a patient with cardiac failure, the characteristics and diagnostic significance of the metabolic disorders of cadiac muscles were investigated in those patients. The diagnostic efficacy of β-methyl iodophenyl pentadecanoic acid (BMIPP) which is a imaging agent for lipid metabolism in the cardiac muscle was assessed in the clinical states of cardiac failure due to pulmonary hypertension. Even if there was a considerable increase in the mean pulmonary arterial pressure (mPAP), the initial accumulation of BMIPP linearly increased, similarly to the increase in the accumulation of MIBI, a blood flow agent. The initial accumulation of BMIPP was thought to reflect a thicken cardiac muscle and/or increased blood flow. Also, its washing-out rate was suggested to be usable as an clinical indicator to estimate the loading of ventricular pressure. (M.N.)

  17. Evaluation of cardiac blood blow, metabolism and sympathetic nerve function in patients with cardiac failure using PET and SPECT. Prognostic diagnosis based on the analysis of aggravating factors of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Yoshio; Shimozu, Junko; Yasumura, Yoshio; Nagatani, Kenzo; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

    1998-02-01

    Focusing on the failure of energy metabolism, which is assumed to be attributed to the cardiac muscle disorder of a patient with cardiac failure, the characteristics and diagnostic significance of the metabolic disorders of cadiac muscles were investigated in those patients. The diagnostic efficacy of {beta}-methyl iodophenyl pentadecanoic acid (BMIPP) which is a imaging agent for lipid metabolism in the cardiac muscle was assessed in the clinical states of cardiac failure due to pulmonary hypertension. Even if there was a considerable increase in the mean pulmonary arterial pressure (mPAP), the initial accumulation of BMIPP linearly increased, similarly to the increase in the accumulation of MIBI, a blood flow agent. The initial accumulation of BMIPP was thought to reflect a thicken cardiac muscle and/or increased blood flow. Also, its washing-out rate was suggested to be usable as an clinical indicator to estimate the loading of ventricular pressure. (M.N.)

  18. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    OpenAIRE

    Jyotsna, Viveka P.; Smita Ambekar; Rajiv Singla; Ansumali Joshi; Anju Dhawan; Neeta Kumar; Deepak, K. K.; Sreenivas, V.

    2013-01-01

    Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam) had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and c...

  19. Carnitine levels and cardiac functions in children with solid malignancies receiving doxorubicin therapy

    OpenAIRE

    Anant Khositseth; Suwadee Jirasakpisarn; Samart Pakakasama; Lulin Choubtuym; Duangrurdee Wattanasirichaigoon

    2011-01-01

    Aim: Previous studies demonstrated l-carnitine decreasing doxorubicin-induced cardiotoxicity. Our objectives were to study carnitine levels and cardiac functions in children treated with doxorubicin and the effect of short-term l-carnitine supplements. Materials and Methods: Serial carnitine levels and cardiac functions were obtained in children with newly diagnosed solid malignancies before doxorubicin, after cumulative doses of ≥150 mg/m 2 and ≥300 mg/m 2 , respectively. Oral l-carnitine 10...

  20. Effects of Cardiac Rehabilitation Program on Right Ventricular Function after Coronary Artery Bypass Graft Surgery

    OpenAIRE

    Akram Sardari; Seyed Kianoosh Hosseini; Ali Taherian; Arezoo Zoroufian; Mehrdad Sheikhvatan

    2012-01-01

    Background: Cardiac rehabilitation has been recognized as one of the most effective strategies for managing cardiovascular indices as well as controlling the cardiovascular risk profile, in particular after coronary artery bypass graft surgery (CABG). However, the effect of this program on right ventricular function following CABG is unclear. The aim of this study was to evaluate the impact of cardiac rehabilitation on the right ventricular (RV) function in a cohort of patients who underwent ...

  1. Respiratory muscle and pulmonary function in polymyositis and other proximal myopathies

    OpenAIRE

    Braun, N M; Arora, N S; Rochester, D. F.

    1983-01-01

    We studied 53 patients with proximal myopathy to determine at what level of muscle weakness hypercapnic respiratory failure is likely, and which tests of pulmonary function or respiratory muscle strength would best suggest this development. Respiratory muscle strength was determined from maximal static efforts and in half the patients, both inspiratory and expiratory muscle strengths were less than 50% of normal. In the 37 patients without lung disease respiratory muscle weakness was accompan...

  2. Muscle function during takeoff and landing flight in the pigeon (Columba livia)

    OpenAIRE

    Robertson, A. M. B.; Biewener, Andrew Austin

    2012-01-01

    This study explored the muscle strain and activation patterns of several key flight muscles of the pigeon (Columba livia) during takeoff and landing flight. Using electromyography (EMG) to measure muscle activation, and sonomicrometry to quantify muscle strain, we evaluated the muscle function patterns of the pectoralis, biceps, humerotriceps and scapulotriceps as pigeons flew between two perches. These recordings were analyzed in the context of three-dimensional wing kinematics. To understan...

  3. Muscle function may depend on model selection in forward simulation of normal walking.

    Science.gov (United States)

    Xiao, Ming; Higginson, Jill S

    2008-11-14

    The purpose of this study was to quantify how the predicted muscle function would change in a muscle-driven forward simulation of normal walking when changing the number of degrees of freedom in the model. Muscle function was described by individual muscle contributions to the vertical acceleration of the center of mass (COM). We built a two-dimensional (2D) sagittal plane model and a three-dimensional (3D) model in OpenSim and used both models to reproduce the same normal walking data. Perturbation analysis was applied to deduce muscle function in each model. Muscle excitations and contributions to COM support were compared between the 2D and 3D models. We found that the 2D model was able to reproduce similar joint kinematics and kinetics patterns as the 3D model. Individual muscle excitations were different for most of the hip muscles but ankle and knee muscles were able to attain similar excitations. Total induced vertical COM acceleration by muscles and gravity was the same for both models. However, individual muscle contributions to COM support varied, especially for hip muscles. Although there is currently no standard way to validate muscle function predictions, a 3D model seems to be more appropriate for estimating individual hip muscle function. PMID:18804767

  4. Comparative Toxicity of Different Crude Oils on the Cardiac Function of Marine Medaka (Oryzias melastigma Embryo

    Directory of Open Access Journals (Sweden)

    Zhendong Zhang

    2014-12-01

    Full Text Available The acute toxic effect of different crude oils (heavy crude oil and bonny light crude oil on embryos of marine medaka Oryzias melastigma was measured and evaluated by exposure to the water-accommodated fraction (WAF in the present study. The cardiac function of medaka embryos was used as target organ of ecotoxicological effect induced by oil exposure. Results showed that the developing marine medaka heart was a sensitive target organ to crude oil exposure the heavy crude oil WAF was more toxic to cardiac function of medaka embryos than bonny light cured oil one. Cardiac function of medaka embryos was clearly affected by exposure to heavy crude oil WAF after 24 hours exposure and showed a dose-dependent slowing of heart rate. Furthermore, swelled and enlarged heart morphology, lowered blood circulation and accumulation of blood cells around the heart area were found. However, the toxic effect of bonny light crude oil on cardiac function of medaka embryos was comparatively low. Statistical results showed that the cardiac function was only affected by highest bonny light crude oil WAF (9.8 mg/L exposure treatment. These findings indicated that cardiac function of marine medaka embryo was a good toxicity model for oil pollution and could be used to compare and evaluate the toxicity of different crude oils. The heart rate was an appropriate endpoint in the acute toxicity test.

  5. Aerobic exercise training reduces cardiac function in adult male offspring exposed to prenatal hypoxia.

    Science.gov (United States)

    Reyes, Laura M; Kirschenman, Raven; Quon, Anita; Morton, Jude S; Shah, Amin; Davidge, Sandra T

    2015-09-01

    Intrauterine growth restriction (IUGR) has been associated with increased susceptibility to myocardial ischemia-reperfusion (I/R) injury. Exercise is an effective preventive intervention for cardiovascular diseases; however, it may be detrimental in conditions of compromised health. The aim of this study was to determine whether exercise training can improve cardiac performance after I/R injury in IUGR offspring. We used a hypoxia-induced IUGR model by exposing pregnant Sprague-Dawley rats to 21% oxygen (control) or hypoxic (11% oxygen; IUGR) conditions from gestational day 15 to 21. At 10 wk of age, offspring were randomized to a sedentary group or to a 6-wk exercise protocol. Transthoracic echocardiography assessments were performed after 6 wk. Twenty-four hours after the last bout of exercise, ex vivo cardiac function was determined using a working heart preparation. With exercise training, there was improved baseline cardiac performance in male control offspring but a reduced baseline cardiac performance in male IUGR exercised offspring (P exercise decreased superoxide generation in control offspring, while in IUGR offspring, it had the polar opposite effect (interaction P ≤ 0.05). There was no effect of IUGR or exercise on cardiac function in female offspring. In conclusion, in male IUGR offspring, exercise may be a secondary stressor on cardiac function. A reduction in cardiac performance along with an increase in superoxide production in response to exercise was observed in this susceptible group. PMID:26157059

  6. Greater adenosine A2A receptor densities in cardiac and skeletal muscle in endurance-trained men: a [11C]TMSX PET study

    International Nuclear Information System (INIS)

    We examined the densities of adenosine A2A receptors in cardiac and skeletal muscles between untrained and endurance-trained subjects using positron emission tomography (PET) and [7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([11C]TMSX), a newly developed radioligand for mapping adenosine A2A receptors. Five untrained and five endurance-trained subjects participated in this study. The density of adenosine A2A receptors was evaluated as the distribution volume of [11C]TMSX in cardiac and triceps brachii muscles in the resting state using PET. The distribution volume of [11C]TMSX in the myocardium was significantly greater than in the triceps brachii muscle in both groups. Further, distribution volumes [11C]TMSX in the trained subjects were significantly grater than those in untrained subjects (myocardium, 3.6±0.3 vs. 3.1±0.4 ml g-1; triceps brachii muscle, 1.7±0.3 vs. 1.2±0.2 ml g-1, respectively). These results indicate that the densities of adenosine A2A receptors in the cardiac and skeletal muscles are greater in the endurance-trained men than in the untrained men

  7. Chiral recognition of pinacidil and its 3-pyridyl isomer by canine cardiac and smooth muscle: Antagonism by sulfonylureas

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.I.; Wiest, S.A.; Zimmerman, K.M.; Ertel, P.J.; Bemis, K.G.; Robertson, D.W. (Eli Lilly and Company, Indianapolis, IN (USA))

    1991-01-01

    Pinacidil, a potassium channel opener (PCO), relaxes vascular smooth muscle by increasing potassium ion membrane conductance, thereby causing membrane hyperpolarization. PCOs also act on cardiac muscle to decrease action potential duration (APD) selectively. To examine the enantiomeric selectivity of pinacidil, the stereoisomers of pinacidil (a 4-pyridylcyanoguanidine) and its 3-pyridyl isomer (LY222675) were synthesized and studied in canine Purkinje fibers and cephalic veins. The (-)-enantiomers of both pinacidil and LY222675 were more potent in relaxing phenylephrine-contracted cephalic veins and decreasing APD than were their corresponding (+)-enantiomers. The EC50 values for (-)-pinacidil and (-)-LY222675 in relaxing cephalic veins were 0.44 and 0.09 microM, respectively. In decreasing APD, the EC50 values were 3.2 microM for (-)-pinacidil and 0.43 microM for (-)-LY222675. The eudismic ratio was greater for the 3-pyridyl isomer than for pinacidil in both cardiac (71 vs. 22) and vascular (53 vs. 17) tissues. (-)-LY222675 and (-)-pinacidil (0.1-30 microM) also increased 86Rb efflux from cephalic veins to a greater extent than did their respective optical antipodes. The antidiabetic sulfonylurea, glyburide (1-30 microM), shifted the vascular concentration-response curve of (-)-pinacidil to the right by a similar extent at each inhibitor concentration. Glipizide also antagonized the response to (-)-pinacidil, but was about 1/10 as potent with a maximal shift occurring at 10 and 30 microM. Glyburide antagonized the vascular relaxant effects of 0.3 microM (-)-LY222675 (EC50, 2.3 microM) and reversed the decrease in APD caused by 3 microM (-)-LY222675 (EC50, 1.9 microM). Nitroprusside did not alter 86Rb efflux, and vascular relaxation induced by sodium nitroprusside was unaffected by sulfonylureas.

  8. Chiral recognition of pinacidil and its 3-pyridyl isomer by canine cardiac and smooth muscle: Antagonism by sulfonylureas

    International Nuclear Information System (INIS)

    Pinacidil, a potassium channel opener (PCO), relaxes vascular smooth muscle by increasing potassium ion membrane conductance, thereby causing membrane hyperpolarization. PCOs also act on cardiac muscle to decrease action potential duration (APD) selectively. To examine the enantiomeric selectivity of pinacidil, the stereoisomers of pinacidil (a 4-pyridylcyanoguanidine) and its 3-pyridyl isomer (LY222675) were synthesized and studied in canine Purkinje fibers and cephalic veins. The (-)-enantiomers of both pinacidil and LY222675 were more potent in relaxing phenylephrine-contracted cephalic veins and decreasing APD than were their corresponding (+)-enantiomers. The EC50 values for (-)-pinacidil and (-)-LY222675 in relaxing cephalic veins were 0.44 and 0.09 microM, respectively. In decreasing APD, the EC50 values were 3.2 microM for (-)-pinacidil and 0.43 microM for (-)-LY222675. The eudismic ratio was greater for the 3-pyridyl isomer than for pinacidil in both cardiac (71 vs. 22) and vascular (53 vs. 17) tissues. (-)-LY222675 and (-)-pinacidil (0.1-30 microM) also increased 86Rb efflux from cephalic veins to a greater extent than did their respective optical antipodes. The antidiabetic sulfonylurea, glyburide (1-30 microM), shifted the vascular concentration-response curve of (-)-pinacidil to the right by a similar extent at each inhibitor concentration. Glipizide also antagonized the response to (-)-pinacidil, but was about 1/10 as potent with a maximal shift occurring at 10 and 30 microM. Glyburide antagonized the vascular relaxant effects of 0.3 microM (-)-LY222675 (EC50, 2.3 microM) and reversed the decrease in APD caused by 3 microM (-)-LY222675 (EC50, 1.9 microM). Nitroprusside did not alter 86Rb efflux, and vascular relaxation induced by sodium nitroprusside was unaffected by sulfonylureas

  9. The Effect of Fructose-1,6-diphosphate and HTK Solution on Protecting Primary Cardiac Muscle Cells of Rat with Cold Preservation

    Institute of Scientific and Technical Information of China (English)

    SHI Xiaofeng; CHENG Jun; XIA Suisheng

    2005-01-01

    Summary: In this study we tried to investigate the effect of fructose-1,6-diphosphate and HTK solution on protecting primary cardiac muscle cells of rat with cold preservation. The primary cardiac muscle cells of rat were cultured in vitro with four preservation solutions respectively: 0.9 % sodium chloride solution (group A), FDP (group B), HTK solution (group C) and a mixture of FDP and HTK solution (group D). The cells were preserved for 6, 8 and 10 h at 0-4 ℃. The values of AST and LDH-L and the Na+-K+ ATPase activity in cardiac muscle cells were detected, and the survival rate of cardiac muscle cells was detected with trypan blue staining. The values of AST and LDH-L in group C and group D were remarkable lower those in group A and group B (P<0.001), while the Na+-K+ ATPase activity and the survival rate of cells in group C and group D were much higher than those in group A and group B (P<0.001). The values of AST and LDH-L after 6 hours in group D decreased much more than those in group C (P<0.01), while the Na+-K+ ATPase activity and the survival rate of cells in group D improved more than those in group C (P<0.01). Both of the HTK solution and the mixture of HTK and FDP solution have an evident effect on protecting the primary cardiac muscle cells of rat in vitro with cold preservation, Compared with the HTK solution, the mixture solution has a better short-term protective effect.

  10. Effect of cardiac function on aortic peak time and peak enhancement during coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Shuji, E-mail: sakai@shs.kyushu-u.ac.j [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Yabuuchi, Hidetake, E-mail: yabuuchi@radiol.med.kyushu-u.ac.j [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Chishaki, Akiko, E-mail: chishaki@shs.kyushu-u.ac.j [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Okafuji, Takashi, E-mail: oka-pu@radiol.med.kyushu-u.ac.j [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Matsuo, Yoshio, E-mail: yymatsuo@radiol.med.kyushu-u.ac.j [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kamitani, Takeshi, E-mail: kamitani@radiol.med.kyushu-u.ac.j [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Setoguchi, Taro, E-mail: taro-s@radiol.med.kyushu-u.ac.j [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Honda, Hiroshi, E-mail: honda@radiol.med.kyushu-u.ac.j [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2010-08-15

    Purpose: To examine the manner in which cardiac function affects the magnitude and timing of aortic contrast enhancement during coronary CT angiography (CTA). Materials and methods: Twenty-nine patients (21 men, 8 women; mean age, 64.4 {+-} 13.4 years; mean weight, 59.4 {+-} 10.3 kg) underwent measurement of cardiac output within 2 weeks of coronary CTA. The cardiac output of each patient was measured by the thermodilution technique and the cardiac index was calculated from the body surface area. During coronary CTA, attenuation of the descending aorta was measured at the workstation every 3 s. The aortic peak time (APT) and aortic peak enhancement (APE) of each patient were calculated. Pearson's correlation coefficient analysis was used to investigate the relationships between the cardiac output or cardiac index and APT or APE. Furthermore, the relationship between patient factors or parameters on test bolus injection and APT or APE was also evaluated. Results: The range of cardiac output, cardiac index, APT, and APE was 1.55-10.46 L/min (mean: 4.77 {+-} 2.13), 1.11-5.30 L/(min-m{sup 2}) (mean: 3.28 {+-} 1.08), 25-51 s (mean: 38.3 {+-} 7.5), and 273.1-598.1 HU (mean: 390.4 {+-} 72.1), respectively. With an increase in the cardiac index, both APT (r = -0.698, p < 0.0001) and APE (r = -0.573, p = 0.0009) decreased. There were significant correlations between the patient body weight and APT and APE with the test bolus injection, and with APT and APE during coronary CTA. Conclusion: The APT and APE during coronary CTA are closely related to cardiac function.

  11. A portable cadmium telluride multidetector probe for cardiac function monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Arntz, Y.; Chambron, J.; Dumitresco, B.; Eclancher, B. E-mail: eclan@alsace.u-strasbg.fr; Prat, V

    1999-06-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients.

  12. A portable cadmium telluride multidetector probe for cardiac function monitoring

    International Nuclear Information System (INIS)

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients

  13. Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Greenwood, Iain A; Moffatt, James D;

    2009-01-01

    Members of the K(v)7 voltage-gated K(+) channel family are important determinants of cardiac and neuronal membrane excitability. Recently, we and others have shown that K(v)7 channels are also crucial regulators of smooth muscle activity. The aim of the present study was to assess the K(v)7 expre...

  14. Tetralogy of Fallot Cardiac Function Evaluation and Intelligent Diagnosis Based on Dual-Source Computed Tomography Cardiac Images.

    Science.gov (United States)

    Cai, Ken; Rongqian, Yang; Li, Lihua; Xie, Zi; Ou, Shanxing; Chen, Yuke; Dou, Jianhong

    2016-05-01

    Tetralogy of Fallot (TOF) is the most common complex congenital heart disease (CHD) of the cyanotic type. Studies on ventricular functions have received an increasing amount of attention as the development of diagnosis and treatment technology for CHD continues to advance. Reasonable options for imaging examination and accurate assessment of preoperative and postoperative left ventricular functions of TOF patients are important in improving the cure rate of TOF radical operation, therapeutic evaluation, and judgment prognosis. Therefore, with the aid of dual-source computed tomography (DSCT), cardiac images with high temporal resolution and high definition, we measured the left ventricular time-volume curve using image data and calculating the left ventricular function parameters to conduct the preliminary evaluation on TOF patients. To comprehensively evaluate the cardiac function, the segmental ventricular wall function parameters were measured, and the measurement results were mapped to a bull's eye diagram to realize the standardization of segmental ventricular wall function evaluation. Finally, we introduced a new clustering method based on auto-regression model parameters and combined this method with Euclidean distance measurements to establish an intelligent diagnosis of TOF. The results of this experiment show that the TOF evaluation and the intelligent diagnostic methods proposed in this article are feasible. PMID:26496001

  15. Therapeutic Inhibition of miR-208a Improves Cardiac Function and Survival During Heart Failure

    Science.gov (United States)

    Montgomery, Rusty L.; Hullinger, Thomas G.; Semus, Hillary M.; Dickinson, Brent A.; Seto, Anita G.; Lynch, Joshua M.; Stack, Christianna; Latimer, Paul A.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Background Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. Methods and Results Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. Conclusions These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression. PMID:21900086

  16. Insights into the clinical and functional significance of cardiac autonomic dysfunction in Chagas disease

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Junqueira Junior

    2012-04-01

    Full Text Available INTRODUCTION: Exclusive or associated lesions in various structures of the autonomic nervous system occur in the chronic forms of Chagas disease. In the indeterminate form, the lesions are absent or mild, whereas in the exclusive or combined heart and digestive disease forms, they are often more pronounced. Depending on their severity these lesions can result mainly in cardiac parasympathetic dysfunction but also in sympathetic dysfunction of variable degrees. Despite the key autonomic effect on cardiovascular functioning, the pathophysiological and clinical significance of the cardiac autonomic dysfunction in Chagas disease remains unknown. METHODS: Review of data on the cardiac autonomic dysfunction in Chagas disease and their potential consequences, and considerations supporting the possible relationship between this disturbance and general or cardiovascular clinical and functional adverse outcomes. RESULTS: We hypothesise that possible consequences that cardiac dysautonomia might variably occasion or predispose in Chagas disease include: transient or sustained arrhythmias, sudden cardiac death, adverse overall and cardiovascular prognosis with enhanced morbidity and mortality, an inability of the cardiovascular system to adjust to functional demands and/or respond to internal or external stimuli by adjusting heart rate and other hemodynamic variables, and immunomodulatory and cognitive disturbances. CONCLUSIONS: Impaired cardiac autonomic modulation in Chagas disease might not be a mere epiphenomenon without significance. Indirect evidences point for a likely important role of this alteration as a primary predisposing or triggering cause or mediator favouring the development of subtle or evident secondary cardiovascular functional disturbances and clinical consequences, and influencing adverse outcomes.

  17. Anatomical and Functional Recovery of Neurotized Remnant Rectus Abdominis Muscle in Muscle-Sparing Pedicled Transverse Rectus Abdominis Musculocutaneous Flap

    Directory of Open Access Journals (Sweden)

    Woonhyeok Jeong

    2013-07-01

    Full Text Available Background  Pedicled transverse rectus abdominis musculocutaneous flaps typically sacrificethe entire muscle. In our experience, the lateral strip of the rectus abdominis muscle can bespared in an attempt to maintain function and reduce morbidity. When the intercostal nervesare injured, muscle atrophy appearswith time. The severed intercostal nervewasreinserted intothe remnantlateralstrip ofthe rectus abdominismuscle to reducemuscle atrophy.Methods  The authors retrospectively reviewed 9 neurotized cases and 10 non-neurotizedcases. Abdominal computed tomography was performed to determine the area of the rectusmuscles. Electromyography (EMGwas performed to check contractile function ofthe remnantmuscle. A single investigator measured the mean areas ofrandomly selected locations(secondlumbarspine using ImageJsoftware in a series of 10 cross-sectionalslices. We compared theHounsfield unit(HU pre- and postoperatively to evaluate regeneration quality.Results  In the neurotization group, 7 of 9 cases maintained the mass of remnant muscle.However, in the non-neurotization group, 8 of 10 losttheir mass. The number oftotally atrophied muscles in each of the two groups was significantly different (P= 0.027. All of theremnantmusclesshowed contractile function on EMG. The 9 remaining remnantrectus abdominis muscles showed declined the HU value after surgery but also within a normal range ofmuscle.Conclusions  Neurotization was found to be effective in maintaining the mass of remnantmuscle. Neurotized remnant muscle had contractile function on EMG and no fatty degeneration byHUvalue.

  18. Familial amyloidotic polyneuropathy with muscle, vitreous, leptomeningeal, and cardiac involvement: Phenotypic, pathological, and MRI description

    OpenAIRE

    Prashantha D; Taly Arun; Sinha Sanjib; Yasha T; Gayathri Narayanappa; Kovur J. M. E; Vijayan Joy

    2010-01-01

    Familial amyloidotic polyneuropathy (FAN type 1) is a rare systemic disease that causes severe and disabling peripheral neuropathy. We describe the phenotypic, radiological, and pathological characteristics of a patient with familial amyloid polyneuropathy type 1 who had evidence of motor-sensory-autonomic neuropathy, ocular vitreous deposits, diffuse leptomeningeal involvement, and hypertrophic cardiomyopathy. Muscle involvement, an infrequently reported feature, was also observed. Early rec...

  19. Effect of sildenafil on skeletal and cardiac muscle in Becker muscular dystrophy

    DEFF Research Database (Denmark)

    Witting, Nanna; Kruuse, Christina; Nyhuus, Bo;

    2014-01-01

    OBJECTIVE: Patients with Becker muscular dystrophy (BMD) and Duchenne muscular dystrophy lack neuronal nitric oxide synthase (nNOS). nNOS mediates physiological sympatholysis, thus ensuring adequate blood supply to working muscle. In mice lacking dystrophin, restoration of nNOS effects by a...

  20. Cellular and Functional Imaging of Cardiac Transplant Rejection

    Science.gov (United States)

    Wu, Yijen L.; Ye, Qing

    2011-01-01

    Heart transplantation is now an established treatment for patients suffering from end-stage heart diseases. With the advances in immunosuppressive treatment, the survival rate for transplant patients has improved greatly. However, allograft rejection, both acute and chronic, after heart transplantation is still a limitation leading to morbidity and mortality. The current clinical gold standard for screening rejection is endomyocardial biopsy (EMB), which is not only invasive, but also error-prone, due to the limited sample size and the site location of sampling. It would be highly desirable to have reliable and noninvasive alternatives for EMB in monitoring cardiac allograft rejection. The objective of this review is to highlight how cardiovascular imaging can contribute to noninvasively detecting and to evaluating both acute and chronic allograft rejection after heart transplantation, in particular, cardiovascular MRI (CMRI); and how CMRI can assess both immune cell infiltration at the rejecting organ, and the cardiac dysfunctions resulting from allograft rejection. PMID:21359095

  1. Function of longitudinal vs circular muscle fibers in esophageal peristalsis, deduced with mathematical modeling

    Institute of Scientific and Technical Information of China (English)

    James G Brasseur; Mark A Nicosia; Anupam Pal; Larr S Miller

    2007-01-01

    We summarize from previous works the functions of circular vs. longitudinal muscle in esophageal peristaltic bolus transport using a mix of experimental data, the conservation laws of mechanics and mathematical modeling. Whereas circular muscle tone generates radial closure pressure to create a local peristaltic closure wave, longitudinal muscle tone has two functions, one physiological with mechanical implications, and one purely mechanical. Each of these functions independently reduces the tension of individual circular muscle fibers to maintain closure as a consequence of shortening of longitudinal muscle locally coordinated with increasing circular muscle tone. The physiological function is deduced by combining basic laws of mechanics with concurrent measurements of intraluminal pressure from manometry, and changes in cross sectional muscle area from endoluminal ultrasound from which local longitudinal shortening (LLS) can be accurately obtained. The purely mechanical function of LLS was discovered from mathematical modeling of peristaltic esophageal transport with the axial wall motion generated by LLS. Physiologically, LLS concentrates circular muscle fibers where closure pressure is highest.However, the mechanical function of LLS is to reduce the level of pressure required to maintain closure. The combined physiological and mechanical consequences of LLS are to reduce circular muscle fiber tension and power by as much as 1/10 what would be required for peristalsis without the longitudinal muscle layer, a tremendous benefit that may explain the existence of longitudinal muscle fiber in the gut. We also review what is understood of the role of longitudinal muscle in esophageal emptying, reflux and pathology.

  2. Evaluation of cardiac functions of cirrhotic children using serum brain natriuretic peptide and tissue Doppler imaging

    OpenAIRE

    Aya M Fattouh; El-Shabrawi, Mortada H; Enas H Mahmoud; Wafaa O Ahmed

    2016-01-01

    Background: Cirrhotic cardiomyopathy (CCM) is described as the presence of cardiac dysfunction in cirrhotic patients. In children with chronic liver disease, CCM has been very rarely investigated. The Aim of the Study: Is to evaluate the cardiac function of cirrhotic children to identify those with CCM. Patients and Methods: Fifty-two cirrhotic patients and 53 age and sex matched controls were assessed using serum brain-type natriuretic peptide (BNP), conventional echocardiography, and tissue...

  3. H2O2 alters rat cardiac sarcomere function and protein phosphorylation through redox signaling

    OpenAIRE

    Avner, Benjamin S.; Hinken, Aaron C.; Yuan, Chao; Solaro, R. John

    2010-01-01

    ROS, such as H2O2, are a component of pathological conditions in many organ systems and have been reported to be elevated in cardiac pathophysiology. The experiments presented here test the hypothesis that H2O2 induces alterations in cardiac myofilament function by the posttranslational modification of sarcomeric proteins indirectly through PKC signaling. In vitro assessment of actomyosin Mg2+-ATPase activity of myofibrillar fractions showed blunted relative ATP consumption in the relaxed sta...

  4. Functional Status, Anxiety, Cardiac Self-Efficacy, and Health Beliefs of Patients with Coronary Heart Disease

    Directory of Open Access Journals (Sweden)

    Hamid Allahverdipour

    2013-12-01

    Full Text Available Background: Beliefs and emotions could effect on functional status, quality of life, and mortality amongst patients who are suffering coronary heart disease (CHD. Current study examined the role of anxiety: trait/ state, self-efficacy, health beliefs, and functional status among patient with history of CHD. Method: In this correlational study, 105 hospitalized and outpatients patients suffering CHD in Tehran Heart Center Hospital participated by using convenience sampling method in 2012. Cardiac self-efficacy, Seattle Angina, and research- designed health beliefs questionnaires were used to gather data. Results: The functional status in CHD patients showed significant relationships with gender, job, and type of medical insurance of the participants (All ps<0.05. In addition , perceived vulnerability to face again cardiac attack in the future, perceived severity of next cardiac attack, anxiety, state anxiety and trait anxiety (All ps<0.05 had significant and negative relationships with functional status. Conversely, the cardiac self-efficacy had a positive and significant relationship (P<0.001 with functional status. Conclusion: Psychological factors have important role in functional status and quality of life of patients who suffering CHD. Therefore, it is necessary to emphasize on supportive and complementary programs to promote Cardiac Rehabilitation Programs.

  5. Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure

    International Nuclear Information System (INIS)

    Background and purpose: Radiotherapy of thoracic and chest-wall tumours increases the long-term risk of radiation-induced heart disease. The aim of this study was to investigate the long-term effect of local heart irradiation on cardiac mitochondria. Methods: C57BL/6 and atherosclerosis-prone ApoE−/− mice received local heart irradiation with a single X-ray dose of 2 Gy. To investigate the low-dose effect, C57BL/6 mice also received a single heart dose of 0.2 Gy. Functional and proteomic alterations of cardiac mitochondria were evaluated after 40 weeks, compared to age-matched controls. Results: The respiratory capacity of irradiated C57BL/6 cardiac mitochondria was significantly reduced at 40 weeks. In parallel, protein carbonylation was increased, suggesting enhanced oxidative stress. Considerable alterations were found in the levels of proteins of mitochondria-associated cytoskeleton, respiratory chain, ion transport and lipid metabolism. Radiation induced similar but less pronounced effects in the mitochondrial proteome of ApoE−/− mice. In ApoE−/−, no significant change was observed in mitochondrial respiration or protein carbonylation. The dose of 0.2 Gy had no significant effects on cardiac mitochondria. Conclusion: This study suggests that ionising radiation causes non-transient alterations in cardiac mitochondria, resulting in oxidative stress that may ultimately lead to malfunctioning of the heart muscle

  6. Familial amyloidotic polyneuropathy with muscle, vitreous, leptomeningeal, and cardiac involvement: Phenotypic, pathological, and MRI description

    Directory of Open Access Journals (Sweden)

    Prashantha D

    2010-01-01

    Full Text Available Familial amyloidotic polyneuropathy (FAN type 1 is a rare systemic disease that causes severe and disabling peripheral neuropathy. We describe the phenotypic, radiological, and pathological characteristics of a patient with familial amyloid polyneuropathy type 1 who had evidence of motor-sensory-autonomic neuropathy, ocular vitreous deposits, diffuse leptomeningeal involvement, and hypertrophic cardiomyopathy. Muscle involvement, an infrequently reported feature, was also observed. Early recognition of the disease has significant therapeutic implications.

