WorldWideScience

Sample records for cardiac mapping channel

  1. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that...... they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The...

  2. [Cardiac potassium channels: molecular structure, physiology, pathophysiology and therapeutic implications].

    Science.gov (United States)

    Mironov, N Iu; Golitsyn, S P

    2013-01-01

    Potassium channels and currents play essential roles in cardiac repolarization. Potassium channel blockade by class III antiarrhythmic drugs prolongs cardiac repolarization and results in termination and prevention of cardiac arrhythmias. Excessive inhomogeneous repolarization prolongation may lead to electrical instability and proarrhythmia (Torsade de Pointes tachycardia). This review focuses on molecular structure, physiology, pathophysiology and therapeutic potential of potassium channels of cardiac conduction system and myocardium providing information on recent findings in pathogenesis of cardiac arrhythmias, including inherited genetic abnormalities, and future perspectives. PMID:24654438

  3. Introduction to noninvasive cardiac mapping.

    Science.gov (United States)

    Bear, Laura; Cuculich, Phillip S; Bernus, Olivier; Efimov, Igor; Dubois, Rémi

    2015-03-01

    From the dawn of the twentieth century, the electrocardiogram (ECG) has revolutionized the way clinical cardiology has been practiced, and it has become the cornerstone of modern medicine today. Driven by clinical and research needs for a more precise understanding of cardiac electrophysiology beyond traditional ECG, inverse solution electrocardiography has been developed, tested, and validated. This article outlines the important progress from ECG development, through more extensive measurement of body surface potentials, and the fundamental leap to solving the inverse problem of electrocardiography, with a focus on mathematical methods and experimental validation. PMID:25784020

  4. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    C.A. Remme; C.R. Bezzina

    2010-01-01

    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation an

  5. Cardiac voltage-gated calcium channel macromolecular complexes.

    Science.gov (United States)

    Rougier, Jean-Sébastien; Abriel, Hugues

    2016-07-01

    Over the past 20years, a new field of research, called channelopathies, investigating diseases caused by ion channel dysfunction has emerged. Cardiac ion channels play an essential role in the generation of the cardiac action potential. Investigators have largely determined the physiological roles of different cardiac ion channels, but little is known about the molecular determinants of their regulation. The voltage-gated calcium channel Cav1.2 shapes the plateau phase of the cardiac action potential and allows the influx of calcium leading to cardiomyocyte contraction. Studies suggest that the regulation of Cav1.2 channels is not uniform in working cardiomyocytes. The notion of micro-domains containing Cav1.2 channels and different calcium channel interacting proteins, called macro-molecular complex, has been proposed to explain these observations. The objective of this review is to summarize the currently known information on the Cav1.2 macromolecular complexes in the cardiac cell and discuss their implication in cardiac function and disorder. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26707467

  6. Surface charge potentiates conduction through the cardiac ryanodine receptor channel

    OpenAIRE

    1994-01-01

    Single channel currents through cardiac sarcoplasmic reticulum (SR) Ca2+ release channels were measured in very low levels of current carrier (e.g., 1 mM Ba2+). The hypothesis that surface charge contributes to these anomalously large single channel currents was tested by changing ionic strength and surface charge density. Channel identity and sidedness was pharmacologically determined. At low ionic strength (20 mM Cs+), Cs+ conduction in the lumen-->myoplasm (L-->M) direction was significant...

  7. Functional role of anion channels in cardiac diseases

    Institute of Scientific and Technical Information of China (English)

    Da-yue DUAN; Luis LH LIU; Nathan BOZEAT; Z Maggie HUANG; Sunny Y XIANG; Guan-lei WANG; Linda YE; Joseph R HUME

    2005-01-01

    In comparison to cation (K+, Na+, and Ca2+) channels, much less is currently known about the functional role of anion (Cl-) channels in cardiovascular physiology and pathophysiology. Over the past 15 years, various types of Cl- currents have been recorded in cardiac cells from different species including humans. All cardiac Cl- channels described to date may be encoded by five different Cl- channel genes: the PKA- and PKC-activated cystic fibrosis tansmembrane conductance regulator (CFTR), the volume-regulated ClC-2 and ClC-3, and the Ca2+-activated CLCA or Bestrophin. Recent studies using multiple approaches to examine the functional role of Cl- channels in the context of health and disease have demonstrated that Cl- channels might contribute to: 1) arrhythmogenesis in myocardial injury; 2) cardiac ischemic preconditioning; and 3) the adaptive remodeling of the heart during myocardial hypertrophy and heart failure. Therefore,anion channels represent very attractive novel targets for therapeutic approaches to the treatment of heart diseases. Recent evidence suggests that Cl- channels,like cation channels, might function as a multiprotein complex or functional module.In the post-genome era, the emergence of functional proteomics has necessitated a new paradigm shift to the structural and functional assessment of integrated Cl- channel multiprotein complexes in the heart, which could provide new insight into our understanding of the underlying mechanisms responsible for heart disease and protection.

  8. Layered MAP algorithm for MIMO ISI channels

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The layered maximum a posteriori (L-MAP) algorithm has been proposed to detect signals under frequency selective fading multiple input multiple output (MIMO) channels. Compared to the optimum MAP detector, the L-MAP algorithm can efficiently identify signal bits, and the complexity grows linearly with the number of input antennas. The basic idea of L-MAP is to operate on each input sub-stream with an optimum MAP sequential detector separately by assuming the other streams are Gaussian noise. The soft output can also be forwarded to outer channel decoder for iterative decoding. Simulation results show that the proposed method can converge with a small number of iterations under different channel conditions and outperforms other sub-optimum detectors for rank-deficient channels.

  9. Map-based model of the cardiac action potential

    International Nuclear Information System (INIS)

    A simple computationally efficient model which is capable of replicating the basic features of cardiac cell action potential is proposed. The model is a four-dimensional map and demonstrates good correspondence with real cardiac cells. Various regimes of cardiac activity, which can be reproduced by the proposed model, are shown. Bifurcation mechanisms of these regimes transitions are explained using phase space analysis. The dynamics of 1D and 2D lattices of coupled maps which model the behavior of electrically connected cells is discussed in the context of synchronization theory. -- Highlights: → Recent experimental-data based models are complicated for analysis and simulation. → The simplified map-based model of the cardiac cell is constructed. → The model is capable for replication of different types of cardiac activity. → The spatio-temporal dynamics of ensembles of coupled maps are investigated. → Received data are analyzed in context of biophysical processes in the myocardium.

  10. Cardiac ion channels and mechanisms for protection against atrial fibrillation

    DEFF Research Database (Denmark)

    Grunnet, Morten; Bentzen, Bo Hjorth; Sørensen, Ulrik S;

    2011-01-01

    Atrial fibrillation (AF) is recognised as the most common sustained cardiac arrhythmia in clinical practice. Ongoing drug development is aiming at obtaining atrial specific effects in order to prevent pro-arrhythmic, devastating ventricular effects. In principle, this is possible due to a different...... the recent discovery that Ca(2+)-activated small conductance K(+) channels (SK channels) are important for the repolarisation of atrial action potentials. Finally, an overview of current pharmacological treatment of AF is included....

  11. Magnesium gating of cardiac gap junction channels.

    Science.gov (United States)

    Matsuda, Hiroyuki; Kurata, Yasutaka; Oka, Chiaki; Matsuoka, Satoshi; Noma, Akinori

    2010-09-01

    We aimed to study kinetics of modulation by intracellular Mg(2+) of cardiac gap junction (Mg(2+) gate). Paired myocytes of guinea-pig ventricle were superfused with solutions containing various concentrations of Mg(2+). In order to rapidly apply Mg(2+) to one aspect of the gap junction, the non-junctional membrane of one of the pair was perforated at nearly the connecting site by pulses of nitrogen laser beam. The gap junction conductance (G(j)) was measured by clamping the membrane potential of the other cell using two-electrode voltage clamp method. The laser perforation immediately increased G(j), followed by slow G(j) change with time constant of 3.5 s at 10 mM Mg(2+). Mg(2+) more than 1.0 mM attenuated dose-dependently the gap junction conductance and lower Mg(2+) (0.6 mM) increased G(j) with a Hill coefficient of 3.4 and a half-maximum effective concentration of 0.6 mM. The time course of G(j) changes was fitted by single exponential function, and the relationship between the reciprocal of time constant and Mg(2+) concentration was almost linear. Based on the experimental data, a mathematical model of Mg(2+) gate with one open state and three closed states well reproduced experimental results. One-dimensional cable model of thirty ventricular myocytes connected to the Mg(2+) gate model suggested a pivotal role of the Mg(2+) gate of gap junction under pathological conditions. PMID:20553744

  12. Cardiac sodium channel mutations: why so many phenotypes?

    Science.gov (United States)

    Liu, Man; Yang, Kai-Chien; Dudley, Samuel C.

    2016-01-01

    Mutations of the cardiac sodium channel (Nav1.5) can induce gain or loss of channel function. Gain-of-function mutations can cause long QT syndrome type 3 and possibly atrial fibrillation, whereas loss-of-function mutations are associated with a variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, sick sinus syndrome, and possibly dilated cardiomyopathy. The phenotypes produced by Nav1.5 mutations vary according to the direct effect of the mutation on channel biophysics, but also with age, sex, body temperature, and between regions of the heart. This phenotypic variability makes genotype–phenotype correlations difficult. In this Perspectives article, we propose that phenotypic variability not ascribed to mutation-dependent changes in channel function might be the result of additional modifiers of channel behaviour, such as other genetic variation and alterations in transcription, RNA processing, translation, post-translational modifications, and protein degradation. Consideration of these modifiers might help to improve genotype–phenotype correlations and lead to new therapeutic strategies. PMID:24958080

  13. A 128-Channel Receive-Only Cardiac Coil for Highly Accelerated Cardiac MRI at 3 Tesla

    OpenAIRE

    Schmitt, Melanie; Potthast, Andreas; Sosnovik, David E; Polimeni, Jonathan R; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.

    2008-01-01

    A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a “clam-shell” geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compar...

  14. Mutations in the Kv1.5 channel gene KCNA5 in cardiac arrest patients

    DEFF Research Database (Denmark)

    Nielsen, Nathalie H; Winkel, Bo G; Kanters, Jørgen K; Schmitt, Nicole; Hofman-Bang, Jacob; Jensen, Henrik S; Bentzen, Bo H; Sigurd, Bjarne; Larsen, Lars Allan; Andersen, Paal S; Kjeldsen, Keld; Grunnet, Morten; Christiansen, Michael; Olesen, Søren-Peter; Haunsø, Stig

    2007-01-01

    Mutations in one of the ion channels shaping the cardiac action potential can lead to action potential prolongation. However, only in a minority of cardiac arrest cases mutations in the known arrhythmia-related genes can be identified. In two patients with arrhythmia and cardiac arrest, we identi...

  15. ATP-sensitive K+ channel knockout induces cardiac proteome remodeling predictive of heart disease susceptibility.

    Science.gov (United States)

    Arrell, D Kent; Zlatkovic, Jelena; Kane, Garvan C; Yamada, Satsuki; Terzic, Andre

    2009-10-01

    Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (K(ATP)) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode consequences of Kir6.2 K(ATP) channel pore deletion. Differential two-dimensional gel electrophoresis reproducibly resolved >800 protein species from hearts of asymptomatic wild-type and Kir6.2-knockout counterparts. K(ATP) channel ablation remodeled the cardiac proteome, significantly altering 71 protein spots, from which 102 unique identities were assigned following hybrid linear ion trap quadrupole-Orbitrap tandem mass spectrometry. Ontological annotation stratified the K(ATP) channel-dependent protein cohort into a predominant bioenergetic module (63 resolved identities), with additional focused sets representing signaling molecules (6), oxidoreductases (8), chaperones (6), and proteins involved in catabolism (6), cytostructure (8), and transcription and translation (5). Protein interaction mapping, in conjunction with expression level changes, localized a K(ATP) channel-associated subproteome within a nonstochastic scale-free network. Global assessment of the K(ATP) channel deficient environment verified the primary impact on metabolic pathways and revealed overrepresentation of markers associated with cardiovascular disease. Experimental imposition of graded stress precipitated exaggerated structural and functional myocardial defects in the Kir6.2-knockout, decreasing survivorship and validating the forecast of disease susceptibility. Proteomic cartography thus provides an integral view of molecular remodeling in the heart induced by K(ATP) channel deletion, establishing a

  16. PET and SPET tracers for mapping the cardiac nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Karolinska Hospital, 17176 Stockholm (Sweden)

    2002-03-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[{sup 18}F]fluorodopamine, (-)-6-[{sup 18}F]fluoronorepinephrine and (-)-[{sup 11}C]epinephrine, and radiolabelled catecholamine analogues, such as [{sup 123}I]meta-iodobenzylguanidine, [{sup 11}C]meta-hydroxyephedrine, [{sup 18}F]fluorometaraminol, [{sup 11}C]phenylephrine and meta-[{sup 76}Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[{sup 18}F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility

  17. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[18F]fluorodopamine, (-)-6-[18F]fluoronorepinephrine and (-)-[11C]epinephrine, and radiolabelled catecholamine analogues, such as [123I]meta-iodobenzylguanidine, [11C]meta-hydroxyephedrine, [18F]fluorometaraminol, [11C]phenylephrine and meta-[76Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[18F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  18. Genetic and environmental factors in cardiac sodium channel disease

    NARCIS (Netherlands)

    Y. Mizusawa

    2016-01-01

    Cardiac sodium channelopathies, such as long QT syndrome type3 (LQT3), Brugada syndrome (BrS) and cardiac conduction disease (CCD), are heritable diseases associated with mutations in the SCN5A gene and sudden cardiac death. They were classically thought to be a monogenic disease. However, while LQT

  19. Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel

    DEFF Research Database (Denmark)

    Liin, Sara I.; Silverå Ejneby, Malin; Barro-Soria, Rene;

    2015-01-01

    Polyunsaturated fatty acids (PUFAs) affect cardiac excitability. Kv7.1 and the β-subunit KCNE1 form the cardiac IKs channel that is central for cardiac repolarization. In this study, we explore the prospects of PUFAs as IKs channel modulators. We report that PUFAs open Kv7.1 via an electrostatic...... charge at neutral pH, restore the sensitivity to open IKs channels. PUFA analogs with a positively charged head group inhibit IKs channels. These different PUFA analogs could be developed into drugs to treat cardiac arrhythmias. In support of this possibility, we show that PUFA analogs act...... mechanism. Both the polyunsaturated acyl tail and the negatively charged carboxyl head group are required for PUFAs to open Kv7.1. We further show that KCNE1 coexpression abolishes the PUFA effect on Kv7.1 by promoting PUFA protonation. PUFA analogs with a decreased pKa value, to preserve their negative...

  20. Cardiac tissue slices: preparation, handling, and successful optical mapping.

    Science.gov (United States)

    Wang, Ken; Lee, Peter; Mirams, Gary R; Sarathchandra, Padmini; Borg, Thomas K; Gavaghan, David J; Kohl, Peter; Bollensdorff, Christian

    2015-05-01

    Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands ("fibers") in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. PMID:25595366

  1. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    Science.gov (United States)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  2. Structural approximations to positive maps and entanglement breaking channels

    OpenAIRE

    Korbicz, J. K.; Almeida, M. L.; BAE, J.; Lewenstein, M.; Acin, A.

    2008-01-01

    Structural approximations to positive, but not completely positive maps are approximate physical realizations of these non-physical maps. They find applications in the design of direct entanglement detection methods. We show that many of these approximations, in the relevant case of optimal positive maps, define an entanglement breaking channel and, consequently, can be implemented via a measurement and state-preparation protocol. We also show how our findings can be useful for the design of ...

  3. Interactions of cryptosin with mammalian cardiac dihydropyridine-specific calcium channels

    International Nuclear Information System (INIS)

    Cryptosin, a new cardenolide, was found to be a potent inhibitor of cardiac Na+ and K+ dependent Adenosinetri-phosphatase. In experiments with dog heart ex vivo, development of inotropic and toxic effect correlated with changes in the cardiac dihydropyridine-specific calcium channels as measured by the binding of 3[H]PN 200-110. A significant change in the PN 200-110 binding was observed when guinea pig and dog heart sarcolemmal membranes were pre-incubated with cryptosin in vitro. Binding analysis of 3[H]PN 200-110 (Isradipine), a 1,4-dihydropyridine analog with very specific calcium channel binding properties, in both in vitro and ex vivo studies were consistent and indicated a non-specific type of interaction of cryptosin with mammalian cardiac 1,4-dihydropyridine-specific calcium channels

  4. Effects of n-3 polyunsaturated fatty acids on cardiac ion channels

    Directory of Open Access Journals (Sweden)

    CarmenValenzuela

    2012-07-01

    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been reported to exhibit antiarrhythmic properties, attributed to their capability to modulate ion channels. In the present review, we will focus on the effects of PUFAs on cardiac sodium channel (Nav1.5 and two potassium channels (Kv (Kv1.5 and Kv11.1. n-3 marine (docohexaenoic and eicohexapentaenoic acid and plant origin (alpha-linolenic acid PUFAs block Kv1.5 and Kv11.1 channels at physiological concentrations. Also, DHA and EPA decreased Nav1.5 and calcium channels. These effects on Na and Ca channels theoretically should shorten the cardiac APD, whereas the blocking actions of n-3 PUFAs of Kv channels should lengthen the cardiac action potential. Experiments performed in female rabbits fed with a diet rich in n-3 PUFAs show a longer cardiac action potential and effective refractory period. This study was performed to analyze if their antiarrhythmic effects are due to a reduction of triangulation, reverse use-dependence, instability and dispersion of the cardiac action potential (TRIaD as a measure of proarrhythmic effects. Dietary n-3 PUFAs supplementation markedly reduced dofetilide-induced TRIaD and abolished dofetilide-induced torsades de pointes (TdP. Ultrafast sodium channel block by DHA may account for the antiarrhythmic protection of dietary supplements of n-3 PUFAs against dofetilide induced proarrhythmia observed in this animal model. The cardiac effects of n-3 PUFAs resemble those of amiodarone: both block sodium, calcium and potassium channels, have anti-adrenergic properties, can prolong the cardiac action potential, reverse TRIaD and suppress TdP. The main difference is that sodium channel block by n-3 PUFAs has a much faster onset and offset kinetics. Therefore, the electrophysiological profile of n-3 PUFAs appears more desirable: the duration of reduced sodium current (facilitates re-entry is much shorter. The n-3 PUFAs appear as a safer alternative to other antiarrhythmic

  5. Evaluation of dual-channel and 4-port multi transmit technique in 3T MRI. Implications for cardiac SSFP cine MRI

    International Nuclear Information System (INIS)

    We evaluated the usefulness of the dual-channel and 4-port multi transmit technique for cardiac examinations in 3T MRI. The B1 shimming conditions and the quadrature detection (QD) conditions were used, and B1 map scans and cardiac cine scans were performed using these two conditions. A half-Fourier FSE sequence was used for the B1 map scans, and the differences between the B1 shimming and QD conditions were analyzed. In addition, the cardiac cine images were acquired with a balanced steady-state free precession (bSSFP) sequence, and the image quality was compared in terms of the contrast-to-noise ratio. The maps acquired with the B1 shimming had lower RF field inhomogeneity than the maps acquired with the QD conditions. In the quantitative evaluation of the cine images, the contrast-to-noise ratio (CNR), and luminal signal-to-noise ratio (SNR) were significantly higher in scans with the B1 shimming than in scans with the QD conditions, while no significant differences were observed in the signal ratio or myocardial SNR. The use of this technique in 3T MRI provides significantly better B1 homogeneity and image quality in cardiac cine imaging as compared with conventional RF transmission. This technique has the potential to overcome the problems such as B1 inhomogeneity with commonly employed sequences for routine clinical cardiac MRI examinations performed at 3T. (author)

  6. Cardiac magnetic resonance T1 mapping of left atrial myocardium

    Science.gov (United States)

    Beinart, Roy; Khurram, Irfan M.; Liu, Songtao; Yarmohammadi, Hirad; Halperin, Henry R.; Bluemke, David A.; Gai, Neville; van der Geest, Rob J.; Lima, Joao A.C.; Calkins, Hugh; Zimmerman, Stefan L.; Nazarian, Saman

    2013-01-01

    BACKGROUND Cardiac magnetic resonance (CMR) T1 mapping is an emerging tool for objective quantification of myocardial fibrosis. OBJECTIVES To (a) establish the feasibility of left atrial (LA) T1 measurements, (b) determine the range of LA T1 values in patients with atrial fibrillation (AF) vs healthy volunteers, and (c) validate T1 mapping vs LA intracardiac electrogram voltage amplitude measures. METHODS CMR imaging at 1.5 T was performed in 51 consecutive patients before AF ablation and in 16 healthy volunteers. T1 measurements were obtained from the posterior LA myocardium by using the modified Look-Locker inversion-recovery sequence. Given the established association of reduced electrogram amplitude with fibrosis, intracardiac point-by-point bipolar LA voltage measures were recorded for the validation of T1 measurements. RESULTS The median LA T1 relaxation time was shorter in patients with AF (387 [interquartile range 364–428] ms) compared to healthy volunteers (459 [interquartile range 418–532] ms; P < .001) and was shorter in patients with AF with prior ablation compared to patients without prior ablation (P = .035). In a generalized estimating equations model, adjusting for data clusters per participant, age, rhythm during CMR, prior ablation, AF type, hypertension, and diabetes, each 100-ms increase in T1 relaxation time was associated with 0.1 mV increase in intracardiac bipolar LA voltage (P = .025). CONCLUSIONS Measurement of the LA myocardium T1 relaxation time is feasible and strongly associated with invasive voltage measures. This methodology may improve the quantification of fibrotic changes in thin-walled myocardial tissues. PMID:23643513

  7. Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Frankel, Adam; Ahern, Christopher A

    2011-01-01

    Cardiac sodium channels are established therapeutic targets for the management of inherited and acquired arrhythmias by class I anti-arrhythmic drugs (AADs). These drugs share a common target receptor bearing two highly conserved aromatic side chains, and are subdivided by the Vaughan-Williams cl...

  8. Phenotypical Manifestations of Mutations in the Genes Encoding Subunits of the Cardiac Sodium Channel

    NARCIS (Netherlands)

    Wilde, Arthur A. M.; Brugada, Ramon

    2011-01-01

    Variations in the gene encoding for the major sodium channel (Na(v)1.5) in the heart, SCN5A, has been shown to cause a number of arrhythmia syndromes (with or without structural changes in the myocardium), including the long-QT syndrome (type 3), Brugada syndrome, (progressive) cardiac conduction di

  9. Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis.

    Science.gov (United States)

    Zhang, Xiaohui; Zhang, Xiaohua; Xiong, Yiqun; Xu, Chaoying; Liu, Xinliang; Lin, Jian; Mu, Guiping; Xu, Shaogang; Liu, Wenhe

    2016-09-01

    The sarcolemmal ATP-sensitive K+ (sarcKATP) channel plays a cardioprotective role during stress. However, the role of the sarcKATP channel in the apoptosis of cardiomyocytes and association with mitochondrial calcium remains unclear. For this purpose, we developed a model of LPS-induced sepsis in neonatal rat cardiomyocytes (NRCs). The TUNEL assay was performed in order to detect the apoptosis of cardiac myocytes and the MTT assay was performed to determine cellular viability. Exposure to LPS significantly decreased the viability of the NRCs as well as the expression of Bcl-2, whereas it enhanced the activity and expression of the apoptosis-related proteins caspase-3 and Bax, respectively. The sarcKATP channel blocker, HMR-1098, increased the apoptosis of NRCs, whereas the specific sarcKATP channel opener, P-1075, reduced the apoptosis of NRCs. The mitochondrial calcium uniporter inhibitor ruthenium red (RR) partially inhibited the pro-apoptotic effect of HMR-1098. In order to confirm the role of the sarcKATP channel, we constructed a recombinant adenovirus vector carrying the sarcKATP channel mutant subunit Kir6.2AAA to inhibit the channel activity. Kir6.2AAA adenovirus infection in NRCs significantly aggravated the apoptosis of myocytes induced by LPS. Elucidating the regulatory mechanisms of the sarcKATP channel in apoptosis may facilitate the development of novel therapeutic targets and strategies for the management of sepsis and cardiac dysfunction. PMID:27430376

  10. Near-infrared spectral mapping of Titan's mountains and channels

    Science.gov (United States)

    Barnes, J.W.; Radebaugh, J.; Brown, R.H.; Wall, S.; Soderblom, L.; Lunine, J.; Burr, D.; Sotin, C.; Le, Mouelic S.; Rodriguez, S.; Buratti, B.J.; Clark, R.; Baines, K.H.; Jaumann, R.; Nicholson, P.D.; Kirk, R.L.; Lopes, R.; Lorenz, R.D.; Mitchell, Ken; Wood, C.A.

    2007-01-01

    We investigate the spectral reflectance properties of channels and mountain ranges on Titan using data from Cassini's Visual and Infrared Mapping Spectrometer (VIMS) obtained during the T9 encounter (26 December 2005). We identify the location of channels and mountains using synthetic aperture radar maps obtained from Cassini's RADAR instrument during the T13 (30 April 2006) flyby. Channels are evident even in VIMS imaging with spatial resolution coarser than the channel size. The channels share spectral characteristics with Titan's dark blue terrain (e.g., the Huygens landing site) that is consistent with an enhancement in water ice content relative to the rest of Titan. We use this fact to measure widths of ???1 km for the largest channels. Comparison of the data sets shows that in our study area within the equatorial bright spectral unit east of Xanadu, mountains are darker and bluer than surrounding smooth terrain. These results are consistent with the equatorial bright terrain possessing a veneer of material that is thinner in the regions where there are mountains and streambeds that have likely undergone more recent and extensive erosion. We suggest a model for the geographic relationship of the dark blue, dark brown, and equatorial bright spectral units based on our findings. Copyright 2007 by the American Geophysical Union.

  11. The new criterion for cardiac resynchronization therapy treatment assessed by two channels impedance cardiography

    International Nuclear Information System (INIS)

    The cardiac resynchronization therapy is an effective treatment for systolic failure patients. Independent electrical stimulation of left and right ventricle corrects mechanical ventricular dyssynchrony. About 30–40% treated patients do not respond to therapy. In order to improve clinical outcome authors propose the two channels impedance cardiography for assessment of ventricular dyssynchrony. The proposed method is intended for validation of patients diagnosis and optimization of pacemaker settings for cardiac resynchronization therapy. The preliminary study has showed that bichannel impedance cardiography is a promising tool for assessment of ventricular dyssynchrony.

  12. Comparison between Hodgkin-Huxley and Markov formulations of cardiac ion channels.

    Science.gov (United States)

    Carbonell-Pascual, Beatriz; Godoy, Eduardo; Ferrer, Ana; Romero, Lucia; Ferrero, Jose M

    2016-06-21

    When simulating the macroscopic current flowing through cardiac ion channels, two mathematical formalisms can be adopted: the Hodgkin-Huxley model (HHM) formulation, which describes openings and closings of channel 'gates', or the Markov model (MM) formulation, based on channel 'state' transitions. The latter was first used in 1995 to simulate the effects of mutations in ionic currents and, since then, its use has been extended to wild-type channels also. While the MMs better describe the actual behavior of ion channels, they are mathematically more complex than HHMs in terms of parameter estimation and identifiability and are computationally much more demanding, which can dramatically increase computational time in large-scale (e.g. whole heart) simulations. We hypothesize that a HHM formulation obtained from classical patch-clamp protocols in wild-type and mutant ion channels can be used to correctly simulate cardiac action potentials and their static and dynamic properties. To validate our hypothesis, we selected two pivotal cardiac ionic currents (the rapid delayed rectifier K(+) current, IKr, and the inward Na(+) current, INa) and formulated HHMs for both wild-type and mutant channels (LQT2-linked T474I mutation for IKr and LQT3-linked ΔKPQ mutation for INa). Action potentials were then simulated using the MM and HHM versions of the currents, and the action potential waveforms, biomarkers and action potential duration rate dependence properties were compared in control conditions and in the presence of physiological variability. While small differences between ionic currents were found between the two models (correlation coefficient ρ>0.92), the simulations yielded almost identical action potentials (ρ>0.99), suggesting that HHMs may also be valid to simulate the effects of mutations affecting IKr and INa on the action potential. PMID:27059892

  13. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    Directory of Open Access Journals (Sweden)

    Clemens eMoeller

    2011-11-01

    Full Text Available The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and Torsades de Pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the gold-standard for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.

  14. Single-detector Simultaneous Optical Mapping of Vm and [Ca2+]i in Cardiac Monolayers

    OpenAIRE

    Scull, James A.; McSpadden, Luke C; Himel, Herman D; Badie, Nima; Bursac, Nenad

    2011-01-01

    Simultaneous mapping of transmembrane voltage (Vm) and intracellular Ca2+ concentration (Cai) has been used for studies of normal and abnormal impulse propagation in cardiac tissues. Existing dual mapping systems typically utilize one excitation and two emission bandwidths, requiring two photodetectors with precise pixel registration. In this study we describe a novel, single-detector mapping system that utilizes two excitation and one emission bandwidth for the simultaneous recording of acti...

  15. Thermodynamics of calmodulin binding to cardiac and skeletal muscle ryanodine receptor ion channels

    OpenAIRE

    Meissner, Gerhard; Pasek, Daniel A.; Yamaguchi, Naohiro; Ramachandran, Srinivas; Dokholyan, Nikolay V.; Tripathy, Ashutosh

    2009-01-01

    The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [35S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca2+ concentrations from

  16. Inhibition of the Cardiac Na+ Channel Nav1.5 by Carbon Monoxide*

    OpenAIRE

    Elies, J; Dallas, M.; Boyle, JP; Scragg, JL; Duke, A; Steele, DS; Peers, C

    2014-01-01

    Sublethal carbon monoxide (CO) exposure is frequently associated with myocardial arrhythmias, and our recent studies have demonstrated that these may be attributable to modulation of cardiac Na(+) channels, causing an increase in the late current and an inhibition of the peak current. Using a recombinant expression system, we demonstrate that CO inhibits peak human Nav1.5 current amplitude without activation of the late Na(+) current observed in native tissue. Inhibition was associated with a...

  17. The pharmacology of three inwardly rectifying potassium Channels in neonatal rat cardiac myocytes.

    OpenAIRE

    Azam, R.

    1999-01-01

    The aim of the present study was to investigate the pharmacology of three inwardly rectifying K+-channels in neonatal rat cardiac myocytes, IKAch, IKI, IKAtp- using whole cell voltage clamp techniques. Cells were held at -50mV. A previous study has shown that clotrimazole, an antimycotic agent, and cetiedil, an antisickling agent are potent against the IKACch in atrial myocytes. Structural analogues of these compounds were tested on the three inward rectifiers. UCL1880, an a...

  18. A Common Polymorphism of the Human Cardiac Sodium Channel Alpha Subunit (SCN5A) Gene Is Associated with Sudden Cardiac Death in Chronic Ischemic Heart Disease

    Science.gov (United States)

    Marcsa, Boglárka; Dénes, Réka; Vörös, Krisztina; Rácz, Gergely; Sasvári-Székely, Mária; Rónai, Zsolt; Törő, Klára; Keszler, Gergely

    2015-01-01

    Cardiac death remains one of the leading causes of mortality worldwide. Recent research has shed light on pathophysiological mechanisms underlying cardiac death, and several genetic variants in novel candidate genes have been identified as risk factors. However, the vast majority of studies performed so far investigated genetic associations with specific forms of cardiac death only (sudden, arrhythmogenic, ischemic etc.). The aim of the present investigation was to find a genetic marker that can be used as a general, powerful predictor of cardiac death risk. To this end, a case-control association study was performed on a heterogeneous cohort of cardiac death victims (n=360) and age-matched controls (n=300). Five single nucleotide polymorphisms (SNPs) from five candidate genes (beta2 adrenergic receptor, nitric oxide synthase 1 adaptor protein, ryanodine receptor 2, sodium channel type V alpha subunit and transforming growth factor-beta receptor 2) that had previously been shown to associate with certain forms of cardiac death were genotyped using sequence-specific real-time PCR probes. Logistic regression analysis revealed that the CC genotype of the rs11720524 polymorphism in the SCN5A gene encoding a subunit of the cardiac voltage-gated sodium channel occurred more frequently in the highly heterogeneous cardiac death cohort compared to the control population (p=0.019, odds ratio: 1.351). A detailed subgroup analysis uncovered that this effect was due to an association of this variant with cardiac death in chronic ischemic heart disease (p=0.012, odds ratio = 1.455). None of the other investigated polymorphisms showed association with cardiac death in this context. In conclusion, our results shed light on the role of this non-coding polymorphism in cardiac death in ischemic cardiomyopathy. Functional studies are needed to explore the pathophysiological background of this association. PMID:26146998

  19. Single-detector simultaneous optical mapping of V(m) and [Ca(2+)](i) in cardiac monolayers.

    Science.gov (United States)

    Scull, James A; McSpadden, Luke C; Himel, Herman D; Badie, Nima; Bursac, Nenad

    2012-05-01

    Simultaneous mapping of transmembrane voltage (V(m)) and intracellular Ca(2+) concentration (Ca(i)) has been used for studies of normal and abnormal impulse propagation in cardiac tissues. Existing dual mapping systems typically utilize one excitation and two emission bandwidths, requiring two photodetectors with precise pixel registration. In this study we describe a novel, single-detector mapping system that utilizes two excitation and one emission band for the simultaneous recording of action potentials and calcium transients in monolayers of neonatal rat cardiomyocytes. Cells stained with the Ca(2+)-sensitive dye X-Rhod-1 and the voltage-sensitive dye Di-4-ANEPPS were illuminated by a programmable, multicolor LED matrix. Blue and green LED pulses were flashed 180° out of phase at a rate of 488.3 Hz using a custom-built dual bandpass excitation filter that transmitted blue (482 ± 6 nm) and green (577 ± 31 nm) light. A long-pass emission filter (>605 nm) and a 504-channel photodiode array were used to record combined signals from cardiomyocytes. Green excitation yielded Ca(i) transients without significant crosstalk from V(m). Crosstalk present in V(m) signals obtained with blue excitation was removed by subtracting an appropriately scaled version of the Ca(i) transient. This method was applied to study delay between onsets of action potentials and Ca(i) transients in anisotropic cardiac monolayers. PMID:22124794

  20. Nonlinear Algorithms for Channel Equalization and Map Symbol Detection.

    Science.gov (United States)

    Giridhar, K.

    The transfer of information through a communication medium invariably results in various kinds of distortion to the transmitted signal. In this dissertation, a feed -forward neural network-based equalizer, and a family of maximum a posteriori (MAP) symbol detectors are proposed for signal recovery in the presence of intersymbol interference (ISI) and additive white Gaussian noise. The proposed neural network-based equalizer employs a novel bit-mapping strategy to handle multilevel data signals in an equivalent bipolar representation. It uses a training procedure to learn the channel characteristics, and at the end of training, the multilevel symbols are recovered from the corresponding inverse bit-mapping. When the channel characteristics are unknown and no training sequences are available, blind estimation of the channel (or its inverse) and simultaneous data recovery is required. Convergence properties of several existing Bussgang-type blind equalization algorithms are studied through computer simulations, and a unique gain independent approach is used to obtain a fair comparison of their rates of convergence. Although simple to implement, the slow convergence of these Bussgang-type blind equalizers make them unsuitable for many high data-rate applications. Rapidly converging blind algorithms based on the principle of MAP symbol-by -symbol detection are proposed, which adaptively estimate the channel impulse response (CIR) and simultaneously decode the received data sequence. Assuming a linear and Gaussian measurement model, the near-optimal blind MAP symbol detector (MAPSD) consists of a parallel bank of conditional Kalman channel estimators, where the conditioning is done on each possible data subsequence that can convolve with the CIR. This algorithm is also extended to the recovery of convolutionally encoded waveforms in the presence of ISI. Since the complexity of the MAPSD algorithm increases exponentially with the length of the assumed CIR, a suboptimal

  1. Structural and functional characterization of the purified cardiac ryanodine receptor-Ca2+ release channel complex.

    Science.gov (United States)

    Anderson, K; Lai, F A; Liu, Q Y; Rousseau, E; Erickson, H P; Meissner, G

    1989-01-15

    Using density gradient centrifugation and [3H]ryanodine as a specific marker, the ryanodine receptor-Ca2+ release channel complex from Chaps-solubilized canine cardiac sarcoplasmic reticulum (SR) has been purified in the form of an approximately 30 S complex, comprised of Mr approximately 400,000 polypeptides. Purification resulted in a specific activity of approximately 450 pmol bound ryanodine/mg of protein, a 60-70% recovery of ryanodine binding activity, and retention of the high affinity ryanodine binding site (KD = 3 nM). Negative stain electron microscopy revealed a 4-fold symmetric, four-leaf clover structure, which could fill a box approximately 30 x 30 nm and was thus morphologically similar to the SR-transverse-tubule, junctionally associated foot structure. The structural, sedimentation, and ryanodine binding data strongly suggest there is one high affinity ryanodine binding site/30 S complex, comprised of four Mr approximately 400,000 subunits. Upon reconstitution into planar lipid bilayers, the purified complex exhibited a Ca2+ conductance (70 pS in 50 mM Ca2+) similar to that of the native cardiac Ca2+ release channel (75 pS). The reconstituted complex was also found to conduct Na+ (550 pS in 500 mM Na+) and often to display complex Na+ subconducting states. The purified channel could be activated by micromolar Ca2+ or millimolar ATP, inhibited by millimolar Mg2+ or micromolar ruthenium red, and modified to a long-lived open subconducting state by ryanodine. The sedimentation, subunit composition, morphological, and ryanodine binding characteristics of the purified cardiac ryanodine receptor-Ca2+ release channel complex were similar to those previously described for the purified ryanodine receptor-Ca2+ release channel complex from fast-twitch skeletal muscle. PMID:2463249

  2. Radioligand assay of cardiac calcium release channel and its application in SHR

    International Nuclear Information System (INIS)

    Purpose: To establish the best condition in assaying the calcium release channel (ryanodine receptor) in cardiac sarcoplasmic reticulum (CSR), and analyse the CSR ryanodine receptor in spantanous hypertensive rat (SHR). Methods: 3H-ryanodine was used as a radioligand to analyse the binding in Sprague Dawley rat cardiac homogenate in following conditions: varied protein concentrations, different free calcium concentrations, different incubation time. The effect of sarcoplasmic reticulum purifying process and ryanodine competitive binding were also studied. Using these best conditions, SHR and control group (WKY) CSR ryanodine receptor were studied. Results: 1) There was a positive linear correlation between 3H-ryanodine binding and the homogenate protein concentration. 2) When the free calcium concentration was 30 μmol/L∼1 mmol/L, the 3H-ryanodine binding reached the maximum. While the free calcium concentration was lower than 1 μmol/L, there was no 3H-ryanodine binding. 3) The 3H-ryanodine binding kept increasing during incubation, from 0 to 60 min, and equilibrium reached by 90 min. 4) The ryanodine specifically inhibited 3H-ryanodine binding in cardiac homogenate. 5) During the sarcoplasmic reticulum purifying process, the 3H-ryanodine binding in a unit amount of cardiac homogenate decreased with the centrifugal force and times applied in centrifugation. 6) SHR and WKY CSR ryanodine receptor saturation curve and Scatchard analysis showed this method produced a very high level of specific binding, up to 45 nmol/L ryanodine, which inferred a single class of binding sites. The Bmax value of CSR ryanodine receptor in SHR left ventricle was significantly higher than that in WKY (P3H-ryanodine can be used as a radioligand to analyse the calcium release channel in cardiac homogenate, and ryanodine receptor may play an important role in hypertensive left ventricular remodeling process

  3. Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits

    OpenAIRE

    Tong, XiaoYong; Porter, Lisa M.; Liu, GongXin; Dhar-Chowdhury, Piyali; Srivastava, Shekhar; Pountney, David J.; Yoshida, Hidetada; Artman, Michael; Fishman, Glenn I.; Yu, Cindy; Iyer, Ramesh; Morley, Gregory E.; Gutstein, David E.; Coetzee, William A.

