WorldWideScience

Sample records for cardiac mapping channel

  1. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...

  2. [Cardiac potassium channels: molecular structure, physiology, pathophysiology and therapeutic implications].

    Science.gov (United States)

    Mironov, N Iu; Golitsyn, S P

    2013-01-01

    Potassium channels and currents play essential roles in cardiac repolarization. Potassium channel blockade by class III antiarrhythmic drugs prolongs cardiac repolarization and results in termination and prevention of cardiac arrhythmias. Excessive inhomogeneous repolarization prolongation may lead to electrical instability and proarrhythmia (Torsade de Pointes tachycardia). This review focuses on molecular structure, physiology, pathophysiology and therapeutic potential of potassium channels of cardiac conduction system and myocardium providing information on recent findings in pathogenesis of cardiac arrhythmias, including inherited genetic abnormalities, and future perspectives. PMID:24654438

  3. Mechanistically based mapping of human cardiac fibrillation.

    Science.gov (United States)

    Narayan, Sanjiv M; Zaman, Junaid A B

    2016-05-01

    The mechanisms underpinning human cardiac fibrillation remain elusive. In his 1913 paper 'On dynamic equilibrium in the heart', Mines proposed that an activation wave front could propagate repeatedly in a circle, initiated by a stimulus in the vulnerable period. While the dynamics of activation and recovery are central to cardiac fibrillation, these physiological data are rarely used in clinical mapping. Fibrillation is a rapid irregular rhythm with spatiotemporal disorder resulting from two fundamental mechanisms - sources in preferred cardiac regions or spatially diffuse self-sustaining activity, i.e. with no preferred source. On close inspection, however, this debate may also reflect mapping technique. Fibrillation is initiated from triggers by regional dispersion in repolarization, slow conduction and wavebreak, then sustained by non-uniform interactions of these mechanisms. Notably, optical mapping of action potentials in atrial fibrillation (AF) show spiral wave sources (rotors) in nearly all studies including humans, while most traditional electrogram analyses of AF do not. Techniques may diverge in fibrillation because electrograms summate non-coherent waves within an undefined field whereas optical maps define waves with a visually defined field. Also fibrillation operates at the limits of activation and recovery, which are well represented by action potentials while fibrillatory electrograms poorly represent repolarization. We conclude by suggesting areas for study that may be used, until such time as optical mapping is clinically feasible, to improve mechanistic understanding and therapy of human cardiac fibrillation. PMID:26607671

  4. Introduction to noninvasive cardiac mapping.

    Science.gov (United States)

    Bear, Laura; Cuculich, Phillip S; Bernus, Olivier; Efimov, Igor; Dubois, Rémi

    2015-03-01

    From the dawn of the twentieth century, the electrocardiogram (ECG) has revolutionized the way clinical cardiology has been practiced, and it has become the cornerstone of modern medicine today. Driven by clinical and research needs for a more precise understanding of cardiac electrophysiology beyond traditional ECG, inverse solution electrocardiography has been developed, tested, and validated. This article outlines the important progress from ECG development, through more extensive measurement of body surface potentials, and the fundamental leap to solving the inverse problem of electrocardiography, with a focus on mathematical methods and experimental validation. PMID:25784020

  5. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    C.A. Remme; C.R. Bezzina

    2010-01-01

    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation an

  6. Cardiac voltage-gated calcium channel macromolecular complexes.

    Science.gov (United States)

    Rougier, Jean-Sébastien; Abriel, Hugues

    2016-07-01

    Over the past 20years, a new field of research, called channelopathies, investigating diseases caused by ion channel dysfunction has emerged. Cardiac ion channels play an essential role in the generation of the cardiac action potential. Investigators have largely determined the physiological roles of different cardiac ion channels, but little is known about the molecular determinants of their regulation. The voltage-gated calcium channel Cav1.2 shapes the plateau phase of the cardiac action potential and allows the influx of calcium leading to cardiomyocyte contraction. Studies suggest that the regulation of Cav1.2 channels is not uniform in working cardiomyocytes. The notion of micro-domains containing Cav1.2 channels and different calcium channel interacting proteins, called macro-molecular complex, has been proposed to explain these observations. The objective of this review is to summarize the currently known information on the Cav1.2 macromolecular complexes in the cardiac cell and discuss their implication in cardiac function and disorder. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26707467

  7. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, HL; Bink-Boelkens, MTE; Bezzina, CR; Viswanathan, PC; Beaufort-Krol, GCM; van Tintelen, PJ; van den Berg, MP; Wilde, AAM; Balser, [No Value

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening(1-3); however, a

  8. Functional role of anion channels in cardiac diseases

    Institute of Scientific and Technical Information of China (English)

    Da-yue DUAN; Luis LH LIU; Nathan BOZEAT; Z Maggie HUANG; Sunny Y XIANG; Guan-lei WANG; Linda YE; Joseph R HUME

    2005-01-01

    In comparison to cation (K+, Na+, and Ca2+) channels, much less is currently known about the functional role of anion (Cl-) channels in cardiovascular physiology and pathophysiology. Over the past 15 years, various types of Cl- currents have been recorded in cardiac cells from different species including humans. All cardiac Cl- channels described to date may be encoded by five different Cl- channel genes: the PKA- and PKC-activated cystic fibrosis tansmembrane conductance regulator (CFTR), the volume-regulated ClC-2 and ClC-3, and the Ca2+-activated CLCA or Bestrophin. Recent studies using multiple approaches to examine the functional role of Cl- channels in the context of health and disease have demonstrated that Cl- channels might contribute to: 1) arrhythmogenesis in myocardial injury; 2) cardiac ischemic preconditioning; and 3) the adaptive remodeling of the heart during myocardial hypertrophy and heart failure. Therefore,anion channels represent very attractive novel targets for therapeutic approaches to the treatment of heart diseases. Recent evidence suggests that Cl- channels,like cation channels, might function as a multiprotein complex or functional module.In the post-genome era, the emergence of functional proteomics has necessitated a new paradigm shift to the structural and functional assessment of integrated Cl- channel multiprotein complexes in the heart, which could provide new insight into our understanding of the underlying mechanisms responsible for heart disease and protection.

  9. Layered MAP algorithm for MIMO ISI channels

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The layered maximum a posteriori (L-MAP) algorithm has been proposed to detect signals under frequency selective fading multiple input multiple output (MIMO) channels. Compared to the optimum MAP detector, the L-MAP algorithm can efficiently identify signal bits, and the complexity grows linearly with the number of input antennas. The basic idea of L-MAP is to operate on each input sub-stream with an optimum MAP sequential detector separately by assuming the other streams are Gaussian noise. The soft output can also be forwarded to outer channel decoder for iterative decoding. Simulation results show that the proposed method can converge with a small number of iterations under different channel conditions and outperforms other sub-optimum detectors for rank-deficient channels.

  10. Cardiac ion channels and mechanisms for protection against atrial fibrillation

    DEFF Research Database (Denmark)

    Grunnet, Morten; Bentzen, Bo Hjorth; Sørensen, Ulrik S;

    2011-01-01

    Atrial fibrillation (AF) is recognised as the most common sustained cardiac arrhythmia in clinical practice. Ongoing drug development is aiming at obtaining atrial specific effects in order to prevent pro-arrhythmic, devastating ventricular effects. In principle, this is possible due to a different...... the recent discovery that Ca(2+)-activated small conductance K(+) channels (SK channels) are important for the repolarisation of atrial action potentials. Finally, an overview of current pharmacological treatment of AF is included....

  11. Magnesium gating of cardiac gap junction channels.

    Science.gov (United States)

    Matsuda, Hiroyuki; Kurata, Yasutaka; Oka, Chiaki; Matsuoka, Satoshi; Noma, Akinori

    2010-09-01

    We aimed to study kinetics of modulation by intracellular Mg(2+) of cardiac gap junction (Mg(2+) gate). Paired myocytes of guinea-pig ventricle were superfused with solutions containing various concentrations of Mg(2+). In order to rapidly apply Mg(2+) to one aspect of the gap junction, the non-junctional membrane of one of the pair was perforated at nearly the connecting site by pulses of nitrogen laser beam. The gap junction conductance (G(j)) was measured by clamping the membrane potential of the other cell using two-electrode voltage clamp method. The laser perforation immediately increased G(j), followed by slow G(j) change with time constant of 3.5 s at 10 mM Mg(2+). Mg(2+) more than 1.0 mM attenuated dose-dependently the gap junction conductance and lower Mg(2+) (0.6 mM) increased G(j) with a Hill coefficient of 3.4 and a half-maximum effective concentration of 0.6 mM. The time course of G(j) changes was fitted by single exponential function, and the relationship between the reciprocal of time constant and Mg(2+) concentration was almost linear. Based on the experimental data, a mathematical model of Mg(2+) gate with one open state and three closed states well reproduced experimental results. One-dimensional cable model of thirty ventricular myocytes connected to the Mg(2+) gate model suggested a pivotal role of the Mg(2+) gate of gap junction under pathological conditions. PMID:20553744

  12. Cardiac Mechano-Gated Ion Channels and Arrhythmias.

    Science.gov (United States)

    Peyronnet, Rémi; Nerbonne, Jeanne M; Kohl, Peter

    2016-01-22

    Mechanical forces will have been omnipresent since the origin of life, and living organisms have evolved mechanisms to sense, interpret, and respond to mechanical stimuli. The cardiovascular system in general, and the heart in particular, is exposed to constantly changing mechanical signals, including stretch, compression, bending, and shear. The heart adjusts its performance to the mechanical environment, modifying electrical, mechanical, metabolic, and structural properties over a range of time scales. Many of the underlying regulatory processes are encoded intracardially and are, thus, maintained even in heart transplant recipients. Although mechanosensitivity of heart rhythm has been described in the medical literature for over a century, its molecular mechanisms are incompletely understood. Thanks to modern biophysical and molecular technologies, the roles of mechanical forces in cardiac biology are being explored in more detail, and detailed mechanisms of mechanotransduction have started to emerge. Mechano-gated ion channels are cardiac mechanoreceptors. They give rise to mechano-electric feedback, thought to contribute to normal function, disease development, and, potentially, therapeutic interventions. In this review, we focus on acute mechanical effects on cardiac electrophysiology, explore molecular candidates underlying observed responses, and discuss their pharmaceutical regulation. From this, we identify open research questions and highlight emerging technologies that may help in addressing them.

  13. A 128-Channel Receive-Only Cardiac Coil for Highly Accelerated Cardiac MRI at 3 Tesla

    OpenAIRE

    Schmitt, Melanie; Potthast, Andreas; Sosnovik, David E; Polimeni, Jonathan R; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.

    2008-01-01

    A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a “clam-shell” geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compar...

  14. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[18F]fluorodopamine, (-)-6-[18F]fluoronorepinephrine and (-)-[11C]epinephrine, and radiolabelled catecholamine analogues, such as [123I]meta-iodobenzylguanidine, [11C]meta-hydroxyephedrine, [18F]fluorometaraminol, [11C]phenylephrine and meta-[76Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[18F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  15. PET and SPET tracers for mapping the cardiac nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Karolinska Hospital, 17176 Stockholm (Sweden)

    2002-03-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[{sup 18}F]fluorodopamine, (-)-6-[{sup 18}F]fluoronorepinephrine and (-)-[{sup 11}C]epinephrine, and radiolabelled catecholamine analogues, such as [{sup 123}I]meta-iodobenzylguanidine, [{sup 11}C]meta-hydroxyephedrine, [{sup 18}F]fluorometaraminol, [{sup 11}C]phenylephrine and meta-[{sup 76}Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[{sup 18}F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility

  16. Cardiac ion channel modulation by the hypoglycaemic agent rosiglitazone.

    Science.gov (United States)

    Hancox, J C

    2011-06-01

    The hypoglycaemic thiazolidinedione rosiglitazone is used clinically in the treatment of type 2 diabetes. However, in 2010, information relating to rosiglitazone-associated increased cardiovascular risk led the European Medicines Agency to recommend suspension of marketing authorizations for rosiglitazone-containing anti-diabetes drugs, while the US Food and Drug Administration recommended significant restriction on the agent's use. Two timely studies in this issue of the British Journal of Phrarmacology provide new information regarding modification of cardiac cellular electrophysiology by rosiglitazone. Szentandrássy et al. demonstrate canine ventricular action potential modification and concentration-dependent suppression of L-type Ca current and of transient outward and rapid delayed rectifier K currents. Jeong et al. demonstrate concentration-dependent inhibition of recombinant K(v) 4.3 channels, providing mechanistic insight into the likely molecular basis of transient outward K current inhibition by the compound. Further studies using diabetic models would be of value to determine whether, in a diabetic setting, rosiglitazone modification of these channels could affect the risk of arrhythmia at clinically relevant drug concentrations. PMID:21561443

  17. Gap-junction channels inhibit transverse propagation in cardiac muscle

    Directory of Open Access Journals (Sweden)

    Ramasamy Lakshminarayanan

    2005-01-01

    Full Text Available Abstract The effect of adding many gap-junctions (g-j channels between contiguous cells in a linear chain on transverse propagation between parallel chains was examined in a 5 × 5 model (5 parallel chains of 5 cells each for cardiac muscle. The action potential upstrokes were simulated using the PSpice program for circuit analysis. Either a single cell was stimulated (cell A1 or the entire chain was stimulated simultaneously (A-chain. Transverse velocity was calculated from the total propagation time (TPT from when the first AP crossed a Vm of -20 mV and the last AP crossed -20 mV. The number of g-j channels per junction was varied from zero to 100, 1,000 and 10,000 (Rgj of ∞, 100 MΩ, 10 MΩ, 1.0 MΩ, respectively. The longitudinal resistance of the interstitial fluid (ISF space between the parallel chains (Rol2 was varied between 200 KΩ (standard value and 1.0, 5.0, and 10 MΩ. The higher the Rol2 value, the tighter the packing of the chains. It was found that adding many g-j channels inhibited transverse propagation by blocking activation of all 5 chains, unless Rol2 was greatly increased above the standard value of 200 KΩ. This was true for either method of stimulation. This was explained by, when there is strong longitudinal coupling between all 5 cells of a chain awaiting excitation, there must be more transfer energy (i.e., more current to simultaneously excite all 5 cells of a chain.

  18. Genetic and environmental factors in cardiac sodium channel disease

    NARCIS (Netherlands)

    Y. Mizusawa

    2016-01-01

    Cardiac sodium channelopathies, such as long QT syndrome type3 (LQT3), Brugada syndrome (BrS) and cardiac conduction disease (CCD), are heritable diseases associated with mutations in the SCN5A gene and sudden cardiac death. They were classically thought to be a monogenic disease. However, while LQT

  19. Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel

    DEFF Research Database (Denmark)

    Liin, Sara I.; Silverå Ejneby, Malin; Barro-Soria, Rene;

    2015-01-01

    Polyunsaturated fatty acids (PUFAs) affect cardiac excitability. Kv7.1 and the β-subunit KCNE1 form the cardiac IKs channel that is central for cardiac repolarization. In this study, we explore the prospects of PUFAs as IKs channel modulators. We report that PUFAs open Kv7.1 via an electrostatic...... charge at neutral pH, restore the sensitivity to open IKs channels. PUFA analogs with a positively charged head group inhibit IKs channels. These different PUFA analogs could be developed into drugs to treat cardiac arrhythmias. In support of this possibility, we show that PUFA analogs act...... mechanism. Both the polyunsaturated acyl tail and the negatively charged carboxyl head group are required for PUFAs to open Kv7.1. We further show that KCNE1 coexpression abolishes the PUFA effect on Kv7.1 by promoting PUFA protonation. PUFA analogs with a decreased pKa value, to preserve their negative...

  20. UCP3 Regulates Single-Channel Activity of the Cardiac mCa1.

    Science.gov (United States)

    Motloch, Lukas J; Gebing, Tina; Reda, Sara; Schwaiger, Astrid; Wolny, Martin; Hoppe, Uta C

    2016-08-01

    Mitochondrial Ca(2+) uptake (mCa(2+) uptake) is thought to be mediated by the mitochondrial Ca(2+) uniporter (MCU). UCP2 and UCP3 belong to a superfamily of mitochondrial ion transporters. Both proteins are expressed in the inner mitochondrial membrane of the heart. Recently, UCP2 was reported to modulate the function of the cardiac MCU related channel mCa1. However, the possible role of UCP3 in modulating cardiac mCa(2+) uptake via the MCU remains inconclusive. To understand the role of UCP3, we analyzed cardiac mCa1 single-channel activity in mitoplast-attached single-channel recordings from isolated murine cardiac mitoplasts, from adult wild-type controls (WT), and from UCP3 knockout mice (UCP3(-/-)). Single-channel registrations in UCP3(-/-) confirmed a murine voltage-gated Ca(2+) channel, i.e., mCa1, which was inhibited by Ru360. Compared to WT, mCa1 in UCP3(-/-) revealed similar single-channel characteristics. However, in UCP3(-/-) the channel exhibited decreased single-channel activity, which was insensitive to adenosine triphosphate (ATP) inhibition. Our results suggest that beyond UCP2, UCP3 also exhibits regulatory effects on cardiac mCa1/MCU function. Furthermore, we speculate that UCP3 might modulate previously described inhibitory effects of ATP on mCa1/MCU activity as well.

  1. Assessment of cardiac conduction: basic principles of optical mapping.

    Science.gov (United States)

    Ding, Chunhua; Everett, Thomas H

    2010-01-01

    Extracellular recordings acquired from electrodes placed on the surface of cardiac tissue have traditionally been used to study the electrophysiological properties of the tissue. While this technique has been used in several studies that have increased our understanding of cardiac arrhythmias and action potential propagation, there are several limitations that have prevented us from seeing a bigger picture of arrhythmia mechanisms. These limitations include the limited number of electrodes and unstable recordings. Optical mapping was developed to increase the temporal and spatial resolution over traditional electrode recordings and ultimately the accuracy of the data analysis. This technology involves using a voltage-sensitive dye that binds to the cell membrane. The fluorescence changes of the dye have a linear relationship to the action potential changes of the cell membrane. These fluorescent changes can then be detected by a photodiode array, a CCD camera or a CMOS camera. This will allow the recording of the action potential in hundreds to thousands of different sites simultaneously. Presented in this chapter are the materials and hardware needed along with step-by-step instructions on setup and techniques used in optical mapping for larger tissue preparations. PMID:20680823

  2. Interactions of cryptosin with mammalian cardiac dihydropyridine-specific calcium channels

    International Nuclear Information System (INIS)

    Cryptosin, a new cardenolide, was found to be a potent inhibitor of cardiac Na+ and K+ dependent Adenosinetri-phosphatase. In experiments with dog heart ex vivo, development of inotropic and toxic effect correlated with changes in the cardiac dihydropyridine-specific calcium channels as measured by the binding of 3[H]PN 200-110. A significant change in the PN 200-110 binding was observed when guinea pig and dog heart sarcolemmal membranes were pre-incubated with cryptosin in vitro. Binding analysis of 3[H]PN 200-110 (Isradipine), a 1,4-dihydropyridine analog with very specific calcium channel binding properties, in both in vitro and ex vivo studies were consistent and indicated a non-specific type of interaction of cryptosin with mammalian cardiac 1,4-dihydropyridine-specific calcium channels

  3. Protection of Coronary Endothelial Function during Cardiac Surgery: Potential of Targeting Endothelial Ion Channels in Cardioprotection

    Directory of Open Access Journals (Sweden)

    Qin Yang

    2014-01-01

    Full Text Available Vascular endothelium plays a critical role in the control of blood flow by producing vasoactive factors to regulate vascular tone. Ion channels, in particular, K+ channels and Ca2+-permeable channels in endothelial cells, are essential to the production and function of endothelium-derived vasoactive factors. Impairment of coronary endothelial function occurs in open heart surgery that may result in reduction of coronary blood flow and thus in an inadequate myocardial perfusion. Hyperkalemic exposure and concurrent ischemia-reperfusion during cardioplegic intervention compromise NO and EDHF-mediated function and the impairment involves alterations of K+ channels, that is, KATP and KCa, and Ca2+-permeable TRP channels in endothelial cells. Pharmacological modulation of these channels during ischemia-reperfusion and hyperkalemic exposure show promising results on the preservation of NO and EDHF-mediated endothelial function, which suggests the potential of targeting endothelial K+ and TRP channels for myocardial protection during cardiac surgery.

  4. Cardiac magnetic resonance T1 mapping of left atrial myocardium

    Science.gov (United States)

    Beinart, Roy; Khurram, Irfan M.; Liu, Songtao; Yarmohammadi, Hirad; Halperin, Henry R.; Bluemke, David A.; Gai, Neville; van der Geest, Rob J.; Lima, Joao A.C.; Calkins, Hugh; Zimmerman, Stefan L.; Nazarian, Saman

    2013-01-01

    BACKGROUND Cardiac magnetic resonance (CMR) T1 mapping is an emerging tool for objective quantification of myocardial fibrosis. OBJECTIVES To (a) establish the feasibility of left atrial (LA) T1 measurements, (b) determine the range of LA T1 values in patients with atrial fibrillation (AF) vs healthy volunteers, and (c) validate T1 mapping vs LA intracardiac electrogram voltage amplitude measures. METHODS CMR imaging at 1.5 T was performed in 51 consecutive patients before AF ablation and in 16 healthy volunteers. T1 measurements were obtained from the posterior LA myocardium by using the modified Look-Locker inversion-recovery sequence. Given the established association of reduced electrogram amplitude with fibrosis, intracardiac point-by-point bipolar LA voltage measures were recorded for the validation of T1 measurements. RESULTS The median LA T1 relaxation time was shorter in patients with AF (387 [interquartile range 364–428] ms) compared to healthy volunteers (459 [interquartile range 418–532] ms; P < .001) and was shorter in patients with AF with prior ablation compared to patients without prior ablation (P = .035). In a generalized estimating equations model, adjusting for data clusters per participant, age, rhythm during CMR, prior ablation, AF type, hypertension, and diabetes, each 100-ms increase in T1 relaxation time was associated with 0.1 mV increase in intracardiac bipolar LA voltage (P = .025). CONCLUSIONS Measurement of the LA myocardium T1 relaxation time is feasible and strongly associated with invasive voltage measures. This methodology may improve the quantification of fibrotic changes in thin-walled myocardial tissues. PMID:23643513

  5. Role of Sodium Channel on Cardiac Action Potential

    Directory of Open Access Journals (Sweden)

    S. H. Sabzpoushan

    2012-06-01

    Full Text Available Sudden cardiac death is a major cause of death worldwide. In most cases, it's caused by abnormal action potential propagation that leads to cardiac arrhythmia. The aim of this article is to study the abnormal action potential propagation through sodium ion concentration variations. We use a new electrophysiological model that is both detailed and computationally efficient. This efficient model is based on the partial differential equation method. The central finite difference method is used for numerical solving of the two-dimensional (2D wave propagation equation. Simulations are implemented in two stages, as a single cardiac cell and as a two-dimensional grid of cells. In both stages, the normal action potential formation in case of a single cell and it's normal propagation in case of a two-dimensional grid of cells were simulated with nominal sodium ion conductance. Then, the effect of sodium ion concentration on the action potential signal was studied by reducing the sodium ion conductance. It is concluded that reducing the sodium ion conductance, decreases both passing ability and conduction velocity of the action potential wave front.

  6. A novel LQT3 mutation implicates the human cardiac sodium channel domain IVS6 in inactivation kinetics

    NARCIS (Netherlands)

    Groenewegen, WA; Bezzina, CR; van Tintelen, JP; Hoorntje, TM; Mannens, MMAM; Wilde, AAM; Jongsma, HJ; Rook, MB

    2003-01-01

    The Long QT3 syndrome is associated with mutations in the cardiac sodium channel gene SCN5A. Objective: The aim of the present study was the identification and functional characterization of a mutation in a family with the long QT3 syndrome. Methods: The human cardiac sodium channel gene SCN5A was s

  7. Phenotypical Manifestations of Mutations in the Genes Encoding Subunits of the Cardiac Sodium Channel

    NARCIS (Netherlands)

    Wilde, Arthur A. M.; Brugada, Ramon

    2011-01-01

    Variations in the gene encoding for the major sodium channel (Na(v)1.5) in the heart, SCN5A, has been shown to cause a number of arrhythmia syndromes (with or without structural changes in the myocardium), including the long-QT syndrome (type 3), Brugada syndrome, (progressive) cardiac conduction di

  8. Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis.

    Science.gov (United States)

    Zhang, Xiaohui; Zhang, Xiaohua; Xiong, Yiqun; Xu, Chaoying; Liu, Xinliang; Lin, Jian; Mu, Guiping; Xu, Shaogang; Liu, Wenhe

    2016-09-01

    The sarcolemmal ATP-sensitive K+ (sarcKATP) channel plays a cardioprotective role during stress. However, the role of the sarcKATP channel in the apoptosis of cardiomyocytes and association with mitochondrial calcium remains unclear. For this purpose, we developed a model of LPS-induced sepsis in neonatal rat cardiomyocytes (NRCs). The TUNEL assay was performed in order to detect the apoptosis of cardiac myocytes and the MTT assay was performed to determine cellular viability. Exposure to LPS significantly decreased the viability of the NRCs as well as the expression of Bcl-2, whereas it enhanced the activity and expression of the apoptosis-related proteins caspase-3 and Bax, respectively. The sarcKATP channel blocker, HMR-1098, increased the apoptosis of NRCs, whereas the specific sarcKATP channel opener, P-1075, reduced the apoptosis of NRCs. The mitochondrial calcium uniporter inhibitor ruthenium red (RR) partially inhibited the pro-apoptotic effect of HMR-1098. In order to confirm the role of the sarcKATP channel, we constructed a recombinant adenovirus vector carrying the sarcKATP channel mutant subunit Kir6.2AAA to inhibit the channel activity. Kir6.2AAA adenovirus infection in NRCs significantly aggravated the apoptosis of myocytes induced by LPS. Elucidating the regulatory mechanisms of the sarcKATP channel in apoptosis may facilitate the development of novel therapeutic targets and strategies for the management of sepsis and cardiac dysfunction. PMID:27430376

  9. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    Directory of Open Access Journals (Sweden)

    Clemens eMoeller

    2011-11-01

    Full Text Available The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and Torsades de Pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the gold-standard for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.

  10. Single-molecule denaturation mapping of DNA in nanofluidic channels

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Silahtaroglu, Asli;

    2010-01-01

    Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO (R)-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips....... Consequently, the technique is sensitive to sequence variation without requiring enzymatic labeling or a restriction step. This technique may serve as the basis for a new mapping technology ideally suited for investigating the long-range structure of entire genomes extracted from single cells....

  11. BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo.

    Science.gov (United States)

    Lai, Michael H; Wu, Yuejin; Gao, Zhan; Anderson, Mark E; Dalziel, Julie E; Meredith, Andrea L

    2014-11-01

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels play prominent roles in shaping muscle and neuronal excitability. In the cardiovascular system, BK channels promote vascular relaxation and protect against ischemic injury. Recently, inhibition of BK channels has been shown to lower heart rate in intact rodents and isolated hearts, suggesting a novel role in heart function. However, the underlying mechanism is unclear. In the present study, we recorded ECGs from mice injected with paxilline (PAX), a membrane-permeable BK channel antagonist, and examined changes in cardiac conduction. ECGs revealed a 19 ± 4% PAX-induced reduction in heart rate in wild-type but not BK channel knockout (Kcnma1(-/-)) mice. The heart rate decrease was associated with slowed cardiac pacing due to elongation of the sinus interval. Action potential firing recorded from isolated sinoatrial node cells (SANCs) was reduced by 55 ± 15% and 28 ± 9% by application of PAX (3 μM) and iberiotoxin (230 nM), respectively. Furthermore, baseline firing rates from Kcnma1(-/-) SANCs were 33% lower than wild-type SANCs. The slowed firing upon BK current inhibition or genetic deletion was due to lengthening of the diastolic depolarization phase of the SANC action potential. Finally, BK channel immunoreactivity and PAX-sensitive currents were identified in SANCs with HCN4 expression and pacemaker current, respectively, and BK channels cloned from SANCs recapitulated similar activation as the PAX-sensitive current. Together, these data localize BK channels to SANCs and demonstrate that loss of BK current decreases SANC automaticity, consistent with slowed sinus pacing after PAX injection in vivo. Furthermore, these findings suggest BK channels are potential therapeutic targets for disorders of heart rate.

  12. Inherited Cardiac Diseases Caused by Mutations in the Nav1.5 Sodium Channel

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Jacob; Winkel, Bo Gregers; Grunnet, Morten;

    2009-01-01

    Cardiac Diseases Caused by SCN5A Mutations. A prerequisite for a normal cardiac function is a proper generation and propagation of electrical impulses. Contraction of the heart is obtained through a delicate matched transmission of the electrical impulses. A pivotal element of the impulse...... propagation is the depolarizing sodium current, responsible for the initial depolarization of the cardiomyocytes. Recent research has shown that mutations in the SCN5A gene, encoding the cardiac sodium channel Nav1.5, are associated with both rare forms of ventricular arrhythmia, as well as the most frequent...... form of arrhythmia, atrial fibrillation (AF). In this comprehensive review, we describe the functional role of Nav1.5 and its associated proteins in propagation and depolarization both in a normal- and in a pathophysiological setting. Furthermore, several of the arrhythmogenic diseases, such as long...

  13. Single-detector Simultaneous Optical Mapping of Vm and [Ca2+]i in Cardiac Monolayers

    OpenAIRE

    Scull, James A.; McSpadden, Luke C; Himel, Herman D; Badie, Nima; Bursac, Nenad

    2011-01-01

    Simultaneous mapping of transmembrane voltage (Vm) and intracellular Ca2+ concentration (Cai) has been used for studies of normal and abnormal impulse propagation in cardiac tissues. Existing dual mapping systems typically utilize one excitation and two emission bandwidths, requiring two photodetectors with precise pixel registration. In this study we describe a novel, single-detector mapping system that utilizes two excitation and one emission bandwidth for the simultaneous recording of acti...

  14. Thermodynamics of calmodulin binding to cardiac and skeletal muscle ryanodine receptor ion channels

    OpenAIRE

    Meissner, Gerhard; Pasek, Daniel A.; Yamaguchi, Naohiro; Ramachandran, Srinivas; Dokholyan, Nikolay V.; Tripathy, Ashutosh

    2009-01-01

    The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [35S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca2+ concentrations from

  15. The pharmacology of three inwardly rectifying potassium Channels in neonatal rat cardiac myocytes.

    OpenAIRE

    Azam, R.

    1999-01-01

    The aim of the present study was to investigate the pharmacology of three inwardly rectifying K+-channels in neonatal rat cardiac myocytes, IKAch, IKI, IKAtp- using whole cell voltage clamp techniques. Cells were held at -50mV. A previous study has shown that clotrimazole, an antimycotic agent, and cetiedil, an antisickling agent are potent against the IKACch in atrial myocytes. Structural analogues of these compounds were tested on the three inward rectifiers. UCL1880, an a...

  16. Inhibition of the Cardiac Na+ Channel Nav1.5 by Carbon Monoxide*

    OpenAIRE

    Elies, J; Dallas, M.; Boyle, JP; Scragg, JL; Duke, A; Steele, DS; Peers, C

    2014-01-01

    Sublethal carbon monoxide (CO) exposure is frequently associated with myocardial arrhythmias, and our recent studies have demonstrated that these may be attributable to modulation of cardiac Na(+) channels, causing an increase in the late current and an inhibition of the peak current. Using a recombinant expression system, we demonstrate that CO inhibits peak human Nav1.5 current amplitude without activation of the late Na(+) current observed in native tissue. Inhibition was associated with a...

  17. A Common Polymorphism of the Human Cardiac Sodium Channel Alpha Subunit (SCN5A Gene Is Associated with Sudden Cardiac Death in Chronic Ischemic Heart Disease.

    Directory of Open Access Journals (Sweden)

    Boglárka Marcsa

    Full Text Available Cardiac death remains one of the leading causes of mortality worldwide. Recent research has shed light on pathophysiological mechanisms underlying cardiac death, and several genetic variants in novel candidate genes have been identified as risk factors. However, the vast majority of studies performed so far investigated genetic associations with specific forms of cardiac death only (sudden, arrhythmogenic, ischemic etc.. The aim of the present investigation was to find a genetic marker that can be used as a general, powerful predictor of cardiac death risk. To this end, a case-control association study was performed on a heterogeneous cohort of cardiac death victims (n=360 and age-matched controls (n=300. Five single nucleotide polymorphisms (SNPs from five candidate genes (beta2 adrenergic receptor, nitric oxide synthase 1 adaptor protein, ryanodine receptor 2, sodium channel type V alpha subunit and transforming growth factor-beta receptor 2 that had previously been shown to associate with certain forms of cardiac death were genotyped using sequence-specific real-time PCR probes. Logistic regression analysis revealed that the CC genotype of the rs11720524 polymorphism in the SCN5A gene encoding a subunit of the cardiac voltage-gated sodium channel occurred more frequently in the highly heterogeneous cardiac death cohort compared to the control population (p=0.019, odds ratio: 1.351. A detailed subgroup analysis uncovered that this effect was due to an association of this variant with cardiac death in chronic ischemic heart disease (p=0.012, odds ratio = 1.455. None of the other investigated polymorphisms showed association with cardiac death in this context. In conclusion, our results shed light on the role of this non-coding polymorphism in cardiac death in ischemic cardiomyopathy. Functional studies are needed to explore the pathophysiological background of this association.

  18. Single-detector simultaneous optical mapping of V(m) and [Ca(2+)](i) in cardiac monolayers.

    Science.gov (United States)

    Scull, James A; McSpadden, Luke C; Himel, Herman D; Badie, Nima; Bursac, Nenad

    2012-05-01

    Simultaneous mapping of transmembrane voltage (V(m)) and intracellular Ca(2+) concentration (Ca(i)) has been used for studies of normal and abnormal impulse propagation in cardiac tissues. Existing dual mapping systems typically utilize one excitation and two emission bandwidths, requiring two photodetectors with precise pixel registration. In this study we describe a novel, single-detector mapping system that utilizes two excitation and one emission band for the simultaneous recording of action potentials and calcium transients in monolayers of neonatal rat cardiomyocytes. Cells stained with the Ca(2+)-sensitive dye X-Rhod-1 and the voltage-sensitive dye Di-4-ANEPPS were illuminated by a programmable, multicolor LED matrix. Blue and green LED pulses were flashed 180° out of phase at a rate of 488.3 Hz using a custom-built dual bandpass excitation filter that transmitted blue (482 ± 6 nm) and green (577 ± 31 nm) light. A long-pass emission filter (>605 nm) and a 504-channel photodiode array were used to record combined signals from cardiomyocytes. Green excitation yielded Ca(i) transients without significant crosstalk from V(m). Crosstalk present in V(m) signals obtained with blue excitation was removed by subtracting an appropriately scaled version of the Ca(i) transient. This method was applied to study delay between onsets of action potentials and Ca(i) transients in anisotropic cardiac monolayers. PMID:22124794

  19. Comparison of electrophysiological effects of calcium channel blockers on cardiac repolarization.

    Science.gov (United States)

    Lee, Hyang-Ae; Hyun, Sung-Ae; Park, Sung-Gurl; Kim, Ki-Suk; Kim, Sung Joon

    2016-01-01

    Dihydropyridine (DHP) calcium channel blockers (CCBs) have been widely used to treat of several cardiovascular diseases. An excessive shortening of action potential duration (APD) due to the reduction of Ca(2+) channel current (I Ca) might increase the risk of arrhythmia. In this study we investigated the electrophysiological effects of nicardipine (NIC), isradipine (ISR), and amlodipine (AML) on the cardiac APD in rabbit Purkinje fibers, voltage-gated K(+) channel currents (I Kr, I Ks) and voltage-gated Na(+) channel current (I Na). The concentration-dependent inhibition of Ca(2+) channel currents (I Ca) was examined in rat cardiomyocytes; these CCBs have similar potency on I Ca channel blocking with IC50 (the half-maximum inhibiting concentration) values of 0.142, 0.229, and 0.227 nM on NIC, ISR, and AML, respectively. However, ISR shortened both APD50 and APD90 already at 1 µM whereas NIC and AML shortened APD50 but not APD90 up to 30 µM. According to ion channel studies, NIC and AML concentration-dependently inhibited I Kr and I Ks while ISR had only partial inhibitory effects (NIC and AML could compensate for the AP shortening effects due to the block of I Ca.

  20. Radioligand assay of cardiac calcium release channel and its application in SHR

    International Nuclear Information System (INIS)

    Purpose: To establish the best condition in assaying the calcium release channel (ryanodine receptor) in cardiac sarcoplasmic reticulum (CSR), and analyse the CSR ryanodine receptor in spantanous hypertensive rat (SHR). Methods: 3H-ryanodine was used as a radioligand to analyse the binding in Sprague Dawley rat cardiac homogenate in following conditions: varied protein concentrations, different free calcium concentrations, different incubation time. The effect of sarcoplasmic reticulum purifying process and ryanodine competitive binding were also studied. Using these best conditions, SHR and control group (WKY) CSR ryanodine receptor were studied. Results: 1) There was a positive linear correlation between 3H-ryanodine binding and the homogenate protein concentration. 2) When the free calcium concentration was 30 μmol/L∼1 mmol/L, the 3H-ryanodine binding reached the maximum. While the free calcium concentration was lower than 1 μmol/L, there was no 3H-ryanodine binding. 3) The 3H-ryanodine binding kept increasing during incubation, from 0 to 60 min, and equilibrium reached by 90 min. 4) The ryanodine specifically inhibited 3H-ryanodine binding in cardiac homogenate. 5) During the sarcoplasmic reticulum purifying process, the 3H-ryanodine binding in a unit amount of cardiac homogenate decreased with the centrifugal force and times applied in centrifugation. 6) SHR and WKY CSR ryanodine receptor saturation curve and Scatchard analysis showed this method produced a very high level of specific binding, up to 45 nmol/L ryanodine, which inferred a single class of binding sites. The Bmax value of CSR ryanodine receptor in SHR left ventricle was significantly higher than that in WKY (P3H-ryanodine can be used as a radioligand to analyse the calcium release channel in cardiac homogenate, and ryanodine receptor may play an important role in hypertensive left ventricular remodeling process

  1. Crystal orientation mapping via ion channeling: An alternative to EBSD

    International Nuclear Information System (INIS)

    A new method, which we name ion CHanneling ORientation Determination (iCHORD), is proposed to obtain orientation maps on polycrystals via ion channeling. The iChord method exploits the dependence between grain orientation and ion beam induced secondary electron image contrast. At each position of the region of interest, intensity profiles are obtained from a series of images acquired with different orientations with respect to the ion beam. The profiles are then compared to a database of theoretical profiles of known orientation. The Euler triplet associated to the most similar theoretical profile gives the orientation at that position. The proof-of-concept is obtained on a titanium nitride sample. The potentialities of iCHORD as an alternative to EBSD are then discussed. - Highlights: • A new method is proposed to obtain orientation maps via ion channeling. • This method exploits the dependence between grain orientation and SE image contrast. • Intensity profiles are obtained from images acquired with different orientations. • The profiles are then compared to a database of theoretical profiles of known orientation. • The potentialities of this method as an alternative to EBSD are discussed

  2. Crystal orientation mapping via ion channeling: An alternative to EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, C.; Douillard, T.; Yuan, H. [University of Lyon – INSA de Lyon – CNRS, MATEIS, UMR 5510, Bât. Blaise Pascal, 20 Avenue Albert Einstein, 69621 Villeurbanne (France); Blanchard, N.P. [University of Lyon – CNRS, ILM, UMR 5306, Université Lyon I, Bât. A. Kastler, 10 rue A. Byron, 69622 Villeurbanne (France); Descamps-Mandine, A. [University of Lyon – CNRS, INL, UMR 5510, Bât. B. Pascal, INSA de Lyon/Université Lyon I, 69621 Villeurbanne (France); Van de Moortèle, B. [Ecole Normale Supérieure de Lyon – CNRS, LGL, 46 allée d’Italie, 69364 Lyon (France); Rigotti, C. [University of Lyon – INSA de Lyon – CNRS, LIRIS, UMR 5205, INRIA, Bât. Blaise Pascal, 20 Avenue Albert Einstein, 69621 Villeurbanne (France); Epicier, T. [University of Lyon – INSA de Lyon – CNRS, MATEIS, UMR 5510, Bât. Blaise Pascal, 20 Avenue Albert Einstein, 69621 Villeurbanne (France)

    2015-10-15

    A new method, which we name ion CHanneling ORientation Determination (iCHORD), is proposed to obtain orientation maps on polycrystals via ion channeling. The iChord method exploits the dependence between grain orientation and ion beam induced secondary electron image contrast. At each position of the region of interest, intensity profiles are obtained from a series of images acquired with different orientations with respect to the ion beam. The profiles are then compared to a database of theoretical profiles of known orientation. The Euler triplet associated to the most similar theoretical profile gives the orientation at that position. The proof-of-concept is obtained on a titanium nitride sample. The potentialities of iCHORD as an alternative to EBSD are then discussed. - Highlights: • A new method is proposed to obtain orientation maps via ion channeling. • This method exploits the dependence between grain orientation and SE image contrast. • Intensity profiles are obtained from images acquired with different orientations. • The profiles are then compared to a database of theoretical profiles of known orientation. • The potentialities of this method as an alternative to EBSD are discussed.

  3. Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits

    OpenAIRE

    Tong, XiaoYong; Porter, Lisa M.; Liu, GongXin; Dhar-Chowdhury, Piyali; Srivastava, Shekhar; Pountney, David J.; Yoshida, Hidetada; Artman, Michael; Fishman, Glenn I.; Yu, Cindy; Iyer, Ramesh; Morley, Gregory E.; Gutstein, David E.; Coetzee, William A.

    2006-01-01

    Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits. Am J Physiol Heart Circ Physiol 291: H543–H551, 2006. First published February 24, 2006; doi:10.1152/ajpheart.00051.2006.—Cardiac ATP-sensitive K+ (KATP) channels are formed by Kir6.2 and SUR2A subunits. We produced transgenic mice that express dominant negative Kir6.x pore-forming subunits (Kir6.1-AAA or Kir6.2-AAA) in cardiac myocytes by driving their expression ...

  4. Map-Based Channel Model for Urban Macrocell Propagation Scenarios

    Directory of Open Access Journals (Sweden)

    Jose F. Monserrat

    2015-01-01

    Full Text Available The evolution of LTE towards 5G has started and different research projects and institutions are in the process of verifying new technology components through simulations. Coordination between groups is strongly recommended and, in this sense, a common definition of test cases and simulation models is needed. The scope of this paper is to present a realistic channel model for urban macrocell scenarios. This model is map-based and takes into account the layout of buildings situated in the area under study. A detailed description of the model is given together with a comparison with other widely used channel models. The benchmark includes a measurement campaign in which the proposed model is shown to be much closer to the actual behavior of a cellular system. Particular attention is given to the outdoor component of the model, since it is here where the proposed approach is showing main difference with other previous models.

  5. A molecular switch driving inactivation in the cardiac K+ channel HERG.

    Directory of Open Access Journals (Sweden)

    David A Köpfer

    Full Text Available K(+ channels control transmembrane action potentials by gating open or closed in response to external stimuli. Inactivation gating, involving a conformational change at the K(+ selectivity filter, has recently been recognized as a major K(+ channel regulatory mechanism. In the K(+ channel hERG, inactivation controls the length of the human cardiac action potential. Mutations impairing hERG inactivation cause life-threatening cardiac arrhythmia, which also occur as undesired side effects of drugs. In this paper, we report atomistic molecular dynamics simulations, complemented by mutational and electrophysiological studies, which suggest that the selectivity filter adopts a collapsed conformation in the inactivated state of hERG. The selectivity filter is gated by an intricate hydrogen bond network around residues S620 and N629. Mutations of this hydrogen bond network are shown to cause inactivation deficiency in electrophysiological measurements. In addition, drug-related conformational changes around the central cavity and pore helix provide a functional mechanism for newly discovered hERG activators.

  6. Biophysics and Molecular Biology of Cardiac Ion Channels for the Safety Pharmacologist.

    Science.gov (United States)

    Pugsley, Michael K; Curtis, Michael J; Hayes, Eric S

    2015-01-01

    Cardiac safety pharmacology is a continuously evolving discipline that uses the basic principles of pharmacology in a regulatory-driven process to generate data to inform risk/benefit assessment of a new chemical entity (NCE). The aim of cardiac safety pharmacology is to characterise the pharmacodynamic/pharmacokinetic (PK/PD) relationship of a drug's adverse effects on the heart using continuously evolving methodology. Unlike Toxicology, safety pharmacology includes within its remit a regulatory requirement to predict the risk of rare cardiotoxic (potentially lethal) events such as torsades de pointes (TdP), which is statistically associated with drug-induced changes in the QT interval of the ECG due to blockade of I Kr or K v11.1 current encoded by hERG. This gives safety pharmacology its unique character. The key issues for the safety pharmacology assessment of a drug on the heart are detection of an adverse effect liability, projection of the data into safety margin calculation and clinical safety monitoring. This chapter will briefly review the current cardiac safety pharmacology paradigm outlined in the ICH S7A and ICH S7B guidance documents and the non-clinical models and methods used in the evaluation of new chemical entities in order to define the integrated risk assessment for submission to regulatory authorities. An overview of how the present cardiac paradigm was developed will be discussed, explaining how it was based upon marketing authorisation withdrawal of many non-cardiovascular compounds due to unanticipated proarrhythmic effects. The role of related biomarkers (of cardiac repolarisation, e.g. prolongation of the QT interval of the ECG) will be considered. We will also provide an overview of the 'non-hERG-centric' concepts utilised in the evolving comprehensive in vitro proarrhythmia assay (CIPA) that details conduct of the proposed ion channel battery test, use of human stem cells and application of in silico models to early cardiac safety

  7. Valve area and cardiac output in aortic stenosis: quantification by magnetic resonance velocity mapping

    DEFF Research Database (Denmark)

    Søndergaard, Lise; Hildebrandt, P; Lindvig, K;

    1993-01-01

    Valve area and cardiac output were determined with magnetic resonance (MR) velocity mapping in 12 patients with aortic stenosis. Heart catheterization, Doppler echocardiography, and indicator dilution were performed for comparison. Left ventricle could be catheterized in only nine patients; in...... material, MR measured a mean area of 1.1 cm2 compared with 1.2 cm2 derived from Doppler echocardiography data, with a mean difference of 0.1 cm2 and [-0.5, +0.6] cm2 as limits of agreement. In 11 patients the cardiac output was quantified by MR to a mean of 4.9 L/min and by indicator dilution to 5.0 L......--the valvular area and the cardiac output--may be quantified, MR has potential to become a clinical tool in assessment of severity in aortic stenosis....

  8. A Portable Diagnostic Device for Cardiac Magnetic Field Mapping

    CERN Document Server

    Mooney, John W; Banham, Edward Reade; Symonds, Chris; Pawlowski, Nick; Varcoe, Benjamin T H

    2016-01-01

    In this paper we present a portable magnetocardiography device. The focus of this development was delivering a rapid assessment of chest pain in an emergency department. The aim was therefore to produce an inexpensive device that could be rapidly deployed in a noisy unshielded ward environment. We found that induction coil magnetometers with a coil design optimized for magnetic field mapping possess sufficient sensitivity (290f T /{\\mu}V at 30Hz) and low enough noise (73pT raw, 2.1pT after 500 averages) for cycle averaged magnetocardiography and are able to measure depolarisation signals in an unshielded environment. We were unable to observe repolarisation signals to a reasonable fidelity. We present the design of the induction coil sensor array and signal processing routine along with data demonstrating performance in a hospital environment.

  9. Channelized relevance vector machine as a numerical observer for cardiac perfusion defect detection task

    Science.gov (United States)

    Kalayeh, Mahdi M.; Marin, Thibault; Pretorius, P. Hendrik; Wernick, Miles N.; Yang, Yongyi; Brankov, Jovan G.

    2011-03-01

    In this paper, we present a numerical observer for image quality assessment, aiming to predict human observer accuracy in a cardiac perfusion defect detection task for single-photon emission computed tomography (SPECT). In medical imaging, image quality should be assessed by evaluating the human observer accuracy for a specific diagnostic task. This approach is known as task-based assessment. Such evaluations are important for optimizing and testing imaging devices and algorithms. Unfortunately, human observer studies with expert readers are costly and time-demanding. To address this problem, numerical observers have been developed as a surrogate for human readers to predict human diagnostic performance. The channelized Hotelling observer (CHO) with internal noise model has been found to predict human performance well in some situations, but does not always generalize well to unseen data. We have argued in the past that finding a model to predict human observers could be viewed as a machine learning problem. Following this approach, in this paper we propose a channelized relevance vector machine (CRVM) to predict human diagnostic scores in a detection task. We have previously used channelized support vector machines (CSVM) to predict human scores and have shown that this approach offers better and more robust predictions than the classical CHO method. The comparison of the proposed CRVM with our previously introduced CSVM method suggests that CRVM can achieve similar generalization accuracy, while dramatically reducing model complexity and computation time.

  10. Negative-dominance phenomenon with genetic variants of the cardiac sodium channel Nav1.5.

    Science.gov (United States)

    Sottas, Valentin; Abriel, Hugues

    2016-07-01

    During the past two decades, many pathological genetic variants in SCN5A, the gene encoding the pore-forming subunit of the cardiac (monomeric) sodium channel Na(v)1.5, have been described. Negative dominance is a classical genetic concept involving a "poison" mutant peptide that negatively interferes with the co-expressed wild-type protein, thus reducing its cellular function. This phenomenon has been described for genetic variants of multimeric K(+) channels, which mechanisms are well understood. Unexpectedly, several pathologic SCN5A variants that are linked to Brugada syndrome also demonstrate such a dominant-negative (DN) effect. The molecular determinants of these observations, however, are not yet elucidated. This review article summarizes recent findings that describe the mechanisms underlying the DN phenomenon of genetic variants of K(+), Ca(2+), Cl(-) and Na(+) channels, and in particular Brugada syndrome variants of Na(v)1.5. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  11. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Gavillet, Bruno; van Bemmelen, Miguel X;

    2006-01-01

    In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull...

  12. Cardiac magnetic field map topology quantified by Kullback-Leibler entropy identifies patients with hypertrophic cardiomyopathy

    Science.gov (United States)

    Schirdewan, A.; Gapelyuk, A.; Fischer, R.; Koch, L.; Schütt, H.; Zacharzowsky, U.; Dietz, R.; Thierfelder, L.; Wessel, N.

    2007-03-01

    Hypertrophic cardiomyopathy (HCM) is a common primary inherited cardiac muscle disorder, defined clinically by the presence of unexplained left ventricular hypertrophy. The detection of affected patients remains challenging. Genetic testing is limited because only in 50%-60% of all HCM diagnoses an underlying mutation can be found. Furthermore, the disease has a varied clinical course and outcome, with many patients having little or no discernible cardiovascular symptoms, whereas others develop profound exercise limitation and recurrent arrhythmias or sudden cardiac death. Therefore prospective screening of HCM family members is strongly recommended. According to the current guidelines this includes serial echocardiographic and electrocardiographic examinations. In this study we investigated the capability of cardiac magnetic field mapping (CMFM) to detect patients suffering from HCM. We introduce for the first time a combined diagnostic approach based on map topology quantification using Kullback-Leibler (KL) entropy and regional magnetic field strength parameters. The cardiac magnetic field was recorded over the anterior chest wall using a multichannel-LT-SQUID system. CMFM was calculated based on a regular 36 point grid. We analyzed CMFM in patients with confirmed diagnosis of HCM (HCM, n =33, 43.8±13 years, 13 women, 20 men), a control group of healthy subjects (NORMAL, n =57, 39.6±8.9 years; 22 women and 35 men), and patients with confirmed cardiac hypertrophy due to arterial hypertension (HYP, n =42, 49.7±7.9 years, 15 women and 27 men). A subgroup analysis was performed between HCM patients suffering from the obstructive (HOCM, n =19) and nonobstructive (HNCM, n =14) form of the disease. KL entropy based map topology quantification alone identified HCM patients with a sensitivity of 78.8% and specificity of 86.9% (overall classification rate 84.8%). The combination of the KL parameters with a regional field strength parameter improved the overall

  13. [Inhibition of oxygen free radicals in potassium channels of cardiac myocytes and the action of salvianolic acid A].

    Science.gov (United States)

    Bao, G

    1993-10-01

    By using the patch clamp technique, the effect of oxygen free radicals on the single potassium channels of cardiac papillary muscle cells were studied, as well as the action of salvianolic acid A. It was found that xanthane-xanthane oxidase generated oxygen free radicals could apparently inhibited the unitary currents of the single potassium channel activity. This inhibition was reversed by salvianolic acid A, which is an effective component extracted from Salvia miltiorrhiza. PMID:8168213

  14. Molecular pharmacology of cell receptors for cardiac glycosides, opiates, ACTH and ion channel modulators

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowich, M.R.

    1986-01-01

    The influence of light and oxygen on molecular interactions between the artificial food dye, erythrosine (ERY), and (/sup 3/H)ouabain ((/sup 3/H)OUA) binding sites on (Na/sup +/ + K/sup +/)-ATPase in rat brain and guinea pig heart was investigated. Putative endogenous digitalis-like factors (DLF's) were studied in four in vitro assays for cardiac glycosides. (/sup 3/H)Etorphine binding was characterized in rat brain homogenates, depleted of opioids, from animals acutely and chronically treated with morphine and naloxone, and either unstressed or cold-restraint-stressed. Binding sites for the ion channel modulators (/sup 3/H)verapamil ((/sup 3/H)VER) and (/sup 3/H) phencyclidine ((/sup 3/H)PCP) were characterized in rat brain.

  15. Transgenic rabbit models to investigate the cardiac ion channel disease long QT syndrome.

    Science.gov (United States)

    Lang, C N; Koren, G; Odening, K E

    2016-07-01

    Long QT syndrome (LQTS) is a rare inherited channelopathy caused mainly by different mutations in genes encoding for cardiac K(+) or Na(+) channels, but can also be caused by commonly used ion-channel-blocking and QT-prolonging drugs, thus affecting a much larger population. To develop novel diagnostic and therapeutic strategies to improve the clinical management of these patients, a thorough understanding of the pathophysiological mechanisms of arrhythmogenesis and potential pharmacological targets is needed. Drug-induced and genetic animal models of various species have been generated and have been instrumental for identifying pro-arrhythmic triggers and important characteristics of the arrhythmogenic substrate in LQTS. However, due to species differences in features of cardiac electrical function, these different models do not entirely recapitulate all aspects of the human disease. In this review, we summarize advantages and shortcomings of different drug-induced and genetically mediated LQTS animal models - focusing on mouse and rabbit models since these represent the most commonly used small animal models for LQTS that can be subjected to genetic manipulation. In particular, we highlight the different aspects of arrhythmogenic mechanisms, pro-arrhythmic triggering factors, anti-arrhythmic agents, and electro-mechanical dysfunction investigated in transgenic LQTS rabbit models and their translational application for the clinical management of LQTS patients in detail. Transgenic LQTS rabbits have been instrumental to increase our understanding of the role of spatial and temporal dispersion of repolarization to provide an arrhythmogenic substrate, genotype-differences in the mechanisms for early afterdepolarization formation and arrhythmia maintenance, mechanisms of hormonal modification of arrhythmogenesis and regional heterogeneities in electro-mechanical dysfunction in LQTS. PMID:27210307

  16. New aspects of HERG K⁺ channel function depending upon cardiac spatial heterogeneity.

    Directory of Open Access Journals (Sweden)

    Pen Zhang

    Full Text Available HERG K(+ channel, the genetic counterpart of rapid delayed rectifier K(+ current in cardiac cells, is responsible for many cases of inherited and drug-induced long QT syndromes. HERG has unusual biophysical properties distinct from those of other K(+ channels. While the conventional pulse protocols in patch-clamp studies have helped us elucidate these properties, their limitations in assessing HERG function have also been progressively noticed. We employed AP-clamp techniques using physiological action potential waveforms recorded from various regions of canine heart to study HERG function in HEK293 cells and identified several novel aspects of HERG function. We showed that under AP-clamp IHERG increased gradually with membrane repolarization, peaked at potentials around 20-30 mV more negative than revealed by pulse protocols and at action potential duration (APD to 60%-70% full repolarization, and fell rapidly at the terminal phase of repolarization. We found that the rising phase of IHERG was conferred by removal of inactivation and the decaying phase resulted from a fall in driving force, which were all determined by the rate of membrane repolarization. We identified regional heterogeneity and transmural gradient of IHERG when quantified with the area covered by IHERG trace. In addition, we observed regional and transmural differences of IHERG in response to dofetilide blockade. Finally, we characterized the influence of HERG function by selective inhibition of other ion currents. Based on our results, we conclude that the distinct biophysical properties of HERG reported by AP-clamp confer its unique function in cardiac repolarization thereby in antiarrhythmia and arrhythmogenesis.

  17. Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel.

    Directory of Open Access Journals (Sweden)

    Andrias O O'Reilly

    Full Text Available Bisphenol A (BPA has attracted considerable public attention as it leaches from plastic used in food containers, is detectable in human fluids and recent epidemiologic studies link BPA exposure with diseases including cardiovascular disorders. As heart-toxicity may derive from modified cardiac electrophysiology, we investigated the interaction between BPA and hNav1.5, the predominant voltage-gated sodium channel subtype expressed in the human heart. Electrophysiology studies of heterologously-expressed hNav1.5 determined that BPA blocks the channel with a K(d of 25.4±1.3 µM. By comparing the effects of BPA and the local anesthetic mexiletine on wild type hNav1.5 and the F1760A mutant, we demonstrate that both compounds share an overlapping binding site. With a key binding determinant thus identified, an homology model of hNav1.5 was generated based on the recently-reported crystal structure of the bacterial voltage-gated sodium channel NavAb. Docking predictions position both ligands in a cavity delimited by F1760 and contiguous with the DIII-IV pore fenestration. Steered molecular dynamics simulations used to assess routes of ligand ingress indicate that the DIII-IV pore fenestration is a viable access pathway. Therefore BPA block of the human heart sodium channel involves the local anesthetic receptor and both BPA and mexiletine may enter the closed-state pore via membrane-located side fenestrations.

  18. Mapping suspected buried channels using gravity: Examples from southwest Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Keighley, K.E.; Atekwana, E.A.; Sauck, W.A. (Western Michigan Univ., Kalamazoo, MI (United States). Dept. of Geology)

    1994-04-01

    This study documents the successful application of the gravity method in mapping suspected buried bedrock valleys at three sites in southwest Michigan. The first site is located in Benton Harbor, Berrien County. Gravity surveys were conducted along the Jean Klock Park as part of an ongoing coastal research study of the Lake Michigan shoreline. Previous Ground Penetrating Radar (GPR) studies at this site had suggested the presence of a buried valley. The results of the gravity survey confirmed the existence of a buried valley approximately 30--40 m deep and at least 2,000 m wide, which is in good agreement with information from drill cores suggesting a possible ancient river system. A detailed gravity survey was conducted at the second site located in Schoolcraft Township, Kalamazoo County, where the heavy use of pesticides has resulted in the contamination of the upper aquifers. Preliminary results suggest the presence of a broad shallow valley at least 25 m deep. Gravity surveys at the third site located southeast of the Kavco Landfill, Barry County also suggests the presence of a buried valley oriented NE-SW, confirming the interpretations of an earlier electrical resistivity study. It is possible that this channel controls groundwater flow and facilitates the transport of contaminants from the landfill to the surrounding areas.