  7. Energetics of Na(+)-Ca(2+) exchange in resting cardiac muscle.

    OpenAIRE

    Ponce-Hornos, J E; Philipson, K D; Bonazzola, P; Langer, G. A.

    1999-01-01

    The energetic effect of extracellular Na(+) removal and readmission (in a nominally Ca(2+)-free perfusate) in Langendorff-perfused ventricles of transgenic mice (TM), which overexpress the sarcolemmal Na(+)-Ca(2+) exchanger; normal mice (NM); young (7-12 days old) rats (YR); and older (13-20 days old) rats (OR) was studied. In all heart muscles, extracellular Na(+) removal induced an increase in heat production (H(1)). Na(+) readmission further increased heat production to a peak value (H(2))...

  8. Functional outcomes associated with expiratory muscle strength training: Narrative review

    Directory of Open Access Journals (Sweden)

    Helena Laciuga, MA

    2014-07-01

    Full Text Available This review presents the available evidence for the effects of expiratory muscle strength training (EMST with the use of a pressure threshold device. The investigators used computerized database searches for studies reporting the outcomes of pressure threshold EMST published after 1994. A total of 24 selected articles presented outcomes related but not limited to respiratory function, such as speech, swallow, voice, and cough function in persons with neurologic conditions such as Parkinson disease, multiple sclerosis, and Lance-Adams syndrome; in persons with respiratory diseases, such as chronic obstructive pulmonary disease; and in healthy young adults and sedentary and active elderly. Several studies demonstrated promising outcomes of EMST as a non-task-specific training for airway protection in persons with dysphagia secondary to neuromuscular impairments; however, further research is needed to confirm and generalize the reported findings.

  9. Suppression of skeletal muscle signal using a crusher coil: A human cardiac 31p‐MR spectroscopy study at 7 tesla

    OpenAIRE

    Schaller, Benoit; Clarke, William T.; Neubauer, Stefan; Robson, Matthew D.; Rodgers, Christopher T.

    2015-01-01

    Purpose The translation of sophisticated phosphorus MR spectroscopy (31P‐MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac 31P spectra at 7T. We introduce the first surface‐spoiling crusher coil for human cardiac 31P‐MRS at 7T. Methods A planar crusher coil design was optimized with simulations and its performance was ...

  10. Evidence for a direct action of Tityus serrulatus scorpion venom on the cardiac muscle.

    Science.gov (United States)

    Teixeira, A L; Fontoura, B F; Freire-Maia, L; Machado, C R; Camargos, E R; Teixeira, M M

    2001-05-01

    The ability of toxins to activate the cardiovascular system plays an important role in the morbidity and lethality of the Tityus serrulatus scorpion envenoming. Most of the actions of the scorpion toxins are indirect and due to the release of adrenergic and cholinergic neurotransmitters. Accordingly, treatment following envenoming is targeted towards inhibition of adrenergic and cholinergic receptors. Here, we have sought evidence for a direct action of T. serrulatus venom on the isolated rat heart (Langendorff's method). We show that the bradycardia induced by T. serrulatus venom was completely blocked by atropine, a muscarinic receptor antagonist. Similarly, the increase in heart rate that follows the venom-induced bradycardia was totally inhibited by a beta(1)-adrenoceptor antagonist or by chemical sympathetic denervation with 6-hydroxydopamine. In contrast to these findings, the venom-induced increase in contractile force was not modified by beta(1)-adrenoceptor blockade or by chemical sympathetic denervation. The results clearly demonstrate that the chronotropic effects of T. serrulatus are dependent on neurotransmitter release, but the inotropic effects are not. The neurotransmitter-independent increase in contractility seems to be a direct action of the venom on cardiomyocytes. We suggest that this direct effect on cardiac fibers may play a role in the development of cardiac arrhythmias and contractility defects following envenoming with T. serrulatus scorpion. PMID:11072050

  11. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2013-01-01

    Full Text Available Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04. The change in sympathetic functions in the standard therapy group was not significant (P 0.75.Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06. In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99. Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone.

  12. Evaluation of the influence on the cardiac function after excessive exercise is loaded at the wheelchair marathon; Kurumaisu marathon no undo fukago no shinkino eno eikyo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, S. [Oita Prefectural Education Center, Oita (Japan); Nishimura, T. [Oita University, Oita (Japan); Hosokawa, H. [Oita Medical University, Oita (Japan); Hamamoto, K. [Tokai University, Tokyo (Japan); Saito, M. [Tokyo Denki University, Tokyo (Japan)

    1997-05-20

    To grasp dynamic cardiac function physiologically and biochemically before, during and after the wheelchair marathon for physically handicapped persons, the safety of athletic sports rapidly diffused for physically handicapped persons and the significance of cooperation among health, medical treatment and welfare are medically evaluated. There were no changes on the echocardiogram. Decrease in left ventricular function, which was observed in the triathlon race, was not recognized. From the results of biochemical test of blood, no damages of cardiac muscle were suggested. The findings of dehydration, which were anticipated in the biochemical test of blood, were not recognized after the race. It was suggested that stricter prevention of atherosclerosis, such as sufficient supply of water, is required for older persons. It is possible that these subjects who have hardly atherosclerosis, if they enter the race after full training and with supplying water, do safely without the bad influence to the heart. 9 refs., 8 figs., 3 tabs.

  13. Stable xenon CT measurement of cerebral blood flow in cardiac transplantation candidates: Correlation with cognitive function

    International Nuclear Information System (INIS)

    Thirteen consecutive unselected patients with NYHA class 4 cardiac failure referred for cardiac transplantation underwent neurologic examination and cerebral blood flow measurement (rCBF) using the stable xenon enhanced CT method on a GE9800 system. Eleven men and two women were studied (mean age = 43.8 +- 6.1). On neurological examination, six of the patients demonstrated normal mental function; the remaining seven patients demonstrated memory, language, or learning impairment. There was no difference in mean cardiac output between the groups (4.9 L/min +- 1.68 vs. 4.2L/min +- 1.57). rCBF was significantly reduced in the impaired group. Cognitive impairment in patients with cardiac failure can be correlated with cerebral ischemia. Stable xenon CT measurement of rCBF in transplant candidates may help identify patients requiring more rapid transplantation to prevent permanent cerebral injury

  14. The physiology and biochemistry of skeletal muscle atrophy as a function of age.

    Science.gov (United States)

    Carmeli, E; Reznick, A Z

    1994-06-01

    The skeletal muscles are an important entity in the proper function of aging animals and humans. Studies have shown that until humans are 60-70 years old, age-related changes in muscle function and structure are relatively small, while after 70 years, these alterations are accelerated considerably. Factors responsible for the "aging" of skeletal muscles are complex and include intrinsic biochemical changes in muscle metabolism, changes in the distribution and size of muscle fibers, and a general loss of muscle mass. In addition, other factors like the control of muscle contraction by the motor neural system and the influence of external conditions such as exercise, immobility, nutrition and others may also contribute to the age-related decrease in muscle functions. Studies have shown that with age there is some loss of peripheral motor neurons, reduction in the number of motor units, alterations in the neuromuscular junctions, and selective denervation of Type II muscle fibers. These findings led to the concept of denervation atrophy of skeletal muscles as one of the major mechanisms for muscle degeneration in old age. However, it should be emphasized that the extent of age-related changes varies from muscle to muscle, and some do not seem to be affected by age. For example, it has been shown recently, in animal studies, that weight-bearing muscles are much more susceptible to senescent processes than non-weight-bearing muscles. More work is needed to clarify the contributions of the various factors, especially the role of muscle training in alleviating the symptoms of age-related muscle atrophy. PMID:8208732

  15. Endothelial Function as a Possible Significant Determinant of Cardiac Function during Exercise in Patients with Structural Heart Disease

    Directory of Open Access Journals (Sweden)

    Bonpei Takase

    2009-01-01

    Full Text Available This study was investigated the role that endothelial function and systemic vascular resistance (SVR play in determining cardiac function reserve during exercise by a new ambulatory radionuclide monitoring system (VEST in patients with heart disease. The study population consisted of 32 patients. The patients had cardiopulmonary stress testing using the treadmill Ramp protocol and the VEST. The anaerobic threshold (AT was autodetermined using the V-slope method. The SVR was calculated by determining the mean blood pressure/cardiac output. Flow-mediated vasodilation (FMD was measured in the brachial artery to evaluate endotheilial function. FMD and the percent change f'rom rest to AT in SVR correlated with those from rest to AT in ejection fraction and peak ejection ratio by VEST, respectively. Our findings suggest that FMD in the brachial artery and the SVR determined by VEST in patients with heart disease can possibly reflect cardiac function reserve during aerobic exercise.

  16. Impairment of pulmonary function and changes in the right cardiac structure of pneumoconiotic coal workers in China

    OpenAIRE

    Lu-Qin Bian; Yue Zhang; Rong Jiang; Ling Mao

    2015-01-01

    Introduction Information on the changes of pulmonary function and the right cardiac structure in patients with coal worker’s pneumoconiosis in China is very scarce. This study was performed to clarify the changes of pulmonary function and right cardiac structure in patients with coal worker’s pneumoconiosis in China. Material and methods Pulmonary function, pulmonary artery systolic pressure, and the right cardiac structure were evaluated by spirometry and color Doppler echocardiography. Resu...

  17. Effect of swim exercise training on human muscle fiber function

    Science.gov (United States)

    Fitts, R. H.; Costill, D. L.; Gardetto, P. R.

    1989-01-01

    The effect of swim exercise training on the human muscle fiber function was investigated in swimmers trained in a typical collegiate swim-training program followed by an intensified 10-day training period. The measured parameters included the peak tension (P0), negative log molar Ca(2+) concentration (pCa)-force, and maximal shortening speed (Vmax) of the slow-twitch type I and fast-twitch type II fibers obtained by biopsy from the deltoid muscle. The P0 values were found to be not altered after either the training or the 10-day intensive program. The type I fibers from the trained swimmers showed pCa-force curves shifted to the right, such that higher free Ca(2+) levels were required to elicit a given percent of P0. The training program significantly increased the Vmax in the type I fibers and decreased that of the type II fibers, and the 10-day intensive training produced a further significant decrease of the type II fibers.

  18. Structure of the latissimus dorsi muscle and respiratory function.

    Science.gov (United States)

    Orozco-Levi, M; Gea, J; Sauleda, J; Corominas, J M; Minguella, J; Aran, X; Broquetas, J M

    1995-03-01

    The aim of this study was to evaluate whether respiratory function influences the structure of the latissimus dorsi muscle (LD). Twelve patients (58 +/- 10 yr) undergoing thoracotomy were studied. Lung and respiratory muscle function were evaluated before surgery. Patients showed a forced expired volume in 1 s (FEV1) of 67 +/- 16% of the reference value, an FEV1-forced vital capacity ratio of 69 +/- 9%, a maximal inspiratory pressure of 101 +/- 21% of the reference value, and a tension-time index of the diaphragm (TTdi) of 0.04 +/- 0.02. When patients were exposed to 8% CO2 breathing, TTdi increased to 0.06 +/- 0.03 (P < 0.05). The structural analysis of LD showed that 51 +/- 5% of the fibers were type I. The diameter was 56 +/- 9 microns for type I fibers and 61 +/- 9 microns for type II fibers, whereas the hypertrophy factor was 87 +/- 94 and 172 +/- 208 for type I and II fibers, respectively. Interestingly, the histogram distribution of the LD fibers was unimodal in two of the three individuals with normal lung function and bimodal (additional mode of hypertrophic fibers) in seven of the nine patients with chronic obstructive pulmonary disease. An inverse relationship was found between the %FEV1-forced vital capacity ratio and both the diameter of the fibers (type I: r = -0.773, P < 0.005; type II: r = -0.590, P < 0.05) and the hypertrophy factors (type I: r = -0.647, P < 0.05; type II: r = -0.575, P = 0.05).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7775307

  19. Endothelial Function and the Regulation of Muscle Protein Anabolism in Older Adults

    OpenAIRE

    Timmerman, Kyle L.; Volpi, Elena

    2012-01-01

    Sarcopenia, the loss of skeletal muscle mass and function with aging, is a major contributor to frailty and morbidity in older adults. Recent evidence has emerged suggesting that endothelial dysfunction and insulin resistance of muscle protein metabolism may significantly contribute to the development of sarcopenia. In this article we review: 1) recent studies and theories on the regulation of skeletal muscle protein balance in older adults; 2) the link between insulin-resistance of muscle pr...

  20. Functional interaction between charged nanoparticles and cardiac tissue: a new paradigm for cardiac arrhythmia?

    Science.gov (United States)

    Ruenraroengsak, Pakatip; Shevchuk, Andrew I; Korchev, Yuri E; Lab, Max J; Tetley, Teresa D; Gorelik, Julia

    2016-01-01

    Aim To investigate the effect of surface charge of therapeutic nanoparticles on sarcolemmal ionic homeostasis and the initiation of arrhythmias. Materials & methods Cultured neonatal rat myocytes were exposed to 50 nm-charged polystyrene latex nanoparticles and examined using a combination of hopping probe scanning ion conductance microscopy, optical recording of action potential characteristics and patch clamp. Results Positively charged, amine-modified polystyrene latex nanoparticles showed cytotoxic effects and induced large-scale damage to cardiomyocyte membranes leading to calcium alternans and cell death. By contrast, negatively charged, carboxyl-modified polystyrene latex nanoparticles (NegNPs) were not overtly cytotoxic but triggered formation of 50–250-nm nanopores in the membrane. Cells exposed to NegNPs revealed pro-arrhythmic events, such as delayed afterdepolarizations, reduction in conduction velocity and pathological increment of action potential duration together with an increase in ionic current throughout the membrane, carried by the nanopores. Conclusion The utilization of charged nanoparticles is a novel concept for targeting cardiac excitability. However, this unique nanoscopic investigation reveals an altered electrophysiological substrate, which sensitized the heart cells towards arrhythmias. PMID:23140503

  1. IL-6 signaling blockade increases inflammation but does not affect muscle function in the mdx mouse

    Directory of Open Access Journals (Sweden)

    Kostek Matthew C

    2012-06-01

    Full Text Available Abstract Background IL-6 is a pleiotropic cytokine that modulates inflammatory responses and plays critical roles in muscle maintenance and remodeling. In the mouse model (mdx of Duchenne Muscular Dystrophy, IL-6 and muscle inflammation are elevated, which is believed to contribute to the chronic inflammation and failure of muscle regeneration in DMD. The purpose of the current study was to examine the effect of blocking IL-6 signaling on the muscle phenotype including muscle weakness and pathology in the mdx mouse. Methods A monoclonal antibody against the IL-6 receptor (IL-6r mAb that blocks local and systemic IL-6 signaling was administered to mdx and BL-10 mice for 5 weeks and muscle function, histology, and inflammation were examined. Results IL-6r mAb treatment increased mdx muscle inflammation including total inflammation score and ICAM-1 positive lumens in muscles. There was no significant improvement in muscle strength nor muscle pathology due to IL-6r mAb treatment in mdx mice. Conclusions These results showed that instead of reducing inflammation, IL-6 signaling blockade for 5 weeks caused an increase in muscle inflammation, with no significant change in indices related to muscle regeneration and muscle function. The results suggest a potential anti-inflammatory instead of the original hypothesized pro-inflammatory role of IL-6 signaling in the mdx mice.

  2. Cardiac glycoside-like structure and function of 5 beta,14 beta-pregnanes

    International Nuclear Information System (INIS)

    5 beta-Reduction and 14 beta-substitution convert the planar progesterone molecule to the cardiac glycoside configuration--A and D rings of the steroid moiety are bent toward the alpha-face relative to the B and C rings. Potency of the 5 beta,14 beta-derivative in a [3H]ouabain binding assay or its ability to inhibit the sodium pump in red blood cells is enhanced by 3 beta-hydroxylation, 20 beta-hydroxylation, and 3 beta-glycosidation. Synthesis of 14,20 beta-dihydroxy-3 beta-(beta-D-glucopyranosyloxy)- 5 beta,14 beta-pregnane from digitoxin is described. The glucoside is 1/20 as potent as ouabain and elicits prominent, sustained, positive inotropy in isolated cardiac muscle

  3. A general method for determining the functional role of a muscle.

    Science.gov (United States)

    Andrews, J G

    1985-11-01

    This paper presents a general classification method for determining the functional role of any muscle, and a procedure for determining the sensitivity of that role to small changes in system parameters. The classification method is based on the premise that the system model, when acted upon solely by the muscle of interest, will depart from any initial rest configuration in such a way as to decrease the muscle's length. This method is particularly useful for multiple-joint muscles, and is illustrated by examining a slider-crank mechanism and straight line muscle model to determine the functional role of the hamstrings during a constrained leg flexion motion. PMID:4079362

  4. Expression of calsequestrin in skeletal and cardiac muscles of hypothyroid rats

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr; Škajeva, Maria; Marková, Vladimíra; Sulimenko, Vadym; Soukup, Tomáš

    Leeds: University of Leeds, 2008. s. 25-25. [Alternative muscle club meeting /26./. 23.07.2008-25.07.2008, Leeds] R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA304/08/0256 Grant ostatní: Myores(XE) 511978 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50520514 Source of funding: R - rámcový projekt EK Keywords : spr2 * calsequestrin * hypothyroid * rat Subject RIV: ED - Physiology

  5. [Time costs cardiac muscle tissue--prehospital therapy of acute myocardial infarct--a case report].

    Science.gov (United States)

    Eschenburg, G; Pappert, D; Ohlmeier, H

    2003-01-01

    Symptoms of an acute myocardial infarction are a common reason for calling the emergency physician. Pre-hospital mortality caused by cardiac infarction is constantly high. The main potential for decreasing infarction mortality lies in the pre-hospital period. The problems and prospects of treatment in the early period are described in the case of a 73-year-old patient with an acute anterior infarction. The diagnostic and therapeutic approach is shown and discussed in this concrete case, taking into consideration the guidelines for diagnostics and therapy of acute myocardial infarction in the pre-hospital period of the German Society for Cardiology. A particular focus is the management of pre-hospital thrombolysis, the preconditions, realization and risks of which are described. In this context, the experience and competence of the emergency physician is prerequisite for the exact diagnosis and therapy. Furthermore, the importance of a smooth transition from pre-hospital therapy to intensive care is emphasized. PMID:12666508

  6. Older Adults in Cardiac Rehabilitation: A New Strategy for Enhancing Physical Function.

    Science.gov (United States)

    Rejeski, W. Jack; Foy, Capri Gabrielle; Brawley, Lawrence R.; Brubaker, Peter H.; Focht, Brian C.; Norris, James L., III; Smith, Marci L.

    2002-01-01

    Contrasted the effect of a group-mediated cognitive- behavioral intervention (GMCB) versus traditional cardiac rehabilitation (CRP) upon changes in objective and self-reported physical function of older adults after 3 months of exercise therapy. Both groups improved significantly. Adults with lower function at the outset of the intervention…

  7. Systemic Inflammation in Duchenne Muscular Dystrophy: Association with Muscle Function and Nutritional Status

    OpenAIRE

    Oriana del Rocío Cruz-Guzmán; Maricela Rodríguez-Cruz; Rosa Elena Escobar Cedillo

    2015-01-01

    Inflammation described in patients with Duchenne muscular dystrophy (DMD) may be related to loss of muscle function or to obesity. It is unknown if circulating proinflammatory cytokines (IL-6, IL-1, and TNF-α) levels are associated with muscle function. The purpose was to evaluate whether an association exists between systemic inflammation with muscle function and nutritional status in DMD patients. In 66 DMD patients without corticosteroid treatment, the following were evaluated in serum: cy...

  8. A Restrictive Cardiomyopathy Mutation in an Invariant Proline at the Myosin Head/Rod Junction Enhances Head Flexibility and Function, Yielding Muscle Defects in Drosophila.

    Science.gov (United States)

    Achal, Madhulika; Trujillo, Adriana S; Melkani, Girish C; Farman, Gerrie P; Ocorr, Karen; Viswanathan, Meera C; Kaushik, Gaurav; Newhard, Christopher S; Glasheen, Bernadette M; Melkani, Anju; Suggs, Jennifer A; Moore, Jeffrey R; Swank, Douglas M; Bodmer, Rolf; Cammarato, Anthony; Bernstein, Sanford I

    2016-06-01

    An "invariant proline" separates the myosin S1 head from its S2 tail and is proposed to be critical for orienting S1 during its interaction with actin, a process that leads to muscle contraction. Mutation of the invariant proline to leucine (P838L) caused dominant restrictive cardiomyopathy in a pediatric patient (Karam et al., Congenit. Heart Dis. 3:138-43, 2008). Here, we use Drosophila melanogaster to model this mutation and dissect its effects on the biochemical and biophysical properties of myosin, as well as on the structure and physiology of skeletal and cardiac muscles. P838L mutant myosin isolated from indirect flight muscles of transgenic Drosophila showed elevated ATPase and actin sliding velocity in vitro. Furthermore, the mutant heads exhibited increased rotational flexibility, and there was an increase in the average angle between the two heads. Indirect flight muscle myofibril assembly was minimally affected in mutant homozygotes, and isolated fibers displayed normal mechanical properties. However, myofibrils degraded during aging, correlating with reduced flight abilities. In contrast, hearts from homozygotes and heterozygotes showed normal morphology, myofibrillar arrays, and contractile parameters. When P838L was placed in trans to Mhc(5), an allele known to cause cardiac restriction in flies, it did not yield the constricted phenotype. Overall, our studies suggest that increased rotational flexibility of myosin S1 enhances myosin ATPase and actin sliding. Moreover, instability of P838L myofibrils leads to decreased function during aging of Drosophila skeletal muscle, but not cardiac muscle, despite the strong evolutionary conservation of the P838 residue. PMID:27107639

  9. Mechanical muscle function, morphology, and fiber type in lifelong trained elderly

    DEFF Research Database (Denmark)

    Aagaard, Per; Magnusson, Peter S; Larsson, Benny;

    2007-01-01

    PURPOSE: Maximal muscle contraction force and muscle mass are both reduced during the natural aging process. Long-term training may be used to attenuate this age-related loss in muscle function and muscle size. METHODS: Maximum isometric quadriceps strength (MVC), rate of force development (RFD...... (i.e., lifelong) strength training. This relative preservation in muscle morphology and function may provide an important physical reserve capacity to retain muscle mass and function above the critical threshold for independent living at old age.......), and muscle fiber composition and size (CSA) were studied in elderly individuals (68-78 yr) chronically exposed (> 50 yr) to either endurance (E) or strength (S) training, and in age-matched, untrained (U) elderly group. RESULTS: E and S showed greater MVC than did U. Contractile RFD was elevated in S...

  10. Evaluation of cardiac structures and function in hypertrophic cardiomyopathy with magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To assess the capability of magnetic resonance imaging(MRI)in evaluating the cardiac structures and function in the hypertrophic cardiomyopathy(HCM).Methods:Fourteen healthy volunteers and eighteen cases with HCM verified by history,clinical presentation,electrocardiogram and echocardiography(ECG)were performed with MRI.The myocardial thickness of interventricular septum at the basal segment and that of posterolateral free wall of the left ventricle(LV)were measured.Some indexes for evaluating cardiac function were measured using ARGUS auto-quantitative program.Resuits:The myocardial thickness of septum at the basal segment had significant difference between the HCM patients and the healthy volunteers.There was no significant difference between MRI and ECG in examining end-diastolic volume,ejection fraction of the LV.Conclusion:MRI can fully provide more information on the abnormalities of cardiac anatomy and function;thus,it is of great value in clinical application.

  11. Systemic down-regulation of delta-9 desaturase promotes muscle oxidative metabolism and accelerates muscle function recovery following nerve injury.

    Directory of Open Access Journals (Sweden)

    Ghulam Hussain

    Full Text Available The progressive deterioration of the neuromuscular axis is typically observed in degenerative conditions of the lower motor neurons, such as amyotrophic lateral sclerosis (ALS. Neurodegeneration in this disease is associated with systemic metabolic perturbations, including hypermetabolism and dyslipidemia. Our previous gene profiling studies on ALS muscle revealed down-regulation of delta-9 desaturase, or SCD1, which is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Interestingly, knocking out SCD1 gene is known to induce hypermetabolism and stimulate fatty acid beta-oxidation. Here we investigated whether SCD1 deficiency can affect muscle function and its restoration in response to injury. The genetic ablation of SCD1 was not detrimental per se to muscle function. On the contrary, muscles in SCD1 knockout mice shifted toward a more oxidative metabolism, and enhanced the expression of synaptic genes. Repressing SCD1 expression or reducing SCD-dependent enzymatic activity accelerated the recovery of muscle function after inducing sciatic nerve crush. Overall, these findings provide evidence for a new role of SCD1 in modulating the restorative potential of skeletal muscles.

  12. Dynamics of cross-bridge cycling, ATP hydrolysis, force generation, and deformation in cardiac muscle.

    Science.gov (United States)

    Tewari, Shivendra G; Bugenhagen, Scott M; Palmer, Bradley M; Beard, Daniel A

    2016-07-01

    Despite extensive study over the past six decades the coupling of chemical reaction and mechanical processes in muscle dynamics is not well understood. We lack a theoretical description of how chemical processes (metabolite binding, ATP hydrolysis) influence and are influenced by mechanical processes (deformation and force generation). To address this need, a mathematical model of the muscle cross-bridge (XB) cycle based on Huxley's sliding filament theory is developed that explicitly accounts for the chemical transformation events and the influence of strain on state transitions. The model is identified based on elastic and viscous moduli data from mouse and rat myocardial strips over a range of perturbation frequencies, and MgATP and inorganic phosphate (Pi) concentrations. Simulations of the identified model reproduce the observed effects of MgATP and MgADP on the rate of force development. Furthermore, simulations reveal that the rate of force re-development measured in slack-restretch experiments is not directly proportional to the rate of XB cycling. For these experiments, the model predicts that the observed increase in the rate of force generation with increased Pi concentration is due to inhibition of cycle turnover by Pi. Finally, the model captures the observed phenomena of force yielding suggesting that it is a result of rapid detachment of stretched attached myosin heads. PMID:25681584

  13. PET measures of pre- and post-synaptic cardiac beta adrenergic function

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Stratton, John R.; Levy, Wayne; Poole, Jeanne E.; Shoner, Steven C.; Stuetzle, Werner; Caldwell, James H. E-mail: jcald@u.washington.edu

    2003-11-01

    Positron Emission Tomography was used to measure global and regional cardiac {beta}-adrenergic function in 19 normal subjects and 9 congestive heart failure patients. [{sup 11}C]-meta-hydroxyephedrine was used to image norepinephrine transporter function as an indicator of pre-synaptic function and [{sup 11}C]-CGP12177 was used to measure cell surface {beta}-receptor density as an indicator of post-synaptic function. Pre-synaptic, but not post-synaptic, function was significantly different between normals and CHF patients. Pre-synaptic function was well matched to post-synaptic function in the normal hearts but significantly different and poorly matched in the CHF patients studied. This imaging technique can help us understand regional sympathetic function in cardiac disease.

  14. Animal models of cardiac cachexia.

    Science.gov (United States)

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. PMID:27317993

  15. Pulmonary arterial dimensions and right ventricular function by cardiac MRI

    International Nuclear Information System (INIS)

    Objective: To evaluate the diagnostic value of cardiac magnetic resonance imaging (CMRI) for pulmonary arterial hypertension (PAH). Methods: One hundred and thirty patients with PAH confirmed by right cardiac catheterization were examined by CMRI and the results were compared with that of 31 healthy control participants. The main pulmonary artery diameter (MPAD), aortic diameter (AOD), main pulmonary artery diameter/aortic diameter (MPAD/AOD), right ventricular end-diastolic volume (RVEDV), right ventricular end-systolic volume (RVESV), right ventricular ejection fraction (RVEF) and right ventricular mass (RVM) were measured. The independent samples t-test was used to compare the PAH group with the control group. The Pearson correlation analysis and linear regression analysis were used to evaluate the relationship between cardiac and arterial measurements and pulmonary arterial pressure (PAP). Results: The MPAD, MPAD/AOD, RVEDV, RVESV, RVM in PAH group [(3.88 ±0.57) cm,1.36 ±0.17,(161.63 ±56.37) ml,(112.61 ±41.46) ml,(82.70 ± 20.73) g, respectively] were increased compared with those in normal control group [(2.74 ±0.31 ) cm, 0.90 ±0.07, (131.31 ± 15.14) ml, (61.33±9.00) ml, (44.39±5.87) g, respectively]. The RVSV and RVEF in PAH group[(49.02 ±19.20) ml, (30.76 ± 5.85 )%, respectively] were decreased compared with those in normal control group [(69.95 ± 9.63 )ml, (53.28 ± 4.14)%, respectively]. The MPAD, MPAD/AOD, RVEDV, RVESV, RVSV, RVEF, RVM were significantly different between PAH patients and control participants (tMPAD=10.82, tMPAD/AOD=14.93, tRVEDV=2.96, tRVESV=6.83, tRVSV=-5.89, tRVEF=-20.22, tRVM=10.12, respectively, P<0.01). There were no significant correlations between MPAD, RVEDV, RVESV, RVSV and PAP (r=0.299 for MPAD, r=0.127 for RVEDV, r=0.278 for RVESV, r=-0.229 for RVSV). Moderate positive correlations were found between MPAD/AOD, RVM and PAP (r=0.702 for MPAD/AOD, r=0.683 for RVM ). A moderate negative correlation was found between

  16. Data on mitochondrial function in skeletal muscle of old mice in response to different exercise intensity.

    Science.gov (United States)

    Kang, Chounghun; Lim, Wonchung

    2016-06-01

    Endurance exercise is securely linked to muscle metabolic adaptations including enhanced mitochondrial function ("Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle" [1], "Effects of exercise on mitochondrial content and function in aging human skeletal muscle" [2]). However, the link between exercise intensity and mitochondrial function in aging muscle has not been fully investigated. In order to understand how strenuous exercise affects mitochondrial function in aged mice, male C57BL/6 mice at age 24 months were randomly assigned to 3 groups: non-exercise (NE), low-intensity (LE) and high-intensity treadmill exercise group (HE). Mitochondrial complex activity and respiration were measured to evaluate mitochondrial function in mouse skeletal muscle. The data described here are related to the research article entitled "Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice" [3]. PMID:27222846

  17. The assessment of cardiac autonomic functions in adolescents with a family history of premature atherosclerosis

    Science.gov (United States)

    Dursun, Huseyin; Kilicaslan, Baris; Aydin, Mehmet

    2014-01-01

    OBJECTIVES: Subclinical atherosclerosis has been recently detected in adolescents with a family history of premature atherosclerosis. However, no studies in the literature have assessed the cardiac autonomic functions of these adolescents. The aim of this study was to evaluate the cardiac autonomic functions of adolescents with a family history of premature atherosclerosis compared with those of age- and gender-matched adolescents without a family history of atherosclerosis. METHOD: We evaluated the cardiac autonomic functions of 36 adolescents with a family history of premature atherosclerosis (Group 1) and compared them with those of 31 age- and gender-matched adolescents whose parents did not have premature atherosclerosis (Group 2). Twenty-four-hour time domain (standard deviation of all normal sinus RR intervals [SDNN], standard deviation of the mean of normal RR intervals in each 5-minute segment [SDANN], root-mean-square differences in successive RR intervals) and frequency domain (very low frequency, low frequency, high frequency, low frequency/high frequency) parameters of heart rate variability were used for the evaluation of cardiac autonomic functions. RESULTS: There were no differences in the time and frequency domain parameters of heart rate variability between the two groups. Heart rate was negatively correlated with SDNN (r = -0.278, p = 0.035), while age was significantly correlated with root-mean-square differences in successive RR intervals, high frequency, low frequency and low frequency/high frequency (r = -0.264, -0.370, 0.265 and 0.374, respectively; p<0.05 for all). CONCLUSION: We found that the cardiac autonomic functions of adolescents with a family history of premature atherosclerosis were not different compared with those of adolescents without a positive family history of premature atherosclerosis. It appears that subclinical atherosclerosis does not reach a critical value such that it can alter cardiac autonomic functions

  18. Assembly of a functional 3D primary cardiac construct using magnetic levitation

    Directory of Open Access Journals (Sweden)

    Matthew Hogan

    2016-07-01

    Full Text Available Easily assembled organotypic co-cultures have long been sought in medical research. In vitro tissue constructs with faithful representation of in vivo tissue characteristics are highly desirable for screening and characteristic assessment of a variety of tissue types. Cardiac tissue analogs are particularly sought after due to the phenotypic degradation and difficulty of culture of primary cardiac myocytes. This study utilized magnetic nanoparticles and primary cardiac myocytes in order to levitate and culture multicellular cardiac aggregates (MCAs. Cells were isolated from 2 day old Sprague Dawley rat hearts and subsequently two groups were incubated with either C1: 33 µL nanoshell/million cells or C2: 50 µL nanoshell/million cells. Varying numbers of cells for each concentration were cultured in a magnetic field in a 24 well plate and observed over a period of 12 days. Constructs generally formed spherical structures. Masson’s trichrome staining of a construct shows the presence of extracellular matrix protein, indicating the presence of functional fibroblasts. Many constructs exhibited noticeable contraction after 4 days of culture and continued contracting noticeably past day 9 of culture. Noticeable contractility indicates the presence of functional primary cardiac myocytes in culture. Phenotypic conservation of cardiac cells was ascertained using IHC staining by α-actinin and collagen. CD31 and fibrinogen were probed in order to assess localization of fibroblasts and endothelial cells. The study verifies a protocol for the use of magnetic levitation in order to rapidly assemble 3D cardiac like tissue with phenotypic and functional stability.