    2006-01-01

    Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits. Am J Physiol Heart Circ Physiol 291: H543–H551, 2006. First published February 24, 2006; doi:10.1152/ajpheart.00051.2006.—Cardiac ATP-sensitive K+ (KATP) channels are formed by Kir6.2 and SUR2A subunits. We produced transgenic mice that express dominant negative Kir6.x pore-forming subunits (Kir6.1-AAA or Kir6.2-AAA) in cardiac myocytes by driving their expression ...

  4. Crystal orientation mapping via ion channeling: An alternative to EBSD

    International Nuclear Information System (INIS)

    A new method, which we name ion CHanneling ORientation Determination (iCHORD), is proposed to obtain orientation maps on polycrystals via ion channeling. The iChord method exploits the dependence between grain orientation and ion beam induced secondary electron image contrast. At each position of the region of interest, intensity profiles are obtained from a series of images acquired with different orientations with respect to the ion beam. The profiles are then compared to a database of theoretical profiles of known orientation. The Euler triplet associated to the most similar theoretical profile gives the orientation at that position. The proof-of-concept is obtained on a titanium nitride sample. The potentialities of iCHORD as an alternative to EBSD are then discussed. - Highlights: • A new method is proposed to obtain orientation maps via ion channeling. • This method exploits the dependence between grain orientation and SE image contrast. • Intensity profiles are obtained from images acquired with different orientations. • The profiles are then compared to a database of theoretical profiles of known orientation. • The potentialities of this method as an alternative to EBSD are discussed

  5. Crystal orientation mapping via ion channeling: An alternative to EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, C.; Douillard, T.; Yuan, H. [University of Lyon – INSA de Lyon – CNRS, MATEIS, UMR 5510, Bât. Blaise Pascal, 20 Avenue Albert Einstein, 69621 Villeurbanne (France); Blanchard, N.P. [University of Lyon – CNRS, ILM, UMR 5306, Université Lyon I, Bât. A. Kastler, 10 rue A. Byron, 69622 Villeurbanne (France); Descamps-Mandine, A. [University of Lyon – CNRS, INL, UMR 5510, Bât. B. Pascal, INSA de Lyon/Université Lyon I, 69621 Villeurbanne (France); Van de Moortèle, B. [Ecole Normale Supérieure de Lyon – CNRS, LGL, 46 allée d’Italie, 69364 Lyon (France); Rigotti, C. [University of Lyon – INSA de Lyon – CNRS, LIRIS, UMR 5205, INRIA, Bât. Blaise Pascal, 20 Avenue Albert Einstein, 69621 Villeurbanne (France); Epicier, T. [University of Lyon – INSA de Lyon – CNRS, MATEIS, UMR 5510, Bât. Blaise Pascal, 20 Avenue Albert Einstein, 69621 Villeurbanne (France)

    2015-10-15

    A new method, which we name ion CHanneling ORientation Determination (iCHORD), is proposed to obtain orientation maps on polycrystals via ion channeling. The iChord method exploits the dependence between grain orientation and ion beam induced secondary electron image contrast. At each position of the region of interest, intensity profiles are obtained from a series of images acquired with different orientations with respect to the ion beam. The profiles are then compared to a database of theoretical profiles of known orientation. The Euler triplet associated to the most similar theoretical profile gives the orientation at that position. The proof-of-concept is obtained on a titanium nitride sample. The potentialities of iCHORD as an alternative to EBSD are then discussed. - Highlights: • A new method is proposed to obtain orientation maps via ion channeling. • This method exploits the dependence between grain orientation and SE image contrast. • Intensity profiles are obtained from images acquired with different orientations. • The profiles are then compared to a database of theoretical profiles of known orientation. • The potentialities of this method as an alternative to EBSD are discussed.

  6. Proton Dependent Inhibition of the Cardiac Sodium Channel Nav1.5 by Ranolazine

    Directory of Open Access Journals (Sweden)

    PeterCRuben

    2013-06-01

    Full Text Available Ranolazine is clinically approved for treatment of angina pectoris and is a potential candidate for antiarrhythmic, antiepileptic and analgesic applications. These therapeutic effects of ranolazine hinge on its ability to inhibit persistent or late Na+ currents in a variety of voltage-gated sodium channels. Extracellular acidosis, typical of ischemic events, may alter the efficiency of drug/channel interactions. In this study, we examined pH modulation of ranolazine’s interaction with the cardiac sodium channel, Nav1.5. We performed whole-cell path clamp experiments at extracellular pH 7.4 and 6.0 on Nav1.5 transiently expressed in HEK293 cell line. Consistent with previous studies, we found that ranolazine induced a stable conformational state in the cardiac sodium channel with onset/recovery kinetics and voltage-dependence resembling intrinsic slow inactivation. This interaction diminished the availability of the channels in a voltage- and use-dependent manner. Low extracellular pH impaired inactivation states leading to an increase in late Na+ currents. Ranolazine interaction with the channel was also slowed 4-5 fold. However, ranolazine restored the voltage-dependent steady-state availability profile, thereby reducing window/persistent currents at pH 6.0 in a manner comparable to pH 7.4. These results suggest that ranolazine is effective at therapeutically relevant concentrations (10µM, in acidic extracellular pH, where it compensates for impaired native slow inactivation.

  7. Map-Based Channel Model for Urban Macrocell Propagation Scenarios

    Directory of Open Access Journals (Sweden)

    Jose F. Monserrat

    2015-01-01

    Full Text Available The evolution of LTE towards 5G has started and different research projects and institutions are in the process of verifying new technology components through simulations. Coordination between groups is strongly recommended and, in this sense, a common definition of test cases and simulation models is needed. The scope of this paper is to present a realistic channel model for urban macrocell scenarios. This model is map-based and takes into account the layout of buildings situated in the area under study. A detailed description of the model is given together with a comparison with other widely used channel models. The benchmark includes a measurement campaign in which the proposed model is shown to be much closer to the actual behavior of a cellular system. Particular attention is given to the outdoor component of the model, since it is here where the proposed approach is showing main difference with other previous models.

  8. Single-molecule denaturation mapping of DNA in nanofluidic channels

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Silahtaroglu, Asli;

    2010-01-01

    Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO (R)-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips and...... peaks in the intensity trace along the extended molecule. We demonstrate that this structure arises from the physics of local denaturation: statistical mechanical calculations of sequence-dependent melting probability can predict the barcode to be observed experimentally for a given sequence....... Consequently, the technique is sensitive to sequence variation without requiring enzymatic labeling or a restriction step. This technique may serve as the basis for a new mapping technology ideally suited for investigating the long-range structure of entire genomes extracted from single cells....

  9. A molecular switch driving inactivation in the cardiac K+ channel HERG.

    Directory of Open Access Journals (Sweden)

    David A Köpfer

    Full Text Available K(+ channels control transmembrane action potentials by gating open or closed in response to external stimuli. Inactivation gating, involving a conformational change at the K(+ selectivity filter, has recently been recognized as a major K(+ channel regulatory mechanism. In the K(+ channel hERG, inactivation controls the length of the human cardiac action potential. Mutations impairing hERG inactivation cause life-threatening cardiac arrhythmia, which also occur as undesired side effects of drugs. In this paper, we report atomistic molecular dynamics simulations, complemented by mutational and electrophysiological studies, which suggest that the selectivity filter adopts a collapsed conformation in the inactivated state of hERG. The selectivity filter is gated by an intricate hydrogen bond network around residues S620 and N629. Mutations of this hydrogen bond network are shown to cause inactivation deficiency in electrophysiological measurements. In addition, drug-related conformational changes around the central cavity and pore helix provide a functional mechanism for newly discovered hERG activators.

  10. Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death.

    Science.gov (United States)

    Marks, A R

    2001-04-01

    Calcium (Ca2+) ions are second messengers in signaling pathways in all types of cells. They regulate muscle contraction, electrical signals which determine the cardiac rhythm and cell growth pathways in the heart. In the past decade cDNA cloning has provided clues as to the molecular structure of the intracellular Ca2+ release channels (ryanodine receptors, RyR, and inositol 1,4,5-trisphosphate receptors, IP3R) on the sarcoplasmic and endoplasmic reticulum (SR/ER) and an understanding of how these molecules regulate Ca2+ homeostasis in the heart is beginning to emerge. The intracellular Ca2+ release channels form a distinct class of ion channels distinguished by their structure, size, and function. Both RyRs and IP3Rs have gigantic cytoplasmic domains that serve as scaffolds for modulatory proteins that regulate the channel pore located in the carboxy terminal 10% of the channel sequence. The channels are tetramers comprised of four RyR or IP3R subunits. RyR2 is required for excitation-contraction (EC) coupling in the heart. Using co-sedimentation and co-immunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein mAKAP. We have shown that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (P(o)). In failing human hearts RyR2 is PKA hyperphosphorylated resulting in defective channel function due to increased sensitivity to Ca2+-induced activation. PMID:11273716

  11. Functional suppression of Kcnq1 leads to early sodium channel remodelling and cardiac conduction system dysmorphogenesis

    Czech Academy of Sciences Publication Activity Database

    De la Rosa, A. J.; Domínguez, J. N.; Sedmera, D.; Šaňková, Barbora; Hove-Madsen, L.; Franco, D.; Aránega, A. E.

    2013-01-01

    Roč. 98, č. 3 (2013), s. 504-514. ISSN 0008-6363 R&D Projects: GA ČR(CZ) GA304/08/0615; GA ČR(CZ) GAP302/11/1308; GA ČR(CZ) GD204/09/H084; GA ČR(CZ) GA13-12412S Institutional research plan: CEZ:AV0Z50110509 Institutional support : RVO:67985823 Keywords : ion channels * Long-QT syndrome * sudden death * cardiac hypertrophy Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.808, year: 2013

  12. Anti-addiction drug ibogaine inhibits hERG channels: a cardiac arrhythmia risk.

    Science.gov (United States)

    Koenig, Xaver; Kovar, Michael; Boehm, Stefan; Sandtner, Walter; Hilber, Karlheinz

    2014-03-01

    Ibogaine, an alkaloid derived from the African shrub Tabernanthe iboga, has shown promising anti-addictive properties in animals. Anecdotal evidence suggests that ibogaine is also anti-addictive in humans. Thus, it alleviates drug craving and impedes relapse of drug use. Although not licensed as therapeutic drug, and despite evidence that ibogaine may disturb the rhythm of the heart, this alkaloid is currently used as an anti-addiction drug in alternative medicine. Here, we report that therapeutic concentrations of ibogaine reduce currents through human ether-a-go-go-related gene potassium channels. Thereby, we provide a mechanism by which ibogaine may generate life-threatening cardiac arrhythmias. PMID:22458604

  13. Valve area and cardiac output in aortic stenosis: quantification by magnetic resonance velocity mapping

    DEFF Research Database (Denmark)

    Søndergaard, Lise; Hildebrandt, P; Lindvig, K;

    1993-01-01

    Valve area and cardiac output were determined with magnetic resonance (MR) velocity mapping in 12 patients with aortic stenosis. Heart catheterization, Doppler echocardiography, and indicator dilution were performed for comparison. Left ventricle could be catheterized in only nine patients; in...... material, MR measured a mean area of 1.1 cm2 compared with 1.2 cm2 derived from Doppler echocardiography data, with a mean difference of 0.1 cm2 and [-0.5, +0.6] cm2 as limits of agreement. In 11 patients the cardiac output was quantified by MR to a mean of 4.9 L/min and by indicator dilution to 5.0 L......--the valvular area and the cardiac output--may be quantified, MR has potential to become a clinical tool in assessment of severity in aortic stenosis....

  14. Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations

    DEFF Research Database (Denmark)

    Shamgar, Liora; Ma, Lijuan; Schmitt, Nicole; Haitin, Yoni; Peretz, Asher; Wiener, Reuven; Hirsch, Joel; Pongs, Olaf; Attali, Bernard

    2006-01-01

    The slow IKS K+ channel plays a major role in repolarizing the cardiac action potential and consists of the assembly of KCNQ1 and KCNE1 subunits. Mutations in either KCNQ1 or KCNE1 genes produce the long-QT syndrome, a life-threatening ventricular arrhythmia. Here, we show that long-QT mutations...... inactivation, facilitates channel assembly, and mediates a Ca(2+)-sensitive increase of IKS-current, with a considerable Ca(2+)-dependent left-shift of the voltage-dependence of activation. Coexpression of KCNQ1 or IKS channels with a Ca(2+)-insensitive CaM mutant markedly suppresses the currents and produces...... cannot restore normal levels of IKS channel activity. Our data indicate that in healthy individuals, CaM binding to KCNQ1 is essential for correct channel folding and assembly and for conferring Ca(2+)-sensitive IKS-current stimulation, which increases the cardiac repolarization reserve and hence...

  15. Biophysics and Molecular Biology of Cardiac Ion Channels for the Safety Pharmacologist.

    Science.gov (United States)

    Pugsley, Michael K; Curtis, Michael J; Hayes, Eric S

    2015-01-01

    Cardiac safety pharmacology is a continuously evolving discipline that uses the basic principles of pharmacology in a regulatory-driven process to generate data to inform risk/benefit assessment of a new chemical entity (NCE). The aim of cardiac safety pharmacology is to characterise the pharmacodynamic/pharmacokinetic (PK/PD) relationship of a drug's adverse effects on the heart using continuously evolving methodology. Unlike Toxicology, safety pharmacology includes within its remit a regulatory requirement to predict the risk of rare cardiotoxic (potentially lethal) events such as torsades de pointes (TdP), which is statistically associated with drug-induced changes in the QT interval of the ECG due to blockade of I Kr or K v11.1 current encoded by hERG. This gives safety pharmacology its unique character. The key issues for the safety pharmacology assessment of a drug on the heart are detection of an adverse effect liability, projection of the data into safety margin calculation and clinical safety monitoring. This chapter will briefly review the current cardiac safety pharmacology paradigm outlined in the ICH S7A and ICH S7B guidance documents and the non-clinical models and methods used in the evaluation of new chemical entities in order to define the integrated risk assessment for submission to regulatory authorities. An overview of how the present cardiac paradigm was developed will be discussed, explaining how it was based upon marketing authorisation withdrawal of many non-cardiovascular compounds due to unanticipated proarrhythmic effects. The role of related biomarkers (of cardiac repolarisation, e.g. prolongation of the QT interval of the ECG) will be considered. We will also provide an overview of the 'non-hERG-centric' concepts utilised in the evolving comprehensive in vitro proarrhythmia assay (CIPA) that details conduct of the proposed ion channel battery test, use of human stem cells and application of in silico models to early cardiac safety

  16. Single-Molecule Denaturation Mapping of DNA in Nanofluidic Channels

    Science.gov (United States)

    Reisner, Walter; Larsen, Niels; Silahtaroglu, Asli; Kristensen, Anders; Tommerup, Niels; Tegenfeldt, Jonas O.; Flyvbjerg, Henrik

    2010-03-01

    Nanochannel based DNA stretching can serve as a platform for a new optical mapping technique based on measuring the pattern of partial melting along the extended molecules. We partially melt DNA extended in nanofluidic channels via a combination of local heating and added chemical denaturants. The melted molecules, imaged via a standard fluorescence videomicroscopy setup, exhibit a nonuniform fluorescence profile corresponding to a series of local dips and peaks in the intensity trace along the stretched molecule. We show that this barcode is consistent with the presence of locally melted regions along the molecule and can be explained by calculations of sequence-dependent melting probability. Specifically, we obtain experimental melting profiles for T4, T7, lambda-phage and bacterial artificial chromosome DNA (from human chromosome 12) and compare these profiles to theory. In addition, we demonstrate that the BAC melting profile can be used to align the BAC to its correct position on chromosome 12.

  17. Cardiac magnetic field map topology quantified by Kullback-Leibler entropy identifies patients with hypertrophic cardiomyopathy

    Science.gov (United States)

    Schirdewan, A.; Gapelyuk, A.; Fischer, R.; Koch, L.; Schütt, H.; Zacharzowsky, U.; Dietz, R.; Thierfelder, L.; Wessel, N.

    2007-03-01

    Hypertrophic cardiomyopathy (HCM) is a common primary inherited cardiac muscle disorder, defined clinically by the presence of unexplained left ventricular hypertrophy. The detection of affected patients remains challenging. Genetic testing is limited because only in 50%-60% of all HCM diagnoses an underlying mutation can be found. Furthermore, the disease has a varied clinical course and outcome, with many patients having little or no discernible cardiovascular symptoms, whereas others develop profound exercise limitation and recurrent arrhythmias or sudden cardiac death. Therefore prospective screening of HCM family members is strongly recommended. According to the current guidelines this includes serial echocardiographic and electrocardiographic examinations. In this study we investigated the capability of cardiac magnetic field mapping (CMFM) to detect patients suffering from HCM. We introduce for the first time a combined diagnostic approach based on map topology quantification using Kullback-Leibler (KL) entropy and regional magnetic field strength parameters. The cardiac magnetic field was recorded over the anterior chest wall using a multichannel-LT-SQUID system. CMFM was calculated based on a regular 36 point grid. We analyzed CMFM in patients with confirmed diagnosis of HCM (HCM, n =33, 43.8±13 years, 13 women, 20 men), a control group of healthy subjects (NORMAL, n =57, 39.6±8.9 years; 22 women and 35 men), and patients with confirmed cardiac hypertrophy due to arterial hypertension (HYP, n =42, 49.7±7.9 years, 15 women and 27 men). A subgroup analysis was performed between HCM patients suffering from the obstructive (HOCM, n =19) and nonobstructive (HNCM, n =14) form of the disease. KL entropy based map topology quantification alone identified HCM patients with a sensitivity of 78.8% and specificity of 86.9% (overall classification rate 84.8%). The combination of the KL parameters with a regional field strength parameter improved the overall

  18. Channelized relevance vector machine as a numerical observer for cardiac perfusion defect detection task

    Science.gov (United States)

    Kalayeh, Mahdi M.; Marin, Thibault; Pretorius, P. Hendrik; Wernick, Miles N.; Yang, Yongyi; Brankov, Jovan G.

    2011-03-01

    In this paper, we present a numerical observer for image quality assessment, aiming to predict human observer accuracy in a cardiac perfusion defect detection task for single-photon emission computed tomography (SPECT). In medical imaging, image quality should be assessed by evaluating the human observer accuracy for a specific diagnostic task. This approach is known as task-based assessment. Such evaluations are important for optimizing and testing imaging devices and algorithms. Unfortunately, human observer studies with expert readers are costly and time-demanding. To address this problem, numerical observers have been developed as a surrogate for human readers to predict human diagnostic performance. The channelized Hotelling observer (CHO) with internal noise model has been found to predict human performance well in some situations, but does not always generalize well to unseen data. We have argued in the past that finding a model to predict human observers could be viewed as a machine learning problem. Following this approach, in this paper we propose a channelized relevance vector machine (CRVM) to predict human diagnostic scores in a detection task. We have previously used channelized support vector machines (CSVM) to predict human scores and have shown that this approach offers better and more robust predictions than the classical CHO method. The comparison of the proposed CRVM with our previously introduced CSVM method suggests that CRVM can achieve similar generalization accuracy, while dramatically reducing model complexity and computation time.

  19. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Gavillet, Bruno; van Bemmelen, Miguel X; Cordonier, Sophie; Thomas, Marc A; Staub, Olivier; Abriel, Hugues

    2006-01-01

    In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull-d...

  20. [Inhibition of oxygen free radicals in potassium channels of cardiac myocytes and the action of salvianolic acid A].

    Science.gov (United States)

    Bao, G

    1993-10-01

    By using the patch clamp technique, the effect of oxygen free radicals on the single potassium channels of cardiac papillary muscle cells were studied, as well as the action of salvianolic acid A. It was found that xanthane-xanthane oxidase generated oxygen free radicals could apparently inhibited the unitary currents of the single potassium channel activity. This inhibition was reversed by salvianolic acid A, which is an effective component extracted from Salvia miltiorrhiza. PMID:8168213

  1. State of the Art: Clinical Applications of Cardiac T1 Mapping.

    Science.gov (United States)

    Schelbert, Erik B; Messroghli, Daniel R

    2016-03-01

    While cardiovascular magnetic resonance (MR) has become the noninvasive tool of choice for the assessment of myocardial viability and for the detection of acute myocardial edema, cardiac T1 mapping is believed to further extend the ability of cardiovascular MR to characterize the myocardium. Fundamentally, cardiovascular MR can improve diagnosis of disease that historically has been challenging to establish with other imaging modalities. For example, decreased native T1 values appear highly specific to detect and quantify disease severity related to myocardial iron overload states or glycosphingolipid accumulation in Anderson-Fabry disease, whereas high native T1 values are observed with edema, amyloid, and other conditions. Cardiovascular MR can also improve the assessment of prognosis with parameters that relate to myocardial structure and composition that complement the familiar functional parameters around which contemporary cardiology decision making revolves. In large cohorts, extracellular volume fraction (ECV) has been shown to quantify the full extent of myocardial fibrosis in noninfarcted myocardium. ECV may predict outcomes at least as effectively as left ventricular ejection fraction. This uncommon statistical observation (of potentially being more strongly associated with outcomes than ejection fraction) suggests prime biologic importance for the cardiac interstitium that may rank highly in the hierarchy of vast myocardial changes occurring in cardiac pathophysiology. This article presents current and developing clinical applications of cardiac T1 mapping and reviews the existing evidence on their diagnostic and prognostic value in various clinical conditions. This article also contextualizes these advances and explores how T1 mapping and ECV may affect major "global" issues such as diagnosis of disease, risk stratification, and paradigms of disease, and ultimately how we conceptualize patient vulnerability. PMID:26885733

  2. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis.

    Science.gov (United States)

    Tunwell, R E; Wickenden, C; Bertrand, B M; Shevchenko, V I; Walsh, M B; Allen, P D; Lai, F A

    1996-09-01

    Rapid Ca2+ efflux from intracellular stores during cardiac muscle excitation-contraction coupling is mediated by the ryanodine-sensitive calcium-release channel, a large homotetrameric complex present in the sarcoplasmic reticulum. We report here the identification, primary structure and topological analysis of the ryanodine receptor-calcium release channel from human cardiac muscle (hRyR-2). Consistent with sedimentation and immunoblotting studies on the hRyR-2 protein, sequence analysis of ten overlapping cDNA clones reveals an open reading frame of 14901 nucleotides encoding a protein of 4967 amino acid residues with a predicted molecular mass of 564 569 Da for hRyR-2. In-frame insertions corresponding to eight and ten amino acid residues were found in two of the ten cDNAs isolated, suggesting that novel, alternatively spliced transcripts of the hRyR-2 gene might exist. Six hydrophobic stretches, which are present within the hRyR-2 C-terminal 500 amino acids and are conserved in all RyR sequences, may be involved in forming the transmembrane domain that constitutes the Ca(2+)-conducting pathway, in agreement with competitive ELISA studies with a RyR-2-specific antibody. Sequence alignment of hRyR-2 with other RyR isoforms indicates a high level of overall identity within the RyR family, with the exception of two important regions that exhibit substantial variability. Phylogenetic analysis suggests that the RyR-2 isoform diverged from a single ancestral gene before the RyR-1 and RyR-3 isoforms to form a distinct branch of the RyR family tree. PMID:8809036

  3. Mapping suspected buried channels using gravity: Examples from southwest Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Keighley, K.E.; Atekwana, E.A.; Sauck, W.A. (Western Michigan Univ., Kalamazoo, MI (United States). Dept. of Geology)

    1994-04-01

    This study documents the successful application of the gravity method in mapping suspected buried bedrock valleys at three sites in southwest Michigan. The first site is located in Benton Harbor, Berrien County. Gravity surveys were conducted along the Jean Klock Park as part of an ongoing coastal research study of the Lake Michigan shoreline. Previous Ground Penetrating Radar (GPR) studies at this site had suggested the presence of a buried valley. The results of the gravity survey confirmed the existence of a buried valley approximately 30--40 m deep and at least 2,000 m wide, which is in good agreement with information from drill cores suggesting a possible ancient river system. A detailed gravity survey was conducted at the second site located in Schoolcraft Township, Kalamazoo County, where the heavy use of pesticides has resulted in the contamination of the upper aquifers. Preliminary results suggest the presence of a broad shallow valley at least 25 m deep. Gravity surveys at the third site located southeast of the Kavco Landfill, Barry County also suggests the presence of a buried valley oriented NE-SW, confirming the interpretations of an earlier electrical resistivity study. It is possible that this channel controls groundwater flow and facilitates the transport of contaminants from the landfill to the surrounding areas.

  4. Calcineurin Controls Voltage-Dependent-Inactivation (VDI) of the Normal and Timothy Cardiac Channels.

    Science.gov (United States)

    Cohen-Kutner, Moshe; Yahalom, Yfat; Trus, Michael; Atlas, Daphne

    2012-01-01

    Ca(2+)-entry in the heart is tightly controlled by Cav1.2 inactivation, which involves Ca(2+)-dependent inactivation (CDI) and voltage-dependent inactivation (VDI) components. Timothy syndrome, a subtype-form of congenital long-QT syndrome, results from a nearly complete elimination of VDI by the G406R mutation in the α(1)1.2 subunit of Cav1.2. Here, we show that a single (A1929P) or a double mutation (H1926A-H1927A) within the CaN-binding site at the human C-terminal tail of α(1)1.2, accelerate the inactivation rate and enhances VDI of both wt and Timothy channels. These results identify the CaN-binding site as the long-sought VDI-regulatory motif of the cardiac channel. The substantial increase in VDI and the accelerated inactivation caused by the selective inhibitors of CaN, cyclosporine A and FK-506, which act at the same CaN-binding site, further support this conclusion. A reversal of enhanced-sympathetic tone by VDI-enhancing CaN inhibitors could be beneficial for improving Timothy syndrome complications such as long-QT and autism. PMID:22511998

  5. The effects of paeoniflorin monomer of a Chinese herb on cardiac ion channels

    Institute of Scientific and Technical Information of China (English)

    WANG Rong-rong; LI Ning; ZHANG Yin-hui; RAN Yu-qin; PU Jie-lin

    2011-01-01

    Background Because of the potential proarrhythmic effect of current antiarrhythmic drugs, it is still desirable to find safer antiarrhythmic drugs worldwide. Paeoniflorin is one of the Chinese herb monomers that have different effects on many ion channels. The present study aimed to determine the effects of paeoniflorin on cardiac ion channels.Methods Whole-cell patch-clamp technique was used to record ion channel currents. L-type calcium current (/Ca-L),inward rectifier potassium current (/K1), and transient outward potassium current (/to1) were studied in rat ventricular myocytes and sodium current (/Na), slow delayed rectifier current (/Ks), and HERG current (/Kr) were investigated in transfected human embryonic kidney 293 cells.Results One hundred μmol/L paeoniflorin reduced the peak /ca-L by 40.29% at the test potential of ±10 mV (from (-9.78±0.52) pA/pF to (-5.84±0.89) pA/pF, n=5, P=0.028). The steady-state activation curve was shifted to more positive potential in the presence of the drug. The half activation potentials were (-11.22±0.27) mV vs. (-5.95±0.84) mV (n=5,P=0.007), respectively. However, the steady-state inactivation and the time course of recovery from inactivation were not changed. One hundred μmol/L paeoniflorin completely inhibited the peak /Na and the effect was reversible. Moreover,paeoniflorin inhibited the /K1 by 30.13% at the test potential of -100 mV (from (-25.26±8.21) pA/pF to (-17.65±6.52)pA/pF, n=6, F=0.015) without effects on the reversal potential and the rectification property. By contrast, 100 μmol/L paeoniflorin had no effects on/to1, /Ks or /Kr channels.Conclusions The study demonstrated that paeoniflorin blocked /Ca-L, /Na, and /Kf without affecting /to1, /Ks, or /Kr. The multi-channel block effect may account for its antiarrhythmic effects with less proarrhythmic potential.

  6. B0 mapping with multi-channel RF coils at high field.

    Science.gov (United States)

    Robinson, Simon; Jovicich, Jorge

    2011-10-01

    Mapping the static magnetic field via the phase evolution over gradient echo scans acquired at two or more echo times is an established method. A number of possibilities exist, however, for combining phase data from multi-channel coils, denoising and thresholding field maps for high field applications. Three methods for combining phase images when no body/volume coil is available are tested: (i) Hermitian product, (ii) phase-matching over channels, and (iii) a new approach based on calculating separate field maps for each channel. The separate channel method is shown to yield field maps with higher signal-to-noise ratio than the Hermitian product and phase-matching methods and fewer unwrapping errors at low signal-to-noise ratio. Separate channel combination also allows unreliable voxels to be identified via the standard deviation over channels, which is found to be the most effective means of denoising field maps. Tests were performed using multichannel coils with between 8 and 32 channels at 3 T, 4 T, and 7 T. For application in the correction of distortions in echo-planar images, a formulation is proposed for reducing the local gradient of field maps to eliminate signal pile-up or swapping artifacts. Field maps calculated using these techniques, implemented in a freely available MATLAB toolbox, provide the basis for an effective correction for echo-planar imaging distortions at high fields. PMID:21608027

  7. A new classifier-based strategy for in-silico ion-channel cardiac drug safety assessment

    OpenAIRE

    Mistry, Hitesh B.; Davies, Mark R.; Di Veroli, Giovanni Y.

    2015-01-01

    There is currently a strong interest in using high-throughput in-vitro ion-channel screening data to make predictions regarding the cardiac toxicity potential of a new compound in both animal and human studies. A recent FDA think tank encourages the use of biophysical mathematical models of cardiac myocytes for this prediction task. However, it remains unclear whether this approach is the most appropriate. Here we examine five literature data-sets that have been used to support the use of fou...

  8. Mapping the course of an englacial channel using ground-penetrating radar at Hansbreen, Svalbard

    Science.gov (United States)

    Murray, T.; Benn, D.; Maghami-Nick, F.; Adamek, A.

    2007-12-01

    A series of surface ground-penetrating radar profiles at 100 MHz have been collected over an englacial channel system 'Crystal Cave' on the tidewater glacier, Hansbreen, Svalbard. The aim of the surveys was assess radar as a method for determining the size and shape of the channel system and its fill, and to map inaccessible parts of the channel system. It is possible to descend into the main channels of the system from moulins along its course and a detailed map of the accessible regions has been made. This mapping allows ground-truthing of the radar interpretation. The channel system consists of multiple channels at different elevations. The channels generally have low gradient sections linked by near vertical shafts. In common with other channels in Svalbard glaciers, the channels probably initiated as a supraglacial features progressively downcutting into the ice and filling with compressed snow from above. We show that ground-penetrating radar can be successfully used to determine the depth, shape, and water content of englacial channels because of the strong contrast in electrical properties between water, ice, and air. This technique has exciting possibilities for the remote monitoring of inaccessible englacial channels. Members of the Polish Station at Hornsund are thanked for their hospitality and logistic support.

  9. Cardiac magnetic field mapping quantified by Kullback–Leibler entropy detects patients with coronary artery disease

    International Nuclear Information System (INIS)

    Cardiac magnetic field mapping (CMFM) is a noninvasive method to determine cardiac electrical activity. We analysed the utility of CMFM for the detection of patients with coronary artery disease (CAD) without subjecting them to stress. We studied 59 healthy control subjects and 101 patients with CAD without previous myocardial infarction (MI). The heart's magnetic field was recorded over the anterior chest wall using a multichannel magnetic measurement system with axial second-order gradiometers. The evaluation of CMFM was based on comparison of the 'ideal' group mean maps of young healthy subjects and maps of examined individuals. Three measures of similarity were considered: Kullback–Leibler (KL) entropy, normalized residual magnetic field strength and deviations in the magnetic field map orientation. The mean values of these parameters during the depolarization and repolarization were used for further classification with the help of logistic regression. The feature set based on the KL-entropy demonstrated the best classification results (sensitivity/specificity of 85/80%), followed by the residual feature (85/75%) and the magnetic field orientation feature (80/73%) sets. The forward stepwise technique was applied to select the best set of features from the combined feature set. Two parameters were selected, namely the KL-entropy for the repolarization period and the residual parameter for the depolarization period. The classification based on these parameters demonstrated a sensitivity of 88% and a specificity of 88% for the distinction of CAD patients from the control subjects. The area under the receiver operator curve was 94%. Hence, we suggest that CMFM evaluation based on KL-entropy is a promising technique to identify patients with CAD

  10. Distinct functional defect of three novel Brugada syndrome related cardiac sodium channel mutations

    Directory of Open Access Journals (Sweden)

    Juang Jyh-Ming

    2009-02-01

    Full Text Available Abstract The Brugada syndrome is characterized by ST segment elevation in the right precodial leads V1-V3 on surface ECG accompanied by episodes of ventricular fibrillation causing syncope or even sudden death. The molecular and cellular mechanisms that lead to Brugada syndrome are not yet completely understood. However, SCN5A is the most well known responsible gene that causes Brugada syndrome. Until now, more than a hundred mutations in SCN5A responsible for Brugada syndrome have been described. Functional studies of some of the mutations have been performed and show that a reduction of human cardiac sodium current accounts for the pathogenesis of Brugada syndrome. Here we reported three novel SCN5A mutations identified in patients with Brugada syndrome in Taiwan (p.I848fs, p.R965C, and p.1876insM. Their electrophysiological properties were altered by patch clamp analysis. The p.I848fs mutant generated no sodium current. The p.R965C and p.1876insM mutants produced channels with steady state inactivation shifted to a more negative potential (9.4 mV and 8.5 mV respectively, and slower recovery from inactivation. Besides, the steady state activation of p.1876insM was altered and was shifted to a more positive potential (7.69 mV. In conclusion, the SCN5A channel defect related to Brugada syndrome might be diverse but all resulted in a decrease of sodium current.

  11. Down-regulation of the cardiac sarcoplasmic reticulum ryanodine channel in severely food-restricted rats

    Directory of Open Access Journals (Sweden)

    V.A. Vizotto

    2007-01-01

    Full Text Available We have shown that myocardial dysfunction induced by food restriction is related to calcium handling. Although cardiac function is depressed in food-restricted animals, there is limited information about the molecular mechanisms that lead to this abnormality. The present study evaluated the effects of food restriction on calcium cycling, focusing on sarcoplasmic Ca2+-ATPase (SERCA2, phospholamban (PLB, and ryanodine channel (RYR2 mRNA expressions in rat myocardium. Male Wistar-Kyoto rats, 60 days old, were submitted to ad libitum feeding (control rats or 50% diet restriction for 90 days. The levels of left ventricle SERCA2, PLB, and RYR2 were measured using semi-quantitative RT-PCR. Body and ventricular weights were reduced in 50% food-restricted animals. RYR2 mRNA was significantly decreased in the left ventricle of the food-restricted group (control = 5.92 ± 0.48 vs food-restricted group = 4.84 ± 0.33, P < 0.01. The levels of SERCA2 and PLB mRNA were similar between groups (control = 8.38 ± 0.44 vs food-restricted group = 7.96 ± 0.45, and control = 1.52 ± 0.06 vs food-restricted group = 1.53 ± 0.10, respectively. Down-regulation of RYR2 mRNA expressions suggests that chronic food restriction promotes abnormalities in sarcoplasmic reticulum Ca2+ release.

  12. Amino acid substitutions in the FXYD motif enhance phospholemman-induced modulation of cardiac L-type calcium channels.

    Science.gov (United States)

    Guo, Kai; Wang, Xianming; Gao, Guofeng; Huang, Congxin; Elmslie, Keith S; Peterson, Blaise Z

    2010-11-01

    We have found that phospholemman (PLM) associates with and modulates the gating of cardiac L-type calcium channels (Wang et al., Biophys J 98: 1149-1159, 2010). The short 17 amino acid extracellular NH(2)-terminal domain of PLM contains a highly conserved PFTYD sequence that defines it as a member of the FXYD family of ion transport regulators. Although we have learned a great deal about PLM-dependent changes in calcium channel gating, little is known regarding the molecular mechanisms underlying the observed changes. Therefore, we investigated the role of the PFTYD segment in the modulation of cardiac calcium channels by individually replacing Pro-8, Phe-9, Thr-10, Tyr-11, and Asp-12 with alanine (P8A, F9A, T10A, Y11A, D12A). In addition, Asp-12 was changed to lysine (D12K) and cysteine (D12C). As expected, wild-type PLM significantly slows channel activation and deactivation and enhances voltage-dependent inactivation (VDI). We were surprised to find that amino acid substitutions at Thr-10 and Asp-12 significantly enhanced the ability of PLM to modulate Ca(V)1.2 gating. T10A exhibited a twofold enhancement of PLM-induced slowing of activation, whereas D12K and D12C dramatically enhanced PLM-induced increase of VDI. The PLM-induced slowing of channel closing was abrogated by D12A and D12C, whereas D12K and T10A failed to impact this effect. These studies demonstrate that the PFXYD motif is not necessary for the association of PLM with Ca(V)1.2. Instead, since altering the chemical and/or physical properties of the PFXYD segment alters the relative magnitudes of opposing PLM-induced effects on Ca(V)1.2 channel gating, PLM appears to play an important role in fine tuning the gating kinetics of cardiac calcium channels and likely plays an important role in shaping the cardiac action potential and regulating Ca(2+) dynamics in the heart. PMID:20720179

  13. A First Generation Bac-Based Physical Map of the Channel Catfish Genome

    Science.gov (United States)

    Background: Channel catfish, Ictalurus punctatus, is the leading species in North American aquaculture. Genetic improvement of catfish is performed through selective breeding, and genomic tools will help improve selection efficiency. A physical map is needed to integrate the genetic map with the kar...