  19. Class I antiarrhythmic drugs inhibit human cardiac two-pore-domain K(+) (K2 ₂p) channels.

    Science.gov (United States)

    Schmidt, Constanze; Wiedmann, Felix; Schweizer, Patrick A; Becker, Rüdiger; Katus, Hugo A; Thomas, Dierk

    2013-12-01

    Class IC antiarrhythmic drugs are commonly used for rhythm control in atrial fibrillation. In addition, class I drugs are administered to suppress ventricular tachyarrhythmia in selected cases. The multichannel blocking profile of class I compounds includes reduction of cardiac potassium currents in addition to their primary mechanism of action, sodium channel inhibition. Blockade of two-pore-domain potassium (K2P) channels in the heart causes action potential prolongation and may provide antiarrhythmic action in atrial fibrillation. This study was designed to elucidate inhibitory effects of class I antiarrhythmic drugs on K2P channels. Human K2P2.1 (TREK1) and hK2P3.1 (TASK1) channels were systematically tested for their sensitivity to clinically relevant class IA (ajmaline), class IB (mexiletine), and class IC (propafenone) antiarrhythmic compounds using whole-cell patch clamp and two-electrode voltage clamp electrophysiology in Chinese hamster ovary cells and in Xenopus oocytes. Mexiletine and propafenone inhibited hK2P2.1 (IC50,mexiletine=173µM; IC50,propafenone=7.6µM) and hK2P3.1 channels (IC50,mexiletine=97.3µM; IC50,propafenone=5.1µM) in mammalian cells. Ajmaline did not significantly reduce current amplitudes. K2P channels were blocked in open and closed states, resulting in resting membrane potential depolarization. Open rectification properties of the channels were not affected by class I drugs. In summary, class I antiarrhythmic drugs target cardiac K2P K(+) channels. Blockade of hK2P2.1 and hK2P3.1 potassium currents provides mechanistic evidence to establish cardiac K2P channels as antiarrhythmic drug targets. PMID:24070813

  20. B0 mapping with multi-channel RF coils at high field.

    Science.gov (United States)

    Robinson, Simon; Jovicich, Jorge

    2011-10-01

    Mapping the static magnetic field via the phase evolution over gradient echo scans acquired at two or more echo times is an established method. A number of possibilities exist, however, for combining phase data from multi-channel coils, denoising and thresholding field maps for high field applications. Three methods for combining phase images when no body/volume coil is available are tested: (i) Hermitian product, (ii) phase-matching over channels, and (iii) a new approach based on calculating separate field maps for each channel. The separate channel method is shown to yield field maps with higher signal-to-noise ratio than the Hermitian product and phase-matching methods and fewer unwrapping errors at low signal-to-noise ratio. Separate channel combination also allows unreliable voxels to be identified via the standard deviation over channels, which is found to be the most effective means of denoising field maps. Tests were performed using multichannel coils with between 8 and 32 channels at 3 T, 4 T, and 7 T. For application in the correction of distortions in echo-planar images, a formulation is proposed for reducing the local gradient of field maps to eliminate signal pile-up or swapping artifacts. Field maps calculated using these techniques, implemented in a freely available MATLAB toolbox, provide the basis for an effective correction for echo-planar imaging distortions at high fields. PMID:21608027

  1. The effects of paeoniflorin monomer of a Chinese herb on cardiac ion channels

    Institute of Scientific and Technical Information of China (English)

    WANG Rong-rong; LI Ning; ZHANG Yin-hui; RAN Yu-qin; PU Jie-lin

    2011-01-01

    Background Because of the potential proarrhythmic effect of current antiarrhythmic drugs, it is still desirable to find safer antiarrhythmic drugs worldwide. Paeoniflorin is one of the Chinese herb monomers that have different effects on many ion channels. The present study aimed to determine the effects of paeoniflorin on cardiac ion channels.Methods Whole-cell patch-clamp technique was used to record ion channel currents. L-type calcium current (/Ca-L),inward rectifier potassium current (/K1), and transient outward potassium current (/to1) were studied in rat ventricular myocytes and sodium current (/Na), slow delayed rectifier current (/Ks), and HERG current (/Kr) were investigated in transfected human embryonic kidney 293 cells.Results One hundred μmol/L paeoniflorin reduced the peak /ca-L by 40.29% at the test potential of ±10 mV (from (-9.78±0.52) pA/pF to (-5.84±0.89) pA/pF, n=5, P=0.028). The steady-state activation curve was shifted to more positive potential in the presence of the drug. The half activation potentials were (-11.22±0.27) mV vs. (-5.95±0.84) mV (n=5,P=0.007), respectively. However, the steady-state inactivation and the time course of recovery from inactivation were not changed. One hundred μmol/L paeoniflorin completely inhibited the peak /Na and the effect was reversible. Moreover,paeoniflorin inhibited the /K1 by 30.13% at the test potential of -100 mV (from (-25.26±8.21) pA/pF to (-17.65±6.52)pA/pF, n=6, F=0.015) without effects on the reversal potential and the rectification property. By contrast, 100 μmol/L paeoniflorin had no effects on/to1, /Ks or /Kr channels.Conclusions The study demonstrated that paeoniflorin blocked /Ca-L, /Na, and /Kf without affecting /to1, /Ks, or /Kr. The multi-channel block effect may account for its antiarrhythmic effects with less proarrhythmic potential.

  2. Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging.

    Science.gov (United States)

    Helm, Patrick; Beg, Mirza Faisal; Miller, Michael I; Winslow, Raimond L

    2005-06-01

    The ventricular myocardium is known to exhibit a complex spatial organization, with fiber orientation varying as a function of transmural location. It is now well established that diffusion tensor magnetic resonance imaging (DTMRI) may be used to measure this fiber orientation at high spatial resolution. Cardiac fibers are also known to be organized in sheets with surface orientation varying throughout the ventricles. This article reviews results on use of DTMRI for measuring ventricular fiber orientation, as well as presents new results providing strong evidence that the tertiary eigenvector of the diffusion tensor is aligned locally with the cardiac sheet surface normal. Considered together, these data indicate that DTMRI may be used to reconstruct both ventricular fiber and sheet organization. This article also presents the large deformation diffeomorphic metric mapping (LDDMM) algorithm and shows that this algorithm may be used to bring ensembles of imaged and reconstructed hearts into correspondence (e.g., registration) so that variability of ventricular geometry, fiber, and sheet orientation may be quantified. Ventricular geometry and fiber structure is known to be remodeled in a range of disease processes; however, descriptions of this remodeling have remained subjective and qualitative. We anticipate that use of DTMRI for reconstruction of ventricular anatomy coupled with application of the LDDMM method for image volume registration will enable the detection and quantification of changes in cardiac anatomy that are characteristic of specific disease processes in the heart. Finally, we show that epicardial electrical mapping and DTMRI imaging may be performed in the same hearts. The anatomic data may then be used to simulate electrical conduction in a computational model of the very same heart that was mapped electrically. This facilitates direct comparison and testing of model versus experimental results and opens the door to quantitative measurement

  3. Repolarization of the action potential enabled by Na+ channel deactivation in PSpice simulation of cardiac muscle propagation

    Directory of Open Access Journals (Sweden)

    Sperelakis Nicholas

    2005-12-01

    Full Text Available Abstract Background In previous studies on propagation of simulated action potentials (APs in cardiac muscle using PSpice modeling, we reported that a second black-box (BB could not be inserted into the K+ leg of the basic membrane unit because that caused the PSpice program to become very unstable. Therefore, only the rising phase of the APs could be simulated. This restriction was acceptable since only the mechanism of transmission of excitation from one cell to the next was being investigated. Methods and results We have now been able to repolarize the AP by inserting a second BB into the Na+ leg of the basic units. This second BB effectively mimicked deactivation of the Na+ channel conductance. This produced repolarization of the AP, not by activation of K+ conductance, but by deactivation of the Na+ conductance. The propagation of complete APs was studied in a chain (strand of 10 cardiac muscle cells, in which various numbers of gap-junction (gj channels (assumed to be 100 pS each were inserted across the cell junctions. The shunt resistance across the junctions produced by the gj-channels (Rgj was varied from 100,000 M? (0 gj-channels to 10,000 M? (1 gj-channel, to 1,000 M? (10 channels, to 100 M? (100 channels, and 10 M? (1000 channels. The velocity of propagation (θ, in cm/s was calculated from the measured total propagation time (TPT, the time difference between when the AP rising phase of the first cell and the last cell crossed -20 mV, assuming a cell length of 150 μm. When there were no gj-channels, or only a few, the transmission of excitation between cells was produced by the electric field (EF, i.e. the negative junctional cleft potential, that is generated in the narrow junctional clefts (e.g. 100 A when the prejunctional membrane fires an AP. When there were many gj-channels (e.g. 1000 or 10,000, the transmission of excitation was produced by local-circuit current flow from one cell to the next through the gj-channels

  4. Distinct functional defect of three novel Brugada syndrome related cardiac sodium channel mutations

    Directory of Open Access Journals (Sweden)

    Juang Jyh-Ming

    2009-02-01

    Full Text Available Abstract The Brugada syndrome is characterized by ST segment elevation in the right precodial leads V1-V3 on surface ECG accompanied by episodes of ventricular fibrillation causing syncope or even sudden death. The molecular and cellular mechanisms that lead to Brugada syndrome are not yet completely understood. However, SCN5A is the most well known responsible gene that causes Brugada syndrome. Until now, more than a hundred mutations in SCN5A responsible for Brugada syndrome have been described. Functional studies of some of the mutations have been performed and show that a reduction of human cardiac sodium current accounts for the pathogenesis of Brugada syndrome. Here we reported three novel SCN5A mutations identified in patients with Brugada syndrome in Taiwan (p.I848fs, p.R965C, and p.1876insM. Their electrophysiological properties were altered by patch clamp analysis. The p.I848fs mutant generated no sodium current. The p.R965C and p.1876insM mutants produced channels with steady state inactivation shifted to a more negative potential (9.4 mV and 8.5 mV respectively, and slower recovery from inactivation. Besides, the steady state activation of p.1876insM was altered and was shifted to a more positive potential (7.69 mV. In conclusion, the SCN5A channel defect related to Brugada syndrome might be diverse but all resulted in a decrease of sodium current.

  5. Down-regulation of the cardiac sarcoplasmic reticulum ryanodine channel in severely food-restricted rats

    Directory of Open Access Journals (Sweden)

    V.A. Vizotto

    2007-01-01

    Full Text Available We have shown that myocardial dysfunction induced by food restriction is related to calcium handling. Although cardiac function is depressed in food-restricted animals, there is limited information about the molecular mechanisms that lead to this abnormality. The present study evaluated the effects of food restriction on calcium cycling, focusing on sarcoplasmic Ca2+-ATPase (SERCA2, phospholamban (PLB, and ryanodine channel (RYR2 mRNA expressions in rat myocardium. Male Wistar-Kyoto rats, 60 days old, were submitted to ad libitum feeding (control rats or 50% diet restriction for 90 days. The levels of left ventricle SERCA2, PLB, and RYR2 were measured using semi-quantitative RT-PCR. Body and ventricular weights were reduced in 50% food-restricted animals. RYR2 mRNA was significantly decreased in the left ventricle of the food-restricted group (control = 5.92 ± 0.48 vs food-restricted group = 4.84 ± 0.33, P < 0.01. The levels of SERCA2 and PLB mRNA were similar between groups (control = 8.38 ± 0.44 vs food-restricted group = 7.96 ± 0.45, and control = 1.52 ± 0.06 vs food-restricted group = 1.53 ± 0.10, respectively. Down-regulation of RYR2 mRNA expressions suggests that chronic food restriction promotes abnormalities in sarcoplasmic reticulum Ca2+ release.

  6. A First Generation Bac-Based Physical Map of the Channel Catfish Genome

    Science.gov (United States)

    Background: Channel catfish, Ictalurus punctatus, is the leading species in North American aquaculture. Genetic improvement of catfish is performed through selective breeding, and genomic tools will help improve selection efficiency. A physical map is needed to integrate the genetic map with the kar...

  7. A first generation BAC-based physical map of the channel catfish genome

    Directory of Open Access Journals (Sweden)

    Waldbieser Geoffrey C

    2007-02-01

    Full Text Available Abstract Background Channel catfish, Ictalurus punctatus, is the leading species in North American aquaculture. Genetic improvement of catfish is performed through selective breeding, and genomic tools will help improve selection efficiency. A physical map is needed to integrate the genetic map with the karyotype and to support fine mapping of phenotypic trait alleles such as Quantitative Trait Loci (QTL and the effective positional cloning of genes. Results A genome-wide physical map of the channel catfish was constructed by High-Information-Content Fingerprinting (HICF of 46,548 Bacterial Artificial Chromosomes (BAC clones using the SNaPshot technique. The clones were assembled into contigs with FPC software. The resulting assembly contained 1,782 contigs and covered an estimated physical length of 0.93 Gb. The validity of the assembly was demonstrated by 1 anchoring 19 of the largest contigs to the microsatellite linkage map 2 comparing the assembly of a multi-gene family to Restriction Fragment Length Polymorphism (RFLP patterns seen in Southern blots, and 3 contig sequencing. Conclusion This is the first physical map for channel catfish. The HICF technique allowed the project to be finished with a limited amount of human resource in a high throughput manner. This physical map will greatly facilitate the detailed study of many different genomic regions in channel catfish, and the positional cloning of genes controlling economically important production traits.

  8. The NADPH Oxidase NOX4 Drives Cardiac Differentiation: Role in Regulating Cardiac Transcription Factors and MAP Kinase Activation

    OpenAIRE

    Li, Jian; Stouffs, Michael; Serrander, Lena; Banfi, Botond; Bettiol, Esther; Charnay, Yves; Steger, Klaus; Krause, Karl-Heinz; Jaconi, Marisa E

    2006-01-01

    Reactive oxygen species (ROS) generated by the NOX family of NADPH oxidases have been described to act as second messengers regulating cell growth and differentiation. However, such a function has hitherto not been convincingly demonstrated. We investigated the role of NOX-derived ROS in cardiac differentiation using mouse embryonic stem cells. ROS scavengers prevented the appearance of spontaneously beating cardiac cells within embryoid bodies. Down-regulation of NOX4, the major NOX isoform ...

  9. Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations

    DEFF Research Database (Denmark)

    Shamgar, Liora; Ma, Lijuan; Schmitt, Nicole;

    2006-01-01

    The slow IKS K+ channel plays a major role in repolarizing the cardiac action potential and consists of the assembly of KCNQ1 and KCNE1 subunits. Mutations in either KCNQ1 or KCNE1 genes produce the long-QT syndrome, a life-threatening ventricular arrhythmia. Here, we show that long-QT mutations...... located in the KCNQ1 C terminus impair calmodulin (CaM) binding, which affects both channel gating and assembly. The mutations produce a voltage-dependent macroscopic inactivation and dramatically alter channel assembly. KCNE1 forms a ternary complex with wild-type KCNQ1 and Ca(2+)-CaM that prevents...... the risk of ventricular arrhythmias. Udgivelsesdato: 2006-Apr-28...

  10. Cardiac arrhythmogenesis in urban air pollution: Optical mapping in a tissue-engineered model

    Science.gov (United States)

    Bien, Harold H.

    Recent epidemiological evidence has implicated particulate matter air pollution in cardiovascular disease. We hypothesized that inflammatory mediators released from lung macrophages after exposure to particulate matter predisposes the heart to disturbances in rhythm. Using a rational design approach, a fluorescent optical mapping system was devised to image spatiotemporal patterns of excitation in a tissue engineered model of cardiac tissue. Algorithms for automated data analysis and characterization of rhythm stability were developed, implemented, and verified. Baseline evaluation of spatiotemporal instability patterns in normal cardiac tissue was performed for comparison to an in-vitro model of particulate matter air pollution exposure. Exposure to particulate-matter activated alveolar macrophage conditioned media resulted in paradoxical functional changes more consistent with improved growth. These findings might be indicative of a "stress" response to particulate-matter induced pulmonary inflammation, or may be specific to the animal model (neonatal rat) employed. In the pursuit of elucidating the proposed pathway, we have also furthered our understanding of fundamental behaviors of arrhythmias in general and established a model where further testing might ultimately reveal the mechanism for urban air pollution associated cardiovascular morbidity.

  11. A new classifier-based strategy for in-silico ion-channel cardiac drug safety assessment

    Directory of Open Access Journals (Sweden)

    Hitesh eMistry

    2015-03-01

    Full Text Available There is currently a strong interest in using high-throughput in-vitro ion-channel screening data to make predictions regarding the cardiac toxicity potential of a new compound in both animal and human studies. A recent FDA think tank encourages the use of biophysical mathematical models of cardiac myocytes for this prediction task. However, it remains unclear whether this approach is the most appropriate. Here we examine five literature data-sets that have been used to support the use of four different biophysical models and one statistical model for predicting cardiac toxicity in numerous species using various endpoints. We propose a simple model that represents the balance between repolarisation and depolarisation forces and compare the predictive power of the model against the original results (leave-one-out cross-validation. Our model showed equivalent performance when compared to the four biophysical models and one statistical model. We therefore conclude that this approach should be further investigated in the context of early cardiac safety screening when in-vitro potency data is generated.

  12. Computational modeling of voltage-gated Ca channels inhibition: identification of different effects on uterine and cardiac action potentials

    Directory of Open Access Journals (Sweden)

    Wing Chiu eTong

    2014-10-01

    Full Text Available The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs. Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models – of uterine smooth muscle cells (USMC, cardiac sinoatrial node cells (SAN and ventricular cells – to investigate the relative effects of reducing two important voltage-gated Ca currents – the L-type (ICaL and T-type (ICaT Ca currents. Reduction of ICaL (10% alone, or ICaT (40% alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine

  13. Kinetic model of Nav1.5 channel provides a subtle insight into slow inactivation associated excitability in cardiac cells.

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    Full Text Available Voltage-gated sodium channel Nav1.5 has been linked to the cardiac cell excitability and a variety of arrhythmic syndromes including long QT, Brugada, and conduction abnormalities. Nav1.5 exhibits a slow inactivation, corresponding to a duration-dependent bi-exponential recovery, which is often associated with various arrhythmia syndromes. However, the gating mechanism of Nav1.5 and the physiological role of slow inactivation in cardiac cells remain elusive. Here a 12-state two-step inactivation Markov model was successfully developed to depict the gating kinetics of Nav1.5. This model can simulate the Nav1.5 channel in not only steady state processes, but also various transient processes. Compared with the simpler 8-state model, this 12-state model is well-behaved in simulating and explaining the processes of slow inactivation and slow recovery. This model provides a good framework for further studying the gating mechanism and physiological role of sodium channel in excitable cells.

  14. A proton leak current through the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype.

    Directory of Open Access Journals (Sweden)

    Pascal Gosselin-Badaroudine

    Full Text Available Cardiac Na(+ channels encoded by the SCN5A gene are essential for initiating heart beats and maintaining a regular heart rhythm. Mutations in these channels have recently been associated with atrial fibrillation, ventricular arrhythmias, conduction disorders, and dilated cardiomyopathy (DCM.We investigated a young male patient with a mixed phenotype composed of documented conduction disorder, atrial flutter, and ventricular tachycardia associated with DCM. Further family screening revealed DCM in the patient's mother and sister and in three of the mother's sisters. Because of the complex clinical phenotypes, we screened SCN5A and identified a novel mutation, R219H, which is located on a highly conserved region on the fourth helix of the voltage sensor domain of Na(v1.5. Three family members with DCM carried the R219H mutation.The wild-type (WT and mutant Na(+ channels were expressed in a heterologous expression system, and intracellular pH (pHi was measured using a pH-sensitive electrode. The biophysical characterization of the mutant channel revealed an unexpected selective proton leak with no effect on its biophysical properties. The H(+ leak through the mutated Na(v1.5 channel was not related to the Na(+ permeation pathway but occurred through an alternative pore, most probably a proton wire on the voltage sensor domain.We propose that acidification of cardiac myocytes and/or downstream events may cause the DCM phenotype and other electrical problems in affected family members. The identification of this clinically significant H(+ leak may lead to the development of more targeted treatments.

  15. Toward cardiac electrophysiological mapping based on micro-Tesla NMR: a novel modality for localizing the cardiac reentry

    OpenAIRE

    Kiwoong Kim

    2012-01-01

    Matching the proton magnetic resonance frequency to the frequency of a periodic electrophysiological excitation of myocardium enables direct localization of the cardiac reentry by magnetic resonance imaging techniques. The feasibility of this new idea has been demonstrated by conducting a numerical simulation based on a realistic heart model and experimental parameters in SQUID-based micro-Tesla NMR.

  16. Toward cardiac electrophysiological mapping based on micro-Tesla NMR: a novel modality for localizing the cardiac reentry

    Science.gov (United States)

    Kim, Kiwoong

    2012-06-01

    Matching the proton magnetic resonance frequency to the frequency of a periodic electrophysiological excitation of myocardium enables direct localization of the cardiac reentry by magnetic resonance imaging techniques. The feasibility of this new idea has been demonstrated by conducting a numerical simulation based on a realistic heart model and experimental parameters in SQUID-based micro-Tesla NMR.

  17. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    International Nuclear Information System (INIS)

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  18. Activation of KATP channels by Na/K pump in isolated cardiac myocytes and giant membrane patches.

    OpenAIRE

    Kabakov, A Y

    1998-01-01

    Strophanthidin inhibits KATP channels in 2,4-dinitrophenol-poisoned heart cells (). The current study shows that the Na/K pump interacts with KATP current (IK-ATP) via submembrane ATP depletion in isolated giant membrane patches and in nonpoisoned guinea pig cardiac cells in whole-cell configuration. IK-ATP was inhibited by ATP, glibenclamide, or intracellular Cs+. Na/K pump inactivation by substitution of cytoplasmic Na+ for Li+ or N-methylglucamine decreased both IK-ATP by 1/3 (1 mM ATP, ze...

  19. Public channel cryptography by synchronization of neural networks and chaotic maps.

    Science.gov (United States)

    Mislovaty, Rachel; Klein, Einat; Kanter, Ido; Kinzel, Wolfgang

    2003-09-12

    Two different kinds of synchronization have been applied to cryptography: synchronization of chaotic maps by one common external signal and synchronization of neural networks by mutual learning. By combining these two mechanisms, where the external signal to the chaotic maps is synchronized by the nets, we construct a hybrid network which allows a secure generation of secret encryption keys over a public channel. The security with respect to attacks, recently proposed by Shamir et al., is increased by chaotic synchronization.

  20. Structural basis of slow activation gating in the cardiac IKs channel complex

    DEFF Research Database (Denmark)

    Strutz-Seebohm, Nathalie; Pusch, Michael; Wolf, Steffen;

    2011-01-01

    Accessory ß-subunits of the KCNE gene family modulate the function of various cation channel a-subunits by the formation of heteromultimers. Among the most dramatic changes of biophysical properties of a voltage-gated channel by KCNEs are the effects of KCNE1 on KCNQ1 channels. KCNQ1 and KCNE1 ar...

  1. Molecular aspects of adrenergic modulation of cardiac L-type Ca2+ channels.

    NARCIS (Netherlands)

    Heyden, M.A. van der; Wijnhoven, T.J.M.; Opthof, T.

    2005-01-01

    L-type Ca(2+) channels are predominantly regulated by beta-adrenergic stimulation, enhancing L-type Ca(2+) current by increasing the mean channel open time and/or the opening probability of functional Ca(2+) channels. Stimulation of beta-adrenergic receptors (ARs) results in an increased cyclic aden

  2. Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy

    OpenAIRE

    Indolfi, Ciro; Curcio, Antonio

    2014-01-01

    Left ventricular hypertrophy is an initial compensatory mechanism in response to cardiac stress that can degenerate into heart failure and sudden cardiac death. Recent studies have shown that microRNAs (miRs) regulate several aspects of cardiovascular diseases. In this issue of the JCI, Bang and colleagues identified an exosome-mediated communication mechanism between cardiac fibroblasts and cardiomyocytes. Specifically, cardiac fibroblasts secrete miR-enriched exosomes, which are subsequentl...

  3. A novel conditional mouse model for Nkx2-5 reveals transcriptional regulation of cardiac ion channels.

    Science.gov (United States)

    Furtado, Milena B; Wilmanns, Julia C; Chandran, Anjana; Tonta, Mary; Biben, Christine; Eichenlaub, Michael; Coleman, Harold A; Berger, Silke; Bouveret, Romaric; Singh, Reena; Harvey, Richard P; Ramialison, Mirana; Pearson, James T; Parkington, Helena C; Rosenthal, Nadia A; Costa, Mauro W

    2016-01-01

    Nkx2-5 is one of the master regulators of cardiac development, homeostasis and disease. This transcription factor has been previously associated with a suite of cardiac congenital malformations and impairment of electrical activity. When disease causative mutations in transcription factors are considered, NKX2-5 gene dysfunction is the most common abnormality found in patients. Here we describe a novel mouse model and subsequent implications of Nkx2-5 loss for aspects of myocardial electrical activity. In this work we have engineered a new Nkx2-5 conditional knockout mouse in which flox sites flank the entire Nkx2-5 locus, and validated this line for the study of heart development, differentiation and disease using a full deletion strategy. While our homozygous knockout mice show typical embryonic malformations previously described for the lack of the Nkx2-5 gene, hearts of heterozygous adult mice show moderate morphological and functional abnormalities that are sufficient to sustain blood supply demands under homeostatic conditions. This study further reveals intriguing aspects of Nkx2-5 function in the control of cardiac electrical activity. Using a combination of mouse genetics, biochemistry, molecular and cell biology, we demonstrate that Nkx2-5 regulates the gene encoding Kcnh2 channel and others, shedding light on potential mechanisms generating electrical abnormalities observed in patients bearing NKX2-5 dysfunction and opening opportunities to the study of novel therapeutic targets for anti-arrhythmogenic therapies. PMID:26897459

  4. Mutations in conserved amino acids in the KCNQ1 channel and risk of cardiac events in type-1 long-QT syndrome

    DEFF Research Database (Denmark)

    Jons, Christian; Moss, Arthur J; Lopes, Coeli M;

    2009-01-01

    . METHODS AND RESULTS: The study population involved 492 LQT1 patients with 54 missense mutations in the transmembrane region of the KCNQ1 channel. The amino acid sequences of the transmembrane region of 38 human voltage-gated potassium channels were aligned. An adjusted Shannon entropy score for each amino...... entropy scores. The lowest tertile (score 0-0.469; n = 146) was used as a reference group; patients with intermediate tertile scores (0.470-0.665; n = 150) had no increased risk of cardiac events (HR = 1.19, P = 0.42) or aborted cardiac arrest/sudden cardiac death (HR = 1.58, P = 0.26), and those...... with the highest tertile scores (>0.665; n = 196) showed significantly increased risk of cardiac events (HR = 3.32, P scores was independent of QTc, gender, age, and beta...

  5. Using shuttle radar topography to map ancient water channels in Mesopotamia.

    OpenAIRE

    Hritz, C.; Wilkinson, T. J.

    2006-01-01

    The Shuttle Radar Topography Mission (SRTM) is currently producing a digital elevation model of most of the world's surface. Here the authors assess its value in mapping and sequencing the network of water channels that provided the arterial system for Mesopotamia before the petrol engine.

  6. Studies of the voltage-sensitive calcium channels in smooth muscle, neuronal, and cardiac tissues using 1,4-dihydropyridine calcium channel antagonists and activators

    International Nuclear Information System (INIS)

    This study describes the investigation of the voltage-sensitive Ca+ channels in vascular and intestinal smooth muscle, chick neural retina cells and neonatal rat cardiac myocytes using 1,4-dihydropyridine Ca2+ channel antagonists and activators. In rat aorta, the tumor promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) produced Ca2+-dependent contractile responses. The responses to TPA were blocked by the Ca2+ channel antagonists. The effects of the enantiomers of Bay K 8644 and 202-791 were characterized in both rat tail artery and guinea pig ileal longitudinal smooth muscle preparations using pharmacologic and radioligand binding assays. The (S)-enantiomers induced contraction and potentiated the responses to K+ depolarization. The (R)-enantiomers inhibited the tension responses to K+. All the enantiomers inhibited specific [3H]nitrendipine binding. The pharmacologic activities of both activator and antagonist ligands correlated on a 1:1 basis with the binding affinities. In chick neural retina cells the (S)-enantiomers of Bay K 8644 and 202-791 enhanced Ca2+ influx. In contrast, the (R)-enantiomers inhibited Ca2+ influx. The enantiomers of Bay K 8644 and 202-791 inhibited specific [3H]PN 200-110 binding competitively. Binding of 1,4-dihydropyridines was characterized in neonatal rat heart cells

  7. The β1-subunit of Na(v1.5 cardiac sodium channel is required for a dominant negative effect through α-α interaction.

    Directory of Open Access Journals (Sweden)

    Aurélie Mercier

    Full Text Available Brugada syndrome (BrS is an inherited autosomal dominant cardiac channelopathy. Several mutations on the cardiac sodium channel Na(v1.5 which are responsible for BrS lead to misfolded proteins that do not traffic properly to the plasma membrane. In order to mimic patient heterozygosity, a trafficking defective mutant, R1432G was co-expressed with Wild Type (WT Na(v1.5 channels in HEK293T cells. This mutant significantly decreased the membrane Na current density when it was co-transfected with the WT channel. This dominant negative effect did not result in altered biophysical properties of Na(v1.5 channels. Luminometric experiments revealed that the expression of mutant proteins induced a significant reduction in membrane expression of WT channels. Interestingly, we have found that the auxiliary Na channel β(1-subunit was essential for this dominant negative effect. Indeed, the absence of the β(1-subunit prevented the decrease in WT sodium current density and surface proteins associated with the dominant negative effect. Co-immunoprecipitation experiments demonstrated a physical interaction between Na channel α-subunits. This interaction occurred only when the β(1-subunit was present. Our findings reveal a new role for β(1-subunits in cardiac voltage-gated sodium channels by promoting α-α subunit interaction which can lead to a dominant negative effect when one of the α-subunits shows a trafficking defective mutation.

  8. A preprocessing tool for removing artifact from cardiac RR interval recordings using three-dimensional spatial distribution mapping.

    Science.gov (United States)

    Stapelberg, Nicolas J C; Neumann, David L; Shum, David H K; McConnell, Harry; Hamilton-Craig, Ian

    2016-04-01

    Artifact is common in cardiac RR interval data that is recorded for heart rate variability (HRV) analysis. A novel algorithm for artifact detection and interpolation in RR interval data is described. It is based on spatial distribution mapping of RR interval magnitude and relationships to adjacent values in three dimensions. The characteristics of normal physiological RR intervals and artifact intervals were established using 24-h recordings from 20 technician-assessed human cardiac recordings. The algorithm was incorporated into a preprocessing tool and validated using 30 artificial RR (ARR) interval data files, to which known quantities of artifact (0.5%, 1%, 2%, 3%, 5%, 7%, 10%) were added. The impact of preprocessing ARR files with 1% added artifact was also assessed using 10 time domain and frequency domain HRV metrics. The preprocessing tool was also used to preprocess 69 24-h human cardiac recordings. The tool was able to remove artifact from technician-assessed human cardiac recordings (sensitivity 0.84, SD = 0.09, specificity of 1.00, SD = 0.01) and artificial data files. The removal of artifact had a low impact on time domain and frequency domain HRV metrics (ranging from 0% to 2.5% change in values). This novel preprocessing tool can be used with human 24-h cardiac recordings to remove artifact while minimally affecting physiological data and therefore having a low impact on HRV measures of that data.

  9. Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Frankel, Adam;

    2011-01-01

    -Williams classification system into classes Ia-c based on their distinct effects on the electrocardiogram. How can these drugs elicit distinct effects on the cardiac action potential by binding to a common receptor? Here we use fluorinated phenylalanine derivatives to test whether the electronegative surface potential...

  10. Fractal-Based Lightning Channel Length Estimation from Convex-Hull Flash Areas for DC3 Lightning Mapping Array Data

    Science.gov (United States)

    Bruning, Eric C.; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Carey, Larry D.; Koshak, William; Peterson, Harold; MacGorman, Donald R.

    2013-01-01

    We will use VHF Lightning Mapping Array data to estimate NOx per flash and per unit channel length, including the vertical distribution of channel length. What s the best way to find channel length from VHF sources? This paper presents the rationale for the fractal method, which is closely related to the box-covering method.

  11. Nav1.5 cardiac sodium channels, regulation and clinical implications

    Directory of Open Access Journals (Sweden)

    Henry Humberto León-Ariza

    2014-10-01

    Full Text Available Voltage-gated sodium channels constitute a group of membrane proteins widely distributed thought the body. In the heart, there are at least six different isoforms, being the Nav1.5 the most abundant. The channel is composed of an α subunit that is formed by four domains of six segments each, and four much smaller β subunits that provide stability and integrate other channels into the α subunit. The function of the Nav1.5 channel is modulated by intracellular cytoskeleton proteins, extracellular proteins, calcium concentration, free radicals, and medications, among other things. The study of the channel and its alterations has grown thanks to its association with pathogenic conditions such as Long QT syndrome, Brugada syndrome, atrial fibrillation, arrhythmogenic ventricular dysplasia and complications during ischemic processes.

  12. Application of GPS and GIS to map channel features in Walnut Creek, Iowa

    Science.gov (United States)

    Schilling, K.E.; Wolter, C.F.

    2000-01-01

    A 12-km reach of Walnut Creek was mapped at the Neal Smith National Wildlife Refuge in Jasper County, Iowa to identify and prioritize areas of the stream channel in need of further investigation or restoration. Channel features, including streambank conditions, bottom sediment materials and thickness, channel cross-sections, debris dams, tile lines, tributary creeks, and cattle access points, were located to one-meter accuracy with global positioning system (GPS) equipment and described while traversing the stream. The GPS data were exported into a Geographic Information System (GIS) format, and field descriptions were added to create a series of coverages. Channel features were coupled with existing land cover data for analysis. Left and right streambank erosion rates varied from slight in many areas to severe at outside meander bends, debris dams or cattle access points. Erosion estimates from this study suggest that stream banks contribute about 50 percent of the annual suspended sediment load in the channel. Substrate materials varied from bare or thinly mantled pre-Illinoian till to thick silty muck (> 0.3 m) behind some debris dams and cattle access points. Occurrences of sand and gravel areas were generally restricted to cattle access areas and bridge crossings. A total of 81 debris dams were identified in the stream channel, ranging from fallen trees and beaver dams to several large debris dams. Numerous tile lines (52 total) and tributary creeks (45 total) were mapped as contributing flow to the main channel. Cross-sections measured at 34 locations indicated Walnut Creek averages 10.64 m wide and 2.77 m deep, with the width and depth increasing downstream. Channelization and tile discharge in row crop land use areas have contributed to increased bed degradation and channel widening throughout the watershed. The results of this study indicate the effectiveness of a one-time detailed mapping program to characterize stream system variability and identify

  13. Automated tuning of an eight-channel cardiac transceive array at 7 tesla using piezoelectric actuators

    OpenAIRE

    Keith, Graeme A; Rodgers, Christopher T.; Hess, Aaron T.; Snyder, Carl J.; Vaughan, J. Thomas; Robson, Matthew D.

    2014-01-01

    Purpose Ultra-high field (UHF) MR scanning in the body requires novel coil designs due to B1 field inhomogeneities. In the transverse electromagnetic field (TEM) design, maximum B1 transmit power can only be achieved if each individual transmit element is tuned and matched for different coil loads, which requires a considerable amount of valuable scanner time. Methods An integrated system for autotuning a multichannel parallel transmit (pTx) cardiac TEM array was devised, using piezoelectric ...

  14. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    International Nuclear Information System (INIS)

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on ion channels are a potential

  15. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: karlheinz.hilber@meduniwien.ac.at [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  16. Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis

    OpenAIRE

    1989-01-01

    The ability of glycolysis, oxidative phosphorylation, the creatine kinase system, and exogenous ATP to suppress ATP-sensitive K+ channels and prevent cell shortening were compared in patch-clamped single guinea pig ventricular myocytes. In cell-attached patches on myocytes permeabilized at one end with saponin, ATP-sensitive K+ channels were activated by removing ATP from the bath, and could be closed equally well by exogenous ATP or substrates for endogenous ATP production by glycolysis (wit...

  17. Sensitivity analysis of the channel estimation deviation to the MAP decoding algorithm

    Institute of Scientific and Technical Information of China (English)

    WAN Ke; FAN Ping-zhi

    2006-01-01

    As a necessary input parameter for maximum a-posteriori(MAP) decoding algorithm,SNR is normally obtained from the channel estimation unit.Corresponding research indicated that SNR estimation deviation degraded the performance of Turbo decoding significantly.In this paper,MAP decoding algorithm with SNR estimation deviation was investigated in detail,and the degradation mechanism of Turbo decoding was explained analytically.The theoretical analysis and computer simulation disclosed the specific reasons for the performance degradation when SNR estimation was less than the actual value,and for the higher sensitivity of SNR estimation to long-frame Turbo codes.

  18. Effects of Calcium-Channel Noise on Dynamics of Excitation-Contraction Coupling in Paced Cardiac Cells

    Directory of Open Access Journals (Sweden)

    Jiying Ma

    2013-01-01

    Full Text Available We study a simple discrete model with the impact of calcium-channel noise on the beat-to-beat dynamics of cardiac cells. The effects of the noise are assessed by bifurcation analysis and power spectrum analysis, respectively. It is shown that this model can undergo period-doubling bifurcation and Hopf bifurcation if there are not random perturbations. Under random perturbations, the period-doubling bifurcations of the model can be observed, and the invariant curve from Hopf bifurcation is perturbed to an annulus on the plane and then becomes a totally disordered and randomly scattered region. By the power spectrum analysis, we find that the existence of high-frequency peak in the power spectra links to the period-doubling orbits, while the existence of low-frequency peak corresponds to quasiperiodic orbit.

  19. Diffuse myocardial fibrosis following tetralogy of Fallot repair: a T1 mapping cardiac magnetic resonance study

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Marcelo F.; Yoo, Shi-Joon; Seed, Mike; Grosse-Wortmann, Lars [The Hospital for Sick Children, University of Toronto, Labatt Family Heart Centre in the Department of Paediatrics and Department of Diagnostic Imaging, Toronto (Canada); Redington, Andrew [The Hospital for Sick Children, University of Toronto, Labatt Family Heart Centre in the Department of Paediatrics, Toronto (Canada); Greiser, Andreas [Siemens AG Healthcare Sector, Erlangen (Germany)

    2014-04-15

    Adverse ventricular remodeling after tetralogy of Fallot (TOF) repair is associated with diffuse myocardial fibrosis. The goal of this study was to measure post-contrast myocardial T1 in pediatric patients after TOF repair as surrogates of myocardial fibrosis. Children after TOF repair who underwent cardiac magnetic resonance imaging with T1 mapping using the modified look-locker inversion recovery (MOLLI) sequence were included. In addition to routine volumetric and flow data, we measured post-contrast T1 values of the basal interventricular septum, the left ventricular (LV) lateral wall, and the inferior and anterior walls of the right ventricle (RV). Results were compared to data from age-matched healthy controls. The scans of 18 children who had undergone TOF repair and 12 healthy children were included. Post-contrast T1 values of the left ventricular lateral wall (443 ± 54 vs. 510 ± 77 ms, P = 0.0168) and of the right ventricular anterior wall (333 ± 62 vs. 392 ± 72 ms, P = 0.0423) were significantly shorter in children with TOF repair than in controls, suggesting a higher degree of fibrosis. In children with TOF repair, but not in controls, post-contrast T1 values were shorter in the right ventricle than the left ventricle and shorter in the anterior wall of the right ventricle than in the inferior segments. In the TOF group, post-contrast T1 values of the RV anterior wall correlated with the RV end-systolic volume indexed to body surface area (r = 0.54; r{sup 2} = 0.30; P = 0.0238). In children who underwent tetralogy of Fallot repair the myocardium of both ventricles appears to bear an abnormally high fibrosis burden. (orig.)

  20. Cardiac HCN Channels: From Basic to Bedside%心脏HCN通道:从基础到临床

    Institute of Scientific and Technical Information of China (English)

    范新荣; 王超

    2012-01-01

    研究表明超极化激活环核苷酸门控阳离子通道(HCN通道)大量分布于心脏及神经系统的特定部位,其介导的起搏电流引起窦房结细胞舒张期去极化,从而在心脏自主搏动及心律的调节等方面发挥着十分重要的生理功能.目前,已克隆得到4种HCN亚型基因,并通过功能表达分析指出各种HCN亚型具有不同的电生理学特性.但是目前有关HCN逶道在心脏电活动中的生理及病理生理机制仍未完全阐明.本篇综述旨在详细阐述心脏HCN通道的生物物理学特性、心脏通道蛋白表达、各种HCN通道突变引起的离子通道疾病以及几种通道阻滞药物电药理学特性的研究进展.%Hyperpolarization-activated cyclic nucleotide-gated ( HCN) channels, responsible for pacemaker current, are widely expressed in heart and nervous system, and HCN mediated currents play a key role in generation and regulation of diastolic depolarization which controls the spontaneous rate in sinoatrial node myocytes. Recently, four mammalian HCN isoforms, respectively termed HCN1-4, have been cloned. When heterologously expressed, each of the four HCN subunits has different electrophysiological properties. However, the physiological and pathophysiological mechanisms of HCN channels on cardiac electric activity have not been revealed completely. In this review we summarize recent insight into the biophysical characteristics of cardiac HCN channels, distribution of channels in heart, five kinds of HCN-related ionic channelopathies and electropharmacological properties of several If blockers.

  1. Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr) and modulates cardiac action potential characteristics

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter

    2010-01-01

    The repolarizing cardiac rapid delayed rectifier current, I(Kr), is composed of ERG1 channels. It has been suggested that two isoforms of the ERG1 protein, ERG1a and ERG1b, both contribute to I(Kr). Marked heterogeneity in the kinetic properties of native I(Kr) has been described. We hypothesized...

  2. Computer-aided mapping of stream channels beneath the Lawrence Livermore National Laboratory Super Fund Site

    Energy Technology Data Exchange (ETDEWEB)

    Sick, M. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    The Lawrence Livermore National Laboratory (LLNL) site rests upon 300-400 feet of highly heterogeneous braided stream sediments which have been contaminated by a plume of Volatile Organic Compounds (VOCs). The stream channels are filled with highly permeable coarse grained materials that provide quick avenues for contaminant transport. The plume of VOCs has migrated off site in the TFA area, making it the area of greatest concern. I mapped the paleo-stream channels in the TFA area using SLICE an LLNL Auto-CADD routine. SLICE constructed 2D cross sections and sub-horizontal views of chemical, geophysical, and lithologic data sets. I interpreted these 2D views as a braided stream environment, delineating the edges of stream channels. The interpretations were extracted from Auto-CADD and placed into Earth Vision`s 3D modeling and viewing routines. Several 3D correlations have been generated, but no model has yet been chosen as a best fit.

  3. Leaky RyR2 channels unleash a brainstem spreading depolarization mechanism of sudden cardiac death.

    Science.gov (United States)

    Aiba, Isamu; Wehrens, Xander H T; Noebels, Jeffrey L

    2016-08-16

    Cardiorespiratory failure is the most common cause of sudden unexplained death in epilepsy (SUDEP). Genetic autopsies have detected "leaky" gain-of-function mutations in the ryanodine receptor-2 (RyR2) gene in both SUDEP and sudden cardiac death cases linked to catecholaminergic polymorphic ventricular tachycardia that feature lethal cardiac arrhythmias without structural abnormality. Here we find that a human leaky RyR2 mutation, R176Q (RQ), alters neurotransmitter release probability in mice and significantly lowers the threshold for spreading depolarization (SD) in dorsal medulla, leading to cardiorespiratory collapse. Rare episodes of sinus bradycardia, spontaneous seizure, and sudden death were detected in RQ/+ mutant mice in vivo; however, when provoked, cortical seizures frequently led to apneas, brainstem SD, cardiorespiratory failure, and death. In vitro studies revealed that the RQ mutation selectively strengthened excitatory, but not inhibitory, synapses and facilitated SD in both the neocortex as well as brainstem dorsal medulla autonomic microcircuits. These data link defects in neuronal intracellular calcium homeostasis to the vulnerability of central autonomic brainstem pathways to hypoxic stress and implicate brainstem SD as a previously unrecognized site and mechanism contributing to premature death in individuals with leaky RYR2 mutations. PMID:27482086

  4. Cardiac shear-wave elastography using a transesophageal transducer: application to the mapping of thermal lesions in ultrasound transesophageal cardiac ablation

    Science.gov (United States)

    Kwiecinski, Wojciech; Bessière, Francis; Constanciel Colas, Elodie; Apoutou N'Djin, W.; Tanter, Mickaël; Lafon, Cyril; Pernot, Mathieu

    2015-10-01

    Heart rhythm disorders, such as atrial fibrillation or ventricular tachycardia can be treated by catheter-based thermal ablation. However, clinically available systems based on radio-frequency or cryothermal ablation suffer from limited energy penetration and the lack of lesion’s extent monitoring. An ultrasound-guided transesophageal device has recently successfully been used to perform High-Intensity Focused Ultrasound (HIFU) ablation in targeted regions of the heart in vivo. In this study we investigate the feasibility of a dual therapy and imaging approach on the same transesophageal device. We demonstrate in vivo that quantitative cardiac shear-wave elastography (SWE) can be performed with the device and we show on ex vivo samples that transesophageal SWE can map the extent of the HIFU lesions. First, SWE was validated with the transesophageal endoscope in one sheep in vivo. The stiffness of normal atrial and ventricular tissues has been assessed during the cardiac cycle (n=11 ) and mapped (n= 7 ). Second, HIFU ablation has been performed with the therapy-imaging transesophageal device in ex vivo chicken breast samples (n  =  3), then atrial (left, n= 2 ) and ventricular (left n=1 , right n=1 ) porcine heart tissues. SWE provided stiffness maps of the tissues before and after ablation. Areas of the lesions were obtained by tissue color change with gross pathology and compared to SWE. During the cardiac cycle stiffness varied from 0.5   ±   0.1 kPa to 6.0   ±   0.3 kPa in the atrium and from 1.3   ±   0.3 kPa to 13.5   ±   9.1 kPa in the ventricles. The thermal lesions were visible on all SWE maps performed after ablation. Shear modulus of the ablated zones increased to 16.3   ±   5.5 kPa (versus 4.4   ±   1.6 kPa before ablation) in the chicken breast, to 30.3   ±   10.3 kPa (versus 12.2   ±   4.3 kPa) in the atria and to 73.8   ±   13

  5. Cardiac shear-wave elastography using a transesophageal transducer: application to the mapping of thermal lesions in ultrasound transesophageal cardiac ablation.

    Science.gov (United States)

    Kwiecinski, Wojciech; Bessière, Francis; Colas, Elodie Constanciel; N'Djin, W Apoutou; Tanter, Mickaël; Lafon, Cyril; Pernot, Mathieu

    2015-10-21

    Heart rhythm disorders, such as atrial fibrillation or ventricular tachycardia can be treated by catheter-based thermal ablation. However, clinically available systems based on radio-frequency or cryothermal ablation suffer from limited energy penetration and the lack of lesion's extent monitoring. An ultrasound-guided transesophageal device has recently successfully been used to perform High-Intensity Focused Ultrasound (HIFU) ablation in targeted regions of the heart in vivo. In this study we investigate the feasibility of a dual therapy and imaging approach on the same transesophageal device. We demonstrate in vivo that quantitative cardiac shear-wave elastography (SWE) can be performed with the device and we show on ex vivo samples that transesophageal SWE can map the extent of the HIFU lesions. First, SWE was validated with the transesophageal endoscope in one sheep in vivo. The stiffness of normal atrial and ventricular tissues has been assessed during the cardiac cycle (n = 11) and mapped (n = 7). Second, HIFU ablation has been performed with the therapy-imaging transesophageal device in ex vivo chicken breast samples (n  =  3), then atrial (left, n = 2) and ventricular (left n = 1, right n = 1) porcine heart tissues. SWE provided stiffness maps of the tissues before and after ablation. Areas of the lesions were obtained by tissue color change with gross pathology and compared to SWE. During the cardiac cycle stiffness varied from 0.5   ±   0.1 kPa to 6.0   ±   0.3 kPa in the atrium and from 1.3   ±   0.3 kPa to 13.5   ±   9.1 kPa in the ventricles. The thermal lesions were visible on all SWE maps performed after ablation. Shear modulus of the ablated zones increased to 16.3   ±   5.5 kPa (versus 4.4   ±   1.6 kPa before ablation) in the chicken breast, to 30.3   ±   10.3 kPa (versus 12.2   ±   4.3 kPa) in the atria and to 73.8

  6. Development of 200-channel mapping system for tissue oxygenation measured by near-infrared spectroscopy

    Science.gov (United States)

    Niwayama, Masatsugu; Kohata, Daisuke; Shao, Jun; Kudo, Nobuki; Hamaoka, Takatumi; Katsumura, Toshihito; Yamamoto, Katsuyuki

    2000-07-01

    Near-infrared spectroscopy (NIRS) is a very useful technique for noninvasive measurement of tissue oxygenation. Among various methods of NIRS, continuous wave near-infrared spectroscopy (CW- NIRS) is especially suitable for real-time measurement and for practical use. CW-NIRS has recently been applied in vivo reflectance imaging of muscle oxygenation and brain activity. However, conventional mapping systems do not have a sufficient mapping area at present. Moreover, they do not enable quantitative measurement of tissue oxygenation because conventional NIRS is based on the inappropriate assumption that tissue is homogeneous. In this study, we developed a 200-channel mapping system that enables measurement of changes in oxygenation and blood volume and that covers a wider area (30 cm x 20 cm) than do conventional systems. The spatial resolution (source- detector separation) of this system is 15 mm. As for the effcts of tissue inhomogeneity on muscle oxygenation measurement, subcutaneous adipose tissue greatly reduces measurement sensitivity. Therefore, we also used a correction method for influence of the subcutaneous fat layer so that we could obtain quantitative changes in concentrations of oxy- and deoxy- hemoglobin. We conducted exercise tests and measured the changed in hemoglobin concentration in the thigh using the new system. The working muscles in the exercises could be imaged, and the heterogeneity of the muscles was shown. These results demonstrated the new 200-channel mapping system enables observation of the distribution of muscle metabolism and localization of muscle function.

  7. Prestimulus EEG microstates influence visual event-related potential microstates in field maps with 47 channels.

    Science.gov (United States)

    Kondakor, I; Lehmann, D; Michel, C M; Brandeis, D; Kochi, K; Koenig

    1997-01-01

    The influence of the immediate prestimulus EEG microstate (sub-second epoch of stable topography/map landscape) on the map landscape of visually evoked 47-channel event-related potential (ERP) microstates was examined using the frequent, non-target stimuli of a cognitive paradigm (12 volunteers). For the two frequent prestimulus microstate classes (oriented left anterior-right posterior and right anterior-left posterior), ERP map series were selectively averaged. The post-stimulus ERP grand average map series was segmented into microstates; 10 were found. The centroid locations of positive and negative map areas extracted as landscape descriptors. Significant differences (MANOVAs and t-tests) between the two prestimulus classes were found in four of the ten ERP microstates. The relative orientation of the two ERP microstate classes was the same as prestimulus in some ERP microstates, but reversed in others. Thus, brain electric microstates at stimulus arrival influence the landscapes of the post-stimulus ERP maps and therefore, information processing; prestimulus microstate effects differed for different post-stimulus ERP microstates.

  8. Using a Combined Platform of Swarm Intelligence Algorithms and GIS to Provide Land Suitability Maps for Locating Cardiac Rehabilitation Defibrillators

    Directory of Open Access Journals (Sweden)

    Neda KAFFASH-CHARANDABI

    2015-10-01

    Full Text Available Background: Cardiac arrest is a condition in which the heart is completely stopped and is not pumping any blood. Although most cardiac arrest cases are reported from homes or hospitals, about 20% occur in public areas. Therefore, these areas need to be investigated in terms of cardiac arrest incidence so that places of high incidence can be identi-fied and cardiac rehabilitation defibrillators installed there.Methods: In order to investigate a study area in Petersburg, Pennsylvania State, and to determine appropriate places for installing defibrillators with 5-year period data, swarm intelligence algorithms were used. Moreover, the location of the defibrillators was determined based on the following five evaluation criteria: land use, altitude of the area, econom-ic conditions, distance from hospitals and approximate areas of reported cases of cardiac arrest for public places that were created in geospatial information system (GIS.Results: The A-P HADEL algorithm results were more precise about 27.36%. The validation results indicated a wider coverage of real values and the verification results confirmed the faster and more exact optimization of the cost func-tion in the PSO method.Conclusion: The study findings emphasize the necessity of applying optimal optimization methods along with GIS and precise selection of criteria in the selection of optimal locations for installing medical facilities because the selected algorithm and criteria dramatically affect the final responses. Meanwhile, providing land suitability maps for installing facilities across hot and risky spots has the potential to save many lives.

  9. Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy.

    Science.gov (United States)

    Indolfi, Ciro; Curcio, Antonio

    2014-05-01

    Left ventricular hypertrophy is an initial compensatory mechanism in response to cardiac stress that can degenerate into heart failure and sudden cardiac death. Recent studies have shown that microRNAs (miRs) regulate several aspects of cardiovascular diseases. In this issue of the JCI, Bang and colleagues identified an exosome-mediated communication mechanism between cardiac fibroblasts and cardiomyocytes. Specifically, cardiac fibroblasts secrete miR-enriched exosomes, which are subsequently taken up by cardiomyocytes, in which they alter gene expression. In particular, a passenger strand miR, miR-21*, was identified as a potent paracrine factor that induces cardiomyocyte hypertrophy when shuttled through exosomes. These advanced comprehensive analyses represent a major step forward in our understanding of cardiovascular physiopathology, providing a promising adjunctive target for possible therapeutic approaches, namely the miR-mediated paracrine signaling network. PMID:24743143

  10. An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family.

    OpenAIRE

    Liu, Zhanjiang; Karsi, Attila; Li, Ping; Cao, Dongfeng; Dunham, R

    2003-01-01

    Catfish is the major aquaculture species in the United States. The hybrid catfish produced by crossing channel catfish females with blue catfish males exhibit a number of desirable production traits, but their mass production has been difficult. To introduce desirable genes from blue catfish into channel catfish through introgression, a genetic linkage map is helpful. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP). A total of 607 AFL...

  11. The cardiac L-type calcium channel distal carboxy terminus autoinhibition is regulated by calcium.

    Science.gov (United States)

    Crump, Shawn M; Andres, Douglas A; Sievert, Gail; Satin, Jonathan

    2013-02-01

    The L-type calcium channel (LTCC) provides trigger Ca(2+) for sarcoplasmic reticulum Ca-release, and LTCC function is influenced by interacting proteins including the LTCC distal COOH terminus (DCT) and calmodulin. DCT is proteolytically cleaved and reassociates with the LTCC complex to regulate calcium channel function. DCT reduces LTCC barium current (I(Ba,L)) in reconstituted channel complexes, yet the contribution of DCT to LTCC Ca(2+) current (I(Ca,L)) in cardiomyocyte systems is unexplored. This study tests the hypothesis that DCT attenuates cardiomyocyte I(Ca,L). We measured LTCC current and Ca(2+) transients with DCT coexpressed in murine cardiomyocytes. We also heterologously coexpressed DCT and Ca(V)1.2 constructs with truncations corresponding to the predicted proteolytic cleavage site, Ca(V)1.2Δ1801, and a shorter deletion corresponding to well-studied construct, Ca(V)1.2Δ1733. DCT inhibited I(Ba,L) in cardiomyocytes, and in human embryonic kidney (HEK) 293 cells expressing Ca(V)1.2Δ1801 and Ca(V)1.2Δ1733. Ca(2+)-CaM relieved DCT block in cardiomyocytes and HEK cells. The selective block of I(Ba,L) combined with Ca(2+)-CaM effects suggested that DCT-mediated blockade may be relieved under conditions of elevated Ca(2+). We therefore tested the hypothesis that DCT block is dynamic, increasing under relatively low Ca(2+), and show that DCT reduced diastolic Ca(2+) at low stimulation frequencies but spared high frequency Ca(2+) entry. DCT reduction of diastolic Ca(2+) and relief of block at high pacing frequencies and under conditions of supraphysiological bath Ca(2+) suggests that a physiological function of DCT is to increase the dynamic range of Ca(2+) transients in response to elevated pacing frequencies. Our data motivate the new hypothesis that DCT is a native reverse use-dependent inhibitor of LTCC current.

  12. A New Arithmetic Coding System Combining Source Channel Coding and MAP Decoding

    Institute of Scientific and Technical Information of China (English)

    PANG Yu-ye; SUN Jun; WANG Jia

    2007-01-01

    A new arithmetic coding system combining source channel coding and maximum a posteriori decoding were proposed.It combines source coding and error correction tasks into one unified process by introducing an adaptive forbidden symbol.The proposed system achieves fixed length code words by adaptively adjusting the probability of the forbidden symbol and adding tail digits of variable length.The corresponding improved MAP decoding metric was derived.The proposed system can improve the performance.Simulations were performed on AWGN channels with various noise levels by using both hard and soft decision with BPSK modulation.The results show its performance is slightly better than that of our adaptive arithmetic error correcting coding system using a forbidden symbol.

  13. Characterization of respiratory and cardiac motion from electro-anatomical mapping data for improved fusion of MRI to left ventricular electrograms.

    Directory of Open Access Journals (Sweden)

    Sébastien Roujol

    Full Text Available Accurate fusion of late gadolinium enhancement magnetic resonance imaging (MRI and electro-anatomical voltage mapping (EAM is required to evaluate the potential of MRI to identify the substrate of ventricular tachycardia. However, both datasets are not acquired at the same cardiac phase and EAM data is corrupted with respiratory motion limiting the accuracy of current rigid fusion techniques. Knowledge of cardiac and respiratory motion during EAM is thus required to enhance the fusion process. In this study, we propose a novel approach to characterize both cardiac and respiratory motion from EAM data using the temporal evolution of the 3D catheter location recorded from clinical EAM systems. Cardiac and respiratory motion components are extracted from the recorded catheter location using multi-band filters. Filters are calibrated for each EAM point using estimates of heart rate and respiratory rate. The method was first evaluated in numerical simulations using 3D models of cardiac and respiratory motions of the heart generated from real time MRI data acquired in 5 healthy subjects. An accuracy of 0.6-0.7 mm was found for both cardiac and respiratory motion estimates in numerical simulations. Cardiac and respiratory motions were then characterized in 27 patients who underwent LV mapping for treatment of ventricular tachycardia. Mean maximum amplitude of cardiac and respiratory motion was 10.2±2.7 mm (min = 5.5, max = 16.9 and 8.8±2.3 mm (min = 4.3, max = 14.8, respectively. 3D Cardiac and respiratory motions could be estimated from the recorded catheter location and the method does not rely on additional imaging modality such as X-ray fluoroscopy and can be used in conventional electrophysiology laboratory setting.