  19. Short-Term Effects of Transjugular Intrahepatic Shunt on Cardiac Function Assessed by Cardiac MRI: Preliminary Results

    International Nuclear Information System (INIS)

    The purpose of this study was to assess short-term effects of transjugular intrahepatic shunt (TIPS) on cardiac function with cardiac magnetic resonance imaging (MRI) in patients with liver cirrhosis. Eleven patients (six males and five females) with intractable esophageal varices or refractory ascites were imaged with MRI at 1.5 T prior to, within 24 h after, and 4-6 months after TIPS creation (n = 5). Invasive pressures were registered during TIPS creation. MRI consisted of a stack of contiguous slices as well as phase contrast images at all four valve planes and perpendicular to the portal vein. Imaging data were analyzed through time-volume curves and first derivatives. The portoatrial pressure gradient decreased from 19.8 ± 2.3 to 6.6 ± 2.3, accompanied by a nearly two fold increase in central pressures and pulmonary capillary wedge pressure immediately after TIPS creation. Left and right end diastolic volumes and stroke volumes increased by 11, 13, and 24%, respectively (p < 0.001), but dropped back to baseline at follow-up. End systolic volumes remained unchanged. E/A ratios remained within normal range. During follow-up the left ventricular mass was larger than baseline values in all patients, with an average increase of 7.9 g (p < 0.001). In conclusion, the increased volume load shunted to the heart after TIPS creation transiently exceeded the preload reserve of the right and left ventricle, leading to significantly increased pulmonary wedge pressures and persistent enlargement of the left and right atria. Normalization of cardiac dimensions was observed after months together with mild left ventricular hypertrophy.

  20. Effects of a single terlipressin administration on cardiac function and perfusion in cirrhosis

    DEFF Research Database (Denmark)

    Krag, Aleksander; Bendtsen, Flemming; Mortensen, Christian;

    2010-01-01

    BACKGROUND: The vasoconstrictor terlipressin is widely used in the treatment of the hepatorenal syndrome and variceal bleeding. However, terlipressin may compromise cardiac function and induce ischemia. AIM: Therefore, we aimed to assess the effects of terlipressin on cardiac function and perfusion...... with nonrefractory ascites, both at baseline and after terlipressin treatment. The decrease in the left ventricular wall thickening and wall motion correlated with the Child--Pugh score, r=-0.59, P=0.005 and r=-0.48, P=0.03. CONCLUSION: In advanced cirrhosis, the increase in afterload and EDV after...

  1. Evaluating the cardiac function of duchenne muscular dystrophy with Doppler Tei index

    International Nuclear Information System (INIS)

    Objective: To evaluate the cardiac function of early Duchenne muscular dystrophy (DMD) by left ventricular ejection fraction (LVEF) and pulse Doppler Tei index. Methods: Twenty-eight DMD patients and fifteen normal people were studied. LVEF, E/A and Tei index were measured and calculated by M-mode and Pulse wave Doppler respectively. Results: Compared with control group, Tei index and IRT were significantly high, and there were not significant difference in LVEF(%) and E/A. Conclusion: Tei index was valuable in assessing cardiac function of early DMD. (authors)

  2. Assessment of Cardiac Functions in Infants with Cow’s Milk Allergy

    OpenAIRE

    Ece, İbrahim; Demirören, Kaan; Demir, Nihat; Uner, Abdurrahman; Balli, Sevket

    2014-01-01

    Background Cow’s milk allergy is the most common food allergy in children, with rates estimated at 1.9% to 4.9%. Clinical phenotypes of cow’s milk allergy are varied and involve 1 or more target organs, with the main targets being the skin, respiratory system, and gastrointestinal tract. To date, no studies have investigated detailed cardiac function in children with cow’s milk allergy. The current study aimed to investigate cardiac function in infants with cow’s milk allergy. Material/Method...

  3. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, T W; Kjaer, M; Mackey, A L

    2011-01-01

    . Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross......The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging...... in skeletal muscle ECM contribute to the increased stiffness and impairment in force generated by the contracting muscle fibers seen with aging. The cellular interactions provide and potentially coordinate an adaptation to mechanical loading and ensure successful regeneration after muscle injury. Some...

  4. Skeletal muscle heat shock protein 70: Diverse functions and therapeutic potential for wasting disorders

    Directory of Open Access Journals (Sweden)

    Sarah M Senf

    2013-11-01

    Full Text Available The stress-inducible 70-kDa heat shock protein (HSP70 is a highly conserved protein with diverse intracellular and extracellular functions. In skeletal muscle, HSP70 is rapidly induced in response to both non-damaging and damaging stress stimuli including exercise and acute muscle injuries. This upregulation of HSP70 contributes to the maintenance of muscle fiber integrity and facilitates muscle regeneration and recovery. Conversely, HSP70 expression is decreased during muscle inactivity and aging, and evidence supports the loss of HSP70 as a key mechanism which may drive muscle atrophy, contractile dysfunction and reduced regenerative capacity associated with these conditions. To date, the therapeutic benefit of HSP70 upregulation in skeletal muscle has been established in rodent models of muscle injury, muscle atrophy, modified muscle use, aging, and muscular dystrophy, which highlights HSP70 as a key therapeutic target for the treatment of various conditions which negatively affect skeletal muscle mass and function. This article will review these important findings and provide perspective on the unanswered questions related to HSP70 and skeletal muscle plasticity which require further investigation.

  5. The Effect of Xin Mai Tong Capsules in Protecting Survival Cardiac Muscles of the Patients with Acute Myocardial Infarction

    Institute of Scientific and Technical Information of China (English)

    Qiu Ruixiang; Feng Jun; Meng Jun

    2005-01-01

    To study the effect of Composite Xin Mai Tong capsules (复方心脉通胶囊 CXMT) in protecting survival cardiac muscles in patients with acute myocardial infarction (AMI) after percutaneous transluminal coronary angioplasty (PTCA) operation. The treatment with Composite XMT capsules started 3 days prior to the operation and continued for a period of 4 weeks; and its effect on the number of segments of nuclide resting ventricular myocardial imaging, the nuclide defect extension score (ES) and nuclide defect severity score (SS),and the level of vascular endothelial growth factor (VEGF) of circulatory blood were determined and compared with that of the control group. More segments originally scored 1 turning to be scored 2 in nuclide imaging were seen in the treatment group than in the control group; and smaller ES and less SS seen in the former than in the latter group (P<0.05). Composite XMT capsules play an active role in myocardial salvage by promoting its metabolism and expression of circulatory VEGF. Its angiogenesis-like action helps establish collateral flow and has a positive role in myocardial salvage.

  6. [Functional features of the locomotor muscles of the locust].

    Science.gov (United States)

    Mandel'shtam, Iu E; Nasledov, G A

    1977-01-01

    The ultrastructure of muscle fibres, membrane electrical constants and synaptic membrane responses to microapplication of l-glutamate were investigated in longitudinal flight muscle and flexor tibia of Locusta migratoria migratorioides. The sarcomers of the flight muscle (fast) were smaller then those of the leg muscle (slow). The effective resistances (Ro) of the flight and leg muscles were (2.25 +/- 0.54)-10(5) omega and (1.65 +/- 0.57) X 10(5) omega. The specific resistance (Rm), space constant (tau) and time constant (lambda) in the same muscles were 774 +/- 106 omega-cm and 2583 +/- 119 omega-cm-2; 7.3 +/- 1.7 ms and 17.5 +/- 1.1 ms; 093 +/- 0.22 mm and 1.98 +/- 0.42 mm. When l-glutamate was applied iontophoretically to muscle fibres depolarization was recorded only in localized parts of the membrane. Microapplication of acetylcholine to intact and denervated muscle fibres of the slow leg muscle was uneffective. It is suggested that l-glutamic acid is the excitatory transmitter both in slow and fast insect muscles. PMID:927600

  7. Use It or Lose It: Skeletal Muscle Function and Performance Results from Space Shuttle

    Science.gov (United States)

    Ryder, Jeffrey

    2011-01-01

    The Space Shuttle Program provided a wealth of valuable information regarding the adaptations of skeletal muscle to weightlessness. Studies conducted during the Extended Duration Orbiter Medical Project (EDOMP) represented ground breaking work on the effects of spaceflight on muscle form and function from applied human research to cellular adaptations. Results from detailed supplementary objective (DSO) 477 demonstrated that muscle strength losses could occur rapidly in response to short-duration spaceflight. The effects of spaceflight-induced unloading were primarily restricted to postural muscles such as those of the back as well as the knee extensors. DSO 606 provided evidence from MRI that the observed strength losses were partially accounted for by a reduction in the size of the individual muscles. Muscle biopsy studies conducted during DSO 475 were able to show muscle atrophy in individual muscle fibers from the quadriceps muscles. Reduced quadriceps muscle size and strength was also observed during the 17-d Life and Microgravity Spacelab mission aboard STS-78. Multiple maximal strength tests were conducted in flight on the calf muscles and it has been hypothesized that these high force contractions may have acted as a countermeasure. Muscle fiber mechanics were studied on calf muscle samples pre- and postflight. While some responses were crewmember specific, the general trend was that muscle fiber force production dropped and shortening velocity increased. The increased shortening velocity helped to maintain muscle fiber power. Numerous rodent studies performed during Shuttle missions suggest that many of the effects reported in Shuttle crewmembers could be due to lesions in the cellular signaling pathways that stimulate protein synthesis as well as an increase in the mechanisms that up-regulate protein breakdown. The results have important implications regarding the overall health and performance capabilities of future crewmembers that will venture beyond

  8. Intermuscular Adipose Tissue Is Muscle Specific and Associated with Poor Functional Performance

    Directory of Open Access Journals (Sweden)

    Lori J. Tuttle

    2012-01-01

    Full Text Available Purpose. People with obesity, diabetes, and peripheral neuropathy have high levels of intermuscular adipose tissue (IMAT volume which has been inversely related to physical function. We determined if IMAT is muscle specific, if calf IMAT is different between a healthy obese group (HO, a group with diabetes mellitus (D, and a group with diabetes mellitus and peripheral neuropathy (DN, and if IMAT volume or the ratio of IMAT/muscle volume is related to physical function in these groups. Methods. 10 healthy obese people, 11 with type 2 diabetes, 24 with diabetes and peripheral neuropathy, had assessments of muscle morphology, physical function and muscle performance. Results. The gastrocnemius muscle had a higher ratio of IMAT/muscle volume than any other muscle or compartment. There were no differences between groups in calf muscle or IMAT volumes. Calf IMAT was inversely related to physical performance on the 6-minute walk test (r=−0.47 and physical performance test (r=−0.36. IMAT/muscle volume was inversely related to physical performance (PPT, r=−0.44; 6 MW r=−0.48; stair power, r=−0.30. Conclusions. IMAT accumulation varies in calf muscles, is highest in the gastrocnemius muscle, and is associated with poor physical performance.

  9. Association of plasma osteoprotegerin and adiponectin with arterial function, cardiac function and metabolism in asymptomatic type 2 diabetic men

    Directory of Open Access Journals (Sweden)

    Bjerre Mette

    2011-07-01

    Full Text Available Abstract Background Osteoprotegerin (OPG, a soluble member of the tumor necrosis factor receptor superfamily, is linked to cardiovascular disease. Negative associations exist between circulating OPG and cardiac function. The adipocytokine adiponectin (ADPN is downregulated in type 2 diabetes mellitus (T2DM and coronary artery disease and shows an inverse correlation with insulin sensitivity and cardiovascular disease risk. We assessed the relationship of plasma OPG and ADPN and arterial function, cardiac function and myocardial glucose metabolism in T2DM. Methods We included 78 asymptomatic men with uncomplicated, well-controlled T2DM, without inducible ischemia, assessed by dobutamine-stress echocardiography, and 14 age-matched controls. Cardiac function was measured by magnetic resonance imaging, myocardial glucose metabolism (MMRglu by 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography. OPG and ADPN levels were measured in plasma. Results T2DM patients vs. controls showed lower aortic distensibility, left ventricular (LV volumes, impaired LV diastolic function and MMRglu (all P P Conclusions OPG was inversely associated with aortic distensibility, LV volumes and LV diastolic function, while ADPN was positively associated with MMRglu. These findings indicate that in asymptomatic men with uncomplicated T2DM, OPG and ADPN may be markers of underlying mechanisms linking the diabetic state to cardiac abnormalities. Trial registration Current Controlled Trials ISRCTN53177482

  10. Normal values for inspiratory muscle function in children

    International Nuclear Information System (INIS)

    Assessment of inspiratory muscle function (IMF) is limited in children with neuromuscular disorders, because respiratory muscle tests are poorly standardized and valid normative data are unavailable. We investigated maximum inspiratory pressure after exhalation to residual volume (MIP), mouth occlusion pressure (P0.1) and time of inspiration during quiet breathing and derived inspiratory muscle load (P0.1/MIP), and tension time index (TTI) in 301 healthy schoolchildren 6–16 years old. Gender-specific and age-dependent percentile curves for MIP were drawn with the median, 5%, 10%, 25%, 75% and 95% percentile. P0.1 was equal in boys and girls (0.23  ±  0.11 kPa), while MIP was significantly higher in boys (6.8  ±  2.2 versus 5.8  ±  2.4 kPa). Consequently, P0.1/MIP (4.8% ± 3.2% versus 4.0% ± 3.1%) and TTI (0.2  ±  0.14 versus 0.16  ±  0.14) were significantly higher in girls. MIP was 2.90 + 0.36 × age (kPa) and 3.19 + 0.24 × age (kPa) in boys and girls, respectively. The 95% confidence intervals for boys and girls, respectively, were MIP, 6.3–7.3 kPA and 5.4–6.2 kPa; P0.1/MIP, 3.5%–4.5% and 4.3%–5.3%; TTI, 0.14–0.18 and 0.18–0.22; and P0.1, 0.20–0.24 kPa for both. IMF in children has a wide interindividual variability; however percentile curves facilitate a longitudinal assessment of individual patients. Furthermore, narrow confidence intervals allow for comparisons of study populations, making IMF an appropriate endpoint for clinical trials. (paper)

  11. Functional effects of KCNQ K+ channels in airway smooth muscle

    Science.gov (United States)

    Evseev, Alexey I.; Semenov, Iurii; Archer, Crystal R.; Medina, Jorge L.; Dube, Peter H.; Shapiro, Mark S.; Brenner, Robert

    2013-01-01

    KCNQ (Kv7) channels underlie a voltage-gated K+ current best known for control of neuronal excitability, and its inhibition by Gq/11-coupled, muscarinic signaling. Studies have indicated expression of KCNQ channels in airway smooth muscle (ASM), a tissue that is predominantly regulated by muscarinic receptor signaling. Therefore, we investigated the function of KCNQ channels in rodent ASM and their interplay with Gq/11-coupled M3 muscarinic receptors. Perforated-patch clamp of dissociated ASM cells detected a K+ current inhibited by the KCNQ antagonist, XE991, and augmented by the specific agonist, flupirtine. KCNQ channels begin to activate at voltages near resting potentials for ASM cells, and indeed XE991 depolarized resting membrane potentials. Muscarinic receptor activation inhibited KCNQ current weakly (~20%) at concentrations half-maximal for contractions. Thus, we were surprised to see that KCNQ had no affect on membrane voltage or muscle contractility following muscarinic activation. Further, M3 receptor-specific antagonist J104129 fumarate alone did not reveal KCNQ effects on muscarinic evoked depolarization or contractility. However, a role for KCNQ channels was revealed when BK-K+ channel activities are reduced. While KCNQ channels do control resting potentials, they appear to play a redundant role with BK calcium-activated K+ channels during ASM muscarinic signaling. In contrast to effect of antagonist, we observe that KCNQ agonist flupirtine caused a significant hyperpolarization and reduced contraction in vitro irrespective of muscarinic activation. Using non-invasive whole animal plethysmography, the clinically approved KCNQ agonist retigabine caused a transient reduction in indexes of airway resistance in both wild type and BK β1 knockout (KO) mice treated with the muscarinic agonist. These findings indicate that KCNQ channels can be recruited via agonists to oppose muscarinic evoked contractions and may be of therapeutic value as bronchodilators

  12. Functional effects of KCNQ K(+) channels in airway smooth muscle.

    Science.gov (United States)

    Evseev, Alexey I; Semenov, Iurii; Archer, Crystal R; Medina, Jorge L; Dube, Peter H; Shapiro, Mark S; Brenner, Robert

    2013-01-01

    KCNQ (Kv7) channels underlie a voltage-gated K(+) current best known for control of neuronal excitability, and its inhibition by Gq/11-coupled, muscarinic signaling. Studies have indicated expression of KCNQ channels in airway smooth muscle (ASM), a tissue that is predominantly regulated by muscarinic receptor signaling. Therefore, we investigated the function of KCNQ channels in rodent ASM and their interplay with Gq/11-coupled M3 muscarinic receptors. Perforated-patch clamp of dissociated ASM cells detected a K(+) current inhibited by the KCNQ antagonist, XE991, and augmented by the specific agonist, flupirtine. KCNQ channels begin to activate at voltages near resting potentials for ASM cells, and indeed XE991 depolarized resting membrane potentials. Muscarinic receptor activation inhibited KCNQ current weakly (~20%) at concentrations half-maximal for contractions. Thus, we were surprised to see that KCNQ had no affect on membrane voltage or muscle contractility following muscarinic activation. Further, M3 receptor-specific antagonist J104129 fumarate alone did not reveal KCNQ effects on muscarinic evoked depolarization or contractility. However, a role for KCNQ channels was revealed when BK-K(+) channel activities are reduced. While KCNQ channels do control resting potentials, they appear to play a redundant role with BK calcium-activated K(+) channels during ASM muscarinic signaling. In contrast to effect of antagonist, we observe that KCNQ agonist flupirtine caused a significant hyperpolarization and reduced contraction in vitro irrespective of muscarinic activation. Using non-invasive whole animal plethysmography, the clinically approved KCNQ agonist retigabine caused a transient reduction in indexes of airway resistance in both wild type and BK β1 knockout (KO) mice treated with the muscarinic agonist. These findings indicate that KCNQ channels can be recruited via agonists to oppose muscarinic evoked contractions and may be of therapeutic value as

  13. Functional effects of KCNQ K+ channels in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Alexey I Evseev

    2013-10-01

    Full Text Available KCNQ (Kv7 channels underlie a voltage-gated K+ current best known for control of neuronal excitability, and its inhibition by Gq/11-coupled, muscarinic signaling. Studies have indicated expression of KCNQ channels in airway smooth muscle (ASM, a tissue that is predominantly regulated by muscarinic receptor signaling. Therefore we investigated the function of KCNQ channels in rodent ASM and their interplay with Gq/11-coupled M3 muscarinic receptors. Perforated-patch clamp of dissociated ASM cells detected a K+ current inhibited by the KCNQ antagonist, XE991, and augmented by the specific agonist, flupirtine. KCNQ channels begin to activate at voltages near resting potentials for ASM cells, and indeed XE991 depolarized resting membrane potentials. Muscarinic receptor activation inhibited KCNQ current weakly (~20% at concentrations half-maximal for contractions. Thus, we were surprised to see that KCNQ had no affect on membrane voltage or muscle contractility following muscarinic activation. Further, M3 receptor-specific antagonist J104129 fumarate alone did not reveal KCNQ effects on muscarinic evoked depolarization or contractility. However a role for KCNQ channels was revealed when BK-K+ channel activities are reduced. While KCNQ channels do control resting potentials, they appear to play a redundant role with BK calcium-activated K+ channels during ASM muscarinic signaling. In contrast to effect of antagonist, we observe that KCNQ agonist flupirtine caused a significant hyperpolarization and reduced contraction in vitro irrespective of muscarinic activation. Using non-invasive whole animal plethysmography, the clinically approved KCNQ agonist retigabine caused a transient reduction in indexes of airway resistance in both wild type and BK β1 knockout mice treated with the muscarinic agonist. These findings indicate that KCNQ channels can be recruited via agonists to oppose muscarinic evoked contractions and may be of therapeutic value as

  14. Effects of sedation with low-dosage dexmedetomidine on cardiac function in elderly surgical patients

    Directory of Open Access Journals (Sweden)

    Yu LANG

    2011-09-01

    Full Text Available Objective To investigate the influence of continuous infusion of low-dose dexmedetomidine(DEX for sedation on cardiac function index in elderly surgical patients,and assess the impacts on circulation.Methods Sixty elderly surgical patients were randomized into DEX group and control group(30 each.The sex ratio of the patients was 24/36(male/female,and age from 65 to 89 years.After the cannulation of left radial artery,the arterial pressure continuous cardiac output(APCO monitor(Edwards,USA was connected,and the cardiac function index was continuously monitored,including cardiac output index(CI,stroke volume index(SVI,heart rate(HR and mean arterial pressure(MAP.The patients in DEX group were infused with DEX at 0.4μg(kg·h for 10min following intrathecal anesthesia,then the infusion rate was adjusted from 0.2 to 0.4μg(kg·h to keep the bispectral index values(BIS maintained between 75 and 85.Normal saline was administered with an equal volume in control group.The MAP,HR,respiration rate(RR,pulse oxygen saturation(SpO2,the partial pressure of end-tidal carbon dioxide(PETCO2 and BIS were recorded immediately at the DEX infusion(T0,and 10min(T1,20min(T2,30min(T3,60min(T4 after DEX infusion,and the end of surgery(T5.All cardiac function data were statistically analyzed,and P 0.05.Conclusion The sedation with continuous infusion of small-dosage DEX during intrathecal anesthesia in elderly surgical patients may have little impact on cardiac function index,but the conclusion remains to be verified with large sample and multicenter research.

  15. Associations between muscle strength, spirometric pulmonary function and mobility in healthy older adults

    OpenAIRE

    Sillanpää, Elina; Stenroth, Lauri; Bijlsma, A. Y.; Rantanen, Taina; McPhee, J. S.; Maden-Wilkinson, T. M.; Jones, D. A.; Narici, M. V.; Gapeyeva, H.; Pääsuke, M.; Barnouin, Y.; Butler-Browne, G S; Meskers, C. G.; Maier, A. B.; Törmäkangas, Timo

    2014-01-01

    Background: Pathological obstruction in lungs leads to severe decreases in muscle strength and mobility in patients suffering from chronic obstructive pulmonary disease. The purpose of this study was to investigate the interdependency between muscle strength, spirometric pulmonary functions and mobility outcomes in healthy older men and women, where skeletal muscle and pulmonary function decline without interference of overt disease. Methods: 135 69 to 81‐yr‐old participants...

  16. Fatigue alters in vivo function within and between limb muscles during locomotion

    OpenAIRE

    Biewener, Andrew A.; Higham, Timothy E.

    2008-01-01

    Muscle fatigue, a reduction in force as a consequence of exercise, is an important factor for any animal that moves, and can result from both peripheral and/or central mechanisms. Although much is known about whole-limb force generation and activation patterns in fatigued muscles under sustained isometric contractions, little is known about the in vivo dynamics of limb muscle function in relation to whole-body fatigue. Here we show that limb kinematics and contractile function in the lateral ...

  17. Molecule specific effects of PKA-mediated phosphorylation on rat isolated heart and cardiac myofibrillar function.

    Science.gov (United States)

    Hanft, Laurin M; Cornell, Timothy D; McDonald, Colin A; Rovetto, Michael J; Emter, Craig A; McDonald, Kerry S

    2016-07-01

    Increased cardiac myocyte contractility by the β-adrenergic system is an important mechanism to elevate cardiac output to meet hemodynamic demands and this process is depressed in failing hearts. While increased contractility involves augmented myoplasmic calcium transients, the myofilaments also adapt to boost the transduction of the calcium signal. Accordingly, ventricular contractility was found to be tightly correlated with PKA-mediated phosphorylation of two myofibrillar proteins, cardiac myosin binding protein-C (cMyBP-C) and cardiac troponin I (cTnI), implicating these two proteins as important transducers of hemodynamics to the cardiac sarcomere. Consistent with this, we have previously found that phosphorylation of myofilament proteins by PKA (a downstream signaling molecule of the beta-adrenergic system) increased force, slowed force development rates, sped loaded shortening, and increased power output in rat skinned cardiac myocyte preparations. Here, we sought to define molecule-specific mechanisms by which PKA-mediated phosphorylation regulates these contractile properties. Regarding cTnI, the incorporation of thin filaments with unphosphorylated cTnI decreased isometric force production and these changes were reversed by PKA-mediated phosphorylation in skinned cardiac myocytes. Further, incorporation of unphosphorylated cTnI sped rates of force development, which suggests less cooperative thin filament activation and reduced recruitment of non-cycling cross-bridges into the pool of cycling cross-bridges, a process that would tend to depress both myocyte force and power. Regarding MyBP-C, PKA treatment of slow-twitch skeletal muscle fibers caused phosphorylation of MyBP-C (but not slow skeletal TnI (ssTnI)) and yielded faster loaded shortening velocity and ∼30% increase in power output. These results add novel insight into the molecular specificity by which the β-adrenergic system regulates myofibrillar contractility and how attenuation of PKA

  18. Functional analysis of the biceps femoris muscle during locomotor behavior in some primates.

    Science.gov (United States)

    Kumakura, H

    1989-07-01

    In order to investigate a correlation between morphological variations of the biceps femoris muscle and its homologues in four primate species (Japanese macaque, spider monkey, white-handed gibbon, and chimpanzee) and each type of species-specific locomotor behavior, I carried out both morphological and functional analyses of these muscles. The description of the level of insertion reveals interspecific variation is in the level of crural attachment, especially in species with a bicipital biceps femoris muscle. Electromyograms (EMGs) were induced from both the long and short head of the biceps femoris muscle during four kinds of locomotor behavior (horizontal quadrupedal walking, climbing on an inclined pole, vertical climbing, and bipedal walking). In the case of the monoceptual ischiocruralis lateralis muscle of the Japanese macaque, EMGs were induced from both the one-joint femoral part and the two-joint crural part. Though during horizontal quadrupedal locomotion the crural part of the monocipital-type muscle functioned to maintain the knee joint angle, it functioned to gain propulsive force when the kinematic load became larger, as in vertical climbing and bipedal walking. On the other hand, the long heads of the biceps femoris muscles were active in propulsion regardless of the kinematic load. But in bipedal walking, the long head muscle also acted with the short head muscle to maintain the knee joint angle. These functional features of various biceps femoris muscles of primates correlated with their species-specific locomotor behavior. PMID:2504047

  19. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  20. Persistence of functional sympatholysis post-exercise in human skeletal muscle

    Directory of Open Access Journals (Sweden)

    MichaelETschakovsky

    2013-06-01

    Full Text Available Blunting of sympathetic vasoconstriction in exercising muscle is well established. Whether it persists during the early post-exercise period is unknown. This study tested the hypothesis that it persists in human skeletal muscle during the first 10 minutes of recovery from exercise. Eight healthy young males (21.4 ±0.8 yrs, SE performed 7 minutes of forearm rhythmic isometric handgrip exercise at 15% below forearm critical power. In separate trials, a cold pressor test (CPT of 2 min duration was used to evoke forearm sympathetic vasoconstriction in each of Rest (R, Steady State Exercise (Ex, 2-4 min Post Exercise (PEearly, and 8-10 min Post Exercise (PElate. A 7 min control exercise trial with no CPT was also performed. Exercising forearm brachial artery blood flow, arterial blood pressure, cardiac output, heart rate, forearm deep venous catecholamine concentration and arterialized venous catecholamine concentration were obtained immediately prior to and following the CPT in each trial. CPT resulted in a significant increase in forearm venous plasma norepinephrine concentration in all trials (P=0.007, but no change in arterialized plasma norepinephrine (P=0.32. CPT did not change forearm venous plasma epinephrine (P=0.596 or arterialized plasma epinephrine concentration (P=0.15. As assessed by the %reduction in forearm vascular conductance (FVC the CPT evoked a robust vasoconstriction at rest that was severely blunted in exercise (R -39.9 ±4.6% vs. Ex 5.5 ±7.4%, P<0.001. This blunting of vasoconstriction persisted at PEearly (-12.3 ±10.1%, P=0.02 and PElate (-18.1 ±8.2%, P=0.03 post-exercise. In conclusion, functional sympatholysis remains evident in human skeletal muscle as much as 10 min after the end of a bout of forearm exercise. Persistence of functional sympatholysis may have important implications for blood pressure regulation in the face of a challenge to blood pressure following exercise.

  1. A portable cadmium telluride multidetector probe for cardiac function monitoring

    CERN Document Server

    Arntz, Y; Dumitresco, B; Eclancher, B; Prat, V

    1999-01-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) wh...

  2. CARDIAC TRANSPLANT REJECTION AND NON-INVASIVE COMON CAROTID ARTERY WALL FUNCTIONAL INDICES

    OpenAIRE

    A. O. Shevchenko; I. U. Tunjaieva; A. A. Nasyrova; B. L. Mironkov; I. M. Ilinsky; N. P. Mozhejko; I. I. Muminov; O. P. Shevchenko

    2015-01-01

    Allograft rejection would entail an increase in certain blood biomarkers and active substances derived from activated inflammatory cells which could influence entire vascular endothelial function and deteriorate arterial wall stiffness. We propose that carotid wall functional indices measured with non-invasive ultrasound could we valuable markers of the subclinical cardiac allograft rejection. Aim. Our goal was to analyze the clinical utility of functional common carotid wall (CCW) variables ...

  3. Cardiac function during exercise in patients with coronary bypass surgery assessed by continuous ventricular function monitoring

    International Nuclear Information System (INIS)

    The response of left ventricular function during exercise and recovery after exercise was assessed in 52 patients with coronary artery bypass surgery by means of a radionuclide continuous ventricular function monitor. This system consists of 2 radionuclide detectors, recorder and a computer. After the equilibration of 20 mCi technetium 99m-labeled autologaous red blood cells into the intravascular space, the beat by beat radionuclide data were summed for 20-sec intervals to measure left ventricular ejection fraction (EF). Before surgery, the mean EF decreased with exercise from 51±9% to 45±11% (p<0.001). Cardiac response was divided into 4 types according to the profiles of the EFs during exercise. In 6 patients, EF continued to increase until maximal exercise (type A). In 10 patients, EF initially increased and then decreased in late exercise stages (type B). In 9 patients, EF did not change significantly during exercise (type C). In 27 patients, EF decreased throughout exercise (type D). After surgery, the mean EF increased with exercise from 53±10% to 60±13% (p<0.001). Thirty-five patients showed type A, 9 type B, 5 type C, and 3 type D. Two type D and 5 type B patients had occluded grafts or ungrafted coronary arteries. Four patients with complete revascularization including an internal thoracic artery and saphenous vein grafts showed type B. Three patients with extensive infarction and poor left ventricular function showed type C. The time interval between the end of exercise and the point of maximal EF during recovery after exercise was reduced from 168 sec before surgery to 98 sec after surgery (p<0.001). The continuous ventricular function monitor elucidated changes in left ventricular function during exercise and recovery after exercise and provided a new aspect of assessing the effects of coronary bypass surgery. (author)

  4. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles.