  14. The NADPH Oxidase NOX4 Drives Cardiac Differentiation: Role in Regulating Cardiac Transcription Factors and MAP Kinase Activation

    OpenAIRE

    Li, Jian; Stouffs, Michael; Serrander, Lena; Banfi, Botond; Bettiol, Esther; Charnay, Yves; Steger, Klaus; Krause, Karl-Heinz; Jaconi, Marisa E

    2006-01-01

    Reactive oxygen species (ROS) generated by the NOX family of NADPH oxidases have been described to act as second messengers regulating cell growth and differentiation. However, such a function has hitherto not been convincingly demonstrated. We investigated the role of NOX-derived ROS in cardiac differentiation using mouse embryonic stem cells. ROS scavengers prevented the appearance of spontaneously beating cardiac cells within embryoid bodies. Down-regulation of NOX4, the major NOX isoform ...

  15. Tetrodotoxin Blockade on Canine Cardiac L-Type Ca2+ Channels Depends on pH and Redox Potential

    Directory of Open Access Journals (Sweden)

    Bence Hegyi

    2013-06-01

    Full Text Available Tetrodotoxin (TTX is believed to be one of the most selective inhibitors of voltage-gated fast Na+ channels in excitable tissues. Recently, however, TTX has been shown to block L-type Ca2+ current (ICa in canine cardiac cells. In the present study, the TTX-sensitivity of ICa was studied in isolated canine ventricular myocytes as a function of (1 channel phosphorylation, (2 extracellular pH and (3 the redox potential of the bathing medium using the whole cell voltage clamp technique. Fifty-five micromoles of TTX (IC50 value obtained under physiological conditions caused 60% ± 2% inhibition of ICa in acidic (pH = 6.4, while only a 26% ± 2% block in alkaline (pH = 8.4 milieu. Similarly, the same concentration of TTX induced 62% ± 6% suppression of ICa in a reductant milieu (containing glutathione + ascorbic acid + dithiothreitol, 1 mM each, in contrast to the 31% ± 3% blockade obtained in the presence of a strong oxidant (100 μM H2O2. Phosphorylation of the channel protein (induced by 3 μM forskolin failed to modify the inhibiting potency of TTX; an IC50 value of 50 ± 4 μM was found in forskolin. The results are in a good accordance with the predictions of our model, indicating that TTX binds, in fact, to the selectivity filter of cardiac L-type Ca channels.

  16. Cardiac arrhythmogenesis in urban air pollution: Optical mapping in a tissue-engineered model

    Science.gov (United States)

    Bien, Harold H.

    Recent epidemiological evidence has implicated particulate matter air pollution in cardiovascular disease. We hypothesized that inflammatory mediators released from lung macrophages after exposure to particulate matter predisposes the heart to disturbances in rhythm. Using a rational design approach, a fluorescent optical mapping system was devised to image spatiotemporal patterns of excitation in a tissue engineered model of cardiac tissue. Algorithms for automated data analysis and characterization of rhythm stability were developed, implemented, and verified. Baseline evaluation of spatiotemporal instability patterns in normal cardiac tissue was performed for comparison to an in-vitro model of particulate matter air pollution exposure. Exposure to particulate-matter activated alveolar macrophage conditioned media resulted in paradoxical functional changes more consistent with improved growth. These findings might be indicative of a "stress" response to particulate-matter induced pulmonary inflammation, or may be specific to the animal model (neonatal rat) employed. In the pursuit of elucidating the proposed pathway, we have also furthered our understanding of fundamental behaviors of arrhythmias in general and established a model where further testing might ultimately reveal the mechanism for urban air pollution associated cardiovascular morbidity.

  17. A first generation BAC-based physical map of the channel catfish genome

    Directory of Open Access Journals (Sweden)

    Waldbieser Geoffrey C

    2007-02-01

    Full Text Available Abstract Background Channel catfish, Ictalurus punctatus, is the leading species in North American aquaculture. Genetic improvement of catfish is performed through selective breeding, and genomic tools will help improve selection efficiency. A physical map is needed to integrate the genetic map with the karyotype and to support fine mapping of phenotypic trait alleles such as Quantitative Trait Loci (QTL and the effective positional cloning of genes. Results A genome-wide physical map of the channel catfish was constructed by High-Information-Content Fingerprinting (HICF of 46,548 Bacterial Artificial Chromosomes (BAC clones using the SNaPshot technique. The clones were assembled into contigs with FPC software. The resulting assembly contained 1,782 contigs and covered an estimated physical length of 0.93 Gb. The validity of the assembly was demonstrated by 1 anchoring 19 of the largest contigs to the microsatellite linkage map 2 comparing the assembly of a multi-gene family to Restriction Fragment Length Polymorphism (RFLP patterns seen in Southern blots, and 3 contig sequencing. Conclusion This is the first physical map for channel catfish. The HICF technique allowed the project to be finished with a limited amount of human resource in a high throughput manner. This physical map will greatly facilitate the detailed study of many different genomic regions in channel catfish, and the positional cloning of genes controlling economically important production traits.

  18. A new classifier-based strategy for in-silico ion-channel cardiac drug safety assessment

    Directory of Open Access Journals (Sweden)

    Hitesh eMistry

    2015-03-01

    Full Text Available There is currently a strong interest in using high-throughput in-vitro ion-channel screening data to make predictions regarding the cardiac toxicity potential of a new compound in both animal and human studies. A recent FDA think tank encourages the use of biophysical mathematical models of cardiac myocytes for this prediction task. However, it remains unclear whether this approach is the most appropriate. Here we examine five literature data-sets that have been used to support the use of four different biophysical models and one statistical model for predicting cardiac toxicity in numerous species using various endpoints. We propose a simple model that represents the balance between repolarisation and depolarisation forces and compare the predictive power of the model against the original results (leave-one-out cross-validation. Our model showed equivalent performance when compared to the four biophysical models and one statistical model. We therefore conclude that this approach should be further investigated in the context of early cardiac safety screening when in-vitro potency data is generated.

  19. Computational modeling of voltage-gated Ca channels inhibition: identification of different effects on uterine and cardiac action potentials

    Directory of Open Access Journals (Sweden)

    Wing Chiu eTong

    2014-10-01

    Full Text Available The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs. Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models – of uterine smooth muscle cells (USMC, cardiac sinoatrial node cells (SAN and ventricular cells – to investigate the relative effects of reducing two important voltage-gated Ca currents – the L-type (ICaL and T-type (ICaT Ca currents. Reduction of ICaL (10% alone, or ICaT (40% alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine

  20. Inhibition of the cardiac Na(+) channel α-subunit Nav1.5 by propofol and dexmedetomidine.

    Science.gov (United States)

    Stoetzer, Carsten; Reuter, Svenja; Doll, Thorben; Foadi, Nilufar; Wegner, Florian; Leffler, Andreas

    2016-03-01

    Propofol and dexmedetomidine are very commonly used sedative agents. However, several case reports demonstrated cardiovascular adverse effects of these two sedatives. Both substances were previously demonstrated to quite potently inhibit neuronal voltage-gated Na(+) channels. Thus, a possible molecular mechanism for some of their cardiac side effects is an inhibition of cardiac voltage gated Na(+) channels. In this study, we therefore explored the effects of propofol and dexmedetomidine on the cardiac predominant Na(+) channel α-subunit Nav1.5. Effects of propofol and dexmedetomidine were investigated on constructs of the human α-subunit Nav1.5 stably expressed in HEK-293 cells by means of whole-cell patch clamp recordings. Both agents induced a concentration-dependent tonic inhibition of Nav1.5. The calculated IC50 value for propofol was 228 ± 10 μM, and for dexmedetomidine 170 ± 20 μM. Tonic block only marginally increased on inactivated channels, and a weak use-dependent block at 10 Hz was observed for dexmedetomidine (16 ± 2 % by 100 μM). The voltage dependencies of fast and slow inactivation as well as the time course of recovery from inactivation were shifted by both propofol and dexmedetomidine. Propofol (IC50 126 ± 47 μM) and dexmedetomidine (IC50 182 ± 27 μM) blocked the persistent sodium current induced by veratradine. Finally, the local-anesthetic (LA)-insensitive mutant Nav1.5-F1760A exhibited reduced tonic and use-dependent block by both substances. Dexmedetomidine was generally more potent as compared to propofol. Propofol and dexmedetomidine seem to interact with the LA-binding site to inhibit the cardiac Na(+) channel Nav1.5 in a state-dependent manner. These data suggest that Nav1.5 is a hitherto unrecognized molecular component of some cardiovascular side effects of these sedative agents. PMID:26667357

  1. Kinetic model of Nav1.5 channel provides a subtle insight into slow inactivation associated excitability in cardiac cells.

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    Full Text Available Voltage-gated sodium channel Nav1.5 has been linked to the cardiac cell excitability and a variety of arrhythmic syndromes including long QT, Brugada, and conduction abnormalities. Nav1.5 exhibits a slow inactivation, corresponding to a duration-dependent bi-exponential recovery, which is often associated with various arrhythmia syndromes. However, the gating mechanism of Nav1.5 and the physiological role of slow inactivation in cardiac cells remain elusive. Here a 12-state two-step inactivation Markov model was successfully developed to depict the gating kinetics of Nav1.5. This model can simulate the Nav1.5 channel in not only steady state processes, but also various transient processes. Compared with the simpler 8-state model, this 12-state model is well-behaved in simulating and explaining the processes of slow inactivation and slow recovery. This model provides a good framework for further studying the gating mechanism and physiological role of sodium channel in excitable cells.

  2. Toward cardiac electrophysiological mapping based on micro-Tesla NMR: a novel modality for localizing the cardiac reentry

    OpenAIRE

    Kiwoong Kim

    2012-01-01

    Matching the proton magnetic resonance frequency to the frequency of a periodic electrophysiological excitation of myocardium enables direct localization of the cardiac reentry by magnetic resonance imaging techniques. The feasibility of this new idea has been demonstrated by conducting a numerical simulation based on a realistic heart model and experimental parameters in SQUID-based micro-Tesla NMR.

  3. Toward cardiac electrophysiological mapping based on micro-Tesla NMR: a novel modality for localizing the cardiac reentry

    Science.gov (United States)

    Kim, Kiwoong

    2012-06-01

    Matching the proton magnetic resonance frequency to the frequency of a periodic electrophysiological excitation of myocardium enables direct localization of the cardiac reentry by magnetic resonance imaging techniques. The feasibility of this new idea has been demonstrated by conducting a numerical simulation based on a realistic heart model and experimental parameters in SQUID-based micro-Tesla NMR.

  4. Toward cardiac electrophysiological mapping based on micro-Tesla NMR: a novel modality for localizing the cardiac reentry

    Directory of Open Access Journals (Sweden)

    Kiwoong Kim

    2012-06-01

    Full Text Available Matching the proton magnetic resonance frequency to the frequency of a periodic electrophysiological excitation of myocardium enables direct localization of the cardiac reentry by magnetic resonance imaging techniques. The feasibility of this new idea has been demonstrated by conducting a numerical simulation based on a realistic heart model and experimental parameters in SQUID-based micro-Tesla NMR.

  5. A proton leak current through the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype.

    Directory of Open Access Journals (Sweden)

    Pascal Gosselin-Badaroudine

    Full Text Available Cardiac Na(+ channels encoded by the SCN5A gene are essential for initiating heart beats and maintaining a regular heart rhythm. Mutations in these channels have recently been associated with atrial fibrillation, ventricular arrhythmias, conduction disorders, and dilated cardiomyopathy (DCM.We investigated a young male patient with a mixed phenotype composed of documented conduction disorder, atrial flutter, and ventricular tachycardia associated with DCM. Further family screening revealed DCM in the patient's mother and sister and in three of the mother's sisters. Because of the complex clinical phenotypes, we screened SCN5A and identified a novel mutation, R219H, which is located on a highly conserved region on the fourth helix of the voltage sensor domain of Na(v1.5. Three family members with DCM carried the R219H mutation.The wild-type (WT and mutant Na(+ channels were expressed in a heterologous expression system, and intracellular pH (pHi was measured using a pH-sensitive electrode. The biophysical characterization of the mutant channel revealed an unexpected selective proton leak with no effect on its biophysical properties. The H(+ leak through the mutated Na(v1.5 channel was not related to the Na(+ permeation pathway but occurred through an alternative pore, most probably a proton wire on the voltage sensor domain.We propose that acidification of cardiac myocytes and/or downstream events may cause the DCM phenotype and other electrical problems in affected family members. The identification of this clinically significant H(+ leak may lead to the development of more targeted treatments.

  6. Inherited Cardiac Diseases Caused by Mutations in the Nav1.5 Sodium Channel

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Jacob; Winkel, Bo Gregers; Grunnet, Morten;

    2009-01-01

    Cardiac Diseases Caused by SCN5A Mutations. A prerequisite for a normal cardiac function is a proper generation and propagation of electrical impulses. Contraction of the heart is obtained through a delicate matched transmission of the electrical impulses. A pivotal element of the impulse propaga......-QT syndrome, Brugada syndrome, and AF, reported to be associated with mutations in SCN5A, are thoroughly described. (J Cardiovasc Electrophysiol, Vol. pp. 1-9)....

  7. Activation of KATP channels by Na/K pump in isolated cardiac myocytes and giant membrane patches.

    OpenAIRE

    Kabakov, A Y

    1998-01-01

    Strophanthidin inhibits KATP channels in 2,4-dinitrophenol-poisoned heart cells (). The current study shows that the Na/K pump interacts with KATP current (IK-ATP) via submembrane ATP depletion in isolated giant membrane patches and in nonpoisoned guinea pig cardiac cells in whole-cell configuration. IK-ATP was inhibited by ATP, glibenclamide, or intracellular Cs+. Na/K pump inactivation by substitution of cytoplasmic Na+ for Li+ or N-methylglucamine decreased both IK-ATP by 1/3 (1 mM ATP, ze...

  8. Treatment of cardiac arrhythmias in a mouse model of Rett syndrome with Na+-channel-blocking antiepileptic drugs

    Directory of Open Access Journals (Sweden)

    José A. Herrera

    2015-04-01

    Full Text Available One quarter of deaths associated with Rett syndrome (RTT, an X-linked neurodevelopmental disorder, are sudden and unexpected. RTT is associated with prolonged QTc interval (LQT, and LQT-associated cardiac arrhythmias are a potential cause of unexpected death. The standard of care for LQT in RTT is treatment with β-adrenergic antagonists; however, recent work indicates that acute treatment of mice with RTT with a β-antagonist, propranolol, does not prevent lethal arrhythmias. In contrast, acute treatment with the Na+ channel blocker phenytoin prevented arrhythmias. Chronic dosing of propranolol may be required for efficacy; therefore, we tested the efficacy of chronic treatment with either propranolol or phenytoin on RTT mice. Phenytoin completely abolished arrhythmias, whereas propranolol showed no benefit. Surprisingly, phenytoin also normalized weight and activity, but worsened breathing patterns. To explore the role of Na+ channel blockers on QT in people with RTT, we performed a retrospective analysis of QT status before and after Na+ channel blocker antiepileptic therapies. Individuals with RTT and LQT significantly improved their QT interval status after being started on Na+ channel blocker antiepileptic therapies. Thus, Na+ channel blockers should be considered for the clinical management of LQT in individuals with RTT.

  9. Treatment of cardiac arrhythmias in a mouse model of Rett syndrome with Na+-channel-blocking antiepileptic drugs.

    Science.gov (United States)

    Herrera, José A; Ward, Christopher S; Pitcher, Meagan R; Percy, Alan K; Skinner, Steven; Kaufmann, Walter E; Glaze, Daniel G; Wehrens, Xander H T; Neul, Jeffrey L

    2015-04-01

    One quarter of deaths associated with Rett syndrome (RTT), an X-linked neurodevelopmental disorder, are sudden and unexpected. RTT is associated with prolonged QTc interval (LQT), and LQT-associated cardiac arrhythmias are a potential cause of unexpected death. The standard of care for LQT in RTT is treatment with β-adrenergic antagonists; however, recent work indicates that acute treatment of mice with RTT with a β-antagonist, propranolol, does not prevent lethal arrhythmias. In contrast, acute treatment with the Na(+) channel blocker phenytoin prevented arrhythmias. Chronic dosing of propranolol may be required for efficacy; therefore, we tested the efficacy of chronic treatment with either propranolol or phenytoin on RTT mice. Phenytoin completely abolished arrhythmias, whereas propranolol showed no benefit. Surprisingly, phenytoin also normalized weight and activity, but worsened breathing patterns. To explore the role of Na(+) channel blockers on QT in people with RTT, we performed a retrospective analysis of QT status before and after Na(+) channel blocker antiepileptic therapies. Individuals with RTT and LQT significantly improved their QT interval status after being started on Na(+) channel blocker antiepileptic therapies. Thus, Na(+) channel blockers should be considered for the clinical management of LQT in individuals with RTT. PMID:25713300

  10. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    International Nuclear Information System (INIS)

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  11. Depolarizing channel as a completely positive map with memory

    International Nuclear Information System (INIS)

    The prevailing description for dissipative quantum dynamics is given by the Lindblad form of a Markovian master equation, used under the assumption that memory effects are negligible. However, in certain physical situations, the master equation is essentially of a non-Markovian nature. In this paper we examine master equations that possess a memory kernel, leading to a replacement of white noise by colored noise. The conditions under which this leads to a completely positive, trace-preserving map are discussed for an exponential memory kernel

  12. Molecular aspects of adrenergic modulation of cardiac L-type Ca2+ channels.

    NARCIS (Netherlands)

    Heyden, M.A. van der; Wijnhoven, T.J.M.; Opthof, T.

    2005-01-01

    L-type Ca(2+) channels are predominantly regulated by beta-adrenergic stimulation, enhancing L-type Ca(2+) current by increasing the mean channel open time and/or the opening probability of functional Ca(2+) channels. Stimulation of beta-adrenergic receptors (ARs) results in an increased cyclic aden

  13. A preprocessing tool for removing artifact from cardiac RR interval recordings using three-dimensional spatial distribution mapping.

    Science.gov (United States)

    Stapelberg, Nicolas J C; Neumann, David L; Shum, David H K; McConnell, Harry; Hamilton-Craig, Ian

    2016-04-01

    Artifact is common in cardiac RR interval data that is recorded for heart rate variability (HRV) analysis. A novel algorithm for artifact detection and interpolation in RR interval data is described. It is based on spatial distribution mapping of RR interval magnitude and relationships to adjacent values in three dimensions. The characteristics of normal physiological RR intervals and artifact intervals were established using 24-h recordings from 20 technician-assessed human cardiac recordings. The algorithm was incorporated into a preprocessing tool and validated using 30 artificial RR (ARR) interval data files, to which known quantities of artifact (0.5%, 1%, 2%, 3%, 5%, 7%, 10%) were added. The impact of preprocessing ARR files with 1% added artifact was also assessed using 10 time domain and frequency domain HRV metrics. The preprocessing tool was also used to preprocess 69 24-h human cardiac recordings. The tool was able to remove artifact from technician-assessed human cardiac recordings (sensitivity 0.84, SD = 0.09, specificity of 1.00, SD = 0.01) and artificial data files. The removal of artifact had a low impact on time domain and frequency domain HRV metrics (ranging from 0% to 2.5% change in values). This novel preprocessing tool can be used with human 24-h cardiac recordings to remove artifact while minimally affecting physiological data and therefore having a low impact on HRV measures of that data. PMID:26751605

  14. The β1-subunit of Na(v1.5 cardiac sodium channel is required for a dominant negative effect through α-α interaction.

    Directory of Open Access Journals (Sweden)

    Aurélie Mercier

    Full Text Available Brugada syndrome (BrS is an inherited autosomal dominant cardiac channelopathy. Several mutations on the cardiac sodium channel Na(v1.5 which are responsible for BrS lead to misfolded proteins that do not traffic properly to the plasma membrane. In order to mimic patient heterozygosity, a trafficking defective mutant, R1432G was co-expressed with Wild Type (WT Na(v1.5 channels in HEK293T cells. This mutant significantly decreased the membrane Na current density when it was co-transfected with the WT channel. This dominant negative effect did not result in altered biophysical properties of Na(v1.5 channels. Luminometric experiments revealed that the expression of mutant proteins induced a significant reduction in membrane expression of WT channels. Interestingly, we have found that the auxiliary Na channel β(1-subunit was essential for this dominant negative effect. Indeed, the absence of the β(1-subunit prevented the decrease in WT sodium current density and surface proteins associated with the dominant negative effect. Co-immunoprecipitation experiments demonstrated a physical interaction between Na channel α-subunits. This interaction occurred only when the β(1-subunit was present. Our findings reveal a new role for β(1-subunits in cardiac voltage-gated sodium channels by promoting α-α subunit interaction which can lead to a dominant negative effect when one of the α-subunits shows a trafficking defective mutation.

  15. Studies of the voltage-sensitive calcium channels in smooth muscle, neuronal, and cardiac tissues using 1,4-dihydropyridine calcium channel antagonists and activators

    International Nuclear Information System (INIS)

    This study describes the investigation of the voltage-sensitive Ca+ channels in vascular and intestinal smooth muscle, chick neural retina cells and neonatal rat cardiac myocytes using 1,4-dihydropyridine Ca2+ channel antagonists and activators. In rat aorta, the tumor promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) produced Ca2+-dependent contractile responses. The responses to TPA were blocked by the Ca2+ channel antagonists. The effects of the enantiomers of Bay K 8644 and 202-791 were characterized in both rat tail artery and guinea pig ileal longitudinal smooth muscle preparations using pharmacologic and radioligand binding assays. The (S)-enantiomers induced contraction and potentiated the responses to K+ depolarization. The (R)-enantiomers inhibited the tension responses to K+. All the enantiomers inhibited specific [3H]nitrendipine binding. The pharmacologic activities of both activator and antagonist ligands correlated on a 1:1 basis with the binding affinities. In chick neural retina cells the (S)-enantiomers of Bay K 8644 and 202-791 enhanced Ca2+ influx. In contrast, the (R)-enantiomers inhibited Ca2+ influx. The enantiomers of Bay K 8644 and 202-791 inhibited specific [3H]PN 200-110 binding competitively. Binding of 1,4-dihydropyridines was characterized in neonatal rat heart cells

  16. OPAL REACTOR: Calculation/Experiment comparison of Neutron Flux Mapping in Flux Coolant Channels

    Energy Technology Data Exchange (ETDEWEB)

    Barbot, L.; Domergue, C.; Villard, J. F.; Destouches, C. [CEA, Paris (France); Braoudakis, G.; Wassink, D.; Sinclair, B.; Osborn, J. C.; Huayou, Wu [ANSTO, Syeney (Australia)

    2013-07-01

    The measurement and calculation of the neutron flux mapping of the OPAL research reactor are presented. Following an investigation of fuel coolant channels using sub-miniature fission chambers to measure thermal neutron flux profiles, neutronic calculations were performed. Comparison between calculation and measurement shows very good agreement.

  17. Using shuttle radar topography to map ancient water channels in Mesopotamia.

    OpenAIRE

    Hritz, C.; Wilkinson, T. J.

    2006-01-01

    The Shuttle Radar Topography Mission (SRTM) is currently producing a digital elevation model of most of the world's surface. Here the authors assess its value in mapping and sequencing the network of water channels that provided the arterial system for Mesopotamia before the petrol engine.

  18. Evaluation of a 4-channel phased-array coil for MR cardiac imaging. Quantitative assessment of signal to noise ratio improvement

    International Nuclear Information System (INIS)

    Recently, the utility of cardiac MR imaging has been increasing for morphological and functional analysis of the heart. However, since the image acquisition time is substantially shortened with recent fast cardiac MR sequences, it is often difficult to obtain a good signal to noise ratio (SNR) in fast cardiac MR imaging. The purpose of the current study was to optimize the design of a 4-channel multi-coil array for cardiac MR imaging, and to compare the performance of this new coil array with that of other product coils by evaluation of the SNR in a phantom and in healthy volunteers. In the phantom study using SE and FGR sequences, the cardiac coils provided significantly better SNR values than those for the other coils, not only in the peripheral part but also in the center of the phantom (p<0.01). When the SNR values were calculated for the anterior, septal, posteroinferior and lateral walls of the volunteer hearts, the SNR values obtained using the cardiac coil were significantly better than those with any of the other coils evaluated in all 4 myocardial segments (p<0.01). These results suggest that the new 4-channel cardiac multi-coil array is useful for MR imaging of the heart. (author)

  19. Structural basis of slow activation gating in the cardiac IKs channel complex

    DEFF Research Database (Denmark)

    Strutz-Seebohm, Nathalie; Pusch, Michael; Wolf, Steffen;

    2011-01-01

    Accessory ß-subunits of the KCNE gene family modulate the function of various cation channel a-subunits by the formation of heteromultimers. Among the most dramatic changes of biophysical properties of a voltage-gated channel by KCNEs are the effects of KCNE1 on KCNQ1 channels. KCNQ1 and KCNE1 are...... believed to form nativeI(Ks) channels. Here, we characterize molecular determinants of KCNE1 interaction with KCNQ1 channels by scanning mutagenesis, double mutant cycle analysis, and molecular dynamics simulations. Our findings suggest that KCNE1 binds to the outer face of the KCNQ1 channel pore domain......, modifies interactions between voltage sensor, S4-S5 linker and the pore domain, leading to structural modifications of the selectivity filter and voltage sensor domain. Molecular dynamics simulations suggest a stable interaction of the KCNE1 transmembrane a-helix with the pore domain S5/S6 and part of the...

  20. Quantitative modelling of interaction of propafenone with sodium channels in cardiac cells

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.

    2004-01-01

    Roč. 42, č. 2 (2004), s. 151-157. ISSN 0140-0118 R&D Projects: GA ČR GP204/02/D129 Institutional research plan: CEZ:AV0Z2076919 Keywords : cardiac cell * sodium current block * quantitative modelling Subject RIV: BO - Biophysics Impact factor: 1.070, year: 2004

  1. Nav1.5 cardiac sodium channels, regulation and clinical implications

    Directory of Open Access Journals (Sweden)

    Henry Humberto León-Ariza

    2014-10-01

    Full Text Available Voltage-gated sodium channels constitute a group of membrane proteins widely distributed thought the body. In the heart, there are at least six different isoforms, being the Nav1.5 the most abundant. The channel is composed of an α subunit that is formed by four domains of six segments each, and four much smaller β subunits that provide stability and integrate other channels into the α subunit. The function of the Nav1.5 channel is modulated by intracellular cytoskeleton proteins, extracellular proteins, calcium concentration, free radicals, and medications, among other things. The study of the channel and its alterations has grown thanks to its association with pathogenic conditions such as Long QT syndrome, Brugada syndrome, atrial fibrillation, arrhythmogenic ventricular dysplasia and complications during ischemic processes.

  2. Fractal-Based Lightning Channel Length Estimation from Convex-Hull Flash Areas for DC3 Lightning Mapping Array Data

    Science.gov (United States)

    Bruning, Eric C.; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Carey, Larry D.; Koshak, William; Peterson, Harold; MacGorman, Donald R.

    2013-01-01

    We will use VHF Lightning Mapping Array data to estimate NOx per flash and per unit channel length, including the vertical distribution of channel length. What s the best way to find channel length from VHF sources? This paper presents the rationale for the fractal method, which is closely related to the box-covering method.

  3. Effect of modulation of ionic channel conductivities on restitution processes in cardiac cells (Computer modelling)

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šlichta, J.

    Třešť : Institute of Solid Mechanics, Faculty of Mechanical Engineer, 2001 - (Kotek, V.; Kratochvíl, C.; Ehrenberger, Z.), s. 235-236 ISBN 80-7204-207-6. [Mechatronics robotics and biomechanics. Třešť (CZ), 10.09.2001-12.09.2001] Grant ostatní: ÚT AV ČR(XC) PP52018 Keywords : cardiac cell * electrical restitution Subject RIV: BO - Biophysics

  4. Automated tuning of an eight-channel cardiac transceive array at 7 tesla using piezoelectric actuators

    OpenAIRE

    Keith, Graeme A; Rodgers, Christopher T.; Hess, Aaron T.; Snyder, Carl J.; Vaughan, J. Thomas; Robson, Matthew D.

    2014-01-01

    Purpose Ultra-high field (UHF) MR scanning in the body requires novel coil designs due to B1 field inhomogeneities. In the transverse electromagnetic field (TEM) design, maximum B1 transmit power can only be achieved if each individual transmit element is tuned and matched for different coil loads, which requires a considerable amount of valuable scanner time. Methods An integrated system for autotuning a multichannel parallel transmit (pTx) cardiac TEM array was devised, using piezoelectric ...

  5. ATP-Sensitive K+ Channel Knockout Induces Cardiac Proteome Remodeling Predictive of Heart Disease Susceptibility

    OpenAIRE

    Arrell, D. Kent; Zlatkovic, Jelena; Kane, Garvan C; Yamada, Satsuki; Terzic, Andre

    2009-01-01

    Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (KATP) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode conse...

  6. Regulation of human cardiac KCNQ1/KCNE1 channel by epidermal growth factor receptor kinase

    OpenAIRE

    Dong, MQ; Sun, HY; Tang, Q.; Tse, HF; Lau, CP; Li, GR

    2010-01-01

    The aim of the present study was to investigate whether/how the recombinant human cardiac I Ks could be regulated by epidermal growth factor receptor kinase in HEK 293 cells stably expressing hKCNQ1/hKCNE1 genes using the approaches of perforated patch clamp technique, immunoprecipitation and Western blot analysis. It was found that the broad spectrum isoflavone tyrosine kinase inhibitor genistein and the selective epidermal growth factor receptor kinase inhibitor tyrphostin AG556 suppressed ...

  7. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: karlheinz.hilber@meduniwien.ac.at [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  8. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    International Nuclear Information System (INIS)

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on ion channels are a potential

  9. Diffuse myocardial fibrosis following tetralogy of Fallot repair: a T1 mapping cardiac magnetic resonance study

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Marcelo F.; Yoo, Shi-Joon; Seed, Mike; Grosse-Wortmann, Lars [The Hospital for Sick Children, University of Toronto, Labatt Family Heart Centre in the Department of Paediatrics and Department of Diagnostic Imaging, Toronto (Canada); Redington, Andrew [The Hospital for Sick Children, University of Toronto, Labatt Family Heart Centre in the Department of Paediatrics, Toronto (Canada); Greiser, Andreas [Siemens AG Healthcare Sector, Erlangen (Germany)

    2014-04-15

    Adverse ventricular remodeling after tetralogy of Fallot (TOF) repair is associated with diffuse myocardial fibrosis. The goal of this study was to measure post-contrast myocardial T1 in pediatric patients after TOF repair as surrogates of myocardial fibrosis. Children after TOF repair who underwent cardiac magnetic resonance imaging with T1 mapping using the modified look-locker inversion recovery (MOLLI) sequence were included. In addition to routine volumetric and flow data, we measured post-contrast T1 values of the basal interventricular septum, the left ventricular (LV) lateral wall, and the inferior and anterior walls of the right ventricle (RV). Results were compared to data from age-matched healthy controls. The scans of 18 children who had undergone TOF repair and 12 healthy children were included. Post-contrast T1 values of the left ventricular lateral wall (443 ± 54 vs. 510 ± 77 ms, P = 0.0168) and of the right ventricular anterior wall (333 ± 62 vs. 392 ± 72 ms, P = 0.0423) were significantly shorter in children with TOF repair than in controls, suggesting a higher degree of fibrosis. In children with TOF repair, but not in controls, post-contrast T1 values were shorter in the right ventricle than the left ventricle and shorter in the anterior wall of the right ventricle than in the inferior segments. In the TOF group, post-contrast T1 values of the RV anterior wall correlated with the RV end-systolic volume indexed to body surface area (r = 0.54; r{sup 2} = 0.30; P = 0.0238). In children who underwent tetralogy of Fallot repair the myocardium of both ventricles appears to bear an abnormally high fibrosis burden. (orig.)

  10. Diffuse myocardial fibrosis following tetralogy of Fallot repair: a T1 mapping cardiac magnetic resonance study

    International Nuclear Information System (INIS)

    Adverse ventricular remodeling after tetralogy of Fallot (TOF) repair is associated with diffuse myocardial fibrosis. The goal of this study was to measure post-contrast myocardial T1 in pediatric patients after TOF repair as surrogates of myocardial fibrosis. Children after TOF repair who underwent cardiac magnetic resonance imaging with T1 mapping using the modified look-locker inversion recovery (MOLLI) sequence were included. In addition to routine volumetric and flow data, we measured post-contrast T1 values of the basal interventricular septum, the left ventricular (LV) lateral wall, and the inferior and anterior walls of the right ventricle (RV). Results were compared to data from age-matched healthy controls. The scans of 18 children who had undergone TOF repair and 12 healthy children were included. Post-contrast T1 values of the left ventricular lateral wall (443 ± 54 vs. 510 ± 77 ms, P = 0.0168) and of the right ventricular anterior wall (333 ± 62 vs. 392 ± 72 ms, P = 0.0423) were significantly shorter in children with TOF repair than in controls, suggesting a higher degree of fibrosis. In children with TOF repair, but not in controls, post-contrast T1 values were shorter in the right ventricle than the left ventricle and shorter in the anterior wall of the right ventricle than in the inferior segments. In the TOF group, post-contrast T1 values of the RV anterior wall correlated with the RV end-systolic volume indexed to body surface area (r = 0.54; r2 = 0.30; P = 0.0238). In children who underwent tetralogy of Fallot repair the myocardium of both ventricles appears to bear an abnormally high fibrosis burden. (orig.)

  11. Proton Dependent Inhibition of the Cardiac Sodium Channel Nav1.5 by Ranolazine

    OpenAIRE

    PeterCRuben; SridharanRajamani

    2013-01-01

    Ranolazine is clinically approved for treatment of angina pectoris and is a potential candidate for antiarrhythmic, antiepileptic and analgesic applications. These therapeutic effects of ranolazine hinge on its ability to inhibit persistent or late Na+ currents in a variety of voltage-gated sodium channels. Extracellular acidosis, typical of ischemic events, may alter the efficiency of drug/channel interactions. In this study, we examined pH modulation of ranolazine’s interaction with the ca...

  12. Proton-dependent inhibition of the cardiac sodium channel Nav1.5 by ranolazine

    OpenAIRE

    Sokolov, S.; Peters, C. H.; Rajamani, S; Ruben, P C

    2013-01-01

    Ranolazine is clinically approved for treatment of angina pectoris and is a potential candidate for antiarrhythmic, antiepileptic, and analgesic applications. These therapeutic effects of ranolazine hinge on its ability to inhibit persistent or late Na+ currents in a variety of voltage-gated sodium channels. Extracellular acidosis, typical of ischemic events, may alter the efficiency of drug/channel interactions. In this study, we examined pH modulation of ranolazine's interaction with the ca...

  13. Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis

    OpenAIRE

    1989-01-01

    The ability of glycolysis, oxidative phosphorylation, the creatine kinase system, and exogenous ATP to suppress ATP-sensitive K+ channels and prevent cell shortening were compared in patch-clamped single guinea pig ventricular myocytes. In cell-attached patches on myocytes permeabilized at one end with saponin, ATP-sensitive K+ channels were activated by removing ATP from the bath, and could be closed equally well by exogenous ATP or substrates for endogenous ATP production by glycolysis (wit...

  14. Transcatheter radiofrequency ablation under the guidance of three-dimensional mapping for the treatment of complex cardiac arrhythmias

    International Nuclear Information System (INIS)

    Objective: To investigate the effectiveness and safety of transcatheter radiofrequency ablation guided by a three-dimensional mapping system (Ensite or Carto) for the treatment of complex cardiac arrhythmias. Methods: A cohort of 123 consecutive hospitalized inpatients during the period from February 2006 to December 2008 were selected for this study. These patients suffered from various arrhythmias, including paroxysmal atrial fibrillation (n = 58), persistent or permanent atrial fibrillation (n = 10), atrial flutter (n = 13), atrial tachycardia (n = 12) and ventricular tachycardia or frequent ventricular premature beats (n = 30). Transcatheter radiofrequency ablation for arrhythmias was performed under the guidance of an EnSite3000 / NavX or Array mapping system in 80 cases, and under the guidance of a CARTO mapping system in the remaining 43 cases. Results: Successful ablation of arrhythmias was obtained by single operation in 106 cases (86.18%), including 59 cases with atrial fibrillation, 11 cases with atrial flutter, 10 cases with atrial tachycardia, and 26 cases with ventricular tachycardia or premature ventricular beat.Ablation procedure was carried out and was successful in 10 cases with a successful rate of 94.31%, including 5 cases with atrial fibrillation, 1 case with recurred atrial flutter, 1 case with recurrent atrial tachycardia, and 3 cases with ventricular tachycardia or premature ventricular beat.After operation, complications occurred in 6 cases, including cardiac tamponade in 4 cases, distal embolism of the left anterior descending coronary artery in 1 case, and pulmonary embolism in 1 case. Conclusion: Three-dimensional mapping system can clearly and stereoscopically display the cardiac structures. Therefore, this technique is of great value in guiding the transcatheter radiofrequency ablation for complex arrhythmias, in improving the success rate of ablation and in increasing the safety of the procedure. (authors)

  15. Cardiac shear-wave elastography using a transesophageal transducer: application to the mapping of thermal lesions in ultrasound transesophageal cardiac ablation

    Science.gov (United States)

    Kwiecinski, Wojciech; Bessière, Francis; Constanciel Colas, Elodie; Apoutou N'Djin, W.; Tanter, Mickaël; Lafon, Cyril; Pernot, Mathieu

    2015-10-01

    Heart rhythm disorders, such as atrial fibrillation or ventricular tachycardia can be treated by catheter-based thermal ablation. However, clinically available systems based on radio-frequency or cryothermal ablation suffer from limited energy penetration and the lack of lesion’s extent monitoring. An ultrasound-guided transesophageal device has recently successfully been used to perform High-Intensity Focused Ultrasound (HIFU) ablation in targeted regions of the heart in vivo. In this study we investigate the feasibility of a dual therapy and imaging approach on the same transesophageal device. We demonstrate in vivo that quantitative cardiac shear-wave elastography (SWE) can be performed with the device and we show on ex vivo samples that transesophageal SWE can map the extent of the HIFU lesions. First, SWE was validated with the transesophageal endoscope in one sheep in vivo. The stiffness of normal atrial and ventricular tissues has been assessed during the cardiac cycle (n=11 ) and mapped (n= 7 ). Second, HIFU ablation has been performed with the therapy-imaging transesophageal device in ex vivo chicken breast samples (n  =  3), then atrial (left, n= 2 ) and ventricular (left n=1 , right n=1 ) porcine heart tissues. SWE provided stiffness maps of the tissues before and after ablation. Areas of the lesions were obtained by tissue color change with gross pathology and compared to SWE. During the cardiac cycle stiffness varied from 0.5   ±   0.1 kPa to 6.0   ±   0.3 kPa in the atrium and from 1.3   ±   0.3 kPa to 13.5   ±   9.1 kPa in the ventricles. The thermal lesions were visible on all SWE maps performed after ablation. Shear modulus of the ablated zones increased to 16.3   ±   5.5 kPa (versus 4.4   ±   1.6 kPa before ablation) in the chicken breast, to 30.3   ±   10.3 kPa (versus 12.2   ±   4.3 kPa) in the atria and to 73.8   ±   13

  16. Flow pattern map and multi-scale entropy analysis in 3 × 3 rod bundle channel

    International Nuclear Information System (INIS)

    Highlights: • Flow patterns of steam–water two-phase flow in a 3 × 3 rod bundle were visualized. • The flow pattern map obtained for the rod bundle was compared with some existing flow pattern maps. • Multi-scale entropy was used to characterize the dynamic characteristics of the different flow patterns. • Rate of multi-scale entropy can effectively identify flow patterns in a rod bundle channel. - Abstract: The characteristics of the heat transfer and two-phase flow resistance in a rod bundle channel are closely related to flow patterns. In the present study, two-phase flow patterns for vapor–water flows in a 3 by 3 rod bundle channel were obtained at atmospheric pressure and relatively low mass flow condition. Under the current experimental conditions, slug flow found in circular tubes was not observed. Comparisons with some existing flow pattern maps and transition criteria were likewise conducted. Results show that the transition boundary of circular tube deviated from the transition boundary of the boiling two-phase flow of the rod bundle channel. Using the differential pressure signal of the vapor–liquid two-phase flow, multi-scale entropy algorithm is employed to reveal the dynamic characteristics of the different flow patterns in the rod bundle. The multi-scale entropy rate could effectively classify the flow patterns in the rod bundle channel. Results suggest that multi-scale entropy can be an effective method to reveal the dynamic details of macro and local vantages

  17. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria;

    2014-01-01

    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia....../reperfusion injury. Recently, mitochondrial BK channels (mitoBKs) in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mito......BKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix...