  14. Mapping Buried Impact Craters in the Chryse Basin to Understand the Distribution of Outflow Channel Sediment

    Science.gov (United States)

    Miller, Moira; Frey, Herbert V.

    2016-01-01

    The Chryse Basin's location in the northern hemisphere of Mars allowed it to collect water from a number of major outflow channels. These outflows likely deposited significant amounts of sediment within the Basin. This project's goal was to see if mapping buried impact craters, revealed as Quasi-Circular Depressions (QCDs) in Mars Orbiter Laser Altimeter (MOLA) data, could be used to determine the distribution and variation of sediment thickness within the Basin. QCDs, including likely buried impact craters, were mapped to test the hypothesis that further into the basin there would be fewer smaller craters because thicker sediments would have preferentially covered them. Mapping was done using Gridview, an interactive graphics program that manipulates data, in this case topographic data from MOLA. It should be possible to estimate the thickness of the sediment from the smallest buried craters found in a given area, and therefore map out the change in sediment thickness across the basin. The smallest QCDs beginning to be completely covered by sediment were just below 30 km in diameter. The minimum sediment needed to cover a QCD of this size was calculated to be between 1-2km. Therefore, the absence of QCDs below 30 km in the NE corner of Chryse could be explained by sediment at least that thick. Lower thickness is expected elsewhere in the basin, especially in the SW, where more QCDs with smaller diameters were found. The method of mapping buried impact craters provides a way to determine variations in sediment thickness within the Chryse Basin. This method could be used on other sediment-covered areas to learn about past water flow.

  15. The roles and relations of calpastatin, calmodulin and an undefined cytoplasmic factor in the regulation of cardiac L-type Ca2+ channels

    Institute of Scientific and Technical Information of China (English)

    HAO Li-ying; ZHU Tong; HU Hui-yuan; ZHAO Mei-mi; RUI Feng; LIU Yan; ZHAO Jin-sheng; tsuko Minobe; Masaki Kameyama

    2008-01-01

    Objective To explore the mechanism that cytoplasmic factors could recover L-type Ca2+ channel activity after "run-down'. The factors include ATP, calpastatin and H fraction (a high molecular fraction of bovine cardiac cytoplasm). Methods Single Ca2+ channel activities were recorded with patch clamp technique in guinea-pig cardiac myocytes. Run-down was induced by the inside-out patch formation. Calpastatin (CS), calmodulin(CaM) and three GST-fusion fragment peptides derived from the C-terminal tail of guineapig Car1.2, CT-1 (amino acids number 1509-1791), CTo2 (1777-2003) and CT-3 (1944-2169) were produced as GST fusion proteins. Results (1)CaM + ATP or CS + ATP restored the channels after rundown;however, the CaM or CS's effects became smaller with the longer run-down time. (2)After run down, CaM-dependent protein kinase (CaMKII) produced Ca2+ channel activity to only 2-10% of the basal activity, however, in the presence of CaMKII, the time-dependent nature of the CaM effect was abolished. (3) In pull-down assay, CT-1 treated with CaMKII showed a higher affinity for CaM than that treated with phosphatase. (4)CaMKII was detected in the H fraction of bovine cardiac cytoplasm. Conclusions The results show that CS, CaM and CaMKII are all involved in the maintenance of the basal activity of L-type Ca2+ channels, and that there might be cross talks among the four factors (CS, CaM, CaMKII and the undefined cytoplasmic factor). This work was supported by the grants from the Japan Society for the Promotion of Science and the National Natural Science Foundation of China (No. 30670761, No. 30671726).

  16. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    Science.gov (United States)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  17. Potassium Channel Interacting Protein 2 (KChIP2) is not a transcriptional regulator of cardiac electrical remodeling.

    Science.gov (United States)

    Winther, Sine V; Tuomainen, Tomi; Borup, Rehannah; Tavi, Pasi; Antoons, Gudrun; Thomsen, Morten B

    2016-01-01

    The heart-failure relevant Potassium Channel Interacting Protein 2 (KChIP2) augments CaV1.2 and KV4.3. KChIP3 represses CaV1.2 transcription in cardiomyocytes via interaction with regulatory DNA elements. Hence, we tested nuclear presence of KChIP2 and if KChIP2 translocates into the nucleus in a Ca(2+) dependent manner. Cardiac biopsies from human heart-failure patients and healthy donor controls showed that nuclear KChIP2 abundance was significantly increased in heart failure; however, this was secondary to a large variation of total KChIP2 content. Administration of ouabain did not increase KChIP2 content in nuclear protein fractions in anesthetized mice. KChIP2 was expressed in cell lines, and Ca(2+) ionophores were applied in a concentration- and time-dependent manner. The cell lines had KChIP2-immunoreactive protein in the nucleus in the absence of treatments to modulate intracellular Ca(2+) concentration. Neither increasing nor decreasing intracellular Ca(2+) concentrations caused translocation of KChIP2. Microarray analysis did not identify relief of transcriptional repression in murine KChIP2(-/-) heart samples. We conclude that although there is a baseline presence of KChIP2 in the nucleus both in vivo and in vitro, KChIP2 does not directly regulate transcriptional activity. Moreover, the nuclear transport of KChIP2 is not dependent on Ca(2+). Thus, KChIP2 does not function as a conventional transcription factor in the heart. PMID:27349185

  18. SpiNon- Invasive Diagnostics and Results of Interventive Treatment of Cardiac Arrhythmia Using the New System of Non-Invasive Surface Mapping “Amycard 01K”

    Directory of Open Access Journals (Sweden)

    Revishvili A. Sh.

    2012-09-01

    Conclusion. Using results of the surface activation mapping in patients with various cardiac arrhythmias shows its high diagnostic value and the necessity for a preoperative examination. Previously held topical diagnosis of arrhythmogenic substrate will reduce the time of the arrhythmia origin finding, to avoid possible adverse intraoperative complications such as a damage of coronary vessels, as well as reduce the time of intraoperative fluoroscopy.

  19. Eps15 Homology Domain-containing Protein 3 Regulates Cardiac T-type Ca2+ Channel Targeting and Function in the Atria*

    Science.gov (United States)

    Curran, Jerry; Musa, Hassan; Kline, Crystal F.; Makara, Michael A.; Little, Sean C.; Higgins, John D.; Hund, Thomas J.; Band, Hamid; Mohler, Peter J.

    2015-01-01

    Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca2+ channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca2+ current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca2+ channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction. PMID:25825486

  20. Cardiac sodium channelopathies

    NARCIS (Netherlands)

    A.S. Amin; A. Asghari-Roodsari; H.L. Tan

    2010-01-01

    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I-Na) during phase 0 of the cardiac action potential. The importance of I-Na for normal cardiac electrical activity is reflected by the high incidence of

  1. Cardiac Expression of Skeletal Muscle Sodium Channels Increases Longitudinal Conduction Velocity in the Canine One Week Myocardial Infarction

    Science.gov (United States)

    Coronel, Ruben; Lau, David H; Sosunov, Eugene A; Janse, Michiel J; Danilo, Peter; Anyukhovsky, Evgeny P; Wilms-Schopman, Francien JG; Opthof, Tobias; Shlapakova, Iryna N; Ozgen, Nazira; Prestia, Kevin; Kryukova, Yelena; Cohen, Ira S.; Robinson, Richard B; Rosen, Michael R

    2013-01-01

    Background Skeletal muscle sodium channel (Nav1.4) expression in border zone myocardium increases action potential upstroke velocity in depolarized isolated tissue. Because resting membrane potential in the 1 week canine infarct is reduced, we hypothesized that conduction velocity (CV) is greater in Nav1.4 dogs compared to control dogs. Objective To measure CV in the infarct border zone border in dogs with and without Nav1.4 expression. Methods Adenovirus was injected in the infarct border zone in 34 dogs. The adenovirus incorporated the Nav1.4- and a green fluorescent protein (GFP) gene (Nav1.4 group, n=16) or only GFP (n=18). After 1 week, upstroke velocity and CV were measured by sequential microelectrode recordings at 4 and 7 mM [K+] in superfused epicardial slabs. High density in vivo epicardial activation mapping was performed in a subgroup (8 Nav1.4, 6 GFP) at 3–4 locations in the border zone. Microscopy and antibody staining confirmed GFP or Nav1.4 expression. Results Infarct sizes were similar between groups (30.6+/−3 % of LV mass, mean+/−SEM). Longitudinal CV was greater in Nav1.4- than in GFP- sites (58.5+/−1.8 vs 53.3+/−1.2 cm/s, 20 and 15 sites, respectively, p<0.05). Transverse CV was not different between the groups. In tissue slabs dV/dtmax was higher and CV was greater in Nav1.4 than in control at 7 mM [K+] (P<0.05). Immunohistochemical Nav1.4 staining was seen at the longitudinal ends of the myocytes. Conclusion Nav1.4 channels in myocardium surviving 1 week infarction increases longitudinal but not transverse CV, consistent with the increased dV/dtmax and with the cellular localization of Nav1.4. PMID:20385252

  2. Using a Combined Platform of Swarm Intelligence Algorithms and GIS to Provide Land Suitability Maps for Locating Cardiac Rehabilitation Defibrillators

    OpenAIRE

    KAFFASH-CHARANDABI, Neda; SADEGHI-NIARAKI, Abolghasem; Park, Dong-Kyun

    2015-01-01

    Background: Cardiac arrest is a condition in which the heart is completely stopped and is not pumping any blood. Although most cardiac arrest cases are reported from homes or hospitals, about 20% occur in public areas. Therefore, these areas need to be investigated in terms of cardiac arrest incidence so that places of high incidence can be identi-fied and cardiac rehabilitation defibrillators installed there.Methods: In order to investigate a study area in Petersburg, Pennsylvania State, and...

  3. Combined hERG channel inhibition and disruption of trafficking in drug-induced long QT syndrome by fluoxetine: a case-study in cardiac safety pharmacology

    OpenAIRE

    Hancox, J. C.; Mitcheson, J S

    2006-01-01

    Drug-induced prolongation of the rate-corrected QT interval (QTCI) on the electrocardiogram occurs as an unwanted effect of diverse clinical and investigational drugs and carries a risk of potentially fatal cardiac arrhythmias. hERG (human ether-à-go-go-related gene) is the gene encoding the α-subunit of channels mediating the rapid delayed rectifier K+ current, which plays a vital role in repolarising the ventricles of the heart. Most QTCI prolonging drugs can inhibit the function of recombi...

  4. Singular value decomposition of optically-mapped cardiac rotors and fibrillatory activity

    Science.gov (United States)

    Rabinovitch, A.; Biton, Y.; Braunstein, D.; Friedman, M.; Aviram, I.; Yandrapalli, S.; Pandit, S. V.; Berenfeld, O.

    2015-03-01

    Our progress of understanding how cellular and structural factors contribute to arrhythmia is hampered in part because of controversies as to whether a fibrillating heart is driven by a single, several, or multiple number of sources, whether they are focal or reentrant and how to localize them. Here we demonstrate how a novel usage of the neutral singular value decomposition (SVD) method enables the extraction of the governing spatial and temporal modes of excitation from a rotor and fibrillatory waves. Those modes highlight patterns and regions of organization in the midst of the otherwise seemingly random propagating excitation waves. We apply the method to experimental models of cardiac fibrillation in rabbit hearts. We show that SVD analysis is able to enhance the classification of the heart electrical patterns into regions harboring drivers in the form of fast reentrant activity and other regions of by-standing activity. This enhancement is accomplished without any prior assumptions regarding the spatial, temporal or spectral properties of those drivers. The analysis corroborates that the dominant mode has the highest activation rate and further reveals a new feature: a transfer of modes from the driving to passive regions resulting in a partial reaction of the passive region to the driving region.

  5. Mapping out the customer’s journey : customer search strategy as a basis for channel management

    NARCIS (Netherlands)

    Veen, Gerrita van der; Ossenbruggen, Robert van

    2015-01-01

    Many companies tailor their communication and interaction with customers by segmenting them into channel usage groups. This study argues that simply focusing on channels has limited effectiveness as increasingly customers today use multiple channels, the online channel contains many different forms,

  6. Phosphatidylinositol 4,5-biphosphate (PIP2) modulates syntaxin-1A binding to sulfonylurea receptor 2A to regulate cardiac ATP-sensitive potassium (KATP) channels.

    Science.gov (United States)

    Xie, Li; Liang, Tao; Kang, Youhou; Lin, Xianguang; Sobbi, Roozbeh; Xie, Huanli; Chao, Christin; Backx, Peter; Feng, Zhong-Ping; Shyng, Show-Ling; Gaisano, Herbert Y

    2014-10-01

    Cardiac sarcolemmal syntaxin (Syn)-1A interacts with sulfonylurea receptor (SUR) 2A to inhibit ATP-sensitive potassium (KATP) channels. Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous endogenous inositol phospholipid, known to bind Kir6.2 subunit to open KATP channels, has recently been shown to directly bind Syn-1A in plasma membrane to form Syn-1A clusters. Here, we sought to determine whether the interaction between Syn-1A and PIP2 interferes with the ability of Syn-1A to bind SUR2A and inhibit KATP channel activity. We found that PIP2 dose-dependently reduced SUR2A binding to GST-Syn-1A by in vitro pulldown assays. FRET studies in intact cells using TIRFM revealed that increasing endogenous PIP2 levels led to increased Syn-1A (-EGFP) cluster formation and a severe reduction in availability of Syn-1A molecules to interact with SUR2A (-mCherry) molecules outside the Syn-1A clusters. Correspondingly, electrophysiological studies employing SUR2A/Kir6.2-expressing HEK cells showed that increasing endogenous or exogenous PIP2 diminished the inhibitory effect of Syn-1A on KATP currents. The physiological relevance of these findings was confirmed by ability of exogenous PIP2 to block exogenous Syn-1A inhibition of cardiac KATP currents in inside-out patches of mouse ventricular myocytes. The effect of PIP2 on physical and functional interactions between Syn-1A and KATP channels is specific and not observed with physiologic concentrations of other phospholipids. To unequivocally demonstrate the specificity of PIP2 interaction with Syn-1A and its impact on KATP channel modulation by Syn-1A, we employed a PIP2-insensitive Syn-1A-5RK/A mutant. The Syn-1A-5RK/A mutant retains the ability to interact with SUR2A in both in vitro binding and in vivo FRET assays, although as expected the interaction is no longer disrupted by PIP2. Interestingly, at physiological PIP2 concentrations, Syn-1A-5RK/A inhibited KATP currents to a greater extent than Syn-1A-WT, indicating

  7. Coastal Mapping Program Project TX1405: ROCKY SLOUGH TO PACKERY CHANNEL, TX.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of the Coastal Mapping Program (CMP) is to provide surveying and mapping information of our nation's coastline. This shoreline mapping effort also...

  8. Study on incidence of pulmonary embolism in patients with cardiac pacemakers using lung perfusion mapping and ventilation scanning

    International Nuclear Information System (INIS)

    We investigated pulmonary perfusion mapping and ventilation scanning employing 99mTC-MMA and 81mKr-Gas in patients with DDD and VVI cardiac pacemaker implantation. In 51 cases among 175 patients we observed some defects which matched the results from lung perfusion scanning in the pulmonary segments and sub-segments. These were diagnosed as pulmonary embolism after the possibility of other pulmonary diseases was rejected. The incidence rate of pulmonary embolism in patients with VVI (Ventricular pacing/sensing, inhibited type) pacemakers was 47 out of 138, or 34.1%, especially for those who received a pulmonary scanning examination whithin 6 months after pacemaker implantation. In contrast, those who were examined after 6 months had lower rates as well as chronological factors. The incidence rate of pulmonary embolism in 37 patients with DDD (Double chamber pacing/sensing, double modes of response) pacemakers was 10.8%, considerably lower than that for patients with VVI pacemakers. Therefore, one main factor of pulmonary embolism in patients with pacemakers could be the non-physiological phase of the contractions of both atria and ventricles. Other factors, such as the presence of foreign bodies in the endocardium, aging, and hypertension, could also promote pulmonary embolism. (author)

  9. Diagnosis of Acute Global Myocarditis Using Cardiac MRI with Quantitative T1 and T2 Mapping: Case Report and Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul Hwan [Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720 (Korea, Republic of); Choi, Eui-Young [Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720 (Korea, Republic of); Greiser, Andreas [Healthcare Sector, Siemens AG, Erlangen D-91052 (Germany); Paek, Mun Young [Siemens Ltd., Seoul 120-837 (Korea, Republic of); Hwang, Sung Ho; Kim, Tae Hoon [Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720 (Korea, Republic of)

    2013-07-01

    The diagnosis of myocarditis can be challenging given that symptoms, clinical exam findings, electrocardiogram results, biomarkers, and echocardiogram results are often non-specific. Endocardial biopsy is an established method for diagnosing myocarditis, but carries the risk of complications and false negative results. Cardiac magnetic resonance imaging (MRI) has become the primary non-invasive imaging tool in patients with suspected myocarditis. Myocarditis can be diagnosed by using three tissue markers including edema, hyperemia/capillary leak, and necrosis/fibrosis. The interpretation of cardiac MR findings can be confusing, especially when the myocardium is diffusely involved. Using T1 and T2 maps, the diagnosis of myocarditis can be made even in cases of global myocarditis with the help of quantitative analysis. We herein describe a case of acute global myocarditis which was diagnosed by using quantitative T1 and T2 mapping.

  10. Contribution of spontaneous L-type Ca2+ channel activation to the genesis of Ca2+ sparks in resting cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Guangqin; FU; Yu; YANG; Dongmei; HAO; Xuemei; BAI; S

    2004-01-01

    Ca2+ sparks are the elementary events of intracellular Ca2+ release from the sarcoplasmic reticulum in cardiac myocytes. In order to investigate whether spontaneous L-type Ca2+ channel activation contributes to the genesis of spontaneous Ca2+ sparks, we used confocal laser scanning microscopy and fluo-4 to visualize local Ca2+ sparks in intact rat ventricular myocytes. In the presence of 0.2 mmol/L CdCl2 which inhibits spontaneous L-type Ca2+ channel activation, the rate of occurrence of spontaneous Ca2+ sparks was halved from 4.20 to 2.04 events/(100 μm·s), with temporal and spatial properties of individual Ca2+ sparks unchanged. Analysis of the Cd2+-sensitive spark production revealed an open probability of ~10-5 for L-type channels at the rest membrane potentials (-80 mV). Thus, infrequent and stochastic openings of sarcolemmal L-type Ca2+ channels in resting heart cells contribute significantly to the production of spontaneous Ca2+ sparks.

  11. Frequent Premature Ventricular Complexes Originating from the Left Ventricular Summit Successfully Ablated from the Proximal Great Cardiac Vein Using an Impedance-based Electroanatomical Mapping System.

    Science.gov (United States)

    Nagata, Yoshihisa; Ogawa, Masahiro; Goto, Shunichiro; Morii, Joji; Imaizumi, Satoshi; Yasuda, Tomoo; Matsumoto, Naomichi; Saku, Keijiro

    2016-01-01

    We herein report a 58-year-old woman with frequent premature ventricular complexes (PVCs) originating from the left ventricular summit. The earliest ventricular activation of spontaneous PVCs was recorded in the proximal site of the great cardiac vein, which was simultaneously mapped and conducted using an impedance-based electroanatomical mapping system. Irrigated radiofrequency with a starting power output of 20 W and maximal temperature set at 40°C was applied with 10 Ω impedance fall, resulting in total disappearance of the frequent PVCs. The patient has remained free from PVCs for 18 months without requiring antiarrhythmic drug therapy. PMID:27374677

  12. Regional contrast agent quantification in a mouse model of myocardial infarction using 3D cardiac T1 mapping

    Directory of Open Access Journals (Sweden)

    Nicolay Klaas

    2011-10-01

    effective relaxivity of the liposomal contrast agent was only about half the value determined in vitro. Conclusions 3D cardiac T1 mapping by CMR can be used to monitor the accumulation of contrast agents in contrast-enhanced studies of murine myocardial infarction. The contrast agent relaxivity was decreased under in vivo conditions compared to in vitro measurements, which needs consideration when quantifying local contrast agent concentrations.

  13. California State Waters Map Series--Santa Barbara Channel Web Services

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of...

  14. Cardiac myosin binding protein C and MAP-kinase activating death domain-containing gene polymorphisms and diastolic heart failure.

    Directory of Open Access Journals (Sweden)

    Cho-Kai Wu

    Full Text Available OBJECTIVE: Myosin binding protein C (MYBPC3 plays a role in ventricular relaxation. The aim of the study was to investigate the association between cardiac myosin binding protein C (MYBPC3 gene polymorphisms and diastolic heart failure (DHF in a human case-control study. METHODS: A total of 352 participants of 1752 consecutive patients from the National Taiwan University Hospital and its affiliated hospital were enrolled. 176 patients diagnosed with DHF confirmed by echocardiography were recruited. Controls were matched 1-to-1 by age, sex, hypertension, diabetes, renal function and medication use. We genotyped 12 single nucleotide polymorphisms (SNPs according to HapMap Han Chinese Beijing databank across a 40 kb genetic region containing the MYBPC3 gene and the neighboring DNA sequences to capture 100% of haplotype variance in all SNPs with minor allele frequencies ≥ 5%. We also analyzed associations of these tagging SNPs and haplotypes with DHF and linkage disequilibrium (LD structure of the MYBPC3 gene. RESULTS: In a single locus analysis, SNP rs2290149 was associated with DHF (allele-specific p = 0.004; permuted p = 0.031. The SNP with a minor allele frequency of 9.4%, had an odds ratio 2.14 (95% CI 1.25-3.66; p = 0.004 for the additive model and 2.06 for the autosomal dominant model (GG+GA : AA, 95% CI 1.17-3.63; p = 0.013, corresponding to a population attributable risk fraction of 12.02%. The haplotypes in a LD block of rs2290149 (C-C-G-C was also significantly associated with DHF (odds ratio 2.10 (1.53-2.89; permuted p = 0.029. CONCLUSIONS: We identified a SNP (rs2290149 among the tagging SNP set that was significantly associated with early DHF in a Chinese population.

  15. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials

    Directory of Open Access Journals (Sweden)

    Liu Songtao

    2012-12-01

    Full Text Available Abstract Background Cardiac magnetic resonance (CMR T1 mapping has been used to characterize myocardial diffuse fibrosis. The aim of this study is to determine the reproducibility and sample size of CMR fibrosis measurements that would be applicable in clinical trials. Methods A modified Look-Locker with inversion recovery (MOLLI sequence was used to determine myocardial T1 values pre-, and 12 and 25min post-administration of a gadolinium-based contrast agent at 3 Tesla. For 24 healthy subjects (8 men; 29 ± 6 years, two separate scans were obtained a with a bolus of 0.15mmol/kg of gadopentate dimeglumine and b 0.1mmol/kg of gadobenate dimeglumine, respectively, with averaged of 51 ± 34 days between two scans. Separately, 25 heart failure subjects (12 men; 63 ± 14 years, were evaluated after a bolus of 0.15mmol/kg of gadopentate dimeglumine. Myocardial partition coefficient (λ was calculated according to (ΔR1myocardium/ΔR1blood, and ECV was derived from λ by adjusting (1-hematocrit. Results Mean ECV and λ were both significantly higher in HF subjects than healthy (ECV: 0.287 ± 0.034 vs. 0.267 ± 0.028, p=0.002; λ: 0.481 ± 0.052 vs. 442 ± 0.037, p Conclusion ECV and λ quantification have a low variability across scans, and could be a viable tool for evaluating clinical trial outcome.

  16. Single doses of piracetam affect 42-channel event-related potential microstate maps in a cognitive paradigm.

    Science.gov (United States)

    Michel, C M; Lehmann, D

    1993-01-01

    We examined whether a single administration of piracetam produces dose-dependent effects on brain functions in healthy young men. In 6 subjects, 42-channel event-related EEG potential maps (ERP) were recorded during a task requiring subjects to watch single digits presented in a pseudorandom order on a screen and to press a button after all triplets of three consecutive odd or even digits. The ERP maps to the three digits of the correctly detected triplets were analyzed in terms of their mapped ERP field configuration (landscape). Different landscapes of the maps indicate different configuration of the activated neural population and therefore reflect different functional microstates of the brain. In order to identify these microstates, adaptive segmentation of the map series based on their landscapes was done. Nineteen time segments were found. These segments were tested for direct effects on brain function of three single doses of piracetam (2.9, 4.8 or 9.6 g) and a placebo given double-blind in balanced order. Piracetam mainly affected the map landscape of the time segments following the triplet's last digit. U-shaped dose-dependent effects were found; they were strongest after 4.8 g piracetam. Since these particular ERP segments are recognized to be strongly correlated to cognitive functions, the present findings suggest that single medium doses of piracetam selectively activate differently located or oriented neurons during cognitive steps of information processing.

  17. Performance of Unequal Error Protection Using Maximum A- posteriori Probability Algorithm and Modified MAP in Additive White Gaussian Noise and Fading Channel

    Directory of Open Access Journals (Sweden)

    T. Gnanasekaran

    2008-01-01

    Full Text Available Problem statement: In this study we propose a method to improve the performance of Maximum A-Posteriori Probability Algorithm, which is used in turbo decoder. Previously the performance of turbo decoder is improved by means of scaling the channel reliability value. Approach: A modification in MAP algorithm proposed in this study, which achieves further improvement in forward error correction by means of scaling the extrinsic information in both decoders without introducing any complexity. The encoder is modified with a new puncturing matrix, which yields Unequal Error Protection (UEP. This modified MAP algorithm is analyzed with the traditional turbo code system Equal Error Protection (EEP and also with Unequal Error Protection (UEP both in AWGN channel and fading channel. Result: MAP and modified MAP achieve coding gain of 0.6 dB over EEP in AWGN channel. The MAP and modified MAP achieve coding gain of 0.4 dB and 0.9dB over EEP respectively in Rayleigh fading channel. Modified MAP in UEP class 1 and class 2 gained 0.8 dB and 0.6 dB respectively in AWGN channel where as in fading channel class 1 and 2 gained 0.4 dB and 0.6 dB respectively. Conclusion/Recommendations: The modified MAP algorithm improves the Bit Error Rate (BER performance in EEP as well as UEP both in AWGN and fading channels. We propose modified MAP error correction algorithm with UEP for broad band communication.

  18. Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective

    Science.gov (United States)

    Klimas, Aleksandra; Entcheva, Emilia

    2014-08-01

    The ability to perform precise, spatially localized actuation and measurements of electrical activity in the heart is crucial in understanding cardiac electrophysiology and devising new therapeutic solutions for control of cardiac arrhythmias. Current cardiac imaging techniques (i.e. optical mapping) employ voltage- or calcium-sensitive fluorescent dyes to visualize the electrical signal propagation through cardiac syncytium in vitro or in situ with very high-spatiotemporal resolution. The extension of optogenetics into the cardiac field, where cardiac tissue is genetically altered to express light-sensitive ion channels allowing electrical activity to be elicited or suppressed in a precise cell-specific way, has opened the possibility for all-optical interrogation of cardiac electrophysiology. In vivo application of cardiac optogenetics faces multiple challenges and necessitates suitable optical systems employing fiber optics to actuate and sense electrical signals. In this technical perspective, we present a compendium of clinically relevant access routes to different parts of the cardiac electrical conduction system based on currently employed catheter imaging systems and determine the quantitative size constraints for endoscopic cardiac optogenetics. We discuss the relevant technical advancements in microendoscopy, cardiac imaging, and optogenetics and outline the strategies for combining them to create a portable, miniaturized fiber-based system for all-optical interrogation of cardiac electrophysiology in vivo.

  19. Comparative Study in Performance for Subcarrier Mapping in Uplink 4G-LTE under Different Channel Cases

    Directory of Open Access Journals (Sweden)

    Raad Farhood Chisab

    2014-01-01

    Full Text Available in recent years, wireless communication has experienced a rapid growth and it promises to become a globally important infrastructure. One common design approach in fourth generation 4G systems is Single Carrier Frequency Division Multiple Access (SC-FDMA. It is a single carrier communication technique on the air interface. It has become broadly accepted mainly because of its high resistance to frequency selective fading channels. The third Generation Partnership Project-Long Term Evolution (3GPP-LTE uses this technique in uplink direction because of its lower peak to average power ratio PAPR as compared to Orthogonal Frequency Division Multiple Access (OFDMA that is used for downlink direction. In this paper the LTE in general and SCFDMA will be discuss in details and its performance will be study under two types of subcarrier mapping which are localized and distributed mode also within different channel cases. The results show that the localized subcarrier mapping give lower bit error rate BER than the distributed mode and give different activity under miscellaneous channel cases.

  20. Effects of the histamine H1 receptor antagonist hydroxyzine on hERG K+ channels and cardiac action potential duration

    Institute of Scientific and Technical Information of China (English)

    Byung Hoon LEE; Seung Ho LEE; Daehyun CHU; Jin Won HYUN; Han CHOE; Bok Hee CHOI; Su-Hyun JO

    2011-01-01

    To investigate the effects of hydroxyzine on human ether-a-go-go-related gene (hERG) channels to determine the electrolphysiological basis for its proarrhythmic effects.Methods:hERG channels were expressed in Xenopus oocytes and HEK293 cells,and the effects of hydroxyzine on the channels were examined using two-microelectrode voltage-clamp and patch-clamp techniques,respectively.The effects of hydroxyzine on action potential duration were examined in guinea pig ventricular myocytes using current clamp.Results:Hydroxyzine (0.2 and 2 μmol/L) significantly increased the action potential duration at 90% repolarization (APD90) in both concentration- and time-dependent manners.Hydroxyzine (0.03-3 μmol/L) blocked both the steady-state and tail hERG currents.The block was voltage-dependent,and the values of IC50 for blocking the steady-state and tail currents at +20 mV was 0.18±0.02 μmol/L and 0.16±0.01 μmol/L,respectively,in HEK293 cells.Hydroxyzine (5 μmol/L) affected both the activated and the inactivated states of the channels,but not the closed state.The S6 domain mutation Y652A attenuated the blocking of hERG current by ~6-fold.Conclusion:The results suggest that hydroxyzine could block hERG channels and prolong APD.The tyrosine at position 652 in the channel may be responsible for the proarrhythmic effects of hydroxyzine.

  1. Nuclear translocation of the cardiac L-type calcium channel C-terminus is regulated by sex and 17β-estradiol.

    Science.gov (United States)

    Mahmoodzadeh, S; Haase, H; Sporbert, A; Rharass, T; Panáková, D; Morano, I

    2016-08-01

    The cardiac voltage gated l-type Ca(2+) channel (Cav1.2) constitutes the main entrance gate for Ca(2+) that triggers cardiac contraction. Several studies showed that the distal C-terminus fragment of Cav1.2 α1C subunit (α1C-dCT) is proteolytically cleaved and shuttles between the plasma membrane and the nucleus, which is regulated both developmentally and by Ca(2+). However, the effects of sex and sex hormone 17β-estradiol (E2, estrogen) on α1C-dCT nuclear translocation are still unexplored. To investigate the sexual disparity in the α1C-dCT nuclear translocation, we first generated an antibody directed against a synthetic peptide (GRRASFHLE) located in α1C-dCT, and used it to probe ventricular myocytes from adult female and male mice. Immunocytochemistry of isolated mouse primary adult ventricular myocytes revealed both nuclear staining and cytosolic punctuate staining around the T-tubules. The ratio of nuclear to cytosolic intensity (Inuc/Icyt) was significantly higher in isolated female cardiomyocytes (1.42±0.05) compared to male cardiomyocytes (1.05±0.02). Western blot analysis of nuclear fraction confirmed these data. Furthermore, we found a significant decrease in nuclear staining intensity of α1C-dCT in both female and male cardiomyocytes upon serum withdrawal for 18h (Inuc/Icyt 1.05±0.02 and 0.89±0.02, respectively). Interestingly, subsequent E2 treatment (10(-8)M) for 8h normalized the intracellular distribution of α1C-dCT in male cardiomyocytes (Inuc/Icyt 1.04±0.02), but not in female cardiomyocytes. Acute treatment of male cardiomyocytes with E2 for 45min revealed a similar effect. This effect of E2 was revised by ICI indicating the involvement of ER in this signaling pathway. Taken together, our results showed that the shuttling of α1C-CT in cardiomyocytes is regulated in a sex-dependent manner, and E2-activated ER may play a role in the nuclear shuttling of α1C-dCT in male cardiomyocytes. This may explain, at least partly, the observed

  2. Diazoxide Attenuates Postresuscitation Brain Injury in a Rat Model of Asphyxial Cardiac Arrest by Opening Mitochondrial ATP-Sensitive Potassium Channels.

    Science.gov (United States)

    Wu, Haidong; Wang, Peng; Li, Yi; Wu, Manhui; Lin, Jiali; Huang, Zitong

    2016-01-01

    Objective. We investigated whether and how diazoxide can attenuate brain injury after cardiopulmonary resuscitation (CPR) by selective opening of mitochondrial ATP-sensitive potassium (mitoKATP) channels. Methods. Adult male Sprague-Dawley rats with induced cerebral ischemia (n = 10 per group) received an intraperitoneal injection of 0.1% dimethyl sulfoxide (1 mL; vehicle group), diazoxide (10 mg/kg; DZ group), or diazoxide (10 mg/kg) plus 5-hydroxydecanoate (5 mg/kg; DZ + 5-HD group) 30 min after CPR. The control group (sham group, n = 5) underwent sham operation, without cardiac arrest. Mitochondrial respiratory control rate (RCR) was determined. Brain cell apoptosis was assessed using TUNEL staining. Expression of Bcl-2, Bax, and protein kinase C epsilon (PKCε) in the cerebral cortex was determined by Western blotting and immunohistochemistry. Results. The neurological deficit scores (NDS) in the vehicle group decreased significantly at 24 h and 48 h after CPR. Diazoxide significantly improved NDS and mitochondrial RCR after CPR at both time points; 5-HD cotreatment abolished these effects. Diazoxide decreased TUNEL-positive cells following CPR, upregulated Bcl-2 and PKCε, downregulated Bax, and increased the Bcl-2/Bax ratio; 5-HD cotreatment reversed these effects. Conclusions. Diazoxide attenuates postresuscitation brain injury, protects mitochondrial function, inhibits brain cell apoptosis, and activates the PKC pathway by opening mitoKATP channels. PMID:27648441

  3. Establishment and application of Kuosheng BWR/6 channel flow stability map with RETRANO2/MOD5 code

    International Nuclear Information System (INIS)

    The primary objective of this paper is to determine the channel flow stability map using the RETRAN02/MOD5 code under natural circulation conditions for the Kuosheng Nuclear Power Plant (KNPP). Meanwhile, two transient loci of a KNPP recirculation pump trip (RPT) with decreasing feedwater enthalpy are also drawn on the stability map to assess whether such power oscillation phenomena as the LaSalle-2 event may occur at KNPP. To avoid numerical oscillation of flow stability in time domain analysis, several sensitivity studies are also carried out. The results indicate that both transient loci have sufficient stability margins to unstable boundaries and reveal that KNPP's operations will be stable under such RPT's with decreasing feedwater enthalpy transients. (author)

  4. Fluoride Induces a Volume Reduction in CA1 Hippocampal Slices Via MAP Kinase Pathway Through Volume Regulated Anion Channels.

    Science.gov (United States)

    Lee, Jaekwang; Han, Young-Eun; Favorov, Oleg; Tommerdahl, Mark; Whitsel, Barry; Lee, C Justin

    2016-04-01

    Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicity. It has been also described that sodium fluoride (NaF), a recognized G-protein activator and protein phosphatase inhibitor, leads to a significant MAP kinase activation in endothelial cells. However, NaF's effect in volume regulation in the brain is not known yet. Here, we investigated the mechanism of NaF-induced volume change in rat and mouse hippocampal slices using intrinsic optical signal (IOS) recording, in which we measured relative changes in intracellular and extracellular volume as changes in light transmittance through brain slices. We found that NaF (1~5 mM) application induced a reduction in light transmittance (decreased volume) in CA1 hippocampus, which was completely reversed by MAP kinase inhibitor U0126 (10 µM). We also observed that NaF-induced volume reduction was blocked by anion channel blockers, suggesting that NaF-induced volume reduction could be mediated by VRAC. Overall, our results propose a novel molecular mechanism of NaF-induced volume reduction via MAP kinase signaling pathway by activation of VRAC. PMID:27122993

  5. Fluoride Induces a Volume Reduction in CA1 Hippocampal Slices Via MAP Kinase Pathway Through Volume Regulated Anion Channels

    Science.gov (United States)

    Lee, Jaekwang; Han, Young-Eun; Favorov, Oleg; Tommerdahl, Mark; Whitsel, Barry

    2016-01-01

    Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicity. It has been also described that sodium fluoride (NaF), a recognized G-protein activator and protein phosphatase inhibitor, leads to a significant MAP kinase activation in endothelial cells. However, NaF's effect in volume regulation in the brain is not known yet. Here, we investigated the mechanism of NaF-induced volume change in rat and mouse hippocampal slices using intrinsic optical signal (IOS) recording, in which we measured relative changes in intracellular and extracellular volume as changes in light transmittance through brain slices. We found that NaF (1~5 mM) application induced a reduction in light transmittance (decreased volume) in CA1 hippocampus, which was completely reversed by MAP kinase inhibitor U0126 (10 µM). We also observed that NaF-induced volume reduction was blocked by anion channel blockers, suggesting that NaF-induced volume reduction could be mediated by VRAC. Overall, our results propose a novel molecular mechanism of NaF-induced volume reduction via MAP kinase signaling pathway by activation of VRAC. PMID:27122993

  6. A cost-effective laser scanning method for mapping stream channel geometry and roughness

    Science.gov (United States)

    Lam, Norris; Nathanson, Marcus; Lundgren, Niclas; Rehnström, Robin; Lyon, Steve

    2015-04-01

    In this pilot project, we combine an Arduino Uno and SICK LMS111 outdoor laser ranging camera to acquire high resolution topographic area scans for a stream channel. The microprocessor and imaging system was installed in a custom gondola and suspended from a wire cable system. To demonstrate the systems capabilities for capturing stream channel topography, a small stream (stream channel resulted in a point spacing of 4mm and a point cloud density of 5600 points/m2 for the 5m by 2m area. A grain size distribution of the streambed material was extracted from the point cloud using a moving window, local maxima search algorithm. The median, 84th and 90th percentiles (common metrics to describe channel roughness) of this distribution were found to be within the range of measured values while the largest modelled element was approximately 35% smaller than its measured counterpart. The laser scanning system captured grain sizes between 30mm and 255mm (coarse gravel/pebbles and boulders based on the Wentworth (1922) scale). This demonstrates that our system was capable of resolving both large-scale geometry (e.g. bed slope and stream channel width) and small-scale channel roughness elements (e.g. coarse gravel/pebbles and boulders) for the study area. We further show that the point cloud resolution is suitable for estimating ecohydraulic parameters such as Manning's n and hydraulic radius. Although more work is needed to fine-tune our system's design, these preliminary results are encouraging, specifically for those with a limited operational budget.

  7. 超极化活化环核苷酸门孔通道与心脏生物起搏器(第二部分)%Hyperpolarization-activated Cyclic nucleotide-gated Channel and Cardiac Biological Pacemaker: Part Ⅱ

    Institute of Scientific and Technical Information of China (English)

    萧永福

    2005-01-01

    Abstract Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels in the heart modulate cardiac automaticity via the hyperpolarization-activated cation current (named If, Ih, or Iq ).Recent studies have unveiled the molecular identity of HCN (HCN14) channels. HCN isoforms are unevenly expressed in the heart, even in the sinoatrial node. Features of HCN currents have been characterized in cardiac and other types of cells or in cell lines transfected with the HCN isoforms. The factors modulating Ih and the physiological significance of HCN channels in the heart have been extensively investigated in recent years. The hypothesis for transplanting and/or creating biological pacemakers to replace diseased sinoatrial and/or atrioventricular nodes has been postulated and tested in animal models. Local overexpression of HCN2 channels in the left atrium or in the left conductive bundle branch of the left ventricle via gene delivery induced significant Ih and escape rhythms during vagal stimulation in canines. In addition, implantation of human mesenchymal stem cells with overexpression of HCN2 channels to the canine left ventricular wall was associated with formation of spontaneous escape rhythms of left-sided origin during vagal-stimulation-induced sinus arrest. This preliminary data suggest that the use of HCN channels may hold great promise in the development of biological pacemakers.

  8. Kandlikar third number map for flow boiling in micro-channels and micro-gravity

    Directory of Open Access Journals (Sweden)

    Awad M.M.

    2015-01-01

    Full Text Available As an extension of the recent work of Baldassari and Marengo (Baldassari C., Marengo M., Flow Boiling in Microchannels and Microgravity, Progress in Energy and Combustion Science 39 (2013 1, pp. 1-36, this note presents Kandlikar third number (K3 map for flow boiling in microchannels and microgravity. Using several data points available in the literature, Kandlikar third number (K3 map was plotted versus the hydraulic diameter (dh as the characteristic dimension for flow boiling in microchannels and microgravity. The ranges of the Kandlikar third number (K3, calculated using the hydraulic diameter (dh, are presented.

  9. Optimized AIR and investigational MOLLI cardiac T1 mapping pulse sequences produce similar intra-scan repeatability in patients at 3T.

    Science.gov (United States)

    Hong, KyungPyo; Collins, Jeremy; Lee, Daniel C; Wilcox, Jane E; Markl, Michael; Carr, James; Kim, Daniel

    2016-10-01

    This study was conducted to improve the precision of arrhythmia-insensitive rapid (AIR) cardiac T1 mapping through pulse sequence optimization and then evaluate the intra-scan repeatability in patients at 3T against investigational modified Look-Locker inversion recovery (MOLLI) T1 mapping. In the first development phase (five human subjects), we implemented and tested centric-pair k-space ordering to suppress image artifacts associated with eddy currents. In the second development phase (15 human subjects), we determined optimal flip angles to reduce the measurement variation in T1 maps. In the validation phase (35 patients), we compared the intra-scan repeatability between investigational MOLLI and optimized AIR. In 23 cardiac planes, conventional centric k-space ordering (3.7%) produced significantly (p variation while producing results that are not significantly different from those produced with the previously used flip angle of 35° (p > 0.89, intra-class correlation coefficient ≥ 0.95 for all four measurement types). Compared with investigational MOLLI (coefficient of repeatability, CR = 40.0, 77.2, 26.5, and 25.9 ms for native myocardial, native blood, post-contrast myocardial, and post-contrast blood T1 , and 2.0% for extracellular volume (ECV) measurements, respectively), optimized AIR (CR = 54.3, 89.7, 30.5, and 14.7 ms for native myocardial, native blood, post-contrast myocardial, and post-contrast blood T1 , and 1.6% for ECV measurements, respectively) produced similar absolute intra-scan repeatability in all 35 patients in the validation phase. High repeatability is critically important for longitudinal studies, where the goal is to monitor physiologic/pathologic changes, not measurement variation. Optimized AIR cardiac T1 mapping is likely to yield high scan-retest repeatability for pre-clinical and clinical applications. PMID:27593977

  10. Preprocessing of multispectral data and simulation of ERTS data channels to make computer terrain maps of a Yellowstone National Park test site

    Science.gov (United States)

    Smedes, H. W.; Spencer, M. M.; Thomson, F. J.

    1970-01-01

    The possibility of improving the accuracy of terrain classification by preprocessing spectral data was investigated. Terrain maps were made using the following techniques: 1) preprocessing by scan angle function transformation, using the computer-selected best set of three channels; and 2) preprocessing by ratio transformation, using the specified ERTS data channels, simulated by fitting the spectral response of each of the 12 data channels to the ERTS channels by a set of weighting coefficients. By using a simple technique during printout, the maps were produced in color. The normalized scan angle function transformation resulted in the most accurate classification. The best ratio transformation for the Yellowstone Park data was the ratio of each channel to the sum of all channels. A supervised training program involving maximum likelihood decision for selecting the best spectrometer channels and similar techniques for digitizing the data of the analog magnetic tapes were used. Cloud shadows were recognized in addition to eight classes of terrain. Preprocessing of data resulted in more accurate maps, required fewer training areas (hence less preparation and computer time), and enabled much of the area formerly classified as shadow to be reclassified according to actual terrain type.

  11. 16-Channel surface coil for 13C-hyperpolarized spectroscopic imaging of cardiac metabolism in pig heart

    DEFF Research Database (Denmark)

    Frijia, Francesca; Santarelli, Maria Filomena; Koellisch, Ulrich;

    2016-01-01

    limitation due to the low molar concentration of certain metabolites as well as the low flux of conversion. Since 13C-MRS is essentially a semi-quantitative technique, the SNR of the spectra acquired in different myocardial segments should be homogeneous. MRS coil design plays an important role in achieving...... both targets. In this study, a 16-channel receive surface coil was designed for 13C hyperpolarized studies of the pig heart with a clinical 3-T scanner. The coil performance was characterized by phantom experiments and compared with that of a birdcage coil used in transmit/receive mode. Segmental...... signal distribution in the left ventricle (LV) was assessed by experiments on six healthy mini pigs. The proposed coil showed a significant increase in SNR for the LV wall close to the coil surface with respect to that for the birdcage but also significant segmental inhomogeneity. Hence, the use...

  12. Nesfatin-1 Suppresses Cardiac L-type Ca2+ Channels Through Melanocortin Type 4 Receptor and the Novel Protein Kinase C Theta Isoform Pathway

    Directory of Open Access Journals (Sweden)

    Jiaoqian Ying

    2015-05-01

    Full Text Available Background/Aims: Nesfatin-1 (NF-1, an anorexic nucleobindin-2 (NUCB2-derived hypothalamic peptide, acts as a peripheral cardiac modulator and it can induce negative inotropic effects. However, the mechanisms underlying these effects in cardiomyocytes remain unclear. Methods: Using patch clamp, protein kinase assays, and western blot analysis, we studied the effect of NF-1 on L-type Ca2+ currents (ICa,L and to explore the regulatory mechanisms of this effect in adult ventricular myocytes. Results: NF-1 reversibly decreased ICa,L in a dose-dependent manner. This effect was mediated by melanocortin 4 receptor (MC4-R and was associated with a hyperpolarizing shift in the voltage-dependence of inactivation. Dialysis of cells with GDP-β-S or anti-Gβ antibody as well as pertussis toxin pretreatment abolished the inhibitory effects of NF-1 on ICa,L. Protein kinase C (PKC antagonists abolished NF-1-induced responses, whereas inhibition of PKA activity or intracellular application of the fast Ca2+-chelator BAPTA elicited no such effects. Application of NF-1 increased membrane abundance of PKC theta isoform (PKCθ, and PKCθ inhibition abolished the decrease in ICa,L induced by NF-1. Conclusion: These data suggest that NF-1 suppresses L-type Ca2+ channels via the MC4-R that couples sequentially to the βγ subunits of Gi/o-protein and the novel PKCθ isoform in adult ventricular myocytes.

  13. Improving soft FEC performance for higher-order modulations via optimized bit channel mappings.

    Science.gov (United States)

    Häger, Christian; Amat, Alexandre Graell I; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik

    2014-06-16

    Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity. PMID:24977550

  14. Estimation of the parameter covariance matrix for aone-compartment cardiac perfusion model estimated from a dynamic sequencereconstructed using map iterative reconstruction algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, Grant T.; Huesman, Ronald H.; Reutter, Bryan W.; Qi,Jinyi; Ghosh Roy, Dilip N.

    2004-01-01

    In dynamic cardiac SPECT estimates of kinetic parameters ofa one-compartment perfusion model are usually obtained in a two stepprocess: 1) first a MAP iterative algorithm, which properly models thePoisson statistics and the physics of the data acquisition, reconstructsa sequence of dynamic reconstructions, 2) then kinetic parameters areestimated from time activity curves generated from the dynamicreconstructions. This paper provides a method for calculating thecovariance matrix of the kinetic parameters, which are determined usingweighted least squares fitting that incorporates the estimated varianceand covariance of the dynamic reconstructions. For each transaxial slicesets of sequential tomographic projections are reconstructed into asequence of transaxial reconstructions usingfor each reconstruction inthe time sequence an iterative MAP reconstruction to calculate themaximum a priori reconstructed estimate. Time-activity curves for a sumof activity in a blood region inside the left ventricle and a sum in acardiac tissue region are generated. Also, curves for the variance of thetwo estimates of the sum and for the covariance between the two ROIestimates are generated as a function of time at convergence using anexpression obtained from the fixed-point solution of the statisticalerror of the reconstruction. A one-compartment model is fit to the tissueactivity curves assuming a noisy blood input function to give weightedleast squares estimates of blood volume fraction, wash-in and wash-outrate constants specifying the kinetics of 99mTc-teboroxime for theleftventricular myocardium. Numerical methods are used to calculate thesecond derivative of the chi-square criterion to obtain estimates of thecovariance matrix for the weighted least square parameter estimates. Eventhough the method requires one matrix inverse for each time interval oftomographic acquisition, efficient estimates of the tissue kineticparameters in a dynamic cardiac SPECT study can be obtained with

  15. High-density interspecific genetic linkage mapping provides insights into genomic incompatibility between channel catfish and blue catfish.

    Science.gov (United States)

    Liu, S; Li, Y; Qin, Z; Geng, X; Bao, L; Kaltenboeck, L; Kucuktas, H; Dunham, R; Liu, Z

    2016-02-01

    Catfish is the leading aquaculture species in the United States. The interspecific hybrid catfish produced by mating female channel catfish with male blue catfish outperform both of their parent species in a number of traits. However, mass production of the hybrids has been difficult because of reproductive isolation. Investigations of genome structure and organization of the hybrids provide insights into the genetic basis for maintenance of species divergence in the face of gene flow, thereby helping develop strategies for introgression and efficient production of the hybrids for aquaculture. In this study, we constructed a high-density genetic linkage map using the hybrid catfish system with the catfish 250K SNP array. A total of 26,238 SNPs were mapped to 29 linkage groups, with 12,776 unique marker positions. The linkage map spans approximately 3240 cM with an average intermarker distance of 0.25 cM. A fraction of markers (986 of 12,776) exhibited significant deviation from the expected Mendelian ratio of segregation, and they were clustered in major genomic blocks across 15 LGs, most notably LG9 and LG15. The distorted markers exhibited significant bias for maternal alleles among the backcross progenies, suggesting strong selection against the blue catfish alleles. The clustering of distorted markers within genomic blocks should lend insights into speciation as marked by incompatibilities between the two species. Such findings should also have profound implications for understanding the genomic evolution of closely related species as well as the introgression of hybrid production programs in aquaculture.

  16. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  17. Evaluation of the channelized Hotelling observer with an internal-noise model in a train-test paradigm for cardiac SPECT defect detection

    Science.gov (United States)

    Brankov, Jovan G.

    2013-10-01

    The channelized Hotelling observer (CHO) has become a widely used approach for evaluating medical image quality, acting as a surrogate for human observers in early-stage research on assessment and optimization of imaging devices and algorithms. The CHO is typically used to measure lesion detectability. Its popularity stems from experiments showing that the CHO's detection performance can correlate well with that of human observers. In some cases, CHO performance overestimates human performance; to counteract this effect, an internal-noise model is introduced, which allows the CHO to be tuned to match human-observer performance. Typically, this tuning is achieved using example data obtained from human observers. We argue that this internal-noise tuning step is essentially a model training exercise; therefore, just as in supervised learning, it is essential to test the CHO with an internal-noise model on a set of data that is distinct from that used to tune (train) the model. Furthermore, we argue that, if the CHO is to provide useful insights about new imaging algorithms or devices, the test data should reflect such potential differences from the training data; it is not sufficient simply to use new noise realizations of the same imaging method. Motivated by these considerations, the novelty of this paper is the use of new model selection criteria to evaluate ten established internal-noise models, utilizing four different channel models, in a train-test approach. Though not the focus of the paper, a new internal-noise model is also proposed that outperformed the ten established models in the cases tested. The results, using cardiac perfusion SPECT data, show that the proposed train-test approach is necessary, as judged by the newly proposed model selection criteria, to avoid spurious conclusions. The results also demonstrate that, in some models, the optimal internal-noise parameter is very sensitive to the choice of training data; therefore, these models are prone

  18. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)

    2014-09-15

    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  19. Cardiac metabolism and arrhythmias

    OpenAIRE

    Barth, Andreas S.; Tomaselli, Gordon F.

    2009-01-01

    Sudden cardiac death remains a leading cause of mortality in the Western world, accounting for up to 20% of all deaths in the U.S.1, 2 The major causes of sudden cardiac death in adults age 35 and older are coronary artery disease (70–80%) and dilated cardiomyopathy (10–15%).3 At the molecular level, a wide variety of mechanisms contribute to arrhythmias that cause sudden cardiac death, ranging from genetic predisposition (rare mutations and common polymorphisms in ion channels and structural...

  20. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone

    Science.gov (United States)

    Lea, Devin M.; Legleiter, Carl J.

    2016-01-01

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study sought to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8-km reach. Aerial photographs from 1994 to 2012 and ground-based surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and DEM developed from LiDAR data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Collectively, we refer to these methods as the stream power gradient (SPG) framework. The results of this study were compromised by methodological limitations of the SPG framework and revealed some complications likely to arise when applying this framework to small, wandering, gravel-bed rivers. Correlations between stream power gradients and sediment flux were generally weak, highlighting the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote

  1. THE ROLE OF MAP1A LIGHT CHAIN 2 IN SYNAPTIC SURFACE RETENTION OF CAV2.2 CHANNELS IN HIPPOCAMPAL NEURONS

    OpenAIRE

    Leenders, AG Miriam; Lin, Lin; Huang, Li-Dong; Gerwin, Claudia; Lu, Pei-Hua; Sheng, Zu-Hang

    2008-01-01

    Cav2.2 channels are localized at nerve terminals where they play a critical role in neurotransmission. However, the determinant that controls surface retention of these channels has not been identified. Here, we report that presynaptic surface localization of Cav2.2 is mediated through its interaction with light chain 2 (LC2) of microtubule-associated protein MAP1A. Deletion of a 23-residue binding-domain (BD) within the Cav2.2 C-terminus resulted in reduced synaptic distribution of the mutan...

  2. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raffel, David M. E-mail: raffel@umich.edu; Wieland, Donald M

    2001-07-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation.

  3. Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography

    OpenAIRE

    Claude Flener; Matti Vaaja; Anttoni Jaakkola; Anssi Krooks; Harri Kaartinen; Antero Kukko; Elina Kasvi; Hannu Hyyppä; Juha Hyyppä; Petteri Alho

    2013-01-01

    Accurate terrain models are a crucial component of studies of river channel evolution. In this paper we describe a new methodology for creating high-resolution seamless digital terrain models (DTM) of river channels and their floodplains. We combine mobile laser scanning and low-altitude unmanned aerial vehicle (UAV) photography-based methods for creating both a digital bathymetric model of the inundated river channel and a DTM of a point bar of a meandering sub-arctic river. We evaluate mobi...

  4. Cardiac arrest

    Science.gov (United States)

    ... Article.jsp. Accessed June 16, 2014. Myerburg RJ, Castellanos A. Approach to cardiac arrest and life-threatening ... PA: Elsevier Saunders; 2011:chap 63. Myerburg RJ, Castellanos A. Cardiac arrest and audden aardiac death. In: ...

  5. Predicting the onset of period-doubling bifurcations in noisy cardiac systems.

    Science.gov (United States)

    Quail, Thomas; Shrier, Alvin; Glass, Leon

    2015-07-28

    Biological, physical, and social systems often display qualitative changes in dynamics. Developing early warning signals to predict the onset of these transitions is an important goal. The current work is motivated by transitions of cardiac rhythms, where the appearance of alternating features in the timing of cardiac events is often a precursor to the initiation of serious cardiac arrhythmias. We treat embryonic chick cardiac cells with a potassium channel blocker, which leads to the initiation of alternating rhythms. We associate this transition with a mathematical instability, called a period-doubling bifurcation, in a model of the cardiac cells. Period-doubling bifurcations have been linked to the onset of abnormal alternating cardiac rhythms, which have been implicated in cardiac arrhythmias such as T-wave alternans and various tachycardias. Theory predicts that in the neighborhood of the transition, the system's dynamics slow down, leading to noise amplification and the manifestation of oscillations in the autocorrelation function. Examining the aggregates' interbeat intervals, we observe the oscillations in the autocorrelation function and noise amplification preceding the bifurcation. We analyze plots--termed return maps--that relate the current interbeat interval with the following interbeat interval. Based on these plots, we develop a quantitative measure using the slope of the return map to assess how close the system is to the bifurcation. Furthermore, the slope of the return map and the lag-1 autocorrelation coefficient are equal. Our results suggest that the slope and the lag-1 autocorrelation coefficient represent quantitative measures to predict the onset of abnormal alternating cardiac rhythms.

  6. Cardiac applications of optogenetics.

    Science.gov (United States)

    Ambrosi, Christina M; Klimas, Aleksandra; Yu, Jinzhu; Entcheva, Emilia

    2014-08-01

    In complex multicellular systems, such as the brain or the heart, the ability to selectively perturb and observe the response of individual components at the cellular level and with millisecond resolution in time, is essential for mechanistic understanding of function. Optogenetics uses genetic encoding of light sensitivity (by the expression of microbial opsins) to provide such capabilities for manipulation, recording, and control by light with cell specificity and high spatiotemporal resolution. As an optical approach, it is inherently scalable for remote and parallel interrogation of biological function at the tissue level; with implantable miniaturized devices, the technique is uniquely suitable for in vivo tracking of function, as illustrated by numerous applications in the brain. Its expansion into the cardiac area has been slow. Here, using examples from published research and original data, we focus on optogenetics applications to cardiac electrophysiology, specifically dealing with the ability to manipulate membrane voltage by light with implications for cardiac pacing, cardioversion, cell communication, and arrhythmia research, in general. We discuss gene and cell delivery methods of inscribing light sensitivity in cardiac tissue, functionality of the light-sensitive ion channels within different types of cardiac cells, utility in probing electrical coupling between different cell types, approaches and design solutions to all-optical electrophysiology by the combination of optogenetic sensors and actuators, and specific challenges in moving towards in vivo cardiac optogenetics.

  7. Gap Analysis of Benthic Mapping at Three National Parks: Assateague Island National Seashore, Channel Islands National Park, and Sleeping Bear Dunes National Lakeshore

    Science.gov (United States)

    Rose, Kathryn V.; Nayegandhi, Amar; Moses, Christopher S.; Beavers, Rebecca; Lavoie, Dawn; Brock, John C.