    Science.gov (United States)

    Sugo, Tsukasa; Terada, Michiko; Oikawa, Tatsuo; Miyata, Kenichi; Nishimura, Satoshi; Kenjo, Eriya; Ogasawara-Shimizu, Mari; Makita, Yukimasa; Imaichi, Sachiko; Murata, Shumpei; Otake, Kentaro; Kikuchi, Kuniko; Teratani, Mika; Masuda, Yasushi; Kamei, Takayuki; Takagahara, Shuichi; Ikeda, Shota; Ohtaki, Tetsuya; Matsumoto, Hirokazu

    2016-09-10

    Despite considerable efforts to develop efficient carriers, the major target organ of short-interfering RNAs (siRNAs) remains limited to the liver. Expanding the application outside the liver is required to increase the value of siRNAs. Here we report on a novel platform targeted to muscular organs by conjugation of siRNAs with anti-CD71 Fab' fragment. This conjugate showed durable gene-silencing in the heart and skeletal muscle for one month after intravenous administration in normal mice. In particular, 1μg siRNA conjugate showed significant gene-silencing in the gastrocnemius when injected intramuscularly. In a mouse model of peripheral artery disease, the treatment with myostatin-targeting siRNA conjugate by intramuscular injection resulted in significant silencing of myostatin and hypertrophy of the gastrocnemius, which was translated into the recovery of running performance. These data demonstrate the utility of antibody conjugation for siRNA delivery and the therapeutic potential for muscular diseases. PMID:27369865

  5. Clinical investigation: thyroid function test abnormalities in cardiac arrest associated with acute coronary syndrome

    Science.gov (United States)

    Iltumur, Kenan; Olmez, Gonul; Arıturk, Zuhal; Taskesen, Tuncay; Toprak, Nizamettin

    2005-01-01

    Introduction It is known that thyroid homeostasis is altered during the acute phase of cardiac arrest. However, it is not clear under what conditions, how and for how long these alterations occur. In the present study we examined thyroid function tests (TFTs) in the acute phase of cardiac arrest caused by acute coronary syndrome (ACS) and at the end of the first 2 months after the event. Method Fifty patients with cardiac arrest induced by ACS and 31 patients with acute myocardial infarction (AMI) who did not require cardioversion or cardiopulmonary resuscitation were enrolled in the study, as were 40 healthy volunteers. The patients were divided into three groups based on duration of cardiac arrest (10 min). Blood samples were collected for thyroid-stimulating hormone (TSH), tri-iodothyronine (T3), free T3, thyroxine (T4), free T4, troponin-I and creatine kinase-MB measurements. The blood samples for TFTs were taken at 72 hours and at 2 months after the acute event in the cardiac arrest and AMI groups, but only once in the control group. Results The T3 and free T3 levels at 72 hours in the cardiac arrest group were significantly lower than in both the AMI and control groups (P 0.05). At the 2-month evaluation, a dramatic improvement was observed in T3 and free T3 levels in the cardiac arrest group (P < 0.0001). In those patients whose cardiac arrest duration was in excess of 10 min, levels of T3, free T3, T4 and TSH were significantly lower than those in patients whose cardiac arrest duration was under 5 min (P < 0.001, P < 0.001, P < 0.005 and P < 0.05, respectively). Conclusion TFTs are significantly altered in cardiac arrest induced by ACS. Changes in TFTs are even more pronounced in patients with longer periods of resuscitation. The changes in the surviving patients were characterized by euthyroid sick syndrome, and this improved by 2 months in those patients who did not progress into a vegetative state. PMID:16137355

  6. Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: a brief review.

    Science.gov (United States)

    Abe, Takashi; Loenneke, Jeremy P; Thiebaud, Robert S

    2015-08-01

    Ultrasound is a potential method for assessing muscle size of the extremity and trunk. In a large muscle, however, a single image from portable ultrasound measures only muscle thickness (MT), not anatomical muscle cross-sectional area (CSA) or muscle volume (MV). Thus, it is important to know whether MT is related to anatomical CSA and MV in an individual muscle of the extremity and trunk. In this review, we summarize previously published articles in the lower extremity demonstrating the relationships between ultrasound MT and muscle CSA or MV as measured by magnetic resonance imaging and computed tomography scans. The relationship between MT and isometric and isokinetic joint performance is also reviewed. A linear relationship is observed between MT and muscle CSA or MV in the quadriceps, adductor, tibialis anterior, and triceps surae muscles. Intrarater correlation coefficients range from 0.90 to 0.99, except for one study. It would appear that anterior upper-thigh MT, mid-thigh MT and posterior thigh MT are the best predictors for evaluating adductor, quadriceps, and hamstrings muscle size, respectively. Despite a limited number of studies, anterior as well as posterior lower leg MT appear to reflect muscle CSA and MV of the lower leg muscles. Based on previous studies, ultrasound measured anterior thigh MT may be a valuable predictor of knee extension strength. Nevertheless, more studies are needed to clarify the relationship between lower extremity function and MT. PMID:27433253

  7. Engineering a growth factor embedded nanofiber matrix niche to promote vascularization for functional cardiac regeneration.

    Science.gov (United States)

    Lakshmanan, Rajesh; Kumaraswamy, Priyadharshini; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2016-08-01

    The major loss of tissue extracellular matrix (ECM) after myocardial ischemia is a serious burden that gradually leads to heart failure. Due to lack of available treatment methods to restore the cardiac function, various research strategies have come up to treat the ischemic myocardium. However these have met with limited success due to the complexity of the cardiac tissue, which exhibits a nanofibrous collagenous matrix with spatio-temporal localization of a combination of growth factors. To mimic the topographical and chemical cues of the natural cardiac tissue, we have fabricated a growth factor embedded nanofibrous scaffold through electrospinning. In our previous work, we have reported a nanofibrous matrix made of PLCL and PEOz with an average diameter of 500 nm. The scaffold properties were specifically characterized in vitro for cardio-compatibility. In the present study, we have loaded dual growth factors VEGF and bFGF in the nanofiber matrix and investigated its suitability for cardiac tissue engineering. The encapsulation and release of dual growth factors from the matrix were studied using XPS and ELISA. Bioactivity of the loaded growth factors towards proliferation and migration of endothelial cells (HUVECs) was evaluated through MTS and Boyden chamber assays respectively. The efficiency of growth factors on the nanofibrous matrix to activate signaling molecules was studied in HUVECs through gene expression analysis. Preclinical evaluation of the growth factor embedded nanofibrous patch in a rabbit acute myocardial infarction (AMI) model was studied and cardiac function assessment was made through ECG and echocardiography. The evidence for angiogenesis in the patch secured regions was analyzed through histopathology and immunohistochemistry. Our results confirm the effectiveness of growth factor embedded nanofiber matrix in restoration of cardiac function after ischemia when compared to conventional patch material thereby exhibiting promise as a

  8. Effect of physical exercise training on muscle strength and body composition, and their association with functional capacity and quality of life in patients with atrial fibrillation

    DEFF Research Database (Denmark)

    Osbak, Philip Samuel; Mourier, Malene; Henriksen, Jens Henrik;

    2012-01-01

    Objective: Atrial fibrillation diminishes cardiac function, exercise tolerance and quality of life. The objective of this study was to determine whether exercise training in atrial fibrillation affects muscle strength, body composition, maximal exercise capacity and walking capacity positively......, thus improving quality of life. Design: Randomized clinical trial. Twelve weeks of physical exercise training or control. Patients: Forty-nine patients in permanent atrial fibrillation were randomized to training or control. Methods: Intervention consisted of aerobic training for 1 h 3 times per week...... at 70% of maximal exercise capacity vs control. Muscle strength, exercise capacity, 6-minute walk test, lean body mass, fat percentage, and quality of life were assessed. Results: Muscle strength increased in the training group (p = 0.01), but no change was observed in controls. Lean body mass was...

  9. Value of plasma ADMA in predicting cardiac structure and function of patients with chronic kidney diseases

    Institute of Scientific and Technical Information of China (English)

    叶建华

    2012-01-01

    Objective To explore the predicting value of plasma asymmetric dimethylarginine (ADMA) in cardiac structure and function of patients with chronic kidney diseases(CKD). Methods A total of 100 CKD patients were enrolled in this cross-sectional study. According to staging of the

  10. Early association of electrocardiogram alteration with infarct size and cardiac function after myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    陶则伟; 黄元伟; 夏强; 傅军; 赵志宏; 陆贤; BRUCEI.C.

    2004-01-01

    Objective:Myocardial infarction (MI) is the main cause of heart failure, but the relationship between the extent of MI and cardiac function has not been clearly determined.The present study was undertaken to investigate early changes in the electrocardiogram associated with infarct size and cardiac function after MI. Methods: MI was induced by ligating the left anterior descending coronary artery in rats. Electrocardiograms, echocardiographs and hemodynamic parameters were assessed and myocardial infarct size was measured from mid-transverse sections stained with Masson's trichrome. Results:The sum of pathological Q wave amplitudes was strongly correlated with myocardial infarct size (r=0.920, P<0.0001), left ventricular ejection fraction (r=-0.868, P<0.0001) and left ventricular end diastolic pressure (r=0.835, P<0.0004).Furthermore, there was close relationship between MI size and cardiac function as assessed by left ventricular ejection fraction (r=-0.913, P<0.0001) and left ventricular end diastolic pressure (r=0.893, P<0.0001).Conclusion: The sum of pathological Q wave amplitudes after MI can be used to estimate the extent of MI as well as cardiac function.

  11. Teaching Cardiac Autonomic Function Dynamics Employing the Valsalva (Valsalva-Weber) Maneuver

    Science.gov (United States)

    Junqueira, Luiz Fernando, Jr.

    2008-01-01

    In this report, a brief history of the Valsalva (Valsalva-Weber) maneuver is outlined, followed by an explanation on the use of this approach for the evaluation of cardiac autonomic function based on underlying heart rate changes. The most important methodological and interpretative aspects of the Valsalva-Weber maneuver are critically updated,…

  12. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    Science.gov (United States)

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  13. Performance of automated software in the assessment of segmental left ventricular function in cardiac CT: Comparison with cardiac magnetic resonance

    International Nuclear Information System (INIS)

    To evaluate the accuracy, reliability and time saving potential of a novel cardiac CT (CCT)-based, automated software for the assessment of segmental left ventricular function compared to visual and manual quantitative assessment of CCT and cardiac magnetic resonance (CMR). Forty-seven patients with suspected or known coronary artery disease (CAD) were enrolled in the study. Wall thickening was calculated. Segmental LV wall motion was automatically calculated and shown as a colour-coded polar map. Processing time for each method was recorded. Mean wall thickness in both systolic and diastolic phases on polar map, CCT, and CMR was 9.2 ± 0.1 mm and 14.9 ± 0.2 mm, 8.9 ± 0.1 mm and 14.5 ± 0.1 mm, 8.3 ± 0.1 mm and 13.6 ± 0.1 mm, respectively. Mean wall thickening was 68.4 ± 1.5 %, 64.8 ± 1.4 % and 67.1 ± 1.4 %, respectively. Agreement for the assessment of LV wall motion between CCT, CMR and polar maps was good. Bland-Altman plots and ICC indicated good agreement between CCT, CMR and automated polar maps of the diastolic and systolic segmental wall thickness and thickening. The processing time using polar map was significantly decreased compared with CCT and CMR. Automated evaluation of segmental LV function with polar maps provides similar measurements to manual CCT and CMR evaluation, albeit with substantially reduced analysis time. (orig.)

  14. Performance of automated software in the assessment of segmental left ventricular function in cardiac CT: Comparison with cardiac magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Capital Medical University, Department of Radiology, Beijing Anzhen Hospital, Beijing (China); Meinel, Felix G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Ludwig-Maximilians-University Hospital, Institute for Clinical Radiology, Munich (Germany); Schoepf, U.J. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Canstein, Christian [Siemens Medical Solutions USA, Malvern, PA (United States); Spearman, James V. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); De Cecco, Carlo N. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Departments of Radiological Sciences, Oncology and Pathology, Latina (Italy)

    2015-12-15

    To evaluate the accuracy, reliability and time saving potential of a novel cardiac CT (CCT)-based, automated software for the assessment of segmental left ventricular function compared to visual and manual quantitative assessment of CCT and cardiac magnetic resonance (CMR). Forty-seven patients with suspected or known coronary artery disease (CAD) were enrolled in the study. Wall thickening was calculated. Segmental LV wall motion was automatically calculated and shown as a colour-coded polar map. Processing time for each method was recorded. Mean wall thickness in both systolic and diastolic phases on polar map, CCT, and CMR was 9.2 ± 0.1 mm and 14.9 ± 0.2 mm, 8.9 ± 0.1 mm and 14.5 ± 0.1 mm, 8.3 ± 0.1 mm and 13.6 ± 0.1 mm, respectively. Mean wall thickening was 68.4 ± 1.5 %, 64.8 ± 1.4 % and 67.1 ± 1.4 %, respectively. Agreement for the assessment of LV wall motion between CCT, CMR and polar maps was good. Bland-Altman plots and ICC indicated good agreement between CCT, CMR and automated polar maps of the diastolic and systolic segmental wall thickness and thickening. The processing time using polar map was significantly decreased compared with CCT and CMR. Automated evaluation of segmental LV function with polar maps provides similar measurements to manual CCT and CMR evaluation, albeit with substantially reduced analysis time. (orig.)

  15. Troponin Ⅰ,cardiac diastolic dysfunction and restrictive cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Xu-pei HUANG; Jian-feng DU

    2004-01-01

    Cardiomyopathies are diseases of heart muscle that are associated with cardiac dysfunction. Molecular genetic studies performed to date have demonstrated that the damage or mutations in several sarcomeric contractile protein genes are associated with the development of the diseases. In this review, cardiac troponin Ⅰ, one of the sarcomeric thin filament protein, will be discussed regarding its role in cardiac function, its deficiency-related diastolic dysfunction, and the mutation of this protein-mediated restrictive cardiomyopathy.

  16. Insulin resistance and mitochondrial function in skeletal muscle

    DEFF Research Database (Denmark)

    Dela, Flemming; Helge, Jørn Wulff

    2013-01-01

    are used in the attempt to resolve the mechanisms of insulin resistance. In this context, a dysfunction of mitochondria in the skeletal muscle has been suggested to play a pivotal role. It has been postulated that a decrease in the content of mitochondria in the skeletal muscle can explain the insulin...

  17. Effects of sedation with low-dosage dexmedetomidine on cardiac function in elderly surgical patients

    OpenAIRE

    Yu LANG; Tian-long WANG

    2011-01-01

    Objective To investigate the influence of continuous infusion of low-dose dexmedetomidine(DEX) for sedation on cardiac function index in elderly surgical patients,and assess the impacts on circulation.Methods Sixty elderly surgical patients were randomized into DEX group and control group(30 each).The sex ratio of the patients was 24/36(male/female),and age from 65 to 89 years.After the cannulation of left radial artery,the arterial pressure continuous cardiac output(APCO) monitor(Edwards,USA...

  18. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Fish embryos exposed to complex mixtures of polycyclic aromatic hydrocarbons (PAHs) from petrogenic sources show a characteristic suite of abnormalities, including cardiac dysfunction, edema, spinal curvature, and reduction in the size of the jaw and other craniofacial structures. To elucidate the toxic mechanisms underlying these different defects, we exposed zebrafish (Danio rerio) embryos to seven non-alkylated PAHs, including five two- to four-ring compounds that are abundant in crude oil and two compounds less abundant in oil but informative for structure-activity relationships. We also analyzed two PAH mixtures that approximate the composition of crude oil at different stages of weathering. Exposure to the three-ring PAHs dibenzothiophene and phenanthrene alone was sufficient to induce the characteristic suite of defects, as was genetic ablation of cardiac function using a cardiac troponin T antisense morpholino oligonucleotide. The primary etiology of defects induced by dibenzothiophene or phenanthrene appears to be direct effects on cardiac conduction, which have secondary consequences for late stages of cardiac morphogenesis, kidney development, neural tube structure, and formation of the craniofacial skeleton. The relative toxicity of the different mixtures was directly proportional to the amount of phenanthrene, or the dibenzothiophene-phenanthrene total in the mixture. Pyrene, a four-ring PAH, induced a different syndrome of anemia, peripheral vascular defects, and neuronal cell death, similar to the effects previously described for potent aryl hydrocarbon receptor ligands. Therefore, different PAH compounds have distinct and specific effects on fish at early life history stages

  19. Use of the cardiopulmonary flow index to evaluate cardiac function in thoroughbred horses

    International Nuclear Information System (INIS)

    The ratio of the cardiopulmonary blood volume to stroke volume is called the cardiopulmonary flow index (CPFI). The CPFI can be determined indirectly from the simultaneous recording of a radiocardiogram and an electrocardiogram. The CPFI and cardiac output were measured simultaneously in horses that were diagnosed as having cardiac disease. The results obtained from these subjects were compared with those from control animals and significant differences were found between the mean CPFI of the control horses and those with macroscopically visible myocardial fibrosis on post mortem examination. No significant differences were found between the means of the cardiac output measured in either of the groups of horses. The effect of pharmacological acceleration of the heart rate on the CPFI was also studied. Significant differences were found between the mean CPFI and the slopes of the regression lines of CPFI on heart rate of the control and principal groups of horses. These differences were greatest at heart rates near to the resting heart rates of the individuals. The CPFI was found to be a more sensitive measure of cardiac function than cardiac output, in the horses. 16 refs., 2 figs., 2 tabs

  20. Muscle function may depend on model selection in forward simulation of normal walking

    OpenAIRE

    Xiao, Ming; Higginson, Jill S.

    2008-01-01

    The purpose of this study was to quantify how the predicted muscle function would change in a muscle-driven forward simulation of normal walking when changing the number of degrees of freedom in the model. Muscle function was described by individual muscle contributions to the vertical acceleration of the center of mass (COM). We built a two-dimensional (2D) sagittal plane model and a three-dimensional (3D) model in OpenSim and used both models to reproduce the same normal walking data. Pertu...

  1. Structure and function of masticatory muscles in a case of muscular dystrophy

    DEFF Research Database (Denmark)

    Bakke, M; Kirkeby, S; Jensen, B L;

    1990-01-01

    Histologic examination of muscle biopsies and functional examination comprising electromyography and force measurements in a 19-yr-old boy with muscular dystrophy showed different wasting patterns of mandibular elevator and depressor muscles. Pronounced histopathologic changes were present in the...... depressor strength corresponded more to reference values. This difference of muscular wasting might be caused by protective enzymes in the digastric muscle and/or functionally induced damage of the masseter. As affection from muscular dystrophy may vary greatly between the masticatory muscles, structural...

  2. Effects of deep sedation or general anesthesia on cardiac function in mice undergoing cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Kutschke William

    2009-05-01

    Full Text Available Abstract Background Genetically engineered mouse models of human cardiovascular disease provide an opportunity to understand critical pathophysiological mechanisms. Cardiovascular magnetic resonance (CMR provides precise reproducible assessment of cardiac structure and function, but, in contrast to echocardiography, requires that the animal be immobilized during image acquisition. General anesthetic regimens yield satisfactory images, but have the potential to significantly perturb cardiac function. The purpose of this study was to assess the effects of general anesthesia and a new deep sedation regimen, respectively, on cardiac function in mice as determined by CMR, and to compare them to results obtained in mildly sedated conscious mice by echocardiography. Results In 6 mildly sedated normal conscious mice assessed by echo, heart rate was 615 ± 25 min-1 (mean ± SE and left ventricular ejection fraction (LVEF was 0.94 ± 0.01. In the CMR studies of normal mice, heart rate was slightly lower during deep sedation with morphine/midazolam (583 ± 30 min-1, but the difference was not statistically significant. General anesthesia with 1% inhaled isoflurane significantly depressed heart rate (468 ± 7 min-1, p In mice with ischemic LV failure, ejection fraction measurements were comparable when performed during light sedation, deep sedation, and general anesthesia, respectively. Contrast-to-noise ratios were similar during deep sedation and during general anesthesia, indicating comparable image quality. Left ventricular mass measurements made by CMR during deep sedation were nearly identical to those made during general anesthesia (r2 = 0.99, mean absolute difference Conclusion In mice with normal cardiac function, CMR during deep sedation causes significantly less depression of heart rate and ejection fraction than imaging during general anesthesia with isoflurane. In mice with heart failure, the sedation/anesthesia regimen had no clear impact on

  3. Effects of Cardiac Rehabilitation Program on Right Ventricular Function After Coronary Artery Bypass Graft Surgery

    Directory of Open Access Journals (Sweden)

    Akram Sardari

    2012-03-01

    Full Text Available Background: Cardiac rehabilitation has been recognized as one of the most effective strategies for managing cardiovascular indices as well as controlling the cardiovascular risk profile, in particular after coronary artery bypass graft surgery (CABG. However, the effect of this program on right ventricular function following CABG is unclear. The aim of this study was to evaluate the impact of cardiac rehabilitation on the right ventricular (RV function in a cohort of patients who underwent CABG. Methods: A total of 28 patients who underwent CABG and participated consecutively in an 8-week cardiac rehabilitation program at Tehran Heart Center were studied. The control group consisted of 39 patients who refused to attend cardiac rehabilitation and only received postoperative medical treatment after registration in the Cardiac Rehabilitation Clinic. Two-dimensional and Doppler echocardiography was performed to assess the RV function in both groups at the three time points of before surgery, at the end of surgery, and at the end of the rehabilitation program. Results: Significant increase of RV function parameters were observed in both rehabilitation group (RG and control group (CG at the end of the rehabilitation program compared with post-CABG evaluation in terms of tricuspid annular plane systolic execution (RG: 12.50 mm to 14.18 mm; CG: 13.41 mm to 14.56 mm, tricuspid annular peak systolic velocity (RG: 8.55 cm/s to 9.14 cm/s; CG: 9.03 cm/s to 9.26 cm/s, and tricuspid annular late diastolic velocity (RG: 8.93 cm/s to 9.39 cm/s; CG: 9.26 cm/s to 9.60 cm/s.The parameters of the RV function did improve in both groups, but this improvement was not associated with participation in the complete cardiac rehabilitation program. Conclusion: The RV function parameters gradually improved after CABG; this progress, however, was independent of the exercise-based cardiac rehabilitation program.

  4. Heart-specific Rpd3 downregulation enhances cardiac function and longevity.

    Science.gov (United States)

    Kopp, Zachary A; Hsieh, Jo-Lin; Li, Andrew; Wang, William; Bhatt, Dhelni T; Lee, Angela; Kim, Sae Yeon; Fan, David; Shah, Veevek; Siddiqui, Emaad; Ragam, Radhika; Park, Kristen; Ardeshna, Dev; Park, Kunwoo; Wu, Rachel; Parikh, Hardik; Parikh, Ayush; Lin, Yuh-Ru; Park, Yongkyu

    2015-09-01

    Downregulation of Rpd3, a homologue of mammalian Histone Deacetylase 1 (HDAC1), extends lifespan in Drosophila melanogaster. Once revealed that long-lived fruit flies exhibit limited cardiac decline, we investigated whether Rpd3 downregulation would improve stress resistance and/or lifespan when targeted in the heart. Contested against three different stressors (oxidation, starvation and heat), heart-specific Rpd3 downregulation significantly enhanced stress resistance in flies. However, these higher levels of resistance were not observed when Rpd3 downregulation was targeted in other tissues or when other long-lived flies were tested in the heart-specific manner. Interestingly, the expressions of anti-aging genes such as sod2, foxo and Thor, were systemically increased as a consequence of heart-specific Rpd3 downregulation. Showing higher resistance to oxidative stress, the heart-specific Rpd3 downregulation concurrently exhibited improved cardiac functions, demonstrating an increased heart rate, decreased heart failure and accelerated heart recovery. Conversely, Rpd3 upregulation in cardiac tissue reduced systemic resistance against heat stress with decreased heart function, also specifying phosphorylated Rpd3 levels as a significant modulator. Continual downregulation of Rpd3 throughout aging increased lifespan, implicating that Rpd3 deacetylase in the heart plays a significant role in cardiac function and longevity to systemically modulate the fly's response to the environment. PMID:26399365

  5. [Research of Left Ventricle Function Analysis Using Real-time Cardiac Magnetic Resonance Imaging].

    Science.gov (United States)

    Yang, Fan; He, Yan; Zhang, Jie; Wu, Yin

    2015-12-01

    Real-time free breathing cardiac cine imaging is a reproducible method with shorter acquisition time and without breath-hold for cardiac magnetic resonance imaging. However, the detection of end-diastole and end-systole frames of real-time free breathing cardiac cine imaging for left ventricle function analysis is commonly completed by visual identification, which is time-consuming and laborious. In order to save processing time, we propose a method for semi-automatic identification of end-diastole and end-systole frames. The method fits respiratory motion signal and acquires the expiration phase, end-diastole and end-systole frames by cross correlation coefficient. The procedure successfully worked on ten healthy volunteers and validated by the analysis of left ventricle function compared to the standard breath-hold steady-state free precession cardiac cine imaging without any significant statistical differences. The results demonstrated that the present method could correctly detect end-diastole and end-systole frames. In the future, this technique may be used for rapid left ventricle function analysis in clinic. PMID:27079101

  6. Assessment of cardiac morphology and ventricular function in healthy Chinese individuals using MRI

    International Nuclear Information System (INIS)

    Objective: To investigate reproducibility of cardiac MRI for assessment of cardiac morphology and ventricular function in selected normal Chinese Han population. Methods: Two hundred and sixty-nine normal volunteers underwent cardiac MRI using a 1.5 T MR system. HASTE and steady state free precession imaging were performed with long and short axis images and cine mode through the ventricle with wireless vector cardiac gating. The images were reviewed by two independent observers. The dimensions of cardiac chambers and ventricular function including ejection fraction (EF), end diastolic volume (EDV) , end systolic volume (ESV) and myocardial mass were evaluated. The data between male and female were compared by using two-tailed unpaired t test. Results: Total imaging time was (15±3) min. The anteroposterior diameter of the left atrium was (2.87±0.77) cm, the right atrial diameter perpendicular to the atrial septum was (3.61±0.57) cm, the end diastolic diameter of the left ventricle was (4.97± 0.52) cm, the end diastolic diameter of the right ventricle was (2.65±0.48) cm. On the left ventricle, EF was (60.62±7.08)%, EDV was (115.37±26.71) ml, ESV was (46.02±15.72) ml and LV mass was (82.97±24.03) g. On the right ventricle, EF was (47.73±6.50)%, EDV was (128.27±32.16) ml, ESV was (67.7±21.07) ml and RV mass was (48.24±13.42) g. There were no statistically significant differences in LVESV (P=0.144), LVEDV index (P=0.714), LVESV index (P=0.113), LVCI (P=0.199), RVEF (P=0.296) and RV mass (P=0.093), and statistically significant differences in other cardiac parameters between male and female. Conclusion: Cardiac MRI can provide useful information about cardiac function and morphology with a high level of reproducibility in normal Chinese Han population. (authors)

  7. A modified method of cardiac functional analysis for ECG gated SPECT. Study of functional G-maps

    Energy Technology Data Exchange (ETDEWEB)

    Onoguchi, Masahisa; Takayama, Teruhiko [Kanazawa Univ. (Japan). School of Medicine; Maruno, Hirotaka; Murata, Hajime; Mori, Kazuaki; Toyama, Hinako; Yoshioka, Katsunori; Irimoto, Masahiro; Katayama, Hitoshi

    1998-07-01

    To evaluate the cardiac function accurately using ECG gated SPECT images, we performed a modified method of cardiac functional analysis (Functional G-maps). One hour after the intravenous injection of 1,110 MBq of {sup 99m}Tc-tetrofosmin, gated SPECT data was acquired dividing a cardiac cycle into 12 frames. Every short-axis images were usually reconstructed using first 11 of 12 frames. The reconstruction of these images was repeated performing slice thickness correction. Because the apex-to-base length is different at any frame during a cardiac cycle, 10 slices of short-axis images were obtained with the same thickness for each frame. Subsequently each short-axis image was divided by 40 radii, and the time activity curve was generated from the total counts included in each segment plus both neighboring segment. Afterwards the curve fitting was performed using the second reverse Fourier function. From fitted curves and their differentials, we estimated a variety of parameters including Max (End-systolic count), Min (End-diastolic count), %CI (Percent count increase), Uptake, PCR (Peak contraction rate), PDR (Peak distention rate) and CT (Contraction time). In 5 normal subjects, %Max was greater in the anterior and septal regions, whereas %Min was greater in the apex and lateral regions. %CI and %PCR were similarly greater in the septal, anterior and inferior regions. On the other hand, %PDR in the lateral or inferior region was lower than the values in the other regions. In conclusion, this modified method is expected to be useful for accurate assessment of regional cardiac function and myocardial perfusion. (author)

  8. A modified method of cardiac functional analysis for ECG gated SPECT. Study of functional G-maps

    International Nuclear Information System (INIS)

    To evaluate the cardiac function accurately using ECG gated SPECT images, we performed a modified method of cardiac functional analysis (Functional G-maps). One hour after the intravenous injection of 1,110 MBq of 99mTc-tetrofosmin, gated SPECT data was acquired dividing a cardiac cycle into 12 frames. Every short-axis images were usually reconstructed using first 11 of 12 frames. The reconstruction of these images was repeated performing slice thickness correction. Because the apex-to-base length is different at any frame during a cardiac cycle, 10 slices of short-axis images were obtained with the same thickness for each frame. Subsequently each short-axis image was divided by 40 radii, and the time activity curve was generated from the total counts included in each segment plus both neighboring segment. Afterwards the curve fitting was performed using the second reverse Fourier function. From fitted curves and their differentials, we estimated a variety of parameters including Max (End-systolic count), Min (End-diastolic count), %CI (Percent count increase), Uptake, PCR (Peak contraction rate), PDR (Peak distention rate) and CT (Contraction time). In 5 normal subjects, %Max was greater in the anterior and septal regions, whereas %Min was greater in the apex and lateral regions. %CI and %PCR were similarly greater in the septal, anterior and inferior regions. On the other hand, %PDR in the lateral or inferior region was lower than the values in the other regions. In conclusion, this modified method is expected to be useful for accurate assessment of regional cardiac function and myocardial perfusion. (author)

  9. Cardiac hypertrophy induced by exercise training:the function of AT1 receptor, autophagy and miRNAs%运动性心脏肥大:AT1受体、细胞自噬和 miRNAs 的调节

    Institute of Scientific and Technical Information of China (English)

    钱帅伟; 张瑞萍; 张安民

    2014-01-01

    As a mechanical and exogenous stimulus , exercise training induces cardiac physiological hypertro-phy, and the cardiac structure is changed slowly , steadily and coordinately.Simultaneously, energy metabolism and func-tion of the cardiac muscle are also improved .These are positive adaptations in the heart when experiencing endurance exer -cise training.Recently, angiotensinⅡtype 1 (AT1) receptor, autophagy and miRNAs are all considered as important reg-ulators to cardiac hypertrophy induced by exercise training at different molecular levels .Fully understanding the relations and the important role of AT1 receptor, autophagy and miRNAs in cardiac physiological hypertrophy will further enrich the signaling pathway of cardiac hypertrophy induced by exercise training .

  10. Age- and gender-specific reference values for cardiac chamber geometry and function using three-dimensional echocardiography

    OpenAIRE

    Badano, Luigi P.

    2014-01-01

    Background. Three-dimensional echocardiography (3DE) enables a comprehensive, accurate and reproducible quantification of cardiac chamber size and function without any geometric assumption about their shape. Superior accuracy and reproducibility of 3DE over stabdard two-dimensional (2DE) approach for cardiac chamber volume measurements in comparison to cardiac magnetic resonance (CMR) has been well documented in a number of studies. Both the European Association of Cardiovascular Imag...

  11. Aging impairs the recovery in mechanical muscle function following 4 days of disuse

    DEFF Research Database (Denmark)

    Hvid, Lars Grøndahl; Suetta, C; Nielsen, Jacob; Jensen, Majbrit M; Frandsen, U; Ørtenblad, N; Kjaer, M; Aagaard, P

    2014-01-01

    decrements observed in moderate dynamic strength and rapid muscle force capacity in old individuals. While 7 days of recovery - including free ambulation, one test session and a single session of strength training - was sufficient to restore mechanical muscle function in young individuals, old individuals...... the effect of 4 days of lower limb disuse followed by 7 days of active recovery on mechanical muscle function of the knee extensors in young (24.3±0.9 years, n=11) and old (67.2±1.0 years, n=11) recreationally active healthy males. Slow and moderate dynamic muscle strength were assessed using...... isokinetic dynamometry (60 and 180° s(-1), respectively) along with isometric muscle strength and rapid muscle force capacity examined as contractile rate of force development (RFD), Impulse, and relative RFD (rRFD) during the initial phase of contraction (100 ms time interval relative to onset of...