  18. Using a Combined Platform of Swarm Intelligence Algorithms and GIS to Provide Land Suitability Maps for Locating Cardiac Rehabilitation Defibrillators

    Directory of Open Access Journals (Sweden)

    Neda KAFFASH-CHARANDABI

    2015-10-01

    Full Text Available Background: Cardiac arrest is a condition in which the heart is completely stopped and is not pumping any blood. Although most cardiac arrest cases are reported from homes or hospitals, about 20% occur in public areas. Therefore, these areas need to be investigated in terms of cardiac arrest incidence so that places of high incidence can be identi-fied and cardiac rehabilitation defibrillators installed there.Methods: In order to investigate a study area in Petersburg, Pennsylvania State, and to determine appropriate places for installing defibrillators with 5-year period data, swarm intelligence algorithms were used. Moreover, the location of the defibrillators was determined based on the following five evaluation criteria: land use, altitude of the area, econom-ic conditions, distance from hospitals and approximate areas of reported cases of cardiac arrest for public places that were created in geospatial information system (GIS.Results: The A-P HADEL algorithm results were more precise about 27.36%. The validation results indicated a wider coverage of real values and the verification results confirmed the faster and more exact optimization of the cost func-tion in the PSO method.Conclusion: The study findings emphasize the necessity of applying optimal optimization methods along with GIS and precise selection of criteria in the selection of optimal locations for installing medical facilities because the selected algorithm and criteria dramatically affect the final responses. Meanwhile, providing land suitability maps for installing facilities across hot and risky spots has the potential to save many lives.

  19. A modified method of cardiac functional analysis for ECG gated SPECT. Study of functional G-maps

    Energy Technology Data Exchange (ETDEWEB)

    Onoguchi, Masahisa; Takayama, Teruhiko [Kanazawa Univ. (Japan). School of Medicine; Maruno, Hirotaka; Murata, Hajime; Mori, Kazuaki; Toyama, Hinako; Yoshioka, Katsunori; Irimoto, Masahiro; Katayama, Hitoshi

    1998-07-01

    To evaluate the cardiac function accurately using ECG gated SPECT images, we performed a modified method of cardiac functional analysis (Functional G-maps). One hour after the intravenous injection of 1,110 MBq of {sup 99m}Tc-tetrofosmin, gated SPECT data was acquired dividing a cardiac cycle into 12 frames. Every short-axis images were usually reconstructed using first 11 of 12 frames. The reconstruction of these images was repeated performing slice thickness correction. Because the apex-to-base length is different at any frame during a cardiac cycle, 10 slices of short-axis images were obtained with the same thickness for each frame. Subsequently each short-axis image was divided by 40 radii, and the time activity curve was generated from the total counts included in each segment plus both neighboring segment. Afterwards the curve fitting was performed using the second reverse Fourier function. From fitted curves and their differentials, we estimated a variety of parameters including Max (End-systolic count), Min (End-diastolic count), %CI (Percent count increase), Uptake, PCR (Peak contraction rate), PDR (Peak distention rate) and CT (Contraction time). In 5 normal subjects, %Max was greater in the anterior and septal regions, whereas %Min was greater in the apex and lateral regions. %CI and %PCR were similarly greater in the septal, anterior and inferior regions. On the other hand, %PDR in the lateral or inferior region was lower than the values in the other regions. In conclusion, this modified method is expected to be useful for accurate assessment of regional cardiac function and myocardial perfusion. (author)

  20. A modified method of cardiac functional analysis for ECG gated SPECT. Study of functional G-maps

    International Nuclear Information System (INIS)

    To evaluate the cardiac function accurately using ECG gated SPECT images, we performed a modified method of cardiac functional analysis (Functional G-maps). One hour after the intravenous injection of 1,110 MBq of 99mTc-tetrofosmin, gated SPECT data was acquired dividing a cardiac cycle into 12 frames. Every short-axis images were usually reconstructed using first 11 of 12 frames. The reconstruction of these images was repeated performing slice thickness correction. Because the apex-to-base length is different at any frame during a cardiac cycle, 10 slices of short-axis images were obtained with the same thickness for each frame. Subsequently each short-axis image was divided by 40 radii, and the time activity curve was generated from the total counts included in each segment plus both neighboring segment. Afterwards the curve fitting was performed using the second reverse Fourier function. From fitted curves and their differentials, we estimated a variety of parameters including Max (End-systolic count), Min (End-diastolic count), %CI (Percent count increase), Uptake, PCR (Peak contraction rate), PDR (Peak distention rate) and CT (Contraction time). In 5 normal subjects, %Max was greater in the anterior and septal regions, whereas %Min was greater in the apex and lateral regions. %CI and %PCR were similarly greater in the septal, anterior and inferior regions. On the other hand, %PDR in the lateral or inferior region was lower than the values in the other regions. In conclusion, this modified method is expected to be useful for accurate assessment of regional cardiac function and myocardial perfusion. (author)

  1. Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy.

    Science.gov (United States)

    Indolfi, Ciro; Curcio, Antonio

    2014-05-01

    Left ventricular hypertrophy is an initial compensatory mechanism in response to cardiac stress that can degenerate into heart failure and sudden cardiac death. Recent studies have shown that microRNAs (miRs) regulate several aspects of cardiovascular diseases. In this issue of the JCI, Bang and colleagues identified an exosome-mediated communication mechanism between cardiac fibroblasts and cardiomyocytes. Specifically, cardiac fibroblasts secrete miR-enriched exosomes, which are subsequently taken up by cardiomyocytes, in which they alter gene expression. In particular, a passenger strand miR, miR-21*, was identified as a potent paracrine factor that induces cardiomyocyte hypertrophy when shuttled through exosomes. These advanced comprehensive analyses represent a major step forward in our understanding of cardiovascular physiopathology, providing a promising adjunctive target for possible therapeutic approaches, namely the miR-mediated paracrine signaling network. PMID:24743143

  2. Computer-aided mapping of stream channels beneath the Lawrence Livermore National Laboratory Super Fund Site

    Energy Technology Data Exchange (ETDEWEB)

    Sick, M. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    The Lawrence Livermore National Laboratory (LLNL) site rests upon 300-400 feet of highly heterogeneous braided stream sediments which have been contaminated by a plume of Volatile Organic Compounds (VOCs). The stream channels are filled with highly permeable coarse grained materials that provide quick avenues for contaminant transport. The plume of VOCs has migrated off site in the TFA area, making it the area of greatest concern. I mapped the paleo-stream channels in the TFA area using SLICE an LLNL Auto-CADD routine. SLICE constructed 2D cross sections and sub-horizontal views of chemical, geophysical, and lithologic data sets. I interpreted these 2D views as a braided stream environment, delineating the edges of stream channels. The interpretations were extracted from Auto-CADD and placed into Earth Vision`s 3D modeling and viewing routines. Several 3D correlations have been generated, but no model has yet been chosen as a best fit.

  3. Leaky RyR2 channels unleash a brainstem spreading depolarization mechanism of sudden cardiac death.

    Science.gov (United States)

    Aiba, Isamu; Wehrens, Xander H T; Noebels, Jeffrey L

    2016-08-16

    Cardiorespiratory failure is the most common cause of sudden unexplained death in epilepsy (SUDEP). Genetic autopsies have detected "leaky" gain-of-function mutations in the ryanodine receptor-2 (RyR2) gene in both SUDEP and sudden cardiac death cases linked to catecholaminergic polymorphic ventricular tachycardia that feature lethal cardiac arrhythmias without structural abnormality. Here we find that a human leaky RyR2 mutation, R176Q (RQ), alters neurotransmitter release probability in mice and significantly lowers the threshold for spreading depolarization (SD) in dorsal medulla, leading to cardiorespiratory collapse. Rare episodes of sinus bradycardia, spontaneous seizure, and sudden death were detected in RQ/+ mutant mice in vivo; however, when provoked, cortical seizures frequently led to apneas, brainstem SD, cardiorespiratory failure, and death. In vitro studies revealed that the RQ mutation selectively strengthened excitatory, but not inhibitory, synapses and facilitated SD in both the neocortex as well as brainstem dorsal medulla autonomic microcircuits. These data link defects in neuronal intracellular calcium homeostasis to the vulnerability of central autonomic brainstem pathways to hypoxic stress and implicate brainstem SD as a previously unrecognized site and mechanism contributing to premature death in individuals with leaky RYR2 mutations. PMID:27482086

  4. Development of 200-channel mapping system for tissue oxygenation measured by near-infrared spectroscopy

    Science.gov (United States)

    Niwayama, Masatsugu; Kohata, Daisuke; Shao, Jun; Kudo, Nobuki; Hamaoka, Takatumi; Katsumura, Toshihito; Yamamoto, Katsuyuki

    2000-07-01

    Near-infrared spectroscopy (NIRS) is a very useful technique for noninvasive measurement of tissue oxygenation. Among various methods of NIRS, continuous wave near-infrared spectroscopy (CW- NIRS) is especially suitable for real-time measurement and for practical use. CW-NIRS has recently been applied in vivo reflectance imaging of muscle oxygenation and brain activity. However, conventional mapping systems do not have a sufficient mapping area at present. Moreover, they do not enable quantitative measurement of tissue oxygenation because conventional NIRS is based on the inappropriate assumption that tissue is homogeneous. In this study, we developed a 200-channel mapping system that enables measurement of changes in oxygenation and blood volume and that covers a wider area (30 cm x 20 cm) than do conventional systems. The spatial resolution (source- detector separation) of this system is 15 mm. As for the effcts of tissue inhomogeneity on muscle oxygenation measurement, subcutaneous adipose tissue greatly reduces measurement sensitivity. Therefore, we also used a correction method for influence of the subcutaneous fat layer so that we could obtain quantitative changes in concentrations of oxy- and deoxy- hemoglobin. We conducted exercise tests and measured the changed in hemoglobin concentration in the thigh using the new system. The working muscles in the exercises could be imaged, and the heterogeneity of the muscles was shown. These results demonstrated the new 200-channel mapping system enables observation of the distribution of muscle metabolism and localization of muscle function.

  5. Interaction of haloperidol with IKto-channels in cardiac cells: a quantitative model

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Bébarová, M.; Matejovič, P.; Nováková, M.

    Brno : Brno University of Technology, 2006 - (Burša, J.; Fuis, V.), s. 158-159 ISBN 80-214-3232-2. [Human Biomechanics 2006. Hrotovice (CZ), 13.11.2006-16.11.2006] R&D Projects: GA ČR(CZ) GA305/04/1385 Institutional research plan: CEZ:AV0Z20760514 Keywords : IKto-channel * haloperidol * quantitative model Subject RIV: BO - Biophysics

  6. An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family.

    OpenAIRE

    Liu, Zhanjiang; Karsi, Attila; Li, Ping; Cao, Dongfeng; Dunham, R

    2003-01-01

    Catfish is the major aquaculture species in the United States. The hybrid catfish produced by crossing channel catfish females with blue catfish males exhibit a number of desirable production traits, but their mass production has been difficult. To introduce desirable genes from blue catfish into channel catfish through introgression, a genetic linkage map is helpful. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP). A total of 607 AFL...

  7. Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination.

    Science.gov (United States)

    van Bemmelen, Miguel X; Rougier, Jean-Sébastien; Gavillet, Bruno; Apothéloz, Florine; Daidié, Dorothée; Tateyama, Michihiro; Rivolta, Ilaria; Thomas, Marc A; Kass, Robert S; Staub, Olivier; Abriel, Hugues

    2004-08-01

    Na(v)1.5, the cardiac isoform of the voltage-gated Na+ channel, is critical to heart excitability and conduction. However, the mechanisms regulating its expression at the cell membrane are poorly understood. The Na(v)1.5 C-terminus contains a PY-motif (xPPxY) that is known to act as binding site for Nedd4/Nedd4-like ubiquitin-protein ligases. Because Nedd4-2 is well expressed in the heart, we investigated its role in the ubiquitination and regulation of Na(v)1.5. Yeast two-hybrid and GST-pulldown experiments revealed an interaction between Na(v)1.5 C-terminus and Nedd4-2, which was abrogated by mutating the essential tyrosine of the PY-motif. Ubiquitination of Na(v)1.5 was detected in both transfected HEK cells and heart extracts. Furthermore, Nedd4-2-dependent ubiquitination of Na(v)1.5 was observed. To test for a functional role of Nedd4-2, patch-clamp experiments were performed on HEK cells expressing wild-type and mutant forms of both Na(v)1.5 and Nedd4-2. Na(v)1.5 current density was decreased by 65% upon Nedd4-2 cotransfection, whereas the PY-motif mutant channels were not affected. In contrast, a catalytically inactive Nedd4-2 had no effect, indicating that ubiquitination mediates this downregulation. However, Nedd4-2 did not alter the whole-cell or the single channel biophysical properties of Na(v)1.5. Consistent with the functional findings, localization at the cell periphery of Na(v)1.5-YFP fusion proteins was reduced upon Nedd4-2 coexpression. The Nedd4-1 isoform did not regulate Na(v)1.5, suggesting that Nedd4-2 is a specific regulator of Na(v)1.5. These results demonstrate that Na(v)1.5 can be ubiquitinated in heart tissues and that the ubiquitin-protein ligase Nedd4-2 acts on Na(v)1.5 by decreasing the channel density at the cell surface. PMID:15217910

  8. A New Arithmetic Coding System Combining Source Channel Coding and MAP Decoding

    Institute of Scientific and Technical Information of China (English)

    PANG Yu-ye; SUN Jun; WANG Jia

    2007-01-01

    A new arithmetic coding system combining source channel coding and maximum a posteriori decoding were proposed.It combines source coding and error correction tasks into one unified process by introducing an adaptive forbidden symbol.The proposed system achieves fixed length code words by adaptively adjusting the probability of the forbidden symbol and adding tail digits of variable length.The corresponding improved MAP decoding metric was derived.The proposed system can improve the performance.Simulations were performed on AWGN channels with various noise levels by using both hard and soft decision with BPSK modulation.The results show its performance is slightly better than that of our adaptive arithmetic error correcting coding system using a forbidden symbol.

  9. Characterization of respiratory and cardiac motion from electro-anatomical mapping data for improved fusion of MRI to left ventricular electrograms.

    Directory of Open Access Journals (Sweden)

    Sébastien Roujol

    Full Text Available Accurate fusion of late gadolinium enhancement magnetic resonance imaging (MRI and electro-anatomical voltage mapping (EAM is required to evaluate the potential of MRI to identify the substrate of ventricular tachycardia. However, both datasets are not acquired at the same cardiac phase and EAM data is corrupted with respiratory motion limiting the accuracy of current rigid fusion techniques. Knowledge of cardiac and respiratory motion during EAM is thus required to enhance the fusion process. In this study, we propose a novel approach to characterize both cardiac and respiratory motion from EAM data using the temporal evolution of the 3D catheter location recorded from clinical EAM systems. Cardiac and respiratory motion components are extracted from the recorded catheter location using multi-band filters. Filters are calibrated for each EAM point using estimates of heart rate and respiratory rate. The method was first evaluated in numerical simulations using 3D models of cardiac and respiratory motions of the heart generated from real time MRI data acquired in 5 healthy subjects. An accuracy of 0.6-0.7 mm was found for both cardiac and respiratory motion estimates in numerical simulations. Cardiac and respiratory motions were then characterized in 27 patients who underwent LV mapping for treatment of ventricular tachycardia. Mean maximum amplitude of cardiac and respiratory motion was 10.2±2.7 mm (min = 5.5, max = 16.9 and 8.8±2.3 mm (min = 4.3, max = 14.8, respectively. 3D Cardiac and respiratory motions could be estimated from the recorded catheter location and the method does not rely on additional imaging modality such as X-ray fluoroscopy and can be used in conventional electrophysiology laboratory setting.

  10. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1.

    Science.gov (United States)

    Jespersen, Thomas; Gavillet, Bruno; van Bemmelen, Miguel X; Cordonier, Sophie; Thomas, Marc A; Staub, Olivier; Abriel, Hugues

    2006-10-01

    In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull-down experiments confirmed the interaction, and indicated that it depends on the PDZ-domain binding motif of Na(v)1.5. Co-expression experiments in HEK293 cells showed that PTPH1 shifts the Na(v)1.5 availability relationship toward hyperpolarized potentials, whereas an inactive PTPH1 or the tyrosine kinase Fyn does the opposite. The results of this study suggest that tyrosine phosphorylation destabilizes the inactivated state of Na(v)1.5. PMID:16930557

  11. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: a study to assess the drug's cardiac ion channel profile.

    Science.gov (United States)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K; Lukacs, Peter; Gawali, Vaibhavkumar S; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. PMID:23707769

  12. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile☆

    Science.gov (United States)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. PMID:23707769

  13. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile ☆

    OpenAIRE

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channe...

  14. Mapping Buried Impact Craters in the Chryse Basin to Understand the Distribution of Outflow Channel Sediment

    Science.gov (United States)

    Miller, Moira; Frey, Herbert V.

    2016-01-01

    The Chryse Basin's location in the northern hemisphere of Mars allowed it to collect water from a number of major outflow channels. These outflows likely deposited significant amounts of sediment within the Basin. This project's goal was to see if mapping buried impact craters, revealed as Quasi-Circular Depressions (QCDs) in Mars Orbiter Laser Altimeter (MOLA) data, could be used to determine the distribution and variation of sediment thickness within the Basin. QCDs, including likely buried impact craters, were mapped to test the hypothesis that further into the basin there would be fewer smaller craters because thicker sediments would have preferentially covered them. Mapping was done using Gridview, an interactive graphics program that manipulates data, in this case topographic data from MOLA. It should be possible to estimate the thickness of the sediment from the smallest buried craters found in a given area, and therefore map out the change in sediment thickness across the basin. The smallest QCDs beginning to be completely covered by sediment were just below 30 km in diameter. The minimum sediment needed to cover a QCD of this size was calculated to be between 1-2km. Therefore, the absence of QCDs below 30 km in the NE corner of Chryse could be explained by sediment at least that thick. Lower thickness is expected elsewhere in the basin, especially in the SW, where more QCDs with smaller diameters were found. The method of mapping buried impact craters provides a way to determine variations in sediment thickness within the Chryse Basin. This method could be used on other sediment-covered areas to learn about past water flow.

  15. The roles and relations of calpastatin, calmodulin and an undefined cytoplasmic factor in the regulation of cardiac L-type Ca2+ channels

    Institute of Scientific and Technical Information of China (English)

    HAO Li-ying; ZHU Tong; HU Hui-yuan; ZHAO Mei-mi; RUI Feng; LIU Yan; ZHAO Jin-sheng; tsuko Minobe; Masaki Kameyama

    2008-01-01

    Objective To explore the mechanism that cytoplasmic factors could recover L-type Ca2+ channel activity after "run-down'. The factors include ATP, calpastatin and H fraction (a high molecular fraction of bovine cardiac cytoplasm). Methods Single Ca2+ channel activities were recorded with patch clamp technique in guinea-pig cardiac myocytes. Run-down was induced by the inside-out patch formation. Calpastatin (CS), calmodulin(CaM) and three GST-fusion fragment peptides derived from the C-terminal tail of guineapig Car1.2, CT-1 (amino acids number 1509-1791), CTo2 (1777-2003) and CT-3 (1944-2169) were produced as GST fusion proteins. Results (1)CaM + ATP or CS + ATP restored the channels after rundown;however, the CaM or CS's effects became smaller with the longer run-down time. (2)After run down, CaM-dependent protein kinase (CaMKII) produced Ca2+ channel activity to only 2-10% of the basal activity, however, in the presence of CaMKII, the time-dependent nature of the CaM effect was abolished. (3) In pull-down assay, CT-1 treated with CaMKII showed a higher affinity for CaM than that treated with phosphatase. (4)CaMKII was detected in the H fraction of bovine cardiac cytoplasm. Conclusions The results show that CS, CaM and CaMKII are all involved in the maintenance of the basal activity of L-type Ca2+ channels, and that there might be cross talks among the four factors (CS, CaM, CaMKII and the undefined cytoplasmic factor). This work was supported by the grants from the Japan Society for the Promotion of Science and the National Natural Science Foundation of China (No. 30670761, No. 30671726).

  16. Anesthetic drug midazolam inhibits cardiac human ether-à-go-go-related gene channels: mode of action

    Directory of Open Access Journals (Sweden)

    Vonderlin N

    2015-02-01

    Full Text Available Nadine Vonderlin,1 Fathima Fischer,1 Edgar Zitron,1,2 Claudia Seyler,1 Daniel Scherer,1 Dierk Thomas,1,2 Hugo A Katus,1,2 Eberhard P Scholz1 1Department of Internal Medicine III, University Hospital Heidelberg, 2German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany Abstract: Midazolam is a short-acting benzodiazepine that is in wide clinical use as an anxiolytic, sedative, hypnotic, and anticonvulsant. Midazolam has been shown to inhibit ion channels, including calcium and potassium channels. So far, the effects of midazolam on cardiac human ether-à-go-go-related gene (hERG channels have not been analyzed. The inhibitory effects of midazolam on heterologously expressed hERG channels were analyzed in Xenopus oocytes using the double-electrode voltage clamp technique. We found that midazolam inhibits hERG channels in a concentration-dependent manner, yielding an IC50 of 170 µM in Xenopus oocytes. When analyzed in a HEK 293 cell line using the patch-clamp technique, the IC50 was 13.6 µM. Midazolam resulted in a small negative shift of the activation curve of hERG channels. However, steady-state inactivation was not significantly affected. We further show that inhibition is state-dependent, occurring within the open and inactivated but not in the closed state. There was no frequency dependence of block. Using the hERG pore mutants F656A and Y652A we provide evidence that midazolam uses a classical binding site within the channel pore. Analyzing the subacute effects of midazolam on hERG channel trafficking, we further found that midazolam does not affect channel surface expression. Taken together, we show that the anesthetic midazolam is a low-affinity inhibitor of cardiac hERG channels without additional effects on channel surface expression. These data add to the current understanding of the pharmacological profile of the anesthetic midazolam. Keywords: midazolam, anesthetics, human ether

  17. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    Science.gov (United States)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  18. SpiNon- Invasive Diagnostics and Results of Interventive Treatment of Cardiac Arrhythmia Using the New System of Non-Invasive Surface Mapping “Amycard 01K”

    Directory of Open Access Journals (Sweden)

    Revishvili A. Sh.

    2012-09-01

    Conclusion. Using results of the surface activation mapping in patients with various cardiac arrhythmias shows its high diagnostic value and the necessity for a preoperative examination. Previously held topical diagnosis of arrhythmogenic substrate will reduce the time of the arrhythmia origin finding, to avoid possible adverse intraoperative complications such as a damage of coronary vessels, as well as reduce the time of intraoperative fluoroscopy.

  19. Potassium Channel Interacting Protein 2 (KChIP2) is not a transcriptional regulator of cardiac electrical remodeling.

    Science.gov (United States)

    Winther, Sine V; Tuomainen, Tomi; Borup, Rehannah; Tavi, Pasi; Antoons, Gudrun; Thomsen, Morten B

    2016-01-01

    The heart-failure relevant Potassium Channel Interacting Protein 2 (KChIP2) augments CaV1.2 and KV4.3. KChIP3 represses CaV1.2 transcription in cardiomyocytes via interaction with regulatory DNA elements. Hence, we tested nuclear presence of KChIP2 and if KChIP2 translocates into the nucleus in a Ca(2+) dependent manner. Cardiac biopsies from human heart-failure patients and healthy donor controls showed that nuclear KChIP2 abundance was significantly increased in heart failure; however, this was secondary to a large variation of total KChIP2 content. Administration of ouabain did not increase KChIP2 content in nuclear protein fractions in anesthetized mice. KChIP2 was expressed in cell lines, and Ca(2+) ionophores were applied in a concentration- and time-dependent manner. The cell lines had KChIP2-immunoreactive protein in the nucleus in the absence of treatments to modulate intracellular Ca(2+) concentration. Neither increasing nor decreasing intracellular Ca(2+) concentrations caused translocation of KChIP2. Microarray analysis did not identify relief of transcriptional repression in murine KChIP2(-/-) heart samples. We conclude that although there is a baseline presence of KChIP2 in the nucleus both in vivo and in vitro, KChIP2 does not directly regulate transcriptional activity. Moreover, the nuclear transport of KChIP2 is not dependent on Ca(2+). Thus, KChIP2 does not function as a conventional transcription factor in the heart. PMID:27349185

  20. Cyclic AMP-dependent protein kinase phosphorylates residues in the C-terminal domain of the cardiac L-type calcium channel alpha1 subunit.

    Science.gov (United States)

    Leach, R N; Brickley, K; Norman, R I

    1996-06-11

    The molecular basis of the regulation of cardiac L-type calcium channel activity by cAMP-dependent protein kinase (cA-PK) remains unclear. Direct cA-PK-dependent phosphorylation of the bovine ventricular alpha1 subunit in vitro has been demonstrated in microsomal membranes, detergent extracts and partially purified (+)-[3H]PN 200-110 receptor preparations. Two 32P-labeled phosphopeptides, derived from cyanogen bromide cleavage, of 4.7 and 9.5 kDa were immunoprecipitated specifically by site-directed antibodies against the rabbit cardiac alpha1 subunit amino acid sequences 1602-1616 and 1681-1694, respectively, consistent with phosphorylation at the cA-PK consensus sites at Ser(1627) and Ser(1700). No phosphopeptide products consistent with phosphorylation at three other C-terminal cA-PK consensus phosphorylation sites (Ser(1575), Ser(1848) and Ser(1928)) were identified using similar procedures suggesting that these sites are poor substrates for this kinase. Ser(1627) and Ser(1700) may represent sites of cA-PK phosphorylation involved in the physiological regulation of cardiac L-type calcium channel function. PMID:8664319

  1. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T

    International Nuclear Information System (INIS)

    The objective of this work is to design, examine and apply an eight channel transmit/receive coil array tailored for cardiac magnetic resonance imaging at 7.0 T that provides image quality suitable for clinical use, patient comfort, and ease of use. The cardiac coil array was designed to consist of a planar posterior section and a modestly curved anterior section. For radio frequency (RF) safety validation, numerical computations of the electromagnetic field (EMF) and the specific absorption rate (SAR) distribution were conducted. In vivo cardiac imaging was performed using a 2D CINE FLASH technique. For signal-to-noise ratio (SNR) assessment reconstructed images were scaled in SNR units. The parallel imaging capabilities of the coil were examined using GRAPPA and SENSE reconstruction with reduction factors of up to R = 4. The assessment of the RF characteristics yielded a maximum noise correlation of 0.33. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a spatial resolution of 1 mm × 1 mm × 4 mm. The coil array supports 1D acceleration factors of up to R = 3 without impairing image quality significantly. For un-accelerated 2D CINE FLASH acquisitions the results revealed an SNR of approximately 140 for the left ventricular blood pool. Blood/myocardium contrast was found to be approximately 90 for un-accelerated 2D CINE FLASH acquisitions. The proposed 8 channel cardiac transceiver surface coil has the capability to acquire high contrast, high spatial and temporal resolution in vivo images of the heart at 7.0 T

  2. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Gräßl, Andreas, E-mail: Andreas.Graessl@mdc-berlin.de [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Winter, Lukas, E-mail: Lukas.Winter@mdc-berlin.de [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Thalhammer, Christof, E-mail: Christof.Thalhammer@mdc-berlin.de [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Renz, Wolfgang, E-mail: Wolfgang.Renz@mdc-berlin.de [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Siemens Healthcare, 91052 Erlangen (Germany); Kellman, Peter, E-mail: kellmanp@mail.nih.gov [Laboratory of Cardiac Energetics, National Institutes of Health/NHLBI, Bethesda, MD (United States); Martin, Conrad, E-mail: Conrad.Martin@mdc-berlin.de [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Knobelsdorff-Brenkenhoff, Florian von, E-mail: florian.von-knobelsdorff@charite.de [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, 13125 Berlin (Germany); Experimental and Clinical Research Center (ECRC), Charité – University Medicine Campus Berlin Buch, 13125 Berlin (Germany); Tkachenko, Valeriy, E-mail: v.o.tkachenko@googlemail.com [Experimental and Clinical Research Center (ECRC), Charité – University Medicine Campus Berlin Buch, 13125 Berlin (Germany); and others

    2013-05-15

    The objective of this work is to design, examine and apply an eight channel transmit/receive coil array tailored for cardiac magnetic resonance imaging at 7.0 T that provides image quality suitable for clinical use, patient comfort, and ease of use. The cardiac coil array was designed to consist of a planar posterior section and a modestly curved anterior section. For radio frequency (RF) safety validation, numerical computations of the electromagnetic field (EMF) and the specific absorption rate (SAR) distribution were conducted. In vivo cardiac imaging was performed using a 2D CINE FLASH technique. For signal-to-noise ratio (SNR) assessment reconstructed images were scaled in SNR units. The parallel imaging capabilities of the coil were examined using GRAPPA and SENSE reconstruction with reduction factors of up to R = 4. The assessment of the RF characteristics yielded a maximum noise correlation of 0.33. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a spatial resolution of 1 mm × 1 mm × 4 mm. The coil array supports 1D acceleration factors of up to R = 3 without impairing image quality significantly. For un-accelerated 2D CINE FLASH acquisitions the results revealed an SNR of approximately 140 for the left ventricular blood pool. Blood/myocardium contrast was found to be approximately 90 for un-accelerated 2D CINE FLASH acquisitions. The proposed 8 channel cardiac transceiver surface coil has the capability to acquire high contrast, high spatial and temporal resolution in vivo images of the heart at 7.0 T.

  3. Using a Combined Platform of Swarm Intelligence Algorithms and GIS to Provide Land Suitability Maps for Locating Cardiac Rehabilitation Defibrillators

    OpenAIRE

    KAFFASH-CHARANDABI, Neda; SADEGHI-NIARAKI, Abolghasem; Park, Dong-Kyun

    2015-01-01

    Background: Cardiac arrest is a condition in which the heart is completely stopped and is not pumping any blood. Although most cardiac arrest cases are reported from homes or hospitals, about 20% occur in public areas. Therefore, these areas need to be investigated in terms of cardiac arrest incidence so that places of high incidence can be identi-fied and cardiac rehabilitation defibrillators installed there.Methods: In order to investigate a study area in Petersburg, Pennsylvania State, and...

  4. Cardiac Channel Molecular Autopsy: Insights From 173 Consecutive Cases of Autopsy-Negative Sudden Unexplained Death Referred for Postmortem Genetic Testing

    Science.gov (United States)

    Tester, David J.; Medeiros-Domingo, Argelia; Will, Melissa L.; Haglund, Carla M.; Ackerman, Michael J.

    2012-01-01

    Objective To perform long QT syndrome and catecholaminergic polymorphic ventricular tachycardia cardiac channel postmortem genetic testing (molecular autopsy) for a large cohort of cases of autopsy-negative sudden unexplained death (SUD). Methods From September 1, 1998, through October 31, 2010, 173 cases of SUD (106 males; mean ± SD age, 18.4±12.9 years; age range, 1-69 years; 89% white) were referred by medical examiners or coroners for a cardiac channel molecular autopsy. Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing, a comprehensive mutational analysis of the long QT syndrome susceptibility genes (KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2) and a targeted analysis of the catecholaminergic polymorphic ventricular tachycardia type 1–associated gene (RYR2) were conducted. Results Overall, 45 putative pathogenic mutations absent in 400 to 700 controls were identified in 45 autopsy-negative SUD cases (26.0%). Females had a higher yield (26/67 [38.8%]) than males (19/106 [17.9%]; P<.005). Among SUD cases with exercise-induced death, the yield trended higher among the 1- to 10-year-olds (8/12 [66.7%]) compared with the 11- to 20-year-olds (4/27 [14.8%]; P=.002). In contrast, for those who died during a period of sleep, the 11- to 20-year-olds had a higher yield (9/25 [36.0%]) than the 1- to 10-year-olds (1/24 [4.2%]; P=.01). Conclusion Cardiac channel molecular autopsy should be considered in the evaluation of autopsy-negative SUD. Several interesting genotype-phenotype observations may provide insight into the expected yields of postmortem genetic testing for SUD and assist in selecting cases with the greatest potential for mutation discovery and directing genetic testing efforts. PMID:22677073

  5. Singular value decomposition of optically-mapped cardiac rotors and fibrillatory activity

    International Nuclear Information System (INIS)

    Our progress of understanding how cellular and structural factors contribute to arrhythmia is hampered in part because of controversies as to whether a fibrillating heart is driven by a single, several, or multiple number of sources, whether they are focal or reentrant and how to localize them. Here we demonstrate how a novel usage of the neutral singular value decomposition (SVD) method enables the extraction of the governing spatial and temporal modes of excitation from a rotor and fibrillatory waves. Those modes highlight patterns and regions of organization in the midst of the otherwise seemingly random propagating excitation waves. We apply the method to experimental models of cardiac fibrillation in rabbit hearts. We show that SVD analysis is able to enhance the classification of the heart electrical patterns into regions harboring drivers in the form of fast reentrant activity and other regions of by-standing activity. This enhancement is accomplished without any prior assumptions regarding the spatial, temporal or spectral properties of those drivers. The analysis corroborates that the dominant mode has the highest activation rate and further reveals a new feature: a transfer of modes from the driving to passive regions resulting in a partial reaction of the passive region to the driving region. (paper)

  6. Combined hERG channel inhibition and disruption of trafficking in drug-induced long QT syndrome by fluoxetine: a case-study in cardiac safety pharmacology

    OpenAIRE

    Hancox, J. C.; Mitcheson, J S

    2006-01-01

    Drug-induced prolongation of the rate-corrected QT interval (QTCI) on the electrocardiogram occurs as an unwanted effect of diverse clinical and investigational drugs and carries a risk of potentially fatal cardiac arrhythmias. hERG (human ether-à-go-go-related gene) is the gene encoding the α-subunit of channels mediating the rapid delayed rectifier K+ current, which plays a vital role in repolarising the ventricles of the heart. Most QTCI prolonging drugs can inhibit the function of recombi...

  7. Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr) and modulates cardiac action potential characteristics

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter

    2010-01-01

    The repolarizing cardiac rapid delayed rectifier current, I(Kr), is composed of ERG1 channels. It has been suggested that two isoforms of the ERG1 protein, ERG1a and ERG1b, both contribute to I(Kr). Marked heterogeneity in the kinetic properties of native I(Kr) has been described. We hypothesized...... that the heterogeneity of native I(Kr) can be reproduced by differential expression of ERG1a and ERG1b isoforms. Furthermore, the functional consequences of differential expression of ERG1 isoforms were explored as a potential mechanism underlying native heterogeneity of action potential duration (APD...

  8. Stretch-induced increase in cardiac contractility is independent of myocyte Ca2+ while block of stretch channels by streptomycin improves contractility after ischemic stunning

    OpenAIRE

    Rhodes, Samhita S.; Camara, Amadou K.S.; Aldakkak, Mohammed; Heisner, James S.; Stowe, David F

    2015-01-01

    Stretching the cardiac left ventricle (LV) enhances contractility but its effect on myoplasmic [Ca2+] is controversial. We measured LV pressure (LVP) and [Ca2+] as a function of intra-LV stretch in guinea pig intact hearts before and after 15 min global stunning ± perfusion with streptomycin (STM), a stretch-activated channel blocker. LV wall [Ca2+] was measured by indo-1 fluorescence and LVP by a saline-filled latex balloon inflated in 50 μL steps to stretch the LV. We implemented a mathemat...

  9. Phosphatidylinositol 4,5-biphosphate (PIP2) modulates syntaxin-1A binding to sulfonylurea receptor 2A to regulate cardiac ATP-sensitive potassium (KATP) channels.