    2012-01-01

    The National Park Service (NPS) Inventory and Monitoring (I&M) Program initiated a benthic habitat mapping program in ocean and coastal parks in 2008-2009 in alignment with the NPS Ocean Park Stewardship 2007-2008 Action Plan. With more than 80 ocean and Great Lakes parks encompassing approximately 2.5 million acres of submerged territory and approximately 12,000 miles of coastline (Curdts, 2011), this Servicewide Benthic Mapping Program (SBMP) is essential. This report presents an initial gap analysis of three pilot parks under the SBMP: Assateague Island National Seashore (ASIS), Channel Islands National Park (CHIS), and Sleeping Bear Dunes National Lakeshore (SLBE) (fig. 1). The recommended SBMP protocols include servicewide standards (for example, gap analysis, minimum accuracy, final products) as well as standards that can be adapted to fit network and park unit needs (for example, minimum mapping unit, mapping priorities). The SBMP requires the inventory and mapping of critical components of coastal and marine ecosystems: bathymetry, geoforms, surface geology, and biotic cover. In order for a park unit benthic inventory to be considered complete, maps of bathymetry and other key components must be combined into a final report (Moses and others, 2010). By this standard, none of the three pilot parks are mapped (inventoried) to completion with respect to submerged resources. After compiling the existing benthic datasets for these parks, this report has concluded that CHIS, with 49 percent of its submerged area mapped, has the most complete benthic inventory of the three. The ASIS submerged inventory is 41 percent complete, and SLBE is 17.5 percent complete.

  8. Genetic contribution to iron status: SNPs related to iron deficiency anaemia and fine mapping of CACNA2D3 calcium channel subunit.

    Science.gov (United States)

    Baeza-Richer, Carlos; Arroyo-Pardo, Eduardo; Blanco-Rojo, Ruth; Toxqui, Laura; Remacha, Angel; Vaquero, M Pilar; López-Parra, Ana M

    2015-12-01

    Numerous studies associate genetic markers with iron- and erythrocyte-related parameters, but few relate them to iron-clinical phenotypes. Novel SNP rs1375515, located in a subunit of the calcium channel gene CACNA2D3, is associated with a higher risk of anaemia. The aim of this study is to further investigate the association of this SNP with iron-related parameters and iron-clinical phenotypes, and to explore the potential role of calcium channel subunit region in iron regulation. Furthermore, we aim to replicate the association of other SNPs reported previously in our population. We tested 45 SNPs selected via systematic review and fine mapping of CACNA2D3 region, with haematological and biochemical traits in 358 women of reproductive age. Multivariate analyses include back-step logistic regression and decision trees. The results replicate the association of SNPs with iron-related traits, and also confirm the protective effect of both A allele of rs1800562 (HFE) and G allele of rs4895441 (HBS1L-MYB). The risk of developing anaemia is increased in reproductive age women carriers of A allele of rs1868505 (CACNA2D3) and/or T allele of rs13194491 (HIST1H2BJ). Association of SNPs from fine mapping with ferritin and serum iron suggests that calcium channels could be a potential pathway for iron uptake in physiological conditions.

  9. Strain Mapping and Nanocrystallite Size Determination by Neutron Diffraction in an Aluminum Alloy (AA5083) Severely Plastically Deformed through Equal Channel Angular Pressing

    OpenAIRE

    González Crespo, P. A.; C. Luis Pérez; Hughes, Darren J.; Turrillas, X.

    2013-01-01

    Six specimens of an aluminum alloy (AA-5083) extruded by Equal Channel Angular Pressing following two different routes plus a blank sample were examined with a neutron radiation of 1.5448 Å. Macrostrain maps from the (311) reflection were obtained. A clear difference about accumulated macrostrain with the extrusion cycles between the two routes is shown. The diffraction data of annealed specimens did permit to estimate crystallite sizes that range between 89 nm and 115 nm depending on the rou...

  10. Strain Mapping and Nanocrystallite Size Determination by Neutron Diffraction in an Aluminum Alloy (AA5083 Severely Plastically Deformed through Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    P. A. González Crespo

    2013-01-01

    Full Text Available Six specimens of an aluminum alloy (AA-5083 extruded by Equal Channel Angular Pressing following two different routes plus a blank sample were examined with a neutron radiation of 1.5448 Å. Macrostrain maps from the (311 reflection were obtained. A clear difference about accumulated macrostrain with the extrusion cycles between the two routes is shown. The diffraction data of annealed specimens did permit to estimate crystallite sizes that range between 89 nm and 115 nm depending on the routes.

  11. Map of percent scleractinian coral cover along camera tows and ROV tracks in the Auau Channel, Island of Maui, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry and landsat imagery. Optical data were...

  12. Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography

    Directory of Open Access Journals (Sweden)

    Claude Flener

    2013-11-01

    Full Text Available Accurate terrain models are a crucial component of studies of river channel evolution. In this paper we describe a new methodology for creating high-resolution seamless digital terrain models (DTM of river channels and their floodplains. We combine mobile laser scanning and low-altitude unmanned aerial vehicle (UAV photography-based methods for creating both a digital bathymetric model of the inundated river channel and a DTM of a point bar of a meandering sub-arctic river. We evaluate mobile laser scanning and UAV-based photogrammetry point clouds against terrestrial laser scanning and combine these data with an optical bathymetric model to create a seamless DTM of two different measurement periods. Using this multi-temporal seamless data, we calculate a DTM of difference that allows a change detection of the meander bend over a one-year period.

  13. Cardiac Malpositions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Shi Joon; Im, Chung Gie; Yeon, Kyung Mo; Hasn, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    Cardiac Malposition refers to any position of the heart other than a left-sided heart in a situs solitus individual. Associated cardiac malformations are so complex that even angiocardiographic and autopsy studies may not afford an accurate information. Although the terms and classifications used to describe the internal cardiac anatomy and their arterial connections in cardiac malpositions differ and tend to be confusing, common agreement exists on the need for a segmental approach to diagnosis. Authors present 18 cases of cardiac malpositions in which cardiac catheterization and angiocardiography were done at the Department of Radiology, Seoul National University Hospital between 1971 and 1979. Authors analyzed the clinical, radiographic, operative and autopsy findings with the emphasis on the angiocardiographic findings. The results are as follows: 1. Among 18 cases with cardiac malpositions, 6 cases had dextrocardia with situs inversus, 9 cases had dextrocardia with situs solitus and 3 cases had levocardia with situs inversus. 2. There was no genuine exception to visceroatrial concordance rule. 3. Associated cardiac malpositions were variable and complex with a tendency of high association of transposition and double outlet varieties with dextrocardia in situs solitus and levocardia in situs inversus. Only one in 6 cases of dextrocardia with situs inversus had pure transposition. 4. In two cases associated pulmonary atresia was found at surgery which was not predicted by angiocardiography. 5. Because many of the associated complex lesions can be corrected surgically provided the diagnosis is accurate, the selective biplane angiocardiography with or without cineradiography is essential.

  14. Mapping Atrial Fibrillation: 2015 Update

    OpenAIRE

    Chirag R. Barbhayia; Saurabh Kumar; Gregory F. Michaud

    2015-01-01

    Atrial fibrillation requires a trigger that initiates the arrhythmia and substrate that favors perpetuation. Cardiac mapping is necessary to locate triggers and substrate so that an ablation strategy can be optimized. The most commonly used cardiac mapping approach is isochronal or activation mapping, which aims to create a spatial model of electrical wavefront propagation. Historically, activation mapping has been successful for mapping point source and single or double wave reentrant arr...

  15. Mapping convulsants’ binding to the GABA-A receptor chloride ionophore: a proposed model for channel binding sites

    OpenAIRE

    Kalueff, A.V.

    2006-01-01

    Gamma aminobutyric acid (GABA) type A receptors play a key role in brain inhibitory neurotransmission, and are ligand-activated chloride channels blocked by numerous convulsant ligands. Here we summarize data on binding of picrotoxin, tetrazoles, β-lactams, bicyclophosphates, butyrolactones and neurotoxic pesticides to GABA-A ionophore, and discuss functional and structural overlapping of their binding sites. The paper reviews data on convulsants’ binding sensitivity to different point mutati...

  16. Management of cardiac fibrosis in diabetic rats; the role of peroxisome proliferator activated receptor gamma (PPAR-gamma and calcium channel blockers (CCBs

    Directory of Open Access Journals (Sweden)

    Mohamad Hoda E

    2011-03-01

    Full Text Available Abstract Background Diabetes mellitus (DM and hypertension (HTN are accused of being responsible for the development of the cardiac fibrosis due to severe cardiomyopathy. Methods Blood glucose (BG test was carried out, lipid concentrations, tumor necrosis factor alpha (TNF-α, transforming growth factor beta (TGF-β, matrix metalloproteinase (MMP-2, collagen-I and collagen-III were measured in male Albino rats weighing 179-219 g. The rats were divided into five groups, kept on either control diet or high fat diet (HFD, and simultaneously treated with rosiglitazone (PPAR-gamma only for one group with 3 mg/kg/day via oral route for 30 days, and with rosiglitazone and felodipine combination for another group with 3 mg/kg/day and 5 mg/kg/day, respectively via oral route for 30 days. Results Diabetic hypertensive (DH rats which fed on a HFD, injected with streptozotocin (STZ (i.p. and obstruction for its right kidney was occurred develop hyperglycemia, hypertension, cardiac fibrosis, hypertriglyceridemia, hypercholesterolemia, increased TNF-α, increased TGF-β, decreased MMP-2, increased collagen-I and increased collagen-III, when compared to rats fed on control diet. Treating the DH rats with rosiglitazone only causes a significant decrease for BG levels by 52.79%, triglycerides (TGs by 24.05%, total cholesterol (T-Chol by 30.23%, low density lipoprotein cholesterol (LDL-C by 40.53%, TNF-α by 20.81%, TGF-β by 46.54%, collagen-I by 48.11% and collagen-III by 53.85% but causes a significant increase for MMP-2 by 272.73%. Moreover, Treating the DH rats with rosiglitazone and felodipine combination causes a significant decrease for BG levels by 61.08%, blood pressure (BP by 16.78%, TGs by 23.80%, T-Chol by 33.27%, LDL-C by 45.18%, TNF-α by 22.82%, TGF-β by 49.31%, collagen-I by 64.15% and collagen-III by 53.85% but causes a significant increase for MMP-2 by 290.91%. Rosiglitazone alone failed to decrease the BP in DH rats in the current dosage and

  17. 绿色通道在青年心脏骤停患者急救中应用的效果%Application effects of green channel emergency care on young patients with cardiac arrest

    Institute of Scientific and Technical Information of China (English)

    陈丹; 黄海燕

    2016-01-01

    Objective To explore the value of applying green channel emergency care on young patients with cardiac arrest. Methods A total of 130 young patients with cardiac arrest, who were admitted in the Emergency Department from January 2012 to December 2014, were selected as observation group;other 130 youngpatients, admitted from January 2009 to December 2011 were selected as control group. The patients of control group were given traditional model of emergency care, while the patients of observation group were intervened by the new mode of emergency care green channel. Emergency effects, short-term and long-term prognosis in both groups were compared. Results Time of transit, of staying in the emergency room, of auxiliary examination and time before surgery inside the hospital in the observation group were significantly shorter than that of the control group (P<0. 05). Rate of missed diagnosis, incidence of complications and mortality in the early stage in the observation group were significantly lower than that of the control group ( P<0. 05). Results of a 6-month follow-up investigation on the survivors in Emergency Department showed that the incidence of major cardiovascular events in the observation group was significantly lower than that of the control group (χ2 =42. 332,P <0. 01). Conclusions Application of green channel emergency care on young patients with cardiac arrest can save time, reduce rate of missed diagnosis, incidence of complications and mortality in the early stage, and improve long-term prognosis, which makes it worth promoting.%目的 探讨绿色通道急诊护理在青年心脏骤停患者中的应用价值.方法 选择2012年1月—2014年12月急诊科收治的青年心脏骤停患者130例作为观察组,2009年1月—2011年12月急诊科收治的青年心脏骤停患者130例作对照组,对照组给予传统模式进行急诊护理,观察组在新型绿色通道急诊护理模式下进行干预,观察两组的急诊治疗效果、短期

  18. Detection of cardiac biomarkers exploiting surface enhanced Raman scattering (SERS) using a nanofluidic channel based biosensor towards coronary point-of-care diagnostics

    Science.gov (United States)

    Benford, Melodie E.; Wang, Miao; Kameoka, Jun; Coté, Gerard L.

    2009-02-01

    According to the World Health Organization, cardiovascular disease is the most common cause of death in the world. In the US, over 115 million people visit the emergency department (ED), 5 million of which may have acute coronary syndrome (ACS). Cardiac biomarkers can provide early identification and diagnosis of ACS, and can provide information on the prognosis of the patient by assessing the risk of death. In addition, the biomarkers can serve as criteria for admission, indicate possibility of re-infarction, or eliminate ACS as a diagnosis altogether. We propose a SERSbased multi-marker approach towards a point-of-care diagnostic system for ACS. Using a nanofluidic device consisting of a microchannel leading into a nanochannel, we formed SERS active sites by mechanically aggregating gold particles (60 nm) at the entrance to the nanochannel (40nm×1μm). The induced capillary flow produces a high density of aggregated nanoparticles at this precise region, creating areas with enhanced electromagnetic fields within the aggregates, shifting the plasmon resonance to the near infrared region, in resonance with incident laser wavelength. With this robust sensing platform, we were able to obtain qualitative information of brain natriuretic peptide (biomarker of ventricular dysfunction or pulmonary stress), troponin I (biomarker of myocardial necrosis), and C-reactive protein (biomarker of inflammation potentially caused by atherosclerosis).

  19. Cardiac rehabilitation

    Science.gov (United States)

    ... attack or other heart problem. You might consider cardiac rehab if you have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery Heart transplant Procedures such as angioplasty and stenting In some ...

  20. Segmentation and profiling consumers in a multi-channel environment using a combination of self-organizing maps (SOM method, and logistic regression

    Directory of Open Access Journals (Sweden)

    Seyed Ali Akbar Afjeh

    2014-05-01

    Full Text Available Market segmentation plays essential role on understanding the behavior of people’s interests in purchasing various products and services through various channels. This paper presents an empirical investigation to shed light on consumer’s purchasing attitude as well as gathering information in multi-channel environment. The proposed study of this paper designed a questionnaire and distributed it among 800 people who were at least 18 years of age and had some experiences on purchasing goods and services on internet, catalog or regular shopping centers. Self-organizing map, SOM, clustering technique was performed based on consumer’s interest in gathering information as well as purchasing products through internet, catalog and shopping centers and determined four segments. There were two types of questions for the proposed study of this paper. The first group considered participants’ personal characteristics such as age, gender, income, etc. The second group of questions was associated with participants’ psychographic characteristics including price consciousness, quality consciousness, time pressure, etc. Using multinominal logistic regression technique, the study determines consumers’ behaviors in each four segments.

  1. Tissue and Animal Models of Sudden Cardiac Death

    OpenAIRE

    Sallam, Karim; Li, Yingxin; Sager, Philip T.; Steven R. Houser; Wu, Joseph C.

    2015-01-01

    Sudden Cardiac Death (SCD) is a common cause of death in patients with structural heart disease, genetic mutations or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with SCD. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology including ion channel expressi...

  2. Image based cardiac acceleration map using statistical shape and 3D+t myocardial tracking models; in-vitro study on heart phantom

    Science.gov (United States)

    Pashaei, Ali; Piella, Gemma; Planes, Xavier; Duchateau, Nicolas; de Caralt, Teresa M.; Sitges, Marta; Frangi, Alejandro F.

    2013-03-01

    It has been demonstrated that the acceleration signal has potential to monitor heart function and adaptively optimize Cardiac Resynchronization Therapy (CRT) systems. In this paper, we propose a non-invasive method for computing myocardial acceleration from 3D echocardiographic sequences. Displacement of the myocardium was estimated using a two-step approach: (1) 3D automatic segmentation of the myocardium at end-diastole using 3D Active Shape Models (ASM); (2) propagation of this segmentation along the sequence using non-rigid 3D+t image registration (temporal di eomorphic free-form-deformation, TDFFD). Acceleration was obtained locally at each point of the myocardium from local displacement. The framework has been tested on images from a realistic physical heart phantom (DHP-01, Shelley Medical Imaging Technologies, London, ON, CA) in which the displacement of some control regions was known. Good correlation has been demonstrated between the estimated displacement function from the algorithms and the phantom setup. Due to the limited temporal resolution, the acceleration signals are sparse and highly noisy. The study suggests a non-invasive technique to measure the cardiac acceleration that may be used to improve the monitoring of cardiac mechanics and optimization of CRT.

  3. MicroRNAs in cardiac arrhythmia

    DEFF Research Database (Denmark)

    Hedley, Paula L; Carlsen, Anting L; Christiansen, Kasper M;

    2014-01-01

    Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different...... LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within...... cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain...

  4. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  5. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  6. Cardiac calcium release channel (ryanodine receptor) in control and cardiomyopathic human hearts: mRNA and protein contents are differentially regulated.

    Science.gov (United States)

    Sainte Beuve, C; Allen, P D; Dambrin, G; Rannou, F; Marty, I; Trouvé, P; Bors, V; Pavie, A; Gandgjbakch, I; Charlemagne, D

    1997-04-01

    Abnormal intracellular calcium handling in cardiomyopathic human hearts has been associated with an impaired function of the sarcoplasmic reticulum, but previous reports on the gene expression of the ryanodine receptors (Ry2) are contradictory. We measured the mRNA levels, the protein levels and the number of high affinity [3H]ryanodine binding sites in the left ventricle of non-failing (n = 9) and failing human hearts [idiopathic dilated (IDCM n = 16), ischemic (ICM n = 7) or mixed (MCM n = 8) cardiomyopathies]. Ry2 mRNA levels were significantly reduced in IDCM (-30%) and unchanged in MCM and ICM and Ry2 protein levels were similar. In contrast, we observed a two-fold increase in the number of high affinity Ry2 (B(max) = 0.43 +/- 0.11 v 0.22 +/- 0.13 pmol/mg protein, respectively; P<0.01) and an unchanged K(d). Furthermore, levels of myosin heavy chain mRNA and protein per g of tissue were similar in failing and non-failing hearts, suggesting that the observed differences in Ry2 are not caused by the increase in fibrosis in failing heart. Therefore, the dissociation between the two-fold increase in the number of high affinity ryanodine receptors observed in all failing hearts and the slightly decreased mRNA level or unchanged protein level suggests that the ryanodine binding properties are affected in failing myocardium and that such modifications rather than a change in gene expression alter the channel activity and could contribute to abnormalities in intracellular Ca2+ handling. PMID:9160875

  7. A multiresolution restoration method for cardiac SPECT

    Science.gov (United States)

    Franquiz, Juan Manuel

    Single-photon emission computed tomography (SPECT) is affected by photon attenuation and image blurring due to Compton scatter and geometric detector response. Attenuation correction is important to increase diagnostic accuracy of cardiac SPECT. However, in attenuation-corrected scans, scattered photons from radioactivity in the liver could produce a spillover of counts into the inferior myocardial wall. In the clinical setting, blurring effects could be compensated by restoration with Wiener and Metz filters. Inconveniences of these procedures are that the Wiener filter depends upon the power spectra of the object image and noise, which are unknown, while Metz parameters have to be optimized by trial and error. This research develops an alternative restoration procedure based on a multiresolution denoising and regularization algorithm. It was hypothesized that this representation leads to a more straightforward and automatic restoration than conventional filters. The main objective of the research was the development and assessment of the multiresolution algorithm for compensating the liver spillover artifact. The multiresolution algorithm decomposes original SPECT projections into a set of sub-band frequency images. This allows a simple denoising and regularization procedure by discarding high frequency channels and performing inversion only in low and intermediate frequencies. The method was assessed in bull's eye polar maps and short- axis attenuation-corrected reconstructions of a realistic cardiac-chest phantom with a custom-made liver insert and different 99mTc liver-to-heart activity ratios. Inferior myocardial defects were simulated in some experiments. The cardiac phantom in free air was considered as the gold standard reference. Quantitative analysis was performed by calculating contrast of short- axis slices and the normalized chi-square measure, defect size and mean and standard deviation of polar map counts. The performance of the multiresolution

  8. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T(1) mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study.

    NARCIS (Netherlands)

    Ng, A.C.; Auger, D.; Delgado, V.; Elderen, S.G. van; Bertini, M.; Siebelink, H.M.; Geest, R.J. van der; Bonetti, C.; Velde, E.T. van der; Roos, A. de; Smit, J.W.A.; Leung, D.Y.; Bax, J.J.; Lamb, H.J.

    2012-01-01

    BACKGROUND: Diabetic patients have increased interstitial myocardial fibrosis on histological examination. Magnetic resonance imaging (MRI) T(1) mapping is a previously validated imaging technique that can quantify the burden of global and regional interstitial fibrosis. However, the association bet

  9. Saving Salmon Through Advances in Fluvial Remote Sensing: Applying the Optimal Band Ratio Analysis (OBRA) for Bathymetric Mapping of Over 250 km of River Channel and Habitat Classification

    Science.gov (United States)

    Richardson, R.; Legleiter, C. J.; Harrison, L.

    2015-12-01

    Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.

  10. [Cardiac amyloidosis].

    Science.gov (United States)

    Hoyer, Caroline; Angermann, Christiane E; Knop, Stefan; Ertl, Georg; Störk, Stefan

    2008-03-15

    Amyloidoses are a heterogeneous group of multisystem disorders, which are characterized by an extracellular deposition of amyloid fibrils. Typically affected are the heart, liver, kidneys, and nervous system. More than half of the patients die due to cardiac involvement. Clinical signs of cardiac amyloidosis are edema of the lower limbs, hepatomegaly, ascites and elevated jugular vein pressure, frequently in combination with dyspnea. There can also be chest pain, probably due to microvessel disease. Dysfunction of the autonomous nervous system or arrhythmias may cause low blood pressure, dizziness, or recurrent syncope. The AL amyloidosis caused by the deposition of immunoglobulin light chains is the most common form. It can be performed by monoclonal gammopathy. The desirable treatment therapy consists of high-dose melphalan therapy twice followed by autologous stem cell transplantation. Due to the high peritransplantation mortality, selection of appropriate patients is mandatory. The ATTR amyloidosis is an autosomal dominant disorder caused by the amyloidogenic form of transthyretin, a plasmaprotein that is synthesized in the liver. Therefore, liver transplantation is the only curative therapy. The symptomatic treatment of cardiac amyloidosis is based on the current guidelines for chronic heart failure according to the patient's New York Heart Association (NYHA) state. Further types of amyloidosis with possible cardiac involvement comprise the senile systemic amyloidosis caused by the wild-type transthyretin, secondary amyloidosis after chronic systemic inflammation, and the beta(2)-microglobulin amyloidosis after long-term dialysis treatment. PMID:18344065

  11. Cardiac Optogenetics: Enhancement by All-trans-Retinal.

    Science.gov (United States)

    Yu, Jinzhu; Chen, Kay; Lucero, Rachel V; Ambrosi, Christina M; Entcheva, Emilia

    2015-11-16

    All-trans-Retinal (ATR) is a photosensitizer, serving as the chromophore for depolarizing and hyperpolarizing light-sensitive ion channels and pumps (opsins), recently employed as fast optical actuators. In mammalian optogenetic applications (in brain and heart), endogenous ATR availability is not considered a limiting factor, yet it is unclear how ATR modulation may affect the response to optical stimulation. We hypothesized that exogenous ATR may improve light responsiveness of cardiac cells modified by Channelrhodopsin2 (ChR2), hence lowering the optical pacing energy. In virally-transduced (Ad-ChR2(H134R)-eYFP) light-sensitive cardiac syncytium in vitro, ATR supplements ≤2 μM improved cardiomyocyte viability and augmented ChR2 membrane expression several-fold, while >4 μM was toxic. Employing integrated optical actuation (470 nm) and optical mapping, we found that 1-2 μM ATR dramatically reduced optical pacing energy (over 30 times) to several μW/mm(2), lowest values reported to date, but also caused action potential prolongation, minor changes in calcium transients and no change in conduction. Theoretical analysis helped explain ATR-caused reduction of optical excitation threshold in cardiomyocytes. We conclude that cardiomyocytes operate at non-saturating retinal levels, and carefully-dosed exogenous ATR can enhance the performance of ChR2 in cardiac cells and yield energy benefits over orders of magnitude for optogenetic stimulation.

  12. Cardiac MRI. T2-mapping versus T2-weighted dark-blood TSE imaging for myocardial edema visualization in acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Nassenstein, K.; Nensa, F.; Schlosser, T.; Umutlu, L.; Lauenstein, T. [University Hospital Essen (Germany). Dept. of Diagnostic and Interventional Radiology and Neuroradiology; Bruder, O. [Elisabeth Hospital, Essen (Germany). Dept. of Cardiology and Angiology; Maderwald, S.; Ladd, M.E. [Duisburg-Essen Univ., Essen (Germany). Erwin L. Hahn Institute for Magnetic Resonance Imaging

    2014-02-15

    Purpose: To assess the diagnostic accuracy of T2 mapping for the detection of myocardial edema in acute myocardial infarction (AMI), and to compare this diagnostic accuracy with that of the current standard for myocardial edema imaging, which is T2w dark-blood TSE imaging. Materials and Methods: 29 patients with AMI were examined at 1.5 T. For the visualization of myocardial edema, T2 maps, calculated from three T2w SSFP images, and T2w dark-blood TSE images were acquired in standard short- and long-axis views. Cine SSFP images were acquired for the analysis of left ventricular (LV) function and late gadolinium enhancement images (LGE) for the visualization of myocardial necrosis. The T2 maps as well as the T2w dark-blood TSE images were evaluated twice independently from the cine SSFP and LGE images. The presence or absence of myocardial edema was rated visually for each LV segment. As the standard of reference, the infarct zone was defined based on the cine SSFP and the LGE images. Results: In this segment-based analysis, T2 mapping showed a sensitivity of 82 % and a specificity of 94 % for the detection of edema in the infarct zone. T2w dark-blood TSE imaging revealed a sensitivity of 50 % and a specificity of 98 %. T2 mapping showed a higher intra-rater agreement compared to T2w dark-blood TSE imaging ({kappa}: 0.87 vs. 0.76). Conclusions: T2 mapping allows for the visualization of myocardial edema in AMI with a high sensitivity and specificity, and features better diagnostic accuracy in terms of a higher sensitivity compared to T2w dark-blood TSE imaging. (orig.)

  13. Phosphodiesterase 4B in the cardiac L-type Ca²⁺ channel complex regulates Ca²⁺ current and protects against ventricular arrhythmias in mice.

    Science.gov (United States)

    Leroy, Jérôme; Richter, Wito; Mika, Delphine; Castro, Liliana R V; Abi-Gerges, Aniella; Xie, Moses; Scheitrum, Colleen; Lefebvre, Florence; Schittl, Julia; Mateo, Philippe; Westenbroek, Ruth; Catterall, William A; Charpentier, Flavien; Conti, Marco; Fischmeister, Rodolphe; Vandecasteele, Grégoire

    2011-07-01

    β-Adrenergic receptors (β-ARs) enhance cardiac contractility by increasing cAMP levels and activating PKA. PKA increases Ca²⁺-induced Ca²⁺ release via phosphorylation of L-type Ca²⁺ channels (LTCCs) and ryanodine receptor 2. Multiple cyclic nucleotide phosphodiesterases (PDEs) regulate local cAMP concentration in cardiomyocytes, with PDE4 being predominant for the control of β-AR-dependent cAMP signals. Three genes encoding PDE4 are expressed in mouse heart: Pde4a, Pde4b, and Pde4d. Here we show that both PDE4B and PDE4D are tethered to the LTCC in the mouse heart but that β-AR stimulation of the L-type Ca²⁺ current (ICa,L) is increased only in Pde4b-/- mice. A fraction of PDE4B colocalized with the LTCC along T-tubules in the mouse heart. Under β-AR stimulation, Ca²⁺ transients, cell contraction, and spontaneous Ca²⁺ release events were increased in Pde4b-/- and Pde4d-/- myocytes compared with those in WT myocytes. In vivo, after intraperitoneal injection of isoprenaline, catheter-mediated burst pacing triggered ventricular tachycardia in Pde4b-/- mice but not in WT mice. These results identify PDE4B in the CaV1.2 complex as a critical regulator of ICa,L during β-AR stimulation and suggest that distinct PDE4 subtypes are important for normal regulation of Ca²⁺-induced Ca²⁺ release in cardiomyocytes.

  14. Pharmacological blockade of voltage-gated calcium channels as a potential cardioprotective strategy

    OpenAIRE

    Pushparaj, Charumathi

    2014-01-01

    Voltage-gated Ca2+ channels (VGCCs) are essential for initiating and regulating cardiac function. During the cardiac action potential, Ca2+ influx through L-type channels triggers the sarcoplasmic reticulum Ca2+ release that enables the EC coupling. Ca2+ can also enter cardiac myocytes through low-voltage-activated T-type channels, which are expressed throughout cardiac development until the end of the neonatal period, and can contribute to pacemaker activity as well as EC coupling to some ex...

  15. Cardiac rhabdomyosarcoma

    OpenAIRE

    Chlumský, Jaromír; Holá, Dana; Hlaváček, Karel; Michal, Michal; Švec, Alexander; Špatenka, Jaroslav; Dušek, Jan

    2001-01-01

    Cardiac sarcoma is a very rare neoplasm and is difficult to diagnose. The case of a 51-year-old man with a left atrial tumour, locally recurrent three months after its surgical removal, is presented. Computed tomography showed metastatic spread to the lung parenchyma. On revised histology, the mass extirpated was a sarcoma. Because of the metastatic spread, further therapy was symptomatic only; the patient died 15 months after the first manifestation of his problems. Immunohistochemical stain...

  16. Cardiac arrhythmia

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008032 Efficacy of integrated three-dimensional electroanatomic mapping with preacquired magnetic resonance images guide catheter atrial fibrillation ablation. YU Ronghui(喻荣辉), et al. Dept Cardiol, Beijing Anzhen Hosp, Capital Med Univ, Beijing 100029. Chin J Cardiol 2007;35(11):1029-1033. Objective To investigate the efficacy of integrated electroanatomic mapping with preacquired magnetic resonance (MR) images guided catheter at

  17. Novel mutations mapping to the fourth sodium channel domain of Nav1.7 result in variable clinical manifestations of primary erythromelalgia.

    Science.gov (United States)

    Cregg, Roman; Laguda, Bisola; Werdehausen, Robert; Cox, James J; Linley, John E; Ramirez, Juan D; Bodi, Istvan; Markiewicz, Michael; Howell, Kevin J; Chen, Ya-Chun; Agnew, Karen; Houlden, Henry; Lunn, Michael P; Bennett, David L H; Wood, John N; Kinali, Maria

    2013-06-01

    We identified and clinically investigated two patients with primary erythromelalgia mutations (PEM), which are the first reported to map to the fourth domain of Nav1.7 (DIV). The identified mutations (A1746G and W1538R) were cloned and transfected to cell cultures followed by electrophysiological analysis in whole-cell configuration. The investigated patients presented with PEM, while age of onset was very different (3 vs. 61 years of age). Electrophysiological characterization revealed that the early onset A1746G mutation leads to a marked hyperpolarizing shift in voltage dependence of steady-state activation, larger window currents, faster activation kinetics (time-to-peak current) and recovery from steady-state inactivation compared to wild-type Nav1.7, indicating a pronounced gain-of-function. Furthermore, we found a hyperpolarizing shift in voltage dependence of slow inactivation, which is another feature commonly found in Nav1.7 mutations associated with PEM. In silico neuron simulation revealed reduced firing thresholds and increased repetitive firing, both indicating hyperexcitability. The late-onset W1538R mutation also revealed gain-of-function properties, although to a lesser extent. Our findings demonstrate that mutations encoding for DIV of Nav1.7 can not only be linked to congenital insensitivity to pain or paroxysmal extreme pain disorder but can also be causative of PEM, if voltage dependency of channel activation is affected. This supports the view that the degree of biophysical property changes caused by a mutation may have an impact on age of clinical manifestation of PEM. In summary, these findings extent the genotype-phenotype correlation profile for SCN9A and highlight a new region of Nav1.7 that is implicated in PEM. PMID:23292638

  18. Relationship between coronary atherosclerosis and 'sudden cardiac death'

    International Nuclear Information System (INIS)

    Coronary arteriosclerosis in mini-pigs was produced by combination of hypercholesterolemia and twofold X irradiation of the cardiac region. 15-21 weeks following irradiation 40% of the adult animals and 58% of the juvenils died of 'sudden cardiac death'. The mortality rate decreased significantly after application of the calcium-channel blocking agent nifedipine

  19. Morphodynamics of Floodplain Chute Channels

    Science.gov (United States)

    David, S. R.; Edmonds, D. A.

    2015-12-01

    Floodplain chute channel formation is a key process that can enable rivers to transition from single-thread to multi-thread planform geometries. Floodplain chute channels are usually incisional channels connecting topographic lows across point bars and in the floodplain. Surprisingly, it is still not clear what conditions promote chute channel formation and what governs their morphodynamic behavior. Towards this end we have initiated an empirical and theoretical study of floodplain chute channels in Indiana, USA. Using elevation models and satellite imagery we mapped 3064 km2 of floodplain in Indiana, and find that 37.3% of mapped floodplains in Indiana have extensive chute channel networks. These chute channel networks consist of two types of channel segments: meander cutoffs of the main channel and chute channels linking the cutoffs together. To understand how these chute channels link meander cutoffs together and eventually create floodplain channel networks we use Delft3D to explore floodplain morphodynamics. Our first modeling experiment starts from a generic floodplain prepopulated with meander cutoffs to test under what conditions chute channels form.We find that chute channel formation is optimized at an intermediate flood discharge. If the flood discharge is too large the meander cutoffs erosively diffuse, whereas if the floodwave is too small the cutoffs fill with sediment. A moderately sized floodwave reworks the sediment surrounding the topographic lows, enhancing the development of floodplain chute channels. Our second modeling experiments explore how floodplain chute channels evolve on the West Fork of the White River, Indiana, USA. We find that the floodplain chute channels are capable of conveying the entire 10 yr floodwave (Q=1330m3/s) leaving the inter-channel areas dry. Moreover, the chute channels can incise into the floodplain while the margins of channels are aggrading, creating levees. Our results suggest that under the right conditions

  20. Three-dimensional visualization maps of suspended-sediment concentrations during placement of dredged material in 21st Avenue West Channel Embayment, Duluth-Superior Harbor, Duluth, Minnesota, 2015

    Science.gov (United States)

    Groten, Joel T.; Ellison, Christopher A.; Mahoney, Mollie H.

    2016-06-30

    Excess sediment in rivers and estuaries poses serious environmental and economic challenges. The U.S. Army Corps of Engineers (USACE) routinely dredges sediment in Federal navigation channels to maintain commercial shipping operations. The USACE initiated a 3-year pilot project in 2013 to use navigation channel dredged material to aid in restoration of shoreline habitat in the 21st Avenue West Channel Embayment of the Duluth-Superior Harbor. Placing dredged material in the 21st Avenue West Channel Embayment supports the restoration of shallow bay aquatic habitat aiding in the delisting of the St. Louis River Estuary Area of Concern.The U.S. Geological Survey, in cooperation with the USACE, collected turbidity and suspended-sediment concentrations (SSCs) in 2014 and 2015 to measure the horizontal and vertical distribution of SSCs during placement operations of dredged materials. These data were collected to help the USACE evaluate the use of several best management practices, including various dredge material placement techniques and a silt curtain, to mitigate the dispersion of suspended sediment.Three-dimensional visualization maps are a valuable tool for assessing the spatial displacement of SSCs. Data collection was designed to coincide with four dredged placement configurations that included periods with and without a silt curtain as well as before and after placement of dredged materials. Approximately 230 SSC samples and corresponding turbidity values collected in 2014 and 2015 were used to develop a simple linear regression model between SSC and turbidity. Using the simple linear regression model, SSCs were estimated for approximately 3,000 turbidity values at approximately 100 sampling sites in the 21st Avenue West Channel Embayment of the Duluth-Superior Harbor. The estimated SSCs served as input for development of 12 three-dimensional visualization maps.

  1. Cardiac MRI in Athletes

    NARCIS (Netherlands)

    Luijkx, T.

    2012-01-01

    Cardiac magnetic resonance imaging (CMR) is often used in athletes to image cardiac anatomy and function and is increasingly requested in the context of screening for pathology that can cause sudden cardiac death (SCD). In this thesis, patterns of cardiac adaptation to sports are investigated with C

  2. In Vivo Phosphorylation Site Mapping in Mouse Cardiac Troponin I by High Resolution Top-Down Electron Capture Dissociation Mass Spectrometry: Ser22/23 Are the Only Sites Basally Phosphorylated†

    OpenAIRE

    Ayaz-Guner, Serife; Zhang, Jiang; Li, Lin; Walker, Jeffery W.; Ge, Ying

    2009-01-01

    Cardiac troponin I (cTnI) is the inhibitory subunit of cardiac troponin, a key myofilament regulatory protein complex located on the thin filaments of the contractile apparatus. cTnI is uniquely specific for the heart and is widely used in clinics as a serum biomarker for cardiac injury. Phosphorylation of cTnI plays a critical role in modulating cardiac function. cTnI is known to be regulated by protein kinase A and protein kinase C at five sites, Ser22/Ser23, Ser42/44, and Thr143, primarily...

  3. Ion channelopathy and hyperphosphorylation contributing to cardiac arrhythmias

    Institute of Scientific and Technical Information of China (English)

    De-zai DAI; Feng YU

    2005-01-01

    The occurrence of cardiac arrhythmias is related to the abnormality of ion channels not only in sarcolemma but also in the sarcoplasmic reticulum, which regulates the process of calcium release and up-take intracellularly. Patterns of ion channelopathy in the sarcolemma can be divided into single channel disorder from gene mutations and multiple channels disorder in a diseased hypertrophied heart. Abnormal RyR2, FKBP12.6, SERCA2a, and PLB are also involved in the initiation of cardiac arrhythmias. Maladjustment by hyperphosphorylation on the ion channels in the sarcolemma and RyR2-FKBP12.6 and SERCA2a-PLB is discussed. Hyperphosphorylation, which is the main abnormality upstream to ion channels, can be targeted for suppressing the deterioration of ion channelopathy in terms of new drug discovery in the treatment and prevention of malignant cardiac arrhythmias.

  4. Cardiac ryanodine receptor gene (hRyR2) mutation underlying catecholaminergic polymorphic ventricular tachycardia in a Chinese adolescent presenting with sudden cardiac arrest and cardiac syncope

    Institute of Scientific and Technical Information of China (English)

    Ngai-Shing Mok; Ching-Wan Lam; Nai-Chung Fong; Yim-Wo Hui; Yuen-Choi Choi; Kwok-Yin Chan

    2006-01-01

    @@ Sudden cardiac death (SCD) in children and adolescents is uncommon and yet it is devastating for both victim's family and the society.Recently, it was increasingly recognized that SCD in young patients with structurally normal heart may be caused by inheritable primary electrical diseases due to the malfunction of cardiac ion channels, a disease entity known as the ion channelopathies.Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a specific form of ion channelopathy which can cause cardiac syncope or SCD in young patients by producing catecholamine-induced bi-directional ventricular tachycardia (BiVT), polymorphic VT and ventricular fibrillation (VF) during physical exertion or emotion.1-7 We reported here an index case of CPVT caused by cardiac ryanodine receptor gene (hRyR2)mutation which presented as cardiac syncope and sudden cardiac arrest in a Chinese adolescent female.

  5. [Sudden cardiac death in individuals with normal hearts: an update].

    Science.gov (United States)

    González-Melchor, Laila; Villarreal-Molina, Teresa; Iturralde-Torres, Pedro; Medeiros-Domingo, Argelia

    2014-01-01

    Sudden death (SD) is a tragic event and a world-wide health problem. Every year, near 4-5 million people experience SD. SD is defined as the death occurred in 1h after the onset of symptoms in a person without previous signs of fatality. It can be named "recovered SD" when the case received medical attention, cardiac reanimation effective defibrillation or both, surviving the fatal arrhythmia. Cardiac channelopathies are a group of diseases characterized by abnormal ion channel function due to genetic mutations in ion channel genes, providing increased susceptibility to develop cardiac arrhythmias and SD. Usually the death occurs before 40 years of age and in the autopsy the heart is normal. In this review we discuss the main cardiac channelopathies involved in sudden cardiac death along with current management of cases and family members that have experienced such tragic event.

  6. Entanglement-saving channels

    Science.gov (United States)

    Lami, L.; Giovannetti, V.

    2016-03-01

    The set of Entanglement Saving (ES) quantum channels is introduced and characterized. These are completely positive, trace preserving transformations which when acting locally on a bipartite quantum system initially prepared into a maximally entangled configuration, preserve its entanglement even when applied an arbitrary number of times. In other words, a quantum channel ψ is said to be ES if its powers ψn are not entanglement-breaking for all integers n. We also characterize the properties of the Asymptotic Entanglement Saving (AES) maps. These form a proper subset of the ES channels that is constituted by those maps that not only preserve entanglement for all finite n but which also sustain an explicitly not null level of entanglement in the asymptotic limit n → ∞. Structure theorems are provided for ES and for AES maps which yield an almost complete characterization of the former and a full characterization of the latter.

  7. 三维标测系统指导下复杂心律失常的经导管射频消融治疗%Three-dimensional mapping for radiofrequency catheter ablation of complex cardiac arrhythmias

    Institute of Scientific and Technical Information of China (English)

    洪浪; 王洪; 赖珩莉; 尹秋林; 陈章强; 陆林祥; 邱赞; 肖承伟

    2009-01-01

    目的:探讨在三维标测系统指导下,经导管复杂心律失常射频消融治疗的有效性与安全性. 方法:选择2006年2月至2008年9月住院患者98例,其中阵发性房颤50例、持续性或永久性房颤6例、心房扑动9例、房性心动过速(房速)9例、室性心动过速(室速)或频发室性早搏24例.在EnSite NavX或Array系统(72例)或CARTO系统(26例)指导下进行射频消融手术. 结果:84例一次手术成功(85.71%),7例再次导管消融成功,成功率合计92.86%.50例房颤一次手术成功,5例再次消融后3例成功.9例心房扑动患者中7例一次手术成功,1例复发再次消融成功.9例房速中7例一次手术成功,1例复发再次消融成功.24例室速、室早患者中20例一次消融成功,4例行再次消融2例成功.共有并发症6例:心包填塞4例,左前降支远端栓塞1例、术后肺栓塞1例. 结论:三维标测系统可清晰地显示心脏三维立体结构,对复杂疑难心律失常的射频消融治疗具有较好的指导作用,提高消融的成功率并增加手术安全性.%Objective:To explore the validity and safety of radiofrequeney catheter ablation of complex cardiac arrhythmias guided by a three-dimensional mapping system. Methods.. A cohort of 98 consecutive inpatients were registered from February 2006 to September 2008, of which 68 cases were male and 30 cases were female, with an average age of (50.2 ± 19. 7) years ranging from 9 to 88 years of age. These patients suffered from various arrhythmias including paroxysmal atrial fibrillation (50 cases), persistent or permanent atrial fibrillation (6 cases), atrial flutter (9 cases), atrial tachy-cardia (9 cases), ventricular tachycardia or frequent episode ventricular premature beat (24 cases). A total of 72 cases underwent radiofrequency catheter ablation of arrhythmias guided by an En-Site3000/NavX or Array mapping system, and 26 cases guided by a CARTO mapping system. Re-suits:Successful ablation of

  8. Cardiac perception and cardiac control. A review.

    Science.gov (United States)

    Carroll, D

    1977-12-01

    The evidence regarding specific cardiac perception and discrimination, and its relationship to voluntary cardiac control, is critically reviewed. Studies are considered in three sections, depending on the method used to assess cardiac perception: questionnaire assessment, discrimination procedures, and heartbeat tracking. The heartbeat tracking procedure would appear to suffer least from interpretative difficulties. Recommendations are made regarding the style of analysis used to assess heartbeat perception in such tracking tasks. PMID:348240

  9. Platelets and cardiac arrhythmia

    Directory of Open Access Journals (Sweden)

    Jonas S De Jong

    2010-12-01

    Full Text Available Sudden cardiac death remains one of the most prevalent modes of death in industrialized countries, and myocardial ischemia due to thrombotic coronary occlusion is its primary cause. The role of platelets in the occurrence of SCD extends beyond coronary flow impairment by clot formation. Here we review the substances released by platelets during clot formation and their arrhythmic properties. Platelet products are released from three types of platelet granules: dense core granules, alpha-granules, and platelet lysosomes. The physiologic properties of dense granule products are of special interest as a potential source of arrhythmic substances. They are released readily upon activation and contain high concentrations of serotonin, histamine, purines, pyrimidines, and ions such as calcium and magnesium. Potential arrhythmic mechanisms of these substances, e.g. serotonin and high energy phosphates, include induction of coronary constriction, calcium overloading, and induction of delayed after-depolarizations. Alpha-granules produce thromboxanes and other arachidonic acid products with many potential arrhythmic effects mediated by interference with cardiac sodium, calcium and potassium channels. Alpha-granules also contain hundreds of proteins that could potentially serve as ligands to receptors on cardiomyocytes. Lysosomal products probably do not have an important arrhythmic effect. Platelet products and ischemia can induce coronary permeability, thereby enhancing interaction with surrounding cardiomyocytes. Antiplatelet therapy is known to improve survival after myocardial infarction. Although an important part of this effect results from prevention of coronary clot formation, there is evidence to suggest that antiplatelet therapy also induces anti-arrhythmic effects during ischemia by preventing the release of platelet activation products.

  10. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death

    DEFF Research Database (Denmark)

    Nyegaard, Mette; Overgaard, Michael Toft; Sondergaard, M.T.;

    2012-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause...... a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe...... calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac...

  11. Expression and protective effects of urocortin in cardiac myocytes.

    Science.gov (United States)

    Okosi, A; Brar, B K; Chan, M; D'Souza, L; Smith, E; Stephanou, A; Latchman, D S; Chowdrey, H S; Knight, R A

    1998-04-01

    Reverse transcription PCR showed that mRNA encoding the CRH-like molecule, urocortin, is expressed in a rat cardiac myocyte cell line and in primary cultures of cardiac myocytes. Identity of the amplified with the published sequence was established by restriction mapping and direct sequencing. Expression of urocortin mRNA was increased 12-18 h after thermal injury. Urocortin peptide protected cardiac myocytes from cell death induced by hypoxia. The data suggest that urocortin is an endogenous cardiac myocyte peptide which modulates the cellular response to stress. PMID:9639256

  12. A MAP Channel Estimation Algorithm for MIMO-OFDM Systems with Better Performance%一种性能更好的MIMO-OFDM系统MAP信道估计算法

    Institute of Scientific and Technical Information of China (English)

    许鹏; 汪晋宽; 祁峰

    2011-01-01

    Maximum a posteriori (MAP) channel estimation algorithm usually uses expectation maximum (EM) algorithm to decrease the high computation. However, this kind of operation has a difficulty in obtaining ideal estimation performance at high signal to noise ratio (SNR) because of the convergent feature of EM algorithm. In addition, for pilot-based multiple-input multiple-output with orthogonal frequency division multiplexing (MIMO-OFDM) systems, data transmission efficiency of OFDM symbol will be reduced with the increasing number of transmit antennas. In order to improve these two drawbacks, firstly, an equivalent signal model is introduced to improve the convergent property of EM algorithm at high SNR. Then, to enhance the data transmission efficiency, joint estimation is implemented by making use of phase shifted orthogonal pilot sequences over multiple OFDM symbols. What's more, channel matrix is transformed between time domain and angle domain and the concept of angle domain is used to reduce the effect of noise on the estimation by using the spatial independence of MIMO channel in channel matrix of angle domain. Through performance analysis and simulation results, it is indicated that the proposed algorithm has lower estimation error and higher data transmission efficiency than the raw MAP algorithm based on EM process, which only requires increasing the computational complexity a little bit.%基于期望最大化(EM)的最大后验信道估计算法(MAP)在高信噪比(SNR)下将很难获得较低的估计误差,并且,对于导频辅助的MIMO-OFDM系统,OFDM符号的数据传输效率随着发送天线的增加而明显下降.为改善这两种缺陷,引入一种等效的信号模型来改善高SNR下的估计性能;在相邻多个OFDM符号内使用相移正交导频序列和联合估计来提高系统的数据传输效率和估计性能;根据角域内信道间的独立性来减小噪声对估计的影响.通过仿真实验可知,所提算法具有更小的

  13. Optogenetic control of the cardiac conduction system (Conference Presentation)

    Science.gov (United States)

    Crocini, Claudia; Ferrantini, Cecilia; Coppini, Raffaele; Loew, Leslie M.; Cerbai, Elisabetta; Poggesi, Corrado; Pavone, Francesco S.; Sacconi, Leonardo

    2016-03-01

    Fatal cardiac arrhythmias are a major medical and social issue in Western countries. Current implantable pacemaker/defibrillators have limited effectiveness and are plagued by frequent malfunctions and complications. Here, we aim at setting up a new method to map and control the electrical activity of whole isolated mouse hearts. We employ a transgenic mouse model expressing Channel Rhodopsin-2 (ChR2) in the heart coupled with voltage optical mapping to monitor and control action potential propagation. The whole heart is loaded with the fluorinated red-shifted voltage sensitive dye (di-4-ANBDQPQ) and imaged with the central portion (128 x 128 pixel) of sCMOS camera operating at frame rate of 1.6 kHz. The wide-field imaging system is implemented with a random access ChR2 activation developed using two orthogonally-mounted acousto-optical deflectors (AODs). AODs rapidly scan different sites of the sample with a commutation time of 4 μs, allowing us to design ad hoc ChR2-stimulation pattern. First, we demonstrate the capability of our system in manipulating the conduction system of the whole mouse heart by changing the electrical propagation features. Then, we explore the efficacy of the random access ChR2 stimulation in inducing arrhythmias as well as to restore the cardiac sinus rhythm during an arrhythmic event. This work shows the potentiality of this new method for studying the mechanisms of arrhythmias and reentry in healthy and diseased hearts, as well as the basis of intra-ventricular dyssynchrony.

  14. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  15. RFI channels

    Science.gov (United States)

    Mceliece, R. J.

    1980-01-01

    A class of channel models is presented which exhibit varying burst error severity much like channels encountered in practice. An information-theoretic analysis of these channel models is made, and conclusions are drawn that may aid in the design of coded communication systems for realistic noisy channels.

  16. A MAP Criterion for Detecting the Number of Speakers at frame level in Model-based Single-Channel Speech Separation

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Tan, Zheng-Hua;

    2010-01-01

    The problem of detecting the number of speakers for a particular segment occurs in many dif- ferent speech applications. In single channel speech separation, for example, this information is often used to simplify the separation process, as the signal has to be treated differently depending on the...... number of speakers. Inspired by the asymptotic maximum a posteriori rule proposed for model selection, we pose the problem as a model selection problem. More specifically, we derive a multiple hypotheses test for determining the number of speakers at a frame level in an observed signal based on underlying...... parametric speaker models, trained a priori. The experimental results indicate that the suggested method improves the quality of the separated signals in a single-channel speech separation scenario at different signal-to-signal ratio levels....

  17. Bringing light to remnants of riparian areas in rice field channels: a combined application of linear transects and the mapping method

    OpenAIRE

    Godinho, Carlos; Pereira, Pedro; Rabaça, João E.

    2010-01-01

    The importance of rice fields for bird conservation has been subject of several studies, mainly focused in core areas as habitat for waterbirds. However, significant parts of the rice field structure, like the irrigation channels that control the water level, are often neglected. These corridor-like areas are frequently characterized by the presence of riparian vegetation like willows and ashes or wetland vegetation like reedmace or common reedbeds. In order to assess the importance of these ...

  18. Over-phosphorylation of FKBP12.6, phospholamban,relating to exacerbation of cardiac arrhythmias and failure

    Institute of Scientific and Technical Information of China (English)

    De-zaiDAI

    2004-01-01

    AIM: Cardiac arrhythmias occur severely in diseased and failing hearts and remain an important cause of mortality in cardiovascular disorders. It was intended to explore mechanisms of abnormal ion channels underlying cardiac arrhythmias and failure and in responses to drug interventions. METHODS: Chronic infarction plus isoproterenol (ISO) medication or L-thyroxin (THY) repetitive medication promote cardiac remodeling and exaggerated

  19. Dequantization Via Quantum Channels

    Science.gov (United States)

    Andersson, Andreas

    2016-10-01

    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large- m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  20. Dequantization Via Quantum Channels

    Science.gov (United States)

    Andersson, Andreas

    2016-08-01

    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large-m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  1. Cardiac tumours in children

    Directory of Open Access Journals (Sweden)

    Parsons Jonathan M

    2007-03-01

    Full Text Available Abstract Cardiac tumours are benign or malignant neoplasms arising primarily in the inner lining, muscle layer, or the surrounding pericardium of the heart. They can be primary or metastatic. Primary cardiac tumours are rare in paediatric practice with a prevalence of 0.0017 to 0.28 in autopsy series. In contrast, the incidence of cardiac tumours during foetal life has been reported to be approximately 0.14%. The vast majority of primary cardiac tumours in children are benign, whilst approximately 10% are malignant. Secondary malignant tumours are 10–20 times more prevalent than primary malignant tumours. Rhabdomyoma is the most common cardiac tumour during foetal life and childhood. It accounts for more than 60% of all primary cardiac tumours. The frequency and type of cardiac tumours in adults differ from those in children with 75% being benign and 25% being malignant. Myxomas are the most common primary tumours in adults constituting 40% of benign tumours. Sarcomas make up 75% of malignant cardiac masses. Echocardiography, Computing Tomography (CT and Magnetic Resonance Imaging (MRI of the heart are the main non-invasive diagnostic tools. Cardiac catheterisation is seldom necessary. Tumour biopsy with histological assessment remains the gold standard for confirmation of the diagnosis. Surgical resection of primary cardiac tumours should be considered to relieve symptoms and mechanical obstruction to blood flow. The outcome of surgical resection in symptomatic, non-myxomatous benign cardiac tumours is favourable. Patients with primary cardiac malignancies may benefit from palliative surgery but this approach should not be recommended for patients with metastatic cardiac tumours. Surgery, chemotherapy and radiotherapy may prolong survival. The prognosis for malignant primary cardiac tumours is generally extremely poor.

  2. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents

    Directory of Open Access Journals (Sweden)

    Jennifer H Hou

    2014-09-01

    Full Text Available The cardiac action potential (AP and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf. We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 – 102 hours post fertilization (hpf, the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.

  3. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  4. Buerger's Disease and Anaesthesia: The Neglected Cardiac Angle

    Directory of Open Access Journals (Sweden)

    Shagun Bhatia Shah

    2015-08-01

    Full Text Available Distal limb amputations and respiratory complications are common in patients with Buerger’s disease. Nicotine in cigarette is arrhythmogenic as it blocks cardiac potassium channels. Preoperative Holter ECG monitoring may be useful if preoperative electrocardiogram is normal. If the patient is undergoing major surgery, preservative free lignocaine & amiodarone infusions and a cardioverter defibrillator should be available for the intraoperative cardiac rhythm disturbances.

  5. Mapping of the detergent-exposed surface of membrane proteins and peptides by 1H solution NMR in detergent: Application to the gramicidin A ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Seigneuret, Michel [Universite Paris 6, LPBC (URA 2056) (France); Le guerneve, Christine [INRA-IPV (France)

    1999-01-15

    The present work evaluates the use of intermolecular polypeptide-detergent 1H through-space connectivities to determine the bilayer exposed-surface and the bilayer topography of membrane polypeptides solubilized in non- deuterated detergents. For this purpose, the membrane peptide gramicidin A, solubilized in non-deuterated sodium dodecylsulfate as its dimeric {beta}6,3 helix channel conformation was used. For this peptide, a high-resolution 3D structure, as well as reasonable assumptions concerning its membrane arrangement, exist. Band-selective 2D NOESY, ROESY and 3D NOESY-NOESY experiments were used to detect detergent-polypeptide through-space correlations in the presence of an excess of the non-deuterated detergent. The observed intermolecular NOEs appear to be strongly temperature- dependent. Based on the known 3D structure of the gramicidin channel, the detergent-polypeptide through-space correlations appear to be selective for 1H located on the hydrophobic surface of gramicidin A with very few contributions from interior 1H or water-exposed 1H. It is suggested that this method can be of general use to evaluate the bilayer-exposed surface and topography of membrane peptides and small proteins.

  6. Molecular and Electrophysiological Mechanisms Underlying Cardiac Arrhythmogenesis in Diabetes Mellitus.

    Science.gov (United States)

    Tse, Gary; Lai, Eric Tsz Him; Tse, Vivian; Yeo, Jie Ming

    2016-01-01

    Diabetes is a common endocrine disorder with an ever increasing prevalence globally, placing significant burdens on our healthcare systems. It is associated with significant cardiovascular morbidities. One of the mechanisms by which it causes death is increasing the risk of cardiac arrhythmias. The aim of this article is to review the cardiac (ion channel abnormalities, electrophysiological and structural remodelling) and extracardiac factors (neural pathway remodelling) responsible for cardiac arrhythmogenesis in diabetes. It is concluded by an outline of molecular targets for future antiarrhythmic therapy for the diabetic population. PMID:27642609

  7. Marketing cardiac CT programs.

    Science.gov (United States)

    Scott, Jason

    2010-01-01

    There are two components of cardiac CT discussed in this article: coronary artery calcium scoring (CACS) and coronary computed tomography angiography (CCTA).The distinctive advantages of each CT examination are outlined. In order to ensure a successful cardiac CT program, it is imperative that imaging facilities market their cardiac CT practices effectively in order to gain a competitive advantage in this valuable market share. If patients receive quality care by competent individuals, they are more likely to recommend the facility's cardiac CT program. Satisfied patients will also be more willing to come back for any further testing.

  8. Study of a MHEMT heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel MBE-grown on a GaAs substrate using reciprocal space mapping

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation); Ermakova, M. A. [Federal Agency on Technical Regulating and Metrology, Center for Study of Surface and Vacuum Properties (Russian Federation); Ruban, O. A. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation)

    2015-08-15

    The crystallographic characteristics of the design elements of a metamorphic high-electron-mobility (MHEMT) heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel are determined based on reciprocal space mapping. The heterostructure is grown by molecular beam epitaxy on the vicinal surface of a GaAs substrate with a deviation angle from the (001) plane of 2° and consists of a stepped metamorphic buffer containing six layers including an inverse step, a high-temperature buffer layer with constant composition, and active HEMT layers. The InAs content in the layers of the metamorphic buffer is varied from 0.1 to 0.48. Reciprocal space maps are constructed for the (004) symmetric reflection and (224)+ asymmetric reflection. It is found that the heterostructure layers are characterized both by a tilt angle relative to the plane of the (001) substrate and a rotation angle around the [001] axis. The tilt angle of the layer increases as the InAs concentration in the layer increases. It is shown that a high-temperature buffer layer of constant composition has the largest degree of relaxation compared with all other layers of the heterostructure.