  12. In vivo generation of a mature and functional artificial skeletal muscle.

    Science.gov (United States)

    Fuoco, Claudia; Rizzi, Roberto; Biondo, Antonella; Longa, Emanuela; Mascaro, Anna; Shapira-Schweitzer, Keren; Kossovar, Olga; Benedetti, Sara; Salvatori, Maria L; Santoleri, Sabrina; Testa, Stefano; Bernardini, Sergio; Bottinelli, Roberto; Bearzi, Claudia; Cannata, Stefano M; Seliktar, Dror; Cossu, Giulio; Gargioli, Cesare

    2015-04-01

    Extensive loss of skeletal muscle tissue results in mutilations and severe loss of function. In vitro-generated artificial muscles undergo necrosis when transplanted in vivo before host angiogenesis may provide oxygen for fibre survival. Here, we report a novel strategy based upon the use of mouse or human mesoangioblasts encapsulated inside PEG-fibrinogen hydrogel. Once engineered to express placental-derived growth factor, mesoangioblasts attract host vessels and nerves, contributing to in vivo survival and maturation of newly formed myofibres. When the graft was implanted underneath the skin on the surface of the tibialis anterior, mature and aligned myofibres formed within several weeks as a complete and functional extra muscle. Moreover, replacing the ablated tibialis anterior with PEG-fibrinogen-embedded mesoangioblasts also resulted in an artificial muscle very similar to a normal tibialis anterior. This strategy opens the possibility for patient-specific muscle creation for a large number of pathological conditions involving muscle tissue wasting. PMID:25715804

  13. Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

    International Nuclear Information System (INIS)

    Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

  14. Effects of pressure- or volume-overload hypertrophy on passive stiffness in isolated adult cardiac muscle cells

    Science.gov (United States)

    Kato, S.; Koide, M.; Cooper, G. 4th; Zile, M. R.

    1996-01-01

    It has been hypothesized that the changes in myocardial stiffness induced by chronic hemodynamic overloading are dependent on changes in the passive stiffness of the cardiac muscle cell (cardiocyte). However, no previous studies have examined the passive constitutive properties of cardiocytes isolated from animals with myocardial hypertrophy. Accordingly, changes in relative passive stiffness of cardiocytes isolated from animals with chronic pressure- or volume-overload hypertrophy were determined by examining the effects of anisosmotic stress on cardiocyte size. Anisosmotic stress was produced by altering superfusate osmolarity. Hypertrophied cardiocytes were enzymatically isolated from 16 adult cats with right ventricular (RV) pressure-overload hypertrophy induced by pulmonary artery banding (PAB) and from 6 adult cats with RV volume-overload hypertrophy induced by creating an atrial septal defect (ASD). Left ventricular (LV) cardiocytes from each cat served as nonhypertrophied, normally loaded, same-animal controls. Superfusate osmolarity was decreased from 305 +/- 3 to 135 +/- 5 mosM and increased to 645 +/- 4 mosM. During anisosmotic stress, there were no significant differences between hypertrophied RV and normal LV cardiocytes in pressure overload PAB cats with respect to percent change in cardiocyte area (47 +/- 2% in RV vs. 48 +/- 2% in LV), diameter (46 +/- 3% in RV vs. 48 +/- 2% in LV), or length (2.4 +/- 0.2% in RV vs. 2.0 +/- 0.3% in LV), or sarcomere length (1.5 +/- 0.1% in RV vs. 1.3 +/- 0.3% in LV). Likewise, there were no significant differences in cardiocyte strain between hypertrophied RV and normal LV cardiocytes from ASD cats. In conclusion, chronic pressure-overload hypertrophy and chronic volume-overload hypertrophy did not alter the cardiocyte response to anisosmotic stress. Thus chronic overload hypertrophy did not alter relative passive cardiocyte stiffness.

  15. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I

    International Nuclear Information System (INIS)

    The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function

  16. Functional muscle ischemia in Duchenne and Becker muscular dystrophy

    OpenAIRE

    GailDThomas

    2013-01-01

    Duchenne and Becker muscular dystrophy (DMD/BMD) comprise a spectrum of devastating X-linked muscle wasting disease for which there is no treatment. DMD/BMD is caused by mutations in the gene encoding dystrophin, a cytoskeletal protein that stabilizes the muscle membrane and also targets other proteins to the sarcolemma. Among these is the muscle-specific isoform of neuronal nitric oxide synthase (nNOSµ) which binds spectrin-like repeats within dystrophin’s rod domain and the adaptor pro...

  17. Impaired physical function, loss of muscle mass and assessment of biomechanical properties in critical ill patients

    DEFF Research Database (Denmark)

    Poulsen, Jesper Brøndum

    2012-01-01

    Intensive care unit (ICU) admission is associated with muscle weakness and ICU survivors report sustained limitation of physical capacity for years after discharge. Limited information is available on the underlying biomechanical properties responsible for this muscle function impairment. A...... potential to counteract loss of muscle mass. Despite the obvious clinical significance of muscle atrophy for the functional impairment observed in ICU survivors, no preventive therapies have been identified as yet. The overall aim of the present dissertation is to characterize aspects of physical function...... and biomechanical properties in ICU patients and to provide new insights into ICU-induced muscle wasting and the underlying biomechanical mechanisms responsible for the residual impairment of physical function in ICU survivors....

  18. Comparative Biomechanics of Thick Filaments and Thin Filaments with Functional Consequences for Muscle Contraction

    OpenAIRE

    Miller, Mark S; Tanner, Bertrand C. W.; Lori R. Nyland; Vigoreaux, Jim O.

    2010-01-01

    The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanica...

  19. The effect of walking speed on muscle function and mechanical energetics

    OpenAIRE

    Neptune, Richard R.; Sasaki, Kotaro; Kautz, Steven A.

    2007-01-01

    Modulating speed over a large range is important in walking, yet understanding how the neuromotor patterns adapt to the changing energetic demands of different speeds is not well understood. The purpose of this study was to identify functional and energetic adaptations in individual muscles in response to walking at faster steady-state speeds using muscle-actuated forward dynamics simulations. The simulation data were invariant with speed as to whether muscles contributed to trunk support, fo...

  20. Cardiac Function Evaluation Analyzing Spectral Components due to the Consumption of Energy Drinks

    Directory of Open Access Journals (Sweden)

    Md. Bashir Uddin

    2014-05-01

    Full Text Available The aim of this study is to investigate the effect of energy drinks consumption on cardiac function of human being by analyzing the spectral components of pulse and ECG of several healthy people. Using pulse transducer connected with MP36 (Biopac, USA data acquisition unit, pulse recordings were performed. With electrode lead set connected to the same MP36 data acquisition unit, ECG recordings were also performed. At before and after the consumption of energy drinks available in Bangladesh, pulse and ECG recordings as well as analysis were performed with Biopac software. After having energy drinks, the spectral components such as power of spectral density and amplitude of fast Fourier transform of pulse signal decreased about 47.5 and 37%, respectively. In case of ECG signal, the spectral components such as power of spectral density and amplitude of fast Fourier transform increased about 17 and 7.5% within a short interval about 0-20 min, then effective decrements about 10 and 18.5%, respectively started for long duration. Analyzing spectral parameters, the findings highlight the adverse impacts on cardiac function which may cause cardiac abnormality as well as severe cardiac disease due to the regular consumption of energy drinks.

  1. Invasive versus noninvasive techniques in the evaluation of cardiac function and diagnosis of heart disease

    International Nuclear Information System (INIS)

    The expanding discipline of modern noninvasive cardiovascular medicine now comprises the new techniques of echography, Doppler ultrasound, radionuclide scintigraphy, ambulatory electrocardiography and computer analysis; as well as improvements in phonocardiography, pulse recordings, systolic time intervals, cardiokymography, electrographic mapping, vector-cardiography, exercise testing, radioisotope tracers and plethysmography. Among these noninvasive procedures, echocardiography and radioscintigraphy have proved to be the most useful in the determination of cardiac function and diagnosis. Thus M-mode and two-dimensional echocardiography, and nuclear myocardial perfusion and cardiac blood pool scintigraphy have undergone rapid advancements to become indispensable and widely available modalities for clinical management and investigational use. Since echocardiography and nuclear cardiology comprise the most important atraumic means in the accurate evaluation of cardiovascular performance, the authors focus on the value and application of these two recently devised practical imaging methodologies, compared to the invasive assessment of disorders and function of the heart. To accomplish these objectives, cardiac catheterization is described firstly, and then echocardiography and nuclear cardiology respectively are delineated relative to cardiac catheterization. Finally the special advantages and future horizons pertaining to the noninvasive approaches of ultrasound and radioscintigraphy techniques in cardiovascular evaluation are discussed. (Auth.)

  2. Cardiac contraction and calcium transport function aftersevere burn injury in rats

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To examine the function change of myocardial calcium transports and determined what role the change plays in cardiac dysfunction after severe burn injury in rats. Methods: The contraction and relaxation properties of the left ventricle (LV) were studied in the isolated hearts preparations of Wistar rats at 3, 8, and 24 h after a 30%TBSA (total body surface area) full-thickness burn. The calcium transport function of the sarcoplasmic reticulum (SR) was measured by the millipore filtration technique. Results: The maximal rate of LV pressure (± dp/dtmax) of the burn group was significantly lower than that of the control group (P < 0.01). In addition, the calciumdependent ATPase activity and the coupling ratio of SR were also markedly depressed. Conclusions: It indicates that the decrease in the SR calcium transport function is one of the important mechanisms for the cardiac contractile dysfunction after severe burn injury.

  3. Functional Divergence in Teleost Cardiac Troponin Paralogs Guides Variation in the Interaction of TnI Switch Region with TnC.

    Science.gov (United States)

    Genge, Christine E; Stevens, Charles M; Davidson, William S; Singh, Gurpreet; Peter Tieleman, D; Tibbits, Glen F

    2016-01-01

    Gene duplication results in extra copies of genes that must coevolve with their interacting partners in multimeric protein complexes. The cardiac troponin (Tn) complex, containing TnC, TnI, and TnT, forms a distinct functional unit critical for the regulation of cardiac muscle contraction. In teleost fish, the function of the Tn complex is modified by the consequences of differential expression of paralogs in response to environmental thermal challenges. In this article, we focus on the interaction between TnI and TnC, coded for by genes that have independent evolutionary origins, but the co-operation of their protein products has necessitated coevolution. In this study, we characterize functional divergence of TnC and TnI paralogs, specifically the interrelated roles of regulatory subfunctionalization and structural subfunctionalization. We determined that differential paralog transcript expression in response to temperature acclimation results in three combinations of TnC and TnI in the zebrafish heart: TnC1a/TnI1.1, TnC1b/TnI1.1, and TnC1a/TnI1.5. Phylogenetic analysis of these highly conserved proteins identified functionally divergent residues in TnI and TnC. The structural and functional effect of these Tn combinations was modeled with molecular dynamics simulation to link divergent sites to changes in interaction strength. Functional divergence in TnI and TnC were not limited to the residues involved with TnC/TnI switch interaction, which emphasizes the complex nature of Tn function. Patterns in domain-specific divergent selection and interaction energies suggest that substitutions in the TnI switch region are crucial to modifying TnI/TnC function to maintain cardiac contraction with temperature changes. This integrative approach introduces Tn as a model of functional divergence that guides the coevolution of interacting proteins. PMID:26979795

  4. Effects of Obstructive Sleep Apnea on Cardiac Function and Clinical Outcomes in Chinese Patients with ST-Elevation Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Baoxin Liu

    2014-01-01

    Full Text Available Aim. The objective of this study was to investigate the influence of OSA on cardiac function in Chinese patients with ST-elevation myocardial infarction (STEMI and determine the prognostic impact of OSA among these patients. Methods. In this retrospective study, 198 STEMI patients were enrolled. Doppler echocardiography was performed to detect the effect of OSA on cardiac function. Major adverse cardiac events (MACE and cardiac mortality were analyzed to determine whether OSA was a clinical prognostic factor; its prognostic impact was then assessed adjusting for other covariates. Results. The echocardiographic results showed that the myocardium of STEMI patients with OSA appeared to be more hypertrophic and with a poorer cardiac function compared with non-OSA STEMI patients. A Kaplan-Meier survival analysis revealed significantly higher cumulative incidence of MACE and cardiac mortality in the OSA group compared with that in the non-OSA group during a mean follow-up of 24 months. Multivariate Cox regression analysis revealed that OSA was an independent risk factor for MACE and cardiac mortality. Conclusion. These results indicate that the OSA is a powerful predictor of decreased survival and exerts negative prognostic impact on cardiac function in STEMI patients.

  5. No beneficial effects of vitamin D supplementation on muscle function or quality of life in primary hyperparathyroidism

    DEFF Research Database (Denmark)

    Rolighed, Lars; Rejnmark, Lars; Sikjaer, Tanja;

    2014-01-01

    Context: Impairments of muscle function and strength in patients with primary hyperparathyroidism (PHPT) are rarely addressed although decreased muscle function may contribute to increased fracture risk. Objective: We aimed to assess changes in muscle strength, muscle function, postural stability...... in QoL, well-being (p<0.01), muscle strength in the knee flexion and extension (p<0.001), and muscle function tests (p<0.01) after surgical cure. Postural stability improved during standing with eyes closed (p<0.05), but decreased with eyes open (p<0.05). Conclusions: Patients with PHPT and 25OHD...

  6. AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload.

    Science.gov (United States)

    Riedl, Isabelle; Osler, Megan E; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A; Chibalin, Alexander V; Zierath, Juleen R

    2016-03-15

    Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5'-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3(225Q) and AMPKγ3-knockout (Prkag3(-/-)) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. PMID:26758685

  7. Effect of strength training on muscle function in elderly hospitalized patients

    DEFF Research Database (Denmark)

    Suetta, C; Magnusson, S P; Beyer, N;

    2007-01-01

    . Given that reduced lower limb muscle strength and loss of skeletal muscle mass (i.e. sarcopenia) have been associated with functional impairments and disability with aging, attempts to counteract this process seem highly relevant. In recent years, strength training has emerged as an effective method...

  8. New insights into muscle function during pivot feeding in seahorses.

    Directory of Open Access Journals (Sweden)

    Sam Van Wassenbergh

    Full Text Available Seahorses, pipefish and their syngnathiform relatives are considered unique amongst fishes in using elastic recoil of post-cranial tendons to pivot the head extremely quickly towards small crustacean prey. It is known that pipefish activate the epaxial muscles for a considerable time before striking, at which rotations of the head and the hyoid are temporarily prevented to allow energy storage in the epaxial tendons. Here, we studied the motor control of this system in seahorses using electromyographic recordings of the epaxial muscles and the sternohyoideus-hypaxial muscles with simultaneous high-speed video recordings of prey capture. In addition we present the results from a stimulation experiment including the muscle hypothesised to be responsible for the locking and triggering of pivot feeding in seahorses (m. adductor arcus palatini. Our data confirmed that the epaxial pre-activation pattern observed previously for pipefish also occurs in seahorses. Similar to the epaxials, the sternohyoideus-hypaxial muscle complex shows prolonged anticipatory activity. Although a considerable variation in displacements of the mouth via head rotation could be observed, it could not be demonstrated that seahorses have control over strike distance. In addition, we could not identify the source of the kinematic variability in the activation patterns of the associated muscles. Finally, the stimulation experiment supported the previously hypothesized role of the m. adductor arcus palatini as the trigger in this elastic recoil system. Our results show that pre-stressing of both the head elevators and the hyoid retractors is taking place. As pre-activation of the main muscles involved in pivot feeding has now been demonstrated for both seahorses and pipefish, this is probably a generalized trait of Syngnathidae.

  9. In vivo alterations in skeletal muscle form and function after disuse atrophy.

    Science.gov (United States)

    Clark, Brian C

    2009-10-01

    Prolonged reductions in muscle activity and mechanical loading (e.g., bed rest, cast immobilization) result in alterations in skeletal muscle form and function. The purpose of this review article was to synthesize recent findings from several studies on the dramatic effects of disuse on skeletal muscle morphology and muscle performance in humans. Specifically, the following are discussed: 1) how the antigravity muscles are most susceptible to atrophy and how the degree of atrophy varies between muscle groups; 2) how disuse alters muscle composition by increasing intermuscular adipose tissue; 3) the influence of different disuse models on regulating the loss of muscle mass and strength, with immobilization causing greater reductions than bed rest and limb suspension do; 4) the observation that disuse decreases strength to a greater extent than muscle mass and the role of adaptations in both neural and contractile properties that influences this excessive loss of strength; 5) the equivocal findings on the effect of disuse on muscle fatigue resistance; and 6) the reduction in motor control after prolonged disuse. Lastly, emerging data warranting further inquiry into the modulating role of biological sex on disuse-induced adaptations are also discussed. PMID:19727027

  10. Data on mitochondrial function in skeletal muscle of old mice in response to different exercise intensity

    OpenAIRE

    Kang, Chounghun; Lim, Wonchung

    2016-01-01

    Endurance exercise is securely linked to muscle metabolic adaptations including enhanced mitochondrial function (“Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle” [1], “Effects of exercise on mitochondrial content and function in aging human skeletal muscle” [2]). However, the link between exercise intensity and mitochondrial function in aging muscle has not been fully investigated. In order to understand how strenuous exercise affects mit...

  11. Muscle function and hydrodynamics limit power and speed in swimming frogs.

    Science.gov (United States)

    Clemente, Christofer J; Richards, Christopher

    2013-01-01

    Studies of the muscle force-velocity relationship and its derived n-shaped power-velocity curve offer important insights into muscular limits of performance. Given the power is maximal at 1/3 V(max), geometric scaling of muscle force coupled with fluid drag force implies that this optimal muscle-shortening velocity for power cannot be maintained across the natural body-size range. Instead, muscle velocity may decrease with increasing body size, conferring a similar n-shaped power curve with body size. Here we examine swimming speed and muscle function in the aquatic frog Xenopus laevis. Swimming speed shows an n-shaped scaling relationship, peaking at 47.35 g. Further, in vitro muscle function of the ankle extensor plantaris longus also shows an optimal body mass for muscle power output (47.27 g), reflecting that of swimming speed. These findings suggest that in drag-based aquatic systems, muscle-environment interactions vary with body size, limiting both the muscle's potential to produce power and the swimming speed. PMID:24177194

  12. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues.

    Science.gov (United States)

    Marsano, Anna; Conficconi, Chiara; Lemme, Marta; Occhetta, Paola; Gaudiello, Emanuele; Votta, Emiliano; Cerino, Giulia; Redaelli, Alberto; Rasponi, Marco

    2016-02-01

    In the past few years, microfluidic-based technology has developed microscale models recapitulating key physical and biological cues typical of the native myocardium. However, the application of controlled physiological uniaxial cyclic strains on a defined three-dimension cellular environment is not yet possible. Two-dimension mechanical stimulation was particularly investigated, neglecting the complex three-dimensional cell-cell and cell-matrix interactions. For this purpose, we developed a heart-on-a-chip platform, which recapitulates the physiologic mechanical environment experienced by cells in the native myocardium. The device includes an array of hanging posts to confine cell-laden gels, and a pneumatic actuation system to induce homogeneous uniaxial cyclic strains to the 3D cell constructs during culture. The device was used to generate mature and highly functional micro-engineered cardiac tissues (μECTs), from both neonatal rat and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), strongly suggesting the robustness of our engineered cardiac micro-niche. Our results demonstrated that the cyclic strain was effectively highly uniaxial and uniformly transferred to cells in culture. As compared to control, stimulated μECTs showed superior cardiac differentiation, as well as electrical and mechanical coupling, owing to a remarkable increase in junction complexes. Mechanical stimulation also promoted early spontaneous synchronous beating and better contractile capability in response to electric pacing. Pacing analyses of hiPSC-CM constructs upon controlled administration of isoprenaline showed further promising applications of our platform in drug discovery, delivery and toxicology fields. The proposed heart-on-a-chip device represents a relevant step forward in the field, providing a standard functional three-dimensional cardiac model to possibly predict signs of hypertrophic changes in cardiac phenotype by mechanical and biochemical co

  13. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility.

    Science.gov (United States)

    Cheng, Yuanhua; Regnier, Michael

    2016-07-01

    Cardiac troponin (cTn) acts as a pivotal regulator of muscle contraction and relaxation and is composed of three distinct subunits (cTnC: a highly conserved Ca(2+) binding subunit, cTnI: an actomyosin ATPase inhibitory subunit, and cTnT: a tropomyosin binding subunit). In this mini-review, we briefly summarize the structure-function relationship of cTn and its subunits, its modulation by PKA-mediated phosphorylation of cTnI, and what is known about how these properties are altered by hypertrophic cardiomyopathy (HCM) associated mutations of cTnI. This includes recent work using computational modeling approaches to understand the atomic-based structural level basis of disease-associated mutations. We propose a viewpoint that it is alteration of cTnC-cTnI interaction (rather than the Ca(2+) binding properties of cTn) per se that disrupt the ability of PKA-mediated phosphorylation at cTnI Ser-23/24 to alter contraction and relaxation in at least some HCM-associated mutations. The combination of state of the art biophysical approaches can provide new insight on the structure-function mechanisms of contractile dysfunction resulting cTnI mutations and exciting new avenues for the diagnosis, prevention, and even treatment of heart diseases. PMID:26851561

  14. Structural and functional cardiac changes in myotonic dystrophy type 1: a cardiovascular magnetic resonance study

    Directory of Open Access Journals (Sweden)

    Hermans Mieke CE

    2012-07-01

    Full Text Available Abstract Background Myotonic dystrophy type 1 (MD1 is a neuromuscular disorder with potential involvement of the heart and increased risk of sudden death. Considering the importance of cardiomyopathy as a predictor of prognosis, we aimed to systematically evaluate and describe structural and functional cardiac alterations in patients with MD1. Methods Eighty MD1 patients underwent physical examination, electrocardiography (ECG, echocardiography and cardiovascular magnetic resonance (CMR. Blood samples were taken for determination of NT-proBNP plasma levels and CTG repeat length. Results Functional and structural abnormalities were detected in 35 patients (44%. Left ventricular systolic dysfunction was found in 20 cases, left ventricular dilatation in 7 patients, and left ventricular hypertrophy in 6 patients. Myocardial fibrosis was seen in 10 patients (12.5%. In general, patients had low left ventricular mass indexes. Right ventricular involvement was uncommon and only seen together with left ventricular abnormalities. Functional or structural cardiac involvement was associated with age (p = 0.04, male gender (p Conclusions CMR can be useful to detect early structural and functional myocardial abnormalities in patients with MD1. Myocardial involvement is strongly associated with conduction abnormalities, but a normal ECG does not exclude myocardial alterations. These findings lend support to the hypothesis that MD1 patients have a complex cardiac phenotype, including both myocardial and conduction system alteration.

  15. Motion corrected LV quantification based on 3D modelling for improved functional assessment in cardiac MRI

    Science.gov (United States)

    Liew, Y. M.; McLaughlin, R. A.; Chan, B. T.; Aziz, Y. F. Abdul; Chee, K. H.; Ung, N. M.; Tan, L. K.; Lai, K. W.; Ng, S.; Lim, E.

    2015-04-01

    Cine MRI is a clinical reference standard for the quantitative assessment of cardiac function, but reproducibility is confounded by motion artefacts. We explore the feasibility of a motion corrected 3D left ventricle (LV) quantification method, incorporating multislice image registration into the 3D model reconstruction, to improve reproducibility of 3D LV functional quantification. Multi-breath-hold short-axis and radial long-axis images were acquired from 10 patients and 10 healthy subjects. The proposed framework reduced misalignment between slices to subpixel accuracy (2.88 to 1.21 mm), and improved interstudy reproducibility for 5 important clinical functional measures, i.e. end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and 3D-sphericity index, as reflected in a reduction in the sample size required to detect statistically significant cardiac changes: a reduction of 21-66%. Our investigation on the optimum registration parameters, including both cardiac time frames and number of long-axis (LA) slices, suggested that a single time frame is adequate for motion correction whereas integrating more LA slices can improve registration and model reconstruction accuracy for improved functional quantification especially on datasets with severe motion artefacts.

  16. A physiologically based, multi-scale model of skeletal muscle structure and function

    Directory of Open Access Journals (Sweden)

    Oliver eRöhrle

    2012-09-01

    Full Text Available Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle's response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modelling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle's response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modelling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibres and their grouping. Together with a well-established model of motor unit recruitment, the electro-physiological behaviour of single muscle fibres within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenisation. The effect of homogenisation has been investigated by varying the number of embedded skeletal muscle fibres and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the Tibialis Anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modelling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behaviour ranging from motor unit recruitment to force generation and fatigue.

  17. Treadmill performance and cardiac function in selected patients with coronary heart disease

    International Nuclear Information System (INIS)

    To investigate the cardiac determinants of treadmill performance in patients able to exercise to volitional fatigue, 88 patients with coronary heart disease free of angina pectoris were tested. The exercise tests included supine bicycle radionuclide ventriculography, thallium scintigraphy and treadmill testing with expired gas analysis. The number of abnormal Q wave locations, ejection fraction, end-diastolic volume, cardiac output, exercise-induced ST segment depression and thallium scar and ischemia scores were the cardiac variables considered. Rest and exercise ejection fractions were highly correlated to thallium scar score (r . -0.72 to -0.75, p less than 0.001), but not to maximal oxygen consumption (r . 0.19 to 0.25, p less than 0.05). Fifty-five percent of the variability in predicting treadmill time or estimated maximal oxygen consumption was explained by treadmill test-induced change in heart rate (39%), thallium ischemia score (12%) and cardiac output at rest (4%). The change in heart rate induced by the treadmill test explained only 27% of the variability in measured maximal oxygen consumption. Myocardial damage predicted ejection fraction at rest and the ability to increase heart rate with treadmill exercise appeared as an essential component of exercise capacity. Exercise capacity was only minimally affected by asymptomatic ischemia and was relatively independent of ventricular function

  18. Tropomyosin flexural rigidity and single ca(2+) regulatory unit dynamics: implications for cooperative regulation of cardiac muscle contraction and cardiomyocyte hypertrophy.

    Science.gov (United States)

    Loong, Campion K P; Badr, Myriam A; Chase, P Bryant

    2012-01-01

    Striated muscle contraction is regulated by dynamic and cooperative interactions among Ca(2+), troponin, and tropomyosin on the thin filament. While Ca(2+) regulation has been extensively studied, little is known about the dynamics of individual regulatory units and structural changes of individual tropomyosin molecules in relation to their mechanical properties, and how these factors are altered by cardiomyopathy mutations in the Ca(2+) regulatory proteins. In this hypothesis paper, we explore how various experimental and analytical approaches could broaden our understanding of the cooperative regulation of cardiac contraction in health and disease. PMID:22493584

  19. Tropomyosin flexural rigidity and single Ca2+ regulatory unit dynamics: implications for cooperative regulation of cardiac muscle contraction and cardiomyocyte hypertrophy

    Directory of Open Access Journals (Sweden)

    P.BryantChase

    2012-04-01

    Full Text Available Striated muscle contraction is regulated by dynamic and cooperative interactions among Ca2+, troponin and tropomyosin on the thin filament. While Ca2+ regulation has been extensively studied, little is known about the dynamics of individual regulatory units and structural changes of individual tropomyosin molecules in relation to their mechanical properties, and how these factors are altered by cardiomyopathy mutations in the Ca2+ regulatory proteins. In this hypothesis paper, we explore how novel experimental and analytical approaches would improve our understanding of regulation of cardiac contraction in health and disease.

  20. Magnetic resonance imaging and electromyography as indexes of muscle function

    Science.gov (United States)

    Adams, Gregory R.; Duvoisin, Marc R.; Dudley, Gary A.

    1992-01-01

    A hypothesis is tested that exercise-induced magnetic resonance (MR) contrast shifts would relate to electromyography (EMG) amplitude if both measures reflect muscle use during exercise. Both magnetic resonance images (MRI) and EMG data were obtained for separate eccentric (ECC) and cocentric (CON) exercise of increasing intensity for seven subjects 30-32 yr old. CON and ECC actions caused increased integrated EMG (IEMG) and T2 values which were strongly related with relative resistance. The rate of increase and absolute value of both T2 and IEMG were found to be greater for CON than for ECC actions. For both actions IEMG and T2 were correlated. Data obtained suggest that surface IEMG accurately reflects the contractile behavior of muscle and exercise-induced increases in MRI T2 values reflect certain processes that scale with muscle use.

  1. CARDIAC TRANSPLANT REJECTION AND NON-INVASIVE COMON CAROTID ARTERY WALL FUNCTIONAL INDICES

    Directory of Open Access Journals (Sweden)

    A. O. Shevchenko

    2015-01-01

    Full Text Available Allograft rejection would entail an increase in certain blood biomarkers and active substances derived from activated inflammatory cells which could influence entire vascular endothelial function and deteriorate arterial wall stiffness. We propose that carotid wall functional indices measured with non-invasive ultrasound could we valuable markers of the subclinical cardiac allograft rejection. Aim. Our goal was to analyze the clinical utility of functional common carotid wall (CCW variables measured with high-resolution Doppler ultrasound as a non-invasive screening tool for allograft rejection in cardiac transplant patients (pts. Methods. One hundred and seventy one pts included 93 cardiac recipients, 30 dilated cardiomyopathy waiting list pts, and 48 stable coronary artery disease (SCAD pts without decompensated heart failure were included. Along with resistive index (Ri, pulsative index (Pi, and CCW intima-media thickness (IMT, CCW rigidity index (iRIG was estimated using empirical equation. Non-invasive evaluation was performed in cardiac transplant recipients prior the endomyo- cardial biopsy. Results. Neither of Ri, Pi, or CCW IMT were different in studied subgroups. iRIG was signifi- cantly lower in SCAD pts when compared to the dilated cardiomyopathy subgroup. The later had similar values with cardiac transplant recipients without rejection. Antibody-mediated and cellular rejection were found in 22 (23.7% and 17 (18.3% cardiac recipients, respectively. Mean iRIG in pts without rejection was significantly lower in comparison to antibody-mediated rejection and cell-mediated (5514.7 ± 2404.0 vs 11856.1 ± 6643.5 and 16071.9 ± 10029.1 cm/sec2, respectively, p = 0.001. Area under ROC for iRIG was 0.90 ± 0.03 units2. Analysis showed that iRIG values above estimated treshold 7172 cm/sec2 suggested relative risk of any type of rejection 17.7 (95%CI = 6.3–49.9 sensitivity 80.5%, specificity – 81.1%, negative predictive value – 84

  2. IMPORTANCE OF ILIOPSOAS AND ERECTOR SPINAE MUSCLES IN PREDICTING THE FUNCTIONAL COMPETENCE OF TRANSFEMORAL AMPUTEES

    Directory of Open Access Journals (Sweden)

    Lajja K Rishi

    2014-10-01

    Full Text Available Purpose: Muscle imbalance in transfemoral amputees impair physical mobility and activities of daily living. Aim of this study was to correlate the muscle imbalance with functional competence in transfemoral amputees. Methods: Thirty amputees were evaluated under inclusion criteria and randomly allocated into 2 groups. Group A received stretching(1 week followed by strengthening(3 weeks and in group B strengthening(3 weeks were followed by stretching(1 week . Phase I includes values after 1 week stretching program in group A and 3 weeks strengthening program in group B. Data were recorded at baseline, after phase I completion and end of treatment. Physical mobility was assessed by “Timed up and go” test. Results: Muscle imbalance and physical mobility improved significantly in both groups at the end of treatment. The correlation values of “Timed up and go” test with Iliopsoas and Erector spinae muscle showed significant improvement in both groups. Conclusion: Baseline measurements showed that Iliopsoas and Erector spinae muscles were tight whereas Gluteus maximus and Abdominal muscles were weak in transfemoral amputees. Functional mobility improved after correction of muscle imbalance. Stretching followed by strengthening gave more significant results than vice versa. Good posture in transfemoral amputee prevents muscle dysfunction and improves functional mobility.