    Science.gov (United States)

    Xie, Li; Liang, Tao; Kang, Youhou; Lin, Xianguang; Sobbi, Roozbeh; Xie, Huanli; Chao, Christin; Backx, Peter; Feng, Zhong-Ping; Shyng, Show-Ling; Gaisano, Herbert Y

    2014-10-01

    Cardiac sarcolemmal syntaxin (Syn)-1A interacts with sulfonylurea receptor (SUR) 2A to inhibit ATP-sensitive potassium (KATP) channels. Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous endogenous inositol phospholipid, known to bind Kir6.2 subunit to open KATP channels, has recently been shown to directly bind Syn-1A in plasma membrane to form Syn-1A clusters. Here, we sought to determine whether the interaction between Syn-1A and PIP2 interferes with the ability of Syn-1A to bind SUR2A and inhibit KATP channel activity. We found that PIP2 dose-dependently reduced SUR2A binding to GST-Syn-1A by in vitro pulldown assays. FRET studies in intact cells using TIRFM revealed that increasing endogenous PIP2 levels led to increased Syn-1A (-EGFP) cluster formation and a severe reduction in availability of Syn-1A molecules to interact with SUR2A (-mCherry) molecules outside the Syn-1A clusters. Correspondingly, electrophysiological studies employing SUR2A/Kir6.2-expressing HEK cells showed that increasing endogenous or exogenous PIP2 diminished the inhibitory effect of Syn-1A on KATP currents. The physiological relevance of these findings was confirmed by ability of exogenous PIP2 to block exogenous Syn-1A inhibition of cardiac KATP currents in inside-out patches of mouse ventricular myocytes. The effect of PIP2 on physical and functional interactions between Syn-1A and KATP channels is specific and not observed with physiologic concentrations of other phospholipids. To unequivocally demonstrate the specificity of PIP2 interaction with Syn-1A and its impact on KATP channel modulation by Syn-1A, we employed a PIP2-insensitive Syn-1A-5RK/A mutant. The Syn-1A-5RK/A mutant retains the ability to interact with SUR2A in both in vitro binding and in vivo FRET assays, although as expected the interaction is no longer disrupted by PIP2. Interestingly, at physiological PIP2 concentrations, Syn-1A-5RK/A inhibited KATP currents to a greater extent than Syn-1A-WT, indicating

  10. Mapping out the customer’s journey : customer search strategy as a basis for channel management

    NARCIS (Netherlands)

    Veen, Gerrita van der; Ossenbruggen, Robert van

    2015-01-01

    Many companies tailor their communication and interaction with customers by segmenting them into channel usage groups. This study argues that simply focusing on channels has limited effectiveness as increasingly customers today use multiple channels, the online channel contains many different forms,

  11. Widespread rocky reef occurrence in the central English Channel and the implications for predictive habitat mapping

    Science.gov (United States)

    Diesing, Markus; Coggan, Roger; Vanstaen, Koen

    2009-08-01

    Reefs are one of the marine habitats listed in Annex I of the European Union's Habitats Directive, which aims to establish a coherent European ecological network of Special Areas of Conservation. EU Member States are required to prepare and propose a national list of sites for evaluation under the scheme, but currently the occurrence of reefs in the United Kingdom's nearshore and offshore areas is not well documented. Here we report on our search for rocky reefs in the central English Channel, which unexpectedly revealed an extensive reef system covering an area of 1100 km 2. Prior to our work, it was generally perceived that the seabed in this area comprised mostly gravel, with a few isolated rock outcrops. Our approach to determining the location, extent and character of these reefs incorporated broad, medium and fine-scale analyses over a 3200 km 2 area of seabed, using single- and multi-beam acoustic data, ground-truthed by underwater video and stills imagery. A benthic terrain model was developed in ArcGIS to map topographic features at the broad and medium scales. Biotope assignments were made at the fine scale through detailed analysis of video footage obtained from 30 sampling stations. The study area has a complex geological history and lies at the centre of a major bedload-parting zone. Together, these strongly influence the seabed character and the distribution of biotopes. An integrated assessment of the physical and biological features was used to map the study area to level 4 of the EUNIS habitat classification system. Similar physical conditions exist in other areas of the UK continental shelf, raising the prospect of predicting where other rocky reef systems might occur. In the absence of a co-ordinated national seabed survey programme, such predictions, coupled with interpretation of existing single-beam bathymetry data, can help prioritise areas where limited survey resources could be most effectively deployed.

  12. Diagnosis of Acute Global Myocarditis Using Cardiac MRI with Quantitative T1 and T2 Mapping: Case Report and Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul Hwan [Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720 (Korea, Republic of); Choi, Eui-Young [Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720 (Korea, Republic of); Greiser, Andreas [Healthcare Sector, Siemens AG, Erlangen D-91052 (Germany); Paek, Mun Young [Siemens Ltd., Seoul 120-837 (Korea, Republic of); Hwang, Sung Ho; Kim, Tae Hoon [Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720 (Korea, Republic of)

    2013-07-01

    The diagnosis of myocarditis can be challenging given that symptoms, clinical exam findings, electrocardiogram results, biomarkers, and echocardiogram results are often non-specific. Endocardial biopsy is an established method for diagnosing myocarditis, but carries the risk of complications and false negative results. Cardiac magnetic resonance imaging (MRI) has become the primary non-invasive imaging tool in patients with suspected myocarditis. Myocarditis can be diagnosed by using three tissue markers including edema, hyperemia/capillary leak, and necrosis/fibrosis. The interpretation of cardiac MR findings can be confusing, especially when the myocardium is diffusely involved. Using T1 and T2 maps, the diagnosis of myocarditis can be made even in cases of global myocarditis with the help of quantitative analysis. We herein describe a case of acute global myocarditis which was diagnosed by using quantitative T1 and T2 mapping.

  13. Diagnosis of Acute Global Myocarditis Using Cardiac MRI with Quantitative T1 and T2 Mapping: Case Report and Literature Review

    International Nuclear Information System (INIS)

    The diagnosis of myocarditis can be challenging given that symptoms, clinical exam findings, electrocardiogram results, biomarkers, and echocardiogram results are often non-specific. Endocardial biopsy is an established method for diagnosing myocarditis, but carries the risk of complications and false negative results. Cardiac magnetic resonance imaging (MRI) has become the primary non-invasive imaging tool in patients with suspected myocarditis. Myocarditis can be diagnosed by using three tissue markers including edema, hyperemia/capillary leak, and necrosis/fibrosis. The interpretation of cardiac MR findings can be confusing, especially when the myocardium is diffusely involved. Using T1 and T2 maps, the diagnosis of myocarditis can be made even in cases of global myocarditis with the help of quantitative analysis. We herein describe a case of acute global myocarditis which was diagnosed by using quantitative T1 and T2 mapping

  14. Study on incidence of pulmonary embolism in patients with cardiac pacemakers using lung perfusion mapping and ventilation scanning

    International Nuclear Information System (INIS)

    We investigated pulmonary perfusion mapping and ventilation scanning employing 99mTC-MMA and 81mKr-Gas in patients with DDD and VVI cardiac pacemaker implantation. In 51 cases among 175 patients we observed some defects which matched the results from lung perfusion scanning in the pulmonary segments and sub-segments. These were diagnosed as pulmonary embolism after the possibility of other pulmonary diseases was rejected. The incidence rate of pulmonary embolism in patients with VVI (Ventricular pacing/sensing, inhibited type) pacemakers was 47 out of 138, or 34.1%, especially for those who received a pulmonary scanning examination whithin 6 months after pacemaker implantation. In contrast, those who were examined after 6 months had lower rates as well as chronological factors. The incidence rate of pulmonary embolism in 37 patients with DDD (Double chamber pacing/sensing, double modes of response) pacemakers was 10.8%, considerably lower than that for patients with VVI pacemakers. Therefore, one main factor of pulmonary embolism in patients with pacemakers could be the non-physiological phase of the contractions of both atria and ventricles. Other factors, such as the presence of foreign bodies in the endocardium, aging, and hypertension, could also promote pulmonary embolism. (author)

  15. Coastal Mapping Program Project TX1405: ROCKY SLOUGH TO PACKERY CHANNEL, TX.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of the Coastal Mapping Program (CMP) is to provide surveying and mapping information of our nation's coastline. This shoreline mapping effort also...

  16. Temperature and species-specific effects on ß3-adrenergic receptor cardiac regulation in two freshwater teleosts: Channel catfish (Ictalurus punctatus) and common carp (Cyprinus carpio).

    Science.gov (United States)

    Petersen, L H; Burleson, M L; Huggett, D B

    2015-07-01

    β₃-adrenergic receptors (AR) are important in teleost cardiovascular regulation. To date, it is unknown whether temperature acclimation changes ß₃-AR functionality and consequently the involvement of this AR subtype in teleost cardiac regulation. Common carp (Cyprinus carpio) were acclimated at 12 °C or 23 °C (minimum 3 weeks) after which cardiovascular variables (cardiac output (Q), stroke volume (Sv) and heart rate (fH)) were measured upon injection of the ß₃-AR agonist, BRL(37344), and antagonist, SR(59230A). In both 12 °C and 23 °C acclimated carp, BRL(37344) induced significant increases in fH and Q whereas Sv was significantly decreased. While temperature did not affect the change (increase vs. decrease) in cardiac variables, the magnitude and on-set of responses differed. For instance, fH, Sv and Q responded significantly faster to ß₃-AR stimulation in 23 °C carp. In contrast, maximum responses of fH and Q were significantly higher in 23 °C carp whereas the maximum response of Sv was significantly greater in 12 °C carp. These findings suggest that temperature acclimation induced changes in β₃-AR receptor functionality (e.g. density and/or affinity). Stimulation of β₃-ARs in 23 °C acclimated channel catfish (Ictalurus punctatus) caused significant increases in fH, Sv and Q. The increase in Sv was opposite to the decrease observed in 23 °C acclimated common carp. SR(59230A) induced significant decreases in Sv and Q but had no effect in carp (23 °C). Results suggest species diversity in the density and affinity or structure of ß₃-ARs which may explain the different cardiac responses to ß₃-AR ligands. PMID:25882086

  17. Contribution of spontaneous L-type Ca2+ channel activation to the genesis of Ca2+ sparks in resting cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Guangqin; FU; Yu; YANG; Dongmei; HAO; Xuemei; BAI; S

    2004-01-01

    Ca2+ sparks are the elementary events of intracellular Ca2+ release from the sarcoplasmic reticulum in cardiac myocytes. In order to investigate whether spontaneous L-type Ca2+ channel activation contributes to the genesis of spontaneous Ca2+ sparks, we used confocal laser scanning microscopy and fluo-4 to visualize local Ca2+ sparks in intact rat ventricular myocytes. In the presence of 0.2 mmol/L CdCl2 which inhibits spontaneous L-type Ca2+ channel activation, the rate of occurrence of spontaneous Ca2+ sparks was halved from 4.20 to 2.04 events/(100 μm·s), with temporal and spatial properties of individual Ca2+ sparks unchanged. Analysis of the Cd2+-sensitive spark production revealed an open probability of ~10-5 for L-type channels at the rest membrane potentials (-80 mV). Thus, infrequent and stochastic openings of sarcolemmal L-type Ca2+ channels in resting heart cells contribute significantly to the production of spontaneous Ca2+ sparks.

  18. Evaluation of a real-time display for skin dose map in cardiac catheterisation procedures

    International Nuclear Information System (INIS)

    The purpose of this work was to validate a prototype designed to display skin dose maps in real time for clinicians that perform interventional cardiology procedures. Measurements using copper absorbers and three kinds of dosemeters (solid-state, radiochromic film and optically stimulated luminescence) were performed in a catheterisation laboratory. Some clinical results are also discussed. The system provides patient skin doses with acceptable accuracy, taking into account couch shifts, wedge compensation filters and collimation. The greatest source of uncertainty is that resulting from patient shape modelling. From a set of 374 patients recorded, it can be concluded that the peak skin dose (PSD) for patients with the same cumulative air kerma at the patient entrance reference point can be rather different. This real-time skin dose calculator has resulted easier to manage for measuring patient PSDs than other methods based on films or CR plates. As well as an improvement for patient safety, it could prove a useful training tool for clinicians. (authors)

  19. High Resolution Mapping and Interpretation of Channel and Floodplain Topography With a Narrow-Beam Terrestrial-Aquatic Lidar

    Science.gov (United States)

    McKean, J.; Isaak, D.; Tonina, D.; Wright, W.; Kinzel, P.

    2007-12-01

    Basic description of channel and floodplain topography remains a fundamental challenge for modeling flow and sediment transport or even simply mapping habitat. Standard field wading and boat surveys of stream topography are limited by costs and logistics to relatively small sample reaches and floodplain maps are seldom well- integrated with channel bathymetry. We used the NASA Experimental Advanced Airborne Research Lidar (EAARL) to map channel and floodplain topography and investigate geomorphic controls on physical habitat in two diverse channels in the watershed of the Middle Fork Salmon River, Idaho. Bear Valley Creek is a small low-gradient gravel-bed stream flowing across an unconfined valley filled with glacial outwash materials. A hierarchy of nested geomorphic features is evident in this channel with the broadest fluvial domains a legacy of ~15,000 years of post-glacial valley evolution. Contemporary hydraulics operate on this broad template and control two smaller scales of pool-riffle morphology. Salmon spawning patterns closely reflect these nested physical domains, demonstrating how geomorphic history can influence modern distributions of aquatic habitat and organisms. In contrast, Big Creek is a higher-gradient stream predominately confined by steep side slopes in a deep valley. Here, the distribution of geomorphic domains and physical habitat is controlled by modern erosion processes and rock quality. Tributaries and valley walls contribute coarse debris, up to large boulders, to the channel, resulting in very rough and poorly organized bed topography. Tributary fans also function as local grade control with sediment deposition in lower-gradient reaches upstream of fans. A GIS toolkit is under development to extract at-a-station channel metrics from EAARL data, including for example, cross section and longitudinal profile characteristics. A new investigation has also begun to further investigate the quality of EAARL data. This study will explore the

  20. 16-Channel surface coil for 13C-hyperpolarized spectroscopic imaging of cardiac metabolism in pig heart

    DEFF Research Database (Denmark)

    Frijia, Francesca; Santarelli, Maria Filomena; Koellisch, Ulrich;

    2016-01-01

    Magnetic resonance spectroscopy (MRS) of hyperpolarized 13C pyruvate and its metabolites in large animal models is a powerful tool for assessing cardiac metabolism in patho-physiological conditions. In 13C studies, a high signal-to-noise ratio (SNR) is crucial to overcome the intrinsic data quality...

  1. Adrenergic regulation of a key cardiac potassium channel can contribute to atrial fibrillation: evidence from an IKs transgenic mouse

    Science.gov (United States)

    Sampson, Kevin J; Terrenoire, Cecile; Cervantes, Daniel O; Kaba, Riyaz A; Peters, Nicholas S; Kass, Robert S

    2008-01-01

    Inherited gain-of-function mutations of genes coding for subunits of the heart slow potassium (IKs) channel can cause familial atrial fibrillation (AF). Here we consider a potentially more prevalent mechanism and hypothesize that β-adrenergic receptor (β-AR)-mediated regulation of the IKs channel, a natural gain-of-function pathway, can also lead to AF. Using a transgenic IKs channel mouse model, we studied the role of the channel and its regulation by β-AR stimulation on atrial arrhythmias. In vivo administration of isoprenaline (isoproterenol) predisposes IKs channel transgenic mice but not wild-type (WT) littermates that lack IKs to prolonged atrial arrhythmias. Patch-clamp analysis demonstrated expression and isoprenaline-mediated regulation of IKs in atrial myocytes from transgenic but not WT littermates. Furthermore, computational modelling revealed that β-AR stimulation-dependent accumulation of open IKs channels accounts for the pro-arrhythmic substrate. Our results provide evidence that β-AR-regulated IKs channels can play a role in AF and imply that specific IKs deregulation, perhaps through disruption of the IKs macromolecular complex necessary for β-AR-mediated IKs channel regulation, may be a novel therapeutic strategy for treating this most common arrhythmia. PMID:18006587

  2. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials

    Directory of Open Access Journals (Sweden)

    Liu Songtao

    2012-12-01

    Full Text Available Abstract Background Cardiac magnetic resonance (CMR T1 mapping has been used to characterize myocardial diffuse fibrosis. The aim of this study is to determine the reproducibility and sample size of CMR fibrosis measurements that would be applicable in clinical trials. Methods A modified Look-Locker with inversion recovery (MOLLI sequence was used to determine myocardial T1 values pre-, and 12 and 25min post-administration of a gadolinium-based contrast agent at 3 Tesla. For 24 healthy subjects (8 men; 29 ± 6 years, two separate scans were obtained a with a bolus of 0.15mmol/kg of gadopentate dimeglumine and b 0.1mmol/kg of gadobenate dimeglumine, respectively, with averaged of 51 ± 34 days between two scans. Separately, 25 heart failure subjects (12 men; 63 ± 14 years, were evaluated after a bolus of 0.15mmol/kg of gadopentate dimeglumine. Myocardial partition coefficient (λ was calculated according to (ΔR1myocardium/ΔR1blood, and ECV was derived from λ by adjusting (1-hematocrit. Results Mean ECV and λ were both significantly higher in HF subjects than healthy (ECV: 0.287 ± 0.034 vs. 0.267 ± 0.028, p=0.002; λ: 0.481 ± 0.052 vs. 442 ± 0.037, p Conclusion ECV and λ quantification have a low variability across scans, and could be a viable tool for evaluating clinical trial outcome.

  3. Cardiac myosin binding protein C and MAP-kinase activating death domain-containing gene polymorphisms and diastolic heart failure.

    Directory of Open Access Journals (Sweden)

    Cho-Kai Wu

    Full Text Available OBJECTIVE: Myosin binding protein C (MYBPC3 plays a role in ventricular relaxation. The aim of the study was to investigate the association between cardiac myosin binding protein C (MYBPC3 gene polymorphisms and diastolic heart failure (DHF in a human case-control study. METHODS: A total of 352 participants of 1752 consecutive patients from the National Taiwan University Hospital and its affiliated hospital were enrolled. 176 patients diagnosed with DHF confirmed by echocardiography were recruited. Controls were matched 1-to-1 by age, sex, hypertension, diabetes, renal function and medication use. We genotyped 12 single nucleotide polymorphisms (SNPs according to HapMap Han Chinese Beijing databank across a 40 kb genetic region containing the MYBPC3 gene and the neighboring DNA sequences to capture 100% of haplotype variance in all SNPs with minor allele frequencies ≥ 5%. We also analyzed associations of these tagging SNPs and haplotypes with DHF and linkage disequilibrium (LD structure of the MYBPC3 gene. RESULTS: In a single locus analysis, SNP rs2290149 was associated with DHF (allele-specific p = 0.004; permuted p = 0.031. The SNP with a minor allele frequency of 9.4%, had an odds ratio 2.14 (95% CI 1.25-3.66; p = 0.004 for the additive model and 2.06 for the autosomal dominant model (GG+GA : AA, 95% CI 1.17-3.63; p = 0.013, corresponding to a population attributable risk fraction of 12.02%. The haplotypes in a LD block of rs2290149 (C-C-G-C was also significantly associated with DHF (odds ratio 2.10 (1.53-2.89; permuted p = 0.029. CONCLUSIONS: We identified a SNP (rs2290149 among the tagging SNP set that was significantly associated with early DHF in a Chinese population.

  4. Fluoride Induces a Volume Reduction in CA1 Hippocampal Slices Via MAP Kinase Pathway Through Volume Regulated Anion Channels

    OpenAIRE

    Lee, Jaekwang; Han, Young-Eun; Favorov, Oleg; Tommerdahl, Mark; Whitsel, Barry; Lee, C. Justin

    2016-01-01

    Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicit...

  5. Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective

    Science.gov (United States)

    Klimas, Aleksandra; Entcheva, Emilia

    2014-08-01

    The ability to perform precise, spatially localized actuation and measurements of electrical activity in the heart is crucial in understanding cardiac electrophysiology and devising new therapeutic solutions for control of cardiac arrhythmias. Current cardiac imaging techniques (i.e. optical mapping) employ voltage- or calcium-sensitive fluorescent dyes to visualize the electrical signal propagation through cardiac syncytium in vitro or in situ with very high-spatiotemporal resolution. The extension of optogenetics into the cardiac field, where cardiac tissue is genetically altered to express light-sensitive ion channels allowing electrical activity to be elicited or suppressed in a precise cell-specific way, has opened the possibility for all-optical interrogation of cardiac electrophysiology. In vivo application of cardiac optogenetics faces multiple challenges and necessitates suitable optical systems employing fiber optics to actuate and sense electrical signals. In this technical perspective, we present a compendium of clinically relevant access routes to different parts of the cardiac electrical conduction system based on currently employed catheter imaging systems and determine the quantitative size constraints for endoscopic cardiac optogenetics. We discuss the relevant technical advancements in microendoscopy, cardiac imaging, and optogenetics and outline the strategies for combining them to create a portable, miniaturized fiber-based system for all-optical interrogation of cardiac electrophysiology in vivo.

  6. California State Waters Map Series--Santa Barbara Channel Web Services

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of...

  7. Comparative Study in Performance for Subcarrier Mapping in Uplink 4G-LTE under Different Channel Cases

    Directory of Open Access Journals (Sweden)

    Raad Farhood Chisab

    2014-01-01

    Full Text Available in recent years, wireless communication has experienced a rapid growth and it promises to become a globally important infrastructure. One common design approach in fourth generation 4G systems is Single Carrier Frequency Division Multiple Access (SC-FDMA. It is a single carrier communication technique on the air interface. It has become broadly accepted mainly because of its high resistance to frequency selective fading channels. The third Generation Partnership Project-Long Term Evolution (3GPP-LTE uses this technique in uplink direction because of its lower peak to average power ratio PAPR as compared to Orthogonal Frequency Division Multiple Access (OFDMA that is used for downlink direction. In this paper the LTE in general and SCFDMA will be discuss in details and its performance will be study under two types of subcarrier mapping which are localized and distributed mode also within different channel cases. The results show that the localized subcarrier mapping give lower bit error rate BER than the distributed mode and give different activity under miscellaneous channel cases.

  8. Assessment of myocardial changes in athletes with native T1 mapping and cardiac functional evaluation using 3 T MRI.

    Science.gov (United States)

    Görmeli, Cemile Ayşe; Görmeli, Gökay; Yağmur, Jülide; Özdemir, Zeynep Maraş; Kahraman, Ayşegül Sağır; Çolak, Cemil; Özdemir, Ramazan

    2016-06-01

    Intensive physical exercise leads to increases in left ventricular muscle mass and wall thickness. Cardiac magnetic resonance imaging allows the assessment of functional and morphological changes in an athlete's heart. In addition, a native T1 mapping technique has been suggested as a non-contrast method to detect myocardial fibrosis. The aim of this study was to show the correlation between athletes' cardiac modifications and myocardial fibrosis with a native T1 mapping technique. A total of 41 healthy non-athletic control subjects and 46 athletes underwent CMR imaging. After the functional and morphological assessments, native T1 mapping was performed in all subjects using 3.0 T magnetic resonance imaging. Most of the CMR findings were significantly higher in athletes who had ≥5 years of sports activity when compared with non-athletic controls and athletes who had <5 years of sports activity. Significantly higher results were shown in native T1 values in athletes who had <5 years of sports activity, but there were no significant differences in the left ventricular end-diastolic volume, left ventricular end-diastolic mass, or interventricular septal wall thickness between non-athletic controls and athletes who had <5 years of sports activity. The native T1 mapping technique has the potential to discriminate myocardial fibrotic changes in athletes when compared to a normal myocardium. The T1 mapping method might be a feasible technique to evaluate athletes because it does not involve contrast, is non-invasive and allows for easy evaluation of myocardial remodeling. PMID:26920720

  9. Establishment and application of Kuosheng BWR/6 channel flow stability map with RETRANO2/MOD5 code

    International Nuclear Information System (INIS)

    The primary objective of this paper is to determine the channel flow stability map using the RETRAN02/MOD5 code under natural circulation conditions for the Kuosheng Nuclear Power Plant (KNPP). Meanwhile, two transient loci of a KNPP recirculation pump trip (RPT) with decreasing feedwater enthalpy are also drawn on the stability map to assess whether such power oscillation phenomena as the LaSalle-2 event may occur at KNPP. To avoid numerical oscillation of flow stability in time domain analysis, several sensitivity studies are also carried out. The results indicate that both transient loci have sufficient stability margins to unstable boundaries and reveal that KNPP's operations will be stable under such RPT's with decreasing feedwater enthalpy transients. (author)

  10. Estimation of the parameter covariance matrix for a one-compartment cardiac perfusion model estimated from a dynamic sequence reconstructed using map iterative reconstruction algorithms

    International Nuclear Information System (INIS)

    In dynamic cardiac SPECT estimates of kinetic parameters of a one-compartment perfusion model are usually obtained in a two step process: (1) first a MAP iterative algorithm, which properly models the Poisson statistics and the physics of the data acquisition, reconstructs a sequence of dynamic reconstructions, (2) then kinetic parameters are estimated from time activity curves generated from the dynamic reconstructions. This paper provides a method for calculating the covariance matrix of the kinetic parameters, which are determined using weighted least squares fitting that incorporates the estimated variance and covariance of the dynamic reconstructions. For each transaxial slicesets of sequential tomographic projections are reconstructed into a sequence of transaxial reconstructions using for each reconstruction in the time sequence an iterative MAP reconstruction to calculate the maximum a priori reconstructed estimate. Time-activity curves for a sum of activity in a blood region inside the left ventricle and a sum in a cardiac tissue region are generated. Also, curves for the variance of the two estimates of the sum and for the covariance between the two ROI estimates are generated as a function of time at convergence using an expression obtained from the fixed-point solution of the statistical error of the reconstruction. A one-compartment model is fit to the tissue activity curves assuming a noisy blood input function to give weighted least squares estimates of blood volume fraction, wash-in and wash-out rate constants specifying the kinetics of 99mTc-teboroxime for the left ventricular myocardium. Numerical methods are used to calculate the second derivative of the chi-square criterion to obtain estimates of the covariance matrix for the weighted least square parameter estimates. Even though the method requires one matrix inverse for each time interval of tomographic acquisition, efficient estimates of the tissue kinetic parameters in a dynamic cardiac

  11. Kandlikar third number map for flow boiling in micro-channels and micro-gravity

    Directory of Open Access Journals (Sweden)

    Awad M.M.

    2015-01-01

    Full Text Available As an extension of the recent work of Baldassari and Marengo (Baldassari C., Marengo M., Flow Boiling in Microchannels and Microgravity, Progress in Energy and Combustion Science 39 (2013 1, pp. 1-36, this note presents Kandlikar third number (K3 map for flow boiling in microchannels and microgravity. Using several data points available in the literature, Kandlikar third number (K3 map was plotted versus the hydraulic diameter (dh as the characteristic dimension for flow boiling in microchannels and microgravity. The ranges of the Kandlikar third number (K3, calculated using the hydraulic diameter (dh, are presented.

  12. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  13. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)

    2014-09-15

    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  14. Cardiac metabolism and arrhythmias

    OpenAIRE

    Barth, Andreas S.; Tomaselli, Gordon F.

    2009-01-01

    Sudden cardiac death remains a leading cause of mortality in the Western world, accounting for up to 20% of all deaths in the U.S.1, 2 The major causes of sudden cardiac death in adults age 35 and older are coronary artery disease (70–80%) and dilated cardiomyopathy (10–15%).3 At the molecular level, a wide variety of mechanisms contribute to arrhythmias that cause sudden cardiac death, ranging from genetic predisposition (rare mutations and common polymorphisms in ion channels and structural...

  15. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone

    Science.gov (United States)

    Lea, Devin M.; Legleiter, Carl J.

    2016-01-01

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study sought to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8-km reach. Aerial photographs from 1994 to 2012 and ground-based surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and DEM developed from LiDAR data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Collectively, we refer to these methods as the stream power gradient (SPG) framework. The results of this study were compromised by methodological limitations of the SPG framework and revealed some complications likely to arise when applying this framework to small, wandering, gravel-bed rivers. Correlations between stream power gradients and sediment flux were generally weak, highlighting the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote

  16. THE ROLE OF MAP1A LIGHT CHAIN 2 IN SYNAPTIC SURFACE RETENTION OF CAV2.2 CHANNELS IN HIPPOCAMPAL NEURONS

    OpenAIRE

    Leenders, AG Miriam; Lin, Lin; Huang, Li-Dong; Gerwin, Claudia; Lu, Pei-Hua; Sheng, Zu-Hang

    2008-01-01

    Cav2.2 channels are localized at nerve terminals where they play a critical role in neurotransmission. However, the determinant that controls surface retention of these channels has not been identified. Here, we report that presynaptic surface localization of Cav2.2 is mediated through its interaction with light chain 2 (LC2) of microtubule-associated protein MAP1A. Deletion of a 23-residue binding-domain (BD) within the Cav2.2 C-terminus resulted in reduced synaptic distribution of the mutan...

  17. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raffel, David M. E-mail: raffel@umich.edu; Wieland, Donald M

    2001-07-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation.

  18. Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography

    OpenAIRE

    Claude Flener; Matti Vaaja; Anttoni Jaakkola; Anssi Krooks; Harri Kaartinen; Antero Kukko; Elina Kasvi; Hannu Hyyppä; Juha Hyyppä; Petteri Alho

    2013-01-01

    Accurate terrain models are a crucial component of studies of river channel evolution. In this paper we describe a new methodology for creating high-resolution seamless digital terrain models (DTM) of river channels and their floodplains. We combine mobile laser scanning and low-altitude unmanned aerial vehicle (UAV) photography-based methods for creating both a digital bathymetric model of the inundated river channel and a DTM of a point bar of a meandering sub-arctic river. We evaluate mobi...

  19. Mutations in Genes Encoding Cardiac Ion Channels Previously Associated With Sudden Infant Death Syndrome (SIDS) Are Present With High Frequency in New Exome Data

    DEFF Research Database (Denmark)

    Andreasen, Charlotte Hartig; Refsgaard, Lena; Nielsen, Jonas B;

    2013-01-01

    Sudden infant death syndrome (SIDS) is the leading cause of death in the first 6 months after birth in the industrialized world. The genetic contribution to SIDS has been investigated intensively and to date, 14 cardiac channelopathy genes have been associated with SIDS. Newly published data from...

  20. Gap Analysis of Benthic Mapping at Three National Parks: Assateague Island National Seashore, Channel Islands National Park, and Sleeping Bear Dunes National Lakeshore

    Science.gov (United States)

    Rose, Kathryn V.; Nayegandhi, Amar; Moses, Christopher S.; Beavers, Rebecca; Lavoie, Dawn; Brock, John C.

    2012-01-01

    The National Park Service (NPS) Inventory and Monitoring (I&M) Program initiated a benthic habitat mapping program in ocean and coastal parks in 2008-2009 in alignment with the NPS Ocean Park Stewardship 2007-2008 Action Plan. With more than 80 ocean and Great Lakes parks encompassing approximately 2.5 million acres of submerged territory and approximately 12,000 miles of coastline (Curdts, 2011), this Servicewide Benthic Mapping Program (SBMP) is essential. This report presents an initial gap analysis of three pilot parks under the SBMP: Assateague Island National Seashore (ASIS), Channel Islands National Park (CHIS), and Sleeping Bear Dunes National Lakeshore (SLBE) (fig. 1). The recommended SBMP protocols include servicewide standards (for example, gap analysis, minimum accuracy, final products) as well as standards that can be adapted to fit network and park unit needs (for example, minimum mapping unit, mapping priorities). The SBMP requires the inventory and mapping of critical components of coastal and marine ecosystems: bathymetry, geoforms, surface geology, and biotic cover. In order for a park unit benthic inventory to be considered complete, maps of bathymetry and other key components must be combined into a final report (Moses and others, 2010). By this standard, none of the three pilot parks are mapped (inventoried) to completion with respect to submerged resources. After compiling the existing benthic datasets for these parks, this report has concluded that CHIS, with 49 percent of its submerged area mapped, has the most complete benthic inventory of the three. The ASIS submerged inventory is 41 percent complete, and SLBE is 17.5 percent complete.

  1. Trypsin increases availability and open probability of cardiac L-type Ca2+ channels without affecting inactivation induced by Ca2+.

    OpenAIRE

    Schmid, R; Seydl, K; Baumgartner, W.; Groschner, K; Romanin, C

    1995-01-01

    The patch-clamp technique was employed to investigate the response of single L-type Ca2+ channels to the protease trypsin applied to the intracellular face of excised membrane patches from guinea pig ventricular myocytes. Calpastatin and ATP were used to prevent run-down of Ca2+ channel activity monitored with 96 mM Ba2+ as charge carrier in the presence of 2.5 microM (-)-BAYK 8644. Upon application of trypsin (100 micrograms/ml) channel activity was enhanced fourfold and remained elevated up...

  2. Acute alteration of cardiac ECG, action potential, IKr and the human ether-a-go-go-related gene (hERG) K+ channel by PCB 126 and PCB 77

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCBs) have been known as serious persistent organic pollutants (POPs), causing developmental delays and motor dysfunction. We have investigated the effects of two PCB congeners, 3,3′,4,4′-tetrachlorobiphenyl (PCB 77) and 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on ECG, action potential, and the rapidly activating delayed rectifier K+ current (IKr) of guinea pigs' hearts, and hERG K+ current expressed in Xenopus oocytes. PCB 126 shortened the corrected QT interval (QTc) of ECG and decreased the action potential duration at 90% (APD90), and 50% of repolarization (APD50) (P 20). PCB 77 decreased APD20 (P 90, and APD50. The PCB 126 increased the IKr in guinea-pig ventricular myocytes held at 36 °C and hERG K+ current amplitude at the end of the voltage steps in voltage-dependent mode (P + current amplitude. The PCB 77 increased the diastolic Ca2+ and decreased Ca2+ transient amplitude (P 90 possibly by increasing IKr, while PCB 77 decreased the APD20 possibly by other modulation related with intracellular Ca2+. The present data indicate that the environmental toxicants, PCBs, can acutely affect cardiac electrophysiology including ECG, action potential, intracellular Ca2+, and channel activity, resulting in toxic effects on the cardiac function in view of the possible accumulation of the PCBs in human body. -- Highlights: ► PCBs are known as serious environmental pollutants and developmental disruptors. ► PCB 126 shortened QT interval of ECG and action potential duration. ► PCB 126 increased human ether-a-go-go-related K+ current and IKr. ► PCB 77 decreased action potential duration and increased intracellular Ca2+ content. ► PCBs acutely change cardiac electrophysiology and rhythmicity.

  3. Strain Mapping and Nanocrystallite Size Determination by Neutron Diffraction in an Aluminum Alloy (AA5083 Severely Plastically Deformed through Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    P. A. González Crespo

    2013-01-01

    Full Text Available Six specimens of an aluminum alloy (AA-5083 extruded by Equal Channel Angular Pressing following two different routes plus a blank sample were examined with a neutron radiation of 1.5448 Å. Macrostrain maps from the (311 reflection were obtained. A clear difference about accumulated macrostrain with the extrusion cycles between the two routes is shown. The diffraction data of annealed specimens did permit to estimate crystallite sizes that range between 89 nm and 115 nm depending on the routes.

  4. Strain Mapping and Nanocrystallite Size Determination by Neutron Diffraction in an Aluminum Alloy (AA5083) Severely Plastically Deformed through Equal Channel Angular Pressing

    OpenAIRE

    González Crespo, P. A.; C. Luis Pérez; Hughes, Darren J.; Turrillas, X.

    2013-01-01

    Six specimens of an aluminum alloy (AA-5083) extruded by Equal Channel Angular Pressing following two different routes plus a blank sample were examined with a neutron radiation of 1.5448 Å. Macrostrain maps from the (311) reflection were obtained. A clear difference about accumulated macrostrain with the extrusion cycles between the two routes is shown. The diffraction data of annealed specimens did permit to estimate crystallite sizes that range between 89 nm and 115 nm depending on the rou...

  5. Map of percent scleractinian coral cover along camera tows and ROV tracks in the Auau Channel, Island of Maui, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry and landsat imagery. Optical data were...

  6. Channel geometry, flood elevations, and flood maps, lower Toutle and Cowlitz rivers, Washington, June 1980 to May 1981

    Science.gov (United States)

    Lombard, R.E.

    1986-01-01

    The volcanic eruption of Mount St. Helens on May 18, 1980, triggered mudflows that deposited upwards of 15 ft of sediment in the channels of the lower Toutle and Cowlitz Rivers. The major population areas along the lower Cowlitz River (Kelso, Longview,Lexington, and Castle Rock) were not flooded, but the channel capacity of the river was seriously reduced and the potential for unusually high flood elevations from fall and winter storms was an obvious concern. The U.S. Army Corps of Engineers began dredging operations in June 1980 to alleviate the flood hazard. Surveys to monitor the effect of changes to the channel and flood plains that resulted from dredging and additional sediment inflow from the upper Toutle River basin were started in June 1980 and continued until May 11, 1981, when dredging operations on the Cowlitz River had been completed. (USGS)

  7. Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography

    Directory of Open Access Journals (Sweden)

    Claude Flener

    2013-11-01

    Full Text Available Accurate terrain models are a crucial component of studies of river channel evolution. In this paper we describe a new methodology for creating high-resolution seamless digital terrain models (DTM of river channels and their floodplains. We combine mobile laser scanning and low-altitude unmanned aerial vehicle (UAV photography-based methods for creating both a digital bathymetric model of the inundated river channel and a DTM of a point bar of a meandering sub-arctic river. We evaluate mobile laser scanning and UAV-based photogrammetry point clouds against terrestrial laser scanning and combine these data with an optical bathymetric model to create a seamless DTM of two different measurement periods. Using this multi-temporal seamless data, we calculate a DTM of difference that allows a change detection of the meander bend over a one-year period.

  8. Mapping Atrial Fibrillation: 2015 Update

    OpenAIRE

    Chirag R. Barbhayia; Saurabh Kumar; Gregory F. Michaud

    2015-01-01

    Atrial fibrillation requires a trigger that initiates the arrhythmia and substrate that favors perpetuation. Cardiac mapping is necessary to locate triggers and substrate so that an ablation strategy can be optimized. The most commonly used cardiac mapping approach is isochronal or activation mapping, which aims to create a spatial model of electrical wavefront propagation. Historically, activation mapping has been successful for mapping point source and single or double wave reentrant arr...

  9. Mapping convulsants’ binding to the GABA-A receptor chloride ionophore: a proposed model for channel binding sites

    OpenAIRE

    Kalueff, A.V.

    2006-01-01

    Gamma aminobutyric acid (GABA) type A receptors play a key role in brain inhibitory neurotransmission, and are ligand-activated chloride channels blocked by numerous convulsant ligands. Here we summarize data on binding of picrotoxin, tetrazoles, β-lactams, bicyclophosphates, butyrolactones and neurotoxic pesticides to GABA-A ionophore, and discuss functional and structural overlapping of their binding sites. The paper reviews data on convulsants’ binding sensitivity to different point mutati...

  10. Cardiac rehabilitation

    Science.gov (United States)

    ... attack or other heart problem. You might consider cardiac rehab if you have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery Heart transplant Procedures such as angioplasty and stenting In some ...

  11. Cardiac Rehabilitation

    Science.gov (United States)

    Cardiac rehabilitation (rehab) is a medically supervised program to help people who have A heart attack Angioplasty or coronary artery bypass grafting for coronary heart disease A heart valve repair or replacement A ...