  9. Multichannel receiver coils for improved coverage in cardiac metabolic imaging using prepolarized 13C substrates.

    Science.gov (United States)

    Dominguez-Viqueira, William; Lau, Angus Z; Chen, Albert P; Cunningham, Charles H

    2013-07-01

    MR imaging using hyperpolarized (13)C substrates has become a promising tool to study real-time cardiac-metabolism in vivo. For such fast imaging of nonrecoverable prepolarized magnetization it is important to optimize the RF-coils to obtain the best signal-to-noise ratio possible, given the required coverage. In this work, three different receiver-coil configurations were computed in pig and human models. The sensitivity maps were demonstrated in phantoms and in vivo experiments performed in pigs. Signal-to-noise ratio in the posterior heart was increased up to 80% with the best multichannel coil as expected. These new coil configurations will allow imaging of the different metabolite signals even in the posterior regions of the myocardium, which is not possible with a single-channel surface-coil. PMID:22907595

  10. Color Image Scrambling Technique Based on Transposition of Pixels between RGB Channels Using Knight’s Moving Rules and Digital Chaotic Map

    Directory of Open Access Journals (Sweden)

    Adrian-Viorel Diaconu

    2014-01-01

    Full Text Available Nowadays, increasingly, it seems that the use of rule sets of the most popular games, particularly in new images’ encryption algorithms designing branch, leads to the crystallization of a new paradigm in the field of cryptography. Thus, motivated by this, the present paper aims to study a newly designed digital image scrambler (as part of the two fundamental techniques used to encrypt a block of pixels, i.e., the permutation stage that uses knight’s moving rules (i.e., from the game of chess, in conjunction with a chaos-based pseudorandom bit generator, abbreviated PRBG, in order to transpose original image’s pixels between RGB channels. Theoretical and practical arguments, rounded by good numerical results on scrambler’s performances analysis (i.e., under various investigation methods, including visual inspection, adjacent pixels’ correlation coefficients’ computation, key’s space and sensitivity assessment, etc. confirm viability of the proposed method (i.e., it ensures the coveted confusion factor recommending its usage within cryptographic applications.

  11. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    Science.gov (United States)

    Torricelli, Alessandro; Quaresima, Valentina; Pifferi, Antonio; Biscotti, Giovanni; Spinelli, Lorenzo; Taroni, Paola; Ferrari, Marco; Cubeddu, Rinaldo

    2004-03-01

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO2) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO2 was 73.0 ± 0.9 and 70.5 ± 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO2 decreased (69.1 ± 1.8 and 63.8 ± 2.1% in MG and LG, respectively; P muscle SmO2 and tHb.

  12. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  13. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Torricelli, Alessandro [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Quaresima, Valentina [Department of Biomedical Sciences and Technologies, University of L' Aquila, I-67100 L' Aquila (Italy); Pifferi, Antonio [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Biscotti, Giovanni [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Spinelli, Lorenzo [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Taroni, Paola [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Ferrari, Marco [Department of Biomedical Sciences and Technologies, University of L' Aquila, I-67100 L' Aquila (Italy); Cubeddu, Rinaldo [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy)

    2004-03-07

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO{sub 2}) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO{sub 2} was 73.0 {+-} 0.9 and 70.5 {+-} 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO{sub 2} decreased (69.1 {+-} 1.8 and 63.8 {+-} 2.1% in MG and LG, respectively; P < 0.01). The LG desaturation was greater than the MG desaturation (P < 0.02). These results strengthen the role of time-resolved near-infrared spectroscopy as a powerful tool for investigating the spatial and temporal features of muscle SmO{sub 2} and tHb.

  14. [Cardiac evaluation before non-cardiac surgery].

    Science.gov (United States)

    Menzenbach, Jan; Boehm, Olaf

    2016-07-01

    Before non-cardiac surgery, evaluation of cardiac function is no frequent part of surgical treatment. European societies of anesthesiology and cardiology published consensus-guidelines in 2014 to present a reasonable approach for preoperative evaluation. This paper intends to differentiate the composite of perioperative risk and to display the guidelines methodical approach to handle it. Features to identify patients at risk from an ageing population with comorbidities, are the classification of surgical risk, functional capacity and risk indices. Application of diagnostic means, should be used adjusted to this risk estimation. Cardiac biomarkers are useful to discover risk of complications or mortality, that cannot be assessed by clinical signs. After preoperative optimization and perioperative cardiac protection, the observation of the postoperative period remains, to prohibit complications or even death. In consideration of limited resources of intensive care department, postoperative ward rounds beyond intensive care units are considered to be an appropriate instrument to avoid or recognize complications early to reduce postoperative mortality. PMID:27479258

  15. Mapping out Map Libraries

    Directory of Open Access Journals (Sweden)

    Ferjan Ormeling

    2008-09-01

    Full Text Available Discussing the requirements for map data quality, map users and their library/archives environment, the paper focuses on the metadata the user would need for a correct and efficient interpretation of the map data. For such a correct interpretation, knowledge of the rules and guidelines according to which the topographers/cartographers work (such as the kind of data categories to be collected, and the degree to which these rules and guidelines were indeed followed are essential. This is not only valid for the old maps stored in our libraries and archives, but perhaps even more so for the new digital files as the format in which we now have to access our geospatial data. As this would be too much to ask from map librarians/curators, some sort of web 2.0 environment is sought where comments about data quality, completeness and up-to-dateness from knowledgeable map users regarding the specific maps or map series studied can be collected and tagged to scanned versions of these maps on the web. In order not to be subject to the same disadvantages as Wikipedia, where the ‘communis opinio’ rather than scholarship, seems to be decisive, some checking by map curators of this tagged map use information would still be needed. Cooperation between map curators and the International Cartographic Association ( ICA map and spatial data use commission to this end is suggested.

  16. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O;

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed...... and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  17. Designing a Multichannel Map Service Concept

    Directory of Open Access Journals (Sweden)

    Hanna-Marika Halkosaari

    2013-01-01

    Full Text Available This paper introduces a user-centered design process for developing a multichannel map service. The aim of the service is to provide hikers with interactive maps through several channels. In a multichannel map service, the same spatial information is available through various channels, such as printed maps, Web maps, mobile maps, and other interactive media. When properly networked, the channels share a uniform identity so that the user experiences the different channels as a part of a single map service. The traditional methods of user-centered design, such as design probes, personas, and scenarios, proved useful even in the emerging field of developing multichannel map services. The findings emphasize the need to involve users and multidisciplinary teams in the conceptual phases of designing complex services aimed at serving various kinds of users.

  18. Magnetocardiographic and electrocardiographic exercise mapping in healthy subjects.

    Science.gov (United States)

    Takala, P; Hänninen, H; Montone, J; Mäkijärvi, M; Nenonen, J; Oikarinen, L; Simeliu, K; Toivonen, L; Katil, T

    2001-06-01

    In 12-lead electrocardiography (ECG), detection of myocardial ischemia is based on ST-segment changes in exercise testing. Magnetocardiography (MCG) is a complementary method to the ECG for a noninvasive study of the electric activity of the heart. In the MCG, ST-segment changes due to stress have also been found in healthy subjects. To further study the normal response to exercise, we performed MCG mappings in 12 healthy volunteers during supine bicycle ergometry. We also recorded body surface potential mapping (BSPM) with 123 channels using the same protocol. In this paper we compare, for the first time, multichannel MCG recorded in bicycle exercise testing with BSPM over the whole thorax in middle-aged healthy subjects. We quantified changes induced by the exercise in the MCG and BSPM with parameters based on signal amplitude, and correlation between signal distributions at rest and after exercise. At the ST-segment and T-wave apex, the exercise induced a magnetic field component outward the precordium and the minimum value of the MCG signal over the mapped area was found to be amplified. The response to exercise was smaller in the BSPM than in the MCG. A negative component in the MCG signal at the repolarization period of the cardiac cycle should be considered as a normal response to exercise. Therefore, maximum ST-segment depression over the mapped area in the MCG may not be an eligible parameter when evaluating the presence of ischemia.

  19. The KCNQ1 potassium channel: from gene to physiological function

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, Morten; Olesen, Søren-Peter

    2005-01-01

    The voltage-gated KCNQ1 (KvLQT1, Kv7.1) potassium channel plays a crucial role in shaping the cardiac action potential as well as in controlling the water and salt homeostasis in several epithelial tissues. KCNQ1 channels in these tissues are tightly regulated by auxiliary proteins and accessory...

  20. Drosophila KCNQ channel displays evolutionarily conserved electrophysiology and pharmacology with mammalian KCNQ channels.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available Of the five human KCNQ (Kv7 channels, KCNQ1 with auxiliary subunit KCNE1 mediates the native cardiac I(Ks current with mutations causing short and long QT cardiac arrhythmias. KCNQ4 mutations cause deafness. KCNQ2/3 channels form the native M-current controlling excitability of most neurons, with mutations causing benign neonatal febrile convulsions. Drosophila contains a single KCNQ (dKCNQ that appears to serve alone the functions of all the duplicated mammalian neuronal and cardiac KCNQ channels sharing roughly 50-60% amino acid identity therefore offering a route to investigate these channels. Current information about the functional properties of dKCNQ is lacking therefore we have investigated these properties here. Using whole cell patch clamp electrophysiology we compare the biophysical and pharmacological properties of dKCNQ with the mammalian neuronal and cardiac KCNQ channels expressed in HEK cells. We show that Drosophila KCNQ (dKCNQ is a slowly activating and slowly-deactivating K(+ current open at sub-threshold potentials that has similar properties to neuronal KCNQ2/3 with some features of the cardiac KCNQ1/KCNE1 accompanied by conserved sensitivity to a number of clinically relevant KCNQ blockers (chromanol 293B, XE991, linopirdine and opener (zinc pyrithione. We also investigate the molecular basis of the differential selectivity of KCNQ channels to the opener retigabine and show a single amino acid substitution (M217W can confer sensitivity to dKCNQ. We show dKCNQ has similar electrophysiological and pharmacological properties as the mammalian KCNQ channels, allowing future study of physiological and pathological roles of KCNQ in Drosophila and whole organism screening for new modulators of KCNQ channelopathies.

  1. Generation of cardiac pacemaker cells by programming and differentiation.

    Science.gov (United States)

    Husse, Britta; Franz, Wolfgang-Michael

    2016-07-01

    A number of diseases are caused by faulty function of the cardiac pacemaker and described as "sick sinus syndrome". The medical treatment of sick sinus syndrome with electrical pacemaker implants in the diseased heart includes risks. These problems may be overcome via "biological pacemaker" derived from different adult cardiac cells or pluripotent stem cells. The generation of cardiac pacemaker cells requires the understanding of the pacing automaticity. Two characteristic phenomena the "membrane-clock" and the "Ca(2+)-clock" are responsible for the modulation of the pacemaker activity. Processes in the "membrane-clock" generating the spontaneous pacemaker firing are based on the voltage-sensitive membrane ion channel activity starting with slow diastolic depolarization and discharging in the action potential. The influence of the intracellular Ca(2+) modulating the pacemaker activity is characterized by the "Ca(2+)-clock". The generation of pacemaker cells started with the reprogramming of adult cardiac cells by targeted induction of one pacemaker function like HCN1-4 overexpression and enclosed in an activation of single pacemaker specific transcription factors. Reprogramming of adult cardiac cells with the transcription factor Tbx18 created cardiac cells with characteristic features of cardiac pacemaker cells. Another key transcription factor is Tbx3 specifically expressed in the cardiac conduction system including the sinoatrial node and sufficient for the induction of the cardiac pacemaker gene program. For a successful cell therapeutic practice, the generated cells should have all regulating mechanisms of cardiac pacemaker cells. Otherwise, the generated pacemaker cells serve only as investigating model for the fundamental research or as drug testing model for new antiarrhythmics. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  2. Generation of cardiac pacemaker cells by programming and differentiation.

    Science.gov (United States)

    Husse, Britta; Franz, Wolfgang-Michael

    2016-07-01

    A number of diseases are caused by faulty function of the cardiac pacemaker and described as "sick sinus syndrome". The medical treatment of sick sinus syndrome with electrical pacemaker implants in the diseased heart includes risks. These problems may be overcome via "biological pacemaker" derived from different adult cardiac cells or pluripotent stem cells. The generation of cardiac pacemaker cells requires the understanding of the pacing automaticity. Two characteristic phenomena the "membrane-clock" and the "Ca(2+)-clock" are responsible for the modulation of the pacemaker activity. Processes in the "membrane-clock" generating the spontaneous pacemaker firing are based on the voltage-sensitive membrane ion channel activity starting with slow diastolic depolarization and discharging in the action potential. The influence of the intracellular Ca(2+) modulating the pacemaker activity is characterized by the "Ca(2+)-clock". The generation of pacemaker cells started with the reprogramming of adult cardiac cells by targeted induction of one pacemaker function like HCN1-4 overexpression and enclosed in an activation of single pacemaker specific transcription factors. Reprogramming of adult cardiac cells with the transcription factor Tbx18 created cardiac cells with characteristic features of cardiac pacemaker cells. Another key transcription factor is Tbx3 specifically expressed in the cardiac conduction system including the sinoatrial node and sufficient for the induction of the cardiac pacemaker gene program. For a successful cell therapeutic practice, the generated cells should have all regulating mechanisms of cardiac pacemaker cells. Otherwise, the generated pacemaker cells serve only as investigating model for the fundamental research or as drug testing model for new antiarrhythmics. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel

  3. Cardiac Risk Assessment

    Science.gov (United States)

    ... to assess cardiac risk include: High-sensitivity C-reactive protein (hs-CRP) : Studies have shown that measuring ... LDL-C but does not respond to typical strategies to lower LDL-C such as diet, exercise, ...

  4. Sudden Cardiac Arrest

    Science.gov (United States)

    ... Heart Risk Factors & Prevention Heart Diseases & Disorders Atrial Fibrillation (AFib) Sudden Cardiac Arrest (SCA) SCA: Who's At Risk? Prevention of SCA What Causes SCA? SCA Awareness Atrial Flutter Heart Block Heart Failure Sick Sinus Syndrome Substances & Heart Rhythm Disorders Symptoms & ...

  5. Socially differentiated cardiac rehabilitation

    DEFF Research Database (Denmark)

    Meillier, Lucette Kirsten; Nielsen, Kirsten Melgaard; Larsen, Finn Breinholt;

    2012-01-01

    to a standard rehabilitation programme (SRP). If patients were identified as socially vulnerable, they were offered an extended version of the rehabilitation programme (ERP). Excluded patients were offered home visits by a cardiac nurse. Concordance principles were used in the individualised programme elements......%. Patients were equally distributed to the SRP and the ERP. No inequality was found in attendance and adherence among referred patients. Conclusions: It seems possible to overcome unequal referral, attendance, and adherence in cardiac rehabilitation by organisation of systematic screening and social......Aim: The comprehensive cardiac rehabilitation (CR) programme after myocardial infarction (MI) improves quality of life and results in reduced cardiac mortality and recurrence of MI. Hospitals worldwide face problems with low participation rates in rehabilitation programmes. Inequality...

  6. Operational Characterization of Divisibility of Dynamical Maps

    Science.gov (United States)

    Bae, Joonwoo; Chruściński, Dariusz

    2016-07-01

    In this work, we show the operational characterization to the divisibility of dynamical maps in terms of the distinguishability of quantum channels. It is proven that the distinguishability of any pair of quantum channels does not increase under divisible maps, in which the full hierarchy of divisibility is isomorphic to the structure of entanglement between system and environment. This shows that (i) channel distinguishability is the operational quantity signifying (detecting) divisibility (indivisibility) of dynamical maps and (ii) the decision problem for the divisibility of maps is as hard as the separability problem in entanglement theory. We also provide the information-theoretic characterization to the divisibility of maps with conditional min-entropy.

  7. Cardiac arrest - cardiopulmonary resuscitation

    Institute of Scientific and Technical Information of China (English)

    Basri Lenjani; Besnik Elshani; Nehat Baftiu; Kelmend Pallaska; Kadir Hyseni; Njazi Gashi; Nexhbedin Karemani; Ilaz Bunjaku; Taxhidin Zaimi; Arianit Jakupi

    2014-01-01

    Objective:To investigate application of cardiopulmonary resuscitation(CPR) measures within the golden minutes inEurope.Methods:The material was taken from theUniversityClinical Center ofKosovo -EmergencyCentre inPristina, during the two(2) year period(2010-2011).The collected date belong to the patients with cardiac arrest have been recorded in the patients' log book protocol at the emergency clinic.Results:During the2010 to2011 in the emergency center of theCUCK inPristina have been treated a total of269 patients with cardiac arrest, of whom159 or59.1% have been treated in2010, and110 patients or40.9% in2011.Of the269 patients treated in the emergency centre,93 or34.6% have exited lethally in the emergency centre, and176 or 65.4% have been transferred to other clinics.In the total number of patients with cardiac arrest, males have dominated with186 cases, or69.1%.The average age of patients included in the survey was56.7 year oldSD±16.0 years.Of the269 patients with cardiac arrest, defibrillation has been applied for93 or34.6% of patients.In the outpatient settings defibrillation has been applied for3 or3.2% of patients.Patients were defibrillated with application of one to four shocks. Of27 cases with who have survived cardiac arrest, none of them have suffered cardiac arrest at home,3 or11.1% of them have suffered cardiac arrest on the street, and24 or88.9% of them have suffered cardiac arrest in the hospital.5 out of27 patients survived have ended with neurological impairment.Cardiac arrest cases were present during all days of the week, but frequently most reported cases have been onMonday with32.0% of cases, and onFriday with24.5% of cases. Conclusions:All survivors from cardiac arrest have received appropriate medical assistance within10 min from attack, which implies that if cardiac arrest occurs near an institution health care(with an opportunity to provide the emergent health care) the rate of survival is higher.

  8. Awareness in cardiac anesthesia.

    LENUS (Irish Health Repository)

    Serfontein, Leon

    2010-02-01

    Cardiac surgery represents a sub-group of patients at significantly increased risk of intraoperative awareness. Relatively few recent publications have targeted the topic of awareness in this group. The aim of this review is to identify areas of awareness research that may equally be extrapolated to cardiac anesthesia in the attempt to increase understanding of the nature and significance of this scenario and how to reduce it.

  9. Cardiac rehabilitation in Germany.

    Science.gov (United States)

    Karoff, Marthin; Held, Klaus; Bjarnason-Wehrens, Birna

    2007-02-01

    The purpose of this review is to give an overview of the rehabilitation measures provided for cardiac patients in Germany and to outline its legal basis and outcomes. In Germany the cardiac rehabilitation system is different from rehabilitation measures in other European countries. Cardiac rehabilitation in Germany since 1885 is based on specific laws and the regulations of insurance providers. Cardiac rehabilitation has predominantly been offered as an inpatient service, but has recently been complemented by outpatient services. A general agreement on the different indications for offering these two services has yet to be reached. Cardiac rehabilitation is mainly offered after an acute cardiac event and bypass surgery. It is also indicated in severe heart failure and special cases of percutaneous coronary intervention. Most patients are men (>65%) and the age at which events occur is increasing. The benefits obtained during the 3-4 weeks after an acute event, and confirmed in numerous studies, are often later lost under 'usual care' conditions. Many attempts have been made by rehabilitation institutions to improve this deficit by providing intensive aftercare. One instrument set up to achieve this is the nationwide institution currently comprising more than 6000 heart groups with approximately 120000 outpatients. After coronary artery bypass grafting or acute coronary syndrome cardiac rehabilitation can usually be started within 10 days. The multidisciplinary rehabilitation team consists of cardiologists, psychologists, exercise therapists, social workers, nutritionists and nurses. The positive effects of cardiac rehabilitation are also important economically, for example, for the improvement of secondary prevention and vocational integration. PMID:17301623

  10. Cardiac tumours in infancy

    OpenAIRE

    Yadava, O.P.

    2012-01-01

    Cardiac tumours in infancy are rare and are mostly benign with rhabdomyomas, fibromas and teratomas accounting for the majority. The presentation depends on size and location of the mass as they tend to cause cavity obstruction or arrhythmias. Most rhabdomyomas tend to regress spontaneously but fibromas and teratomas generally require surgical intervention for severe haemodynamic or arrhythmic complications. Other relatively rare cardiac tumours too are discussed along with an Indian perspect...

  11. Infected cardiac hydatid cyst

    OpenAIRE

    Ceviz, M; Becit, N; Kocak, H.

    2001-01-01

    A 24 year old woman presented with chest pain and palpitation. The presence of a semisolid mass—an echinococcal cyst or tumour—in the left ventricular apex was diagnosed by echocardiography, computed tomography, and magnetic resonance imaging. The infected cyst was seen at surgery. The cyst was removed successfully by using cardiopulmonary bypass with cross clamp.


Keywords: cardiac hydatid cyst; infected cardiac hydatid cyst

  12. Cardiac Hypertrophy: A Review on Pathogenesis and Treatment

    Directory of Open Access Journals (Sweden)

    Ankur Rohilla

    2012-07-01

    Full Text Available Cardiac hypertrophy has been considered as an important risk factor for cardiac morbidity and mortality whose prevalence has increased during the last few decades. Cardiac hypertrophy, a disease associated with the myocardium, is characterized by thickening of ventricle wall of heart and consequent reduction in the contracting ability of heart to pump the blood. Cardiac hypertrophy has been divided into two types, i.e. physiological and pathological hypertrophy. The exercise-induced increase in the ability of pumping blood leads to thickening of ventricle wall, referred to as physiological hypertrophy. On the other hand, reduced ability of pumping blood as a result of hypertension and volume overload on heart denotes pathological hypertrophy. Numerous mediators have been found to be involved in the pathogenesis of cardiac hypertrophy that include mitogen-activated protein kinase (MAPK, protein kinase C (PKC insulin-like growth factor-I (IGF-I, phosphatidylinositol 3-kinase (PI3K-AKT/PKB, calcinurin-nuclear factor of activated T cells (NFAT and mammalian target of rapamycin (mTOR. The prevention strategy for cardiac hypertrophy involve thiazide diuretics, angiotensin-converting enzyme (ACE inhibitors, angiotensin (Ang II receptor blockers, beta blockers and calcium channel blockers. The present review article highlights the signaling mechanisms involved and the approaches required in the treatment of cardiac hypertrophy.

  13. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    Science.gov (United States)

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases. PMID:24804235

  14. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  15. Reproducibility of area at risk assessment in acute myocardial infarction by T1- and T2-mapping sequences in cardiac magnetic resonance imaging in comparison to Tc99m-sestamibi SPECT.

    Science.gov (United States)

    Langhans, Birgit; Nadjiri, Jonathan; Jähnichen, Christin; Kastrati, Adnan; Martinoff, Stefan; Hadamitzky, Martin

    2014-10-01

    Area at risk (AAR) is an important parameter for the assessment of the salvage area after revascularization in acute myocardial infarction (AMI). By combining AAR assessment by T2-weighted imaging and scar quantification by late gadolinium enhancement imaging cardiovascular magnetic resonance (CMR) offers a promising alternative to the "classical" modality of Tc99m-sestamibi single photon emission tomography (SPECT). Current T2 weighted sequences for edema imaging in CMR are limited by low contrast to noise ratios and motion artifacts. During the last years novel CMR imaging techniques for quantification of acute myocardial injury, particularly the T1-mapping and T2-mapping, have attracted rising attention. But no direct comparison between the different sequences in the setting of AMI or a validation against SPECT has been reported so far. We analyzed 14 patients undergoing primary coronary revascularization in AMI in whom both a pre-intervention Tc99m-sestamibi-SPECT and CMR imaging at a median of 3.4 (interquartile range 3.3-3.6) days after the acute event were performed. Size of AAR was measured by three different non-contrast CMR techniques on corresponding short axis slices: T2-weighted, fat-suppressed turbospin echo sequence (TSE), T2-mapping from T2-prepared balanced steady state free precession sequences (T2-MAP) and T1-mapping from modified look locker inversion recovery (MOLLI) sequences. For each CMR sequence, the AAR was quantified by appropriate methods (absolute values for mapping sequences, comparison with remote myocardium for other sequences) and correlated with Tc99m-sestamibi-SPECT. All measurements were performed on a 1.5 Tesla scanner. The size of the AAR assessed by CMR was 28.7 ± 20.9 % of left ventricular myocardial volume (%LV) for TSE, 45.8 ± 16.6 %LV for T2-MAP, and 40.1 ± 14.4 %LV for MOLLI. AAR assessed by SPECT measured 41.6 ± 20.7 %LV. Correlation analysis revealed best correlation with SPECT for T2-MAP at a T2-threshold of 60 ms

  16. Genetic and physiologic dissection of the vertebrate cardiac conduction system.

    Directory of Open Access Journals (Sweden)

    Neil C Chi

    2008-05-01

    Full Text Available Vertebrate hearts depend on highly specialized cardiomyocytes that form the cardiac conduction system (CCS to coordinate chamber contraction and drive blood efficiently and unidirectionally throughout the organism. Defects in this specialized wiring system can lead to syncope and sudden cardiac death. Thus, a greater understanding of cardiac conduction development may help to prevent these devastating clinical outcomes. Utilizing a cardiac-specific fluorescent calcium indicator zebrafish transgenic line, Tg(cmlc2:gCaMP(s878, that allows for in vivo optical mapping analysis in intact animals, we identified and analyzed four distinct stages of cardiac conduction development that correspond to cellular and anatomical changes of the developing heart. Additionally, we observed that epigenetic factors, such as hemodynamic flow and contraction, regulate the fast conduction network of this specialized electrical system. To identify novel regulators of the CCS, we designed and performed a new, physiology-based, forward genetic screen and identified for the first time, to our knowledge, 17 conduction-specific mutations. Positional cloning of hobgoblin(s634 revealed that tcf2, a homeobox transcription factor gene involved in mature onset diabetes of the young and familial glomerulocystic kidney disease, also regulates conduction between the atrium and the ventricle. The combination of the Tg(cmlc2:gCaMP(s878 line/in vivo optical mapping technique and characterization of cardiac conduction mutants provides a novel multidisciplinary approach to further understand the molecular determinants of the vertebrate CCS.

  17. Differential Effects of Ginsenoside Metabolites on HERG K+ Channel Currents

    OpenAIRE

    Choi, Sun-Hye; Shin, Tae-Joon; Hwang, Sung-Hee; Lee, Byung-Hwan; Kang, Jiyeon; Kim, Hyeon-Joong; Oh, Jae-Wook; Bae, Chun Sik; Lee, Soo-Han; Nah, Seung-Yeol

    2011-01-01

    The human ether-a-go-go-related gene (HERG) cardiac K+ channels are one of the representative pharmacological targets for development of drugs against cardiovascular diseases such as arrhythmia. Panax ginseng has been known to exhibit cardioprotective effects. In a previous report we demonstrated that ginsenoside Rg3 regulates HERG K+ channels by decelerating deactivation. However, little is known about how ginsenoside metabolites regulate HERG K+ channel activity. In the present study, we ex...

  18. Breath-hold CT attenuation correction for quantitative cardiac SPECT

    OpenAIRE

    Koshino, Kazuhiro; Fukushima, Kazuhito; Fukumoto, Masaji; Sasaki, Kazunari; Moriguchi, Tetsuaki; Hori, Yuki; Zeniya, Tsutomu; Nishimura, Yoshihiro; Kiso, Keisuke; Iida, Hidehiro

    2012-01-01

    Background Attenuation correction of a single photon emission computed tomography (SPECT) image is possible using computed tomography (CT)-based attenuation maps with hybrid SPECT/CT. CT attenuation maps acquired during breath holding can be misaligned with SPECT, generating artifacts in the reconstructed images. The purpose of this study was to investigate the effects of respiratory phase during breath-hold CT acquisition on attenuation correction of cardiac SPECT imaging. Methods A series o...

  19. The quantum capacity with symmetric side channels

    CERN Document Server

    Smith, G; Winter, A; Smith, Graeme; Smolin, John A.; Winter, Andreas

    2006-01-01

    We present an upper bound for the quantum channel capacity that is both additive and convex. Our bound can be interpreted as the capacity of a channel for high-fidelity communication when assisted by the family of all channels mapping symmetrically to their output and environment. The bound seems to be quite tight, and for degradable quantum channels it coincides with the unassisted channel capacity. Using this symmetric side channel capacity, we find new upper bounds on the capacity of the depolarizing channel. We also briefly indicate an analogous notion for distilling entanglement using the same class of (one-way) channels, yielding one of the few genuinely 1-LOCC monotonic entanglement measures.

  20. Pediatric cardiac postoperative care

    Directory of Open Access Journals (Sweden)

    Auler Jr. José Otávio Costa

    2002-01-01

    Full Text Available The Heart Institute of the University of São Paulo, Medical School is a referral center for the treatment of congenital heart diseases of neonates and infants. In the recent years, the excellent surgical results obtained in our institution may be in part due to modern anesthetic care and to postoperative care based on well-structured protocols. The purpose of this article is to review unique aspects of neonate cardiovascular physiology, the impact of extracorporeal circulation on postoperative evolution, and the prescription for pharmacological support of acute cardiac dysfunction based on our cardiac unit protocols. The main causes of low cardiac output after surgical correction of heart congenital disease are reviewed, and methods of treatment and support are proposed as derived from the relevant literature and our protocols.

  1. The cardiac anxiety questionnaire: cross-validation among cardiac inpatients

    NARCIS (Netherlands)

    Beek, M.H. van; Oude Voshaar, R.C.; Deelen, F.M. van; Balkom, A.J. van; Pop, G.A.; Speckens, A.E.

    2012-01-01

    OBJECTIVE: General anxiety symptoms are common in patients with cardiac disease and considered to have an adverse effect on cardiac prognosis. The role of specific cardiac anxiety, however, is still unknown. The aim of this study is to examine the factor structure, reliability, and validity of the D

  2. THE CARDIAC ANXIETY QUESTIONNAIRE : CROSS-VALIDATION AMONG CARDIAC INPATIENTS

    NARCIS (Netherlands)

    van Beek, M. H. C. T.; Voshaar, R. C. Oude; van Deelen, F. M.; van Balkom, A. J. L. M.; Pop, G.; Speckens, A. E. M.

    2012-01-01

    Objective: General anxiety symptoms are common in patients with cardiac disease and considered to have an adverse effect on cardiac prognosis. The role of specific cardiac anxiety, however, is still unknown. The aim of this study is to examine the factor structure, reliability, and validity of the D

  3. Cardiac abnormalities assessed by non-invasive techniques in patients with newly diagnosed idiopathic inflammatory myopathies

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Simonsen, Jane Angel; Diederichsen, Axel Cosmus Pyndt;

    2015-01-01

    , cardiac troponin-I (TnI), electrocardiogram (standard 12-lead and 48-h Holter monitoring), echocardiography with tissue Doppler measures, cardiac magnetic resonance (CMR) imaging with T2 mapping and semi-quantitative (99m)technetium pyrophosphate ((99m)Tc-PYP) scintigraphy. RESULTS: Dyspnoea was present....... The myocardial (99m)Tc-PYP uptake and CMR results differed between patients and controls, albeit not with statistical significance. Overall, cardiac abnormalities were demonstrated in 9 (64%) of the patients versus 2 (14%) of the controls (p=0.02). CONCLUSIONS: Cardiac abnormalities assessed by TnI, ECG...

  4. Giant Cardiac Cavernous Hemangioma.

    Science.gov (United States)

    Unger, Eric; Costic, Joseph; Laub, Glenn

    2015-07-01

    We report the case of an asymptomatic giant cardiac cavernous hemangioma in a 71-year-old man. The intracardiac mass was discovered incidentally during surveillance for his prostate cancer; however, the patient initially declined intervention. On presentation to our institution 7 years later, the lesion had enlarged significantly, and the patient consented to excision. At surgery, an 8 × 6.5 × 4.8 cm intracardiac mass located on the inferior heart border was excised with an intact capsule through a median sternotomy approach. The patient had an uneventful postoperative course. We discuss the diagnostic workup, treatment, and characteristics of this rare cardiac tumor. PMID:26140782

  5. Perioperative management of cardiac disease.

    Science.gov (United States)

    Aresti, N A; Malik, A A; Ihsan, K M; Aftab, S M E; Khan, W S

    2014-01-01

    Pre-existing cardiac disease contributes significantly to morbidity and mortality amongst patients undergoing non cardiac surgery. Patients with pre-existing cardiac disease or with risk factors for it, have as much as a 3.9% risk of suffering a major perioperative cardiac event (Lee et al 1999, Devereaux 2005). Furthermore, the incidence of perioperative myocardial infarction (MI) is increased 10 to 50 fold in patients with previous coronary events (Jassal 2008).

  6. Synergistic activation of cardiac genes by myocardin and Tbx5.

    Directory of Open Access Journals (Sweden)

    Chunbo Wang

    Full Text Available Myocardial differentiation is associated with the activation and expression of an array of cardiac specific genes. However, the transcriptional networks that control cardiac gene expression are not completely understood. Myocardin is a cardiac and smooth muscle-specific expressed transcriptional coactivator of Serum Response Factor (SRF and is able to potently activate cardiac and smooth muscle gene expression during development. We hypothesize that myocardin discriminates between cardiac and smooth muscle specific genes by associating with distinct co-factors. Here, we show that myocardin directly interacts with Tbx5, a member of the T-box family of transcription factors involved in the Holt-Oram syndrome. Tbx5 synergizes with myocardin to activate expression of the cardiac specific genes atrial natriuretic factor (ANF and alpha myosin heavy chain (α-MHC, but not that of smooth muscle specific genes SM22 or smooth muscle myosin heavy chain (SM-MHC. We found that this synergistic activation of shared target genes is dependent on the binding sites for Tbx5, T-box factor-Binding Elements (TBEs. Myocardin and Tbx5 physically interact and their interaction domains were mapped to the basic domain and the coil domain of myocardin and Tbx5, respectively. Our analysis demonstrates that the Tbx5G80R mutation, which leads to the Holt-Oram syndrome in humans, failed to synergize with myocardin to activate cardiac gene expression. These data uncover a key role for Tbx5 and myocardin in establishing the transcriptional foundation for cardiac gene activation and suggest that the interaction of myocardin and Tbx5 maybe involved in cardiac development and diseases.

  7. Multifocal Ectopic Purkinje-Related Premature Contractions: A New SCN5A-Related Cardiac Channelopathy. : MEPPC: a new SCN5A-related cardiac channelopathy

    OpenAIRE

    Amarouch, Mohamed Yassine; Barc, Julien; Bar, Isabelle; Baron, Estelle; Barthez, Olivier; Bertaux, Geraldine; Béziau, Delphine M.; Charpentier, Flavien; Charron, Philippe; Coudière, Yves; Dina, Christian; Faivre, Laurence; Fressart, Véronique; Kyndt, Florence; Laurent, Gabriel

    2012-01-01

    OBJECTIVES: The aim of this study was to describe a new familial cardiac phenotype and to elucidate the electrophysiological mechanism responsible for the disease. BACKGROUND: Mutations in several genes encoding ion channels, especially SCN5A, have emerged as the basis for a variety of inherited cardiac arrhythmias. METHODS: Three unrelated families comprising 21 individuals affected by multifocal ectopic Purkinje-related premature contractions (MEPPC) characterized by narrow junctional and r...

  8. Pred-hERG: A Novel web-Accessible Computational Tool for Predicting Cardiac Toxicity.

    Science.gov (United States)

    Braga, Rodolpho C; Alves, Vinicius M; Silva, Meryck F B; Muratov, Eugene; Fourches, Denis; Lião, Luciano M; Tropsha, Alexander; Andrade, Carolina H

    2015-10-01

    The blockage of the hERG K(+) channels is closely associated with lethal cardiac arrhythmia. The notorious ligand promiscuity of this channel earmarked hERG as one of the most important antitargets to be considered in early stages of drug development process. Herein we report on the development of an innovative and freely accessible web server for early identification of putative hERG blockers and non-blockers in chemical libraries. We have collected the largest publicly available curated hERG dataset of 5,984 compounds. We succeed in developing robust and externally predictive binary (CCR≈0.8) and multiclass models (accuracy≈0.7). These models are available as a web-service freely available for public at http://labmol.farmacia.ufg.br/predherg/. Three following outcomes are available for the users: prediction by binary model, prediction by multi-class model, and the probability maps of atomic contribution. The Pred-hERG will be continuously updated and upgraded as new information became available. PMID:27490970

  9. hERG channel function: beyond long QT

    Science.gov (United States)

    Babcock, Joseph J; Li, Min

    2013-01-01

    To date, research on the human ether-a-go-go related gene (hERG) has focused on this potassium channel's role in cardiac repolarization and Long QT Syndrome (LQTS). However, growing evidence implicates hERG in a diversity of physiologic and pathological processes. Here we discuss these other functions of hERG, particularly their impact on diseases beyond cardiac arrhythmia. PMID:23459091

  10. Brands & Channels

    Institute of Scientific and Technical Information of China (English)

    Alice Yang

    2009-01-01

    @@ "Brands" and "Channels" are the two most important things in Ku-Hai Chen's eyes when doing business with Main-land China. Ku-Hai Chen, Executive Director of the International Trade Institute of Taiwan External Trade Development Council (TAITRA), flies frequently between Chinese Taipei and Mainland China, and was in Beijing earlier this month for his seminar.

  11. The cardiac malpositions.

    Science.gov (United States)

    Perloff, Joseph K

    2011-11-01

    Dextrocardia was known in the 17th century and was 1 of the first congenital malformations of the heart to be recognized. Fifty years elapsed before Matthew Baillie published his account of complete transposition in a human of the thoracic and abdominal viscera to the opposite side from what is natural. In 1858, Thomas Peacock stated that "the heart may be congenitally misplaced in various ways, occupying either an unusual position within the thorax, or being situated external to that cavity." In 1915, Maude Abbott described ectopia cordis, and Richard Paltauf's remarkable illustrations distinguished the various types of dextrocardia. In 1928, the first useful classification of the cardiac malpositions was proposed, and in 1966, Elliott et al's radiologic classification set the stage for clinical recognition. The first section of this review deals with the 3 basic cardiac malpositions in the presence of bilateral asymmetry. The second section deals with cardiac malpositions in the presence of bilateral left-sidedness or right-sidedness. Previous publications on cardiac malpositions are replete with an arcane vocabulary that confounds rather than clarifies. Even if the terms themselves are understood, inherent complexity weighs against clarity. This review was designed as a guided tour of an unfamiliar subject.

  12. Hepato-cardiac disorders

    Institute of Scientific and Technical Information of China (English)

    Yasser; Mahrous; Fouad; Reem; Yehia

    2014-01-01

    Understanding the mutual relationship between the liver and the heart is important for both hepatologists and cardiologists. Hepato-cardiac diseases can be classified into heart diseases affecting the liver, liver diseases affecting the heart, and conditions affecting the heart and the liver at the same time. Differential diagnoses of liver injury are extremely important in a cardiologist’s clinical practice calling for collaboration between cardiologists and hepatologists due to the many other diseases that can affect the liver and mimic haemodynamic injury. Acute and chronic heart failure may lead to acute ischemic hepatitis or chronic congestive hepatopathy. Treatment in these cases should be directed to the primary heart disease. In patients with advanced liver disease, cirrhotic cardiomyopathy may develop including hemodynamic changes, diastolic and systolic dysfunctions, reduced cardiac performance and electrophysiological abnormalities. Cardiac evaluation is important for patients with liver diseases especially before and after liver transplantation. Liver transplantation may lead to the improvement of all cardiac changes and the reversal of cirrhotic cardiomyopathy. There are systemic diseases that may affect both the liver and the heart concomitantly including congenital, metabolic and inflammatory diseases as well as alcoholism. This review highlights these hepatocardiac diseases

  13. Cardiac effects of vasopressin.

    Science.gov (United States)

    Pelletier, Jean-Sébastien; Dicken, Bryan; Bigam, David; Cheung, Po-Yin

    2014-07-01

    Vasopressin is an essential hormone involved in the maintenance of cardiovascular homeostasis. It has been in use therapeutically for many decades, with an emphasis on its vasoconstrictive and antidiuretic properties. However, this hormone has a ubiquitous influence and has specific effects on the heart. Although difficult to separate from its powerful vascular effects in the clinical setting, a better understanding of vasopressin's direct cardiac effects could lead to its more effective clinical use for a variety of shock states by maximizing its therapeutic benefit. The cardiac-specific effects of vasopressin are complex and require further elucidation. Complicating our understanding include the various receptors and secondary messengers involved in vasopressin's effects, which may lead to various results based on differing doses and varying environmental conditions. Thus, there have been contradictory reports on vasopressin's action on the coronary vasculature and on its effect on inotropy. However, beneficial results have been found and warrant further study to expand the potential therapeutic role of vasopressin. This review outlines the effect of vasopressin on the coronary vasculature, cardiac contractility, and on hypertrophy and cardioprotection. These cardiac-specific effects of vasopressin represent an interesting area for further study for potentially important therapeutic benefits. PMID:24621650

  14. Cardiac pacemaker power sources

    International Nuclear Information System (INIS)

    A review of chemical and radioisotope batteries used in cardiac pacemakers is presented. The battery systems are examined in terms of longevity, reliability, cost, size and shape, energy density, weight, internal resistance versus time, end-of-life voltage, chemical compatibility, and potential failure mechanisms

  15. Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial Dysfunction: The Link with Cardiac Arrhythmogenesis

    Science.gov (United States)

    Tse, Gary; Yan, Bryan P.; Chan, Yin W. F.; Tian, Xiao Yu; Huang, Yu

    2016-01-01

    Background: Cardiac arrhythmias represent a significant problem globally, leading to cerebrovascular accidents, myocardial infarction, and sudden cardiac death. There is increasing evidence to suggest that increased oxidative stress from reactive oxygen species (ROS), which is elevated in conditions such as diabetes and hypertension, can lead to arrhythmogenesis. Method: A literature review was undertaken to screen for articles that investigated the effects of ROS on cardiac ion channel function, remodeling and arrhythmogenesis. Results: Prolonged endoplasmic reticulum stress is observed in heart failure, leading to increased production of ROS. Mitochondrial ROS, which is elevated in diabetes and hypertension, can stimulate its own production in a positive feedback loop, termed ROS-induced ROS release. Together with activation of mitochondrial inner membrane anion channels, it leads to mitochondrial depolarization. Abnormal function of these organelles can then activate downstream signaling pathways, ultimately culminating in altered function or expression of cardiac ion channels responsible for generating the cardiac action potential (AP). Vascular and cardiac endothelial cells become dysfunctional, leading to altered paracrine signaling to influence the electrophysiology of adjacent cardiomyocytes. All of these changes can in turn produce abnormalities in AP repolarization or conduction, thereby increasing likelihood of triggered activity and reentry. Conclusion: ROS plays a significant role in producing arrhythmic substrate. Therapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels. These may relieve oxidative stress and in turn prevent arrhythmic complications in patients with diabetes, hypertension, and heart failure. PMID:27536244

  16. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate

    OpenAIRE

    Ivanov, Vadim; Ivanova, Svetlana; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; RATH, MATTHIAS

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition...

  17. ICEPO: the ion channel electrophysiology ontology.

    Science.gov (United States)

    Hinard, V; Britan, A; Rougier, J S; Bairoch, A; Abriel, H; Gaudet, P

    2016-01-01

    Ion channels are transmembrane proteins that selectively allow ions to flow across the plasma membrane and play key roles in diverse biological processes. A multitude of diseases, called channelopathies, such as epilepsies, muscle paralysis, pain syndromes, cardiac arrhythmias or hypoglycemia are due to ion channel mutations. A wide corpus of literature is available on ion channels, covering both their functions and their roles in disease. The research community needs to access this data in a user-friendly, yet systematic manner. However, extraction and integration of this increasing amount of data have been proven to be difficult because of the lack of a standardized vocabulary that describes the properties of ion channels at the molecular level. To address this, we have developed Ion Channel ElectroPhysiology Ontology (ICEPO), an ontology that allows one to annotate the electrophysiological parameters of the voltage-gated class of ion channels. This ontology is based on a three-state model of ion channel gating describing the three conformations/states that an ion channel can adopt: closed, open and inactivated. This ontology supports the capture of voltage-gated ion channel electrophysiological data from the literature in a structured manner and thus enables other applications such as querying and reasoning tools. Here, we present ICEPO (ICEPO ftp site:ftp://ftp.nextprot.org/pub/current_release/controlled_vocabularies/), as well as examples of its use.

  18. Atrial fibrillation after cardiac surgery

    Directory of Open Access Journals (Sweden)

    Nair Suresh

    2010-01-01

    Full Text Available Once considered as nothing more than a nuisance after cardiac surgery, the importance of postoperative atrial fibrillation (POAF has been realized in the last decade, primarily because of the morbidity associated with the condition. Numerous causative factors have been described without any single factor being singled out as the cause of this complication. POAF has been associated with stroke, renal failure and congestive heart failure, although it is difficult to state whether POAF is directly responsible for these complications. Guidelines have been formulated for prevention of POAF. However, very few cardiothoracic centers follow any form of protocol to prevent POAF. Routine use of prophylaxis would subject all patients to the side effects of anti-arrhythmic drugs, while only a minority of the patients do actually develop this problem postoperatively. Withdrawal of beta blockers in the postoperative period has been implicated as one of the major causes of POAF. Amiodarone, calcium channel blockers and a variety of other pharmacological agents have been used for the prevention of POAF. Atrial pacing is a non-pharmacological measure which has gained popularity in the prevention of POAF. There is considerable controversy regarding whether rate control is superior to rhythm control in the treatment of established atrial fibrillation (AF. Amiodarone plays a central role in both rate control and rhythm control in postoperative AF. Newer drugs like dronedarone and ranazoline are likely to come into the market in the coming years.

  19. Identifying potential functional impact of mutations and polymorphisms: Linking heart failure, increased risk of arrhythmias and sudden cardiac death.

    Directory of Open Access Journals (Sweden)

    BENOIT eJAGU

    2013-09-01

    Full Text Available Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behaviour has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis and the degradation of ion channel α-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking.

  20. Cardiac Tropism of Borrelia burgdorferi: An Autopsy Study of Sudden Cardiac Death Associated with Lyme Carditis.

    Science.gov (United States)

    Muehlenbachs, Atis; Bollweg, Brigid C; Schulz, Thadeus J; Forrester, Joseph D; DeLeon Carnes, Marlene; Molins, Claudia; Ray, Gregory S; Cummings, Peter M; Ritter, Jana M; Blau, Dianna M; Andrew, Thomas A; Prial, Margaret; Ng, Dianna L; Prahlow, Joseph A; Sanders, Jeanine H; Shieh, Wun Ju; Paddock, Christopher D; Schriefer, Martin E; Mead, Paul; Zaki, Sherif R

    2016-05-01

    Fatal Lyme carditis caused by the spirochete Borrelia burgdorferi rarely is identified. Here, we describe the pathologic, immunohistochemical, and molecular findings of five case patients. These sudden cardiac deaths associated with Lyme carditis occurred from late summer to fall, ages ranged from young adult to late 40s, and four patients were men. Autopsy tissue samples were evaluated by light microscopy, Warthin-Starry stain, immunohistochemistry, and PCR for B. burgdorferi, and immunohistochemistry for complement components C4d and C9, CD3, CD79a, and decorin. Post-mortem blood was tested by serology. Interstitial lymphocytic pancarditis in a relatively characteristic road map distribution was present in all cases. Cardiomyocyte necrosis was minimal, T cells outnumbered B cells, plasma cells were prominent, and mild fibrosis was present. Spirochetes in the cardiac interstitium associated with collagen fibers and co-localized with decorin. Rare spirochetes were seen in the leptomeninges of two cases by immunohistochemistry. Spirochetes were not seen in other organs examined, and joint tissue was not available for evaluation. Although rare, sudden cardiac death caused by Lyme disease might be an under-recognized entity and is characterized by pancarditis and marked tropism of spirochetes for cardiac tissues. PMID:26968341

  1. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key compon

  2. Cardiac neural crest contributes to cardiomyogenesis in zebrafish.

    Science.gov (United States)

    Sato, Mariko; Yost, H Joseph

    2003-05-01

    In birds and mammals, cardiac neural crest is essential for heart development and contributes to conotruncal cushion formation and outflow tract septation. The zebrafish prototypical heart lacks outflow tract septation, raising the question of whether cardiac neural crest exists in zebrafish. Here, results from three distinct lineage-labeling approaches identify zebrafish cardiac neural crest cells and indicate that these cells have the ability to generate MF20-positive muscle cells in the myocardium of the major chambers during development. Fate-mapping demonstrates that cardiac neural crest cells originate both from neural tube regions analogous to those found in birds, as well as from a novel region rostral to the otic vesicle. In contrast to other vertebrates, cardiac neural crest invades the myocardium in all segments of the heart, including outflow tract, atrium, atrioventricular junction, and ventricle in zebrafish. Three distinct groups of premigratory neural crest along the rostrocaudal axis have different propensities to contribute to different segments in the heart and are correspondingly marked by unique combinations of gene expression patterns. Zebrafish will serve as a model for understanding interactions between cardiac neural crest and cardiovascular development.

  3. Planetary maps

    Science.gov (United States)

    ,

    1992-01-01

    An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.

  4. Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643)

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Diness, Thomas Goldin; Christ, Torsten;

    2005-01-01

    The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased repolari...

  5. MD300测深系统在河道地形测绘中的应用%Application of MD300 sounding system to the topographic mapping of river channels

    Institute of Scientific and Technical Information of China (English)

    肖华; 唐从胜; 田次平

    2001-01-01

    In recent years,the global positioning system(GPS) technique is rapidly developing,since it is characterized by continuity,real-time,all-weather operation with high accuracy,this technique has found extensive application in survey,positioning,navigation.MD300 sounding system is a new topograpbic survey system especially for water areas supported by GPS.In combination with the development and application of the sounding system carried out by the Jingjiang Investigation Bureau of Hydrology and Water Resources of Changjiang Water Resources Commission,the structural function and system configuration and the implementation methods of the system are presented.From the viewpoint of its practical effect of application,this sounding system has characteristics of accurate positioning,accurate water depth acquisition and high automation procedure,compared with conventional metheds.The system is an ideal river channel mapping system.%近年来,全球定位系统(GPS)技术迅猛发展,由于它具有连续、实时、高精度、全天候的特点,使其在诸如测量、定位、导航中得到广泛应用。MD300测深系统是在GPS支持下的一种全新的水域地形测量系统。结合长江委荆江水文水资源局对该系统的开发、应用,介绍了其结构功能、系统配置及实现方法,从实际运用效果看,与常规测量方法相比,该系统具有定位精确、水深采集准确、自动化程度高等特点,是理想的河道测绘系统。

  6. T-wave Alternans and Arrhythmogenesis in Cardiac Diseases

    Directory of Open Access Journals (Sweden)

    Zhilin eQu

    2010-11-01

    Full Text Available T-wave alternans, a manifestation of repolarization alternans at the cellular level, is associated with lethal cardiac arrhythmias and sudden cardiac death. At the cellular level, several mechanisms can produce repolarization alternans, including: 1 electrical restitution resulting from collective ion channel recovery, which usually occurs at fast heart rates but can also occur at normal heart rates when action potential is prolonged resulting in a short diastolic interval; 2 the transient outward current, which tends to occur at normal or slow heart rates; 3 the dynamics of early afterdepolarizations, which tends to occur during bradycardia; and 4 intracellular calcium cycling alternans through its interaction with membrane voltage. In this review, we summarize the cellular mechanisms of alternans arising from these different mechanisms, and discuss their roles in arrhythmogenesis in the setting of cardiac disease.

  7. Bipartite depolarizing maps

    Science.gov (United States)

    Lami, Ludovico; Huber, Marcus

    2016-09-01

    We introduce a 3-parameter class of maps (1) acting on a bipartite system which are a natural generalisation of the depolarizing channel (and include it as a special case). Then, we find the exact regions of the parameter space that alternatively determine a positive, completely positive, entanglement-breaking, or entanglement-annihilating map. This model displays a much richer behaviour than the one shown by a simple depolarizing channel, yet it stays exactly solvable. As an example of this richness, positive partial transposition but not entanglement-breaking maps is found in Theorem 2. A simple example of a positive yet indecomposable map is provided (see the Remark at the end of Section IV). The study of the entanglement-annihilating property is fully addressed by Theorem 7. Finally, we apply our results to solve the problem of the entanglement annihilation caused in a bipartite system by a tensor product of local depolarizing channels. In this context, a conjecture posed in the work of Filippov [J. Russ. Laser Res. 35, 484 (2014)] is affirmatively answered, and the gaps that the imperfect bounds of Filippov and Ziman [Phys. Rev. A 88, 032316 (2013)] left open are closed. To arrive at this result, we furthermore show how the Hadamard product between quantum states can be implemented via local operations.

  8. Visualization and analysis of functional cardiac MRI data

    Science.gov (United States)

    McVeigh, Elliot R.; Guttman, Michael A.; Poon, Eric; Pisupati, Chandrasekhar; Moore, Christopher C.; Zerhouni, Elias A.; Solaiyappan, Meiyappan; Heng, PhengAnn

    1994-05-01

    Rapid analysis of large multi-dimensional data sets is critical for the successful implementation of a comprehensive MR cardiac exam. We have developed a software package for the analysis and visualization of cardiac MR data. The program allows interactive visualization of time and space stacks of MRI data, automatic segmentation of myocardial borders and myocardial tagging patterns, and visualization of functional parameters such a motion, strain, and blood flow, mapped as colors in an interactive dynamic 3D volume rendering of the beating heart.

  9. Vector flow mapping for assessing Beagle dogs′ left ventricular vortex in selective bi-polar single site cardiac pacing%超声血流向量成像评价健康比格犬心脏不同位点起搏左心室血流涡旋

    Institute of Scientific and Technical Information of China (English)

    丁戈琦; 尹立雪; 王志刚; 陆景; 李文华; 张红梅

    2015-01-01

    Objective To investigate the changes of left ventricular(LV) vortex strength(VS) and distribution during selective cardiac pacing in a phases of cardiac cycle using vector flow mapping techniques ,and associate with LV mechanical performance ,so as to provide basic experimental database for optimizing the sites of the artificial cardiac pacing in clinic conditions .Methods Eight heathy open‐chest Beagle dog models were employed for selective right ventricular apical (RVAP ) ,left ventricular apical (LVAP) and lateral wall pacing (LVLP) .The standard two‐dimensional apical three views with color Doppler flow and dynamic two‐dimensional images were acquired consecutively in three cardiac cycles for further off‐line analysis ,conventional parameters were measured at same time .Results Compared with baseline ,LVSV ,LVEF ,LVCO and dp/dtmax were both reduced ,and the parameters obtained leftside cardiac pacing were lower than that of right ventricular pacing ( P < 0 0.5) ,there′s no significant difference in E/Vp .The vortex pattern ,distribution and vorticity at six typical phases induced by selective cardiac pacing were totally different from those at baseline with sinus rhythm ,and leftside pacing were worsen than RVAP ,the LVAP were most obvious .On multivariable regression analysis ,the VS during ES (VSES ) at baseline was independently related to late‐diastolic VS and longitudinal strain (R2 = 0 6.3 ,P < 0 0.01 and P=0 0.03 ,respectively) .Conclusions The selective cardiac pacing could induce intracardiac vortex changes and differ from that at baseline ,and the persistence of vortex from late diastole into ES is a haemodynamic measure of coupling between diastole and systole .%目的:应用超声血流向量成像(VFM)技术评价健康比格犬心脏不同位点起搏心动周期内左室流场涡旋分布、强度变化及心肌力学参数,探讨起搏状态下心腔内涡旋变化特征,为临床优化人工心脏起搏位点提供流体

  10. When the clock strikes: Modeling the relation between circadian rhythms and cardiac arrhythmias

    CERN Document Server

    Seenivasan, Pavithraa; Sridhar, S; Sinha, Sitabhra

    2016-01-01

    It has recently been observed that the occurrence of sudden cardiac death has a close statistical relationship with the time of day, viz., ventricular fibrillation is most likely to occur between 12 am-6 am, with 6 pm-12 am being the next most likely period. Consequently there has been significant interest in understanding how cardiac activity is influenced by the circadian clock, i.e., temporal oscillations in physiological activity with a period close to 24 hours and synchronized with the day-night cycle. Although studies have identified the genetic basis of circadian rhythms at the intracellular level, the mechanisms by which they influence cardiac pathologies are not yet fully understood. Evidence has suggested that diurnal variations in the conductance properties of ion channel proteins that govern the excitation dynamics of cardiac cells may provide the crucial link. In this paper, we investigate the relationship between the circadian rhythm as manifested in modulations of ion channel properties and the...

  11. Sudden Cardiac Death

    Directory of Open Access Journals (Sweden)

    Yipsy María Gutiérrez Báez

    2015-09-01

    Full Text Available Since the second half of the twentieth century, dying suddenly due to heart-related problems has become the main health issue in all countries where infectious diseases are not prevalent. Sudden death from cardiac causes is an important global health problem. Major databases were searched for the leading causes of sudden cardiac death. It has been demonstrated that there is a group of hereditary diseases with structural alterations or without apparent organic cause that explains many cases of sudden death in young people, whether related or not to physical exertion. Certain population groups are at higher risk for this disease. They are relatively easy to identify and can be the target of primary prevention measures.

  12. An information-guided channel-hopping scheme for block-fading channels with estimation errors

    KAUST Repository

    Yang, Yuli

    2010-12-01

    Information-guided channel-hopping technique employing multiple transmit antennas was previously proposed for supporting high data rate transmission over fading channels. This scheme achieves higher data rates than some mature schemes, such as the well-known cyclic transmit antenna selection and space-time block coding, by exploiting the independence character of multiple channels, which effectively results in having an additional information transmitting channel. Moreover, maximum likelihood decoding may be performed by simply decoupling the signals conveyed by the different mapping methods. In this paper, we investigate the achievable spectral efficiency of this scheme in the case of having channel estimation errors, with optimum pilot overhead for minimum meansquare error channel estimation, when transmitting over blockfading channels. Our numerical results further substantiate the robustness of the presented scheme, even with imperfect channel state information. ©2010 IEEE.

  13. Inherited cardiac disease

    Directory of Open Access Journals (Sweden)

    Philippe Charron

    2012-06-01

    Full Text Available Major advances have been achieved over the two last decades in the field of genetic cardiovascular diseases, not only through increased recognition and understanding of underlying molecular defects but also through rapid translation of knowledge into clinical practice. Genetic counseling and organization of cardiac family screening has become part of the medical management of these diseases, and these should be performed systematically unless an acquired cause has been diagnosed...

  14. Cardiac Tissue Engineering

    OpenAIRE

    MILICA RADISIC; GORDANA VUNJAK-NOVAKOVIC

    2009-01-01

    We hypothesized that clinically sized (1-5 mm thick),compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3) can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of p...

  15. Cardiac developmental toxicity

    OpenAIRE

    Mahler, Gretchen J.; Jonathan T Butcher

    2011-01-01

    Congenital heart disease is a highly prevalent problem with mostly unknown origins. Many cases of CHD likely involve an environmental exposure coupled with genetic susceptibility, but practical and ethical considerations make nongenetic causes of CHD difficult to assess in humans. The development of the heart is highly conserved across all vertebrate species, making animal models an excellent option for screening potential cardiac teratogens. This review will discuss exposures known to cause ...