  3. Structural and functional characterization of the purified cardiac ryanodine receptor-Ca2+ release channel complex.

    Science.gov (United States)

    Anderson, K; Lai, F A; Liu, Q Y; Rousseau, E; Erickson, H P; Meissner, G

    1989-01-15

    Using density gradient centrifugation and [3H]ryanodine as a specific marker, the ryanodine receptor-Ca2+ release channel complex from Chaps-solubilized canine cardiac sarcoplasmic reticulum (SR) has been purified in the form of an approximately 30 S complex, comprised of Mr approximately 400,000 polypeptides. Purification resulted in a specific activity of approximately 450 pmol bound ryanodine/mg of protein, a 60-70% recovery of ryanodine binding activity, and retention of the high affinity ryanodine binding site (KD = 3 nM). Negative stain electron microscopy revealed a 4-fold symmetric, four-leaf clover structure, which could fill a box approximately 30 x 30 nm and was thus morphologically similar to the SR-transverse-tubule, junctionally associated foot structure. The structural, sedimentation, and ryanodine binding data strongly suggest there is one high affinity ryanodine binding site/30 S complex, comprised of four Mr approximately 400,000 subunits. Upon reconstitution into planar lipid bilayers, the purified complex exhibited a Ca2+ conductance (70 pS in 50 mM Ca2+) similar to that of the native cardiac Ca2+ release channel (75 pS). The reconstituted complex was also found to conduct Na+ (550 pS in 500 mM Na+) and often to display complex Na+ subconducting states. The purified channel could be activated by micromolar Ca2+ or millimolar ATP, inhibited by millimolar Mg2+ or micromolar ruthenium red, and modified to a long-lived open subconducting state by ryanodine. The sedimentation, subunit composition, morphological, and ryanodine binding characteristics of the purified cardiac ryanodine receptor-Ca2+ release channel complex were similar to those previously described for the purified ryanodine receptor-Ca2+ release channel complex from fast-twitch skeletal muscle. PMID:2463249

  4. Segmenting the papillary muscles and the trabeculae from high resolution cardiac CT through restoration of topological handles.

    Science.gov (United States)

    Gao, Mingchen; Chen, Chao; Zhang, Shaoting; Qian, Zhen; Metaxas, Dimitris; Axel, Leon

    2013-01-01

    We introduce a novel algorithm for segmenting the high resolution CT images of the left ventricle (LV), particularly the papillary muscles and the trabeculae. High quality segmentations of these structures are necessary in order to better understand the anatomical function and geometrical properties of LV. These fine structures, however, are extremely challenging to capture due to their delicate and complex nature in both geometry and topology. Our algorithm computes the potential missing topological structures of a given initial segmentation. Using techniques from computational topology, e.g. persistent homology, our algorithm find topological handles which are likely to be the true signal. To further increase accuracy, these proposals are measured by the saliency and confidence from a trained classifier. Handles with high scores are restored in the final segmentation, leading to high quality segmentation results of the complex structures. PMID:24683968

  5. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Science.gov (United States)

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373

  6. Cardiac Function Evaluation Analyzing Spectral Components due to the Consumption of Energy Drinks

    OpenAIRE

    Md. Bashir Uddin; Ahmad, M.; M. Rizon; Yusof, N.; Rashid, M.A.

    2014-01-01

    The aim of this study is to investigate the effect of energy drinks consumption on cardiac function of human being by analyzing the spectral components of pulse and ECG of several healthy people. Using pulse transducer connected with MP36 (Biopac, USA) data acquisition unit, pulse recordings were performed. With electrode lead set connected to the same MP36 data acquisition unit, ECG recordings were also performed. At before and after the consumption of energy drinks available in Bangladesh, ...

  7. Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess.

    Science.gov (United States)

    Wyrwoll, Caitlin S; Noble, June; Thomson, Adrian; Tesic, Dijana; Miller, Mark R; Rog-Zielinska, Eva A; Moran, Carmel M; Seckl, Jonathan R; Chapman, Karen E; Holmes, Megan C

    2016-05-31

    Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) plays a key role. We previously discovered that Hsd11b2(-/-) mice, lacking 11β-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2(+/+), Hsd11b2(+/-), and Hsd11b2(-/-) littermates from heterozygous (Hsd11b(+/-)) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2(-/-) fetuses did not undergo the normal gestational increase seen in Hsd11b2(+/+) littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11β-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2(-/-) fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2(-/-) fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2(-/-) fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction. PMID:27185937

  8. Burn-Induced Organ Dysfunction: Vagus Nerve Stimulation Improves Cardiac Function

    OpenAIRE

    Niederbichler, Andreas D; Papst, Stephan; Claassen, Leif; Jokuszies, Andreas; Ipaktchi, Kyros; Reimers, Kerstin; Hirsch, Tobias; Steinstraesser, Lars; Kraft, Theresia; Vogt, Peter M.

    2010-01-01

    Introduction: Many studies have demonstrated the existence of an anti-inflammatory, parasympathetic pathway, termed as the inflammatory reflex. Burn-induced heart failure has been investigated in many previous studies. Proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6, have been shown to play a key pathogenetic role and vagus nerve stimulation attenuates proinflammatory cytokine production. This study was designed to evaluate postburn alterations of cardiac functional parameters after...

  9. Effects of right atrial and ventricular DDD pacing on cardiac function and ventricular contraction synchrony

    Institute of Scientific and Technical Information of China (English)

    支力大; 华伟; 张澍; 史蓉芳; 王方正; 陈新

    2004-01-01

    Background Right ventricular apical pacing has been reported to reduce cardiac performance. But there are few reports on the effects of dual chamber (DDD) pacing on cardiac function compared to sinus rhythm. In this study, we evaluated the effects of right atrial and ventricular DDD pacing on cardiac function and ventricular contraction synchrony using equilibrium radionuclide angiography.Methods Ten patients implanted with a right atrial and ventricular DDD pacemaker underwent equilibrium radionuclide angiography. The scintigraphic data were obtained during sinus rhythm and pacing rhythm. Cardiac function parameters were obtained semimanually. Phase analysis was used to study the ventricular activation sequence and ventricular synchrony.Results The left ventricular 1/3 ejection fraction decreased significantly during pacing compared with that during sinus rhythm[(23.4 ±6.1)% vs(27.7 ±4.5)%, P =0.01]. Regional ejection fraction also decreased during pacing, although the difference was not statistically significant. Phase analysis showed that the right ventricle was activated earlier than the left ventricle during pacing, and that the phase shift was significantly greater during pacing than that during sinus rhythm[64.13°±16.80° vs 52.88°± 9.26°, P =0.007]. The activation of both ventricles occurred simultaneously during sinus rhythm, with the activation sequence from proximal septum or base of left ventricle to apex. The earliest activation during pacing occurred at the right ventricular apex, and subsequently spread to the base and left ventricle.Conclusion Right atrial and ventricular DDD pacing impairs left ventricular systolic function and ventricular synchrony.

  10. Exercise physiology and cardiac function. Aspects on determinants of maximal oxygen uptake

    OpenAIRE

    Steding, Katarina

    2010-01-01

    Although the athlete's heart has been of interest for over 100 years, further characterization of the athletes heart is needed in order to understand how training affects cardiac dimensions and function. Few studies have investigated the effects of training in female athletes and few have compared males and females. Therefore, the aim of this thesis was to characterize the physiologically enlarged athlete's heart and the healthy respiratory response to exercise in both males and femal...

  11. Cardiac vagal control and children’s adaptive functioning: A meta-analysis

    OpenAIRE

    Graziano, Paulo; Derefinko, Karen

    2013-01-01

    Polyvagal theory has influenced research on the role of cardiac vagal control, indexed by respiratory sinus arrhythmia withdrawal (RSA-W) during challenging states, in children’s self-regulation. However, it remains unclear how well RSA-W predicts adaptive functioning (AF) outcomes and whether certain caveats of measuring RSA (e.g., respiration) significantly impact these associations. A meta-analysis of 44 studies (n = 4,996 children) revealed small effect sizes such that greater levels of R...

  12. Doxorubicin Cardiotoxicity and Cardiac Function Improvement After Stem Cell Therapy Diagnosed by Strain Echocardiography

    OpenAIRE

    Maira S. Oliveira; Melo, Marcos B.; Carvalho, Juliana L; Melo, Isabela M; Lavor, Mario SL; Gomes, Dawidson A.; de Goes, Alfredo M; Melo, Marilia M

    2013-01-01

    Doxorubicin (Dox) is one of the most effective chemotherapeutic agents; however, it causes dose-dependent cardiotoxicity. Evaluation of left ventricular function relies on measurements based on M-mode echocardiography. A new technique based on quantification of myocardial motion and deformation, strain echocardiography, has been showed promising profile for early detection of cardiac dysfunction. Different therapy strategies, such as flavonoid plant extracts and stem cells, have been investig...

  13. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    International Nuclear Information System (INIS)

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats

  14. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Energy Technology Data Exchange (ETDEWEB)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins [Laboratório do Movimento Humano, Universidade São Judas Tadeu (USJT), São Paulo, SP (Brazil); Mostarda, Cristiano [Departamento de Educação Física, Universidade Federal do Maranhão (UFMA), São Luís, MA (Brazil); Figueroa, Diego Mendrot [Laboratório de Hipertensão Experimental, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP (Brazil); Angelis, Kátia De [Laboratório de Fisiologia Translacional, Universidade Nove de Julho (Uninove), São Paulo, SP (Brazil); Irigoyen, Maria Cláudia [Laboratório de Hipertensão Experimental, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP (Brazil); Rodrigues, Bruno, E-mail: bruno.rodrigues@incor.usp.br [Laboratório do Movimento Humano, Universidade São Judas Tadeu (USJT), São Paulo, SP (Brazil)

    2014-07-15

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.

  15. Effect of Cardiac Resynchronization Therapy on Pulmonary Function in Patients With Heart Failure

    OpenAIRE

    Cundrle, Ivan; Johnson, Bruce D.; Somers, Virend K.; Scott, Christopher G; REA, ROBERT F.; Olson, Lyle J.

    2013-01-01

    Pulmonary congestion due to heart failure causes abnormal lung function. Cardiac resynchronization therapy (CRT) is a proven effective treatment for heart failure. The aim of this study was to test the hypothesis that CRT promotes increased lung volumes, bronchial conductance, and gas diffusion. Forty-four consecutive patients with heart failure were prospectively investigated before and after CRT. Spirometry, gas diffusion (diffusing capacity for carbon monoxide), cardiopulmonary exercise te...

  16. Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function

    OpenAIRE

    Neary, Marianne T.; Ng, Keat-Eng; Ludtmann, Marthe H. R.; Hall, Andrew R.; Piotrowska, Izabela; Ong, Sang-Bing; Hausenloy, Derek J.; Mohun, Timothy J; Abramov, Andrey Y.; Breckenridge, Ross A.

    2014-01-01

    Fetal cardiomyocyte adaptation to low levels of oxygen in utero is incompletely understood, and is of interest as hypoxia tolerance is lost after birth, leading to vulnerability of adult cardiomyocytes. It is known that cardiac mitochondrial morphology, number and function change significantly following birth, although the underlying molecular mechanisms and physiological stimuli are undefined. Here we show that the decrease in cardiomyocyte HIF-signaling in cardiomyocytes immediately after b...

  17. Renal hemodynamics, function, and oxygenation during cardiac surgery performed on cardiopulmonary bypass: a modeling study

    OpenAIRE

    Sgouralis, Ioannis; Evans, Roger G.; Gardiner, Bruce S; Smith, Julian A.; Fry, Brendan C.; Layton, Anita T.

    2015-01-01

    Abstract Acute kidney injury, a prevalent complication of cardiac surgery performed on cardiopulmonary bypass (CPB), is thought to be driven partly by hypoxic damage in the renal medulla. To determine the causes of medullary hypoxia during CPB, we modeled its impact on renal hemodynamics and function, and thus oxygen delivery and consumption in the renal medulla. The model incorporates autoregulation of renal blood flow and glomerular filtration rate and the utilization of oxygen for tubular ...

  18. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Alfredo D Guerron

    Full Text Available BACKGROUND: The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. CONCLUSIONS/SIGNIFICANCE: These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with

  19. Carnitine levels and cardiac functions in children with solid malignancies receiving doxorubicin therapy

    Directory of Open Access Journals (Sweden)

    Anant Khositseth

    2011-01-01

    Full Text Available Aim: Previous studies demonstrated l-carnitine decreasing doxorubicin-induced cardiotoxicity. Our objectives were to study carnitine levels and cardiac functions in children treated with doxorubicin and the effect of short-term l-carnitine supplements. Materials and Methods: Serial carnitine levels and cardiac functions were obtained in children with newly diagnosed solid malignancies before doxorubicin, after cumulative doses of ≥150 mg/m 2 and ≥300 mg/m 2 , respectively. Oral l-carnitine 100 mg/kg/day for 3 days were given to the children treated with doxorubicin at cumulative doses of ≥150 mg/m 2 and ≥300 mg/m 2 . Carnitine levels and cardiac functions were also obtained in those children before and after short-term oral l-carnitine at each cumulative dose of doxorubicin. Results: Five children (3 females, median age of 9.1 years (range 1.5-13 years with newly diagnosed solid malignancies were enrolled in the study. Free carnitine (FC tended to decrease while acyl-carnitine (AC increased making AC/FC ratio increased after cumulative dose of ≥150 and ≥300 mg/m 2 but the statistics was not significant. Left ventricular (LV systolic function was not significantly changed. Interestingly, LV global function (LV myocardial performance index was significantly increased after 150 mg/m 2 (median 0.39, 0.27-0.51 and 300 mg/m 2 (median 0.46, 0.27-0.50 when compared to baseline (median 0.28, 0.14-0.48 (P=0.05. Carnitine levels and cardiac functions were not significantly changed after oral l-carnitine supplement at cumulative dose of ≥150 mg/m 2 (n=6 and ≥300 mg/m 2 (n=9. Conclusions: Carnitine levels tended to decrease after doxorubicin treatment. LV global dysfunction was documented early after doxorubicin. However, short-term l-carnitine supplement did not improve cardiac function.

  20. Cardiovascular measurement and cardiac function analysis with electron beam computed tomography in health Chinese people (50 cases report)

    International Nuclear Information System (INIS)

    Purpose: To quantitatively measure cardiovascular diameters and function parameters by using electron beam computed tomography, EBCT. Methods: Men 50 health Chinese people accepted EBCT common transverse and short-axis enhanced movie scan (27 men, 23 women, average age 47.7 years.). The transverse scan was used to measure the diameters of the ascending aorta, descending aorta, pulmonary artery and left atrium. The movie study was used to measure the left ventricular myocardium thickness and analysis global, sectional and segmental function of the right and left ventricles. Results: The cardiovascular diameters and cardiac functional parameters were calculated. The diameters and most functional parameters (end syspoble volume, syspole volume, ejection fraction, cardiac-output, cardiac index) of normal Chinese men were greater than those of women (P>0.05). However, the EDV and MyM(myocardium mass) of both ventricles were significant (p<0.01). Conclusion: EBCT is a minimally invasive method for cardiovascular measurement and cardiac function evaluation

  1. Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: A review

    Directory of Open Access Journals (Sweden)

    Hui Zhu

    2015-10-01

    Full Text Available Weightlessness is an extreme environment that can cause a series of adaptive changes in the human body. Findings from real and simulated weightlessness indicate altered cardiovascular functions, such as reduction in left ventricular (LV mass, cardiac arrhythmia, reduced vascular tone and so on. These alterations induced by weightlessness are detrimental to the health, safety and working performance of the astronauts, therefore it is important to study the effects of weightlessness on the cardiovascular functions of humans. The cardiovascular functional alterations caused by weightlessness (including long-term spaceflight and simulated weightlessness are briefly reviewed in terms of the cardiac and peripheral vascular functions. The alterations include: changes of shape and mass of the heart; cardiac function alterations; the cardiac arrhythmia; lower body vascular regulation and upper body vascular regulation. A series of conclusions are reported, some of which are analyzed, and a few potential directions are presented.

  2. Renal and cardiac function during alpha1-beta-blockade in congestive heart failure

    DEFF Research Database (Denmark)

    Heitmann, M; Davidsen, U; Stokholm, K H;

    2002-01-01

    The kidney and the neurohormonal systems are essential in the pathogenesis of congestive heart failure (CHF) and the physiologic response. Routine treatment of moderate to severe CHF consists of diuretics, angiotensin-converting enzyme (ACE) inhibition and beta-blockade. The need for control of...... renal function during initiation of ACE-inhibition in patients with CHF is well known. The aim of this study was to investigate whether supplementation by a combined alpha1-beta-blockade to diuretics and ACE-inhibition might improve cardiac function without reducing renal function....

  3. Evaluation of cardiac functions in children by digital subtraction angiography

    International Nuclear Information System (INIS)

    We performed a left ventricular phase analysis of Kawasaki disease by digital subtraction angiography (DSA). Fifty-seven children with Kawasaki disease (32 with normal coronary angiograms and 25 with multiple coronary aneurysms more than 4 mm in diameter) underwent intravenous DSA. Contrast medium was injected from the inferior vena cava. Left ventricular time-density cure was obtained by first-pass method in the right anterior oblique (RAO) projection. After calculating left ventricular ejection fraction (LVEF), phase analysis was done using a pixel-by-pixel Fourier transform of the time-density curve to assess the wall motion abnormalities of left ventricles (LV) due to coronary lesions. We could evaluate LV functions even under the presence of spontaneous respiration in smaller children, after inducing resting respiration by sedative agents. Normal value of the standard deviation (SD) of LV phase histogram was determined to be under 15 degree. We found a negative correlation between the mean values of LV phase histograms and R-R intervals. However, the SD values did not show any correlations with LV ejection fraction, calculated by area-length method using the same digital angiograms, and with number of pixels forming the ROI of end-diastolic LV. Eight cases (7 with coronary lesions and 1 without aneurysms) showed over 15 SD values. The maximum SD value was 22.5 degree in a patient with bilateral large aneurysms. However, there was no significant difference of the SD values between the two groups. The LVEFs were calculated higher than those reported previously in the literature, and the mean LVEF of the patients with coronary lesions was significantly lower than that without aneurysms. In this study sensitivity and specificity in detecting myocardial ischemia could not be evaluated because of the absence of cases with myocardial infarctions. (author)

  4. Evaluation of copper concentration in subclinical cases of white muscle disease and its relationship with cardiac troponin I.

    Directory of Open Access Journals (Sweden)

    Forough Ataollahi

    Full Text Available The present study aims to evaluate the serum level of copper (Cu in lambs suffering from subclinical forms of white muscle disease (WMD and its relationship with cardiac troponin I (cTn-I as a novel biomarker of cardiovascular disorders. Ten milliliters of jugular blood were taken from 200 lambs less than one year old to measure serum concentrations of Cu, selenium (Se, and cTn-I. The subjects were divided into 2 groups, namely, the deficient group which included 36 lambs, and the control group which included 164 lambs according to the reference serum Se concentration (50 ng/mL. Serum Se levels in the deficient group were lower than 50 ng/mL. By contrast, the control group showed Se levels higher than 50 ng/mL. Differences among the serum Cu and cTn-I levels were determined in both groups. The mean ±SD and median of serum Cu and cTn-I levels in the deficient group were lower and higher than those in the control group, respectively. A significant positive correlation was observed between serum Cu and Se levels, and also serum Cu and Se levels showed a negative correlation with serum cTn-I concentrations. Stepwise linear regression analysis showed that serum Cu levels were correlated positively with serum Se levels (p<0.05. Receiver operating characteristic (ROC curve analysis indicated that the area under curve (AUC of Cu was significantly higher than that of cTn-I based on the reference diagonal line. It is important to keep in mind that the value of AUC for the ROC curve is between 0.5 and 1.00, in which the lowest accuracy is related to the reference diagonal line with AUC of 0.5. A cut-off was determined to indicate which Cu level can discriminate between affected and healthy lambs. The cut-off level, sensitivity, and specificity of Cu in this study were 144.5 ng/mL, 74%, and 61%, respectively.

  5. Usefulness of true FISP cine MR imaging in patients with poor cardiac function

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Toshiharu; Yamada, Naoaki; Motooka, Makoto; Enomoto, Naoyuki; Maeshima, Isamu; Matsuda, Kazuhide; Urayama, Shinichi; Ikeo, Miki [National Cardiovascular Center, Suita, Osaka (Japan)

    2002-01-01

    This study was done to assess the value of True FISP cine in patients with poor cardiac function. True FISP cine and FLASH cine imaging were performed on a 1.5 T machine. Both short axis and horizontal long axis imaging sections were used. The imaging sections used a Matrix (120 x 128), FOV (24 x 32 cm), and had a slice thickness of 8 mm. The imaging time for True FISP cine was 8 heart beats and 17 heart beats for FLASH cine. The contrast-to-noise ratio between the blood and myocardium (CNR) was measured at enddiastole and endsystole. The subjects in the study were 10 healty volunteers (average age 26.5{+-}3.2 years) and 12 patients with hypofunction (average age 53.9{+-}13.2 years). In the volunteers, the CNR of the short axis imaging was similar in both True FISP (24.6{+-}3.7) and FLASH (23.4{+-}5.9). In the patients with poor cardiac function however, the CNR of True FISP was larger than FLASH in both the short and long axis. In the short axis (22.7{+-}6.1 vs. 17.9{+-}5.3, P<0.01) and in the long axis (17.4{+-}4.3 vs. 9.3{+-}4.0, P<0.01). We conclude that True FISP cine has a higher contrast in a shorter imaging time than FLASH cine. True FISP cine is especially useful in patients with poor cardiac function. (author)

  6. Gluteus maximus muscle function and the origin of hominid bipedality.

    Science.gov (United States)

    Marzke, M W; Longhill, J M; Rasmussen, S A

    1988-12-01

    Bipedality not only frees the hands for tool use but also enhances tool use by allowing use of the trunk for leverage in applying force and thus imparting greater final velocity to tools. Since the weight and acceleration of the trunk and forelimbs on the hindlimbs must be counteracted by muscles such as m. gluteus maximus that control pelvic and trunk movements, it is suggested that the large size of the cranial portion of the human gluteus maximus muscle and its unique attachment to the dorsal ilium (which is apparent in the Makapan australopithecine ilium) may have contributed to the effectiveness with which trunk movement was exploited in early hominid foraging activities. To test this hypothesis, the cranial portions of both right and left muscles were investigated in six human subjects with electromyography during throwing, clubbing, digging, and lifting. The muscles were found to be significantly recruited when the trunk is used in throwing and clubbing, initiating rotation of the pelvis and braking it as trunk rotation ceases and the forelimb accelerates. They stabilize the pelvis during digging and exhibit marked and prolonged activity when the trunk is maintained in partial flexion during lifting of heavy objects. PMID:3223519

  7. Evidence towards Improved Estimation of Respiratory Muscle Effort from Diaphragm Mechanomyographic Signals with Cardiac Vibration Interference Using Sample Entropy with Fixed Tolerance Values

    Science.gov (United States)

    Sarlabous, Leonardo; Torres, Abel; Fiz, José A.; Jané, Raimon

    2014-01-01

    The analysis of amplitude parameters of the diaphragm mechanomyographic (MMGdi) signal is a non-invasive technique to assess respiratory muscle effort and to detect and quantify the severity of respiratory muscle weakness. The amplitude of the MMGdi signal is usually evaluated using the average rectified value or the root mean square of the signal. However, these estimations are greatly affected by the presence of cardiac vibration or mechanocardiographic (MCG) noise. In this study, we present a method for improving the estimation of the respiratory muscle effort from MMGdi signals that is robust to the presence of MCG. This method is based on the calculation of the sample entropy using fixed tolerance values (fSampEn), that is, with tolerance values that are not normalized by the local standard deviation of the window analyzed. The behavior of the fSampEn parameter was tested in synthesized mechanomyographic signals, with different ratios between the amplitude of the MCG and clean mechanomyographic components. As an example of application of this technique, the use of fSampEn was explored also in recorded MMGdi signals, with different inspiratory loads. The results with both synthetic and recorded signals indicate that the entropy parameter is less affected by the MCG noise, especially at low signal-to-noise ratios. Therefore, we believe that the proposed fSampEn parameter could improve estimates of respiratory muscle effort from MMGdi signals with the presence of MCG interference. PMID:24586436

  8. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia; Calbet, Jose A L; Robach, Paul; Gnaiger, Erich; Lundby, Carsten

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  9. The specific case: cardiac amyloidosis as differential diagnosis in case of restricted cardiac pump function; Der besondere Fall. Amyloidose des Herzens als Differenzialdiagnose bei eingeschraenkter kardialer Pumpfunktion

    Energy Technology Data Exchange (ETDEWEB)

    D' Errico, L. [Universitaetsspital Basel (Switzerland). Klinik fuer Radiologie und Nuklearmedizin; Zellweger, M.; Niemann, T.

    2014-03-15

    The NMR imaging data in combination with clinical characterization and echocardiography are consistent with the diagnosis of a cardiac amyloidosis. The article describes disease pattern and diagnosis based on contrast agent accumulation and diastolic functional disturbances. CT was performed to exclude pulmonary embolism.

  10. Is functional hypertrophy and specific force coupled with the addition of myonuclei at the single muscle fiber level?

    OpenAIRE

    Qaisar, R.; Renaud, G; Morine, K.; Barton, E. R.; Sweeney, H. L.; Larsson, L

    2012-01-01

    Muscle force is typically proportional to muscle size, resulting in constant force normalized to muscle fiber cross-sectional area (specific force). Mice overexpressing insulin-like growth factor-1 (IGF-1) exhibit a proportional gain in muscle force and size, but not the myostatin-deficient mice. In an attempt to explore the role of the cytoplasmic volume supported by individual myonuclei [myonuclear domain (MND) size] on functional capacity of skeletal muscle, we have investigated specific f...

  11. Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial β-adrenergic system and does not compromise cardiac function.

    Science.gov (United States)

    Vileigas, Danielle F; de Deus, Adriana F; da Silva, Danielle C T; de Tomasi, Loreta C; de Campos, Dijon H S; Adorni, Caroline S; de Oliveira, Scarlet M; Sant'Ana, Paula G; Okoshi, Katashi; Padovani, Carlos R; Cicogna, Antonio C

    2016-09-01

    Obesity is a worldwide pandemic associated with high incidence of cardiovascular disease. The mechanisms by which the obesity leads cardiac dysfunction are not fully elucidated and few studies have evaluated the relationship between obesity and proteins involved in myocardial β-adrenergic (βA) system. The purpose of this study was to evaluate the cardiac function and βA pathway components in myocardium of obese rats. Male Wistar rats were distributed into two groups: control (n = 17; standard diet) and obese (n = 17; saturated high-fat diet) fed for 33 weeks. Nutritional profile and comorbidities were assessed. Cardiac structure and function was evaluated by macroscopic postmortem, echocardiographic and isolated papillary muscle analyzes. Myocardial protein expression of β1- and β2-adrenergic receptors, Gαs protein, adenylate cyclase (AC) and protein kinase A (PKA) was performed by Western blot. Cardiac cyclic adenosine monophosphate (cAMP) levels and PKA activity were assessed by ELISA Obese rats showed increased adiposity index (P < 0.001) and several comorbidities as hypertension, glucose intolerance, insulin resistance, and dyslipidemia compared with control rats. Echocardiographic assessment revealed increased left atrium diameter (C: 4.98 ± 0.38 vs. Ob: 5.47 ± 0.53, P = 0.024) and posterior wall shortening velocity (C: 37.1 ± 3.6 vs. Ob: 41.8 ± 3.8, P = 0.007) in obese group. Papillary muscle evaluation indicated that baseline data and myocardial responsiveness to isoproterenol stimulation were similar between the groups. Protein expression of myocardial AC was higher in obese group than in the control (C: 1.00 ± 0.21 vs. Ob: 1.25 ± 0.10, P = 0.025), whereas the other components were unchanged. These results suggest that saturated high-fat diet-induced obesity was not effective in triggering cardiac dysfunction and impair the beta-adrenergic signaling. PMID:27582064

  12. Deletion of Drosophila muscle LIM protein decreases flight muscle stiffness and power generation

    OpenAIRE

    Clark, Kathleen A.; Lesage-Horton, Heather; Zhao, Cuiping; Beckerle, Mary C.; Swank, Douglas M.

    2011-01-01

    Muscle LIM protein (MLP) can be found at the Z-disk of sarcomeres where it is hypothesized to be involved in sensing muscle stretch. Loss of murine MLP results in dilated cardiomyopathy, and mutations in human MLP lead to cardiac hypertrophy, indicating a critical role for MLP in maintaining normal cardiac function. Loss of MLP in Drosophila (mlp84B) also leads to muscle dysfunction, providing a model system to examine MLP's mechanism of action. Mlp84B-null flies that survive to adulthood are...

  13. Structural and functional changes in the skeletal muscles of COPD patients: the "compartments" theory.

    Science.gov (United States)

    Gea, J; Orozco-Levi, M; Barreiro, E; Ferrer, A; Broquetas, J

    2001-06-01

    This review focuses on the structural and functional changes occurring in respiratory as well as peripheral muscles in COPD patients. These changes are particular for each muscle territory or compartment. Respiratory muscles predominantly undergo structural adaptive changes. However, they have to do their job in unfavourable mechanical conditions and thus their function is impaired. Peripheral muscles have to be grouped in at least two different compartments: upper and lower limb muscles. The structure and function are relatively preserved in the former, due to the maintenance of some daily activities involving the arms or even the use of some of these muscles in the ventilatory effort. Lower limb muscles in contrast undergo involute structural changes which result in an impairment in their function and in the global exercise capacity of the individual. Deconditioning due to a reduction in daily activities secondary to ventilatory impairment is probably the driving factor for these changes. Although the level of activity appears to be the main determining factor in changes occurring in different territories, this would be modulated by other local and systemic factors, such as inflammation, oxidative stress, drugs and nutritional abnormalities. PMID:11665501

  14. Pelvic floor muscle function in a general population of women with and without pelvic organ prolapse

    OpenAIRE

    Slieker-ten Hove, Marijke; Pool-Goudzwaard, Annelies; Eijkemans, René; Steegers-Theunissen, Régine; BURGER, Curt; Vierhout, Mark

    2010-01-01

    textabstractIntroduction and hypothesis: This study aims to examine the relationship between pelvic floor muscle function (PFMF) and pelvic organ prolapse (POP) in a general female population. Methods: Cross-sectional study on women aged 45-85 years. Validated questionnaires were used to assess pelvic floor muscle function. POP and PFMF were evaluated with vaginal examination. For statistical analysis chi-squared test for trend and analysis of variance were used. Results: Response rate to the...

  15. Mithochondrial function in human skeletal muscle : with special reference to exercise and training

    OpenAIRE

    Tonkonogi, Michail

    2000-01-01

    The overall objective of this thesis was to study the adaptation of oxidative function in human skeletal muscle to acute exercise of different modes, intensities and durations, and to endurance training. The effects of endurance training on mitochondrial function were evaluated in cross-sectional and longitudinal studies by measurements of mitochondrial oxygen consumption in isolated mitochondria and permeabilised muscle fibres and measurements of mitochondrial ATP produ...

  16. Intermuscular Adipose Tissue Is Muscle Specific and Associated with Poor Functional Performance

    OpenAIRE

    Tuttle, Lori J; Sinacore, David R.; Mueller, Michael J.

    2012-01-01

    Purpose. People with obesity, diabetes, and peripheral neuropathy have high levels of intermuscular adipose tissue (IMAT) volume which has been inversely related to physical function. We determined if IMAT is muscle specific, if calf IMAT is different between a healthy obese group (HO), a group with diabetes mellitus (D), and a group with diabetes mellitus and peripheral neuropathy (DN), and if IMAT volume or the ratio of IMAT/muscle volume is related to physical function in these groups. Met...

  17. Muscle capacity and physical function in older women: What are the impacts of resistance training?

    OpenAIRE

    Anne O. Brady; Chad R. Straight

    2014-01-01

    The number of older adults (individuals ≥65 years), particularly women, in our society is increasing and understanding the impact of exercise on muscle capacity (e.g., strength and power) and subsequently physical function is of utmost importance to prevent disability and maintain independence. Muscle capacity declines with age and this change negatively impacts physical function in older women. Exercise, specifically resistance training, is recommended to counteract these declines; however, ...