  12. Cardiac sarcoidosis

    OpenAIRE

    Costello BT; Nadel J.; Taylor AJ

    2016-01-01

    Benedict T Costello,1,2 James Nadel,3 Andrew J Taylor,1,21Department of Cardiovascular Medicine, The Alfred Hospital, 2Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, 3School of Medicine, University of Notre Dame, Sydney, NSW, Australia Abstract: Cardiac sarcoidosis is a rare but life-threatening condition, requiring a high degree of clinical suspicion and low threshold for investigation to make the diagnosis. The cardiac manifestations include heart failure, conducting syst...

  13. Zebrafish heart as a model for human cardiac electrophysiology.

    Science.gov (United States)

    Vornanen, Matti; Hassinen, Minna

    2016-03-01

    The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart. PMID:26671745

  14. Detection of cardiac biomarkers exploiting surface enhanced Raman scattering (SERS) using a nanofluidic channel based biosensor towards coronary point-of-care diagnostics

    Science.gov (United States)

    Benford, Melodie E.; Wang, Miao; Kameoka, Jun; Coté, Gerard L.

    2009-02-01

    According to the World Health Organization, cardiovascular disease is the most common cause of death in the world. In the US, over 115 million people visit the emergency department (ED), 5 million of which may have acute coronary syndrome (ACS). Cardiac biomarkers can provide early identification and diagnosis of ACS, and can provide information on the prognosis of the patient by assessing the risk of death. In addition, the biomarkers can serve as criteria for admission, indicate possibility of re-infarction, or eliminate ACS as a diagnosis altogether. We propose a SERSbased multi-marker approach towards a point-of-care diagnostic system for ACS. Using a nanofluidic device consisting of a microchannel leading into a nanochannel, we formed SERS active sites by mechanically aggregating gold particles (60 nm) at the entrance to the nanochannel (40nm×1μm). The induced capillary flow produces a high density of aggregated nanoparticles at this precise region, creating areas with enhanced electromagnetic fields within the aggregates, shifting the plasmon resonance to the near infrared region, in resonance with incident laser wavelength. With this robust sensing platform, we were able to obtain qualitative information of brain natriuretic peptide (biomarker of ventricular dysfunction or pulmonary stress), troponin I (biomarker of myocardial necrosis), and C-reactive protein (biomarker of inflammation potentially caused by atherosclerosis).

  15. Tissue and Animal Models of Sudden Cardiac Death

    OpenAIRE

    Sallam, Karim; Li, Yingxin; Sager, Philip T.; Steven R. Houser; Wu, Joseph C.

    2015-01-01

    Sudden Cardiac Death (SCD) is a common cause of death in patients with structural heart disease, genetic mutations or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with SCD. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology including ion channel expressi...

  16. Image based cardiac acceleration map using statistical shape and 3D+t myocardial tracking models; in-vitro study on heart phantom

    Science.gov (United States)

    Pashaei, Ali; Piella, Gemma; Planes, Xavier; Duchateau, Nicolas; de Caralt, Teresa M.; Sitges, Marta; Frangi, Alejandro F.

    2013-03-01

    It has been demonstrated that the acceleration signal has potential to monitor heart function and adaptively optimize Cardiac Resynchronization Therapy (CRT) systems. In this paper, we propose a non-invasive method for computing myocardial acceleration from 3D echocardiographic sequences. Displacement of the myocardium was estimated using a two-step approach: (1) 3D automatic segmentation of the myocardium at end-diastole using 3D Active Shape Models (ASM); (2) propagation of this segmentation along the sequence using non-rigid 3D+t image registration (temporal di eomorphic free-form-deformation, TDFFD). Acceleration was obtained locally at each point of the myocardium from local displacement. The framework has been tested on images from a realistic physical heart phantom (DHP-01, Shelley Medical Imaging Technologies, London, ON, CA) in which the displacement of some control regions was known. Good correlation has been demonstrated between the estimated displacement function from the algorithms and the phantom setup. Due to the limited temporal resolution, the acceleration signals are sparse and highly noisy. The study suggests a non-invasive technique to measure the cardiac acceleration that may be used to improve the monitoring of cardiac mechanics and optimization of CRT.

  17. [Cardiac amyloidosis. General review].

    Science.gov (United States)

    Laraki, R

    1994-04-01

    Cardiac amyloidosis, most often of AL type, is a non-exceptional disease as it represents 5 to 10% of non-ischemic cardiomyopathies. It realizes typically a restrictive cardiomyopathy. Nevertheless the wide diversity of possible presentation makes it a "big shammer" which must be evoked in front of every unexplained cardiopathy after the age of forty. If some associated manifestations can rapidly suggest the diagnosis, as a peripheric neuropathy especially a carpal tunnel syndrome or palpebral ecchymosis, cardiac involvement can also evolve in an apparently isolated way. The most suggestive paraclinic elements for the diagnosis are, in one hand, the increased myocardial echogenicity with a "granular sparkling" appearance seen throughout all walls of the left ventricle and, in the other hand, the association of a thickened left ventricle and a low voltage (electrocardiogram could also show pseudo-infarct Q waves). In front of such aspects, the proof of amyloidosis is brought by an extra-cardiac biopsy or by scintigraphy with labelled serum amyloid P component, so that the indications of endomyocardial biopsy are very limited today. The identification of the amyloid nature of a cardiopathy has an direct therapeutic implication: it contra-indicates the use of digitalis, calcium channel blockers and beta-blockers. The treatment of AL amyloidosis (chemotherapy with alkylant agents) remains very unsatisfactory especially in the cardiac involvement which is the most frequent cause of death (in AL amyloidosis). Last, cardiac amyloidosis is a bad indication for transplantation which results are burden by rapid progression of deposits especially in the gastro-intestinal tract and the nervous system. PMID:8059146

  18. Segmentation and profiling consumers in a multi-channel environment using a combination of self-organizing maps (SOM method, and logistic regression

    Directory of Open Access Journals (Sweden)

    Seyed Ali Akbar Afjeh

    2014-05-01

    Full Text Available Market segmentation plays essential role on understanding the behavior of people’s interests in purchasing various products and services through various channels. This paper presents an empirical investigation to shed light on consumer’s purchasing attitude as well as gathering information in multi-channel environment. The proposed study of this paper designed a questionnaire and distributed it among 800 people who were at least 18 years of age and had some experiences on purchasing goods and services on internet, catalog or regular shopping centers. Self-organizing map, SOM, clustering technique was performed based on consumer’s interest in gathering information as well as purchasing products through internet, catalog and shopping centers and determined four segments. There were two types of questions for the proposed study of this paper. The first group considered participants’ personal characteristics such as age, gender, income, etc. The second group of questions was associated with participants’ psychographic characteristics including price consciousness, quality consciousness, time pressure, etc. Using multinominal logistic regression technique, the study determines consumers’ behaviors in each four segments.

  19. Contribution of intracellular calcium and pH in ischemic uncoupling of cardiac gap junction channels formed of connexins 43, 40, and 45: a critical function of C-terminal domain.

    Directory of Open Access Journals (Sweden)

    Giriraj Sahu

    Full Text Available Ischemia is known to inhibit gap junction (GJ mediated intercellular communication. However the detail mechanisms of this inhibition are largely unknown. In the present study, we determined the vulnerability of different cardiac GJ channels formed of connexins (Cxs 43, 40, and 45 to simulated ischemia, by creating oxygen glucose deprived (OGD condition. 5 minutes of OGD decreased the junctional conductance (Gj of Cx43, Cx40 and Cx45 by 53±3%, 64±1% and 85±2% respectively. Reduction of Gj was prevented completely by restricting the change of both intracellular calcium ([Ca(2+]i and pH (pHi with potassium phosphate buffer. Clamping of either [Ca(2+]i or pHi, through BAPTA (2 mM or HEPES (80 mM respectively, offered partial resistance to ischemic uncoupling. Anti-calmodulin antibody attenuated the uncoupling of Cx43 and Cx45 significantly but not of Cx40. Furthermore, OGD could reduce only 26±2% of Gj in C-terminus (CT truncated Cx43 (Cx43-Δ257. Tethering CT of Cx43 to the CT-truncated Cx40 (Cx40-Δ249, and Cx45 (Cx45-Δ272 helped to resist OGD mediated uncoupling. Moreover, CT domain played a significant role in determining the junction current density and plaque diameter. Our results suggest; OGD mediated uncoupling of GJ channels is primarily due to elevated [Ca(2+]i and acidic pHi, though the latter contributes more. Among Cx43, Cx40 and Cx45, Cx43 is the most resistant to OGD while Cx45 is the most sensitive one. CT of Cx43 has major necessary elements for OGD induced uncoupling and it can complement CT of Cx40 and Cx45.

  20. Discovery of triazolopyridinone GS-462808, a late sodium current inhibitor (Late INai) of the cardiac Nav1.5 channel with improved efficacy and potency relative to ranolazine.

    Science.gov (United States)

    Koltun, Dmitry O; Parkhill, Eric Q; Elzein, Elfatih; Kobayashi, Tetsuya; Jiang, Robert H; Li, Xiaofen; Perry, Thao D; Avila, Belem; Wang, Wei-Qun; Hirakawa, Ryoko; Smith-Maxwell, Catherine; Wu, Lin; Dhalla, Arvinder K; Rajamani, Sridharan; Mollova, Nevena; Stafford, Brian; Tang, Jennifer; Belardinelli, Luiz; Zablocki, Jeff A

    2016-07-01

    Previously we disclosed the discovery of potent Late INa current inhibitor 2 (GS-458967, IC50 of 333nM) that has a good separation of late versus peak Nav1.5 current, but did not have a favorable CNS safety window due to high brain penetration (3-fold higher partitioning into brain vs plasma) coupled with potent inhibition of brain sodium channel isoforms (Nav1.1, 1.2, 1.3). We increased the polar surface area from 50 to 84Å(2) by adding a carbonyl to the core and an oxadiazole ring resulting in 3 GS-462808 that had lower brain penetration and serendipitously lower activity at the brain isoforms. Compound 3 has an improved CNS window (>20 rat and dog) relative to 2, and improved anti-ischemic potency relative to ranolazine. The development of 3 was not pursued due to liver lesions in 7day rat toxicology studies. PMID:27038498

  1. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  2. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  3. Cardiac sarcoidosis

    Science.gov (United States)

    Smedema, J.P.; Zondervan, P.E.; van Hagen, P.; ten Cate, F.J.; Bresser, P.; Doubell, A.F.; Pattynama, P.; Hoogsteden, H.C.; Balk, A.H.M.M.

    2002-01-01

    Sarcoidosis is a multi-system granulomatous disorder of unknown aetiology. Symptomatic cardiac involvement occurs in approximately 5% of patients. The prevalence of sarcoidosis in the Netherlands is unknown, but estimated to be approximately 20 per 100,000 population (3200 patients). We report on five patients who presented with different manifestations of cardiac sarcoidosis, and give a brief review on the current management of this condition. Magnetic Resonance Imaging (MRI) can be of great help in diagnosing this condition as well as in the follow-up of the response to therapy. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:25696121

  4. MRI in cardiac sarcoidosis and amyloidosis

    International Nuclear Information System (INIS)

    Sarcoidosis and amyloidosis are both multisystem disorders, which may involve the heart; however, isolated cardiac disease is rare. Diagnosis of cardiac sarcoidosis and amyloidosis is crucial because the patient prognosis is dependent on cardiac involvement and early treatment. Echocardiography is the first line imaging modality in the diagnostic work-up of both diseases, possibly giving hints towards the correct diagnosis. Besides myocardial biopsy and radionuclide studies cardiac magnetic resonance imaging (MRI) is routinely performed in patients suspect of having infiltrative cardiomyopathy. The T1 mapping procedure is currently being evaluated as a new technique for detection and quantification of global myocardial enhancement, as seen in cardiac amyloidosis. Sensitivities and specificities for detection of cardiac sarcoidosis and amyloidosis can be significantly improved by MRI, especially with late gadolinium enhancement (LGE) imaging. In cardiac sarcoidosis the use of LGE is outcome-related while in amyloidosis analysis of T1-mapping may be of prognostic value. If cardiac involvement in sarcoidosis or amyloidosis is suspected cardiac MRI including LGE should be performed for establishing the diagnosis. (orig.)

  5. Cardiac Pacemakers

    International Nuclear Information System (INIS)

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control

  6. Cardiac calcium release channel (ryanodine receptor) in control and cardiomyopathic human hearts: mRNA and protein contents are differentially regulated.

    Science.gov (United States)

    Sainte Beuve, C; Allen, P D; Dambrin, G; Rannou, F; Marty, I; Trouvé, P; Bors, V; Pavie, A; Gandgjbakch, I; Charlemagne, D

    1997-04-01

    Abnormal intracellular calcium handling in cardiomyopathic human hearts has been associated with an impaired function of the sarcoplasmic reticulum, but previous reports on the gene expression of the ryanodine receptors (Ry2) are contradictory. We measured the mRNA levels, the protein levels and the number of high affinity [3H]ryanodine binding sites in the left ventricle of non-failing (n = 9) and failing human hearts [idiopathic dilated (IDCM n = 16), ischemic (ICM n = 7) or mixed (MCM n = 8) cardiomyopathies]. Ry2 mRNA levels were significantly reduced in IDCM (-30%) and unchanged in MCM and ICM and Ry2 protein levels were similar. In contrast, we observed a two-fold increase in the number of high affinity Ry2 (B(max) = 0.43 +/- 0.11 v 0.22 +/- 0.13 pmol/mg protein, respectively; P<0.01) and an unchanged K(d). Furthermore, levels of myosin heavy chain mRNA and protein per g of tissue were similar in failing and non-failing hearts, suggesting that the observed differences in Ry2 are not caused by the increase in fibrosis in failing heart. Therefore, the dissociation between the two-fold increase in the number of high affinity ryanodine receptors observed in all failing hearts and the slightly decreased mRNA level or unchanged protein level suggests that the ryanodine binding properties are affected in failing myocardium and that such modifications rather than a change in gene expression alter the channel activity and could contribute to abnormalities in intracellular Ca2+ handling. PMID:9160875

  7. Saving Salmon Through Advances in Fluvial Remote Sensing: Applying the Optimal Band Ratio Analysis (OBRA) for Bathymetric Mapping of Over 250 km of River Channel and Habitat Classification

    Science.gov (United States)

    Richardson, R.; Legleiter, C. J.; Harrison, L.

    2015-12-01

    Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.

  8. Influence of the thermalhydraulic to neutronic channel mapping in a 3D rea analysis with RELAP5/PARCS v2.7 at Trillo NPP

    International Nuclear Information System (INIS)

    The progress in analytical methods has evolved the classical thermalhydraulic codes such as RETRAN, TRAC and RELAP5 towards modern codes with full capability of performing 3D kinetics analyses in a dynamic way, for simulating the behaviour of specific cores in a realistic manner and so to predict the localized power excursions as occurs in the RIA. These codes must be feed with the kinetics information of physics codes like CASMO4-SIMULATE3. SIMTAB methodology provides an easy tool for properly extracting and formatting the cross-sections and neutronic kinetic parameters from SIMULATE to the coupled neutronic-thermalhydraulic codes, making feasible reactivity-based studies in BWR and PWR cores. SIMTAB allows to accurately transfer the initial kinetic status of the core from the physics code to the thermalhydraulic code and provides the adequate kinetics response during the full transient. We have analyzed the behavior of the Trillo NPP core in a REA with the coupled neutronic-thermalhydraulic code RELAP5/PARCS v2.7 using the cross-section set and other kinetic parameters obtained with the application of the SIMTAB methodology, developed in UPV. We have study this transient in different operating conditions and at the beginning and at the end of cycle. The present work consists of the study of the influence of different definitions of the thermalhydraulic model in a REA analysis at Trillo NPP. A series of calculations with different number of thermalhydraulic channels to represent the core has been made. These channels have been coupled to the neutronic model, developed in a one-to-one basis, that is, each fuel assembly is represented by a radial node in PARCS V2.7 code. The mapping between the thermalhydraulic and the neutronic model has been performed in different ways to study its influence in the 3D results. The results have shown that the power peak reached in this transient depends strongly on the core thermalhydraulic model. Furthermore, the axial power

  9. Cardiac MRI. T2-mapping versus T2-weighted dark-blood TSE imaging for myocardial edema visualization in acute myocardial infarction

    International Nuclear Information System (INIS)

    Purpose: To assess the diagnostic accuracy of T2 mapping for the detection of myocardial edema in acute myocardial infarction (AMI), and to compare this diagnostic accuracy with that of the current standard for myocardial edema imaging, which is T2w dark-blood TSE imaging. Materials and Methods: 29 patients with AMI were examined at 1.5 T. For the visualization of myocardial edema, T2 maps, calculated from three T2w SSFP images, and T2w dark-blood TSE images were acquired in standard short- and long-axis views. Cine SSFP images were acquired for the analysis of left ventricular (LV) function and late gadolinium enhancement images (LGE) for the visualization of myocardial necrosis. The T2 maps as well as the T2w dark-blood TSE images were evaluated twice independently from the cine SSFP and LGE images. The presence or absence of myocardial edema was rated visually for each LV segment. As the standard of reference, the infarct zone was defined based on the cine SSFP and the LGE images. Results: In this segment-based analysis, T2 mapping showed a sensitivity of 82 % and a specificity of 94 % for the detection of edema in the infarct zone. T2w dark-blood TSE imaging revealed a sensitivity of 50 % and a specificity of 98 %. T2 mapping showed a higher intra-rater agreement compared to T2w dark-blood TSE imaging (κ: 0.87 vs. 0.76). Conclusions: T2 mapping allows for the visualization of myocardial edema in AMI with a high sensitivity and specificity, and features better diagnostic accuracy in terms of a higher sensitivity compared to T2w dark-blood TSE imaging. (orig.)

  10. Cardiac MRI. T2-mapping versus T2-weighted dark-blood TSE imaging for myocardial edema visualization in acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Nassenstein, K.; Nensa, F.; Schlosser, T.; Umutlu, L.; Lauenstein, T. [University Hospital Essen (Germany). Dept. of Diagnostic and Interventional Radiology and Neuroradiology; Bruder, O. [Elisabeth Hospital, Essen (Germany). Dept. of Cardiology and Angiology; Maderwald, S.; Ladd, M.E. [Duisburg-Essen Univ., Essen (Germany). Erwin L. Hahn Institute for Magnetic Resonance Imaging

    2014-02-15

    Purpose: To assess the diagnostic accuracy of T2 mapping for the detection of myocardial edema in acute myocardial infarction (AMI), and to compare this diagnostic accuracy with that of the current standard for myocardial edema imaging, which is T2w dark-blood TSE imaging. Materials and Methods: 29 patients with AMI were examined at 1.5 T. For the visualization of myocardial edema, T2 maps, calculated from three T2w SSFP images, and T2w dark-blood TSE images were acquired in standard short- and long-axis views. Cine SSFP images were acquired for the analysis of left ventricular (LV) function and late gadolinium enhancement images (LGE) for the visualization of myocardial necrosis. The T2 maps as well as the T2w dark-blood TSE images were evaluated twice independently from the cine SSFP and LGE images. The presence or absence of myocardial edema was rated visually for each LV segment. As the standard of reference, the infarct zone was defined based on the cine SSFP and the LGE images. Results: In this segment-based analysis, T2 mapping showed a sensitivity of 82 % and a specificity of 94 % for the detection of edema in the infarct zone. T2w dark-blood TSE imaging revealed a sensitivity of 50 % and a specificity of 98 %. T2 mapping showed a higher intra-rater agreement compared to T2w dark-blood TSE imaging ({kappa}: 0.87 vs. 0.76). Conclusions: T2 mapping allows for the visualization of myocardial edema in AMI with a high sensitivity and specificity, and features better diagnostic accuracy in terms of a higher sensitivity compared to T2w dark-blood TSE imaging. (orig.)

  11. [Cardiac arrhythmias in targeted connexin deficient mice: significance for the arrhythmia field].

    Science.gov (United States)

    Hagendorff, A; Plum, A

    2000-12-01

    Intercellular communication can be mediated by gap junction channels. One channel is composed of two hexameric hemichannels which consist of six polypeptide subunits called connexines (Cx). Three different connexines were documented in the cardiac myocytes: Cx40, Cx43 and Cx45. The labeling by number represents the rounded, molecular mass of the amino acid sequences given in kD. Identical connexons form homotypic channels different connexons can form heterotypic channels. Each channel type has specific properties regarding permeability and electrical conductance. Beside a typical age-dependent alignment of gap junction channels on the surface of the cardiac myocytes, regional distribution of the different connexins is different at distinct parts of the mouse heart. The ventricular working myocardium is characterized by Cx43, whereas Cx40 and Cx45 were not found in this region. In the atria as well as in the conduction system, Cx40 is the most frequently expressed. Cx45 appears to form a border zone between conductive and the surrounding working myocardium. In line with the localization and the conduction properties of distinct homotypic gap junction channels, the Cx43 deficient mouse is suitable for analysis of ventricular arrhythmias and the Cx40 deficient mouse primarily for studies of atrial arrhythmias. Increased ventricular conduction velocity and increased ventricular vulnerability were observed in the presence of a decreased number and density of Cx43 gap junction channels. This observation, however, is controversially discussed. Cx40 deficiency induces an impairment of the sinuatrial, intraatrial and atrioventricular conduction properties and is associated with an increased atrial vulnerability. Transgenic mouse models and new mapping techniques for detection of the electrical wavefront propagation provide new insights into the mechanisms of arrhythmogenesis. Geneticists, clinicians and basic researchers need to collaborate in order to explore the clinical

  12. A simplified HTc rf SQUID to analyze the human cardiac magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chen, E-mail: zhangchen2010@pku.edu.cn, E-mail: tfk616@sina.com, E-mail: maping@pku.edu.cn, E-mail: zizhaogan@pku.edu.cn [Applied Superconductivity Research Center of Peking University, Department of Physics, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics,Peking University, Beijing 100871 (China); Department of Cardiology, the 309" t" h Hospital of PLA, Beijing, 100091 (China); Tang, Fakuan, E-mail: zhangchen2010@pku.edu.cn, E-mail: tfk616@sina.com, E-mail: maping@pku.edu.cn, E-mail: zizhaogan@pku.edu.cn [Department of Cardiology, the 309" t" h Hospital of PLA, Beijing, 100091 (China); Ma, Ping, E-mail: zhangchen2010@pku.edu.cn, E-mail: tfk616@sina.com, E-mail: maping@pku.edu.cn, E-mail: zizhaogan@pku.edu.cn; Gan, Zizhao, E-mail: zhangchen2010@pku.edu.cn, E-mail: tfk616@sina.com, E-mail: maping@pku.edu.cn, E-mail: zizhaogan@pku.edu.cn [Applied Superconductivity Research Center of Peking University, Department of Physics, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics,Peking University, Beijing 100871 (China)

    2014-12-15

    We have developed a four-channel high temperature radio-frequency superconducting quantum interference device (HT{sub c} rf SQUID) in a simple magnetically shielded room (MSR) that can be used to analyze the cardiac magnetic field. It is more robust and compact than existing systems. To achieve the high-quality magnetocardiographic signal, we explored new adaptive software gradiometry technology constructed by the first-order axial gradiometer with a baseline of 80mm, which can adjust its performance timely with the surrounding conditions. The magnetic field sensitivity of each channel was less than 100fT/√Hz in the white noise region. Especially, in the analysis of MCG signal data, we proposed the total transient mapping (TTM) technique to visualize current density map (CDM), then we focused to observe the time-varying behavior of excitation propagation and estimated the underlying currents at T wave. According to the clear 3D imaging, isomagnetic field and CDM, the position and distribution of a current source in the heart can be visualized. It is believed that our four-channel HT{sub c} rf SQUID magnetometer based on biomagnetic system is available to detect MCG signals with sufficient signal-to-noise (SNR) ratio. In addition, the CDM showed the macroscopic current activation pattern, in a way, it has established strong underpinnings for researching the cardiac microscopic movement mechanism and opening the way for its use in clinical diagnosis.

  13. A simplified HTc rf SQUID to analyze the human cardiac magnetic field

    International Nuclear Information System (INIS)

    We have developed a four-channel high temperature radio-frequency superconducting quantum interference device (HTc rf SQUID) in a simple magnetically shielded room (MSR) that can be used to analyze the cardiac magnetic field. It is more robust and compact than existing systems. To achieve the high-quality magnetocardiographic signal, we explored new adaptive software gradiometry technology constructed by the first-order axial gradiometer with a baseline of 80mm, which can adjust its performance timely with the surrounding conditions. The magnetic field sensitivity of each channel was less than 100fT/√Hz in the white noise region. Especially, in the analysis of MCG signal data, we proposed the total transient mapping (TTM) technique to visualize current density map (CDM), then we focused to observe the time-varying behavior of excitation propagation and estimated the underlying currents at T wave. According to the clear 3D imaging, isomagnetic field and CDM, the position and distribution of a current source in the heart can be visualized. It is believed that our four-channel HTc rf SQUID magnetometer based on biomagnetic system is available to detect MCG signals with sufficient signal-to-noise (SNR) ratio. In addition, the CDM showed the macroscopic current activation pattern, in a way, it has established strong underpinnings for researching the cardiac microscopic movement mechanism and opening the way for its use in clinical diagnosis

  14. Cardiac rhabdomyosarcoma

    OpenAIRE

    Chlumský, Jaromír; Holá, Dana; Hlaváček, Karel; Michal, Michal; Švec, Alexander; Špatenka, Jaroslav; Dušek, Jan

    2001-01-01

    Cardiac sarcoma is a very rare neoplasm and is difficult to diagnose. The case of a 51-year-old man with a left atrial tumour, locally recurrent three months after its surgical removal, is presented. Computed tomography showed metastatic spread to the lung parenchyma. On revised histology, the mass extirpated was a sarcoma. Because of the metastatic spread, further therapy was symptomatic only; the patient died 15 months after the first manifestation of his problems. Immunohistochemical stain...

  15. Cardiac Calcification

    Directory of Open Access Journals (Sweden)

    Morteza Joorabian

    2011-05-01

    Full Text Available There is a spectrum of different types of cardiac"ncalcifications with the importance and significance"nof each type of cardiac calcification, especially"ncoronary artery calcification. Radiologic detection of"ncalcifications within the heart is quite common. The"namount of coronary artery calcification correlates"nwith the severity of coronary artery disease (CAD."nCalcification of the aortic or mitral valve may indicate"nhemodynamically significant valvular stenosis."nMyocardial calcification is a sign of prior infarction,"nwhile pericardial calcification is strongly associated"nwith constrictive pericarditis. A spectrum of different"ntypes of cardiac calcifications (linear, annular,"ncurvilinear,... could be seen in chest radiography and"nother imaging modalities. So a carful inspection for"ndetection and reorganization of these calcifications"nshould be necessary. Numerous modalities exist for"nidentifying coronary calcification, including plain"nradiography, fluoroscopy, intravascular ultrasound,"nMRI, echocardiography, and conventional, helical and"nelectron-beam CT (EBCT. Coronary calcifications"ndetected on EBCT or helical CT can be quantifie,"nand a total calcification score (Cardiac Calcification"nScoring may be calculated. In an asymptomatic"npopulation and/or patients with concomitant risk"nfactors like diabetes mellitus, determination of the"npresence of coronary calcifications identifies the"npatients at risk for future myocardial infarction and"ncoronary artery disease. In patients without coronary"ncalcifications, future cardiovascular events could"nbe excluded. Therefore, detecting and recognizing"ncalcification related to the heart on chest radiography"nand other imaging modalities such as fluoroscopy, CT"nand echocardiography may have important clinical"nimplications.

  16. Pharmacological blockade of voltage-gated calcium channels as a potential cardioprotective strategy

    OpenAIRE

    Pushparaj, Charumathi

    2014-01-01

    Voltage-gated Ca2+ channels (VGCCs) are essential for initiating and regulating cardiac function. During the cardiac action potential, Ca2+ influx through L-type channels triggers the sarcoplasmic reticulum Ca2+ release that enables the EC coupling. Ca2+ can also enter cardiac myocytes through low-voltage-activated T-type channels, which are expressed throughout cardiac development until the end of the neonatal period, and can contribute to pacemaker activity as well as EC coupling to some ex...

  17. Cardiac arrhythmia

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008032 Efficacy of integrated three-dimensional electroanatomic mapping with preacquired magnetic resonance images guide catheter atrial fibrillation ablation. YU Ronghui(喻荣辉), et al. Dept Cardiol, Beijing Anzhen Hosp, Capital Med Univ, Beijing 100029. Chin J Cardiol 2007;35(11):1029-1033. Objective To investigate the efficacy of integrated electroanatomic mapping with preacquired magnetic resonance (MR) images guided catheter at

  18. MAPPING AND MONITORING OF SALT MARSH VEGETATION AND TIDAL CHANNEL NETWORK FROM HIGH RESOLUTION IMAGERY (1975-2006). EXAMPLE OF THE MONT-SAINT-MICHEL BAY (FRANCE)

    Science.gov (United States)

    Puissant, A. P.; Kellerer, D.; Gluard, L.; Levoy, F.

    2009-12-01

    Coastal landscapes are severely affected by environmental and social pressures. Their long term development is controlled by both physical and anthropogenic factors, which spatial dynamics and interactions may be analysed by Earth Observation data. The Mont-Saint-Michel Bay (Normandy, France) is one of the European coastal systems with a very high tidal range (approximately 15m during spring tides) because of its geological, geomorphological and hydrodynamical contexts at the estuary of the Couesnon, Sée and Sélune rivers. It is also an important touristic place with the location of the Mont-Saint-Michel Abbey, and an invaluable ecosystem of wetlands forming a transition between the sea and the land. Since 2006, engineering works are performed with the objective of restoring the maritime character of the Bay. These works will lead to many changes in the spatial dynamics of the Bay which can be monitored with two indicators: the sediment budget and the wetland vegetation surfaces. In this context, the aim of this paper is to map and monitor the tidal channel network and the extension of the salt marsh vegetation formation in the tidal zone of the Mont-Saint-Michel Bay by using satellite images. The spatial correlation between the network location of the three main rivers and the development of salt marsh is analysed with multitemporal medium (60m) to high spatial resolution (from 10 to 30 m) satellite images over the period 1975-2006. The method uses a classical supervised algorithm based on a maximum likelihood classification of eleven satellites images. The salt-marsh surfaces and the tidal channel network are then integrated in a GIS. Results of extraction are assessed by qualitative (visual interpretation) and quantitative indicators (confusion matrix). The multi-temporal analysis between 1975 and 2006 highlights that in 1975 when the study area is 26000 ha, salt marshes cover 16% (3000ha), the sandflat (slikke) and the water represent respectively 59% and 25

  19. Cardiac conduction system

    Science.gov (United States)

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals ... to contract. The main components of the cardiac conduction system are the SA node, AV node, bundle ...

  20. [Rhythm disorders and cardiac crypto-malformations].

    Science.gov (United States)

    Davy, J M; Raczka, F; Cung, T T; Combes, N; Bortone, A; Gaty, D

    2005-12-01

    Faced with a cardiac arrhythmia occuring in an apparently healthy heart, it is necessary to perform an anatomical investigation to detect any unsuspected anomalies. Congenital cardiopathy must certainly be excluded, as this is often responsible for rhythm disorders and/or cardiac conduction defects. Similarly, any acquired conditions, cardiomyopathy, or cardiac tumour must be sought. However, the possibility should always be considered of a minimal congenital malformation, which could be repsonsible for: any type of cardiac arrhythmia: rhythm disorder or conduction defect at the atrial, junctional or ventricular level, with a benign or serious prognosis. Unexpected therapeutic difficulties during radiofrequency ablation procedures or at implantation of pacemakers or defibrillators. Together with rhythm studies, the investigation of choice is high quality imaging, either the classic left or right angiography or the more modern cardiac CT or intracardiac mapping. PMID:16433240

  1. Novel mutations mapping to the fourth sodium channel domain of Nav1.7 result in variable clinical manifestations of primary erythromelalgia.

    Science.gov (United States)

    Cregg, Roman; Laguda, Bisola; Werdehausen, Robert; Cox, James J; Linley, John E; Ramirez, Juan D; Bodi, Istvan; Markiewicz, Michael; Howell, Kevin J; Chen, Ya-Chun; Agnew, Karen; Houlden, Henry; Lunn, Michael P; Bennett, David L H; Wood, John N; Kinali, Maria

    2013-06-01

    We identified and clinically investigated two patients with primary erythromelalgia mutations (PEM), which are the first reported to map to the fourth domain of Nav1.7 (DIV). The identified mutations (A1746G and W1538R) were cloned and transfected to cell cultures followed by electrophysiological analysis in whole-cell configuration. The investigated patients presented with PEM, while age of onset was very different (3 vs. 61 years of age). Electrophysiological characterization revealed that the early onset A1746G mutation leads to a marked hyperpolarizing shift in voltage dependence of steady-state activation, larger window currents, faster activation kinetics (time-to-peak current) and recovery from steady-state inactivation compared to wild-type Nav1.7, indicating a pronounced gain-of-function. Furthermore, we found a hyperpolarizing shift in voltage dependence of slow inactivation, which is another feature commonly found in Nav1.7 mutations associated with PEM. In silico neuron simulation revealed reduced firing thresholds and increased repetitive firing, both indicating hyperexcitability. The late-onset W1538R mutation also revealed gain-of-function properties, although to a lesser extent. Our findings demonstrate that mutations encoding for DIV of Nav1.7 can not only be linked to congenital insensitivity to pain or paroxysmal extreme pain disorder but can also be causative of PEM, if voltage dependency of channel activation is affected. This supports the view that the degree of biophysical property changes caused by a mutation may have an impact on age of clinical manifestation of PEM. In summary, these findings extent the genotype-phenotype correlation profile for SCN9A and highlight a new region of Nav1.7 that is implicated in PEM. PMID:23292638

  2. Relationship between coronary atherosclerosis and 'sudden cardiac death'

    International Nuclear Information System (INIS)

    Coronary arteriosclerosis in mini-pigs was produced by combination of hypercholesterolemia and twofold X irradiation of the cardiac region. 15-21 weeks following irradiation 40% of the adult animals and 58% of the juvenils died of 'sudden cardiac death'. The mortality rate decreased significantly after application of the calcium-channel blocking agent nifedipine

  3. Cardiac MRI in Athletes

    NARCIS (Netherlands)

    Luijkx, T.

    2012-01-01

    Cardiac magnetic resonance imaging (CMR) is often used in athletes to image cardiac anatomy and function and is increasingly requested in the context of screening for pathology that can cause sudden cardiac death (SCD). In this thesis, patterns of cardiac adaptation to sports are investigated with C

  4. In Vivo Phosphorylation Site Mapping in Mouse Cardiac Troponin I by High Resolution Top-Down Electron Capture Dissociation Mass Spectrometry: Ser22/23 Are the Only Sites Basally Phosphorylated†

    OpenAIRE

    Ayaz-Guner, Serife; Zhang, Jiang; Li, Lin; Walker, Jeffery W.; Ge, Ying

    2009-01-01

    Cardiac troponin I (cTnI) is the inhibitory subunit of cardiac troponin, a key myofilament regulatory protein complex located on the thin filaments of the contractile apparatus. cTnI is uniquely specific for the heart and is widely used in clinics as a serum biomarker for cardiac injury. Phosphorylation of cTnI plays a critical role in modulating cardiac function. cTnI is known to be regulated by protein kinase A and protein kinase C at five sites, Ser22/Ser23, Ser42/44, and Thr143, primarily...

  5. On partially entanglement breaking channels

    OpenAIRE

    Chruściński, Dariusz; Kossakowski, Andrzej

    2005-01-01

    Using well known duality between quantum maps and states of composite systems we introduce the notion of Schmidt number of a quantum channel. It enables one to define classes of quantum channels which partially break quantum entanglement. These classes generalize the well known class of entanglement breaking channels.

  6. Morphodynamics of Floodplain Chute Channels

    Science.gov (United States)

    David, S. R.; Edmonds, D. A.

    2015-12-01

    Floodplain chute channel formation is a key process that can enable rivers to transition from single-thread to multi-thread planform geometries. Floodplain chute channels are usually incisional channels connecting topographic lows across point bars and in the floodplain. Surprisingly, it is still not clear what conditions promote chute channel formation and what governs their morphodynamic behavior. Towards this end we have initiated an empirical and theoretical study of floodplain chute channels in Indiana, USA. Using elevation models and satellite imagery we mapped 3064 km2 of floodplain in Indiana, and find that 37.3% of mapped floodplains in Indiana have extensive chute channel networks. These chute channel networks consist of two types of channel segments: meander cutoffs of the main channel and chute channels linking the cutoffs together. To understand how these chute channels link meander cutoffs together and eventually create floodplain channel networks we use Delft3D to explore floodplain morphodynamics. Our first modeling experiment starts from a generic floodplain prepopulated with meander cutoffs to test under what conditions chute channels form.We find that chute channel formation is optimized at an intermediate flood discharge. If the flood discharge is too large the meander cutoffs erosively diffuse, whereas if the floodwave is too small the cutoffs fill with sediment. A moderately sized floodwave reworks the sediment surrounding the topographic lows, enhancing the development of floodplain chute channels. Our second modeling experiments explore how floodplain chute channels evolve on the West Fork of the White River, Indiana, USA. We find that the floodplain chute channels are capable of conveying the entire 10 yr floodwave (Q=1330m3/s) leaving the inter-channel areas dry. Moreover, the chute channels can incise into the floodplain while the margins of channels are aggrading, creating levees. Our results suggest that under the right conditions

  7. Ion channelopathy and hyperphosphorylation contributing to cardiac arrhythmias

    Institute of Scientific and Technical Information of China (English)

    De-zai DAI; Feng YU

    2005-01-01

    The occurrence of cardiac arrhythmias is related to the abnormality of ion channels not only in sarcolemma but also in the sarcoplasmic reticulum, which regulates the process of calcium release and up-take intracellularly. Patterns of ion channelopathy in the sarcolemma can be divided into single channel disorder from gene mutations and multiple channels disorder in a diseased hypertrophied heart. Abnormal RyR2, FKBP12.6, SERCA2a, and PLB are also involved in the initiation of cardiac arrhythmias. Maladjustment by hyperphosphorylation on the ion channels in the sarcolemma and RyR2-FKBP12.6 and SERCA2a-PLB is discussed. Hyperphosphorylation, which is the main abnormality upstream to ion channels, can be targeted for suppressing the deterioration of ion channelopathy in terms of new drug discovery in the treatment and prevention of malignant cardiac arrhythmias.