  16. Comparison study of temporal regularization methods for fully 5D reconstruction of cardiac gated dynamic SPECT

    Science.gov (United States)

    Niu, Xiaofeng; Yang, Yongyi; King, Michael A.

    2012-09-01

    Temporal regularization plays a critical role in cardiac gated dynamic SPECT reconstruction, of which the goal is to obtain an image sequence from a single acquisition which simultaneously shows both cardiac motion and tracer distribution change over the course of imaging (termed 5D). In our recent work, we explored two different approaches for temporal regularization of the dynamic activities in gated dynamic reconstruction without the use of fast camera rotation: one is the dynamic EM (dEM) approach which is imposed on the temporal trend of the time activity of each voxel, and the other is a B-spline modeling approach in which the time activity is regulated by a set of B-spline basis functions. In this work, we extend the B-spline approach to fully 5D reconstruction and conduct a thorough quantitative comparison with the dEM approach. In the evaluation of the reconstruction results, we apply a number of quantitative measures on two major aspects of the reconstructed dynamic images: (1) the accuracy of the reconstructed activity distribution in the myocardium and (2) the ability of the reconstructed dynamic activities to differentiate perfusion defects from normal myocardial wall uptake. These measures include the mean square error (MSE), bias-variance analysis, accuracy of time-activity curves (TAC), contrast-to-noise ratio of a defect, composite kinetic map of the left ventricle wall and perfusion defect detectability with channelized Hotelling observer. In experiments, we simulated cardiac gated imaging with the NURBS-based cardiac-torso phantom and Tc99m-Teboroxime as the imaging agent, where acquisition with the equivalent of only three full camera rotations was used during the imaging period. The results show that both dEM and B-spline 5D could achieve similar overall accuracy in the myocardium in terms of MSE. However, compared to dEM 5D, the B-spline approach could achieve a more accurate reconstruction of the voxel TACs; in particular, B-spline 5D could

  17. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  18. Characterization of dihydropyridine-sensitive calcium channels

    International Nuclear Information System (INIS)

    The structural and regulatory properties of the dihydropyridine-sensitive calcium channel were studied by isolating protein components of the channel complex from both cardiac and skeletal muscle. Hydrodynamic characterization of the (+)-(3H)PN200-110-labeled cardiac calcium channel revealed that the protein components of the complex had a total molecular mass of 370,000 daltons, a Stokes radius of 86 angstrom, and a frictional ratio of 1.3. A technique is described for the rapid incorporation of the CHAPS solubilized skeletal muscle calcium channel complex into phospholipid vesicles. 45Ca2+ uptake into phospholipid vesicles containing calcium channels was inhibited by phenylalkalamine calcium antagonists. Wheat germ lectin followed by DEAE chromatography of the CHAPS solubilized complex resulted in the dissociation of regulatory components of the complex from channel components. The DEAE preparation gave rise to 45Ca2+ uptake that was not inhibited by verapamil but was inhibited by GTPgS activated G0. The inhibition of 45Ca2+ uptake by verapamil was restored by co-reconstitution of wash fractions from wheat germ lectin chromatography. Phosphorylation of polypeptides in this fraction by polypeptide-dependent protein kinase prevented the restoration of verapamil sensitivity. The partial purification of an endogenous skeletal muscle ADP-ribosyltransferase is also described. ADP-ribosylation of the α2 subunit of the calcium channel complex is enhanced by polylysine and inhibited by GTPγS, suggesting that regulation of this enzyme is under the control of GTP binding proteins. These results suggest a complex model, involving a number of different protein components, for calcium channel regulation in skeletal muscle

  19. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos.

    Science.gov (United States)

    Duan, Junchao; Yu, Yang; Li, Yang; Li, Yanbo; Liu, Hongcui; Jing, Li; Yang, Man; Wang, Ji; Li, Chunqi; Sun, Zhiwei

    2016-06-01

    The toxicity mechanism of nanoparticles on vertebrate cardiovascular system is still unclear, especially on the low-level exposure. This study was to explore the toxic effect and mechanisms of low-dose exposure of silica nanoparticles (SiNPs) on cardiac function in zebrafish embryos via the intravenous microinjection. The dosage of SiNPs was based on the no observed adverse effect level (NOAEL) of malformation assessment in zebrafish embryos. The mainly cardiac toxicity phenotypes induced by SiNPs were pericardial edema and bradycardia but had no effect on atrioventricular block. Using o-Dianisidine for erythrocyte staining, the cardiac output of zebrafish embryos was decreased in a dose-dependent manner. Microarray analysis and bioinformatics analysis were performed to screen the differential expression genes and possible pathway involved in cardiac function. SiNPs induced whole-embryo oxidative stress and neutrophil-mediated cardiac inflammation in Tg(mpo:GFP) zebrafish. Inflammatory cells were observed in atrium of SiNPs-treated zebrafish heart by histopathological examination. In addition, the expression of TNNT2 protein, a cardiac contraction marker in heart tissue had been down-regulated compared to control group using immunohistochemistry. Confirmed by qRT-PCR and western blot assays, results showed that SiNPs inhibited the calcium signaling pathway and cardiac muscle contraction via the down-regulated of related genes, such as ATPase-related genes (atp2a1l, atp1b2b, atp1a3b), calcium channel-related genes (cacna1ab, cacna1da) and the regulatory gene tnnc1a for cardiac troponin C. Moreover, the protein level of TNNT2 was decreased in a dose-dependent manner. For the first time, our results demonstrated that SiNPs induced cardiac dysfunction via the neutrophil-mediated cardiac inflammation and cardiac contraction in zebrafish embryos. PMID:26551753

  20. Computer Modelling for Better Diagnosis and Therapy of Patients by Cardiac Resynchronisation Therapy

    OpenAIRE

    Pluijmert, Marieke; Lumens, Joost; Potse, Mark; Delhaas, Tammo; Auricchio, Angelo; Prinzen, Frits W

    2015-01-01

    Mathematical or computer models have become increasingly popular in biomedical science. Although they are a simplification of reality, computer models are able to link a multitude of processes to each other. In the fields of cardiac physiology and cardiology, models can be used to describe the combined activity of all ion channels (electrical models) or contraction-related processes (mechanical models) in potentially millions of cardiac cells. Electromechanical models go one step further by c...

  1. MRI in cardiac sarcoidosis and amyloidosis; MRT bei kardialer Sarkoidose und Amyloidose

    Energy Technology Data Exchange (ETDEWEB)

    Bauner, K.U. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); Wintersperger, B. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); University of Toronto, Department of Medical Imaging, Toronto General Hospital, Toronto, ON (Canada)

    2013-01-15

    Sarcoidosis and amyloidosis are both multisystem disorders, which may involve the heart; however, isolated cardiac disease is rare. Diagnosis of cardiac sarcoidosis and amyloidosis is crucial because the patient prognosis is dependent on cardiac involvement and early treatment. Echocardiography is the first line imaging modality in the diagnostic work-up of both diseases, possibly giving hints towards the correct diagnosis. Besides myocardial biopsy and radionuclide studies cardiac magnetic resonance imaging (MRI) is routinely performed in patients suspect of having infiltrative cardiomyopathy. The T1 mapping procedure is currently being evaluated as a new technique for detection and quantification of global myocardial enhancement, as seen in cardiac amyloidosis. Sensitivities and specificities for detection of cardiac sarcoidosis and amyloidosis can be significantly improved by MRI, especially with late gadolinium enhancement (LGE) imaging. In cardiac sarcoidosis the use of LGE is outcome-related while in amyloidosis analysis of T1-mapping may be of prognostic value. If cardiac involvement in sarcoidosis or amyloidosis is suspected cardiac MRI including LGE should be performed for establishing the diagnosis. (orig.) [German] Die Sarkoidose und Amyloidose sind Multisystemerkrankungen, in deren Verlauf es zu einer kardialen Beteiligung kommen kann. Bildgebend wird als primaeres Verfahren die Echokardiographie eingesetzt. Zur weiteren Diagnostik wird neben der Biopsie und nuklearmedizinischen Verfahren v. a. die MRT herangezogen. Als neuere Technik zur Darstellung globaler diffuser Kontrastmittelanreicherungen, wie sie im Rahmen der Amyloidose vorkommen, wird z. Z. das T1-Mapping evaluiert. Durch den Einsatz der MRT, insbesondere des Late-Gadolinium-Enhancements (LGE), koennen die Sensitivitaet und Spezifitaet in der Diagnostik der kardialen Sarkoidose und Amyloidose entscheidend verbessert werden. Bei der Sarkoidose stellt das Vorhandensein eines LGE einen

  2. Channel Networks

    Science.gov (United States)

    Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio; Rigon, Riccardo

    This review proceeds from Luna Leopold's and Ronald Shreve's lasting accomplishments dealing with the study of random-walk and topologically random channel networks. According to the random perspective, which has had a profound influence on the interpretation of natural landforms, nature's resiliency in producing recurrent networks and landforms was interpreted to be the consequence of chance. In fact, central to models of topologically random networks is the assumption of equal likelihood of any tree-like configuration. However, a general framework of analysis exists that argues that all possible network configurations draining a fixed area are not necessarily equally likely. Rather, a probability P(s) is assigned to a particular spanning tree configuration, say s, which can be generally assumed to obey a Boltzmann distribution: P(s) % e^-H(s)/T, where T is a parameter and H(s) is a global property of the network configuration s related to energetic characters, i.e. its Hamiltonian. One extreme case is the random topology model where all trees are equally likely, i.e. the limit case for T6 4 . The other extreme case is T 6 0, and this corresponds to network configurations that tend to minimize their total energy dissipation to improve their likelihood. Networks obtained in this manner are termed optimal channel networks (OCNs). Observational evidence suggests that the characters of real river networks are reproduced extremely well by OCNs. Scaling properties of energy and entropy of OCNs suggest that large network development is likely to effectively occur at zero temperature (i.e. minimizing its Hamiltonian). We suggest a corollary of dynamic accessibility of a network configuration and speculate towards a thermodynamics of critical self-organization. We thus conclude that both chance and necessity are equally important ingredients for the dynamic origin of channel networks---and perhaps of the geometry of nature.

  3. Application of HTS technology to cardiac dysrhythmia detection

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, A.L. [Sandia National Labs., Albuquerque, NM (United States); Avrin, W.F. [Quantum Magnetics, Inc., San Diego, CA (United States)

    1994-12-01

    This paper discusses the conceptual design considerations and challenges for development of a contactless, mobile, single channel biomagnetic sensor system based on High-Temperature Superconductor (HTS) Superconducting Quantum Interference Devices (SQUIDs) and employing the Three-SQUID Gradiometer (TSG) concept. Operating in magnetically unshielded environments, as are encountered in many medical scenarios, this instrument class would monitor cardiac electrical activity with minimal patient preparation and intrusiveness, and would notionally be coupled with a clinically adaptive human-system interface (HSI).

  4. Indeterminacy of Spatiotemporal Cardiac Alternans

    CERN Document Server

    Zhao, Xiaopeng

    2007-01-01

    Cardiac alternans, a beat-to-beat alternation in action potential duration (at the cellular level) or in ECG morphology (at the whole heart level), is a marker of ventricular fibrillation, a fatal heart rhythm that kills hundreds of thousands of people in the US each year. Investigating cardiac alternans may lead to a better understanding of the mechanisms of cardiac arrhythmias and eventually better algorithms for the prediction and prevention of such dreadful diseases. In paced cardiac tissue, alternans develops under increasingly shorter pacing period. Existing experimental and theoretical studies adopt the assumption that alternans in homogeneous cardiac tissue is exclusively determined by the pacing period. In contrast, we find that, when calcium-driven alternans develops in cardiac fibers, it may take different spatiotemporal patterns depending on the pacing history. Because there coexist multiple alternans solutions for a given pacing period, the alternans pattern on a fiber becomes unpredictable. Usin...

  5. An overview of cardiac morphogenesis.

    Science.gov (United States)

    Schleich, Jean-Marc; Abdulla, Tariq; Summers, Ron; Houyel, Lucile

    2013-11-01

    Accurate knowledge of normal cardiac development is essential for properly understanding the morphogenesis of congenital cardiac malformations that represent the most common congenital anomaly in newborns. The heart is the first organ to function during embryonic development and is fully formed at 8 weeks of gestation. Recent studies stemming from molecular genetics have allowed specification of the role of cellular precursors in the field of heart development. In this article we review the different steps of heart development, focusing on the processes of alignment and septation. We also show, as often as possible, the links between abnormalities of cardiac development and the main congenital heart defects. The development of animal models has permitted the unraveling of many mechanisms that potentially lead to cardiac malformations. A next step towards a better knowledge of cardiac development could be multiscale cardiac modelling. PMID:24138816

  6. Left Ventricular Electromechanical Mapping: A Case Study of Functional Assessment in Coronary Intervention

    OpenAIRE

    Perin, Emerson C.; Silva, Guilherme V.; Sarmento-Leite, Rogerio

    2000-01-01

    Electromechanical mapping is a new diagnostic tool that can be used to identify viable myocardium. In the case reported here, the technique was used before intervention to map areas of viable myocardium; post-intervention mapping showed improved mechanical function of the revascularized areas. Electromechanical mapping offers the potential of assessing left ventricular function in the cardiac catheterization laboratory before and after interventional procedures.

  7. Sudden Cardiac Death in Athletes.

    Science.gov (United States)

    Wasfy, Meagan M; Hutter, Adolph M; Weiner, Rory B

    2016-01-01

    There are clear health benefits to exercise; even so, patients with cardiac conditions who engage in exercise and athletic competition may on rare occasion experience sudden cardiac death (SCD). This article reviews the epidemiology and common causes of SCD in specific athlete populations. There is ongoing debate about the optimal mechanism for SCD prevention, specifically regarding the inclusion of the ECG and/or cardiac imaging in routine preparticipation sports evaluation. This controversy and contemporary screening recommendations are also reviewed. PMID:27486488

  8. Channels Active in the Excitability of Nerves and Skeletal Muscles across the Neuromuscular Junction: Basic Function and Pathophysiology

    Science.gov (United States)

    Goodman, Barbara E.

    2008-01-01

    Ion channels are essential for the basic physiological function of excitable cells such as nerve, skeletal, cardiac, and smooth muscle cells. Mutations in genes that encode ion channels have been identified to cause various diseases and disorders known as channelopathies. An understanding of how individual ion channels are involved in the…

  9. Tetrodotoxin Sensitivity of the Vertebrate Cardiac Na+ Current

    Directory of Open Access Journals (Sweden)

    Jaakko Haverinen

    2011-11-01

    Full Text Available Evolutionary origin and physiological significance of the tetrodotoxin (TTX resistance of the vertebrate cardiac Na+ current (INa is still unresolved. To this end, TTX sensitivity of the cardiac INa was examined in cardiac myocytes of a cyclostome (lamprey, three teleost fishes (crucian carp, burbot and rainbow trout, a clawed frog, a snake (viper and a bird (quail. In lamprey, teleost fishes, frog and bird the cardiac INa was highly TTX-sensitive with EC50-values between 1.4 and 6.6 nmol·L−1. In the snake heart, about 80% of the INa was TTX-resistant with EC50 value of 0.65 μmol·L−1, the rest being TTX-sensitive (EC50 = 0.5 nmol·L−1. Although TTX-resistance of the cardiac INa appears to be limited to mammals and reptiles, the presence of TTX-resistant isoform of Na+ channel in the lamprey heart suggest an early evolutionary origin of the TTX-resistance, perhaps in the common ancestor of all vertebrates.

  10. Fibroblast growth factor homologous factors in the heart: a potential locus for cardiac arrhythmias.

    Science.gov (United States)

    Wei, Eric Q; Barnett, Adam S; Pitt, Geoffrey S; Hennessey, Jessica A

    2011-10-01

    The four fibroblast growth factor homologous factors (FHFs; FGF11-FGF14) are intracellular proteins that bind and modulate voltage-gated sodium channels (VGSCs). Although FHFs have been well studied in neurons and implicated in neurologic disease, their role in cardiomyocytes was unclear until recently. This review discusses the expression profile and function of FHFs in mouse and rat ventricular cardiomyocytes. Recent data show that FGF13 is the predominant FHF in the murine heart, directly binds the cardiac VGSC α subunit, and is essential for normal cardiac conduction. FHF loss-of-function mutations may be unrecognized causes of cardiac arrhythmias, such as long QT and Brugada syndromes.

  11. Sleep Apnea and Nocturnal Cardiac Arrhythmia: A Populational Study

    Directory of Open Access Journals (Sweden)

    Fatima Dumas Cintra

    2014-11-01

    Full Text Available Background: The mechanisms associated with the cardiovascular consequences of obstructive sleep apnea include abrupt changes in autonomic tone, which can trigger cardiac arrhythmias. The authors hypothesized that nocturnal cardiac arrhythmia occurs more frequently in patients with obstructive sleep apnea. Objective: To analyze the relationship between obstructive sleep apnea and abnormal heart rhythm during sleep in a population sample. Methods: Cross-sectional study with 1,101 volunteers, who form a representative sample of the city of São Paulo. The overnight polysomnography was performed using an EMBLA® S7000 digital system during the regular sleep schedule of the individual. The electrocardiogram channel was extracted, duplicated, and then analyzed using a Holter (Cardio Smart® system. Results: A total of 767 participants (461 men with a mean age of 42.00 ± 0.53 years, were included in the analysis. At least one type of nocturnal cardiac rhythm disturbance (atrial/ventricular arrhythmia or beat was observed in 62.7% of the sample. The occurrence of nocturnal cardiac arrhythmias was more frequent with increased disease severity. Rhythm disturbance was observed in 53.3% of the sample without breathing sleep disorders, whereas 92.3% of patients with severe obstructive sleep apnea showed cardiac arrhythmia. Isolated atrial and ventricular ectopy was more frequent in patients with moderate/severe obstructive sleep apnea when compared to controls (p < 0.001. After controlling for potential confounding factors, age, sex and apnea-hypopnea index were associated with nocturnal cardiac arrhythmia. Conclusion: Nocturnal cardiac arrhythmia occurs more frequently in patients with obstructive sleep apnea and the prevalence increases with disease severity. Age, sex, and the Apnea-hypopnea index were predictors of arrhythmia in this sample.

  12. Case Report: Penetrating Cardiac Injury

    Directory of Open Access Journals (Sweden)

    Adem Grbolar

    2013-10-01

    Full Text Available Summary: Penetrating cardiac injurys caused by gunshots and penetrating tools have high mortality rates. The way of injury, how the cardiac area is effected and the presence of cardiac tamponadecauses mortality in different rates. However the better treatment quality of hospitals, increasingoperative techniques, and internel care unit quality has not been change during the years. Searching the literature, we want to present a 42 years old male patient whowas injured by knife and had a 1 cm skin wound on chest with cardiac tamponade. After sternotomy a 7 cm laseration was observed in heart. Cardioraphy was performed.

  13. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation–contraction coupling, and cardiac arrhythmias

    OpenAIRE

    Chopra, Nagesh; Yang, Tao; Asghari, Parisa; Moore, Edwin D.; Huke, Sabine; Akin, Brandy; Cattolica, Robert A.; Perez, Claudio F.; Hlaing, Thinn; Knollmann-Ritschel, Barbara E. C.; Jones, Larry R.; Pessah, Isaac N; Allen, Paul D.; Franzini-Armstrong, Clara; Knollmann, Björn C.

    2009-01-01

    Heart muscle excitation–contraction (E-C) coupling is governed by Ca2+ release units (CRUs) whereby Ca2+ influx via L-type Ca2+ channels (Cav1.2) triggers Ca2+ release from juxtaposed Ca2+ release channels (RyR2) located in junctional sarcoplasmic reticulum (jSR). Although studies suggest that the jSR protein triadin anchors cardiac calsequestrin (Casq2) to RyR2, its contribution to E-C coupling remains unclear. Here, we identify the role of triadin using mice with ablation of the Trdn gene (...

  14. Optogenetics for in vivo cardiac pacing and resynchronization therapies.

    Science.gov (United States)

    Nussinovitch, Udi; Gepstein, Lior

    2015-07-01

    Abnormalities in the specialized cardiac conduction system may result in slow heart rate or mechanical dyssynchrony. Here we apply optogenetics, widely used to modulate neuronal excitability, for cardiac pacing and resynchronization. We used adeno-associated virus (AAV) 9 to express the Channelrhodopsin-2 (ChR2) transgene at one or more ventricular sites in rats. This allowed optogenetic pacing of the hearts at different beating frequencies with blue-light illumination both in vivo and in isolated perfused hearts. Optical mapping confirmed that the source of the new pacemaker activity was the site of ChR2 transgene delivery. Notably, diffuse illumination of hearts where the ChR2 transgene was delivered to several ventricular sites resulted in electrical synchronization and significant shortening of ventricular activation times. These findings highlight the unique potential of optogenetics for cardiac pacing and resynchronization therapies.

  15. A Proposal for Mapping Historic Irrigation Channels to Reveal Insights into Agro-Climatic Systems: A Case Study in Upper Austria. GI_Forum 2013 – Creating the GISociety|

    OpenAIRE

    Neuwirth, Christian; Eisank, Clemens; D'Oleire-Oltmanns, Sebastian

    2016-01-01

    Recently, the remains of two historic irrigation channels were re-discovered in the Upper Austrian municipality of Regau. Since the current average precipitation in the region is sufficient to sustain a productive agricultural land use, the irrigation channels raise several questions related to climate variability. To verify different hypotheses such as the construction as a response to a changing climate or the assumed purpose of grassland irrigation, potential coherences are discussed. In a...

  16. Mutation in S6 domain of HCN4 channel in patient with suspected Brugada syndrome modifies channel function.

    Science.gov (United States)

    Biel, Stephanie; Aquila, Marco; Hertel, Brigitte; Berthold, Anne; Neumann, Thomas; DiFrancesco, Dario; Moroni, Anna; Thiel, Gerhard; Kauferstein, Silke

    2016-10-01

    Diseases such as the sick sinus and the Brugada syndrome are cardiac abnormalities, which can be caused by a number of genetic aberrances. Among them are mutations in HCN4, a gene, which encodes the hyperpolarization-activated, cyclic nucleotide-gated ion channel 4; this pacemaker channel is responsible for the spontaneous activity of the sinoatrial node. The present genetic screening of patients with suspected or diagnosed Brugada or sick sinus syndrome identified in 1 out of 62 samples the novel mutation V492F. It is located in a highly conserved site of hyperpolarization-activated cyclic nucleotide-gated (HCN)4 channel downstream of the filter at the start of the last transmembrane domain S6. Functional expression of mutant channels in HEK293 cells uncovered a profoundly reduced channel function but no appreciable impact on channel synthesis and trafficking compared to the wild type. The inward rectifying HCN4 current could be partially rescued by an expression of heteromeric channels comprising wt and mutant monomers. These heteromeric channels were responsive to cAMP but they required a more negative voltage for activation and they exhibited a lower current density than the wt channel. This suggests a dominant negative effect of the mutation in patients, which carry this heterozygous mutation. Such a modulation of HCN4 activity could be the cause of the diagnosed cardiac abnormality.

  17. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy.

    Science.gov (United States)

    Diness, Jonas G; Bentzen, Bo H; Sørensen, Ulrik S; Grunnet, Morten

    2015-11-01

    Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti-atrial fibrillation principle. PMID:25830485

  18. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy.

    Science.gov (United States)

    Diness, Jonas G; Bentzen, Bo H; Sørensen, Ulrik S; Grunnet, Morten

    2015-11-01

    Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti-atrial fibrillation principle.

  19. Antifibrinolytics in cardiac surgery

    Directory of Open Access Journals (Sweden)

    Achal Dhir

    2013-01-01

    Full Text Available Cardiac surgery exerts a significant strain on the blood bank services and is a model example in which a multi-modal blood-conservation strategy is recommended. Significant bleeding during cardiac surgery, enough to cause re-exploration and/or blood transfusion, increases morbidity and mortality. Hyper-fibrinolysis is one of the important contributors to increased bleeding. This knowledge has led to the use of anti-fibrinolytic agents especially in procedures performed under cardiopulmonary bypass. Nothing has been more controversial in recent times than the aprotinin controversy. Since the withdrawal of aprotinin from the world market, the choice of antifibrinolytic agents has been limited to lysine analogues either tranexamic acid (TA or epsilon amino caproic acid (EACA. While proponents of aprotinin still argue against its non-availability. Health Canada has approved its use, albeit under very strict regulations. Antifibrinolytic agents are not without side effects and act like double-edged swords, the stronger the anti-fibrinolytic activity, the more serious the side effects. Aprotinin is the strongest in reducing blood loss, blood transfusion, and possibly, return to the operating room after cardiac surgery. EACA is the least effective, while TA is somewhere in between. Additionally, aprotinin has been implicated in increased mortality and maximum side effects. TA has been shown to increase seizure activity, whereas, EACA seems to have the least side effects. Apparently, these agents do not differentiate between pathological and physiological fibrinolysis and prevent all forms of fibrinolysis leading to possible thrombotic side effects. It would seem prudent to select the right agent knowing its risk-benefit profile for a given patient, under the given circumstances.

  20. In vivo effects of the IKr agonist NS3623 on cardiac electrophysiology of the guinea pig

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Olesen, Søren-Peter; Rønn, Lars Christian B;

    2008-01-01

    are most often caused by antagonizing effects on the repolarizing cardiac current called IKr. In humans IKr is mediated by the human ether-a-go-go related gene (hERG) potassium channel. We recently presented NS3623, a compound that selectively activates this channel. The present study was dedicated......The long QT syndrome is characterized by a prolongation of the QT interval measured on the surface electrocardiogram. Prolonging the QT interval increases the risk of dangerous ventricular fibrillations, eventually leading to sudden cardiac death. Pharmacologically induced QT interval prolongations...

  1. Channeling experiment

    International Nuclear Information System (INIS)

    Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)

  2. A system for seismocardiography-based identification of quiescent heart phases: implications for cardiac imaging.

    Science.gov (United States)

    Wick, Carson A; Su, Jin-Jyh; McClellan, James H; Brand, Oliver; Bhatti, Pamela T; Buice, Ashley L; Stillman, Arthur E; Tang, Xiangyang; Tridandapani, Srini

    2012-09-01

    Seismocardiography (SCG), a representation of mechanical heart motion, may more accurately determine periods of cardiac quiescence within a cardiac cycle than the electrically derived electrocardiogram (EKG) and, thus, may have implications for gating in cardiac computed tomography. We designed and implemented a system to synchronously acquire echocardiography, EKG, and SCG data. The device was used to study the variability between EKG and SCG and characterize the relationship between the mechanical and electrical activity of the heart. For each cardiac cycle, the feature of the SCG indicating Aortic Valve Closure was identified and its time position with respect to the EKG was observed. This position was found to vary for different heart rates and between two human subjects. A color map showing the magnitude of the SCG acceleration and computed velocity was derived, allowing for direct visualization of quiescent phases of the cardiac cycle with respect to heart rate. PMID:22581141

  3. Cardiac elastography: detecting pathological changes in myocardium tissues

    Science.gov (United States)

    Konofagou, Elisa E.; Harrigan, Timothy; Solomon, Scott

    2003-05-01

    Estimation of the mechanical properties of the cardiac muscle has been shown to play a crucial role in the detection of cardiovascular disease. Elastography was recently shown feasible on RF cardiac data in vivo. In this paper, the role of elastography in the detection of ischemia/infarct is explored with simulations and in vivo experiments. In finite-element simulations of a portion of the cardiac muscle containing an infarcted region, the cardiac cycle was simulated with successive compressive and tensile strains ranging between -30% and 20%. The incremental elastic modulus was also mapped uisng adaptive methods. We then demonstrated this technique utilizing envelope-detected sonographic data (Hewlett-Packard Sonos 5500) in a patient with a known myocardial infarction. In cine-loop and M-Mode elastograms from both normal and infarcted regions in simulations and experiments, the infarcted region was identifed by the up to one order of magnitude lower incremental axial displacements and strains, and higher modulus. Information on motion, deformation and mechanical property should constitute a unique tool for noninvasive cardiac diagnosis.

  4. Development of the cardiac conduction system in zebrafish.

    Science.gov (United States)

    Poon, Kar-Lai; Liebling, Michael; Kondrychyn, Igor; Brand, Thomas; Korzh, Vladimir

    2016-07-01

    The cardiac conduction system (CCS) propagates and coordinates the electrical excitation that originates from the pacemaker cells, throughout the heart, resulting in rhythmic heartbeat. Its defects result in life-threatening arrhythmias and sudden cardiac death. Understanding of the factors involved in the formation and function of the CCS remains incomplete. By transposon assisted transgenesis, we have developed enhancer trap (ET) lines of zebrafish that express fluorescent protein in the pacemaker cells at the sino-atrial node (SAN) and the atrio-ventricular region (AVR), termed CCS transgenics. This expression pattern begins at the stage when the heart undergoes looping morphogenesis at 36 h post fertilization (hpf) and is maintained into adulthood. Using the CCS transgenics, we investigated the effects of perturbation of cardiac function, as simulated by either the absence of endothelium or hemodynamic stimulation, on the cardiac conduction cells, which resulted in abnormal compaction of the SAN. To uncover the identity of the gene represented by the EGFP expression in the CCS transgenics, we mapped the transposon integration sites on the zebrafish genome to positions in close proximity to the gene encoding fibroblast growth homologous factor 2a (fhf2a). Fhf2a is represented by three transcripts, one of which is expressed in the developing heart. These transgenics are useful tools for studies of development of the CCS and cardiac disease. PMID:27593944

  5. Cardiac arrest – cardiopulmonary resuscitation

    Directory of Open Access Journals (Sweden)

    Basri Lenjani

    2014-01-01

    Conclusions: All survivors from cardiac arrest have received appropriate medical assistance within 10 min from attack, which implies that if cardiac arrest occurs near an institution health care (with an opportunity to provide the emergent health care the rate of survival is higher.

  6. Leadership in cardiac surgery.

    Science.gov (United States)

    Rao, Christopher; Patel, Vanash; Ibrahim, Michael; Ahmed, Kamran; Wong, Kathie A; Darzi, Ara; von Segesser, Ludwig K; Athanasiou, Thanos

    2011-06-01

    Despite the efficacy of cardiac surgery, less invasive interventions with more uncertain long-term outcomes are increasingly challenging surgery as first-line treatment for several congenital, degenerative and ischemic cardiac diseases. The specialty must evolve if it is to ensure its future relevance. More importantly, it must evolve to ensure that future patients have access to treatments with proven long-term effectiveness. This cannot be achieved without dynamic leadership; however, our contention is that this is not enough. The demands of a modern surgical career and the importance of the task at hand are such that the serendipitous emergence of traditional charismatic leadership cannot be relied upon to deliver necessary change. We advocate systematic analysis and strategic leadership at a local, national and international level in four key areas: Clinical Care, Research, Education and Training, and Stakeholder Engagement. While we anticipate that exceptional individuals will continue to shape the future of our specialty, the creation of robust structures to deliver collective leadership in these key areas is of paramount importance. PMID:20884217

  7. Interventional cardiac catheterization.

    Science.gov (United States)

    Pihkala, J; Nykanen, D; Freedom, R M; Benson, L N

    1999-04-01

    Over the past decade, transcatheter interventions have become increasingly important in the treatment of patients with congenital heart lesions. These procedures may be broadly grouped as dilations (e.g., septostomy, valvuloplasty, angioplasty, and endovascular stenting) or as closures (e.g., vascular embolization and device closure of defects). Balloon valvuloplasty has become the treatment of choice for patients in all age groups with simple valvar pulmonic stenosis and, although not curative, seems at least comparable to surgery for congenital aortic stenosis in newborns to young adults. Balloon angioplasty is successfully applied to a wide range of aortic, pulmonary artery, and venous stenoses. Stents are useful in dilating lesions of which the intrinsic elasticity results in vessel recoil after balloon dilation alone. Catheter-delivered coils are used to embolize a wide range of arterial, venous, and prosthetic vascular connections. Although some devices remain investigational, they have been successfully used for closure of many arterial ducts and atrial and ventricular septal defects. In the therapy for patients with complex CHD, best results may be achieved by combining cardiac surgery with interventional catheterization. The cooperation among interventional cardiologists and cardiac surgeons was highlighted in a report of an algorithm to manage patients with tetralogy of Fallot or pulmonary atresia with diminutive pulmonary arteries, involving balloon dilation, coil embolization of collaterals, and intraoperative stent placement. In this setting, well-planned catheterization procedures have an important role in reducing the overall number of procedures that patients may require over a lifetime, with improved outcomes.

  8. Ictal Cardiac Ryhthym Abnormalities.

    Science.gov (United States)

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  9. Pneumothorax in cardiac pacing

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard;

    2012-01-01

    AIM: To identify risk factors for pneumothorax treated with a chest tube after cardiac pacing device implantation in a population-based cohort.METHODS AND RESULTS: A nationwide cohort study was performed based on data on 28 860 patients from the Danish Pacemaker Register, which included all Danish...... patients who received their first pacemaker (PM) or cardiac resynchronization device from 1997 to 2008. Multiple logistic regression was used to estimate adjusted odds ratios (aOR) with 95% confidence intervals for the association between risk factors and pneumothorax treated with a chest tube. The median...... age was 77 years (25th and 75th percentile: 69-84) and 55% were male (n = 15 785). A total of 190 patients (0.66%) were treated for pneumothorax, which was more often in women [aOR 1.9 (1.4-2.6)], and in patients with age >80 years [aOR 1.4 (1.0-1.9)], a prior history of chronic obstructive pulmonary...

  10. Nonlinear interpolation fractal classifier for multiple cardiac arrhythmias recognition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.-H. [Department of Electrical Engineering, Kao-Yuan University, No. 1821, Jhongshan Rd., Lujhu Township, Kaohsiung County 821, Taiwan (China); Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)], E-mail: eechl53@cc.kyu.edu.tw; Du, Y.-C.; Chen Tainsong [Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)

    2009-11-30

    This paper proposes a method for cardiac arrhythmias recognition using the nonlinear interpolation fractal classifier. A typical electrocardiogram (ECG) consists of P-wave, QRS-complexes, and T-wave. Iterated function system (IFS) uses the nonlinear interpolation in the map and uses similarity maps to construct various data sequences including the fractal patterns of supraventricular ectopic beat, bundle branch ectopic beat, and ventricular ectopic beat. Grey relational analysis (GRA) is proposed to recognize normal heartbeat and cardiac arrhythmias. The nonlinear interpolation terms produce family functions with fractal dimension (FD), the so-called nonlinear interpolation function (NIF), and make fractal patterns more distinguishing between normal and ill subjects. The proposed QRS classifier is tested using the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. Compared with other methods, the proposed hybrid methods demonstrate greater efficiency and higher accuracy in recognizing ECG signals.

  11. Vasopressin responses to unloading arterial baroreceptors during cardiac nerve blockade in conscious dogs

    Science.gov (United States)

    O'Donnell, C. P.; Keil, L. C.; Thrasher, T. N.

    1992-01-01

    We examined the relative contributions of afferent input from the heart and from arterial baroreceptors in the stimulation of arginine vasopressin (AVP) secretion in response to hypotension caused by thoracic inferior vena caval constriction (TIVCC). Afferent input from cardiac receptors was reversibly blocked by infusing 2% procaine into the pericardial space to anesthetize the cardiac nerves. Acute cardiac nerve blockade (CNB) alone caused a rise in mean arterial pressure (MAP) of 24 +/- 3 mmHg but no change in plasma AVP. If the rise in MAP was prevented by TIVCC, plasma AVP increased by 39 +/- 15 pg/ml, and if MAP was allowed to increase and then was forced back to control by TIVCC, plasma AVP increased by 34 +/- 15 pg/ml. Thus the rise in MAP during CNB stimulated arterial baroreceptors, which in turn compensated for the loss of inhibitory input from cardiac receptors on AVP secretion. These results indicate that the maximum secretory response resulting from complete unloading of cardiac receptors at a normal MAP results in a mean increase in plasma AVP of 39 pg/ml in this group of dogs. When MAP was reduced 25% below control levels (from 95 +/- 5 to 69 +/- 3 mmHg) by TIVCC during pericardial saline infusion, plasma AVP increased by 79 +/- 42 pg/ml. However, the same degree of hypotension during CNB (MAP was reduced from 120 +/- 5 to 71 +/- 3 mmHg) led to a greater (P less than 0.05) increase in plasma AVP of 130 +/- 33 pg/ml. Because completely unloading cardiac receptors can account for an increase of only 39 pg/ml on average in this group of dogs, the remainder of the increase in plasma AVP must be due to other sources of stimulation. We suggest that the principal stimulus to AVP secretion after acute CNB in these studies arises from unloading the arterial baroreceptors.

  12. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin.

    Science.gov (United States)

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-11-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  13. Affect intensity and cardiac arousal.

    Science.gov (United States)

    Blascovich, J; Brennan, K; Tomaka, J; Kelsey, R M; Hughes, P; Coad, M L; Adlin, R

    1992-07-01

    Relationships between affect intensity and basal, evoked, and perceived cardiac arousal were investigated in 3 experiments. Affect intensity was assessed using Larsen and Diener's (1987) Affect Intensity Measure (AIM). Cardiac arousal was evoked with exercise in the 1st study and with mental arithmetic in the 2nd and 3rd. Perceived cardiac arousal was measured under optimal conditions using a standard heartbeat discrimination procedure. Women as a group scored higher on the AIM. Affect intensity was unrelated to basal or evoked cardiac arousal and was negatively related to perceived cardiac arousal in all 3 studies. Data suggest that affect intensity, although unrelated to actual physiological arousal, is negatively related to the accuracy with which individuals perceive their own arousal. Results are discussed within the context of an expanded arousal-regulation model (Blascovich, 1990). PMID:1494983

  14. Functional cardiac imaging by random access microscopy

    Directory of Open Access Journals (Sweden)

    Claudia eCrocini

    2014-10-01

    Full Text Available Advances in the development of voltage sensitive dyes and Ca2+ sensors in combination with innovative microscopy techniques allowed researchers to perform functional measurements with an unprecedented spatial and temporal resolution. At the moment, one of the shortcomings of available technologies is their incapability of imaging multiple fast phenomena while controlling the biological determinants involved. In the near future, ultrafast deflectors can be used to rapidly scan laser beams across the sample, performing optical measurements of action potential and Ca2+ release from multiple sites within cardiac cells and tissues. The same scanning modality could also be used to control local Ca2+ release and membrane electrical activity by activation of caged compounds and light-gated ion channels. With this approach, local Ca2+ or voltage perturbations could be induced, simulating arrhythmogenic events, and their impact on physiological cell activity could be explored. The development of this optical methodology will provide fundamental insights in cardiac disease, boosting new therapeutic strategies, and, more generally, it will represent a new approach for the investigation of the physiology of excitable cells.

  15. 血流向量图评价心脏再同步化治疗中长期患者暂时中断起搏器前后左心室流场演变%Evaluation on left ventricular intra-cardiac flow field before and after temporary interruption of pacemaker in mid-to-long-term cardiac resynchronization therapy patients by vector flow mapping

    Institute of Scientific and Technical Information of China (English)

    叶晶晶; 纳丽莎; 刘丽文; 马斌; 沈敏; 左蕾; 高文霞; 周海燕

    2014-01-01

    目的 应用血流向量图(VFM)评价心脏再同步化治疗(CRT)中长期患者暂时中断起搏器前后左室收缩期血液流场变化特征以及心功能变化情况.方法 严格按照入选标准选择起搏器植入术后6个月以上的对CRT有反应的患者32例,分别于中断起搏器前后行超声心动图检查,依次测量左室短轴舒张末内径(LVEDD)及收缩末内径(LVESD),左室舒张末容积(LVEDV)及收缩末容积(LVESV),并计算左室射血分数(LVEF),测量左室压力最大上升速率(LVDp/Dtmax),主动脉瓣上血流速度时间积分(AV-VTI),二尖瓣反流容积(MRV)、面积(MRA).利用VFM软件采集左室内血流向量图像,启用涡流模式图,取二尖瓣关闭瞬间(MVC)、主动脉瓣开放瞬间(AVO)、主动脉血流速度达峰瞬间(APV)以及主动脉瓣关闭瞬间(AVC)四个节点,分别测量涡流的横径(DH)、纵径(DL)、流量(FV)、深度(VD),计算涡流面积(VA),计算从主动脉瓣开放到主动脉血流速度达峰时涡流流量的衰减率(FV-CR%)和面积的衰减率(VA-CR%),并观察其演变特征.结果 与起搏器关闭前比较,关闭起搏器10 min后患者的AV-VTI、LVDp/Dtmax均降低,差异均具有统计学意义(P<0.05);据VFM观测从主动脉瓣开放到主动脉血流速度达峰时左室腔FV-CR%、VA-CR%均减低,差异均具有统计学意义(P<0.01);且LVEF与VA-CR%存在正相关,起搏器关闭前后其相关系数分别为0.632(P<0.01)和0.654(P<0.01).结论 暂时中断起搏器后常规超声心动图测量参数及VFM参数均出现明显恶化.VFM技术能够客观有效地反映中断起搏器前后左室收缩期血液流场特征的改变与左室功能的变化及其相关关系,并提示远期持续CRT治疗的必要性.%Objective To evaluate left ventricular systolic function and intra-cardiac flow field before and after temporary interruption of pacemaker in mid-to-long-term cardiac resynchronization therapy patients by vector flow

  16. The action of calcium channel blockers on recombinant L-type calcium channel alpha1-subunits.

    OpenAIRE

    Morel, Nicole; Buryi, V; Feron, Olivier; Gomez, J. P.; Christen, M O; Godfraind, Theophile

    1998-01-01

    1. CHO cells expressing the alpha(1C-a) subunit (cardiac isoform) and the alpha(1C-b) subunit (vascular isoform) of the voltage-dependent L-type Ca2+ channel were used to investigate whether tissue selectivity of Ca2+ channel blockers could be related to different affinities for alpha1C isoforms. 2. Inward current evoked by the transfected alpha1 subunit was recorded by the patch-clamp technique in the whole-cell configuration. 3. Neutral dihydropyridines (nifedipine, nisoldipine, (+)-PN200-1...

  17. Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Greenwood, Iain A; Moffatt, James D;

    2009-01-01

    Members of the K(v)7 voltage-gated K(+) channel family are important determinants of cardiac and neuronal membrane excitability. Recently, we and others have shown that K(v)7 channels are also crucial regulators of smooth muscle activity. The aim of the present study was to assess the K(v)7 expre...

  18. Role of calcium activated potassium channels in atrial fibrillation pathophysiology and therapy

    DEFF Research Database (Denmark)

    Diness, Jonas G.; Bentzen, Bo H.; S. Sørensen, Ulrik;

    2015-01-01

    Small-conductance Ca2+-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels since they might constitute a relatively atrial selective target. The present review will give...

  19. Activation of ERG2 potassium channels by the diphenylurea NS1643

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Olesen, Søren-Peter; Grunnet, Morten

    2007-01-01

    Three members of the ERG potassium channel family have been described (ERG1-3 or Kv 11.1-3). ERG1 is by far the best characterized subtype and it constitutes the molecular component of the cardiac I(Kr) current. All three channel subtypes are expressed in neurons but their function remains unclear...

  20. Frequency-dependent modulation of KCNQ1 and HERG1 potassium channels

    DEFF Research Database (Denmark)

    Diness, Thomas Goldin; Hansen, Rie Schultz; Olesen, Søren-Peter;

    2006-01-01

    To obtain information about a possible frequency-dependent modulation of HERG1 and hKCNQ1 channels, we performed heterologous expression in Xenopus laevis oocytes. Channel activation was obtained by voltage protocols roughly imitating cardiac action potentials at frequencies of 1, 3, 5.8, and 8.3...

  1. Present Researching Approaches and Future Prospects for Treatment of Cardiac Diseases-Integrative Medicine

    Institute of Scientific and Technical Information of China (English)

    Yan Feng; Hao Xu; Yi-Xin Wang; Li-Ping Ma; Da-Zhuo Shi

    2015-01-01

    The pathogenesis of cardiac diseases is very complex and involved in many gene transcription and protein expression. How to effectively treat the diseases has become the hotspot of modern medicine. Accumulating evidences over the past decades on integrative medicine have shown us hopeful future prospects. With the development of modern biomedicine, such as sketch mapping genomic sequence, functional genomics, proteomics and pharmacogenetics, more advanced techniques could be applied in elucidating the possibly complicated biological networks, or complex pathological and physiological mechanisms underlying cardiac diseases, by which integrative medicine will also bring out some new and more effective strategies in the treatment of cardiac diseases.

  2. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system

    NARCIS (Netherlands)

    Bezzina, CR; Rook, MB; Groenewegen, WA; Herfst, LJ; van der Wal, AC; Lam, J; Jongsma, HJ; Wilde, AAM; Mannens, MMAM

    2003-01-01

    Cardiac conduction defects associate with mutations in SCN5A, the gene encoding the cardiac Na+ channel. In the present study, we characterized a family in which the proband was born in severe distress with irregular wide complex tachycardia. His older sister died at 1 year of age from severe conduc

  3. ROLE OF THE INTERCALATED DISC IN CARDIAC PROPAGATION AND ARRHYTHMOGENESIS

    Directory of Open Access Journals (Sweden)

    Andre Georges Kleber

    2014-10-01

    Full Text Available AbstractThis review article discusses mechanisms underlying impulse propagation in cardiac muscle with specific emphasis on the role of the cardiac cell-to-cell junction, called the intercalated disc. The first part of this review deals with the role of gap junction channels, formed by connexin proteins, as a determinant of impulse propagation. It is shown that, depending on the underlying structure of the cellular network, decreasing the conductance of gap junction channels (so-called electrical uncoupling may either only slow, or additionally stabilize propagation and reverse unidirectional propagation block to bidirectional propagation. This is because the safety factor for propagation increases with decreasing intercellular electrical conductance. The role of heterogeneous connexin expression, which may be present in disease states, is also discussed. The hypothesis that so-called ephaptic impulse transmission plays a role in heart and can substitute for electrical coupling has been revived recently. Whereas ephaptic transmission can be demonstrated in theoretical simulations, direct experimental evidence has not yet been presented.The second part of this review deals with the interaction of three protein complexes at the intercalated disc: (1 desmosomal and adherers junction proteins, (2 ion channel proteins, and (3 gap junction channels consisting of connexins. Recent work has revealed multiple interactions between these three protein complexes which occur, at least in part, at the level of protein trafficking. Such interactions are likely to play an important role in the pathogenesis of arrhythmogenic cardiomyopathy, and may reveal new therapeutic concepts and targets.

  4. Finding the rhythm of sudden cardiac death: new opportunities using induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Sallam, Karim; Li, Yingxin; Sager, Philip T; Houser, Steven R; Wu, Joseph C

    2015-06-01

    Sudden cardiac death is a common cause of death in patients with structural heart disease, genetic mutations, or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with sudden cardiac death. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology, including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single-ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell-derived cardiomyocytes resemble, but are not identical, adult human cardiomyocytes and provide a new platform for studying arrhythmic disorders leading to sudden cardiac death. A variety of platforms exist to phenotype cellular models, including conventional and automated patch clamp, multielectrode array, and computational modeling. Induced pluripotent stem cell-derived cardiomyocytes have been used to study long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy, and other hereditary cardiac disorders. Although induced pluripotent stem cell-derived cardiomyocytes are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of sudden cardiac death. PMID:26044252

  5. Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation

    DEFF Research Database (Denmark)

    Nielsen, Jonas Bille; Bentzen, Bo Hjorth; Olesen, Morten Salling;

    2014-01-01

    Aims: Atrial fibrillation (AF) is the most common cardiac arrhythmia. Disturbances in cardiac potassium conductance are considered as one of the disease mechanisms in AF. We aimed to investigate if mutations in potassium-channel β-subunits KCNE2 and KCNE3 are associated with early-onset lone AF. ...

  6. POTASSIUM CHANNELS AS DRUGS TARGETS IN THERAPY OF CARDIOVASCULAR DESEASES: 25 YEARS LATER

    Directory of Open Access Journals (Sweden)

    Protić Dragana

    2013-01-01

    Full Text Available Potassium channels are the most variable ion channel group. They participate in numerous cardiovascular functions, for example regulation of vascular tone, maintenance of resting cardiac membrane potential and excitability of cardiac conduction tissue. Both drugs and endogenous ligands could modulate potassium channel function, belonging to the potassium channel blockers or openers. Modulation of potassium channels could be a therapeutic or adverse drug action. Class III antiarrhythmic agents block the potassium channels, thereby prolonging repolarization phase of action potential with resulting prolongation of effective refractory period. Their effectiveness against supraventricular and ventricular arrhythmias should be weighted against their proarrhythmogenic potential. In addition, numerous other antiarrhythmic agents could modulate potassium channels as well. Diazoxide, minoxidil and nicorandil (well known arterial vasodilators, as well as numerous newly synthesized substances with still unknown therapeutic potential, belong to the potassium channel activators/ openers. Therapeutic use of such vasodilators may involve treatment of hypertension (diazoxide, minoxidil and stable angina (nicorandil. Their use might be accompanied with side effects, such as vasodilation, edema, hypotension and reflex tachycardia. Potassium channel openers have also an important role in the treatment of peripheral vascular disease and pulmonary hypertension. In the future, drugs with selective effects on the vascular or cardiac potassium channels could be useful therapeutic agents.

  7. Physics of Cardiac Arrhythmogenesis

    Science.gov (United States)

    Karma, Alain

    2013-04-01

    A normal heartbeat is orchestrated by the stable propagation of an excitation wave that produces an orderly contraction. In contrast, wave turbulence in the ventricles, clinically known as ventricular fibrillation (VF), stops the heart from pumping and is lethal without prompt defibrillation. I review experimental, computational, and theoretical studies that have shed light on complex dynamical phenomena linked to the initiation, maintenance, and control of wave turbulence. I first discuss advances made to understand the precursor state to a reentrant arrhythmia where the refractory period of cardiac tissue becomes spatiotemporally disordered; this is known as an arrhythmogenic tissue substrate. I describe observed patterns of transmembrane voltage and intracellular calcium signaling that can contribute to this substrate, and symmetry breaking instabilities to explain their formation. I then survey mechanisms of wave turbulence and discuss novel methods that exploit electrical pacing stimuli to control precursor patterns and low-energy pulsed electric fields to control turbulence.

  8. Mediastinitis after cardiac transplantation

    Directory of Open Access Journals (Sweden)

    Noedir A. G. Stolf

    2000-05-01

    Full Text Available OBJECTIVE: Assessment of incidence and behavior of mediastinitis after cardiac transplantation. METHODS: From 1985 to 1999, 214 cardiac transplantations were performed, 12 (5.6% of the transplanted patients developed confirmed mediastinitis. Patient's ages ranged from 42 to 66 years (mean of 52.3±10.0 years and 10 (83.3% patients were males. Seven (58.3% patients showed sternal stability on palpation, 4 (33.3% patients had pleural empyema, and 2 (16.7% patients did not show purulent secretion draining through the wound. RESULTS: Staphylococcus aureus was the infectious agent identified in the wound secretion or in the mediastinum, or both, in 8 (66.7% patients. Staphylococcus epidermidis was identified in 2 (16.7% patients, Enterococcus faecalis in 1 (8.3% patient, and the cause of mediastinitis could not be determined in 1 (8.3% patient. Surgical treatment was performed on an emergency basis, and the extension of the débridement varied with local conditions. In 2 (16.7% patients, we chose to leave the surgical wound open and performed daily dressings with granulated sugar. Total sternal resection was performed in only 1 (8.3% patient. Out of this series, 5 (41.7% patients died, and the causes of death were related to the infection. Autopsy revealed persistence of mediastinitis in 1 (8.3% patient. CONCLUSION: Promptness in diagnosing mediastinitis and precocious surgical drainage have changed the natural evolution of this disease. Nevertheless, observance of the basic precepts of prophylaxis of infection is still the best way to treat mediastinitis.

  9. Activation of cardiac chloride conductance by the tyrosine kinase inhibitor, genistein.

    OpenAIRE

    Shuba, L. M.; Asai, T.; Pelzer, S.; McDonald, T. F.

    1996-01-01

    1. Genistein (GST), an inhibitor of protein tyrosine kinase (PTK), Na3VO4 (VO4), an inhibitor of phosphotyrosine phosphatase (PTPase), and forskolin (FSK), an activator of the cyclic AMP-dependent, cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, were applied to guinea-pig ventricular myocytes to probe for a possible role of tyrosine phosphorylation in the regulation of cardiac Cl- channels. 2. Myocytes in the standard whole-cell configuration were pulsed to various pot...

  10. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore

    2011-11-01

    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  11. Map Projection

    CERN Document Server

    Ghaderpour, Ebrahim

    2014-01-01

    In this paper, we introduce some known map projections from a model of the Earth to a flat sheet of paper or map and derive the plotting equations for these projections. The first fundamental form and the Gaussian fundamental quantities are defined and applied to obtain the plotting equations and distortions in length, shape and size for some of these map projections.

  12. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  13. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    International Nuclear Information System (INIS)

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility

  14. Epigenetic regulation in cardiac fibrosis

    Institute of Scientific and Technical Information of China (English)

    Li-Ming; Yu; Yong; Xu

    2015-01-01

    Cardiac fibrosis represents an adoptive response in the heart exposed to various stress cues. While resolution of the fibrogenic response heralds normalization of heart function, persistent fibrogenesis is usually associated with progressive loss of heart function and eventually heart failure. Cardiac fibrosis is regulated by a myriad of factors that converge on the transcription of genes encoding extracellular matrix proteins, a process the epigenetic machinery plays a pivotal role. In this minireview, we summarize recent advances regarding the epigenetic regulation of cardiac fibrosis focusing on the role of histone and DNA modifications and non-coding RNAs.

  15. Cardiac perioperative complications in noncardiac surgery

    OpenAIRE

    Radovanović Dragana; Kolak Radmila; Stokić Aleksandar; Radovanović Zoran; Jovanović Gordana

    2008-01-01

    Anesthesiologists are confronted with an increasing population of patients undergoing noncardiac surgery who are at risk for cardiac complications in the perioperative period. Perioperative cardiac complications are responsible for significant mortality and morbidity. The aim of the present study was to determine the incidence of perioperative (operative and postoperative) cardiac complications and correlations between the incidence of perioperative cardiac complications and type of surgical ...

  16. Channel strategy adaptation

    OpenAIRE

    Rangan, V. Kasturi; Nueno, Jose L

    1999-01-01

    Using transaction cost theory, considerable research in marketing has focused on the conditions under which firms would use direct or vertically integrated versus indirect or arms length channels of distribution. Data from the field, however, indicate that channel configurations are more varied and complex, with multiple channels and composite channels being just as common as direct and indirect channels. In an attempt to explain this variety, this paper revisits the influence on channel stru...

  17. River channel adjustments in Southern Italy over the past 150 years and implications for channel recovery

    Science.gov (United States)

    Scorpio, Vittoria; Aucelli, Pietro P. C.; Giano, Salvatore I.; Pisano, Luca; Robustelli, Gaetano; Rosskopf, Carmen M.; Schiattarella, Marcello

    2015-12-01

    Multi-temporal GIS analysis of topographic maps and aerial photographs along with topographic and geomorphological surveys are used to assess evolutionary trends and key control factors of channel adjustments for five major rivers in southern Italy (the Trigno, Biferno, Volturno, Sinni and Crati rivers) to support assessment of channel recovery and river restoration. Three distinct phases of channel adjustment are identified over the past 150 years primarily driven by human disturbances. Firstly, slight channel widening dominated from the last decades of the nineteenth century to the 1950s. Secondly, from the 1950s to the end of the 1990s, altered sediment fluxes induced by in-channel mining and channel works brought about moderate to very intense incision (up to 6-7 m) accompanied by strong channel narrowing (up to 96%) and changes in channel configuration from multi-threaded to single-threaded patterns. Thirdly, the period from around 2000 to 2015 has been characterized by channel stabilization and local widening. Evolutionary trajectories of the rivers studied are quite similar to those reconstructed for other Italian rivers, particularly regarding the second phase of channel adjustments and ongoing transitions towards channel recovery in some reaches. Analyses of river dynamics, recovery potential and connectivity with sediment sources of the study reaches, framed in their catchment context, can be used as part of a wider interdisciplinary approach that views effective river restoration alongside sustainable and risk-reduced river management.

  18. Harmonic Maps and Biharmonic Maps

    OpenAIRE

    Hajime Urakawa

    2015-01-01

    This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.

  19. Mouse models of SCN5A-related cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Flavien eCharpentier

    2012-06-01

    Full Text Available Mutations of SCN5A gene, which encodes the α-subunit of the voltage-gated Na+ channel NaV1.5, underlie hereditary cardiac arrhythmic syndromes such as the type 3 long QT syndrome, cardiac conduction diseases, the Brugada syndrome, the sick sinus syndrome, atrial standstill and numerous overlap syndromes. Patch-clamp studies in heterologous expression systems have provided important information to understand the genotype-phenotype relationships of these diseases. However, they could not clarify how SCN5A mutations can be responsible for such a large spectrum of diseases, for the late age of onset or the progressiveness of some of these diseases and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological mechanisms of cardiac SCN5A-related arrhythmic syndromes and several mouse models have been established. This paper reviews some of the results obtained on these models that, for most of them, recapitulate the clinical phenotypes of the patients. It also points out that these models also have their own limitations. Overall, mouse models appear as powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the secondary cellular consequences of SCN5A mutations such as the expression remodelling of other genes that might participate to the overall phenotype. Finally, they constitute useful tools for addressing the role of genetic and environmental modifiers on cardiac electrical activity.

  20. ARRHYTHMOGENIC CALMODULIN MUTATIONS AFFECT THE ACTIVATION AND TERMINATION OF CARDIAC RYANODINE RECEPTOR MEDIATED CA2+ RELEASE

    DEFF Research Database (Denmark)

    Søndergaard, Mads Toft; Chazin, Walter J.; Chen, Wayne S.R.;

    We recently identified the first two human missense mutations in a calmodulin (CaM) gene (CALM1) and linked these to catecholaminergic polymorphic ventricular tachycardia (CPVT) and sudden cardiac death in young individuals1. More CaM mutations have since been identified in CALM1 and also...... in the other two CaM genes (CALM2 and CALM3). All CaM mutations are associated with severe ventricular arrhythmias. CaM regulates several key proteins governing cardiac excitation-contraction coupling (ECC), including the cardiac ryanodine receptor (RyR2) Ca2+ release channel. RyR2 mutations also dominantly...... cause CPVT, where the mutations increase the channel sensitivity to activation and enhance the propensity for pro-arrhythmogenic spontaneous Ca2+ release. Here we investigated the effect of CPVT-linked CaM mutations (N53I and N97S) and two CaM mutations identified in individuals with early onset severe...