  18. Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip

    Directory of Open Access Journals (Sweden)

    Tomohiko Takei

    2013-04-01

    Full Text Available Grasping is a highly complex movement that requires the coordination of a number of hand joints and muscles. Previous studies showed that spinal premotor interneurons (PreM-INs in the primate cervical spinal cord have divergent synaptic effects on hand motoneurons and that they might contribute to hand-muscle synergies. However, the extent to which these PreM-IN synaptic connections functionally contribute to modulating hand-muscle activity is not clear. In this paper, we explored the contribution of spinal PreM-INs to hand-muscle activation by quantifying the synaptic linkage (SL and functional linkage (FL of the PreM-INs with hand-muscle activities. The activity of 23 PreM-INs was recorded from the cervical spinal cord (C6–T1, with EMG signals measured simultaneously from hand and arm muscles in two macaque monkeys performing a precision grip task. Spike-triggered averages (STAs of rectified EMGs were compiled for 456 neuron–muscle pairs; 63 pairs showed significant post-spike effects (i.e., SL. Conversely, 231 of 456 pairs showed significant cross-correlations between the IN firing rate and rectified EMG (i.e., FL. Importantly, a greater proportion of the neuron–muscle pairs with SL showed FL (43/63 pairs, 68% compared with the pairs without SL (203/393, 52%, and the presence of SL was significantly associated with that of FL. However, a significant number of pairs had SL without FL (SL∩!FL, n = 20 or FL without SL (!SL∩FL, n = 203, and the proportions of these incongruities exceeded the number expected by chance. These results suggested that spinal PreM-INs function to significantly modulate hand-muscle activity during precision grip, but the contribution of other neural structures is also needed to recruit an adequate combination of hand-muscle motoneurons.

  19. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Carlo, E-mail: c.liguori@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Pitocco, Francesca, E-mail: f.pitocco@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Di Giampietro, Ilenia, E-mail: i.digiampietro@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Vivo, Aldo Eros de, E-mail: devivoeros@gmail.com [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Unit of Measurements and Biomedical Instrumentation, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Cianciulli, Paolo, E-mail: CIANCIULLI.PAOLO@aslrmc.it [Thalassemia Unit, Ospedale Sant Eugenio, Piazzale dell’Umanesimo 10, 00143 Rome (Italy); Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy)

    2013-09-15

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients.

  20. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    International Nuclear Information System (INIS)

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients

  1. Long-term abdominal adiposity activates several parameters of cardiac energy function.

    Science.gov (United States)

    Mourmoura, Evangelia; Rigaudière, Jean-Paul; Couturier, Karine; Hininger, Isabelle; Laillet, Brigitte; Malpuech-Brugère, Corinne; Azarnoush, Kasra; Demaison, Luc

    2016-09-01

    Abdominal obesity increases the incidence of cardiac events but reduces mortality when one of these events occurs. The phenomenon called obesity paradox might be related to myocardial energetics. This study was aimed at determining whether long-term abdominal adiposity alters cardiac energy function. Two groups of male Wistar rats were fed a standard or a Western-type (WD) diet for 8 months. The ex vivo coronary reactivity and mechanical function as well as the mitochondrial oxidative phosphorylation (mOxPhos) and hydrogen peroxide release (mH2O2r) were determined. Abdominal adiposity was augmented by the WD. This was also the case for the coronary reactivity to acetylcholine, but the rate pressure product remained roughly stable despite a reduction of the left ventricle-developed pressure partly compensated by a slight increase in heart rate. The prolonged WD administration resulted in an improvement of mOxPhos, but the mH2O2r was exaggerated which was confirmed in the whole cell by a reduced aconitase to fumarase ratio. This did not modify the plasma oxidative stress due to an increased plasma antioxidant status. In conclusion, long-term WD administration improved the cardiac fitness and might predispose the organism to the obesity paradox. Conversely, the increased mitochondrial mH2O2r can precipitate the heart toward cardiomyopathy if the WD is maintained for a longer duration. PMID:26255304

  2. Hyperpolarized metabolic MR in the study of cardiac function and disease

    DEFF Research Database (Denmark)

    Lauritzen, M. H.; Søgaard, L. V.; Madsen, Pia Lisbeth;

    2014-01-01

    Several diseases of the heart have been linked to an insufficient ability to generate enough energy (ATP) to sustain proper heart function. Hyperpolarized magnetic resonance (MR) is a novel technique that can visualize and quantify myocardial energy metabolism. Hyperpolarization enhances the MR...... signal from a biological molecule of interest by more than 10,000 times, making it possible to measure its cellular uptake and conversion in specific enzymatic pathways in real time. We review the role of hyperpolarized MR in identifying changes in cardiac metabolism in vivo, and present the extensive...... literature on hyperpolarized pyruvate that has been used to characterize cardiac disease in various in vivo models, such as myocardial ischemia, hypertension, diabetes, hyperthyroidism and heart failure. The technical aspects of the technique are presented as well as the challenges of translating the...

  3. Hyperpolarized Metabolic MR in the Study of Cardiac Function and Disease

    DEFF Research Database (Denmark)

    Lauritzen, M H; Sogaard, L V; Madsen, P L;

    2014-01-01

    Several diseases of the heart have been linked to an insufficient ability to generate enough energy (ATP) to sustain proper heart function. Hyperpolarized magnetic resonance (MR) is a novel technique that can visualize and quantify myocardial energy metabolism. Hyperpolarization enhances the MR...... signal from a biological molecule of interest by more than 10,000 times, making it possible to measure its cellular uptake and conversion in specific enzymatic pathways in real time. We review the role of hyperpolarized MR in identifying changes in cardiac metabolism in vivo, and present the extensive...... literature on hyperpolarized pyruvate that has been used to characterize cardiac disease in various in vivo models, such as myocardial ischemia, hypertension, diabetes, hyperthyroidism and heart failure. The technical aspects of the technique are presented as well as the challenges of translating the...

  4. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    Science.gov (United States)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  5. Acute effects of inspiratory muscle warm-up on pulmonary function in healthy subjects.

    Science.gov (United States)

    Özdal, Mustafa

    2016-06-15

    The acute effects of inspiratory muscle warm-up on pulmonary functions were examined in 26 healthy male subjects using the pulmonary function test (PFT) in three different trials. The control trial (CON) did not involve inspiratory muscle warm-up, while the placebo (IMWp) and experimental (IMW) trials involved inspiratory muscle warm-up. There were no significant changes between the IMWp and CON trials (p>0.05). All the PFT measurements, including slow vital capacity, inspiratory vital capacity, forced vital capacity, forced expiratory volume in one second, maximal voluntary ventilation, and maximal inspiratory pressure were significantly increased by 3.55%, 12.52%, 5.00%, 2.75%, 2.66%, and 7.03% respectively, in the subjects in the IMW trial than those in the CON trial (ppulmonary functions. The mechanisms responsible for these improvements are probably associated with the concomitant increase in the inspiratory muscle strength, and the cooperation of the upper thorax, neck, and respiratory muscles, and increased level of reactive O2 species in muscle tissue, and potentially improvement of muscle O2 delivery-to-utilization. However, further investigation is required to determine the precise mechanisms responsible from among these candidates. PMID:26903486

  6. Effects of Functional Training Program in Core Muscles in Women with Fibromyalgia

    Directory of Open Access Journals (Sweden)

    Iván Darío Pinzón-Ríos

    2015-01-01

    Full Text Available Abstract: Objective: To evaluate the effects of a program of functional muscles core training targeting women with fibromyalgia. Materials and methods: A quasi-experimental type trial was conducted, before and after an intervention, for 20 days, often three days/week, 60 minutes each session. In a single-group of eight women, changes in muscle strength, pain, quality of life related to health and physical activity were evaluated. Results: An increase in repetitions of the test trunk flexion, time on the left and right bridge testing lateral and prone bridge the test were found. All features of pain decreased, and, according to the S-FIQ, a decrease in morning fatigue, stiffness and anxiety was reported. Also Met’s/minute-weeks increased after intervention. Conclusion: These data suggest that functional program core muscle training is effective in increasing muscle strength, pain modulation, functional performance optimization, and increased levels of physical activity in women with fibromyalgia.

  7. Preliminary design of a new device to measure muscle function.

    Science.gov (United States)

    Lind, Jeffrey; Durfee, William

    2015-08-01

    A description and early results are presented for a novel device to estimate the torque-angle and torque-angular velocity properties of the quadriceps muscle group using electrical stimulation. The device straps to the shin and is moved by the operator while pulses of stimulation are applied to the motor point of the quadriceps. During stimulation, the operator raises and lowers the leg to the desired angle, and also can oscillate the leg to generate a rich velocity profile. The resulting muscle force is measured by a load cell contained in the device. In a preliminary study using 11 healthy subjects, normalized torque-angle and torque-velocity data for the quadriceps were consistent with literature results that used maximum voluntary contraction methods. PMID:26737540

  8. MITOCHONDRIA QUALITY CONTROL AND MUSCLE MASS MAINTENANCE

    OpenAIRE

    Vanina eRomanello; Marco eSandri

    2016-01-01

    Loss of muscle mass and force occurs in many diseases such as disuse/inactivity, diabetes, cancer, renal and cardiac failure and in aging-sarcopenia. In these catabolic conditions the mitochondrial content, morphology and function are greatly affected. The changes of mitochondrial network influence the production of reactive oxygen species (ROS) that play an important role in muscle function. Moreover, dysfunctional mitochondria trigger catabolic signaling pathways which feed-forward to the n...

  9. Cardiac autonomic function measured by heart rate variability and turbulence in pre-hypertensive subjects.

    Science.gov (United States)

    Erdem, Alim; Uenishi, Masahiro; Küçükdurmaz, Zekeriya; Matsumoto, Kazuo; Kato, Ritsushi; Hara, Motoki; Yazıcı, Mehmet

    2013-01-01

    Non-dipping blood pressure pattern was shown to be associated with increased cardiovascular events. In addition, cardiac autonomic dysfunction was found to be associated with non-dipper phenomenon. In this study, we aimed to evaluate the cardiac autonomic functions in dipper and non-dipper pre-hypertensive subjects. A total of 65 pre-hypertensive subjects were enrolled in this study. They were divided into two groups as non-dippers (40 subjects, 52% female) and dippers (25 subjects, 52.5% female). Cardiac autonomic functions of the two groups were compared with the aid of heart rate variability, heart rate turbulence (HRT), atrial premature contractions (APCs), ventricular premature contractions (VPCs), and mean heart rate (MHR). There was no significant difference between non-dippers and dippers in basal characteristics. The two parameters of HRT, turbulence onset and turbulence slope, were found to be significantly abnormal in non-dippers than in dippers (P < .011 and P < .002, respectively). Heart rate variability parameters, including SDNN, SDANN, RMSSD, and pNN50, were found to be similar in dipper and non-dipper pre-hypertensive subjects (P < .998, P < .453, P < .205, and P < .788, respectively). APCs, VPCs, and MHR were compared, and there were statistical differences between the groups (APCs 5.80 ± 4.55, 9.14 ± 7.33, P < .024; VPCs 8.48 ± 8.83, 13.23 ± 9.68, P < .044; and MHR 70.16 ± 11.08, 76.26 ± 11.31, P < .035; respectively). This study demonstrated a possible cardiac autonomic dysfunction in pre-hypertensive subjects with non-dipper pattern. This may be a basis for future studies related to pre-hypertension and non-dipping BP pattern. PMID:22676318

  10. Efficacy of cardiac resynchronization with defibrillator insertion in patients undergone coronary artery bypass graft: A cohort study of cardiac function

    Directory of Open Access Journals (Sweden)

    Reza Karbasi Afshar

    2015-01-01

    Full Text Available Introduction: Cardiac resynchronization therapy (CRT is a proven therapeutic method in selected patients with heart failure and systolic dysfunction which increases left ventricular function and patient survival. We designed a study that included patients undergoing coronary artery bypass graft (CABG, with and without CRT-defibrillator (CRT-D inserting and then measured its effects on these two groups. Patients and Methods: Between 2010 and 2013, we conducted a prospective cohort study on 100 coronary artery disease patients where candidate for CABG. Then based on the receiving CRT-D, the patients were categorized in two groups; Group 1 ( n = 48, with CRT-D insertion before CABG and Group 2 ( n = 52 without receiving CRT-D. Thereafter both of these groups were followed-up at 1-3 months after CABG for mortality, hospitalization, atrial fibrillation (AF, echocardiographic assessment, and New York Heart Association (NYHA class level. Results: The mean age of participants in Group 1 (48 male and in Group 2 (52 male was 58 ± 13 and 57 ± 12 respectively. Difference between Groups 1 and 2 in cases of mean left ventricular ejection fraction (LVEF changes and NYHA class level was significant ( P > 0.05. Hospitalization ( P = 0.008, mortality rate ( P = 0.007, and AF were significantly different between these two groups. Conclusions: The results showed that the increase in LVEF and patient′s improvement according to NYHA-class was significant in the first group, and readmission, mortality rate and AF was increased significantly in the second group.

  11. Muscle function in avian flight: achieving power and control

    OpenAIRE

    Biewener, Andrew A.

    2011-01-01

    Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to r...

  12. Smooth Muscle Cell Functionality on Collagen Immobilized Polycaprolactone Nanowire Surfaces

    OpenAIRE

    Victoria Leszczak; Baskett, Dominique A.; Popat, Ketul C.

    2014-01-01

    Inhibition of smooth muscle cell (SMC) proliferation and preservation of a differentiated state are important aspects in the management, avoidance and progression of vascular diseases. An understanding of the interaction between SMCs and the biomaterial involved is essential for a successful implant. In this study, we have developed collagen immobilized nanostructured surfaces with controlled arrays of high aspect ratio nanowires for the growth and maintenance of human aortic SMCs. The nanow...

  13. Modifiers of Heart and Muscle Function: Where Genetics Meets Physiology

    OpenAIRE

    Swaggart, Kayleigh A.; McNally, Elizabeth M.

    2013-01-01

    Many single gene disorders are associated with a range of symptoms that cannot be solely explained by the primary genetic mutation. Muscular dystrophy is a genetic disorder associated with variable outcomes that arises from both the primary genetic mutation and the contribution from environmental and genetic modifiers. Disruption of the dystrophin complex occurs in Duchenne muscular dystrophy and limb girdle muscular dystrophy producing heart and muscle disease through a cellular injury proce...

  14. The Impact of Midcervical Contusion Injury on Diaphragm Muscle Function.

    Science.gov (United States)

    Alvarez-Argote, Santiago; Gransee, Heather M; Mora, Juan C; Stowe, Jessica M; Jorgenson, Amy J; Sieck, Gary C; Mantilla, Carlos B

    2016-03-01

    Midcervical contusion injuries disrupt descending ipsilateral excitatory bulbospinal projections to phrenic motoneurons, compromising ventilation. We hypothesized that a unilateral contusion injury at C3 versus C5 would differentially impact phrenic activity reflecting more prominent disruption of ipsilateral descending excitatory drive to more caudal segments of the phrenic motor pool with more cranial injuries. Phrenic motoneuron counts and evidence of diaphragm muscle denervation at individual neuromuscular junctions (NMJ) were evaluated at 14 days post-injury after unilateral contusion injury (100 kDynes). Whole body plethysmography and chronic diaphragm EMG were measured before the injury and at 3, 7, and 14 days post-injury. Contusion injuries at either level resulted in a similarly sized cavity. C3 contusion resulted in loss of 39 ± 13% of ipsilateral phrenic motoneurons compared with 13 ± 21% after C5 contusion (p = 0.003). Cervical contusion injuries resulted in diaphragm muscle denervation (C3 contusion: 17 ± 4%; C5 contusion: 7 ± 4%; p = 0.047). The pattern of denervation revealed segmental innervation of the diaphragm muscle, with greater denervation ventrally after C3 contusion and dorsally after C5 contusion. Overall, diaphragm root mean square electromyography activity did not change ipsilaterally after C3 or C5 contusion, but increased contralaterally (∼11%) after C3 contusion only on the first day post-injury (p = 0.026). Similarly, there were no significant changes in breathing parameters during eupnea or exposure to hypoxia (10% O2) - hypercapnia (5% CO2) at any time post-injury. Unilateral midcervical contusions minimally impair ventilatory behaviors despite phrenic motoneuron loss and diaphragm muscle denervation. PMID:26413840

  15. Effect of eccentric training on mitochondrial function and oxidative stress in the skeletal muscle of rats

    Directory of Open Access Journals (Sweden)

    L.A. Silva

    2013-01-01

    Full Text Available The objective of the present study was to investigate the effects of eccentric training on the activity of mitochondrial respiratory chain enzymes, oxidative stress, muscle damage, and inflammation of skeletal muscle. Eighteen male mice (CF1 weighing 30-35 g were randomly divided into 3 groups (N = 6: untrained, trained eccentric running (16°; TER, and trained running (0° (TR, and were submitted to an 8-week training program. TER increased muscle oxidative capacity (succinate dehydrogenase and complexes I and II in a manner similar to TR, and TER did not decrease oxidative damage (xylenol and creatine phosphate but increased antioxidant enzyme activity (superoxide dismutase and catalase similar to TR. Muscle damage (creatine kinase and inflammation (myeloperoxidase were not reduced by TER. In conclusion, we suggest that TER improves mitochondrial function but does not reduce oxidative stress, muscle damage, or inflammation induced by eccentric contractions.

  16. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, Tue Wenzel; Kjaer, M; Mackey, A L

    2011-01-01

    The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging....... Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross-links and a...... buildup of advanced glycation end-product cross-links. Altered mechanotransduction, poorer activation of satellite cells, poorer chemotactic and delayed inflammatory responses, and a change in modulators of the ECM are important cellular changes. It is possible that the structural and biochemical changes...

  17. Effect of physical training on function of chronically painful muscles: A randomized controlled trial

    DEFF Research Database (Denmark)

    Andersen, Lars L; Andersen, Christoffer H; Zebis, Mette K;

    2008-01-01

    Purpose: Pain and tenderness of the upper trapezius muscle is frequent in several occupational groups. The objective of this study is to investigate the effect of three contrasting interventions on muscle function and pain in women with trapezius myalgia. Methods: A group of employed women (n=42......) with a clinical diagnosis of trapezius myalgia participated in a 10 week randomized controlled intervention; specific strength training of the neck/shoulder muscles (SST), general fitness training performed as leg-bicycling (GFT), or a reference intervention without physical activity (REF). Torque and...... during the reference contraction decreased significantly for both the trapezius and deltoid muscles (P<0.01). Conclusion: In conclusion, specific strength training relieves pain and increases maximal activity specifically of the painful trapezius muscle, leading to increased shoulder abduction strength...

  18. Impairment of pulmonary function and changes in the right cardiac structure of pneumoconiotic coal workers in China

    Directory of Open Access Journals (Sweden)

    Lu-Qin Bian

    2015-02-01

    Full Text Available Introduction Information on the changes of pulmonary function and the right cardiac structure in patients with coal worker’s pneumoconiosis in China is very scarce. This study was performed to clarify the changes of pulmonary function and right cardiac structure in patients with coal worker’s pneumoconiosis in China. Material and methods Pulmonary function, pulmonary artery systolic pressure, and the right cardiac structure were evaluated by spirometry and color Doppler echocardiography. Results The pulmonary artery systolic pressure of patients with coal worker’s pneumoconiosis was increased with disease severity. Patients with coal worker’s pneumoconiosis also exhibited an impaired pulmonary function and altered right cardiac structure compared with control subjects. A significant linear correlation of the variables of pulmonary ventilation and diffusion function with the indicators of the right cardiac structure was found in patients with coal worker’s pneumoconiosis in China. Conclusions This study elucidated a deterioration of pulmonary function and right cardiac structure in patients with coal worker’s pneumoconiosis in China.

  19. Sparing of muscle mass and function by passive loading in an experimental intensive care unit model.

    Science.gov (United States)

    Renaud, Guillaume; Llano-Diez, Monica; Ravara, Barbara; Gorza, Luisa; Feng, Han-Zhong; Jin, Jian-Ping; Cacciani, Nicola; Gustafson, Ann-Marie; Ochala, Julien; Corpeno, Rebeca; Li, Meishan; Hedström, Yvette; Ford, G Charles; Nair, K Sreekumaran; Larsson, Lars

    2013-03-01

    The response to mechanical stimuli, i.e., tensegrity, plays an important role in regulating cell physiological and pathophysiological function, and the mechanical silencing observed in intensive care unit (ICU) patients leads to a severe and specific muscle wasting condition. This study aims to unravel the underlying mechanisms and the effects of passive mechanical loading on skeletal muscle mass and function at the gene, protein and cellular levels. A unique experimental rat ICU model has been used allowing long-term (weeks) time-resolved analyses of the effects of standardized unilateral passive mechanical loading on skeletal muscle size and function and underlying mechanisms. Results show that passive mechanical loading alleviated the muscle wasting and the loss of force-generation associated with the ICU intervention, resulting in a doubling of the functional capacity of the loaded versus the unloaded muscles after a 2-week ICU intervention. We demonstrate that the improved maintenance of muscle mass and function is probably a consequence of a reduced oxidative stress revealed by lower levels of carbonylated proteins, and a reduced loss of the molecular motor protein myosin. A complex temporal gene expression pattern, delineated by microarray analysis, was observed with loading-induced changes in transcript levels of sarcomeric proteins, muscle developmental processes, stress response, extracellular matrix/cell adhesion proteins and metabolism. Thus, the results from this study show that passive mechanical loading alleviates the severe negative consequences on muscle size and function associated with the mechanical silencing in ICU patients, strongly supporting early and intense physical therapy in immobilized ICU patients. PMID:23266938

  20. Limitations of the Vastus Lateralis Muscle as a Substitute for Lost Abductor Muscle Function: An Anatomical Study.

    Science.gov (United States)

    Grob, Karl; Monahan, Rebecca; Gilbey, Helen; Ackland, Timothy; Kuster, Markus S

    2015-12-01

    Abductor insufficiency after hip arthroplasty resulting from an impaired gluteus medius and minimus remains an unsolved problem in orthopaedic surgery. The vastus lateralis (VL) was described as a functional substitute for abductor insufficiency in 2004. We carried out a macrodissection of twelve cadaveric hemipelvises to investigate the innervation of the VL and adjacent muscles to assess the extent the VL can be safely transferred. Results showed that direct muscle branches to proximal portions of the VL are too short to allow a significant shift; the shift may be as small as 13 mm. Nerves that supply the VL also extend to the vastus intermedius. This innervation pattern makes it impossible to shift the VL significantly without damaging branches to both. PMID:26264179

  1. (Prorenin receptor triggers distinct angiotensin II-independent extracellular matrix remodeling and deterioration of cardiac function.

    Directory of Open Access Journals (Sweden)

    Anne-Mari Moilanen

    Full Text Available BACKGROUND: Activation of the renin-angiotensin-system (RAS plays a key pathophysiological role in heart failure in patients with hypertension and myocardial infarction. However, the function of (prorenin receptor ((PRR is not yet solved. We determined here the direct functional and structural effects of (PRR in the heart. METHODOLOGY/PRINCIPAL FINDINGS: (PRR was overexpressed by using adenovirus-mediated gene delivery in normal adult rat hearts up to 2 weeks. (PRR gene delivery into the anterior wall of the left ventricle decreased ejection fraction (P<0.01, fractional shortening (P<0.01, and intraventricular septum diastolic and systolic thickness, associated with approximately 2-fold increase in left ventricular (PRR protein levels at 2 weeks. To test whether the worsening of cardiac function and structure by (PRR gene overexpression was mediated by angiotensin II (Ang II, we infused an AT(1 receptor blocker losartan via osmotic minipumps. Remarkably, cardiac function deteriorated in losartan-treated (PRR overexpressing animals as well. Intramyocardial (PRR gene delivery also resulted in Ang II-independent activation of extracellular-signal-regulated kinase1/2 phosphorylation and myocardial fibrosis, and the expression of transforming growth factor-β1 and connective tissue growth factor genes. In contrast, activation of heat shock protein 27 phosphorylation and apoptotic cell death by (PRR gene delivery was Ang II-dependent. Finally, (PRR overexpression significantly increased direct protein-protein interaction between (PRR and promyelocytic zinc-finger protein. CONCLUSIONS/SIGNIFICANCE: These results indicate for the first time that (PRR triggers distinct Ang II-independent myocardial fibrosis and deterioration of cardiac function in normal adult heart and identify (PRR as a novel therapeutic target to optimize RAS blockade in failing hearts.

  2. Chronic mitral regurgitation detected on cardiac MDCT: differentiation between functional and valvular aetiologies.

    LENUS (Irish Health Repository)

    Killeen, Ronan P

    2012-02-01

    OBJECTIVE: To determine whether cardiac computed tomography (MDCT) can differentiate between functional and valvular aetiologies of chronic mitral regurgitation (MR) compared with echocardiography (TTE). METHODS: Twenty-seven patients with functional or valvular MR diagnosed by TTE and 19 controls prospectively underwent cardiac MDCT. The morphological appearance of the mitral valve (MV) leaflets, MV geometry, MV leaflet angle, left ventricular (LV) sphericity and global\\/regional wall motion were analysed. The coronary arteries were evaluated for obstructive atherosclerosis. RESULTS: All control and MR cases were correctly identified by MDCT. Significant differences were detected between valvular and control groups for anterior leaflet length (30 +\\/- 7 mm vs. 22 +\\/- 4 mm, P < 0.02) and thickness (3.0 +\\/- 1 mm vs. 2.2 +\\/- 1 mm, P < 0.01). High-grade coronary stenosis was detected in all patients with functional MR compared with no controls (P < 0.001). Significant differences in those with\\/without MV prolapse were detected in MV tent area (-1.0 +\\/- 0.6 mm vs. 1.3 +\\/- 0.9 mm, P < 0.0001) and MV tent height (-0.7 +\\/- 0.3 mm vs. 0.8 +\\/- 0.8 mm, P < 0.0001). Posterior leaflet angle was significantly greater for functional MR (37.9 +\\/- 19.1 degrees vs. 22.9 +\\/- 14 degrees , P < 0.018) and less for valvular MR (0.6 +\\/- 35.5 degrees vs. 22.9 +\\/- 14 degrees, P < 0.017). Sensitivity, specificity, and positive and negative predictive values of MDCT were 100%, 95%, 96% and 100%. CONCLUSION: Cardiac MDCT allows the differentiation between functional and valvular causes of MR.

  3. Functional deficits in nNOSmu-deficient skeletal muscle: myopathy in nNOS knockout mice.

    Directory of Open Access Journals (Sweden)

    Justin M Percival

    Full Text Available Skeletal muscle nNOSmu (neuronal nitric oxide synthase mu localizes to the sarcolemma through interaction with the dystrophin-associated glycoprotein (DAG complex, where it synthesizes nitric oxide (NO. Disruption of the DAG complex occurs in dystrophinopathies and sarcoglycanopathies, two genetically distinct classes of muscular dystrophy characterized by progressive loss of muscle mass, muscle weakness and increased fatigability. DAG complex instability leads to mislocalization and downregulation of nNOSmu; but this is thought to play a minor role in disease pathogenesis. This view persists without knowledge of the role of nNOS in skeletal muscle contractile function in vivo and has influenced gene therapy approaches to dystrophinopathy, the majority of which do not restore sarcolemmal nNOSmu. We address this knowledge gap by evaluating skeletal muscle function in nNOS knockout (KN1 mice using an in situ approach, in which the muscle is maintained in its normal physiological environment. nNOS-deficiency caused reductions in skeletal muscle bulk and maximum tetanic force production in male mice only. Furthermore, nNOS-deficient muscles from both male and female mice exhibited increased susceptibility to contraction-induced fatigue. These data suggest that aberrant nNOSmu signaling can negatively impact three important clinical features of dystrophinopathies and sarcoglycanopathies: maintenance of muscle bulk, force generation and fatigability. Our study suggests that restoration of sarcolemmal nNOSmu expression in dystrophic muscles may be more important than previously appreciated and that it should be a feature of any fully effective gene therapy-based intervention.

  4. Akt deficiency attenuates muscle size and function but not the response to ActRIIB inhibition.

    Directory of Open Access Journals (Sweden)

    Marcus D Goncalves

    Full Text Available BACKGROUND: Akt is a critical mediator of developmental skeletal muscle growth. Treatment with a soluble ActRIIB fusion protein (ActRIIB-mFc increases skeletal muscle mass and strength by inhibiting myostatin and related peptides. Recent in vitro studies have suggested that Akt signaling is necessary for the ability of ActRIIB inhibition to induce muscle hypertrophy. Thus, we hypothesized that mice deficient in either Akt1 or Akt2 would not respond to in vivo inhibition of ActRIIB with ActRIIB-mFc treatment. METHODOLOGY AND PRINCIPAL FINDINGS: We analyzed body composition and muscle parameters in wild-type C57BL/6J and Akt1 and Akt2 knockout mice, and compared the responses to blockade of ActRIIB signaling via ActRIIB-mFc treatment. Mice lacking Akt1 or Akt2 had reduced muscle mass, grip strength and contractile force. However, deficiency of Akt1 or Akt2 did not prevent the ability of ActRIIB-mFc treatment to induce muscle hypertrophy, or increase grip strength and contractile force. Akt1 and Akt2 deficient mice responded similarly as wild type mice to ActRIIB-mFc treatment by increasing fiber size. CONCLUSIONS AND SIGNIFICANCE: Akt1 and Akt2 are important for the regulation of skeletal muscle mass and function. However, these Akt isoforms are not essential for the ability of ActRIIB inhibition to regulate muscle size, fiber type, strength or contractile force.

  5. REGULATION OF CARDIAC AND SKELETAL MUSCLE PROTEIN SYNTHESIS BY INDIVIDUAL BRANCHED-CHAIN AMINO ACIDS IN NEONATAL PIGS

    Science.gov (United States)

    Skeletal muscle grows at a very rapid rate in the neonatal pig, due in part to an enhanced sensitivity of protein synthesis to the postprandial rise in amino acids. An increase in leucine alone stimulates protein synthesis in skeletal muscle of the neonatal pig; however, the effect of isoleucine and...

  6. Development of endothermy and concomitant increases in cardiac and skeletal muscle mitochondrial respiration in the precocial Pekin duck (Anas platyrhynchos domestica).

    Science.gov (United States)

    Sirsat, Sarah K G; Sirsat, Tushar S; Faber, Alan; Duquaine, Allison; Winnick, Sarah; Sotherland, Paul R; Dzialowski, Edward M

    2016-04-15

    Attaining endothermic homeothermy occurs at different times post-hatching in birds and is associated with maturation of metabolic and aerobic capacity. Simultaneous measurements at the organism, organ and cellular levels during the transition to endothermy reveal means by which this change in phenotype occurs. We examined development of endothermy in precocial Pekin ducks ( ITALIC! Anas platyrhynchos domestica) by measuring whole-animal O2consumption ( ITALIC! V̇O2 ) as animals cooled from 35 to 15°C. We measured heart ventricle mass, an indicator of O2delivery capacity, and mitochondrial respiration in permeabilized skeletal and cardiac muscle to elucidate associated changes in mitochondrial capacities at the cellular level. We examined animals on day 24 of incubation through 7 days post-hatching. ITALIC! V̇O2  of embryos decreased when cooling from 35 to 15°C; ITALIC! V̇O2  of hatchlings, beginning on day 0 post-hatching, increased during cooling with a lower critical temperature of 32°C. Yolk-free body mass did not change between internal pipping and hatching, but the heart and thigh skeletal muscle grew at faster rates than the rest of the body as the animals transitioned from an externally pipped paranate to a hatchling. Large changes in oxidative phosphorylation capacity occurred during ontogeny in both thigh muscles, the primary site of shivering, and cardiac ventricles. Thus, increased metabolic capacity necessary to attain endothermy was associated with augmented metabolic capacity of the tissue and augmented increasing O2delivery capacity, both of which were attained rapidly at hatching. PMID:26896549

  7. Extrapulmonary features of bronchiectasis: muscle function, exercise capacity, fatigue, and health status

    Directory of Open Access Journals (Sweden)

    Ozalp Ozge

    2012-06-01

    Full Text Available Abstract Background There are limited number of studies investigating extrapulmonary manifestations of bronchiectasis. The purpose of this study was to compare peripheral muscle function, exercise capacity, fatigue, and health status between patients with bronchiectasis and healthy subjects in order to provide documented differences in these characteristics for individuals with and without bronchiectasis. Methods Twenty patients with bronchiectasis (43.5 ± 14.1 years and 20 healthy subjects (43.0 ± 10.9 years participated in the study. Pulmonary function, respiratory muscle strength (maximal expiratory pressure – MIP - and maximal expiratory pressure - MEP, and dyspnea perception using the Modified Medical Research Council Dyspnea Scale (MMRC were determined. A six-minute walk test (6MWT was performed. Quadriceps muscle, shoulder abductor, and hand grip strength (QMS, SAS, and HGS, respectively using a hand held dynamometer and peripheral muscle endurance by a squat test were measured. Fatigue perception and health status were determined using the Fatigue Severity Scale (FSS and the Leicester Cough Questionnaire (LCQ, respectively. Results Number of squats, 6MWT distance, and LCQ scores as well as lung function testing values and respiratory muscle strength were significantly lower and MMRC and FSS scores were significantly higher in patients with bronchiectasis than those of healthy subjects (p p p p p  Conclusions Peripheral muscle endurance, exercise capacity, fatigue and health status were adversely affected by the presence of bronchiectasis. Fatigue was associated with dyspnea and health status. Respiratory muscle strength was related to peripheral muscle strength and health status, but not to fatigue, peripheral muscle endurance or exercise capacity. These findings may provide insight for outcome measures for pulmonary rehabilitation programs for patients with bronchiectasis.