  8. Cardiac perception and cardiac control. A review.

    Science.gov (United States)

    Carroll, D

    1977-12-01

    The evidence regarding specific cardiac perception and discrimination, and its relationship to voluntary cardiac control, is critically reviewed. Studies are considered in three sections, depending on the method used to assess cardiac perception: questionnaire assessment, discrimination procedures, and heartbeat tracking. The heartbeat tracking procedure would appear to suffer least from interpretative difficulties. Recommendations are made regarding the style of analysis used to assess heartbeat perception in such tracking tasks. PMID:348240

  9. Platelets and cardiac arrhythmia

    Directory of Open Access Journals (Sweden)

    JonasSDe Jong

    2010-12-01

    Full Text Available Sudden cardiac death remains one of the most prevalent modes of death in industrialized countries, and myocardial ischemia due to thrombotic coronary occlusion is its primary cause. The role of platelets in the occurrence of SCD extends beyond coronary flow impairment by clot formation. Here we review the substances released by platelets during clot formation and their arrhythmic properties. Platelet products are released from three types of platelet granules: dense core granules, alpha-granules, and platelet lysosomes. The physiologic properties of dense granule products are of special interest as a potential source of arrhythmic substances. They are released readily upon activation and contain high concentrations of serotonin, histamine, purines, pyrimidines, and ions such as calcium and magnesium. Potential arrhythmic mechanisms of these substances, e.g. serotonin and high energy phosphates, include induction of coronary constriction, calcium overloading, and induction of delayed after-depolarizations. Alpha-granules produce thromboxanes and other arachidonic acid products with many potential arrhythmic effects mediated by interference with cardiac sodium, calcium and potassium channels. Alpha-granules also contain hundreds of proteins that could potentially serve as ligands to receptors on cardiomyocytes. Lysosomal products probably do not have an important arrhythmic effect. Platelet products and ischemia can induce coronary permeability, thereby enhancing interaction with surrounding cardiomyocytes. Antiplatelet therapy is known to improve survival after myocardial infarction. Although an important part of this effect results from prevention of coronary clot formation, there is evidence to suggest that antiplatelet therapy also induces anti-arrhythmic effects during ischemia by preventing the release of platelet activation products.

  10. Recent Genetic Discoveries Implicating Ion Channels in Human Cardiovascular Diseases

    OpenAIRE

    George, Alfred L.

    2013-01-01

    The term channelopathy refers to human genetic disorders caused by mutations in genes encoding ion channels or their interacting proteins. Recent advances in this field have been enabled by next-generation DNA sequencing strategies such as whole exome sequencing with several intriguing and unexpected discoveries. This review highlights important discoveries implicating ion channels or ion channel modulators in cardiovascular disorders including cardiac arrhythmia susceptibility, cardiac condu...

  11. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death

    DEFF Research Database (Denmark)

    Nyegaard, Mette; Overgaard, Michael Toft; Sondergaard, M.T.; Vranas, Marta; Behr, Elijah R.; Hildebrandt, L.L.; Lund, J.; Hedley, Paula L.; Camm, A. John; Wettrell, Göran; Fosdal, Inger; Christiansen, Michael; Borglum, Anders D.

    2012-01-01

    substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe......Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause a...... calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac...

  12. Expression and protective effects of urocortin in cardiac myocytes.

    Science.gov (United States)

    Okosi, A; Brar, B K; Chan, M; D'Souza, L; Smith, E; Stephanou, A; Latchman, D S; Chowdrey, H S; Knight, R A

    1998-04-01

    Reverse transcription PCR showed that mRNA encoding the CRH-like molecule, urocortin, is expressed in a rat cardiac myocyte cell line and in primary cultures of cardiac myocytes. Identity of the amplified with the published sequence was established by restriction mapping and direct sequencing. Expression of urocortin mRNA was increased 12-18 h after thermal injury. Urocortin peptide protected cardiac myocytes from cell death induced by hypoxia. The data suggest that urocortin is an endogenous cardiac myocyte peptide which modulates the cellular response to stress. PMID:9639256

  13. What Is Cardiac Rehabilitation?

    Science.gov (United States)

    ANSWERS by heart Treatments + Tests What Is Cardiac Rehabilitation? A cardiac rehabilitation (rehab) program takes place in a hospital or ... special help in making lifestyle changes. During your rehabilitation program you’ll… • Have a medical evaluation to ...

  14. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  15. Progress and promises of human cardiac magnetic resonance at ultrahigh fields: A physics perspective

    Science.gov (United States)

    Niendorf, Thoralf; Graessl, Andreas; Thalhammer, Christof; Dieringer, Matthias A.; Kraus, Oliver; Santoro, Davide; Fuchs, Katharina; Hezel, Fabian; Waiczies, Sonia; Ittermann, Bernd; Winter, Lukas

    2013-04-01

    A growing number of reports eloquently speak about explorations into cardiac magnetic resonance (CMR) at ultrahigh magnetic fields (B0 ⩾ 7.0 T). Realizing the progress, promises and challenges of ultrahigh field (UHF) CMR this perspective outlines current trends in enabling MR technology tailored for cardiac MR in the short wavelength regime. For this purpose many channel radiofrequency (RF) technology concepts are outlined. Basic principles of mapping and shimming of transmission fields including RF power deposition considerations are presented. Explorations motivated by the safe operation of UHF-CMR even in the presence of conductive implants are described together with the physics, numerical simulations and experiments, all of which detailing antenna effects and RF heating induced by intracoronary stents at 7.0 T. Early applications of CMR at 7.0 T and their clinical implications for explorations into cardiovascular diseases are explored including assessment of cardiac function, myocardial tissue characterization, MR angiography of large and small vessels as well as heteronuclear MR of the heart and the skin. A concluding section ventures a glance beyond the horizon and explores future directions. The goal here is not to be comprehensive but to inspire the biomedical and diagnostic imaging communities to throw further weight behind the solution of the many remaining unsolved problems and technical obstacles of UHF-CMR with the goal to transfer MR physics driven methodological advancements into extra clinical value.

  16. A MAP Channel Estimation Algorithm for MIMO-OFDM Systems with Better Performance%一种性能更好的MIMO-OFDM系统MAP信道估计算法

    Institute of Scientific and Technical Information of China (English)

    许鹏; 汪晋宽; 祁峰

    2011-01-01

    Maximum a posteriori (MAP) channel estimation algorithm usually uses expectation maximum (EM) algorithm to decrease the high computation. However, this kind of operation has a difficulty in obtaining ideal estimation performance at high signal to noise ratio (SNR) because of the convergent feature of EM algorithm. In addition, for pilot-based multiple-input multiple-output with orthogonal frequency division multiplexing (MIMO-OFDM) systems, data transmission efficiency of OFDM symbol will be reduced with the increasing number of transmit antennas. In order to improve these two drawbacks, firstly, an equivalent signal model is introduced to improve the convergent property of EM algorithm at high SNR. Then, to enhance the data transmission efficiency, joint estimation is implemented by making use of phase shifted orthogonal pilot sequences over multiple OFDM symbols. What's more, channel matrix is transformed between time domain and angle domain and the concept of angle domain is used to reduce the effect of noise on the estimation by using the spatial independence of MIMO channel in channel matrix of angle domain. Through performance analysis and simulation results, it is indicated that the proposed algorithm has lower estimation error and higher data transmission efficiency than the raw MAP algorithm based on EM process, which only requires increasing the computational complexity a little bit.%基于期望最大化(EM)的最大后验信道估计算法(MAP)在高信噪比(SNR)下将很难获得较低的估计误差,并且,对于导频辅助的MIMO-OFDM系统,OFDM符号的数据传输效率随着发送天线的增加而明显下降.为改善这两种缺陷,引入一种等效的信号模型来改善高SNR下的估计性能;在相邻多个OFDM符号内使用相移正交导频序列和联合估计来提高系统的数据传输效率和估计性能;根据角域内信道间的独立性来减小噪声对估计的影响.通过仿真实验可知,所提算法具有更小的

  17. Cardiac tumours in children

    Directory of Open Access Journals (Sweden)

    Parsons Jonathan M

    2007-03-01

    Full Text Available Abstract Cardiac tumours are benign or malignant neoplasms arising primarily in the inner lining, muscle layer, or the surrounding pericardium of the heart. They can be primary or metastatic. Primary cardiac tumours are rare in paediatric practice with a prevalence of 0.0017 to 0.28 in autopsy series. In contrast, the incidence of cardiac tumours during foetal life has been reported to be approximately 0.14%. The vast majority of primary cardiac tumours in children are benign, whilst approximately 10% are malignant. Secondary malignant tumours are 10–20 times more prevalent than primary malignant tumours. Rhabdomyoma is the most common cardiac tumour during foetal life and childhood. It accounts for more than 60% of all primary cardiac tumours. The frequency and type of cardiac tumours in adults differ from those in children with 75% being benign and 25% being malignant. Myxomas are the most common primary tumours in adults constituting 40% of benign tumours. Sarcomas make up 75% of malignant cardiac masses. Echocardiography, Computing Tomography (CT and Magnetic Resonance Imaging (MRI of the heart are the main non-invasive diagnostic tools. Cardiac catheterisation is seldom necessary. Tumour biopsy with histological assessment remains the gold standard for confirmation of the diagnosis. Surgical resection of primary cardiac tumours should be considered to relieve symptoms and mechanical obstruction to blood flow. The outcome of surgical resection in symptomatic, non-myxomatous benign cardiac tumours is favourable. Patients with primary cardiac malignancies may benefit from palliative surgery but this approach should not be recommended for patients with metastatic cardiac tumours. Surgery, chemotherapy and radiotherapy may prolong survival. The prognosis for malignant primary cardiac tumours is generally extremely poor.

  18. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents.

    Science.gov (United States)

    Hou, Jennifer H; Kralj, Joel M; Douglass, Adam D; Engert, Florian; Cohen, Adam E

    2014-01-01

    The cardiac action potential (AP) and the consequent cytosolic Ca(2+) transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time) of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar) to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf). We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 and 102 h post fertilization (hpf), the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function. PMID:25309445

  19. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents

    Directory of Open Access Journals (Sweden)

    Jennifer H Hou

    2014-09-01

    Full Text Available The cardiac action potential (AP and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf. We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 – 102 hours post fertilization (hpf, the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.

  20. A MAP Criterion for Detecting the Number of Speakers at frame level in Model-based Single-Channel Speech Separation

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Tan, Zheng-Hua;

    2010-01-01

    The problem of detecting the number of speakers for a particular segment occurs in many dif- ferent speech applications. In single channel speech separation, for example, this information is often used to simplify the separation process, as the signal has to be treated differently depending on the...... number of speakers. Inspired by the asymptotic maximum a posteriori rule proposed for model selection, we pose the problem as a model selection problem. More specifically, we derive a multiple hypotheses test for determining the number of speakers at a frame level in an observed signal based on underlying...... parametric speaker models, trained a priori. The experimental results indicate that the suggested method improves the quality of the separated signals in a single-channel speech separation scenario at different signal-to-signal ratio levels....

  1. Bringing light to remnants of riparian areas in rice field channels: a combined application of linear transects and the mapping method

    OpenAIRE

    Godinho, Carlos; Pereira, Pedro; Rabaça, João E.

    2010-01-01

    The importance of rice fields for bird conservation has been subject of several studies, mainly focused in core areas as habitat for waterbirds. However, significant parts of the rice field structure, like the irrigation channels that control the water level, are often neglected. These corridor-like areas are frequently characterized by the presence of riparian vegetation like willows and ashes or wetland vegetation like reedmace or common reedbeds. In order to assess the importance of these ...

  2. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  3. RFI channels

    Science.gov (United States)

    Mceliece, R. J.

    1980-01-01

    A class of channel models is presented which exhibit varying burst error severity much like channels encountered in practice. An information-theoretic analysis of these channel models is made, and conclusions are drawn that may aid in the design of coded communication systems for realistic noisy channels.

  4. Dequantization Via Quantum Channels

    Science.gov (United States)

    Andersson, Andreas

    2016-08-01

    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large-m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  5. Buerger's Disease and Anaesthesia: The Neglected Cardiac Angle

    Directory of Open Access Journals (Sweden)

    Shagun Bhatia Shah

    2015-08-01

    Full Text Available Distal limb amputations and respiratory complications are common in patients with Buerger’s disease. Nicotine in cigarette is arrhythmogenic as it blocks cardiac potassium channels. Preoperative Holter ECG monitoring may be useful if preoperative electrocardiogram is normal. If the patient is undergoing major surgery, preservative free lignocaine & amiodarone infusions and a cardioverter defibrillator should be available for the intraoperative cardiac rhythm disturbances.

  6. Preoperative cardiac risk management

    OpenAIRE

    Vidaković Radosav; Poldermans Don; Nešković Aleksandar N.

    2011-01-01

    Approximately 100 million people undergo noncardiac surgery annually worldwide. It is estimated that around 3% of patients undergoing noncardiac surgery experience a major adverse cardiac event. Although cardiac events, like myocardial infarction, are major cause of perioperative morbidity or mortality, its true incidence is difficult to assess. The risk of perioperative cardiac complications depends mainly on two conditions: 1) identified risk factors, and 2) the type of the surgical p...

  7. Mapping of the detergent-exposed surface of membrane proteins and peptides by 1H solution NMR in detergent: Application to the gramicidin A ion channel

    International Nuclear Information System (INIS)

    The present work evaluates the use of intermolecular polypeptide-detergent 1H through-space connectivities to determine the bilayer exposed-surface and the bilayer topography of membrane polypeptides solubilized in non- deuterated detergents. For this purpose, the membrane peptide gramicidin A, solubilized in non-deuterated sodium dodecylsulfate as its dimeric β6,3 helix channel conformation was used. For this peptide, a high-resolution 3D structure, as well as reasonable assumptions concerning its membrane arrangement, exist. Band-selective 2D NOESY, ROESY and 3D NOESY-NOESY experiments were used to detect detergent-polypeptide through-space correlations in the presence of an excess of the non-deuterated detergent. The observed intermolecular NOEs appear to be strongly temperature- dependent. Based on the known 3D structure of the gramicidin channel, the detergent-polypeptide through-space correlations appear to be selective for 1H located on the hydrophobic surface of gramicidin A with very few contributions from interior 1H or water-exposed 1H. It is suggested that this method can be of general use to evaluate the bilayer-exposed surface and topography of membrane peptides and small proteins

  8. Mapping of the detergent-exposed surface of membrane proteins and peptides by 1H solution NMR in detergent: Application to the gramicidin A ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Seigneuret, Michel [Universite Paris 6, LPBC (URA 2056) (France); Le guerneve, Christine [INRA-IPV (France)

    1999-01-15

    The present work evaluates the use of intermolecular polypeptide-detergent 1H through-space connectivities to determine the bilayer exposed-surface and the bilayer topography of membrane polypeptides solubilized in non- deuterated detergents. For this purpose, the membrane peptide gramicidin A, solubilized in non-deuterated sodium dodecylsulfate as its dimeric {beta}6,3 helix channel conformation was used. For this peptide, a high-resolution 3D structure, as well as reasonable assumptions concerning its membrane arrangement, exist. Band-selective 2D NOESY, ROESY and 3D NOESY-NOESY experiments were used to detect detergent-polypeptide through-space correlations in the presence of an excess of the non-deuterated detergent. The observed intermolecular NOEs appear to be strongly temperature- dependent. Based on the known 3D structure of the gramicidin channel, the detergent-polypeptide through-space correlations appear to be selective for 1H located on the hydrophobic surface of gramicidin A with very few contributions from interior 1H or water-exposed 1H. It is suggested that this method can be of general use to evaluate the bilayer-exposed surface and topography of membrane peptides and small proteins.

  9. Living cardiac tissue slices: an organotypic pseudo two-dimensional model for cardiac biophysics research.

    Science.gov (United States)

    Wang, Ken; Terrar, Derek; Gavaghan, David J; Mu-U-Min, Razik; Kohl, Peter; Bollensdorff, Christian

    2014-08-01

    Living cardiac tissue slices, a pseudo two-dimensional (2D) preparation, have received less attention than isolated single cells, cell cultures, or Langendorff-perfused hearts in cardiac biophysics research. This is, in part, due to difficulties associated with sectioning cardiac tissue to obtain live slices. With moderate complexity, native cell-types, and well-preserved cell-cell electrical and mechanical interconnections, cardiac tissue slices have several advantages for studying cardiac electrophysiology. The trans-membrane potential (Vm) has, thus far, mainly been explored using multi-electrode arrays. Here, we combine tissue slices with optical mapping to monitor Vm and intracellular Ca(2+) concentration ([Ca(2+)]i). This combination opens up the possibility of studying the effects of experimental interventions upon action potential (AP) and calcium transient (CaT) dynamics in 2D, and with relatively high spatio-temporal resolution. As an intervention, we conducted proof-of-principle application of stretch. Mechanical stimulation of cardiac preparations is well-established for membrane patches, single cells and whole heart preparations. For cardiac tissue slices, it is possible to apply stretch perpendicular or parallel to the dominant orientation of cells, while keeping the preparation in a constant focal plane for fluorescent imaging of in-slice functional dynamics. Slice-to-slice comparison furthermore allows one to assess transmural differences in ventricular tissue responses to mechanical challenges. We developed and tested application of axial stretch to cardiac tissue slices, using a manually-controlled stretching device, and recorded Vm and [Ca(2+)]i by optical mapping before, during, and after application of stretch. Living cardiac tissue slices, exposed to axial stretch, show an initial shortening in both AP and CaT duration upon stretch application, followed in most cases by a gradual prolongation of AP and CaT duration during stretch maintained

  10. Role of the intercalated disc in cardiac propagation and arrhythmogenesis

    OpenAIRE

    Kleber, Andre G.; Saffitz, Jeffrey E.

    2014-01-01

    This review article discusses mechanisms underlying impulse propagation in cardiac muscle with specific emphasis on the role of the cardiac cell-to-cell junction, called the “intercalated disc.”The first part of this review deals with the role of gap junction channels, formed by connexin proteins, as a determinant of impulse propagation. It is shown that, depending on the underlying structure of the cellular network, decreasing the conductance of gap junction channels (so-called “electrical u...

  11. Multichannel receiver coils for improved coverage in cardiac metabolic imaging using prepolarized 13C substrates.

    Science.gov (United States)

    Dominguez-Viqueira, William; Lau, Angus Z; Chen, Albert P; Cunningham, Charles H

    2013-07-01

    MR imaging using hyperpolarized (13)C substrates has become a promising tool to study real-time cardiac-metabolism in vivo. For such fast imaging of nonrecoverable prepolarized magnetization it is important to optimize the RF-coils to obtain the best signal-to-noise ratio possible, given the required coverage. In this work, three different receiver-coil configurations were computed in pig and human models. The sensitivity maps were demonstrated in phantoms and in vivo experiments performed in pigs. Signal-to-noise ratio in the posterior heart was increased up to 80% with the best multichannel coil as expected. These new coil configurations will allow imaging of the different metabolite signals even in the posterior regions of the myocardium, which is not possible with a single-channel surface-coil. PMID:22907595

  12. Blunt cardiac rupture.

    Science.gov (United States)

    Martin, T D; Flynn, T C; Rowlands, B J; Ward, R E; Fischer, R P

    1984-04-01

    Blunt injury to the heart ranges from contusion to disruption. This report comprises 14 patients seen during a 6-year period with cardiac rupture secondary to blunt trauma. Eight patients were injured in automobile accidents, two patients were injured in auto-pedestrian accidents, two were kicked in the chest by ungulates, and two sustained falls. Cardiac tamponade was suspected in ten patients. Five patients presented with prehospital cardiac arrest or arrested shortly after arrival. All underwent emergency department thoracotomy without survival. Two patients expired in the operating room during attempted cardiac repair; both had significant extracardiac injury. Seven patients survived, three had right atrial injuries, three had right ventricular injuries, and one had a left atrial injury. Cardiopulmonary bypass was not required for repair of the surviving patients. There were no significant complications from the cardiac repair. The history of significant force dispersed over a relatively small area of the precordium as in a kicking injury from an animal or steering wheel impact should alert the physician to possible cardiac rupture. Cardiac rupture should be considered in patients who present with signs of cardiac tamponade or persistent thoracic bleeding after blunt trauma. PMID:6708151

  13. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  14. Study of a MHEMT heterostructure with an In0.4Ga0.6As channel MBE-grown on a GaAs substrate using reciprocal space mapping

    International Nuclear Information System (INIS)

    The crystallographic characteristics of the design elements of a metamorphic high-electron-mobility (MHEMT) heterostructure with an In0.4Ga0.6As channel are determined based on reciprocal space mapping. The heterostructure is grown by molecular beam epitaxy on the vicinal surface of a GaAs substrate with a deviation angle from the (001) plane of 2° and consists of a stepped metamorphic buffer containing six layers including an inverse step, a high-temperature buffer layer with constant composition, and active HEMT layers. The InAs content in the layers of the metamorphic buffer is varied from 0.1 to 0.48. Reciprocal space maps are constructed for the (004) symmetric reflection and (224)+ asymmetric reflection. It is found that the heterostructure layers are characterized both by a tilt angle relative to the plane of the (001) substrate and a rotation angle around the [001] axis. The tilt angle of the layer increases as the InAs concentration in the layer increases. It is shown that a high-temperature buffer layer of constant composition has the largest degree of relaxation compared with all other layers of the heterostructure

  15. Study of a MHEMT heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel MBE-grown on a GaAs substrate using reciprocal space mapping

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation); Ermakova, M. A. [Federal Agency on Technical Regulating and Metrology, Center for Study of Surface and Vacuum Properties (Russian Federation); Ruban, O. A. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation)

    2015-08-15

    The crystallographic characteristics of the design elements of a metamorphic high-electron-mobility (MHEMT) heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel are determined based on reciprocal space mapping. The heterostructure is grown by molecular beam epitaxy on the vicinal surface of a GaAs substrate with a deviation angle from the (001) plane of 2° and consists of a stepped metamorphic buffer containing six layers including an inverse step, a high-temperature buffer layer with constant composition, and active HEMT layers. The InAs content in the layers of the metamorphic buffer is varied from 0.1 to 0.48. Reciprocal space maps are constructed for the (004) symmetric reflection and (224)+ asymmetric reflection. It is found that the heterostructure layers are characterized both by a tilt angle relative to the plane of the (001) substrate and a rotation angle around the [001] axis. The tilt angle of the layer increases as the InAs concentration in the layer increases. It is shown that a high-temperature buffer layer of constant composition has the largest degree of relaxation compared with all other layers of the heterostructure.

  16. [Cardiac evaluation before non-cardiac surgery].

    Science.gov (United States)

    Menzenbach, Jan; Boehm, Olaf

    2016-07-01

    Before non-cardiac surgery, evaluation of cardiac function is no frequent part of surgical treatment. European societies of anesthesiology and cardiology published consensus-guidelines in 2014 to present a reasonable approach for preoperative evaluation. This paper intends to differentiate the composite of perioperative risk and to display the guidelines methodical approach to handle it. Features to identify patients at risk from an ageing population with comorbidities, are the classification of surgical risk, functional capacity and risk indices. Application of diagnostic means, should be used adjusted to this risk estimation. Cardiac biomarkers are useful to discover risk of complications or mortality, that cannot be assessed by clinical signs. After preoperative optimization and perioperative cardiac protection, the observation of the postoperative period remains, to prohibit complications or even death. In consideration of limited resources of intensive care department, postoperative ward rounds beyond intensive care units are considered to be an appropriate instrument to avoid or recognize complications early to reduce postoperative mortality. PMID:27479258

  17. Pharmacophore mapping based inhibitor selection and molecular interaction studies for identification of potential drugs on calcium activated potassium channel blockers, tamulotoxin

    Directory of Open Access Journals (Sweden)

    R Barani Kumar

    2013-01-01

    Full Text Available Background: Tamulotoxin (TmTx from Buthus tamulus was found to be a highly venomous toxin which accelerates the neurotransmitter release that directly affects the cardiovascular tissues and the respiratory system leading to death. TmTx from red Indian scorpion is a crucial inhibitor for Ca 2+ activated K + channel in humans. Objective: The study is aimed at the identification of potential inhibitors of TmTx through pharmacophore based inhibitor screening and understanding the molecular level interactions. Materials and Method: The potential inhibitors for TmTx were identified using pharmacophore model based descriptor information present in existing drugs with the analysis of pharmacokinetic properties. The compounds with good ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity descriptors were subjected to molecular interaction studies. The stability of bound toxin-inhibitor complex was studied using molecular dynamics simulation over a period of one nanosecond. Results: From a dataset of 3406 compounds, few compounds were selected as potential inhibitors based on the generated best pharmacophore models, pharmacokinetic analysis, molecular docking and molecular dynamics studies. Conclusion: In conclusion, two compounds containing better inhibition properties against TmTx are suggested to be better lead molecules for drug development in future and this study will help us to explore more inhibitors from natural origin against tamulotoxin.

  18. Color Image Scrambling Technique Based on Transposition of Pixels between RGB Channels Using Knight’s Moving Rules and Digital Chaotic Map

    Directory of Open Access Journals (Sweden)

    Adrian-Viorel Diaconu

    2014-01-01

    Full Text Available Nowadays, increasingly, it seems that the use of rule sets of the most popular games, particularly in new images’ encryption algorithms designing branch, leads to the crystallization of a new paradigm in the field of cryptography. Thus, motivated by this, the present paper aims to study a newly designed digital image scrambler (as part of the two fundamental techniques used to encrypt a block of pixels, i.e., the permutation stage that uses knight’s moving rules (i.e., from the game of chess, in conjunction with a chaos-based pseudorandom bit generator, abbreviated PRBG, in order to transpose original image’s pixels between RGB channels. Theoretical and practical arguments, rounded by good numerical results on scrambler’s performances analysis (i.e., under various investigation methods, including visual inspection, adjacent pixels’ correlation coefficients’ computation, key’s space and sensitivity assessment, etc. confirm viability of the proposed method (i.e., it ensures the coveted confusion factor recommending its usage within cryptographic applications.

  19. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    International Nuclear Information System (INIS)

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO2) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO2 was 73.0 ± 0.9 and 70.5 ± 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO2 decreased (69.1 ± 1.8 and 63.8 ± 2.1% in MG and LG, respectively; P 2 and tHb

  20. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    Science.gov (United States)

    Torricelli, Alessandro; Quaresima, Valentina; Pifferi, Antonio; Biscotti, Giovanni; Spinelli, Lorenzo; Taroni, Paola; Ferrari, Marco; Cubeddu, Rinaldo

    2004-03-01

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO2) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO2 was 73.0 ± 0.9 and 70.5 ± 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO2 decreased (69.1 ± 1.8 and 63.8 ± 2.1% in MG and LG, respectively; P muscle SmO2 and tHb.

  1. Multiscale Modeling of Calcium Cycling in Cardiac Ventricular Myocyte: Macroscopic Consequences of Microscopic Dyadic Function

    OpenAIRE

    Gaur, Namit; Rudy, Yoram

    2011-01-01

    In cardiac ventricular myocytes, calcium (Ca) release occurs at distinct structures (dyads) along t-tubules, where L-type Ca channels (LCCs) appose sarcoplasmic reticulum (SR) Ca release channels (RyR2s). We developed a model of the cardiac ventricular myocyte that simulates local stochastic Ca release processes. At the local Ca release level, the model reproduces Ca spark properties. At the whole-cell level, the model reproduces the action potential, Ca currents, and Ca transients. Changes i...

  2. The current cardiac safety situation with antihistamines.

    Science.gov (United States)

    Yap, Y G; Camm, A J

    1999-03-01

    Antihistamines (H1-receptor antagonists) are amongst the most frequently prescribed drugs worldwide for the treatment of allergic conditions. The clinical interest of classical 'first generation' antihistamines is currently rather limited by their anticholinergic and sedative properties. The second generation of antihistamines, so-called non-sedating antihistamines, are free of these side-effects. However, since the 1990s, there have been reports that certain non-sedating antihistamines, mainly terfenadine and astemizole, might be associated with the risk of rare but severe dysrhythmias. These drugs prolong the monophasic action potential and surface electrocardiographic QT interval and may lead to the development of early after-depolarization and possibly torsades de pointes through an inhibition of potassium channel repolarization. Concomitant administration with drugs that inhibit the hepatic cytochrome P-450 (imidazole antifungals, macrolide antibiotics) or those that prolong the QT interval by the same or other mechanism (e.g. antiarrhythmics, antipsychotics, tricyclic antidepressants) increases their effect on the cardiac repolarization. The cardiac safety profile of newer non-sedating antihistamines requires confirmation. Drugs with low or no potential to block the K + rectification channel (e.g. IKr channels) are likely to possess cardiac safety advantages. Other drug-related factors such as the physico-chemical properties of the antihistamines and its metabolic profile may also contribute to the cardiac response. Mizolastine is a new non-sedating antihistamine with antiallergic properties. It has a good bioavailability and a metabolism via the cytochrome P-450 oxidation accounting for only 35% of its hepatic clearance. In addition, mizolastine displays low lipophilicity and consequently low cardiac tissue fixation. In clinical studies, mizolastine has not shown any dose-related increase in QT intervals. Its clinical use has not been associated with

  3. Mapping out Map Libraries

    Directory of Open Access Journals (Sweden)

    Ferjan Ormeling

    2008-09-01

    Full Text Available Discussing the requirements for map data quality, map users and their library/archives environment, the paper focuses on the metadata the user would need for a correct and efficient interpretation of the map data. For such a correct interpretation, knowledge of the rules and guidelines according to which the topographers/cartographers work (such as the kind of data categories to be collected, and the degree to which these rules and guidelines were indeed followed are essential. This is not only valid for the old maps stored in our libraries and archives, but perhaps even more so for the new digital files as the format in which we now have to access our geospatial data. As this would be too much to ask from map librarians/curators, some sort of web 2.0 environment is sought where comments about data quality, completeness and up-to-dateness from knowledgeable map users regarding the specific maps or map series studied can be collected and tagged to scanned versions of these maps on the web. In order not to be subject to the same disadvantages as Wikipedia, where the ‘communis opinio’ rather than scholarship, seems to be decisive, some checking by map curators of this tagged map use information would still be needed. Cooperation between map curators and the International Cartographic Association ( ICA map and spatial data use commission to this end is suggested.

  4. [Cardiac Rehabilitation 2015].

    Science.gov (United States)

    Hoffmann, Andreas

    2015-11-25

    The goals of cardiac rehabilitation are (re-)conditioning and secondary prevention in patients with heart disease or an elevated cardiovascular risk profile. Rehabilitation is based on motivation through education, on adapted physical activity, instruction of relaxation techniques, psychological support and optimized medication. It is performed preferably in groups either in outpatient or inpatient settings. The Swiss working group on cardiac rehabilitation provides a network of institutions with regular quality auditing. Positive effects of rehabilitation programs on mortality and morbidity have been established by numerous studies. Although a majority of patients after cardiac surgery are being referred to rehabilitation, these services are notoriously underused after catheter procedures. PMID:26602848

  5. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O;

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed for...... uncertain and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  6. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Torricelli, Alessandro [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Quaresima, Valentina [Department of Biomedical Sciences and Technologies, University of L' Aquila, I-67100 L' Aquila (Italy); Pifferi, Antonio [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Biscotti, Giovanni [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Spinelli, Lorenzo [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Taroni, Paola [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy); Ferrari, Marco [Department of Biomedical Sciences and Technologies, University of L' Aquila, I-67100 L' Aquila (Italy); Cubeddu, Rinaldo [INFM-Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan (Italy)

    2004-03-07

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO{sub 2}) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO{sub 2} was 73.0 {+-} 0.9 and 70.5 {+-} 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO{sub 2} decreased (69.1 {+-} 1.8 and 63.8 {+-} 2.1% in MG and LG, respectively; P < 0.01). The LG desaturation was greater than the MG desaturation (P < 0.02). These results strengthen the role of time-resolved near-infrared spectroscopy as a powerful tool for investigating the spatial and temporal features of muscle SmO{sub 2} and tHb.

  7. Molecular Basis of Cardiac Myxomas

    Directory of Open Access Journals (Sweden)

    Pooja Singhal

    2014-01-01

    Full Text Available Cardiac tumors are rare, and of these, primary cardiac tumors are even rarer. Metastatic cardiac tumors are about 100 times more common than the primary tumors. About 90% of primary cardiac tumors are benign, and of these the most common are cardiac myxomas. Approximately 12% of primary cardiac tumors are completely asymptomatic while others present with one or more signs and symptoms of the classical triad of hemodynamic changes due to intracardiac obstruction, embolism and nonspecific constitutional symptoms. Echocardiography is highly sensitive and specific in detecting cardiac tumors. Other helpful investigations are chest X-rays, magnetic resonance imaging and computerized tomography scan. Surgical excision is the treatment of choice for primary cardiac tumors and is usually associated with a good prognosis. This review article will focus on the general features of benign cardiac tumors with an emphasis on cardiac myxomas and their molecular basis.

  8. Generation of cardiac pacemaker cells by programming and differentiation.

    Science.gov (United States)

    Husse, Britta; Franz, Wolfgang-Michael

    2016-07-01

    A number of diseases are caused by faulty function of the cardiac pacemaker and described as "sick sinus syndrome". The medical treatment of sick sinus syndrome with electrical pacemaker implants in the diseased heart includes risks. These problems may be overcome via "biological pacemaker" derived from different adult cardiac cells or pluripotent stem cells. The generation of cardiac pacemaker cells requires the understanding of the pacing automaticity. Two characteristic phenomena the "membrane-clock" and the "Ca(2+)-clock" are responsible for the modulation of the pacemaker activity. Processes in the "membrane-clock" generating the spontaneous pacemaker firing are based on the voltage-sensitive membrane ion channel activity starting with slow diastolic depolarization and discharging in the action potential. The influence of the intracellular Ca(2+) modulating the pacemaker activity is characterized by the "Ca(2+)-clock". The generation of pacemaker cells started with the reprogramming of adult cardiac cells by targeted induction of one pacemaker function like HCN1-4 overexpression and enclosed in an activation of single pacemaker specific transcription factors. Reprogramming of adult cardiac cells with the transcription factor Tbx18 created cardiac cells with characteristic features of cardiac pacemaker cells. Another key transcription factor is Tbx3 specifically expressed in the cardiac conduction system including the sinoatrial node and sufficient for the induction of the cardiac pacemaker gene program. For a successful cell therapeutic practice, the generated cells should have all regulating mechanisms of cardiac pacemaker cells. Otherwise, the generated pacemaker cells serve only as investigating model for the fundamental research or as drug testing model for new antiarrhythmics. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel

  9. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available Automatic Implantable Cardiac Defibrillator February 19, 2009 Halifax Health Medical Center, Daytona Beach, FL Welcome to Halifax Health Daytona Beach, Florida. Over the next hour you' ...

  10. Sudden Cardiac Arrest

    Science.gov (United States)

    ... scan, or MUGA, which shows how well your heart is pumping blood. Magnetic resonance imaging (MRI) which gives doctors detailed pictures of your heart. How is SCA treated? Sudden cardiac arrest should ...

  11. Sudden Cardiac Arrest

    Science.gov (United States)

    ... Heart Risk Factors & Prevention Heart Diseases & Disorders Atrial Fibrillation (AFib) Sudden Cardiac Arrest (SCA) SCA: Who's At Risk? Prevention of SCA What Causes SCA? SCA Awareness Atrial Flutter Heart Block Heart Failure Sick Sinus Syndrome Substances & Heart Rhythm Disorders Symptoms & ...

  12. Sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Aranđelović Aleksandra Č.

    2004-01-01

    Full Text Available Sudden cardiac death in an athlete is rare and tragic event. An athlete's death draws high public attention given that athletes are considered the healthiest category of society. The vast majority of sudden cardiac death in young athletes is due to congenital cardiac malformations such as hypertrophie cardiomyopathy and various coronary artery anomalies. In athletes over age 35, the usual cause of sudden cardiac death is coronary artery disease. With each tragic death of a young athlete, there is a question why this tragedy has not been prevented. The American College of Sports Medicine and the American Heart Association recommend that a pre-participation exam should include a complete cardiovascular history and physical examination.

  13. Cardiac Risk Assessment

    Science.gov (United States)

    ... to assess cardiac risk include: High-sensitivity C-reactive protein (hs-CRP) : Studies have shown that measuring ... LDL-C but does not respond to typical strategies to lower LDL-C such as diet, exercise, ...

  14. Cardiac arrest - cardiopulmonary resuscitation

    Institute of Scientific and Technical Information of China (English)

    Basri Lenjani; Besnik Elshani; Nehat Baftiu; Kelmend Pallaska; Kadir Hyseni; Njazi Gashi; Nexhbedin Karemani; Ilaz Bunjaku; Taxhidin Zaimi; Arianit Jakupi

    2014-01-01

    Objective:To investigate application of cardiopulmonary resuscitation(CPR) measures within the golden minutes inEurope.Methods:The material was taken from theUniversityClinical Center ofKosovo -EmergencyCentre inPristina, during the two(2) year period(2010-2011).The collected date belong to the patients with cardiac arrest have been recorded in the patients' log book protocol at the emergency clinic.Results:During the2010 to2011 in the emergency center of theCUCK inPristina have been treated a total of269 patients with cardiac arrest, of whom159 or59.1% have been treated in2010, and110 patients or40.9% in2011.Of the269 patients treated in the emergency centre,93 or34.6% have exited lethally in the emergency centre, and176 or 65.4% have been transferred to other clinics.In the total number of patients with cardiac arrest, males have dominated with186 cases, or69.1%.The average age of patients included in the survey was56.7 year oldSD±16.0 years.Of the269 patients with cardiac arrest, defibrillation has been applied for93 or34.6% of patients.In the outpatient settings defibrillation has been applied for3 or3.2% of patients.Patients were defibrillated with application of one to four shocks. Of27 cases with who have survived cardiac arrest, none of them have suffered cardiac arrest at home,3 or11.1% of them have suffered cardiac arrest on the street, and24 or88.9% of them have suffered cardiac arrest in the hospital.5 out of27 patients survived have ended with neurological impairment.Cardiac arrest cases were present during all days of the week, but frequently most reported cases have been onMonday with32.0% of cases, and onFriday with24.5% of cases. Conclusions:All survivors from cardiac arrest have received appropriate medical assistance within10 min from attack, which implies that if cardiac arrest occurs near an institution health care(with an opportunity to provide the emergent health care) the rate of survival is higher.

  15. Designing a Multichannel Map Service Concept

    Directory of Open Access Journals (Sweden)

    Hanna-Marika Halkosaari

    2013-01-01

    Full Text Available This paper introduces a user-centered design process for developing a multichannel map service. The aim of the service is to provide hikers with interactive maps through several channels. In a multichannel map service, the same spatial information is available through various channels, such as printed maps, Web maps, mobile maps, and other interactive media. When properly networked, the channels share a uniform identity so that the user experiences the different channels as a part of a single map service. The traditional methods of user-centered design, such as design probes, personas, and scenarios, proved useful even in the emerging field of developing multichannel map services. The findings emphasize the need to involve users and multidisciplinary teams in the conceptual phases of designing complex services aimed at serving various kinds of users.