  1. The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition

    Directory of Open Access Journals (Sweden)

    Timothy S. Luongo

    2015-07-01

    Full Text Available Cardiac contractility is mediated by a variable flux in intracellular calcium (Ca2+, thought to be integrated into mitochondria via the mitochondrial calcium uniporter (MCU channel to match energetic demand. Here, we examine a conditional, cardiomyocyte-specific, mutant mouse lacking Mcu, the pore-forming subunit of the MCU channel, in adulthood. Mcu−/− mice display no overt baseline phenotype and are protected against mCa2+ overload in an in vivo myocardial ischemia-reperfusion injury model by preventing the activation of the mitochondrial permeability transition pore, decreasing infarct size, and preserving cardiac function. In addition, we find that Mcu−/− mice lack contractile responsiveness to acute β-adrenergic receptor stimulation and in parallel are unable to activate mitochondrial dehydrogenases and display reduced bioenergetic reserve capacity. These results support the hypothesis that MCU may be dispensable for homeostatic cardiac function but required to modulate Ca2+-dependent metabolism during acute stress.

  2. The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition.

    Science.gov (United States)

    Luongo, Timothy S; Lambert, Jonathan P; Yuan, Ancai; Zhang, Xueqian; Gross, Polina; Song, Jianliang; Shanmughapriya, Santhanam; Gao, Erhe; Jain, Mohit; Houser, Steven R; Koch, Walter J; Cheung, Joseph Y; Madesh, Muniswamy; Elrod, John W

    2015-07-01

    Cardiac contractility is mediated by a variable flux in intracellular calcium (Ca(2+)), thought to be integrated into mitochondria via the mitochondrial calcium uniporter (MCU) channel to match energetic demand. Here, we examine a conditional, cardiomyocyte-specific, mutant mouse lacking Mcu, the pore-forming subunit of the MCU channel, in adulthood. Mcu(-/-) mice display no overt baseline phenotype and are protected against mCa(2+) overload in an in vivo myocardial ischemia-reperfusion injury model by preventing the activation of the mitochondrial permeability transition pore, decreasing infarct size, and preserving cardiac function. In addition, we find that Mcu(-/-) mice lack contractile responsiveness to acute β-adrenergic receptor stimulation and in parallel are unable to activate mitochondrial dehydrogenases and display reduced bioenergetic reserve capacity. These results support the hypothesis that MCU may be dispensable for homeostatic cardiac function but required to modulate Ca(2+)-dependent metabolism during acute stress.

  3. Robot-assisted cardiac surgery.

    Science.gov (United States)

    Ishikawa, Norihiko; Watanabe, Go

    2015-01-01

    Recognition of the significant advantages of minimizing surgical trauma has resulted in the development of minimally invasive surgical procedures. Endoscopic surgery offers patients the benefits of minimally invasive surgery, and surgical robots have enhanced the ability and precision of surgeons. Consequently, technological advances have facilitated totally endoscopic robotic cardiac surgery, which has allowed surgeons to operate endoscopically rather than through a median sternotomy during cardiac surgery. Thus, repairs for structural heart conditions, including mitral valve plasty, atrial septal defect closure, multivessel minimally invasive direct coronary artery bypass grafting (MIDCAB), and totally endoscopic coronary artery bypass graft surgery (CABG), can be totally endoscopic. Robot-assisted cardiac surgery as minimally invasive cardiac surgery is reviewed. PMID:26134073

  4. Recent developments in cardiac pacing.

    Science.gov (United States)

    Rodak, D J

    1995-10-01

    Indications for cardiac pacing continue to expand. Pacing to improve functional capacity, which is now common, relies on careful patient selection and technical improvements, such as complex software algorithms and diagnostic capabilities.

  5. Robotic Applications in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Alan P. Kypson

    2008-11-01

    Full Text Available Traditionally, cardiac surgery has been performed through a median sternotomy, which allows the surgeon generous access to the heart and surrounding great vessels. As a paradigm shift in the size and location of incisions occurs in cardiac surgery, new methods have been developed to allow the surgeon the same amount of dexterity and accessibility to the heart in confined spaces and in a less invasive manner. Initially, long instruments without pivot points were used, however, more recent robotic telemanipulation systems have been applied that allow for improved dexterity, enabling the surgeon to perform cardiac surgery from a distance not previously possible. In this rapidly evolving field, we review the recent history and clinical results of using robotics in cardiac surgery.

  6. Late gadolinium enhancement and subclinical cardiac dysfunction on cardiac MRI in asymptomatic HIV-positive men

    Directory of Open Access Journals (Sweden)

    A Loy

    2012-11-01

    Full Text Available Background: HIV is associated with an increased risk of cardiovascular disease (CVD and related clinical events. While traditional risk factors play an important role in the pathology of cardiovascular disease, HIV infection and its sequelae of immune activation and inflammation may have significant effects on the myocardium before becoming clinically evident. Cardiac MRI (CMR can be used to detect the pattern of these subclinical changes. This will lead to a better understanding of risk factors contributing to cardiovascular disease prior to it becoming clinically significant in HIV-positive patients. Methods: Prospective cohort study of 127 asymptomatic HIV-positive men on ART compared to 35 matched controls. Baseline demographics, HIV parameters, 12-lead ECG, routine biochemistry, and traditional cardiovascular risk factors were recorded. Images were acquired on a 3T Achieva Philips MRI scanner with 5 channel phase array cardiac coil and weight-based IV gadolinium was given at 0.15 mmol/kg dose with post-contrast inversion recovery imaging after 10 minutes. Results: 6/127 (4.7% of asymptomatic HIV-positive men had late gadolinium enhancement (LGE on MRI verses 1/35 (2.9% in the control group. In 3/6 (50% of cases this was in a classical infarction pattern with subendocardial involvement. 3/6 (50% were consistent with prior myocarditis. There was no significant difference in mean LVEF (66.93% vs 65.18%, LVMI (60.05g/m2 vs 55.94g/m2 or posterolateral wall thickness (8.28 mm and 8.16 mm between cases and controls respectively. There was significantly more diastolic dysfunction, E:A ratio < 1, found in the HIV-positive group, 18% vs 7% of controls (p = 0.037. Framingham risk did not predict either of these outcomes. Conclusions: There is an increased incidence of LGE detected on CMR in this asymptomatic HIV-positive cohort. Two distinct pathological processes were identifed as causing these changes, myocardial infarction and myocarditis

  7. Cardiac Biomarkers in Hyperthyroid Cats

    OpenAIRE

    Sangster, Jodi Kirsten

    2013-01-01

    Background: Hyperthyroidism has substantial effects on the circulatory system. The cardiac biomarkers NT-proBNP and troponin I (cTNI) have proven useful in identifying cats with myocardial disease but have not been as extensively investigated in hyperthyroidism.Hypothesis: Plasma NT-proBNP and cTNI concentrations are higher in cats with primary cardiac disease than in cats with hyperthyroidism and higher in cats with hyperthyroidism than in healthy control cats.Animals: Twenty-three hyperthyr...

  8. Cardiac manifestations in systemic sclerosis

    Institute of Scientific and Technical Information of China (English)

    Sevdalina; Lambova

    2014-01-01

    Primary cardiac involvement, which develops as a direct consequence of systemic sclerosis(SSc), may manifest as myocardial damage, fibrosis of the conduction system, pericardial and, less frequently, as valvular disease. In addition, cardiac complications in SSc may develop as a secondary phenomenon due to pulmonary arterial hypertension and kidney pathology. The prevalence of primary cardiac involvement in SSc is variable and difficult to determine because of the diversity of cardiac manifestations, the presence of subclinical periods, the type of diagnostic tools applied, and the diversity of patient populations. When clinically manifested, cardiac involvement is thought to be an important prognostic factor. Profound microvascular disease is a pathognomonic feature of SSc, as both vasospasm and structural alterations are present. Such alterations are thought to predict macrovascular atherosclerosis over time. There are contradictory reports regarding the prevalence of atherosclerosis in SSc. According to some authors, the prevalence of atherosclerosis of the large epicardial coronary arteries is similar to that of the general population, in contrast with other rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus. However, the level of inflammation in SSc is inferior. Thus, the atherosclerotic process may not be as aggressive and not easily detectable in smaller studies. Echocardiography(especially tissue Doppler imaging), single-photon emission computed tomography, magnetic resonance imaging and cardiac computed tomography are sensitive techniques for earlier detection of both structural and functional scleroderma-related cardiac pathologies. Screening for subclinical cardiac involvement via modern, sensitive tools provides an opportunity for early diagnosis and treatment, which is of crucial importance for a positive outcome.

  9. Computational Modeling of Cardiac Electromechanics

    OpenAIRE

    Krishnamoorthi, Shankarjee

    2013-01-01

    Cardiac arrhythmias are a leading cause of death worldwide. Notably, the electrophysiologiy and microstructural requirements for a fatal ventricular arrhythmia remain incompletely understood, thereby the treatment remains largely empirical. Standard antiarrhythmic drug therapy has failed to reduce, and in some instances has increased, the incidence of Sudden Cardiac Death (SCD). Hence, a more complete understanding of the mechanisms that foment a fatal arrhythmia is needed and computational m...

  10. Current trends in cardiac rehabilitation

    OpenAIRE

    Dafoe, W; Huston, P

    1997-01-01

    Cardiac rehabilitation can reduce mortality and morbidity for patients with many types of cardiac disease cost-effectively, yet is generally underutilized. Rehabilitation is helpful not only for patients who have had a myocardial infarction but also for those with stable angina or congestive heart failure or those who have undergone myocardial revascularization procedures, a heart transplant or heart valve surgery. The beneficial effects of rehabilitation include a reduction in the rate of de...

  11. An overview of cardiac morphogenesis.

    OpenAIRE

    Schleich, Jean-Marc; Abdulla, Tariq; Summers, Ron; Houyel, Lucile

    2013-01-01

    International audience Accurate knowledge of normal cardiac development is essential for properly understanding the morphogenesis of congenital cardiac malformations that represent the most common congenital anomaly in newborns. The heart is the first organ to function during embryonic development and is fully formed at 8 weeks of gestation. Recent studies stemming from molecular genetics have allowed specification of the role of cellular precursors in the field of heart development. In th...

  12. Yampa River channel elevation at Deerlodge Park, CO

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S Geological Survey Scientific Investigations Map provides raster data that can be used to assess channel response to streamflow alteration scenarios...

  13. Physiological and pathological cardiac hypertrophy.

    Science.gov (United States)

    Shimizu, Ippei; Minamino, Tohru

    2016-08-01

    The heart must continuously pump blood to supply the body with oxygen and nutrients. To maintain the high energy consumption required by this role, the heart is equipped with multiple complex biological systems that allow adaptation to changes of systemic demand. The processes of growth (hypertrophy), angiogenesis, and metabolic plasticity are critically involved in maintenance of cardiac homeostasis. Cardiac hypertrophy is classified as physiological when it is associated with normal cardiac function or as pathological when associated with cardiac dysfunction. Physiological hypertrophy of the heart occurs in response to normal growth of children or during pregnancy, as well as in athletes. In contrast, pathological hypertrophy is induced by factors such as prolonged and abnormal hemodynamic stress, due to hypertension, myocardial infarction etc. Pathological hypertrophy is associated with fibrosis, capillary rarefaction, increased production of pro-inflammatory cytokines, and cellular dysfunction (impairment of signaling, suppression of autophagy, and abnormal cardiomyocyte/non-cardiomyocyte interactions), as well as undesirable epigenetic changes, with these complex responses leading to maladaptive cardiac remodeling and heart failure. This review describes the key molecules and cellular responses involved in physiological/pathological cardiac hypertrophy. PMID:27262674

  14. FGF21 and cardiac physiopathology

    Directory of Open Access Journals (Sweden)

    Anna ePlanavila

    2015-08-01

    Full Text Available The heart is not traditionally considered either a target or a site of fibroblast growth factor-21 (FGF21 production. However, recent findings indicate that FGF21 can act as a cardiomyokine; that is, it is produced by cardiac cells at significant levels and acts in an autocrine manner on the heart itself. The heart is sensitive to the effects of FGF21, both systemic and locally generated, owing to the expression in cardiomyocytes of β-Klotho, the key co-receptor known to confer specific responsiveness to FGF21 action. FGF21 has been demonstrated to protect against cardiac hypertrophy, cardiac inflammation, and oxidative stress. FGF21 expression in the heart is induced in response to cardiac insults, such as experimental cardiac hypertrophy and myocardial infarction in rodents, as well as in failing human hearts. Intracellular mechanisms involving PPARα and Sirt1 mediate transcriptional regulation of the FGF21 gene in response to exogenous stimuli. In humans, circulating FGF21 levels are elevated in coronary heart disease and atherosclerosis, and are associated with a higher risk of cardiovascular events in patients with type 2 diabetes. These findings provide new insights into the role of FGF21 in the heart and may offer potential therapeutic strategies for cardiac disease.

  15. [Stem cells and cardiac regeneration].

    Science.gov (United States)

    Perez Millan, Maria Ines; Lorenti, Alicia

    2006-01-01

    Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty). A variety of stem cells could be used for cardiac repair: from cardiac and extracardiac sources. Each cell type has its own profile of advantages, limitations, and practicability issues in specific clinical settings. Differentiation of bone marrow stem cells to cardiomyocyte-like cells have been observed under different culture conditions. The presence of resident cardiac stem cell population capable of differentiation into cardiomyocyte or vascular lineage suggests that these cells could be used for cardiac tissue repair, and represent a great promise for clinical application. Stem cells mobilization by cytokines may also offer a strategy for cardiac regeneration. The use of stem cells (embryonic and adult) may hold the key to replacing cells lost in many devastating diseases. This potential benefit is a major focus for stem cell research.

  16. Cardiac Regeneration and Stem Cells.

    Science.gov (United States)

    Zhang, Yiqiang; Mignone, John; MacLellan, W Robb

    2015-10-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world.

  17. Cardiac involvement in myotonic dystrophy

    DEFF Research Database (Denmark)

    Lund, Marie; Diaz, Lars Jorge; Ranthe, Mattis Flyvholm;

    2014-01-01

    genetic testing for DM1. Information on incident cardiac diseases was obtained from the NPR. We estimated standardized incidence ratios (SIRs) of cardiac disease compared with the background population, overall and according to selected diagnostic subgroups (cardiomyopathy, heart failure, conduction...... disorders, arrhythmias, and device implantation). In the DM cohort, SIR for any cardiac disease was 3.42 [95% confidence interval (CI) 3.01-3.86]; for a cardiac disease belonging to the selected subgroups 6.91 (95% CI: 5.93-8.01) and for other cardiac disease 2.59 (95% CI: 2.03-3.25). For a cardiac disease...... belonging to the selected subgroups, the risk was particularly high in the first year after DM diagnosis [SIR 15.4 (95% CI: 10.9-21.3)] but remained significantly elevated in subsequent years [SIR 6.07 (95% CI: 5.11-7.16]). The risk was higher in young cohort members [e.g. 20-39 years: SIR 18.1 (95% CI: 12...

  18. Cardiac imaging. A multimodality approach

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, Manfred [Johannes Gutenberg University Hospital, Mainz (Germany); Erbel, Raimund [University Hospital Essen (Germany). Dept. of Cardiology; Kreitner, Karl-Friedrich [Johannes Gutenberg University Hospital, Mainz (Germany). Clinic and Polyclinic for Diagnostic and Interventional Radiology; Barkhausen, Joerg (eds.) [University Hospital Schleswig-Holstein, Luebeck (Germany). Dept. of Radiology and Nuclear Medicine

    2009-07-01

    An excellent atlas on modern diagnostic imaging of the heart Written by an interdisciplinary team of experts, Cardiac Imaging: A Multimodality Approach features an in-depth introduction to all current imaging modalities for the diagnostic assessment of the heart as well as a clinical overview of cardiac diseases and main indications for cardiac imaging. With a particular emphasis on CT and MRI, the first part of the atlas also covers conventional radiography, echocardiography, angiography and nuclear medicine imaging. Leading specialists demonstrate the latest advances in the field, and compare the strengths and weaknesses of each modality. The book's second part features clinical chapters on heart defects, endocarditis, coronary heart disease, cardiomyopathies, myocarditis, cardiac tumors, pericardial diseases, pulmonary vascular diseases, and diseases of the thoracic aorta. The authors address anatomy, pathophysiology, and clinical features, and evaluate the various diagnostic options. Key features: - Highly regarded experts in cardiology and radiology off er image-based teaching of the latest techniques - Readers learn how to decide which modality to use for which indication - Visually highlighted tables and essential points allow for easy navigation through the text - More than 600 outstanding images show up-to-date technology and current imaging protocols Cardiac Imaging: A Multimodality Approach is a must-have desk reference for cardiologists and radiologists in practice, as well as a study guide for residents in both fields. It will also appeal to cardiac surgeons, general practitioners, and medical physicists with a special interest in imaging of the heart. (orig.)

  19. Risk factors and the effect of cardiac resynchronization therapy on cardiac and non-cardiac mortality in MADIT-CRT

    DEFF Research Database (Denmark)

    Perkiomaki, Juha S; Ruwald, Anne-Christine; Kutyifa, Valentina;

    2015-01-01

    causes, 108 (63.9%) deemed cardiac, and 61 (36.1%) non-cardiac. In multivariate analysis, increased baseline creatinine was significantly associated with both cardiac and non-cardiac deaths [hazard ratio (HR) 2.97, P ...AIMS: To understand modes of death and factors associated with the risk for cardiac and non-cardiac deaths in patients with cardiac resynchronization therapy with implantable cardioverter-defibrillator (CRT-D) vs. implantable cardioverter-defibrillator (ICD) therapy, which may help clarify...... the action and limitations of cardiac resynchronization therapy (CRT) in relieving myocardial dysfunction. METHODS AND RESULTS: In Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy (MADIT-CRT), during 4 years of follow-up, 169 (9.3%) of 1820 patients died of known...

  20. Effect of heat stress on cardiac output and systemic vascular conductance during simulated hemorrhage to presyncope in young men

    DEFF Research Database (Denmark)

    Ganio, Matthew S; Overgaard, Morten; Seifert, Thomas;

    2012-01-01

    During moderate actual or simulated hemorrhage, as cardiac output decreases, reductions in systemic vascular conductance (SVC) maintain mean arterial pressure (MAP). Heat stress, however, compromises the control of MAP during simulated hemorrhage, and it remains unknown whether this response is d...

  1. A voltage-activated proton current in human cardiac fibroblasts

    International Nuclear Information System (INIS)

    A voltage-activated proton current in human cardiac fibroblasts, measured using the whole-cell recording configuration of the patch-clamp technique, is reported. Increasing the pH of the bathing solution shifted the current activation threshold to more negative potentials and increased both the current amplitude and its rate of activation. Changing the pH gradient by one unit caused a 51 mV shift in the reversal potential of the current, demonstrating a high selectivity for protons of the channel carrying the current. Extracellularly applied Zn2+ reversibly inhibited the current. Activation of the current contributes to the resting membrane conductance under conditions of intracellular acidosis. It is proposed that this current in cardiac fibroblasts is involved in the regulation of the intracellular pH and the membrane potential under physiological conditions as well as in response to pathological conditions such as ischemia

  2. Cardiac output during exercise

    DEFF Research Database (Denmark)

    Siebenmann, C; Rasmussen, P.; Sørensen, H.;

    2015-01-01

    Several techniques assessing cardiac output (Q) during exercise are available. The extent to which the measurements obtained from each respective technique compares to one another, however, is unclear. We quantified Q simultaneously using four methods: the Fick method with blood obtained from...... the right atrium (Q(Fick-M)), Innocor (inert gas rebreathing; Q(Inn)), Physioflow (impedance cardiography; Q(Phys)), and Nexfin (pulse contour analysis; Q(Pulse)) in 12 male subjects during incremental cycling exercise to exhaustion in normoxia and hypoxia (FiO2  = 12%). While all four methods reported...... a progressive increase in Q with exercise intensity, the slopes of the Q/oxygen uptake (VO2) relationship differed by up to 50% between methods in both normoxia [4.9 ± 0.3, 3.9 ± 0.2, 6.0 ± 0.4, 4.8 ± 0.2 L/min per L/min (mean ± SE) for Q(Fick-M), Q(Inn), QP hys and Q(Pulse), respectively; P = 0...

  3. Analysis of cardiac interventricular septum motion in different respiratory states

    Science.gov (United States)

    Tautz, Lennart; Feng, Li; Otazo, Ricardo; Hennemuth, Anja; Axel, Leon

    2016-03-01

    The interaction between the left and right heart ventricles (LV and RV) depends on load and pressure conditions that are affected by cardiac contraction and respiration cycles. A novel MRI sequence, XD-GRASP, allows the acquisition of multi-dimensional, respiration-sorted and cardiac-synchronized free-breathing image data. In these data, effects of the cardiac and respiratory cycles on the LV/RV interaction can be observed independently. To enable the analysis of such data, we developed a semi-automatic exploration workflow. After tracking a cross-sectional line positioned over the heart, over all motion states, the septum and heart wall border locations are detected by analyzing the grey-value profile under the lines. These data are used to quantify septum motion, both in absolute units and as a fraction of the heart size, to compare values for different subjects. In addition to conventional visualization techniques, we used color maps for intuitive exploration of the variable values for this multi-dimensional data set. We acquired short-axis image data of nine healthy volunteers, to analyze the position and the motion of the interventricular septum in different breathing states and different cardiac cycle phases. The results indicate a consistent range of normal septum motion values, and also suggest that respiratory phase-dependent septum motion is greatest near end-diastolic phases. These new methods are a promising tool to assess LV/RV ventricle interaction and the effects of respiration on this interaction.

  4. The other side of cardiac Ca2+ signaling: transcriptional control

    Directory of Open Access Journals (Sweden)

    Alejandro eDomínguez-Rodríquez

    2012-11-01

    Full Text Available Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling, but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling. ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII and phosphatase calcineurin, both of which are activated by the complex Ca2+/ /Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n or cytoplasmic ([Ca2+]c, and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs in [Ca2+]c, needed to activate calcineurin.

  5. Mobile radio channels

    CERN Document Server

    Pätzold, Matthias

    2011-01-01

    Providing a comprehensive overview of the modelling, analysis and simulation of mobile radio channels, this book gives a detailed understanding of fundamental issues and examines state-of-the-art techniques in mobile radio channel modelling. It analyses several mobile fading channels, including terrestrial and satellite flat-fading channels, various types of wideband channels and advanced MIMO channels, providing a fundamental understanding of the issues currently being investigated in the field. Important classes of narrowband, wideband, and space-time wireless channels are explored in deta

  6. Sodium ion channel mutations in glioblastoma patients correlate with shorter survival

    Directory of Open Access Journals (Sweden)

    Velculescu Victor E

    2011-02-01

    Full Text Available Abstract Background Glioblastoma Multiforme (GBM is the most common and invasive astrocytic tumor associated with dismal prognosis. Treatment for GBM patients has advanced, but the median survival remains a meager 15 months. In a recent study, 20,000 genes from 21 GBM patients were sequenced that identified frequent mutations in ion channel genes. The goal of this study was to determine whether ion channel mutations have a role in disease progression and whether molecular targeting of ion channels is a promising therapeutic strategy for GBM patients. Therefore, we compared GBM patient survival on the basis of presence or absence of mutations in calcium, potassium and sodium ion transport genes. Cardiac glycosides, known sodium channel inhibitors, were then tested for their ability to inhibit GBM cell proliferation. Results Nearly 90% of patients showed at least one mutation in ion transport genes. GBM patients with mutations in sodium channels showed a significantly shorter survival compared to patients with no sodium channel mutations, whereas a similar comparison based on mutational status of calcium or potassium ion channel mutations showed no survival differences. Experimentally, targeting GBM cells with cardiac glycosides such as digoxin and ouabain demonstrated preferential cytotoxicity against U-87 and D54 GBM cells compared to non-tumor astrocytes (NTAs. Conclusions These pilot studies of GBM patients with sodium channel mutations indicate an association with a more aggressive disease and significantly shorter survival. Moreover, inhibition of GBM cells by ion channel inhibitors such as cardiac glycosides suggest a therapeutic strategy with relatively safe drugs for targeting GBM ion channel mutations. Key Words: glioblastoma multiforme, ion channels, mutations, small molecule inhibitors, cardiac glycosides.

  7. Comparison of Left Ventricular Electromechanical Mapping and Left Ventricular Angiography: Defining Practical Standards for Analysis of NOGA™ Maps

    OpenAIRE

    Sarmento-Leite, Rogerio; Silva, Guilherme V.; Dohman, Hans F.R.; Rocha, Ricardo Mourilhe; Dohman, Hans J.F.; de Mattos, Nelson Durval S.G.; Carvalho, Luis Antonio; Gottschall, Carlos A.M.; Perin, Emerson C.

    2003-01-01

    We performed this prospective cohort study to correlate the findings of left ventricular angiography (LVA) and NOGA™ left ventricular electromechanical mapping (LVEM) in the evaluation of cardiac wall motion and also to establish standards for wall motion assessment by LVEM. Fifty-five patients (35 men; mean age, 60.4 ± 11.8 years) eligible for elective left cardiac catheterization underwent LVA and LVEM. Wall motion scores, LV ejection fractions (LVEF), and LV volumes derived from LVA versus...

  8. Channel nut tool

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  9. Channels that do not generate coherence

    Science.gov (United States)

    Hu, Xueyuan

    2016-07-01

    We define the non-coherence-generating channel as the completely positive trace-preserving map which does not generate quantum coherence from an incoherent state. The incoherent operations are the strict subset of the non-coherence-generating channels. Although the relative entropy of coherence is monotonically decreasing under the non-coherence-generating channels, we prove that the coherence of formation may increase under such channels. Interestingly, by building a mathematical relation between the coherence of formation and the entanglement of formation, we show that the coherence of formation of a single-qubit state is never increased by a non-coherence-generating channel. This leads to the superadditivity property for the coherence increasing power of quantum channels, namely, while two channels cannot increase coherence individually, they may increase the quantum coherence of a composed system. Further, we derive the general form of the rank-2 non-coherence-generating qubit channels. Our results contribute to the resource theory of quantum coherence.

  10. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart

    Science.gov (United States)

    Sung, Derrick; Mills, Robert W.; Schettler, Jan; Narayan, Sanjiv M.; Omens, Jeffrey H.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    INTRODUCTION: Mechanical stimulation can induce electrophysiologic changes in cardiac myocytes, but how mechanoelectric feedback in the intact heart affects action potential propagation remains unclear. METHODS AND RESULTS: Changes in action potential propagation and repolarization with increased left ventricular end-diastolic pressure from 0 to 30 mmHg were investigated using optical mapping in isolated perfused rabbit hearts. With respect to 0 mmHg, epicardial strain at 30 mmHg in the anterior left ventricle averaged 0.040 +/- 0.004 in the muscle fiber direction and 0.032 +/- 0.006 in the cross-fiber direction. An increase in ventricular loading increased average epicardial activation time by 25%+/- 3% (P action potential duration at 20% repolarization (APD20) but did at 80% repolarization (APD80), from 179 +/- 7 msec to 207 +/- 5 msec (P action potential duration by a load-dependent mechanism that may not involve stretch-activated channels.

  11. Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel SCN5A mutation

    DEFF Research Database (Denmark)

    Holst, Anders G; Liang, Bo; Jespersen, Thomas;

    2010-01-01

    Mutations in the cardiac sodium channel encoded by the gene SCN5A can result in a wide array of phenotypes. We report a case of a young male with a novel SCN5A mutation (R121W) afflicted by sick sinus syndrome, progressive cardiac conduction disorder, atrial flutter and ventricular tachycardia. His...... father carried the same mutation, but had a milder phenotype, presenting with progressive cardiac conduction later in life. The mutation was found to result in a loss-of-function in the sodium current. In conclusion, the same SCN5A mutation can result in a wide array of clinical phenotypes and perhaps...

  12. Experimental determination of conduction channels in atomic scale conductors based on shot noise measurements

    OpenAIRE

    Vardimon, Ran; Klionsky, Marina; Tal, Oren

    2013-01-01

    We present an experimental procedure for obtaining the conduction channels of low-dimensional conductors based on shot noise measurements. The transmission coefficient for each channel is determined numerically from the measured conductance and Fano factor. The channel analysis is demonstrated for atomic contacts of Ag, Au, Al and Pt, showing their channel evolution as a function of conductance and mechanical elongation. This approach can be readily applied to map the conduction channels in a...

  13. Channel Modelling for Multiprobe Over-the-Air MIMO Testing

    Directory of Open Access Journals (Sweden)

    Pekka Kyösti

    2012-01-01

    a fading emulator, an anechoic chamber, and multiple probes. Creation of a propagation environment inside an anechoic chamber requires unconventional radio channel modelling, namely, a specific mapping of the original models onto the probe antennas. We introduce two novel methods to generate fading emulator channel coefficients; the prefaded signals synthesis and the plane wave synthesis. To verify both methods we present a set of simulation results. We also show that the geometric description is a prerequisite for the original channel model.

  14. Amendable Gaussian channels:restoring entanglement via a unitary filter

    OpenAIRE

    Pasquale, A.; Mari, A.; Porzio, A.; Giovannetti, V.

    2013-01-01

    We show that there exist Gaussian channels which are amendable. A channel is amendable if when applied twice is entanglement breaking while there exists a unitary filter such that, when interposed between the first and second action of the map, prevents the global transformation from being entanglement breaking [Phys. Rev. A 86, 052302 (2012)]. We find that, depending on the structure of the channel, the unitary filter can be a squeezing transformation or a phase shift operation. We also prop...

  15. Patch in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Alireza Alizadeh Ghavidel

    2014-06-01

    Full Text Available Introduction: Excessive bleeding presents a risk for the patient in cardiovascular surgery. Local haemostatic agents are of great value to reduce bleeding and related complications. TachoSil (Nycomed, Linz, Austria is a sterile, haemostatic agent that consists of an equine collagen patchcoated with human fibrinogen and thrombin. This study evaluated the safety and efficacy of TachoSil compared to conventional technique.Methods: Forty-two patients scheduled for open heart surgeries, were entered to this study from August 2010 to May 2011. After primary haemostatic measures, patients divided in two groups based on surgeon’s judgment. Group A: 20 patients for whom TachoSil was applied and group B: 22 patients that conventional method using Surgicel (13 patients or wait and see method (9 cases, were performed in order to control the bleeding. In group A, 10 patients were male with mean age of 56.95±15.67 years and in group B, 9 cases were male with mean age of 49.95±14.41 years. In case group 70% (14/20 of the surgeries were redo surgeries versus 100% (22/22 in control group.Results: Baseline characteristics were similar in both groups. In TachoSil group 75% of patients required transfusion versus 90.90% in group B (P=0.03.Most transfusions consisted of packed red blood cell; 2±1.13 units in group A versus 3.11±1.44 in group B (P=0.01, however there were no significant differences between two groups regarding the mean total volume of intra and post-operative bleeding. Re-exploration was required in 10% in group A versus 13.63% in group B (P=0.67.Conclusion: TachoSil may act as a superior alternative in different types of cardiac surgery in order to control the bleeding and therefore reducing transfusion requirement.

  16. Cardiac output monitoring

    Directory of Open Access Journals (Sweden)

    Mathews Lailu

    2008-01-01

    Full Text Available Minimally invasive and non-invasive methods of estimation of cardiac output (CO were developed to overcome the limitations of invasive nature of pulmonary artery catheterization (PAC and direct Fick method used for the measurement of stroke volume (SV. The important minimally invasive techniques available are: oesophageal Doppler monitoring (ODM, the derivative Fick method (using partial carbon dioxide (CO 2 breathing, transpulmonary thermodilution, lithium indicator dilution, pulse contour and pulse power analysis. Impedance cardiography is probably the only non-invasive technique in true sense. It provides information about haemodynamic status without the risk, cost and skill associated with the other invasive or minimally invasive techniques. It is important to understand what is really being measured and what assumptions and calculations have been incorporated with respect to a monitoring device. Understanding the basic principles of the above techniques as well as their advantages and limitations may be useful. In addition, the clinical validation of new techniques is necessary to convince that these new tools provide reliable measurements. In this review the physics behind the working of ODM, partial CO 2 breathing, transpulmonary thermodilution and lithium dilution techniques are dealt with. The physical and the physiological aspects underlying the pulse contour and pulse power analyses, various pulse contour techniques, their development, advantages and limitations are also covered. The principle of thoracic bioimpedance along with computation of CO from changes in thoracic impedance is explained. The purpose of the review is to help us minimize the dogmatic nature of practice favouring one technique or the other.

  17. Visualization of cardiac wavefronts using data fusion

    Science.gov (United States)

    Kynor, David B.; Dietz, Anthony; Friets, Eric; Peterson, Jon; Bergstrom, Ursula; Triedman, John; Hammer, Peter

    2002-05-01

    Catheter ablation has emerged as a highly effective treatment for arrhythmias that are constrained by known, easily located, anatomic landmarks. However, this treatment has enjoyed limited success for arrhythmias that are characterized by complex activation patterns or are not anatomically constrained. This class of arrhythmias, which includes atrial fibrillation and ventricular tachycardia resulting from ischemic heart disease, demands improved mapping tools. Current technology forces the cardiologist to view cardiac anatomy independently from the functional information contained in the electrical activation patterns. This leads to difficulties in interpreting the large volumes of data provided by high-density recording catheters and in mapping patients with abnormal anatomy (e.g., patients with congenital heart disease). The goal of this is work is development of new data processing and display algorithms that will permit the clinician to view activation sequences superimposed onto existing fluoroscopic images depicting the location of recording catheters within the heart. In cases where biplane fluoroscopic images and x-ray camera position data are available, the position of the catheters can be reconstructed in three-dimensions.

  18. Computed tomography of cardiac pseudotumors and neoplasms.

    Science.gov (United States)

    Anavekar, Nandan S; Bonnichsen, Crystal R; Foley, Thomas A; Morris, Michael F; Martinez, Matthew W; Williamson, Eric E; Glockner, James F; Miller, Dylan V; Breen, Jerome F; Araoz, Philip A

    2010-07-01

    Important features of cardiac masses can be clearly delineated on cardiac computed tomography (CT) imaging. This modality is useful in identifying the presence of a mass, its relationship with cardiac and extracardiac structures, and the features that distinguish one type of mass from another. A multimodality approach to the evaluation of cardiac tumors is advocated, with the use of echocardiography, CT imaging and magnetic resonance imaging as appropriately indicated. In this article, various cardiac masses are described, including pseudotumors and true cardiac neoplasms, and the CT imaging findings that may be useful in distinguishing these rare entities are presented. PMID:20705174

  19. Causal mapping

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2006-01-01

    The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method......The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method...

  20. APPLICATION OF MIND MAPPING ON NURSING OF CORONARY CT ANGIOGRAPHY IN HIGH-RISK NON-CARDIAC SURGERY%思维导图在高危非心脏手术冠状动脉 CT 造影护理中的应用

    Institute of Scientific and Technical Information of China (English)

    曹丽妃; 丁汉军; 吴红珍; 崔嵩

    2015-01-01

    Objective To explore the influence of mind mapping on the image quality of coronary CT angiog -raphy (CCTA) in high-risk non-cardiac surgery.Methods According to the different periods , 168 patients were dividedinto control group ( n=83 ) and observation group ( n=85 ) .The control group was givenregular nursing , while the mindmapping was applied in coronary CT angiography in the observation group .The compliance in CCTA and image quality was compared between the two groups .Results 69 patients in observation group with the applica-tion of mind mapping had a good compliance in CCTA , while only 13 patients in control group had a good compliance in CCTA, with statistically significant difference (χ2 =27.66, p<0.01).The scores of image quality of 83 patients in the observation group were higher than 3, however, only 36 patients in the control group had the image quality with scores higher than 3.The difference was statistically significant (u=39.36, p<0.01).Conclusion Mind mappin-gin coronary CT angiography can enhance image quality of CCTA by relieving patients 'nervousness and fear , and im-provingtheir compliance in examinations .%目的:探讨思维导图对高危非心脏手术冠状动脉CT造影(CCTA)成像质量的影响。方法将168例患者按时间段分为对照组83例和观察组85例,对照组给予常规护理,观察组将思维导图应用于冠状动脉CT造影检查中。比较两组患者CCTA检查依从性和图像质量评分情况。结果应用思维导图后,观察组患者CCTA检查依从性良好达69例,对照组仅13例,两组比较,差异有统计学意义(χ2=27.66,p<0.01);观察组图像质量评分高于3分以上者有83例,对照组仅36例,两组比较,差异有统计学意义( u=39.36,p<0.01)。结论 CCTA检查中应用思维导图能够帮助患者减轻紧张恐惧心理,提升患者在检查中的依从性,达到提高CCTA成像质量的目的。

  1. Natriuretic peptides modulate ATP-sensitive K+ channels in rat ventricular cardiomyocytes

    OpenAIRE

    Burley, Dwaine S.; Charles D Cox; Zhang, Jin; Wann, Kenneth T.; Baxter, Gary F.

    2014-01-01

    B-type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), and (Cys-18)-atrial natriuretic factor (4–23) amide (C-ANF), are cytoprotective under conditions of ischemia–reperfusion, limiting infarct size. ATP-sensitive K+ channel (KATP) opening is also cardioprotective, and although the KATP activation is implicated in the regulation of cardiac natriuretic peptide release, no studies have directly examined the effects of natriuretic peptides on cardiac KATP activity. Normoxic cardi...

  2. Cardiac Penetrating Injuries and Pseudoaneurysm

    Institute of Scientific and Technical Information of China (English)

    CHEN Shifeng

    2002-01-01

    Objective To discuss the early diagnosis and treatment of cardiac penetrating injuries and pseudoaneurysm. Methods 18 cases of cardiac penetrating injuries, in which 2 cases were complicated with pseudoaneurysm, were diagnosed by emergency operation and color Doppler echocardiography between May 1973 and Dec. 2001 in our hospital. The basis for emergency operation is the injured path locating in cardiac dangerous zone, severe shock or pericardial tamponade. ResultsAmong 18 cases of this study, 17 cases underwent emergency operation. During the operation, 11 cases were found injured in right ventricle, 2 cases were found injured in right atrium, 1 case was found injured in pulmonary artery,4 cases were found injured in left ventricle, 2 cases were found complicated with pseudoaneurysm. 17cases underwent cardiac repair including 1 case of rupture of aneurysm. 1 case underwent elective aneurysm resection. In whole group, 15 cases survived(83.33% ), 3 cases died( 16.67%). The cause of death is mainly hemorrhagic shock. Conclusion Highly suspicious cardiac penetrating injuries or hemopericaridium should undergo direct operative exploration. Pseudoaneurysm should be resected early,which can prevent severe complications.

  3. Vitamin D and Cardiac Differentiation.

    Science.gov (United States)

    Kim, Irene M; Norris, Keith C; Artaza, Jorge N

    2016-01-01

    Calcitriol (1,25-dihydroxycholecalciferol or 1,25-D3) is the hormonally active metabolite of vitamin D. Experimental studies of vitamin D receptors and 1,25-D3 establish calcitriol to be a critical regulator of the structure and function of the heart. Clinical studies link vitamin D deficiency with cardiovascular disease (CVD). Emerging evidence demonstrates that calcitriol is highly involved in CVD-related signaling pathways, particularly the Wnt signaling pathway. Addition of 1,25-D3 to cardiomyocyte cells and examination of its effects on cardiomyocytes and mainly Wnt11 signaling allowed the specific characterization of the role of calcitriol in cardiac differentiation. 1,25-D3 is demonstrated to: (i) inhibit cell proliferation without promoting apoptosis; (ii) decrease expression of genes related to the regulation of the cell cycle; (iii) promote formation of cardiomyotubes; (iv) induce expression of casein kinase-1-α1, a negative regulator of the canonical Wnt signaling pathway; and (v) increase expression of noncanonical Wnt11, which has been recognized to induce cardiac differentiation during embryonic development and in adult cells. Thus, it appears that vitamin D promotes cardiac differentiation through negative modulation of the canonical Wnt signaling pathway and upregulation of noncanonical Wnt11 expression. Future work to elucidate the role(s) of vitamin D in cardiovascular disorders will hopefully lead to improvement and potentially prevention of CVD, including abnormal cardiac differentiation in settings such as postinfarction cardiac remodeling. PMID:26827957

  4. Cardiac factors in orthostatic hypotension

    Science.gov (United States)

    Löllgen, H.; Dirschedl, P.; Koppenhagen, K.; Klein, K. E.

    Cardiac function is determined by preload, afterload, heart rate and contractility. During orthostatic stress, the footward blood shift is compensated for by an increase of afterload. LBNP is widely used to analyze effects of volume displacement during orthostatic stress. Comparisons of invasive ( right heart catheterization) and non-invasive approach (echocardiography) yielded similar changes. Preload and afterload change with graded LBNP, heart rate increases, and stroke volume and cardiac output decrease. Thus, the working point on the left ventricular function curve is shifted to the left and downward, similar to hypovolemia. However, position on the Frank-Starling curve, the unchanged ejection fraction, and the constant Vcf indicate a normal contractile state during LBNP. A decrease of arterial oxygen partial pressure during LBNP shwos impaired ventilation/perfusion ratio. Finally, LBNP induced cardiac and hemodynamic changes can be effectively countermeasured by dihydroergotamine, a potent venoconstrictor. Comparison of floating catheter data with that of echocardiography resulted in close correlation for cardiac output and stroke volume. In addition, cardiac dimensions changed in a similar way during LBNP. From our findings, echocardiography as a non-invasive procedure can reliably used in LBNP and orthostatic stress tests. Some informations can be obtained on borderline values indicating collaps or orthostatic syncope. Early fainters can be differentiated from late fainters by stroke volume changes.

  5. Animal models of cardiac cachexia.

    Science.gov (United States)

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. PMID:27317993

  6. Epicardial Lineages and Cardiac Repair

    Directory of Open Access Journals (Sweden)

    Manvendra K. Singh

    2013-08-01

    Full Text Available The death of cardiac myocytes resulting from myocardial infarction is a major cause of heart failure worldwide. Effective therapies for regenerating lost cardiac myocytes are lacking. Recently, the epicardium has been implicated as a source of inflammatory cytokines, growth factors and progenitor cells that modulate the response to myocardial injury. During embryonic development, epicardially-derived cells have the potential to differentiate into multiple cardiac lineages, including fibroblasts, vascular smooth muscle and potentially other cell types. In the healthy adult heart, epicardial cells are thought to be generally quiescent. However, injury of the adult heart results in reactivation of a developmental gene program in the epicardium, which leads to increased epicardial cell proliferation and differentiation of epicardium-derived cells (EPDCs into various cardiac lineages. Recent work suggests that epicardial reactivation after injury is accompanied by, and contributes to, a robust inflammatory response. In this review, we describe the current status of research related to epicardial biology in cardiac development and regeneration, highlighting important recent discoveries and ongoing controversies.

  7. The Earliest Ion Channels

    Science.gov (United States)

    Pohorille, A.; Wilson, M. A.; Wei, C.

    2009-12-01

    Supplying protocells with ions required assistance from channels spanning their membrane walls. The earliest channels were most likely short proteins that formed transmembrane helical bundles surrounding a water-filled pore. These simple aggregates were capable of transporting ions with efficiencies comparable to those of complex, contemporary ion channels. Channels with wide pores exhibited little ion selectivity but also imposed only modest constraints on amino acid sequences of channel-forming proteins. Channels with small pores could have been selective but also might have required a more precisely defined sequence of amino acids. In contrast to modern channels, their protocellular ancestors had only limited capabilities to regulate ion flux. It is postulated that subsequent evolution of ion channels progressed primarily to acquire precise regulation, and not high efficiency or selectivity. It is further proposed that channels and the surrounding membranes co-evolved.

  8. Gramicidin Channels: Versatile Tools

    Science.gov (United States)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  9. Cardiac perioperative complications in noncardiac surgery

    Directory of Open Access Journals (Sweden)

    Radovanović Dragana

    2008-01-01

    Full Text Available Anesthesiologists are confronted with an increasing population of patients undergoing noncardiac surgery who are at risk for cardiac complications in the perioperative period. Perioperative cardiac complications are responsible for significant mortality and morbidity. The aim of the present study was to determine the incidence of perioperative (operative and postoperative cardiac complications and correlations between the incidence of perioperative cardiac complications and type of surgical procedure, age, presence of concurrent diseases. A total of 100 patients with cardiac diseases undergoing noncardiac surgery were included in the prospective study (Group A 50 patients undergoing intraperitoneal surgery and Group B 50 patients undergoing breast and thyroid surgery. The patients were followed up during the perioperative period and after surgery until leaving hospital to assess the occurrence of cardiac events. Cardiac complications (systemic arterial hypertension, systemic arterial hypotension, abnormalities of cardiac conduction and cardiac rhythm, perioperative myocardial ischemia and acute myocardial infarction occurred in 64% of the patients. One of the 100 patients (1% had postoperative myocardial infarction which was fatal. Systemic arterial hypertension occurred in 57% of patients intraoperatively and 33% postoperatively, abnormalities of cardiac rhythm in 31% of patients intraoperatively and 17% postoperatively, perioperative myocardial ischemia in 23% of patients intraoperatively and 11% of postoperatively. The most often cardiac complications were systemic arterial hypertension, abnormalities of cardiac rhythm and perioperative myocardial ischemia. Factors independently associated with the incidence of cardiac complications included the type of surgical procedure, advanced age, duration of anaesthesia and surgery, abnormal preoperative electrocardiogram, abnormal preoperative chest radiography and diabetes.

  10. Multi-Channel Retailing

    Directory of Open Access Journals (Sweden)

    Dirk Morschett, Dr.,

    2005-01-01

    Full Text Available Multi-channel retailing entails the parallel use by retailing enterprises of several sales channels. The results of an online buyer survey which has been conducted to investigate the impact of multi-channel retailing (i.e. the use of several retail channels by one retail company on consumer behaviour show that the frequently expressed concern that the application of multi-channel systems in retailing would be associated with cannibalization effects, has proven unfounded. Indeed, the appropriate degree of similarity, consistency, integration and agreement achieves the exact opposite. Different channels create different advantages for consumers. Therefore the total benefit an enterprise which has a multi-channel system can offer to its consumers is larger, the greater the number of available channels. The use of multi-channel systems is associated with additional purchases in the different channels. Such systems are thus superior to those offering only one sales channel to their customers. Furthermore, multi-channel systems with integrated channels are superior to those in which the channels are essentially autonomous and independent of one another. In integrated systems, consumers can achieve synergy effects in the use of sales-channel systems. Accordingly, when appropriately formulated, multi-channel systems in retailing impact positively on consumers. They use the channels more frequently, buy more from them and there is a positive customer-loyalty impact. Multi-channel systems are strategic options for achieving customer loyalty, exploiting customer potential and for winning new customers. They are thus well suited for approaching differing and varied target groups.

  11. Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels.

    Science.gov (United States)

    Cai, Tianfu; Luo, Ji; Meng, Er; Ding, Jiuping; Liang, Songping; Wang, Sheng; Liu, Zhonghua

    2015-06-01

    Peptide toxins often have pharmacological applications and are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a group of potential VGSC inhibitors have been reported from tarantula venoms, little is known about the mechanism of their interaction with VGSCs. In this study, we showed that hainantoxin-IV (β-TRTX-Hn2a, HNTX-IV in brief), a 35-residue peptide from Ornithoctonus hainana venom, preferentially inhibited rNav1.2, rNav1.3 and hNav1.7 compared with rNav1.4 and hNav1.5. hNav1.7 was the most sensitive to HNTX-IV (IC50∼21nM). In contrast to many other tarantula toxins that affect VGSCs, HNTX-IV at subsaturating concentrations did not alter activation and inactivation kinetics in the physiological range of voltages, while very large depolarization above +70mV could partially activate toxin-bound hNav1.7 channel, indicating that HNTX-IV acts as a gating modifier rather than a pore blocker. Site-directed mutagenesis indicated that the toxin bound to site 4, which was located on the extracellular S3-S4 linker of hNav1.7 domain II. Mutants E753Q, D816N and E818Q of hNav1.7 decreased toxin affinity for hNav1.7 by 2.0-, 3.3- and 130-fold, respectively. In silico docking indicated that a three-toed claw substructure formed by residues with close contacts in the interface between HNTX-IV and hNav1.7 domain II stabilized the toxin-channel complex, impeding movement of the domain II voltage sensor and inhibiting hNav1.7 activation. Our data provide structural details for structure-based drug design and a useful template for the design of highly selective inhibitors of a specific subtype of VGSCs. PMID:25218973

  12. Non-contact detection of cardiac rate based on visible light imaging device

    Science.gov (United States)

    Zhu, Huishi; Zhao, Yuejin; Dong, Liquan

    2012-10-01

    We have developed a non-contact method to detect human cardiac rate at a distance. This detection is based on the general lighting condition. Using the video signal of human face region captured by webcam, we acquire the cardiac rate based on the PhotoPlethysmoGraphy theory. In this paper, the cardiac rate detecting method is mainly in view of the blood's different absorptivities of the lights various wavelengths. Firstly, we discompose the video signal into RGB three color signal channels and choose the face region as region of interest to take average gray value. Then, we draw three gray-mean curves on each color channel with time as variable. When the imaging device has good fidelity of color, the green channel signal shows the PhotoPlethysmoGraphy information most clearly. But the red and blue channel signals can provide more other physiological information on the account of their light absorptive characteristics of blood. We divide red channel signal by green channel signal to acquire the pulse wave. With the passband from 0.67Hz to 3Hz as a filter of the pulse wave signal and the frequency spectrum superimposed algorithm, we design frequency extracted algorithm to achieve the cardiac rate. Finally, we experiment with 30 volunteers, containing different genders and different ages. The results of the experiments are all relatively agreeable. The difference is about 2bmp. Through the experiment, we deduce that the PhotoPlethysmoGraphy theory based on visible light can also be used to detect other physiological information.

  13. Cystic Fibrosis Gene Encodes a cAMP-Dependent Chloride Channel in Heart

    Science.gov (United States)

    Hart, Padraig; Warth, John D.; Levesque, Paul C.; Collier, Mei Lin; Geary, Yvonne; Horowitz, Burton; Hume, Joseph R.

    1996-06-01

    cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significnatly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.

  14. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    Science.gov (United States)

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich

    2016-08-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7-7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.

  15. A visible light imaging device for cardiac rate detection with reduced effect of body movement

    Science.gov (United States)

    Jiang, Xiaotian; Liu, Ming; Zhao, Yuejin

    2014-09-01

    A visible light imaging system to detect human cardiac rate is proposed in this paper. A color camera and several LEDs, acting as lighting source, were used to avoid the interference of ambient light. From people's forehead, the cardiac rate could be acquired based on photoplethysmography (PPG) theory. The template matching method was used after the capture of video. The video signal was discomposed into three signal channels (RGB) and the region of interest was chosen to take the average gray value. The green channel signal could provide an excellent waveform of pulse wave on the account of green lights' absorptive characteristics of blood. Through the fast Fourier transform, the cardiac rate was exactly achieved. But the research goal was not just to achieve the cardiac rate accurately. With the template matching method, the effects of body movement are reduced to a large extent, therefore the pulse wave can be detected even while people are in the moving state and the waveform is largely optimized. Several experiments are conducted on volunteers, and the results are compared with the ones gained by a finger clamped pulse oximeter. The contrast results between these two ways are exactly agreeable. This method to detect the cardiac rate and the pulse wave largely reduces the effects of body movement and can probably be widely used in the future.

  16. Electrophysiological Cardiac Modeling: A Review.

    Science.gov (United States)

    Beheshti, Mohammadali; Umapathy, Karthikeyan; Krishnan, Sridhar

    2016-01-01

    Cardiac electrophysiological modeling in conjunction with experimental and clinical findings has contributed to better understanding of electrophysiological phenomena in various species. As our knowledge on underlying electrical, mechanical, and chemical processes has improved over time, mathematical models of the cardiac electrophysiology have become more realistic and detailed. These models have provided a testbed for various hypotheses and conditions that may not be easy to implement experimentally. In addition to the limitations in experimentally validating various scenarios implemented by the models, one of the major obstacles for these models is computational complexity. However, the ever-increasing computational power of supercomputers facilitates the clinical application of cardiac electrophysiological models. The potential clinical applications include testing and predicting effects of pharmaceutical agents and performing patient-specific ablation and defibrillation. A review of studies involving these models and their major findings are provided.

  17. Recent advances in cardiac magnetic resonance.

    Science.gov (United States)

    Greulich, Simon; Arai, Andrew E; Sechtem, Udo; Mahrholdt, Heiko

    2016-01-01

    Cardiac magnetic resonance (CMR) is a non-invasive imaging modality that has rapidly emerged during the last few years and has become a valuable, well-established clinical tool. Beside the evaluation of anatomy and function, CMR has its strengths in providing detailed non-invasive myocardial tissue characterization, for which it is considered the current diagnostic gold standard. Late gadolinium enhancement (LGE), with its capability to detect necrosis and to separate ischemic from non-ischemic cardiomyopathies by distinct LGE patterns, offers unique clinical possibilities. The presence of LGE has also proven to be a good predictor of an adverse outcome in various studies. T2-weighted (T2w) images, which are supposed to identify areas of edema and inflammation, are another CMR approach to tissue characterization. However, T2w images have not held their promise owing to several technical limitations and potential physiological concerns. Newer mapping techniques may overcome some of these limitations: they assess quantitatively myocardial tissue properties in absolute terms and show promising results in studies for characterization of diffuse fibrosis (T1 mapping) and/or inflammatory processes (T2 mapping). However, these techniques are still research tools and are not part of the clinical routine yet. T2* CMR has had significant impact in the management of thalassemia because it is possible to image the amount of iron in the heart and the liver, improving both diagnostic imaging and the management of patients with thalassemia. CMR findings frequently have clinical impact on further patient management, and CMR seems to be cost effective in the clinical routine. PMID:27635240

  18. Novel perspectives in cancer therapy: Targeting ion channels.

    Science.gov (United States)

    Arcangeli, Annarosa; Becchetti, Andrea

    2015-01-01

    By controlling ion fluxes at multiple time scales, ion channels shape rapid cell signals, such as action potential and synaptic transmission, as well as much slower processes, such as mitosis and cell migration. As is currently increasingly recognized, a variety of channel types are involved in cancer hallmarks, and regulate specific stages of neoplastic progression. Long-term in vitro work has established that inhibition of these ion channels impairs the growth of cancer cells. Recently, these studies have been followed up in vivo, hence revealing that ion channels constitute promising pharmacological targets in oncology. The channel proteins can be often accessed from the extracellular milieu, which allows use of lower drug doses and decrease untoward toxicity. However, because of the central physiological roles exerted by ion channels in excitable cells, other types of side effects may arise, the gravest of which is cardiac arrhythmia. A paradigmatic case is offered by Kv11.1 (hERG1) channels. HERG1 blockers attenuate the progression of both hematologic malignancies and solid tumors, but may also lead to the lengthening of the electrocardiographic QT interval, thus predisposing the patient to ventricular arrhythmias. These side effects can be avoided by specifically inhibiting the channel isoforms which are highly expressed in certain tumors, such as Kv11.1B and the neonatal forms of voltage-gated Na(+) channels. Preclinical studies are also being explored in breast and prostate cancer (targeting voltage-gated Na(+) channels), and gliomas (targeting CLC-3). Overall, the possible approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1) the development of specific inhibitors for the channel subtypes expressed in specific tumors; (2) drug delivery into the tumor by using antibodies or nanotechnology-based approaches; (3) combination regimen therapy and (4) blocking specific conformational states of the ion channel. We believe

  19. Cardiovascular Magnetic Resonance and prognosis in cardiac amyloidosis

    Directory of Open Access Journals (Sweden)

    Roughton Michael

    2008-11-01

    Full Text Available Abstract Background Cardiac involvement is common in amyloidosis and associated with a variably adverse outcome. We have previously shown that cardiovascular magnetic resonance (CMR can assess deposition of amyloid protein in the myocardial interstitium. In this study we assessed the prognostic value of late gadolinium enhancement (LGE and gadolinium kinetics in cardiac amyloidosis in a prospective longitudinal study. Materials and methods The pre-defined study end point was all-cause mortality. We prospectively followed a cohort of 29 patients with proven cardiac amyloidosis. All patients underwent biopsy, 2D-echocardiography and Doppler studies, 123I-SAP scintigraphy, serum NT pro BNP assay, and CMR with a T1 mapping method and late gadolinium enhancement (LGE. Results Patients with were followed for a median of 623 days (IQ range 221, 1436, during which 17 (58% patients died. The presence of myocardial LGE by itself was not a significant predictor of mortality. However, death was predicted by gadolinium kinetics, with the 2 minute post-gadolinium intramyocardial T1 difference between subepicardium and subendocardium predicting mortality with 85% accuracy at a threshold value of 23 ms (the lower the difference the worse the prognosis. Intramyocardial T1 gradient was a better predictor of survival than FLC response to chemotherapy (Kaplan Meier analysis P = 0.049 or diastolic function (Kaplan-Meier analysis P = 0.205. Conclusion In cardiac amyloidosis, CMR provides unique information relating to risk of mortality based on gadolinium kinetics which reflects the severity of the cardiac amyloid burden.

  20. Cardiac resynchronization therapy by targeted left ventricular lead placemem to the latest ventricular electrical activating site mapped in the coronary sinus branches%电生理标测冠状静脉窦分支最延迟电激动处植入左室导线行心脏再同步化治疗

    Institute of Scientific and Technical Information of China (English)

    梁延春; 于海波; 孙毅; 金志清; 许国卿; 付柳静; 李世倍; 王祖禄; 韩雅玲

    2012-01-01

    Objective To explore cardiac resynchronization therapy (CRT) by placing left ventricular (LV) lead at the latest ventricular electrical activating site mapped in the coronary sinus (CS) branches. Methods Ten patients with moderate to severe congestive heart failure [New York Heart Association (NYHA) functional class Ⅲ or Ⅳ], depressed LV ejection fraction (LVEF) < 0.35, and wide QRS complex ≥ 120 ms were included for implantation of a CRT device. LV activating sequence was mapped in the CS branchs, and the latest ventricular electrical activating site was considered as the target site for LV lead placement. The feasibility and curative effect of this kind of CRT were observed. Results Seven patients were diagnosed with dilated cardiomyopathy and 3 patients as ischemic cardiomyopathy. The heart rhythm was sinus rhythm in 7 patients and persistent atrial fibrillation in 3 patients. ECG showed Left bundle branch block in 9 patients and intraventricular conduction block in the other 1 patient. Electrophysiological mapping were performed in 28 CS branches which were considered as a possible site for LV lead placement and LV lead was successfully placed at the latest LV electrical activating site in all 10 patients. There were 116 ±28 ms activating time delay at the latest LV electrical ac-tiviating site than the QRS onset of ECG. QRS complex were significantly narrowed immediately after CRT than before CRT (121 ±17 ms vs 153 ±30 ms, P<0.0l). The period after CRT procedure exceeded 3 months in 8 of 10 patients. All eight patients were respondere to CRT (8/8, 100% ) and 3 patients as super respondere ( 3/8, 37. 5% ) , the other 1 ischemic cardiomyopathy patient died of acute myocardial infarction 2 months after CRT procedure . The following clinical variables 3 months after CRT procedure were markedly improved than variables before CRT in these 8 responders (all P < 0.01). NYHA class was improved (1.6 ±0.5 vs 3.3 ±0.5) and the 6-min walk test was increased (405

  1. Performance of automated software in the assessment of segmental left ventricular function in cardiac CT: Comparison with cardiac magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Capital Medical University, Department of Radiology, Beijing Anzhen Hospital, Beijing (China); Meinel, Felix G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Ludwig-Maximilians-University Hospital, Institute for Clinical Radiology, Munich (Germany); Schoepf, U.J. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Canstein, Christian [Siemens Medical Solutions USA, Malvern, PA (United States); Spearman, James V. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); De Cecco, Carlo N. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Departments of Radiological Sciences, Oncology and Pathology, Latina (Italy)

    2015-12-15

    To evaluate the accuracy, reliability and time saving potential of a novel cardiac CT (CCT)-based, automated software for the assessment of segmental left ventricular function compared to visual and manual quantitative assessment of CCT and cardiac magnetic resonance (CMR). Forty-seven patients with suspected or known coronary artery disease (CAD) were enrolled in the study. Wall thickening was calculated. Segmental LV wall motion was automatically calculated and shown as a colour-coded polar map. Processing time for each method was recorded. Mean wall thickness in both systolic and diastolic phases on polar map, CCT, and CMR was 9.2 ± 0.1 mm and 14.9 ± 0.2 mm, 8.9 ± 0.1 mm and 14.5 ± 0.1 mm, 8.3 ± 0.1 mm and 13.6 ± 0.1 mm, respectively. Mean wall thickening was 68.4 ± 1.5 %, 64.8 ± 1.4 % and 67.1 ± 1.4 %, respectively. Agreement for the assessment of LV wall motion between CCT, CMR and polar maps was good. Bland-Altman plots and ICC indicated good agreement between CCT, CMR and automated polar maps of the diastolic and systolic segmental wall thickness and thickening. The processing time using polar map was significantly decreased compared with CCT and CMR. Automated evaluation of segmental LV function with polar maps provides similar measurements to manual CCT and CMR evaluation, albeit with substantially reduced analysis time. (orig.)