  8. Cardiac MRI in pulmonary artery hypertension: correlations between morphological and functional parameters and invasive measurements

    International Nuclear Information System (INIS)

    To compare cardiac MRI with right heart catheterisation in patients with pulmonary hypertension (PH) and to evaluate its ability to assess PH severity. Forty patients were included. MRI included cine and phase-contrast sequences, study of ventricular function, cardiac cavity areas and ratios, position of the interventricular septum (IVS) in systole and diastole, and flow measurements. We defined four groups according to the severity of PH and three groups according to IVS position: A, normal position; B, abnormal in diastole; C, abnormal in diastole and systole. IVS position was correlated with pulmonary artery pressures and PVR (pulmonary vascular resistance). Median pulmonary artery pressures and resistance were significantly higher in patients with an abnormal septal position compared with those with a normal position. Correlations were good between the right ventricular ejection fraction and PVR, right ventricular end-systolic volume and PAP, percentage of right ventricular area change and PVR, and diastolic and systolic ventricular area ratio and PVR. These parameters were significantly associated with PH severity. Cardiac MRI can help to assess the severity of PH. (orig.)

  9. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training

    Directory of Open Access Journals (Sweden)

    MacHugh David E

    2010-06-01

    Full Text Available Abstract Background Digital gene expression profiling was used to characterize the assembly of genes expressed in equine skeletal muscle and to identify the subset of genes that were differentially expressed following a ten-month period of exercise training. The study cohort comprised seven Thoroughbred racehorses from a single training yard. Skeletal muscle biopsies were collected at rest from the gluteus medius at two time points: T1 - untrained, (9 ± 0.5 months old and T2 - trained (20 ± 0.7 months old. Results The most abundant mRNA transcripts in the muscle transcriptome were those involved in muscle contraction, aerobic respiration and mitochondrial function. A previously unreported over-representation of genes related to RNA processing, the stress response and proteolysis was observed. Following training 92 tags were differentially expressed of which 74 were annotated. Sixteen genes showed increased expression, including the mitochondrial genes ACADVL, MRPS21 and SLC25A29 encoded by the nuclear genome. Among the 58 genes with decreased expression, MSTN, a negative regulator of muscle growth, had the greatest decrease. Functional analysis of all expressed genes using FatiScan revealed an asymmetric distribution of 482 Gene Ontology (GO groups and 18 KEGG pathways. Functional groups displaying highly significant (P Conclusion Exercise training in Thoroughbred racehorses results in coordinate changes in the gene expression of functional groups of genes related to metabolism, oxidative phosphorylation and muscle structure.

  10. Muscle activity during functional coordination training: implications for strength gain and rehabilitation

    DEFF Research Database (Denmark)

    Jørgensen, Marie Birk; Andersen, Lars Louis; Kirk, Niels;

    2010-01-01

    The purpose of this study was to evaluate if different types, body positions, and levels of progression of functional coordination exercises can provide sufficiently high levels of muscle activity to improve strength of the neck, shoulder, and trunk muscles. Nine untrained women were familiarized...... coordination training can be performed with a muscle activity sufficient for strength gain. Functional coordination training may therefore be a good choice for prevention or rehabilitation of musculoskeletal pain or injury in the neck, shoulder, or trunk muscles.......The purpose of this study was to evaluate if different types, body positions, and levels of progression of functional coordination exercises can provide sufficiently high levels of muscle activity to improve strength of the neck, shoulder, and trunk muscles. Nine untrained women were familiarized...... with 7 functional coordination exercises 12 times during 4 weeks before testing. Surface electromyographic (EMG) activity was obtained from rectus abdominus, erector spinae, obliquus externus, and trapezius during the exercises with 2-4 levels of progression. Electromyography was normalized to the...

  11. Novel MRI-derived quantitative biomarker for cardiac function applied to classifying ischemic cardiomyopathy within a Bayesian rule learning framework

    Science.gov (United States)

    Menon, Prahlad G.; Morris, Lailonny; Staines, Mara; Lima, Joao; Lee, Daniel C.; Gopalakrishnan, Vanathi

    2014-03-01

    Characterization of regional left ventricular (LV) function may have application in prognosticating timely response and informing choice therapy in patients with ischemic cardiomyopathy. The purpose of this study is to characterize LV function through a systematic analysis of 4D (3D + time) endocardial motion over the cardiac cycle in an effort to define objective, clinically useful metrics of pathological remodeling and declining cardiac performance, using standard cardiac MRI data for two distinct patient cohorts accessed from CardiacAtlas.org: a) MESA - a cohort of asymptomatic patients; and b) DETERMINE - a cohort of symptomatic patients with a history of ischemic heart disease (IHD) or myocardial infarction. The LV endocardium was segmented and a signed phase-to-phase Hausdorff distance (HD) was computed at 3D uniformly spaced points tracked on segmented endocardial surface contours, over the cardiac cycle. An LV-averaged index of phase-to-phase endocardial displacement (P2PD) time-histories was computed at each tracked point, using the HD computed between consecutive cardiac phases. Average and standard deviation in P2PD over the cardiac cycle was used to prepare characteristic curves for the asymptomatic and IHD cohort. A novel biomarker of RMS error between mean patient-specific characteristic P2PD over the cardiac cycle for each individual patient and the cumulative P2PD characteristic of a cohort of asymptomatic patients was established as the RMS-P2PD marker. The novel RMS-P2PD marker was tested as a cardiac function based feature for automatic patient classification using a Bayesian Rule Learning (BRL) framework. The RMS-P2PD biomarker indices were significantly different for the symptomatic patient and asymptomatic control cohorts (pcardiac performance.

  12. Skeletal muscle tissue in movement and health: positives and negatives.

    Science.gov (United States)

    Lindstedt, Stan L

    2016-01-01

    The history of muscle physiology is a wonderful lesson in 'the scientific method'; our functional hypotheses have been limited by our ability to decipher (observe) muscle structure. The simplistic understanding of how muscles work made a large leap with the remarkable insights of A. V. Hill, who related muscle force and power to shortening velocity and energy use. However, Hill's perspective was largely limited to isometric and isotonic contractions founded on isolated muscle properties that do not always reflect how muscles function in vivo. Robert Josephson incorporated lengthening contractions into a work loop analysis that shifted the focus to dynamic muscle function, varying force, length and work done both by and on muscle during a single muscle work cycle. It became apparent that muscle is both a force generator and a spring. Titin, the missing filament in the sliding filament model, is a muscle spring, which functions very differently in cardiac versus skeletal muscle; its possible role in these two muscle types is discussed relative to their contrasting function. The good news for those of us who choose to work on skeletal muscle is that muscle has been reluctant to reveal all of its secrets. PMID:26792329

  13. NF-κB Functions in Stromal Fibroblasts to Regulate Early Postnatal Muscle Development*

    OpenAIRE

    Dahlman, Jason M.; Bakkar, Nadine; He, Wei; Guttridge, Denis C.

    2009-01-01

    Classical NF-κB activity functions as an inhibitor of the skeletal muscle myogenic program. Recent findings reveal that even in newborn RelA/p65−/− mice, myofiber numbers are increased over that of wild type mice, suggesting that NF-κB may be a contributing factor in early postnatal skeletal muscle development. Here we show that in addition to p65 deficiency, repression of NF-κB with the IκBα-SR transdominant inhibitor or with muscle-specific deletion of IKKβ resulted in similar increases in ...

  14. Aerobic exercise training improves whole muscle and single myofiber size and function in older women

    OpenAIRE

    Harber, Matthew P.; Konopka, Adam R.; Douglass, Matthew D.; Minchev, Kiril; Kaminsky, Leonard A; Trappe, Todd A.; Trappe, Scott

    2009-01-01

    To comprehensively assess the influence of aerobic training on muscle size and function, we examined seven older women (71 ± 2 yr) before and after 12 wk of cycle ergometer training. The training program increased (P < 0.05) aerobic capacity by 30 ± 6%. Quadriceps muscle volume, determined by magnetic resonance imaging (MRI), was 12 ± 2% greater (P < 0.05) after training and knee extensor power increased 55 ± 7% (P < 0.05). Muscle biopsies were obtained from the vastus lateralis to determine ...

  15. AQP4-Dependent Water Transport Plays a Functional Role in Exercise-Induced Skeletal Muscle Adaptations

    OpenAIRE

    Davide Basco; Bert Blaauw; Francesco Pisani; Angelo Sparaneo; Grazia Paola Nicchia; Maria Grazia Mola; Carlo Reggiani; Maria Svelto; Antonio Frigeri

    2013-01-01

    In this study we assess the functional role of Aquaporin-4 (AQP4) in the skeletal muscle by analyzing whether physical activity modulates AQP4 expression and whether the absence of AQP4 has an effect on osmotic behavior, muscle contractile properties, and physical activity. To this purpose, rats and mice were trained on the treadmill for 10 (D10) and 30 (D30) days and tested with exercise to exhaustion, and muscles were used for immunoblotting, RT-PCR, and fiber-type distribution analysis. Ta...

  16. Cardiac function and myocardial perfusion immediately following maximal treadmill exercise inside the MRI room

    Directory of Open Access Journals (Sweden)

    Ballinger Michelle R

    2008-01-01

    Full Text Available Abstract Treadmill exercise stress testing is an essential tool in the prevention, detection, and treatment of a broad spectrum of cardiovascular disease. After maximal exercise, cardiac images at peak stress are typically acquired using nuclear scintigraphy or echocardiography, both of which have inherent limitations. Although CMR offers superior image quality, the lack of MRI-compatible exercise and monitoring equipment has prevented the realization of treadmill exercise CMR. It is critical to commence imaging as quickly as possible after exercise to capture exercise-induced cardiac wall motion abnormalities. We modified a commercial treadmill such that it could be safely positioned inside the MRI room to minimize the distance between the treadmill and the scan table. We optimized the treadmill exercise CMR protocol in 20 healthy volunteers and successfully imaged cardiac function and myocardial perfusion at peak stress, followed by viability imaging at rest. Imaging commenced an average of 30 seconds after maximal exercise. Real-time cine of seven slices with no breath-hold and no ECG-gating was completed within 45 seconds of exercise, immediately followed by stress perfusion imaging of three short-axis slices which showed an average time to peak enhancement within 57 seconds of exercise. We observed a 3.1-fold increase in cardiac output and a myocardial perfusion reserve index of 1.9, which agree with reported values for healthy subjects at peak stress. This study successfully demonstrates in-room treadmill exercise CMR in healthy volunteers, but confirmation of feasibility in patients with heart disease is still needed.

  17. Venous muscle pump function during pregnancy. Assessment by ambulatory strain-gauge plethysmography

    DEFF Research Database (Denmark)

    Struckmann, J R; Meiland, H; Bagi, P;

    1990-01-01

    The venous muscle pump function was quantitatively assessed through pregnancy weeks 16, 30, 38 and 3 months (week 53) following delivery, in 24 pregnant women who completed a normal pregnancy. A statistically significant increase was found in the mean venous reflux (P less than 0.01), which was...... virtually disappeared post partum, corresponding to the muscle pump normalization. No statistical correlation was found between venous muscle pump values and changes in hormone concentrations of estradiol, estriol and progesterone. It is suggested that venous insufficiency development in pregnancy is caused...... primarily by mechanical obstruction, or hormonal influence other than that of estradiol, estriol or progesterone. 17% (4.7-37%) of the women with a normal pregnancy developed a pathological venous muscle pump function....

  18. Posterior shift of the anterior papillary muscle in patients with heart failure. A potential role in the effect of cardiac resynchronization therapy

    International Nuclear Information System (INIS)

    The anatomical relationship between left ventricular pacing site and the anterior papillary muscle (A-PM) may have a major influence on the improvement of mitral regurgitation (MR) in cardiac resynchronization therapy (CRT). The aims of the present study were to assess the anatomical relationship between coronary veins and papillary muscles in patients with and without heart failure (HF), and to examine its contribution to the response to CRT. Sixty-one patients (36 patients with HF, 25 patients without HF) who underwent multi-detector computed tomography were studied. We measured the angle between the anterior papillary muscle and coronary veins (Ang. 1) and the angle between the anterior edge of the left ventricular free wall and A-PM (Ang. 2). Angle 1 of the posterolateral vein in the patients with HF was significantly smaller than those without HF (54.9±11.1, 68.7±15.8 degrees, respectively, P=0.02). Supportively, Angle 2 of patients with HF was larger than that of patients without HF (100±13.0, 87.3±10.7 degrees, respectively, P100 degrees), but not in patients with Ang. 2<100 degrees. A-PM tends to be located in a more posterior wall in patients with HF. Displacement of A-PM may have a potential role as a predictor of the response to CRT. (author)

  19. Polymorphism in the alpha cardiac muscle actin 1 gene is associated to susceptibility to chronic inflammatory cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Amanda Farage Frade

    Full Text Available AIMS: Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America, and may lead to a life-threatening inflammatory dilated, chronic Chagas cardiomyopathy (CCC. One third of T. cruzi-infected individuals progress to CCC while the others remain asymptomatic (ASY. A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Since mutations in multiple sarcomeric genes, including alpha-cardiac actin (ACTC1 have been involved in hereditary dilated cardiomyopathy, we investigated the involvement of the ACTC1 gene in CCC pathogenesis. METHODS AND RESULTS: We conducted a proteomic and genetic study on a Brazilian study population. The genetic study was done on a main cohort including 118 seropositive asymptomatic subjects and 315 cases and the replication was done on 36 asymptomatic and 102 CCC cases. ACTC1 protein and mRNA levels were lower in myocardial tissue from patients with end-stage CCC than those found in hearts from organ donors. Genotyping a case-control cohort of CCC and ASY subjects for all informative single nucleotide polymorphism (SNP in the ACTC1 gene identified rs640249 SNP, located at the 5' region, as associated to CCC. Associations are borderline after correction for multiple testing. Correlation and haplotype analysis led to the identification of a susceptibility haplotype. Functional assays have shown that the rs640249A/C polymorphism affects the binding of transcriptional factors in the promoter regions of the ACTC1 gene. Confirmation of the detected association on a larger independent replication cohort will be useful. CONCLUSIONS: Genetic variations at the ACTC1 gene may contribute to progression to chronic Chagas Cardiomyopathy among T. cruzi-infected patients, possibly by modulating transcription factor binding to ACTC1 promoter regions.

  20. A case report of congenitally corrected transposition of great arteries: Morphologic and functional evaluation with cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heon; Park, Byoung Won [College of Medicine, Soonchunhyang University, Bucheon Hospital, Bucheon (Korea, Republic of)

    2013-09-15

    Congenitally corrected transposition of the great arteries (ccTGA) is a rare congenital anomaly characterized by atrioventricular and ventriculoarterial discordance. We report a case of new-onset heart failure in a 69-year-old female in whom cardiac CT demonstrated ccTGA without the associated cardiovascular anomalies. In this case, cardiac CT was useful for elucidating the rare and unexpected congenital etiologies of abrupt-onset heart failure in an old patient by the simultaneous evaluation of cardiac morphology and function as a single study (inserted).

  1. Lung function and airway obstruction: associations with circulating markers of cardiac function and incident heart failure in older men-the British Regional Heart Study

    OpenAIRE

    Wannamethee, Goya; Shaper, Gerald; Papacosta, Olia; Lennon, Lucy; Welsh, Paul; Whincup, Peter,

    2016-01-01

    Aims The association between lung function and cardiac markers and heart failure (HF) has been little studied in the general older population. We have examined the association between lung function and airway obstruction with cardiac markers N-terminal pro-brain natriuretic peptide (NT-proBNP) and cardiac troponin T (cTnT) and risk of incident HF in older men. Methods and results Prospective study of 3242 men aged 60–79 years without prevalent HF or myocardial infarction followed up for a...

  2. Lung function and airway obstruction: associations with circulating markers of cardiac function and incident heart failure in older men-the British Regional Heart Study

    OpenAIRE

    Wannamethee, S.G.; Shaper, A. G.; Papacosta, O.; LENNON, L; Welsh, P.; Whincup, P H

    2016-01-01

    AIMS: The association between lung function and cardiac markers and heart failure (HF) has been little studied in the general older population. We have examined the association between lung function and airway obstruction with cardiac markers N-terminal pro-brain natriuretic peptide (NT-proBNP) and cardiac troponin T (cTnT) and risk of incident HF in older men. METHODS AND RESULTS: Prospective study of 3242 men aged 60-79 years without prevalent HF or myocardial infarction followed up for an ...

  3. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin

    OpenAIRE

    DelloRusso, Christiana; Scott, Jeannine M.; Hartigan-O'Connor, Dennis; Salvatori, Giovanni; Barjot, Catherine; Robinson, Ann S.; Robert W Crawford; Brooks, Susan V; Jeffrey S. Chamberlain

    2002-01-01

    Duchenne muscular dystrophy is a lethal X-linked recessive disorder caused by mutations in the dystrophin gene. Delivery of functionally effective levels of dystrophin to immunocompetent, adult mdx (dystrophin-deficient) mice has been challenging because of the size of the gene, immune responses against viral vectors, and inefficient infection of mature muscle. Here we show that high titer stocks of three different gutted adenoviral vectors carrying full-length, muscle-specific, dystrophin ex...

  4. Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors

    OpenAIRE

    Minetti, G. C; Colussi, C; R. Adami; C. Serra; Mozzetta, C; Parente, V.; Fortuni, S; Straino, S; Sampaolesi, Maurilio; Di Padova, M; Illi, B; Gallinari, P; Steinkuehler, C.; Capogrossi, M C; Sartorelli, V

    2006-01-01

    Pharmacological interventions that increase myofiber size counter the functional decline of dystrophic muscles(1,2). We show that deacetylase inhibitors increase the size of myofibers in dystrophin-deficient (MDX) and alpha-sarcoglycan (alpha-SG)-deficient mice by inducing the expression of the myostatin antagonist follistatin(3) in satellite cells. Deacetylase inhibitor treatment conferred on dystrophic muscles resistance to contraction-coupled degeneration and alleviated both morphological ...

  5. In vivo generation of a mature and functional artificial skeletal muscle

    OpenAIRE

    Fuoco, Claudia; Rizzi, Roberto; Biondo, Antonella; Longa, Emanuela; Mascaro, Anna; Shapira-Schweitzer, Keren; Kossovar, Olga; Benedetti, Sara; Salvatori, Maria L; Santoleri, Sabrina; Testa, Stefano; Bernardini, Sergio; Bottinelli, Roberto; Bearzi, Claudia; Cannata, Stefano M.

    2015-01-01

    Extensive loss of skeletal muscle tissue results in mutilations and severe loss of function. In vitro-generated artificial muscles undergo necrosis when transplanted in vivo before host angiogenesis may provide oxygen for fibre survival. Here, we report a novel strategy based upon the use of mouse or human mesoangioblasts encapsulated inside PEG-fibrinogen hydrogel. Once engineered to express placental-derived growth factor, mesoangioblasts attract host vessels and nerves, contributing to in ...

  6. STRENGTH TRAINING AFTER STROKE: EFFECTS ON MUSCLE FUNCTION, GAIT PERFORMANCE AND PERCEIVED PARTICIPATION

    OpenAIRE

    Flansbjer, Ulla-Britt

    2006-01-01

    The overall aim of this thesis was to evaluate the effects of strength training on muscle function, gait performance and perceived participation in subjects with chronic mild to moderate post-stroke hemiparesis. A main impairment after stroke is reduced muscle strength. This post-stroke weakness is a major contributor to mobility limitations, which can prevent the resumption of activities of daily living and have an adverse effect on perceived participation: persons? lived experiences ...

  7. Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo

    OpenAIRE

    Hesselink, M.K.C.; Greenhaff, P L; Constantin-Teodosu, D.; Hultman, E; Saris, W. H. M.; Nieuwlaat, R.; Schaart, G.; Kornips, C.F.P.; P. Schrauwen

    2003-01-01

    Phosphocreatine (PCr) resynthesis rate following intense anoxic contraction can be used as a sensitive index of in vivo mitochondrial function. We examined the effect of a diet-induced increase in uncoupling protein 3 (UCP3) expression on postexercise PCr resynthesis in skeletal muscle. Nine healthy male volunteers undertook 20 one-legged maximal voluntary contractions with limb blood flow occluded to deplete muscle PCr stores. Exercise was performed following 7 days consumption of low-fat (L...

  8. Effect of kinesio taping on the isokinetic muscle function in football athletes with a knee injury

    OpenAIRE

    Hong, SoonKwon; Shim, Jemyung; Kim, SungJoong; Namkoong, Seung; Roh, HyoLyun

    2016-01-01

    [Purpose] The purpose of this study was to determine the difference in isokinetic muscle function in football athletes with a knee injury with and without kinesio taping. [Subjects] The subjects for this study were 10 football athletes (males) with a knee injury. [Methods] Measurements were performed by using Cybex dynamometer under uniform motion before and after the application of kinesio tape to the quadriceps and hamstring muscle. Maximal concentric knee extension and flexion at three ang...

  9. Effects of anabolic hormones on structural, metabolic and functional aspects of skeletal muscle

    OpenAIRE

    Flávio de Oliveira Pires; Adriano Eduardo Lima Silva; Valmor Tricoli

    2009-01-01

    This study reviewed information regarding the effects of anabolic hormones on strength gain and muscle hypertrophy, emphasizing the physiological mechanisms that may increase muscle strength. Structural, metabolic and functional aspects were analyzed and special attention was paid to the dose-response relationship. The Pubmed database was searched and studies were selected according to relevance and date of publication (last 15 years). The administration of high testosterone doses (~600 mg/we...

  10. The Effects of Deep Abdominal Muscle Strengthening Exercises on Respiratory Function and Lumbar Stability

    OpenAIRE

    Kim, Eunyoung; Lee, Hanyong

    2013-01-01

    [Purpose] The purpose of this study was to examine the effects of deep abdominal muscle strengthening exercises on respiratory function and lumbar stability. [Subjects] From among 120 male and female students, 22 whose thoraxes opened no more than 5 cm during inspiration and expiration and whose forced expiratory flow rates were around 300 m/L were recruited. The subjects were randomly divided into an experimental group of eleven, who performed deep abdominal muscle strengthening exercises, a...

  11. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group

    OpenAIRE

    Deutz, Nicolaas E. P.; Bauer, Jurgen M.; Barazzoni, Rocco; Biolo, Gianni; Boirie, Yves,; Bosy-Westphal, Anja; Cederholm, Tommy; Cruz-Jentoft, Alfonso; Krznaric, Zeljko; Nair, K. Sreekumaran; Singer, Pierre; Teta, Daniel; Tipton, Kevin; Calder, Philip C.

    2014-01-01

    The aging process is associated with gradual and progressive loss of muscle mass along with lowered strength and physical endurance. This condition, sarcopenia, has been widely observed with aging in sedentary adults. Regular aerobic and resistance exercise programs have been shown to counteract most aspects of sarcopenia. In addition, good nutrition, especially adequate protein and energy intake, can help limit and treat age-related declines in muscle mass, strength, and functional abilities...

  12. Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Wilhelm Bloch

    2013-03-01

    Full Text Available Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise, additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology.

  13. The muscle-enriched gene SYNPO2L is associated with cardiac remodeling%新基因SYNPO2L参与心肌重构

    Institute of Scientific and Technical Information of China (English)

    王晓建; 甄一松; 王继征; 苏明; 祝领; 王长鑫; 俞莉萍; 刘继斌; 惠汝太

    2012-01-01

    目的 肌肉富集表达基因在心肌重构的发生发展中发挥重要的作用.为了深入理解心肌重构的分子机制、为临床提供治疗和干预的靶点,我们需要寻找参与心肌重构的新基因.方法和结果 我们使用自主研发的CardiacScan对多个人源组织表达谱数据库进行扫描,发现了一个新的肌肉富集表达基因——SYNPO2L.RT-PCR显示,SYNPO2L在小鼠的心脏和骨骼肌高表达.实时荧光定量PCR显示,在跑步训练诱导的小鼠生理性心肌重构模型中,SYNPO2L的表达下降为对照组的0.6倍(P<0.05).在主动脉缩窄手术诱导的病理性心肌重构中,SYNPO2L的表达逐渐升高,并在术后9周(心功能失代偿阶段)升高为对照组的2.4倍(P<0.0001).结论 SYNPO2L是一个新的在肌肉富集表达的基因,参与了多种不同形式的心肌重构过程,可能在心肌重构中发挥重要的作用.%Purpose Muscle-enriched gene play an improtant role in the development of cardiac remodeling and heart failure. Up to date, however, the number of muscle-enriched gene is limited. Therefore, we need to clone more muscle-enriched genes. Methods and Results To explore novel muscle-enriched genes, we scaned three human multiple-tissue transcriptional databases using self-developed program Card iacScan. SYNPO2L was identified as novlc muslce-enriched gene. Real-time PCR analysis demonstrated that expression of SYNPO2L was down-regulated by 0.6 fold (P<0.0S) in physiological cardiac hypertrophy induced by treadmill training, but up-regulated by 2.4 fold(P<0.0001) in heart failure induced by transverse aortic constriction surgery. Conclusion SYNPO2L is a novle muscle-enriched gene which is involved in cardiac remodeling.

  14. Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb

    Science.gov (United States)

    Charles, James P.; Cappellari, Ornella; Spence, Andrew J.; Hutchinson, John R.; Wells, Dominic J.

    2016-01-01

    Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion. PMID:27115354

  15. Functional difference between the proximal and distal compartments of the semitendinosus muscle

    Science.gov (United States)

    Watanabe, Koji; Otsuki, Satoru; Hisa, Takushi; Nagaoka, Masanori

    2016-01-01

    [Purpose] The tendinous inscription divides the semitendinosus muscle into the proximal and distal compartments. It was hypothesized that there are functional differences between those compartments. [Subjects and Methods] Seven adult males performed knee flexion and hip extension in the prone position. An ultrasound device measured the decrease in the length of muscle fibers in the two compartments during these movements. The knee and hip joint angles were concurrently measured using a video camera. Pearson’s correlation coefficients were calculated between the decrease in muscle fiber length in each compartment and joint angle. [Results] During knee flexion, decreased muscle fiber length was significantly correlated with increased knee flexion angle. During hip extension, there were no significant correlations for either compartment. Only the decrease in muscle fiber length in the distal compartment during hip extension tended to be negative; the other decreases in muscle fiber length tended to be positive. [Conclusion] Correlations did not reveal any functional differences. However, only the distal compartment elongated during hip extension. This result might show a functional difference and could be applied in clinical contexts during hip extension. PMID:27313362

  16. Effects of the cyclo-oxygenase inhibitor, fenbufen, on clenbuterol-induced hypertrophy of cardiac and skeletal muscle of rats.

    OpenAIRE

    Palmer, R. M.; Delday, M. I.; McMillan, D. N.; Noble, B. S.; Bain, P.; Maltin, C.A.

    1990-01-01

    1. When rats were fed with clenbuterol for 7 days skeletal muscle mass increased by 21% in the tonic soleus and phasic plantaris muscles and a 16% hypertrophy of the heart was also induced. Fenbufen, fed to rats for the same period, blocked the hypertrophy of the heart but not that of the skeletal muscles. 2. When feeding of fenbufen commenced 3 days before the administration of clenbuterol, plasma prosta-glandin F2 alpha (PGF2 alpha) was reduced by 79%; there was again no effect of fenbufen ...

  17. The Cardiac Ventricular 5-HT4 Receptor Is Functional in Late Foetal Development and Is Reactivated in Heart Failure

    OpenAIRE

    Brattelid, Trond; Qvigstad, Eirik; Moltzau, Lise R; Bekkevold, Silje V. S.; Sandnes, Dagny L; Birkeland, Jon Arne K.; Skomedal, Tor; Osnes, Jan-Bjørn; Sjaastad, Ivar; Levy, Finn Olav

    2012-01-01

    A positive inotropic responsiveness to serotonin, mediated by 5-HT4 and 5-HT2A receptors, appears in the ventricle of rats with post-infarction congestive heart failure (HF) and pressure overload-induced hypertrophy. A hallmark of HF is a transition towards a foetal genotype which correlates with loss of cardiac functions. Thus, we wanted to investigate whether the foetal and neonatal cardiac ventricle displays serotonin responsiveness. Wistar rat hearts were collected day 3 and 1 before expe...

  18. Prospective randomized controlled intervention trial: Comprehensive Yogic Breathing Improves Cardiac autonomic functions and Quality of life in Diabetes

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2012-01-01

    Full Text Available Aims and Objectives: To assess the effect of Comprehensive Yogic Breathing Program on glycemic control, quality of life, and cardiac autonomic functions in diabetes. Material and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 120 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes (n = 56 and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program (n = 64. Standard therapy included advice on diet, walk, and oral antidiabetic drugs. Comprehensive yogic breathing program was an interactive session in which Sudarshan kriya yoga, a rhythmic cyclical breathing, preceded by Pranayam was taught under guidance of a certified teacher. Change in fasting, post prandial blood sugars, glycated hemoglobin, and quality of life were assessed. Cardiac autonomic function tests were done before and six months after intervention. Results: There was significant improvement in psychological (P = 0.006 and social domains (P = 0.04 and total quality of life (P = 0.02 in the group practicing comprehensive yogic breathing program as compared to the group following standard therapy alone. In the group following breathing program, the improvement in sympathetic cardiac autonomic functions was statistically significant (P = 0.01, while the change in the standard group was not significant (P = 0.17. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P = 0.07. In the standard therapy group, no change in cardiac autonomic functions was noted (P = 0.76. The parameters of glycemic control were comparable in both groups. Conclusion: There was significant improvement in quality of life and cardiac autonomic functions in the diabetes patients practicing comprehensive yogic breathing

  19. Traditional Chinese Medicine Tongxinluo Improves Cardiac Function of Rats with Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Fang-Fang Shen

    2014-01-01

    Full Text Available The study aimed at testing the hypothesis that tongxinluo capsule might exert its cardioprotective effect by preventing ventricular remodeling and improving coronary microvascular function in a rat model of doxorubicin-induced dilated cardiomyopathy (DCM. Rats that survived DCM induction were randomly divided into three groups to be given 1.5 g·kg−1·day−1 (TXL-H, n=9 or 0.15 g·kg−1·day−1 (TXL-L, n=10 of tongxinluo, or normal saline at the same volume (DCM-C, n=10 intragastrically. Age matched normal rats treated with normal saline were used as normal controls (NOR-C, n=9. After four weeks of treatment, the DCM-C, TXL-H, and TXL-L groups exhibited significant cardiac dysfunction, left ventricular remodeling, and coronary microvascular dysfunction, compared with the NOR-C rats. However, myocardial functional parameters were significantly improved and microvascular density (MVD increased in the TXL-H group compared with the DCM-C group (all P<0.01. Left ventricular remodeling was prevented. There were close linear relationships between CVF and LVEF (r=-0.683, P<0.05, MVD and LVEF (r=0.895, P<0.05, and MVD and CVF (r=-0.798, P<0.05. It was indicated that high-dose tongxinluo effectively improved cardiac function in rat model of DCM.

  20. Adjustment of muscle function to flight in bats; Komori no kinkino no hiko eno tekio

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, M. [Institute of the Space and Astronautical Science,Tokyo (Japan); Choi, I.H.

    1999-12-05

    This paper outlines the muscle of bats that generates a motive force for flight. The weight of the muscle is less compared with that of birds. The energy required for flight is twice as much as that for running. Conversely, in view of metabolic cost (transporting cost) for moving a unit mass for a unit distance, the transporting cost of bats for flying is one fifth. The acquisition of this flight ability through evolution can be inferred from the fossils of reptiles. Bats, having a stream-lined body shape and a small body mass, are capable of efficient flight. A fast durable flight is possible by having the pectoral muscle constituted of speed muscles of oxidation/glycolysis muscle fiber, a well-developed oxygen transporting system, the arrangement around the capillary of mitochondria and fat grains that are cell organs for producing energy, and a high-density contact between the capillary and the muscle fiber. The muscle functions at low body temperature and imparts adaptability to hibernation with the body temperature lowered. The flight is controlled by the cycle and synchronized with this biological clock, optical cycle and change in temperature. (NEDO)