  2. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard;

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  3. Sudden Cardiac Arrest (SCA) Risk Assessment

    Science.gov (United States)

    ... Find a Specialist Share Twitter Facebook SCA Risk Assessment Sudden Cardiac Arrest (SCA) occurs abruptly and without ... of all ages and health conditions. Start Risk Assessment The Sudden Cardiac Arrest (SCA) Risk Assessment Tool ...

  4. An update on insertable cardiac monitors

    DEFF Research Database (Denmark)

    Olsen, Flemming J; Biering-Sørensen, Tor; Krieger, Derk W

    2015-01-01

    Continuous cardiac rhythm monitoring has undergone compelling progress over the past decades. Cardiac monitoring has emerged from 12-lead electrocardiograms being performed at the discretion of the treating physician to in-hospital telemetry, Holter monitoring, prolonged external event monitoring...

  5. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function.

    Science.gov (United States)

    Chiellini, Grazia; Frascarelli, Sabina; Ghelardoni, Sandra; Carnicelli, Vittoria; Tobias, Sandra C; DeBarber, Andrea; Brogioni, Simona; Ronca-Testoni, Simonetta; Cerbai, Elisabetta; Grandy, David K; Scanlan, Thomas S; Zucchi, Riccardo

    2007-05-01

    3-Iodothyronamine T1AM is a novel endogenous thyroid hormone derivative that activates the G protein-coupled receptor known as trace anime-associated receptor 1 (TAAR1). In the isolated working rat heart and in rat cardiomyocytes, T1AM produced a reversible, dose-dependent negative inotropic effect (e.g., 27+/-5, 51+/-3, and 65+/-2% decrease in cardiac output at 19, 25, and 38 microM concentration, respectively). An independent negative chronotropic effect was also observed. The hemodynamic effects of T1AM were remarkably increased in the presence of the tyrosine kinase inhibitor genistein, whereas they were attenuated in the presence of the tyrosine phosphatase inhibitor vanadate. No effect was produced by inhibitors of protein kinase A, protein kinase C, calcium-calmodulin kinase II, phosphatidylinositol-3-kinase, or MAP kinases. Tissue cAMP levels were unchanged. In rat ventricular tissue, Western blot experiments with antiphosphotyrosine antibodies showed reduced phosphorylation of microsomal and cytosolic proteins after perfusion with synthetic T1AM; reverse transcriptase-polymerase chain reaction experiments revealed the presence of transcripts for at least 5 TAAR subtypes; specific and saturable binding of [125I]T1AM was observed, with a dissociation constant in the low micromolar range (5 microM); and endogenous T1AM was detectable by tandem mass spectrometry. In conclusion, our findings provide evidence for the existence of a novel aminergic system modulating cardiac function. PMID:17284482

  6. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function.

    Science.gov (United States)

    Chiellini, Grazia; Frascarelli, Sabina; Ghelardoni, Sandra; Carnicelli, Vittoria; Tobias, Sandra C; DeBarber, Andrea; Brogioni, Simona; Ronca-Testoni, Simonetta; Cerbai, Elisabetta; Grandy, David K; Scanlan, Thomas S; Zucchi, Riccardo

    2007-05-01

    3-Iodothyronamine T1AM is a novel endogenous thyroid hormone derivative that activates the G protein-coupled receptor known as trace anime-associated receptor 1 (TAAR1). In the isolated working rat heart and in rat cardiomyocytes, T1AM produced a reversible, dose-dependent negative inotropic effect (e.g., 27+/-5, 51+/-3, and 65+/-2% decrease in cardiac output at 19, 25, and 38 microM concentration, respectively). An independent negative chronotropic effect was also observed. The hemodynamic effects of T1AM were remarkably increased in the presence of the tyrosine kinase inhibitor genistein, whereas they were attenuated in the presence of the tyrosine phosphatase inhibitor vanadate. No effect was produced by inhibitors of protein kinase A, protein kinase C, calcium-calmodulin kinase II, phosphatidylinositol-3-kinase, or MAP kinases. Tissue cAMP levels were unchanged. In rat ventricular tissue, Western blot experiments with antiphosphotyrosine antibodies showed reduced phosphorylation of microsomal and cytosolic proteins after perfusion with synthetic T1AM; reverse transcriptase-polymerase chain reaction experiments revealed the presence of transcripts for at least 5 TAAR subtypes; specific and saturable binding of [125I]T1AM was observed, with a dissociation constant in the low micromolar range (5 microM); and endogenous T1AM was detectable by tandem mass spectrometry. In conclusion, our findings provide evidence for the existence of a novel aminergic system modulating cardiac function.

  7. Elevated sensitivity to cardiac ischemia in proteinuric rats is independent of adverse cardiac remodeling

    NARCIS (Netherlands)

    Szymanski, Mariusz K.; Hillege, Hans L.; Danser, A. H. Jan; Garrelds, Ingrid M.; Schoemaker, Regien G.

    2013-01-01

    Objectives: Chronic renal dysfunction severely increases cardiovascular risk. Adverse cardiac remodeling is suggested to play a major role as predisposition for increased cardiac ischemic vulnerability. The aim of the present study was to examine the role of adverse cardiac remodeling in cardiac sen

  8. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    . In particular, mapping environmental damage, endangered species, and human made disasters has become one of the focal point of affective knowledge production. These ‘more-than-humangeographies’ practices include notions of species, space and territory, and movement towards a new political ecology. This type...... of environmental knowledge production. It uses InfoAmazonia, the databased platform on Amazon rainforests, as an example of affective geo-visualization within information mapping that enhances embodiment in the experience of the information. Amazonia is defined as a digitally created affective (map)space within...

  9. [Cardiac output monitoring by impedance cardiography in cardiac surgery].

    Science.gov (United States)

    Shimizu, H; Seki, S; Mizuguchi, A; Tsuchida, H; Watanabe, H; Namiki, A

    1990-04-01

    The cardiac output monitoring by impedance cardiography, NCCOM3, was evaluated in adult patients (n = 12) who were subjected to coronary artery bypass grafting. Values of cardiac output measured by impedance cardiography were compared to those by the thermodilution method. Changes of base impedance level used as an index of thoracic fluid volume were also investigated before and after cardiopulmonary bypass (CPB). Correlation coefficient (r) of the values obtained by thermodilution with impedance cardiography was 0.79 and the mean difference was 1.29 +/- 16.9 (SD)% during induction of anesthesia. During the operation, r was 0.83 and the mean difference was -14.6 +/- 18.7%. The measurement by impedance cardiography could be carried out through the operation except when electro-cautery was used. Base impedance level before CPB was significantly lower as compared with that after CPB. There was a negative correlation between the base impedance level and central venous pressure (CVP). No patients showed any signs suggesting lung edema and all the values of CVP, pulmonary artery pressure and blood gas analysis were within normal ranges. From the result of this study, it was concluded that cardiac output monitoring by impedance cardiography was useful in cardiac surgery, but further detailed examinations will be necessary on the relationship between the numerical values of base impedance and the clinical state of the patients. PMID:2362347

  10. Health Literacy Predicts Cardiac Knowledge Gains in Cardiac Rehabilitation Participants

    Science.gov (United States)

    Mattson, Colleen C.; Rawson, Katherine; Hughes, Joel W.; Waechter, Donna; Rosneck, James

    2015-01-01

    Objective: Health literacy is increasingly recognised as a potentially important patient characteristic related to patient education efforts. We evaluated whether health literacy would predict gains in knowledge after completion of patient education in cardiac rehabilitation. Method: This was a re-post observational analysis study design based on…

  11. Regulation of Cardiac Hypertrophy: the nuclear option

    OpenAIRE

    Kuster, Diederik

    2011-01-01

    textabstractCardiac hypertrophy is the response of the heart to an increased workload. After myocardial infarction (MI) the surviving muscle tissue has to work harder to maintain cardiac output. This sustained increase in workload leads to cardiac hypertrophy. Despite its apparent appropriateness, cardiac hypertrophy is an independent risk factor for the development of heart failure and is therefore called pathological hypertrophy. That hypertrophy is not bad per se, is illustrated by the hyp...

  12. Cardiac Repolarization Abnormalities and Potential Evidence for Loss of Cardiac Sodium Currents on ECGs of Patients with Chagas' Heart Disease

    Science.gov (United States)

    Schlegel, T. T.; Medina, R.; Jugo, D.; Nunez, T. J.; Borrego, A.; Arellano, E.; Arenare, B.; DePalma, J. L.; Greco, E. C.; Starc, V.

    2007-01-01

    Some individuals with Chagas disease develop right precordial lead ST segment elevation in response to an ajmaline challenge test, and the prevalence of right bundle branch block (RBBB) is also high in Chagas disease. Because these same electrocardiographic abnormalities occur in the Brugada syndrome, which involves genetically defective cardiac sodium channels, acquired damage to cardiac sodium channels may also occur in Chagas disease. We studied several conventional and advanced resting 12-lead/derived Frank-lead ECG parameters in 34 patients with Chagas -related heart disease (mean age 39 14 years) and in 34 age-/gender-matched healthy controls. All ECG recordings were of 5-10 min duration, obtained in the supine position using high fidelity hardware/software (CardioSoft, Houston, TX). Even after excluding those Chagas patients who had resting BBBs, tachycardia and/or pathologic arrhythmia (n=8), significant differences remained in multiple conventional and advanced ECG parameters between the Chagas and control groups (n=26/group), especially in their respective QT interval variability indices, maximal spatial QRS-T angles and low frequency HRV powers (p=0.0006, p=0.0015 and p=0.0314 respectively). In relation to the issue of potential damage to cardiac sodium channels, the Chagas patients had: 1) greater than or equal to twice the incidence of resting ST segment elevation in leads V1-V3 (n=10/26 vs. n=5/26) and of both leftward (n=5/26 versus n=0/26) and rightward (n=7/26 versus n=3/26) QRS axis deviation than controls; 2) significantly increased filtered (40-250 Hz) QRS interval durations (92.1 8.5 versus 85.3 plus or minus 9.0 ms, p=0.022) versus controls; and 3) significantly decreased QT and especially JT interval durations versus controls (QT interval: 387.5 plus or minus 26.4 versus 408.9 plus or minus 34.6 ms, p=0.013; JT interval: 290.5 plus or minus 26.3 versus 314.8 plus or minus 31.3 ms; p=0.0029). Heart rates and Bazett-corrected QTc/JTc intervals

  13. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium channel blockers are a type of medicine used ...

  14. Kcne4 deletion sex- and age-specifically impairs cardiac repolarization in mice.

    Science.gov (United States)

    Crump, Shawn M; Hu, Zhaoyang; Kant, Ritu; Levy, Daniel I; Goldstein, Steve A N; Abbott, Geoffrey W

    2016-01-01

    Myocardial repolarization capacity varies with sex, age, and pathology; the molecular basis for this variation is incompletely understood. Here, we show that the transcript for KCNE4, a voltage-gated potassium (Kv) channel β subunit associated with human atrial fibrillation, was 8-fold more highly expressed in the male left ventricle compared with females in young adult C57BL/6 mice (P 45% (P 3-fold (P = 0.01) to match noncastrated levels. KCNE4 is thereby shown to be a DHT-regulated determinant of cardiac excitability and a molecular substrate for sex- and age-dependent cardiac arrhythmogenesis. PMID:26399785

  15. MRI of cardiac rhabdomyoma in the fetus

    Energy Technology Data Exchange (ETDEWEB)

    Kivelitz, Dietmar E.; Muehler, Matthias [Institut fuer Radiologie, Medizinische Fakultaet, Humboldt-Universitaet zu Berlin, Charite, Schumannstrasse 20/21, 10098, Berlin (Germany); Rake, Annett; Chaoui, Rabih [Klinik fuer Gynaekologie und Geburtshilfe, Medizinische Fakultaet, Humboldt-Universitaet zu Berlin, Charite, Schumannstrasse 20/21, 10098, Berlin (Germany); Scheer, Ianina [Klinik fuer Strahlenheilkunde, Abteilung Paediatrische Radiologie, Medizinische Fakultaet, Humboldt-Universitaet zu Berlin, Charite, Schumannstrasse 20/21, 10098, Berlin (Germany)

    2004-08-01

    Primary cardiac tumors are rarely diagnosed in utero and are usually seen on prenatal echocardiography. Cardiac rhabdomyomata can be associated with tuberous sclerosis. Prenatal MRI can be performed to assess associated malformations. This case report illustrates the ability of fetal MRI to image cardiac rhabdomyata and compares it with prenatal and postnatal echocardiography. (orig.)

  16. Regulation of Cardiac Hypertrophy: the nuclear option

    NARCIS (Netherlands)

    D.W.D. Kuster (Diederik)

    2011-01-01

    textabstractCardiac hypertrophy is the response of the heart to an increased workload. After myocardial infarction (MI) the surviving muscle tissue has to work harder to maintain cardiac output. This sustained increase in workload leads to cardiac hypertrophy. Despite its apparent appropriateness, c

  17. Childhood cancer survivors: cardiac disease & social outcomes

    NARCIS (Netherlands)

    E.A.M. Feijen

    2015-01-01

    The thesis is divided in two parts; Cardiac health problems and healthcare consumption & social outcomes in CCS. The general aims of part 1 creates optimal conditions for the evaluation of cardiac events in 5-year childhood cancer survivors, evaluation of the long term risk of cardiac events, and to

  18. Mapping Biodiversity.

    Science.gov (United States)

    World Wildlife Fund, Washington, DC.

    This document features a lesson plan that examines how maps help scientists protect biodiversity and how plants and animals are adapted to specific ecoregions by comparing biome, ecoregion, and habitat. Samples of instruction and assessment are included. (KHR)

  19. Dynamic channel allocation

    OpenAIRE

    Kaminsky, Andrew D.

    2003-01-01

    Approved for public release; distribution in unlimited. Dynamic Channel Allocation (DCA) offers the possibility of capturing unused channel capacity by allocating unused resources between competing network nodes. This can reduce or possibly eliminate channels sitting idle while information awaits transmission. This holds potential for increasing throughput on bandwidth constrained networks. The purpose of this thesis is to examine the techniques used to allocate channels on demand and acc...

  20. Aircraft noise effects on sleep: a systematic comparison of EEG awakenings and automatically detected cardiac activations

    International Nuclear Information System (INIS)

    Polysomnography is the gold standard for investigating noise effects on sleep, but data collection and analysis are sumptuous and expensive. We recently developed an algorithm for the automatic identification of cardiac activations associated with cortical arousals, which uses heart rate information derived from a single electrocardiogram (ECG) channel. We hypothesized that cardiac activations can be used as estimates for EEG awakenings. Polysomnographic EEG awakenings and automatically detected cardiac activations were systematically compared using laboratory data of 112 subjects (47 male, mean ± SD age 37.9 ± 13 years), 985 nights and 23 855 aircraft noise events (ANEs). The probability of automatically detected cardiac activations increased monotonically with increasing maximum sound pressure levels of ANEs, exceeding the probability of EEG awakenings by up to 18.1%. If spontaneous reactions were taken into account, exposure–response curves were practically identical for EEG awakenings and cardiac activations. Automatically detected cardiac activations may be used as estimates for EEG awakenings. More investigations are needed to further validate the ECG algorithm in the field and to investigate inter-individual differences in its ability to predict EEG awakenings. This inexpensive, objective and non-invasive method facilitates large-scale field studies on the effects of traffic noise on sleep

  1. Protein kinase A modulation of CaV1.4 calcium channels.

    Science.gov (United States)

    Sang, Lingjie; Dick, Ivy E; Yue, David T

    2016-01-01

    The regulation of L-type Ca(2+) channels by protein kinase A (PKA) represents a crucial element within cardiac, skeletal muscle and neurological systems. Although much work has been done to understand this regulation in cardiac CaV1.2 Ca(2+) channels, relatively little is known about the closely related CaV1.4 L-type Ca(2+) channels, which feature prominently in the visual system. Here we find that CaV1.4 channels are indeed modulated by PKA phosphorylation within the inhibitor of Ca(2+)-dependent inactivation (ICDI) motif. Phosphorylation of this region promotes the occupancy of calmodulin on the channel, thus increasing channel open probability (PO) and Ca(2+)-dependent inactivation. Although this interaction seems specific to CaV1.4 channels, introduction of ICDI1.4 to CaV1.3 or CaV1.2 channels endows these channels with a form of PKA modulation, previously unobserved in heterologous systems. Thus, this mechanism may not only play an important role in the visual system but may be generalizable across the L-type channel family. PMID:27456671

  2. Protein kinase A modulation of CaV1.4 calcium channels

    Science.gov (United States)

    Sang, Lingjie; Dick, Ivy E.; Yue, David T.

    2016-07-01

    The regulation of L-type Ca2+ channels by protein kinase A (PKA) represents a crucial element within cardiac, skeletal muscle and neurological systems. Although much work has been done to understand this regulation in cardiac CaV1.2 Ca2+ channels, relatively little is known about the closely related CaV1.4 L-type Ca2+ channels, which feature prominently in the visual system. Here we find that CaV1.4 channels are indeed modulated by PKA phosphorylation within the inhibitor of Ca2+-dependent inactivation (ICDI) motif. Phosphorylation of this region promotes the occupancy of calmodulin on the channel, thus increasing channel open probability (PO) and Ca2+-dependent inactivation. Although this interaction seems specific to CaV1.4 channels, introduction of ICDI1.4 to CaV1.3 or CaV1.2 channels endows these channels with a form of PKA modulation, previously unobserved in heterologous systems. Thus, this mechanism may not only play an important role in the visual system but may be generalizable across the L-type channel family.

  3. Rethinking maps

    OpenAIRE

    Kitchin, Rob; Dodge, Martin

    2007-01-01

    In this paper we argue that cartography is profitably conceived as a processual, rather than representational, science. Building on recent analysis concerning the philosophical underpinnings of cartography we question the ontological security of maps, contending that it is productive to rethink cartography as ontogenetic in nature; that is maps emerge through practices and have no secure ontological status. Drawing on the concepts of transduction and technicity we contend that ...

  4. Desynched channels on IRCnet

    CERN Document Server

    Hansen, Michael

    2008-01-01

    In this paper we describe what a desynchronised channel on IRC is. We give procedures on how to create such a channel and how to remove desynchronisation. We explain which types of desynchronisation there are, what properties desynchronised channels have, and which properties can be exploited.

  5. Quantum Binary Symmetric Channels

    Institute of Scientific and Technical Information of China (English)

    陈小余; 仇佩亮

    2001-01-01

    Quantum binary symmetric channels are defined via the invariance of fidelity under unitary transformations ofthe input density operators. In this definition, they not only include the most studied case of the depolarizingchannel but also other channels. We investigate the character of the latter and find the maximum of the coherentinformation to estimate the capacities of the channels.

  6. Quantum Multiple Access Channel

    Institute of Scientific and Technical Information of China (English)

    侯广; 黄民信; 张永德

    2002-01-01

    We consider the transmission of classical information over a quantum channel by many senders, which is a generalization of the two-sender case. The channel capacity region is shown to be a convex hull bound by the yon Neumann entropy and the conditional yon Neumann entropies. The result allows a reasonable distribution of channel capacity over the senders.

  7. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  8. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2012-02-01

    OBJECTIVE: This article reviews the optimal cardiac MRI sequences for and the spectrum of imaging appearances of cardiac tumors. CONCLUSION: Recent technologic advances in cardiac MRI have resulted in the rapid acquisition of images of the heart with high spatial and temporal resolution and excellent myocardial tissue characterization. Cardiac MRI provides optimal assessment of the location, functional characteristics, and soft-tissue features of cardiac tumors, allowing accurate differentiation of benign and malignant lesions.

  9. Cardiac connexins and impulse propagation

    NARCIS (Netherlands)

    J.A. Jansen; T.A.B. van Veen; J.M.T. de Bakker; H.V.M. van Rijen

    2010-01-01

    Gap junctions form the intercellular pathway for cell-to-cell transmission of the cardiac impulse from its site of origin, the sinoatrial node, along the atria, the atrioventricular conduction system to the ventricular myocardium. The component parts of gap junctions are proteins called connexins (C

  10. Cardiac abnormalities after subarachnoid hemorrhage

    NARCIS (Netherlands)

    Bilt, I.A.C. van der

    2016-01-01

    Aneurysmal subarachnoid hemorrhage(aSAH) is a devastating neurological disease. During the course of the aSAH several neurological and medical complications may occur. Cardiac abnormalities after aSAH are observed often and resemble stress cardiomyopathy or Tako-tsubo cardiomyopathy(Broken Heart Syn

  11. Molecular therapies for cardiac arrhythmias

    NARCIS (Netherlands)

    G.J.J. Boink

    2013-01-01

    Despite the ongoing advances in pharmacology, devices and surgical approaches to treat heart rhythm disturbances, arrhythmias are still a significant cause of death and morbidity. With the introduction of gene and cell therapy, new avenues have arrived for the local modulation of cardiac disease. Th

  12. Historical highlights in cardiac pacing.

    Science.gov (United States)

    Geddes, L A

    1990-01-01

    The benchmarks in cardiac pacing are identified, beginning with F. Steiner (1871), who rhythmically stimulated the chloroform-arrested hearts of 3 horses, 1 donkey, 10 dogs, 14 cats, and 8 rabbits. The chloroform-arrested heart in human subjects was paced by T. Greene in the following year (1872) in the UK. In 1882, H. Ziemssen in Germany applied cardiac pacing to a 42-year old woman who had a large defect in the anterior left chest wall subsequent to resection of an enchondroma. Intentional cardiac pacing did not occur until 1932, when A.A. Hyman in the US demonstrated that cardiac pacing could be clinically practical. Hyman made a batteryless pacemaker for delivery in induction shock stimuli (60-120/min) to the atria. His pacemaker was powered by a hand-wound, spring-driven generator which provided 6 min of pacemaking without rewinding. Closed-chest ventricular pacing was introduced in the US in 1952 by P.M. Zoll et al. Zoll (1956) also introduced closed-chest ventricular defibrillation. W.L. Weirich et al. (1958) demonstrated that direct-heart stimulation in closed-chest patients could be achieved with slender wire electrodes. S. Furman and J.B. Schwedel (1959) developed a monopolar catheter electrode for ventricular pacing in man. In the same year, W. Greatbatch and W.M. Chardack developed the implantable pacemaker. PMID:18238328

  13. Cardiac resynchronization therapy in China

    Institute of Scientific and Technical Information of China (English)

    Wei HUA

    2006-01-01

    @@ Congestive heart failure (HF) is a major and growing public health problem. The therapeutic approach includes non-pharmacological measures, pharmacological therapy,mechanical devices, and surgery. Despite the benefits of optimal pharmacologic therapy, the prognosis is still not ideal. At this time, cardiac resynchronization therapy (CRT)has gained wide acceptance as an alternative treatment for HF patients with conduction delay.1

  14. Cardiac pacemakers and nuclear batteries

    International Nuclear Information System (INIS)

    Following the introduction giving the indications for cardiac pacemaker therapy with special regard to the use of pacemakers powered by nuclear batteries, reference is made to the resulting radiation exposure of the patient. The activities of the Federal Health Office in this field such as recommendations and surveys including the entire Federal Republic are outlined. (orig.)

  15. CARDIAC TRANSPLANTATION: AN ANESTHETIC CHALLENGE

    OpenAIRE

    Premalatha; Jayaraman,

    2014-01-01

    : Heart transplantation has emerged as the definitive therapy for patients with end-stage cardiomyopathy. The two most common forms of cardiac disease that lead to transplantation are ischemic cardiomyopathy and dilated cardiomyopathy, which together comprise approximately 90% of cases. The other less common forms of heart disease include viral cardiomyopathy, infiltrative cardiomyopathy, postpartum cardiomyopathy, valvular heart disease and congenital heart disease

  16. Epidural analgesia for cardiac surgery

    NARCIS (Netherlands)

    V. Svircevic; M.M. Passier; A.P. Nierich; D. van Dijk; C.J. Kalkman; G.J. van der Heijden

    2013-01-01

    Background A combination of general anaesthesia (GA) with thoracic epidural analgesia (TEA) may have a beneficial effect on clinical outcomes by reducing the risk of perioperative complications after cardiac surgery. Objectives The objective of this review was to determine the impact of perioperativ

  17. Pharmacokinetic interactions with calcium channel antagonists (Part I).

    Science.gov (United States)

    Schlanz, K D; Myre, S A; Bottorff, M B

    1991-11-01

    Calcium channel antagonists are a diverse class of drugs widely used in combination with other therapeutic agents. The potential exists for many clinically significant pharmacokinetic interactions between these and other concurrently administered drugs. The mechanisms of calcium channel antagonist-induced changes in drug metabolism include altered hepatic blood flow and impaired hepatic enzyme metabolising activity. Increases in serum concentrations and/or reductions in clearance have been reported for several drugs used with a number of calcium channel antagonists. A number of reports and studies of calcium channel antagonist interactions have yielded contradictory results and the clinical significance of pharmacokinetic changes seen with these agents is ill-defined. The first part of this article deals with interactions between calcium antagonists and marker compounds, theophylline, midazolam, lithium, doxorubicin, oral hypoglycaemics and cardiac drugs. PMID:1773549

  18. The meandering Indus, channels: Study in a small area by the multibeam swath bathymetry system - Hydrosweep

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.; Jauhari, P.

    the presence of distinct channels far from the mouth of the fan. A multibeam seafloor mapping system, Hydrosweep has been used to trace the channels and determine related physical parameters. The channels are largely comparable in size and shape to some...

  19. On 1-qubit channels

    OpenAIRE

    Uhlmann, Armin

    2000-01-01

    The entropy H_T(rho) of a state rho with respect to a channel T and the Holevo capacity of the channel require the solution of difficult variational problems. For a class of 1-qubit channels, which contains all the extremal ones, the problem can be significantly simplified by associating an Hermitian antilinear operator theta to every channel of the considered class. The concurrence of the channel can be expressed by theta and turns out to be a flat roof. This allows to write down an explicit...

  20. On 1-qubit channels

    CERN Document Server

    Uhlmann, A

    2001-01-01

    The entropy H_T(rho) of a state rho with respect to a channel T and the Holevo capacity of the channel require the solution of difficult variational problems. For a class of 1-qubit channels, which contains all the extremal ones, the problem can be significantly simplified by associating an Hermitian antilinear operator theta to every channel of the considered class. The concurrence of the channel can be expressed by theta and turns out to be a flat roof. This allows to write down an explicit expression for H_T. Its maximum would give the Holevo (1-shot) capacity.

  1. Transient Receptor Potential Channels Contribute to Pathological Structural and Functional Remodeling After Myocardial Infarction

    Science.gov (United States)

    Davis, Jennifer; Correll, Robert N.; Trappanese, Danielle M.; Hoffman, Nicholas E.; Troupes, Constantine D.; Berretta, Remus M.; Kubo, Hajime; Madesh, Muniswamy; Chen, Xiongwen; Gao, Erhe; Molkentin, Jeffery D.; Houser, Steven R.

    2014-01-01

    Rationale The cellular and molecular basis for post myocardial infarction (MI) structural and functional remodeling is not well understood. Objective To determine if Ca2+ influx through transient receptor potential (canonical) (TRPC) channels contributes to post-MI structural and functional remodeling. Methods and Results TRPC1/3/4/6 channel mRNA increased after MI in mice and was associated with TRPC-mediated Ca2+ entry. Cardiac myocyte specific expression of a dominant negative (dn: loss of function) TRPC4 channel increased basal myocyte contractility and reduced hypertrophy and cardiac structural and functional remodeling after MI while increasing survival. We used adenovirus-mediated expression of TRPC3/4/6 channels in cultured adult feline myocytes (AFMs) to define mechanistic aspects of these TRPC-related effects. TRPC3/4/6 over expression in AFMs induced calcineurin (Cn)-Nuclear Factor of Activated T cells (NFAT) mediated hypertrophic signaling, which was reliant on caveolae targeting of TRPCs. TRPC3/4/6 expression in AFMs increased rested state contractions and increased spontaneous sarcoplasmic reticulum (SR) Ca2+ sparks mediated by enhanced phosphorylation of the ryanodine receptor. TRPC3/4/6 expression was associated with reduced contractility and response to catecholamines during steady state pacing, likely due to enhanced SR Ca2+ leak. Conclusions Ca2+ influx through TRPC channels expressed after MI activates pathological cardiac hypertrophy and reduces contractility reserve. Blocking post-MI TRPC activity improved post-MI cardiac structure and function. PMID:25047165

  2. Intracellular signalling mechanism responsible for modulation of sarcolemmal ATP-sensitive potassium channels by nitric oxide in ventricular cardiomyocytes

    OpenAIRE

    Zhang, DM; Chai, Y.; Erickson, JR; Brown, JH; Bers, DM; Lin, YF

    2014-01-01

    Key points: Both the ATP-sensitive potassium (KATP) channel and the gaseous messenger nitric oxide (NO) play fundamental roles in protecting the heart from injuries related to ischaemia. NO has previously been suggested to modulate cardiac KATP channels; however, the underlying mechanism remains largely unknown. In this study, by performing electrophysiological and biochemical assays, we demonstrate that NO potentiation of KATP channel activity in ventricular cardiomyocytes is prevented by ph...

  3. Source and Channel Coding for Correlated Sources Over Multiuser Channels

    OpenAIRE

    Gunduz, Deniz; Erkip, Elza; Goldsmith, Andrea; Poor, H. Vincent

    2008-01-01

    Source and channel coding over multiuser channels in which receivers have access to correlated source side information is considered. For several multiuser channel models necessary and sufficient conditions for optimal separation of the source and channel codes are obtained. In particular, the multiple access channel, the compound multiple access channel, the interference channel and the two-way channel with correlated sources and correlated receiver side information are considered, and the o...

  4. Emerging roles of calcium-activated K channels and TRPV4 channels in lung oedema and pulmonary circulatory collapse

    DEFF Research Database (Denmark)

    Simonsen, Ulf; Wandall-Frostholm, Christine; Oliván-Viguera, Aida;

    2016-01-01

    endothelial/epithelial barrier functions and vascular integrity, while KCa3.1 channels provide the driving force required for Cl(-) and water transport in some cells and most secretory epithelia. The three conditions, increased pulmonary venous pressure caused by left heart disease, high inflation pressure......, fluid extravasation, hemorrhage, pulmonary circulatory collapse, and cardiac arrest in vivo. These data identify KCa3.1 channels as crucial molecular components in downstream TRPV4-signal transduction and as a potential target for the prevention of undesired fluid extravasation, vasodilatation...

  5. C. elegans TRP channels.

    Science.gov (United States)

    Xiao, Rui; Xu, X Z Shawn

    2011-01-01

    Transient receptor potential (TRP) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo. PMID:21290304

  6. Mapping Deeply

    Directory of Open Access Journals (Sweden)

    Denis Wood

    2015-08-01

    Full Text Available This is a description of an avant la lettre deep mapping project carried out by a geographer and a number of landscape architecture students in the early 1980s. Although humanists seem to take the “mapping” in deep mapping more metaphorically than cartographically, in this neighborhood mapping project, the mapmaking was taken literally, with the goal of producing an atlas of the neighborhood. In this, the neighborhood was construed as a transformer, turning the stuff of the world (gas, water, electricity into the stuff of individual lives (sidewalk graffiti, wind chimes, barking dogs, and vice versa. Maps in the central transformer section of the atlas were to have charted this process in action, as in one showing the route of an individual newspaper into the neighborhood, then through the neighborhood to a home, and finally, as trash, out of the neighborhood in a garbage truck; though few of these had been completed when the project concluded in 1986. Resurrected in 1998 in an episode on Ira Glass’ This American Life, the atlas was finally published, as Everything Sings: Maps for a Narrative Atlas, in 2010 (and an expanded edition in 2013.

  7. Parametric mapping

    Science.gov (United States)

    Branch, Allan C.

    1998-01-01

    Parametric mapping (PM) lies midway between older and proven artificial landmark based guidance systems and yet to be realized vision based guidance systems. It is a simple yet effective natural landmark recognition system offering freedom from the need for enhancements to the environment. Development of PM systems can be inexpensive and rapid and they are starting to appear in commercial and industrial applications. Together with a description of the structural framework developed to generically describe robot mobility, this paper illustrates clearly the parts of any mobile robot navigation and guidance system and their interrelationships. Among other things, the importance of the richness of the reference map, and not necessarily the sensor map, is introduced, the benefits of dynamic path planners to alleviate the need for separate object avoidance, and the independence of the PM system to the type of sensor input is shown.

  8. CALS Mapping

    DEFF Research Database (Denmark)

    Collin, Ib; Nielsen, Povl Holm; Larsen, Michael Holm

    1998-01-01

    To enhance the industrial applications of CALS, CALS Center Danmark has developed a cost efficient and transparent assessment, CALS Mapping, to uncover the potential of CALS - primarily dedicated to small and medium sized enterprises. The idea behind CALS Mapping is that the CALS State...... of the enterprise is compared with a Reference Enterprise Model (REM). The REM is a CALS idealised enterprise providing full product support throughout the extended enterprise and containing different manufacturing aspects, e.g. component industry, process industry, and one-piece production. This CALS idealised...... enterprise is, when applied in a given organisation modified with respect to the industry regarded, hence irrelevant measure parameters are eliminated to avoid redundancy. This assessment of CALS Mapping, quantify the CALS potential of an organisation with the purpose of providing decision support to the top...

  9. Dexmedetomidine Related Bradycardia Leading to Cardiac Arrest in a Dog

    Directory of Open Access Journals (Sweden)

    C. Y. Chen2, K-S. Chen1,2, K. M. Chang2, W. M. Lee1,2, S. C. Chang1,2 and H. C. Wang1,2

    2012-10-01

    Full Text Available A 2-year-old, mixed breed female dog (16 kg underwent an exploratory laparotomy following ultrasonographic diagnosis of foreign body and a segment of small intestine intussusceptions. The patient was classified as an ASA II. Ketamine (1mg/kg, IV, and dexmedetomidine (2.5 µg/kg, IV, and morphine (0.6 mg/kg, SC were given as anesthetic premedication. Propofol (0.1 mg/kg, IV titrated to a total amount of 4 ml (2.5 mg/ kg was given for intubation. Asystole was occurred. Cardiac resuscitation was then conducted immediately. Atipamezole (0.1 ml was injected, but showed no response on ECG. Atropine (0.02 mg/kg was then injected, and a second dosage was given. Two-three mins later, the heart rate at 84 beats/min. The NIBP showed 203/132 with MAP 153 mmHg, and the SpO2 showed 95% after the cardiac function was regained. Dexmedetomidine related bradycardia leading to cardiac arrest has been suggested in this case.

  10. Cardiac involvement in Duchenne and Becker muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    Sophie; Mavrogeni; George; Markousis-Mavrogenis; Antigoni; Papavasiliou; Genovefa; Kolovou

    2015-01-01

    Duchenne and Becker muscular dystrophy(DMD/BMD) are X-linked muscular diseases responsible for over 80% of all muscular dystrophies. Cardiac disease is a common manifestation,not necessarily related to the degree of skeletal myopathy; it may be the predominant manifestation with or without any other evidence of muscular disease. Death is usually due to ventricular dysfunction,heart block or malignant arrhythmias. Not only DMD/BMD patients,but also female carriers may present cardiac involvement. Clinically overt heart failure in dystrophinopathies may be delayed or absent,due to relative physical inactivity. The commonest electrocardiographic findings include conduction defects,arrhythmias(supraventricular or ventricular),hypertrophy and evidence of myocardial necrosis. Echocardiography can assess a marked variability of left ventricular dysfunction,independently of age of onset or mutation groups. Cardiovascular magnetic resonance(CMR) has documented a pattern of epicardial fibrosis in both dystrophinopathies’ patients and carriers that can be observed even if overt muscular disease is absent. Recently,new CMR techniques,such as postcontrast myocardial T1 mapping,have been used in Duchenne muscular dystrophy to detect diffuse myocardial fibrosis. A combined approach using clinical assessment and CMR evaluation may motivate early cardioprotective treatment in both patients and asymptomatic carriers and delay the development of serious cardiac complications.

  11. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias.

    Science.gov (United States)

    Chopra, Nagesh; Yang, Tao; Asghari, Parisa; Moore, Edwin D; Huke, Sabine; Akin, Brandy; Cattolica, Robert A; Perez, Claudio F; Hlaing, Thinn; Knollmann-Ritschel, Barbara E C; Jones, Larry R; Pessah, Isaac N; Allen, Paul D; Franzini-Armstrong, Clara; Knollmann, Björn C

    2009-05-01

    Heart muscle excitation-contraction (E-C) coupling is governed by Ca(2+) release units (CRUs) whereby Ca(2+) influx via L-type Ca(2+) channels (Cav1.2) triggers Ca(2+) release from juxtaposed Ca(2+) release channels (RyR2) located in junctional sarcoplasmic reticulum (jSR). Although studies suggest that the jSR protein triadin anchors cardiac calsequestrin (Casq2) to RyR2, its contribution to E-C coupling remains unclear. Here, we identify the role of triadin using mice with ablation of the Trdn gene (Trdn(-/-)). The structure and protein composition of the cardiac CRU is significantly altered in Trdn(-/-) hearts. jSR proteins (RyR2, Casq2, junctin, and junctophilin 1 and 2) are significantly reduced in Trdn(-/-) hearts, whereas Cav1.2 and SERCA2a remain unchanged. Electron microscopy shows fragmentation and an overall 50% reduction in the contacts between jSR and T-tubules. Immunolabeling experiments show reduced colocalization of Cav1.2 with RyR2 and substantial Casq2 labeling outside of the jSR in Trdn(-/-) myocytes. CRU function is impaired in Trdn(-/-) myocytes, with reduced SR Ca(2+) release and impaired negative feedback of SR Ca(2+) release on Cav1.2 Ca(2+) currents (I(Ca)). Uninhibited Ca(2+) influx via I(Ca) likely contributes to Ca(2+) overload and results in spontaneous SR Ca(2+) releases upon beta-adrenergic receptor stimulation with isoproterenol in Trdn(-/-) myocytes, and ventricular arrhythmias in Trdn(-/-) mice. We conclude that triadin is critically important for maintaining the structural and functional integrity of the cardiac CRU; triadin loss and the resulting alterations in CRU structure and protein composition impairs E-C coupling and renders hearts susceptible to ventricular arrhythmias. PMID:19383796

  12. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Kramer Gerhard

    2009-01-01

    Full Text Available Abstract This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom ( are derived for the degraded case with one receiver. Schemes to achieve the for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable is given for the general case.

  13. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Shlomo Shamai (Shitz

    2009-01-01

    Full Text Available This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom (s.d.o.f. are derived for the degraded case with one receiver. Schemes to achieve the s.d.o.f. for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable s.d.o.f. is given for the general case.

  14. Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; Braunstein, Thomas Hartig;

    2015-01-01

    a significant increase in cardiac triglyceride content (1.93 ± 0.19 (n = 12) vs. 0.77 ± 0.13 nmol/mg (n = 12), p cause electrophysiological changes, which leads to QRS prolongation, decreased conduction velocity and increased arrhythmogenesis during......BACKGROUND: Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. METHODS....... Conduction velocity was examined in isolated tissue strips. Ion channel and gap junction conductances were analyzed by patch-clamp studies in isolated cardiomyocytes. Fibrosis was examined by Masson's Trichrome staining and thin-layer chromatography was used to analyze cardiac lipid content. Connexin43 (Cx43...

  15. On conduction in a bacterial sodium channel.

    Directory of Open Access Journals (Sweden)

    Simone Furini

    Full Text Available Voltage-gated Na⁺-channels are transmembrane proteins that are responsible for the fast depolarizing phase of the action potential in nerve and muscular cells. Selective permeability of Na⁺ over Ca²⁺ or K⁺ ions is essential for the biological function of Na⁺-channels. After the emergence of the first high-resolution structure of a Na⁺-channel, an anionic coordination site was proposed to confer Na⁺ selectivity through partial dehydration of Na⁺ via its direct interaction with conserved glutamate side chains. By combining molecular dynamics simulations and free-energy calculations, a low-energy permeation pathway for Na⁺ ion translocation through the selectivity filter of the recently determined crystal structure of a prokaryotic sodium channel from Arcobacter butzleri is characterised. The picture that emerges is that of a pore preferentially occupied by two ions, which can switch between different configurations by crossing low free-energy barriers. In contrast to K⁺-channels, the movements of the ions appear to be weakly coupled in Na⁺-channels. When the free-energy maps for Na⁺ and K⁺ ions are compared, a selective site is characterised in the narrowest region of the filter, where a hydrated Na⁺ ion, and not a hydrated K⁺ ion, is energetically stable.

  16. Myocardial T1 mapping: modalities and clinical applications

    OpenAIRE

    Jellis, Christine L.; Kwon, Deborah H.

    2014-01-01

    Myocardial fibrosis appears to be linked to myocardial dysfunction in a multitude of non-ischemic cardiomyopathies. Accurate non-invasive quantitation of this extra-cellular matrix has the potential for widespread clinical benefit in both diagnosis and guiding therapeutic intervention. T1 mapping is a cardiac magnetic resonance (CMR) imaging technique, which shows early clinical promise particularly in the setting of diffuse fibrosis. This review will outline the evolution of T1 mapping and t...

  17. Nutritional Status and Cardiac Autophagy

    Directory of Open Access Journals (Sweden)

    Jihyun Ahn

    2013-02-01

    Full Text Available Autophagy is necessary for the degradation of long-lasting proteins and nonfunctional organelles, and is activated to promote cellular survival. However, overactivation of autophagy may deplete essential molecules and organelles responsible for cellular survival. Lifelong calorie restriction by 40% has been shown to increase the cardiac expression of autophagic markers, which suggests that it may have a cardioprotective effect by decreasing oxidative damage brought on by aging and cardiovascular diseases. Although cardiac autophagy is critical to regulating protein quality and maintaining cellular function and survival, increased or excessive autophagy may have deleterious effects on the heart under some circumstances, including pressure overload-induced heart failure. The importance of autophagy has been shown in nutrient supply and preservation of energy in times of limitation, such as ischemia. Some studies have suggested that a transition from obesity to metabolic syndrome may involve progressive changes in myocardial inflammation, mitochondrial dysfunction, fibrosis, apoptosis, and myocardial autophagy.

  18. [Cardiac support and replacement therapies].

    Science.gov (United States)

    Lotz, Christopher; Roewer, Norbert; Muellenbach, Ralf M

    2016-09-01

    Circulatory support represents an integral part within the treatment of the critically ill patient. Sophisticated pharmacologic regimens help to maintain systemic perfusion pressure by increasing vascular tone as well as mediating positive inotropic effects. Besides the administration of catecholamines and phosphodiesterase-III-inhibitors, in particular the administration of levosimendan represents a promising alternative during low-cardiac-output. Nevertheless, sufficient evidence demonstrating a survival benefit for any pharmacologic regimen is nonexistent. In case pharmacological measures do not suffice mechanical cardiopulmonary support (MCS) may be used. MCS may be used during cardiopulmonary resuscitation or a "low-cardiac-output-syndrome" as bridging towards decision, recovery or long-term support. Venoarterial extracorporeal membrane oxygenation (vaECMO) may take over cardiopulmonary function and may improve survival as well as neurological outcome after cardiogenic shock or cardiopulmonary resuscitation. PMID:27631451

  19. Heart fields and cardiac morphogenesis.

    Science.gov (United States)

    Kelly, Robert G; Buckingham, Margaret E; Moorman, Antoon F

    2014-10-01

    In this review, we focus on two important steps in the formation of the embryonic heart: (i) the progressive addition of late differentiating progenitor cells from the second heart field that drives heart tube extension during looping morphogenesis, and (ii) the emergence of patterned proliferation within the embryonic myocardium that generates distinct cardiac chambers. During the transition between these steps, the major site of proliferation switches from progenitor cells outside the early heart to proliferation within the embryonic myocardium. The second heart field and ballooning morphogenesis concepts have major repercussions on our understanding of human heart development and disease. In particular, they provide a framework to dissect the origin of congenital heart defects and the regulation of myocardial proliferation and differentiation of relevance for cardiac repair.

  20. Channel capacity and error exponents of variable rate adaptive channel coding for Rayleigh fading channels

    OpenAIRE

    Lau, KN

    1999-01-01

    We have evaluated the information theoretical performance of variable rate adaptive channel coding for Rayleigh fading channels. The channel states are detected at the receiver and fed back to the transmitter by means of a noiseless feedback link. Based on the channel state informations, the transmitter can adjust the channel coding scheme accordingly. Coherent channel and arbitrary channel symbols with a fixed average transmitted power constraint are assumed. The channel capacity and the err...

  1. Mapping Resilience

    DEFF Research Database (Denmark)

    Carruth, Susan

    2015-01-01

    relationship between resilience and energy planning, suggesting that planning in, and with, time is a core necessity in this domain. It then reviews four examples of graphically mapping with time, highlighting some of the key challenges, before tentatively proposing a graphical language to be employed by...

  2. Mole Mapping.

    Science.gov (United States)

    Crippen, Kent J.; Curtright, Robert D.; Brooks, David W.

    2000-01-01

    The abstract nature of the mole and its applications to problem solving make learning the concept difficult for students, and teaching the concept challenging for teachers. Presents activities that use concept maps and graphing calculators as tools for solving mole problems. (ASK)

  3. Mapping filmmaking

    DEFF Research Database (Denmark)

    Gilje, Øystein; Frølunde, Lisbeth; Lindstrand, Fredrik;

    2010-01-01

    This chapter concerns mapping patterns in regards to how young filmmakers (age 15 – 20) in the Scandinavian countries learn about filmmaking. To uncover the patterns, we present portraits of four young filmmakers who participated in the Scandinavian research project Making a filmmaker. The focus ...

  4. Participatory maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    looks at computer-assisted cartography as part of environmental knowledge production. It uses InfoAmazonia, the databased platform on Amazon rainforests, as an example of affective geo-visualization within information mapping that enhances embodiment in the experience of the information. Amazonia...

  5. Energetic map

    International Nuclear Information System (INIS)

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  6. Quantum broadcast channels

    CERN Document Server

    Yard, J; Devetak, I; Yard, Jon; Hayden, Patrick; Devetak, Igor

    2006-01-01

    We analyze quantum broadcast channels, which are quantum channels with a single sender and many receivers. Focusing on channels with two receivers for simplicity, we generalize a number of results from the network Shannon theory literature which give the rates at which two senders can receive a common message, while a personalized one is sent to one of them. Our first collection of results applies to channels with a classical input and quantum outputs. The second class of theorems we prove concern sending a common classical message over a quantum broadcast channel, while sending quantum information to one of the receivers. The third group of results we obtain concern communication over an isometry, giving the rates at quantum information can be sent to one receiver, while common quantum information is sent to both, in the sense that tripartite GHZ entanglement is established. For each scenario, we provide an additivity proof for an appropriate class of channels, yielding single-letter characterizations of the...

  7. Cardiac Biomarkers in Hyperthyroid Cats

    OpenAIRE

    Sangster, J.K.; Panciera, D L; Abbott, J.A.; Zimmerman, K.C.; Lantis, A.C.

    2013-01-01

    Background Hyperthyroidism has substantial effects on the circulatory system. The cardiac biomarkers NT‐proBNP and troponin I (cTNI) have proven useful in identifying cats with myocardial disease but have not been extensively investigated in hyperthyroidism. Hypothesis Plasma NT‐proBNP and cTNI concentrations are higher in cats with primary myocardial disease than in cats with hyperthyroidism and higher in cats with hyperthyroidism than in healthy control cats. Animals Twenty‐three hyperthyro...

  8. Historical perspectives of cardiac electrophysiology.

    Science.gov (United States)

    Lüderitz, Berndt

    2009-01-01

    The diagnosis and treatment of clinical electrophysiology has a long and fascinating history. From earliest times, no clinical symptom impressed the patient (and the physician) more than an irregular heart beat. Although ancient Chinese pulse theory laid the foundation for the study of arrhythmias and clinical electrophysiology in the 5th century BC, the most significant breakthrough in the identification and treatment of cardiac arrhythmias first occurred in this century. In the last decades, our knowledge of electrophysiology and pharmacology has increased exponentially. The enormous clinical significance of cardiac rhythm disturbances has favored these advances. On the one hand, patients live longer and thus are more likely to experience arrhythmias. On the other hand, circulatory problems of the cardiac vessels have increased enormously, and this has been identified as the primary cause of cardiac rhythm disorders. Coronary heart disease has become not just the most significant disease of all, based on the statistics for cause of death. Arrhythmias are the main complication of ischemic heart disease, and they have been directly linked to the frequently arrhythmogenic sudden death syndrome, which is now presumed to be an avoidable "electrical accident" of the heart. A retrospective look--often charming in its own right--may not only make it easier to sort through the copious details of this field and so become oriented in this universe of important and less important facts: it may also provide the observer with a chronological vantage point from which to view the subject. The study of clinical electrophysiology is no dry compendium of facts and figures, but rather a dynamic field of study evolving out of the competition between various ideas, intentions and theories. PMID:19196616

  9. Cardiac Biomarkers and Cycling Race

    OpenAIRE

    Caroline Le Goff, Jean-François Kaux, Sébastien Goffaux, Etienne Cavalier

    2015-01-01

    In cycling as in other types of strenuous exercise, there exists a risk of sudden death. It is important both to understand its causes and to see if the behavior of certain biomarkers might highlight athletes at risk. Many reports describe changes in biomarkers after strenuous exercise (Nie et al., 2011), but interpreting these changes, and notably distinguishing normal physiological responses from pathological changes, is not easy. Here we have focused on the kinetics of different cardiac bi...

  10. Functiogenesis of cardiac pacemaker activity.

    Science.gov (United States)

    Sakai, Tetsuro; Kamino, Kohtaro

    2016-07-01

    Throughout our investigations on the ontogenesis of the electrophysiological events in early embryonic chick hearts, using optical techniques to record membrane potential probed with voltage-sensitive dyes, we have introduced a novel concept of "functiogenesis" corresponding to "morphogenesis". This article gives an account of the framework of "functiogenesis", focusing on the cardiac pacemaker function and the functional organization of the pacemaking area. PMID:26719289

  11. Cardiac involvement in tuberous sclerosis.

    OpenAIRE

    Mühler, E G; Turniski-Harder, V; Engelhardt, W.; von Bernuth, G

    1994-01-01

    OBJECTIVE--To assess the incidence, importance, and history of cardiac involvement in infants and children with tuberous sclerosis. DESIGN--Prospective study; clinical examination, sector and Doppler echocardiography, standard and ambulatory electrocardiography. SETTING--A tertiary referral centre. PATIENTS--21 patients with tuberous sclerosis aged 1 day to 16 years (mean 6.3 years); follow up investigations were available in 14 cases (10 retrospective, 4 prospective; mean follow up 4.3 years...

  12. Cardiac autonomic nerve distribution and arrhythmia

    Institute of Scientific and Technical Information of China (English)

    Quan Liu; Dongmei Chen; Yonggang Wang; Xin Zhao; Yang Zheng

    2012-01-01

    OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia.DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using "heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation" as the key words.SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included.MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated.RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system.CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in the

  13. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Maaike eHoekstra

    2012-08-01

    Full Text Available Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models haven been generated, but these also have significant shortcomings, primarily related to species differences.The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human cardiomyocytes can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially characterized.Human iPSC (hiPSC models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia. In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these

  14. Sudden cardiac death risk stratification.

    Science.gov (United States)

    Deyell, Marc W; Krahn, Andrew D; Goldberger, Jeffrey J

    2015-06-01

    Arrhythmic sudden cardiac death (SCD) may be caused by ventricular tachycardia/fibrillation or pulseless electric activity/asystole. Effective risk stratification to identify patients at risk of arrhythmic SCD is essential for targeting our healthcare and research resources to tackle this important public health issue. Although our understanding of SCD because of pulseless electric activity/asystole is growing, the overwhelming majority of research in risk stratification has focused on SCD-ventricular tachycardia/ventricular fibrillation. This review focuses on existing and novel risk stratification tools for SCD-ventricular tachycardia/ventricular fibrillation. For patients with left ventricular dysfunction or myocardial infarction, advances in imaging, measures of cardiac autonomic function, and measures of repolarization have shown considerable promise in refining risk. Yet the majority of SCD-ventricular tachycardia/ventricular fibrillation occurs in patients without known cardiac disease. Biomarkers and novel imaging techniques may provide further risk stratification in the general population beyond traditional risk stratification for coronary artery disease alone. Despite these advances, significant challenges in risk stratification remain that must be overcome before a meaningful impact on SCD can be realized.

  15. Review Article of Cardiac Amyloidosis

    Directory of Open Access Journals (Sweden)

    Jittiporn PURATTANAMAL

    2010-06-01

    Full Text Available Cardiac amyloidosis is a term that means the deposit of abnormal proteins in the myocardium leading to global thickening of the heart walls. The clinical character is that of infiltrative cardiomyopathy. AL amyloidosis is the most common type that involves cardiac failure. Cardiac amyloid precedes clinical congestive heart failure, especially right-sided heart failure. Laboratory investigations have identified the amyloid fibril proteins deposited in the organ tissues. Immunofixation tests are the most sensitive that recognize the paraprotein mean light chain protein or immunoglobulin subtype deposit. Prognosis is poor if AL amyloidosis is untreated. Treatment of systemic involvement in AL amyloidosis is via chemotherapy such as melphalan and prednisolone. UK experts have reported the results of treatment in AL amyloidosis. Regardless of the use of adjunctive chemotherapy, the five-year survival after heart transplantation was generally poorer for AL (20 % at five years, but similar for non-AL amyloidosis (64 % at five years, than heart transplants in other cases. Progression of the systemic disease contributed to increased mortality. A specific treatment that increases the chances of survival is unknown.

  16. Cardiac MRI in restrictive cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A. [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Singh Gulati, G., E-mail: gulatigurpreet@rediffmail.com [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Seth, S. [Department of Cardiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Sharma, S. [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India)

    2012-02-15

    Restrictive cardiomyopathy (RCM) is a specific group of heart muscle disorders characterized by inadequate ventricular relaxation during diastole. This leads to diastolic dysfunction with relative preservation of systolic function. Although short axis systolic function is usually preserved in RCM, the long axis systolic function may be severely impaired. Confirmation of diagnosis and information regarding aetiology, extent of myocardial damage, and response to treatment requires imaging. Importantly, differentiation from constrictive pericarditis (CCP) is needed, as only the latter is managed surgically. Echocardiography is the initial cardiac imaging technique but cannot reliably suggest a tissue diagnosis; although recent advances, especially tissue Doppler imaging and spectral tracking, have improved its ability to differentiate RCM from CCP. Cardiac catheterization is the reference standard, but is invasive, two-dimensional, and does not aid myocardial characterization. Cardiac magnetic resonance (CMR) is a versatile technique providing anatomical, morphological and functional information. In recent years, it has been shown to provide important information regarding disease mechanisms, and also been found useful to guide treatment, assess its outcome and predict patient prognosis. This review describes the CMR features of RCM, appearances in various diseases, its overall role in patient management, and how it compares with other imaging techniques.

  17. HIPPI and Fibre Channel

    International Nuclear Information System (INIS)

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background

  18. Destriping CMB temperature and polarization maps

    CERN Document Server

    Kurki-Suonio, H; Keskitalo, R; Poutanen, T; Sirvio, A -S; Maino, D; Burigana, C

    2009-01-01

    We study destriping as a map-making method for temperature-and-polarization data for cosmic microwave background observations. We present a particular implementation of destriping and study the residual error in output maps, using simulated data corresponding to the 70 GHz channel of the Planck satellite, but assuming idealized detector and beam properties. The relevant residual map is the difference between the output map and a binned map obtained from the signal + white noise part of the data stream. For destriping it can be divided into six components: unmodeled correlated noise, white noise reference baselines, reference baselines of the pixelization noise from the signal, and baseline errors from correlated noise, white noise, and signal. These six components contribute differently to the different angular scales in the maps. We derive analytical results for the first three components. This study is related to Planck LFI activities.

  19. Qualitative and Quantitative Assessment of Metal Artifacts Arising from Implantable Cardiac Pacing Devices in Oncological PET/CT Studies : A Phantom Study

    NARCIS (Netherlands)

    Ay, Mohammad R.; Mehranian, Abolfazl; Abdoli, Mehrsima; Ghafarian, Pardis; Zaidi, Habib

    2011-01-01

    Purpose: We evaluate the magnitude of metallic artifacts caused by various implantable cardiac pacing devices (without leads) on both attenuation maps (mu-maps) and positron emission tomography (PET) images using experimental phantom studies. We also assess the efficacy of a metal artifact reduction

  20. Cohering and decohering power of quantum channels

    Science.gov (United States)

    Mani, Azam; Karimipour, Vahid

    2015-09-01

    We introduce the concepts of cohering and decohering power of quantum channels. Using the axiomatic definition of the coherence measure, we show that the optimization required for calculations of these measures can be restricted to pure input states and hence greatly simplified. We then use two examples of this measure, one based on the skew information and the other based on the l1 norm; we find the cohering and decohering measures of a number of one-, two-, and n -qubit channels. Contrary to the view at first glance, it is seen that quantum channels can have cohering power. It is also shown that a specific property of a qubit unitary map is that it has equal cohering and decohering power in any basis. Finally, we derive simple relations between cohering and decohering powers of unitary qubit gates and their tensor products, results which have physically interesting implications.