  16. Awareness in cardiac anesthesia.

    LENUS (Irish Health Repository)

    Serfontein, Leon

    2010-02-01

    Cardiac surgery represents a sub-group of patients at significantly increased risk of intraoperative awareness. Relatively few recent publications have targeted the topic of awareness in this group. The aim of this review is to identify areas of awareness research that may equally be extrapolated to cardiac anesthesia in the attempt to increase understanding of the nature and significance of this scenario and how to reduce it.

  17. Safety in cardiac surgery

    OpenAIRE

    Siregar, S.

    2013-01-01

    The monitoring of safety in cardiac surgery is a complex process, which involves many clinical, practical, methodological and statistical issues. The objective of this thesis was to measure and to compare safety in cardiac surgery in The Netherlands using the Netherlands Association for Cardio-Thoracic Surgery (NVT) database. The safety of care is usually measured using patient outcomes. If outcomes are not available, the process and structure of care may be used. Outcomes should be adjusted ...

  18. Cardiac rehabilitation in Germany.

    Science.gov (United States)

    Karoff, Marthin; Held, Klaus; Bjarnason-Wehrens, Birna

    2007-02-01

    The purpose of this review is to give an overview of the rehabilitation measures provided for cardiac patients in Germany and to outline its legal basis and outcomes. In Germany the cardiac rehabilitation system is different from rehabilitation measures in other European countries. Cardiac rehabilitation in Germany since 1885 is based on specific laws and the regulations of insurance providers. Cardiac rehabilitation has predominantly been offered as an inpatient service, but has recently been complemented by outpatient services. A general agreement on the different indications for offering these two services has yet to be reached. Cardiac rehabilitation is mainly offered after an acute cardiac event and bypass surgery. It is also indicated in severe heart failure and special cases of percutaneous coronary intervention. Most patients are men (>65%) and the age at which events occur is increasing. The benefits obtained during the 3-4 weeks after an acute event, and confirmed in numerous studies, are often later lost under 'usual care' conditions. Many attempts have been made by rehabilitation institutions to improve this deficit by providing intensive aftercare. One instrument set up to achieve this is the nationwide institution currently comprising more than 6000 heart groups with approximately 120000 outpatients. After coronary artery bypass grafting or acute coronary syndrome cardiac rehabilitation can usually be started within 10 days. The multidisciplinary rehabilitation team consists of cardiologists, psychologists, exercise therapists, social workers, nutritionists and nurses. The positive effects of cardiac rehabilitation are also important economically, for example, for the improvement of secondary prevention and vocational integration. PMID:17301623

  19. Ranolazine in Cardiac Arrhythmia.

    Science.gov (United States)

    Saad, Marwan; Mahmoud, Ahmed; Elgendy, Islam Y; Richard Conti, C

    2016-03-01

    Ranolazine utilization in the management of refractory angina has been established by multiple randomized clinical studies. However, there is growing evidence showing an evolving role in the field of cardiac arrhythmias. Multiple experimental and clinical studies have evaluated the role of ranolazine in prevention and management of atrial fibrillation, with ongoing studies on its role in ventricular arrhythmias. In this review, we will discuss the pharmacological, experimental, and clinical evidence behind ranolazine use in the management of various cardiac arrhythmias. PMID:26459200

  20. Cardiac tumours in infancy

    OpenAIRE

    Yadava, O.P.

    2012-01-01

    Cardiac tumours in infancy are rare and are mostly benign with rhabdomyomas, fibromas and teratomas accounting for the majority. The presentation depends on size and location of the mass as they tend to cause cavity obstruction or arrhythmias. Most rhabdomyomas tend to regress spontaneously but fibromas and teratomas generally require surgical intervention for severe haemodynamic or arrhythmic complications. Other relatively rare cardiac tumours too are discussed along with an Indian perspect...

  1. Cardiac Image Registration

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available Long procedure time and somewhat suboptimal results hinder the widespread use of catheter ablation of complex arrhythmias such as atrial fibrillation (AF. Due to lack of contrast differentiation between the area of interest and surrounding structures in a moving organ like heart, there is a lack of proper intraprocedural guidance using current imaging techniques for ablation. Cardiac image registration is currently under investigation and is in clinical use for AF ablation. Cardiac image registration, which involves integration of two images in the context of left atrium (LA, is intermodal, with the acquired image and the real-time reference image residing in different image spaces, and involves optimization, where one image space is transformed into the other. Unlike rigid body registration, cardiac image registration is unique and challenging due to cardiac motion during the cardiac cycle and due to respiration. This review addresses the basic principles of the emerging technique of registration and the inherent limitations as they relate to cardiac imaging and registration.

  2. Cardiac Image Registration

    Directory of Open Access Journals (Sweden)

    Jasbir Sra

    2008-09-01

    Full Text Available Long procedure time and somewhat suboptimal results hinder the widespread use of catheter ablation of complex arrhythmias such as atrial fibrillation (AF. Due to lack of contrast differentiation between the area of interest and surrounding structures in a moving organ like heart, there is a lack of proper intraprocedural guidance using current imaging techniques for ablation. Cardiac image registration is currently under investigation and is in clinical use for AF ablation. Cardiac image registration, which involves integration of two images in the context of the left atrium (LA, is intermodal, with the acquired image and the real-time reference image residing in different image spaces, and involves optimization, where one image space is transformed into the other. Unlike rigid body registration, cardiac image registration is unique and challenging due to cardiac motion during the cardiac cycle and due to respiration. This review addresses the basic principles of the emerging technique of registration and the inherent limitations as they relate to cardiac imaging and registration.

  3. Cardiac Hypertrophy: A Review on Pathogenesis and Treatment

    Directory of Open Access Journals (Sweden)

    Ankur Rohilla

    2012-07-01

    Full Text Available Cardiac hypertrophy has been considered as an important risk factor for cardiac morbidity and mortality whose prevalence has increased during the last few decades. Cardiac hypertrophy, a disease associated with the myocardium, is characterized by thickening of ventricle wall of heart and consequent reduction in the contracting ability of heart to pump the blood. Cardiac hypertrophy has been divided into two types, i.e. physiological and pathological hypertrophy. The exercise-induced increase in the ability of pumping blood leads to thickening of ventricle wall, referred to as physiological hypertrophy. On the other hand, reduced ability of pumping blood as a result of hypertension and volume overload on heart denotes pathological hypertrophy. Numerous mediators have been found to be involved in the pathogenesis of cardiac hypertrophy that include mitogen-activated protein kinase (MAPK, protein kinase C (PKC insulin-like growth factor-I (IGF-I, phosphatidylinositol 3-kinase (PI3K-AKT/PKB, calcinurin-nuclear factor of activated T cells (NFAT and mammalian target of rapamycin (mTOR. The prevention strategy for cardiac hypertrophy involve thiazide diuretics, angiotensin-converting enzyme (ACE inhibitors, angiotensin (Ang II receptor blockers, beta blockers and calcium channel blockers. The present review article highlights the signaling mechanisms involved and the approaches required in the treatment of cardiac hypertrophy.

  4. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    Science.gov (United States)

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases. PMID:24804235

  5. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  6. Postoperative cardiac arrest due to cardiac surgery complications

    International Nuclear Information System (INIS)

    To examine the role of anesthetists in the management of cardiac arrest occurring in association with cardiac anesthesia. In this retrospective study we studied the potential performances for each of the relevant incidents among 712 patients undergoing cardiac operations at Golestan and Naft Hospitals Ahwaz between November 2006 and July 2008. Out of total 712 patients undergoing cardiac surgery, cardiac arrest occurred in 28 cases (3.9%) due to different postoperative complications. This included massive bleeding (50% of cardiac arrest cases, 1.9% of patients); pulseless supra ventricular tachycardia (28.5% of cardiac arrest cases, 1.1% of patients); Heart Failure (7% of cardiac arrest cases, 0.2% of patients); Aorta Arc Rapture (3.5% of cardiac arrest cases, 0.1% of patients); Tamponade due to pericardial effusion (3.5% of cardiac arrest cases, 0.1% of total patients); Right Atrium Rupture (3.5% of cardiac arrest cases, 0.1% of patients) were detected after cardiac surgery. Out of 28 cases 7 deaths occurred (25% of cardiac arrest cases, 0.1% of patients). The most prevalent reason for cardiac arrest during post operative phase was massive bleeding (50%) followed by pulseless supra ventricular tachycardia (28.5%). Six patients had some morbidity and the remaining 15 patients recovered. There are often multiple contributing factors to a cardiac arrest under cardiac anesthesia, as much a complete systematic assessment of the patient, equipment, and drugs should be completed. We also found that the diagnosis and management of cardiac arrest in association with cardiac anesthesia differs considerably from that encountered elsewhere. (author)

  7. Patient-specific models of cardiac biomechanics

    Science.gov (United States)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  8. Genetic and physiologic dissection of the vertebrate cardiac conduction system.

    Directory of Open Access Journals (Sweden)

    Neil C Chi

    2008-05-01

    Full Text Available Vertebrate hearts depend on highly specialized cardiomyocytes that form the cardiac conduction system (CCS to coordinate chamber contraction and drive blood efficiently and unidirectionally throughout the organism. Defects in this specialized wiring system can lead to syncope and sudden cardiac death. Thus, a greater understanding of cardiac conduction development may help to prevent these devastating clinical outcomes. Utilizing a cardiac-specific fluorescent calcium indicator zebrafish transgenic line, Tg(cmlc2:gCaMP(s878, that allows for in vivo optical mapping analysis in intact animals, we identified and analyzed four distinct stages of cardiac conduction development that correspond to cellular and anatomical changes of the developing heart. Additionally, we observed that epigenetic factors, such as hemodynamic flow and contraction, regulate the fast conduction network of this specialized electrical system. To identify novel regulators of the CCS, we designed and performed a new, physiology-based, forward genetic screen and identified for the first time, to our knowledge, 17 conduction-specific mutations. Positional cloning of hobgoblin(s634 revealed that tcf2, a homeobox transcription factor gene involved in mature onset diabetes of the young and familial glomerulocystic kidney disease, also regulates conduction between the atrium and the ventricle. The combination of the Tg(cmlc2:gCaMP(s878 line/in vivo optical mapping technique and characterization of cardiac conduction mutants provides a novel multidisciplinary approach to further understand the molecular determinants of the vertebrate CCS.

  9. Breath-hold CT attenuation correction for quantitative cardiac SPECT

    OpenAIRE

    Koshino, Kazuhiro; Fukushima, Kazuhito; Fukumoto, Masaji; Sasaki, Kazunari; Moriguchi, Tetsuaki; Hori, Yuki; Zeniya, Tsutomu; Nishimura, Yoshihiro; Kiso, Keisuke; Iida, Hidehiro

    2012-01-01

    Background Attenuation correction of a single photon emission computed tomography (SPECT) image is possible using computed tomography (CT)-based attenuation maps with hybrid SPECT/CT. CT attenuation maps acquired during breath holding can be misaligned with SPECT, generating artifacts in the reconstructed images. The purpose of this study was to investigate the effects of respiratory phase during breath-hold CT acquisition on attenuation correction of cardiac SPECT imaging. Methods A series o...

  10. Structural elements in the Girk1 subunit that potentiate G protein–gated potassium channel activity

    OpenAIRE

    Wydeven, Nicole; Young, Daniele; Mirkovic, Kelsey; Wickman, Kevin

    2012-01-01

    G protein–gated inwardly rectifying K+ (Girk/KIR3) channels mediate the inhibitory effect of many neurotransmitters on excitable cells. Girk channels are tetramers consisting of various combinations of four mammalian Girk subunits (Girk1 to -4). Although Girk1 is unable to form functional homomeric channels, its presence in cardiac and neuronal channel complexes correlates with robust channel activity. This study sought to better understand the potentiating influence of Girk1, using the GABAB...

  11. Differential Effects of Ginsenoside Metabolites on HERG K+ Channel Currents

    OpenAIRE

    Choi, Sun-Hye; Shin, Tae-Joon; Hwang, Sung-Hee; Lee, Byung-Hwan; Kang, Jiyeon; Kim, Hyeon-Joong; Oh, Jae-Wook; Bae, Chun Sik; Lee, Soo-Han; Nah, Seung-Yeol

    2011-01-01

    The human ether-a-go-go-related gene (HERG) cardiac K+ channels are one of the representative pharmacological targets for development of drugs against cardiovascular diseases such as arrhythmia. Panax ginseng has been known to exhibit cardioprotective effects. In a previous report we demonstrated that ginsenoside Rg3 regulates HERG K+ channels by decelerating deactivation. However, little is known about how ginsenoside metabolites regulate HERG K+ channel activity. In the present study, we ex...

  12. Pediatric cardiac postoperative care

    Directory of Open Access Journals (Sweden)

    Auler Jr. José Otávio Costa

    2002-01-01

    Full Text Available The Heart Institute of the University of São Paulo, Medical School is a referral center for the treatment of congenital heart diseases of neonates and infants. In the recent years, the excellent surgical results obtained in our institution may be in part due to modern anesthetic care and to postoperative care based on well-structured protocols. The purpose of this article is to review unique aspects of neonate cardiovascular physiology, the impact of extracorporeal circulation on postoperative evolution, and the prescription for pharmacological support of acute cardiac dysfunction based on our cardiac unit protocols. The main causes of low cardiac output after surgical correction of heart congenital disease are reviewed, and methods of treatment and support are proposed as derived from the relevant literature and our protocols.

  13. Dynamic clamp: a powerful tool in cardiac electrophysiology.

    Science.gov (United States)

    Wilders, Ronald

    2006-10-15

    Dynamic clamp is a collection of closely related techniques that have been employed in cardiac electrophysiology to provide direct answers to numerous research questions regarding basic cellular mechanisms of action potential formation, action potential transfer and action potential synchronization in health and disease. Building on traditional current clamp, dynamic clamp was initially used to create virtual gap junctions between isolated myocytes. More recent applications include the embedding of a real pacemaking myocyte in a simulated network of atrial or ventricular cells and the insertion of virtual ion channels, either simulated in real time or simultaneously recorded from an expression system, into the membrane of an isolated myocyte. These applications have proven that dynamic clamp, which is characterized by the real-time evaluation and injection of simulated membrane current, is a powerful tool in cardiac electrophysiology. Here, each of the three different experimental configurations used in cardiac electrophysiology is reviewed. Also, directions are given for the implementation of dynamic clamp in the cardiac electrophysiology laboratory. With the growing interest in the application of dynamic clamp in cardiac electrophysiology, it is anticipated that dynamic clamp will also prove to be a powerful tool in basic research on biological pacemakers and in identification of specific ion channels as targets for drug development. PMID:16873403

  14. Giant Cardiac Cavernous Hemangioma.

    Science.gov (United States)

    Unger, Eric; Costic, Joseph; Laub, Glenn

    2015-07-01

    We report the case of an asymptomatic giant cardiac cavernous hemangioma in a 71-year-old man. The intracardiac mass was discovered incidentally during surveillance for his prostate cancer; however, the patient initially declined intervention. On presentation to our institution 7 years later, the lesion had enlarged significantly, and the patient consented to excision. At surgery, an 8 × 6.5 × 4.8 cm intracardiac mass located on the inferior heart border was excised with an intact capsule through a median sternotomy approach. The patient had an uneventful postoperative course. We discuss the diagnostic workup, treatment, and characteristics of this rare cardiac tumor. PMID:26140782

  15. Radiography in cardiology [cardiac disorders, cardiac insufficiency

    International Nuclear Information System (INIS)

    The diagnostic procedure in cardiology nearly always requires an X-ray examination of the thorax. This examination is very informative when it is correctly performed and interpreted. The radiographs need to be read precisely and comprehensively: this includes the evaluation of the silhouette of the heart (size, form and position) as well as the examination of extra-cardiac thoracic structures allowing among other things to search for signs of cardiac insufficiency. The conclusion of the X-ray examination can be drawn after having brought together information concerning the case history, the clinical examination and the study of the radiographs. The radiologist finds himself in one of three situations: (1) the information provided by the X-ray pictures is characteristic of a disease and permits a diagnosis, (2) the X-ray pictures indicate a group of hypotheses; further complementary tests could be useful and (3) the X-ray pictures provide ambiguous even contradictory information; it is necessary to complete the radiological examination by other techniques such as an ultrasonographic study of the heart

  16. Serum myoglobin after cardiac catheterisation.

    OpenAIRE

    McComb, J. M.; McMaster, E A

    1982-01-01

    Study of 80 consecutive patients undergoing elective diagnostic cardiac catheterisation showed that after the procedure 25 (31%) developed myoglobinaemia. This was attributed to complications of the catheterisation in two. The remaining 23 had received premedication by intramuscular injection. In patients without intramuscular injections myoglobinaemia did not occur after uncomplicated cardiac catheterisation. The study did not support the proposition that cardiac catheterisation results in m...

  17. Analysis of acoustic cardiac signals for heart rate variability and murmur detection using nonnegative matrix factorization-based hierarchical decomposition

    DEFF Research Database (Denmark)

    Shah, Ghafoor; Koch, Peter; Papadias, Constantinos B.

    novel method based on hierarchical decomposition of the single channel mixture using various nonnegative matrix factorization techniques is proposed, which provides unsupervised clustering of the underlying component signals. HRV is determined over the recovered normal cardiac acoustic signals. This...

  18. Multifocal Ectopic Purkinje-Related Premature Contractions: A New SCN5A-Related Cardiac Channelopathy. : MEPPC: a new SCN5A-related cardiac channelopathy

    OpenAIRE

    Amarouch, Mohamed Yassine; Barc, Julien; Bar, Isabelle; Baron, Estelle; Barthez, Olivier; Bertaux, Geraldine; Béziau, Delphine M.; Charpentier, Flavien; Charron, Philippe; Coudière, Yves; Dina, Christian; Faivre, Laurence; Fressart, Véronique; Kyndt, Florence; Laurent, Gabriel

    2012-01-01

    OBJECTIVES: The aim of this study was to describe a new familial cardiac phenotype and to elucidate the electrophysiological mechanism responsible for the disease. BACKGROUND: Mutations in several genes encoding ion channels, especially SCN5A, have emerged as the basis for a variety of inherited cardiac arrhythmias. METHODS: Three unrelated families comprising 21 individuals affected by multifocal ectopic Purkinje-related premature contractions (MEPPC) characterized by narrow junctional and r...

  19. Hepato-cardiac disorders

    Institute of Scientific and Technical Information of China (English)

    Yasser; Mahrous; Fouad; Reem; Yehia

    2014-01-01

    Understanding the mutual relationship between the liver and the heart is important for both hepatologists and cardiologists. Hepato-cardiac diseases can be classified into heart diseases affecting the liver, liver diseases affecting the heart, and conditions affecting the heart and the liver at the same time. Differential diagnoses of liver injury are extremely important in a cardiologist’s clinical practice calling for collaboration between cardiologists and hepatologists due to the many other diseases that can affect the liver and mimic haemodynamic injury. Acute and chronic heart failure may lead to acute ischemic hepatitis or chronic congestive hepatopathy. Treatment in these cases should be directed to the primary heart disease. In patients with advanced liver disease, cirrhotic cardiomyopathy may develop including hemodynamic changes, diastolic and systolic dysfunctions, reduced cardiac performance and electrophysiological abnormalities. Cardiac evaluation is important for patients with liver diseases especially before and after liver transplantation. Liver transplantation may lead to the improvement of all cardiac changes and the reversal of cirrhotic cardiomyopathy. There are systemic diseases that may affect both the liver and the heart concomitantly including congenital, metabolic and inflammatory diseases as well as alcoholism. This review highlights these hepatocardiac diseases

  20. Primary cardiac tumors

    International Nuclear Information System (INIS)

    Cardiac tumors happen to be among the less known pathologies without clear treatment standards. Even one decade ago most of the cardiac tumor diagnosis were made post mortem, and only reports of isolated cases could be found in the literature, showing the lack of interest in the investigation of these pathologies by cardiology and cardiovascular surgery specialists. With the development of echocardiography and of cardiovascular surgery, more cases of primary and metastatic cardiac tumors have been diagnosed. Many cases have been treated by palliative or curative surgical interventions, thus increasing the reports in the world literature and the experience in this field, and pointing out the real incidence of these pathologies, not being as bizarre as it had been considered. a revision of the literature will be made, in which the frequency and the suggested interventions will be reported, as well as the cases of cardiac pathology in two cardiovascular centers of the country known by the author. The echocardiographic, pathologic and histological characteristics of the representative cases will be presented, without a greater evidence level, due to the problem's incidence and the few cases reported by these centers

  1. Cardiac MRI tagging

    International Nuclear Information System (INIS)

    Cardiac MRI tagging is an original technique based upon the perturbation of the magnetization of determined regions of the myocardium (tags). The motion of the tags accurately reflects the deformation of the underlying tissue. Data analysis requires special techniques to reconstruct the 3D motion of the heart, and to evaluate the myocardial strain, locally and throughout the whole heart. (authors)

  2. Automatic Implantable Cardiac Defibrillator

    Medline Plus

    Full Text Available ... Over the next hour you'll see the implantation of an automated implantable cardiac defibrillator. The surgery ... evening we're going to be discussing the implantation of a defibrillator. It’s a battery-powered implantable ...

  3. Cardiac effects of vasopressin.

    Science.gov (United States)

    Pelletier, Jean-Sébastien; Dicken, Bryan; Bigam, David; Cheung, Po-Yin

    2014-07-01

    Vasopressin is an essential hormone involved in the maintenance of cardiovascular homeostasis. It has been in use therapeutically for many decades, with an emphasis on its vasoconstrictive and antidiuretic properties. However, this hormone has a ubiquitous influence and has specific effects on the heart. Although difficult to separate from its powerful vascular effects in the clinical setting, a better understanding of vasopressin's direct cardiac effects could lead to its more effective clinical use for a variety of shock states by maximizing its therapeutic benefit. The cardiac-specific effects of vasopressin are complex and require further elucidation. Complicating our understanding include the various receptors and secondary messengers involved in vasopressin's effects, which may lead to various results based on differing doses and varying environmental conditions. Thus, there have been contradictory reports on vasopressin's action on the coronary vasculature and on its effect on inotropy. However, beneficial results have been found and warrant further study to expand the potential therapeutic role of vasopressin. This review outlines the effect of vasopressin on the coronary vasculature, cardiac contractility, and on hypertrophy and cardioprotection. These cardiac-specific effects of vasopressin represent an interesting area for further study for potentially important therapeutic benefits. PMID:24621650

  4. Cardiac pacemaker power sources

    International Nuclear Information System (INIS)

    A review of chemical and radioisotope batteries used in cardiac pacemakers is presented. The battery systems are examined in terms of longevity, reliability, cost, size and shape, energy density, weight, internal resistance versus time, end-of-life voltage, chemical compatibility, and potential failure mechanisms

  5. The quantum capacity with symmetric side channels

    CERN Document Server

    Smith, G; Winter, A; Smith, Graeme; Smolin, John A.; Winter, Andreas

    2006-01-01

    We present an upper bound for the quantum channel capacity that is both additive and convex. Our bound can be interpreted as the capacity of a channel for high-fidelity communication when assisted by the family of all channels mapping symmetrically to their output and environment. The bound seems to be quite tight, and for degradable quantum channels it coincides with the unassisted channel capacity. Using this symmetric side channel capacity, we find new upper bounds on the capacity of the depolarizing channel. We also briefly indicate an analogous notion for distilling entanglement using the same class of (one-way) channels, yielding one of the few genuinely 1-LOCC monotonic entanglement measures.

  6. Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial Dysfunction: The Link with Cardiac Arrhythmogenesis

    Science.gov (United States)

    Tse, Gary; Yan, Bryan P.; Chan, Yin W. F.; Tian, Xiao Yu; Huang, Yu

    2016-01-01

    Background: Cardiac arrhythmias represent a significant problem globally, leading to cerebrovascular accidents, myocardial infarction, and sudden cardiac death. There is increasing evidence to suggest that increased oxidative stress from reactive oxygen species (ROS), which is elevated in conditions such as diabetes and hypertension, can lead to arrhythmogenesis. Method: A literature review was undertaken to screen for articles that investigated the effects of ROS on cardiac ion channel function, remodeling and arrhythmogenesis. Results: Prolonged endoplasmic reticulum stress is observed in heart failure, leading to increased production of ROS. Mitochondrial ROS, which is elevated in diabetes and hypertension, can stimulate its own production in a positive feedback loop, termed ROS-induced ROS release. Together with activation of mitochondrial inner membrane anion channels, it leads to mitochondrial depolarization. Abnormal function of these organelles can then activate downstream signaling pathways, ultimately culminating in altered function or expression of cardiac ion channels responsible for generating the cardiac action potential (AP). Vascular and cardiac endothelial cells become dysfunctional, leading to altered paracrine signaling to influence the electrophysiology of adjacent cardiomyocytes. All of these changes can in turn produce abnormalities in AP repolarization or conduction, thereby increasing likelihood of triggered activity and reentry. Conclusion: ROS plays a significant role in producing arrhythmic substrate. Therapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels. These may relieve oxidative stress and in turn prevent arrhythmic complications in patients with diabetes, hypertension, and heart failure. PMID:27536244

  7. Gated cardiac blood pool studies in arrhythmias

    International Nuclear Information System (INIS)

    Biventricular phase analysis a gated blood pool studies may help to solve two fundamental questions raised by patients suffering from arrhythmias: localization of an electrical cardiac activation abnormality by means of contraction mapping and assesment of an underlying organic disease using the phase histograms and their standard deviations. Three groups of patients have been evaluated to demonstrate the usefulness of radioisotopic techniques in arrhythmias: 36 patients with a Wolff-Parkinson-White syndrom, 27 patients studied during a ventricular tachycardia attack and 32 patients suspected of arrhythmogenic ventricular dysplasia. Correlations with invasive electrophysiologic studies are presented and the diagnostic and therapeutic implications of these results are discussed

  8. Cardiac angioscintigraphy in patients with arrhytmias

    International Nuclear Information System (INIS)

    The time course of ventricular activation can be characterized by the Fourier analysis of a dynamic series of cardiac images. Bi-ventricular activation mapping and quantitative phase histogram analysis may be useful for evaluation of patients with arrhythmias. Three clinical problems can benefit from the method: localization of the site of pre-excitation in the Wolff-Parkinson-White syndrom, assessment of an ectopic activation focus responsible for premature contraction in patients with ventricular tachycardia and diagnosis of an underlying organic disease when arrhytmogenic right ventricular dysplasia is suspected

  9. Gated cardiac blood pool studies in arrhythmias

    Energy Technology Data Exchange (ETDEWEB)

    Itti, R.; Casset, D.; Philippe, L.; Cosnay, P.; Fauchier, J.P.

    1988-01-01

    Biventricular phase analysis a gated blood pool studies may help to solve two fundamental questions raised by patients suffering from arrhythmias: localization of an electrical cardiac activation abnormality by means of contraction mapping and assesment of an underlying organic disease using the phase histograms and their standard deviations. Three groups of patients have been evaluated to demonstrate the usefulness of radioisotopic techniques in arrhythmias: 36 patients with a Wolff-Parkinson-White syndrom, 27 patients studied during a ventricular tachycardia attack and 32 patients suspected of arrhythmogenic ventricular dysplasia. Correlations with invasive electrophysiologic studies are presented and the diagnostic and therapeutic implications of these results are discussed.

  10. Cardiac surgery outcomes.

    Science.gov (United States)

    Halpin, Linda S; Barnett, Scott D; Beachy, Jim

    2003-01-01

    Accrediting organizations and payers are demanding valid and reliable data that demonstrate the value of services. Federal agencies, healthcare industry groups, and healthcare watchdog groups are increasing the demand for public access to outcomes data. A new and growing outcomes dynamic is the information requested by prospective patients in an increasingly consumer-oriented business. Patients demand outcomes, and resources are developing to meet these demands. Physicians are increasingly confronted with requests for information about their mortality and morbidity rates, malpractice suits, and disciplinary actions received. For example, in Virginia, prospective patients have access to data provided by the nonprofit group Virginia Health Information. After numerous resolutions by the Virginia Senate since 1999, the prospective Virginia medical consumer now has access to several annual publications: Virginia Hospitals: A Consumer's Guide, 1999 Annual Report and Strategic Plan Update, and the 1999 Industry Report: Virginia Hospitals and Nursing Facilities. Consumers have access to cardiac outcomes data stratified by hospital, gender, and cardiac service line (cardiac surgery, noninvasive cardiology, and invasive cardiology). This is particularly relevant to IHI because Virginia Health Information specifically targets cardiac care. IHI has a sizable investment in cardiovascular outcomes and has found outcomes measurement and research are key to providing quality care. IHI's goal is to move from an outcomes management model to a disease management model. The hope is to incorporate all aspects of the patient's continuum of care, from preoperative and diagnostic services through cardiac interventions to postoperative rehabilitation. Furthermore, every step along the way will be supported with functional status and quality of life assessments. Although these goals are ambitious and expensive, the return on investment is high. PMID:14618772

  11. Atrial fibrillation after cardiac surgery

    Directory of Open Access Journals (Sweden)

    Nair Suresh

    2010-01-01

    Full Text Available Once considered as nothing more than a nuisance after cardiac surgery, the importance of postoperative atrial fibrillation (POAF has been realized in the last decade, primarily because of the morbidity associated with the condition. Numerous causative factors have been described without any single factor being singled out as the cause of this complication. POAF has been associated with stroke, renal failure and congestive heart failure, although it is difficult to state whether POAF is directly responsible for these complications. Guidelines have been formulated for prevention of POAF. However, very few cardiothoracic centers follow any form of protocol to prevent POAF. Routine use of prophylaxis would subject all patients to the side effects of anti-arrhythmic drugs, while only a minority of the patients do actually develop this problem postoperatively. Withdrawal of beta blockers in the postoperative period has been implicated as one of the major causes of POAF. Amiodarone, calcium channel blockers and a variety of other pharmacological agents have been used for the prevention of POAF. Atrial pacing is a non-pharmacological measure which has gained popularity in the prevention of POAF. There is considerable controversy regarding whether rate control is superior to rhythm control in the treatment of established atrial fibrillation (AF. Amiodarone plays a central role in both rate control and rhythm control in postoperative AF. Newer drugs like dronedarone and ranazoline are likely to come into the market in the coming years.

  12. hERG channel function: beyond long QT

    Science.gov (United States)

    Babcock, Joseph J; Li, Min

    2013-01-01

    To date, research on the human ether-a-go-go related gene (hERG) has focused on this potassium channel's role in cardiac repolarization and Long QT Syndrome (LQTS). However, growing evidence implicates hERG in a diversity of physiologic and pathological processes. Here we discuss these other functions of hERG, particularly their impact on diseases beyond cardiac arrhythmia. PMID:23459091

  13. Risk factors and the effect of cardiac resynchronization therapy on cardiac and non-cardiac mortality in MADIT-CRT

    DEFF Research Database (Denmark)

    Perkiomaki, Juha S; Ruwald, Anne-Christine; Kutyifa, Valentina;

    2015-01-01

    causes, 108 (63.9%) deemed cardiac, and 61 (36.1%) non-cardiac. In multivariate analysis, increased baseline creatinine was significantly associated with both cardiac and non-cardiac deaths [hazard ratio (HR) 2.97, P ...AIMS: To understand modes of death and factors associated with the risk for cardiac and non-cardiac deaths in patients with cardiac resynchronization therapy with implantable cardioverter-defibrillator (CRT-D) vs. implantable cardioverter-defibrillator (ICD) therapy, which may help clarify...

  14. River channel response to runoff variability

    OpenAIRE

    Kargapolova, I.

    2008-01-01

    The focus of this study was to determine river runoff impacts on channel evolution during the last centuries. Comparing a number of maps from the 18th–21th centuries and space images in concert with hydrological data we estimated natural trends, cycles and the intensity of channel formation for periods of high and low runoff. Our analysis for a long period of time enable us assessing mean and maximum rates of erosion and accumulation of river channels and bank dynamics under differe...

  15. Cardiac Tropism of Borrelia burgdorferi: An Autopsy Study of Sudden Cardiac Death Associated with Lyme Carditis.

    Science.gov (United States)

    Muehlenbachs, Atis; Bollweg, Brigid C; Schulz, Thadeus J; Forrester, Joseph D; DeLeon Carnes, Marlene; Molins, Claudia; Ray, Gregory S; Cummings, Peter M; Ritter, Jana M; Blau, Dianna M; Andrew, Thomas A; Prial, Margaret; Ng, Dianna L; Prahlow, Joseph A; Sanders, Jeanine H; Shieh, Wun Ju; Paddock, Christopher D; Schriefer, Martin E; Mead, Paul; Zaki, Sherif R

    2016-05-01

    Fatal Lyme carditis caused by the spirochete Borrelia burgdorferi rarely is identified. Here, we describe the pathologic, immunohistochemical, and molecular findings of five case patients. These sudden cardiac deaths associated with Lyme carditis occurred from late summer to fall, ages ranged from young adult to late 40s, and four patients were men. Autopsy tissue samples were evaluated by light microscopy, Warthin-Starry stain, immunohistochemistry, and PCR for B. burgdorferi, and immunohistochemistry for complement components C4d and C9, CD3, CD79a, and decorin. Post-mortem blood was tested by serology. Interstitial lymphocytic pancarditis in a relatively characteristic road map distribution was present in all cases. Cardiomyocyte necrosis was minimal, T cells outnumbered B cells, plasma cells were prominent, and mild fibrosis was present. Spirochetes in the cardiac interstitium associated with collagen fibers and co-localized with decorin. Rare spirochetes were seen in the leptomeninges of two cases by immunohistochemistry. Spirochetes were not seen in other organs examined, and joint tissue was not available for evaluation. Although rare, sudden cardiac death caused by Lyme disease might be an under-recognized entity and is characterized by pancarditis and marked tropism of spirochetes for cardiac tissues. PMID:26968341

  16. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate

    OpenAIRE

    Ivanov, Vadim; Ivanova, Svetlana; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; RATH, MATTHIAS

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition...

  17. Identifying potential functional impact of mutations and polymorphisms: Linking heart failure, increased risk of arrhythmias and sudden cardiac death.

    Directory of Open Access Journals (Sweden)

    BENOIT eJAGU

    2013-09-01

    Full Text Available Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behaviour has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis and the degradation of ion channel α-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking.

  18. ICEPO: the ion channel electrophysiology ontology.

    Science.gov (United States)

    Hinard, V; Britan, A; Rougier, J S; Bairoch, A; Abriel, H; Gaudet, P

    2016-01-01

    Ion channels are transmembrane proteins that selectively allow ions to flow across the plasma membrane and play key roles in diverse biological processes. A multitude of diseases, called channelopathies, such as epilepsies, muscle paralysis, pain syndromes, cardiac arrhythmias or hypoglycemia are due to ion channel mutations. A wide corpus of literature is available on ion channels, covering both their functions and their roles in disease. The research community needs to access this data in a user-friendly, yet systematic manner. However, extraction and integration of this increasing amount of data have been proven to be difficult because of the lack of a standardized vocabulary that describes the properties of ion channels at the molecular level. To address this, we have developed Ion Channel ElectroPhysiology Ontology (ICEPO), an ontology that allows one to annotate the electrophysiological parameters of the voltage-gated class of ion channels. This ontology is based on a three-state model of ion channel gating describing the three conformations/states that an ion channel can adopt: closed, open and inactivated. This ontology supports the capture of voltage-gated ion channel electrophysiological data from the literature in a structured manner and thus enables other applications such as querying and reasoning tools. Here, we present ICEPO (ICEPO ftp site:ftp://ftp.nextprot.org/pub/current_release/controlled_vocabularies/), as well as examples of its use. PMID:27055825

  19. Cardiac arrest in children

    Directory of Open Access Journals (Sweden)

    Tress Erika

    2010-01-01

    Full Text Available Major advances in the field of pediatric cardiac arrest (CA were made during the last decade, starting with the publication of pediatric Utstein guidelines, the 2005 recommendations by the International Liaison Committee on Resuscitation, and culminating in multicenter collaborations. The epidemiology and pathophysiology of in-hospital and out-of-hospital CA are now well described. Four phases of CA are described and the term "post-cardiac arrest syndrome" has been proposed, along with treatment goals for each of its four phases: immediate post-arrest, early post-arrest, intermediate and recovery phase. Hypothermia is recommended to be considered as a therapy for post-CA syndrome in comatose patients after CA, and large multicenter prospective studies are underway. We reviewed landmark articles related to pediatric CA published during the last decade. We present the current knowledge of epidemiology, pathophysiology and treatment of CA relevant to pre-hospital and acute care health practitioners.

  20. Cardiac arrest in children.

    Science.gov (United States)

    Tress, Erika E; Kochanek, Patrick M; Saladino, Richard A; Manole, Mioara D

    2010-07-01

    Major advances in the field of pediatric cardiac arrest (CA) were made during the last decade, starting with the publication of pediatric Utstein guidelines, the 2005 recommendations by the International Liaison Committee on Resuscitation, and culminating in multicenter collaborations. The epidemiology and pathophysiology of in-hospital and out-of-hospital CA are now well described. Four phases of CA are described and the term "post-cardiac arrest syndrome" has been proposed, along with treatment goals for each of its four phases: immediate post-arrest, early post-arrest, intermediate and recovery phase. Hypothermia is recommended to be considered as a therapy for post-CA syndrome in comatose patients after CA, and large multicenter prospective studies are underway. We reviewed landmark articles related to pediatric CA published during the last decade. We present the current knowledge of epidemiology, pathophysiology and treatment of CA relevant to pre-hospital and acute care health practitioners. PMID:20930971

  1. Socially differentiated cardiac rehabilitation

    DEFF Research Database (Denmark)

    Meillier, Lucette Kirsten; Nielsen, Kirsten Melgaard; Larsen, Finn Breinholt;

    2012-01-01

    recruitment and participation among low educated and socially vulnerable patients must be addressed to lower inequality in post-MI health. Our aim was to improve referral, attendance, and adherence rates among socially vulnerable patients by systematic screening and by offering a socially differentiated...... standard rehabilitation programme (SRP). If patients were identified as socially vulnerable, they were offered an extended version of the rehabilitation programme (ERP). Excluded patients were offered home visits by a cardiac nurse. Concordance principles were used in the individualised programme elements......%. Patients were equally distributed to the SRP and the ERP. No inequality was found in attendance and adherence among referred patients. Conclusions: It seems possible to overcome unequal referral, attendance, and adherence in cardiac rehabilitation by organisation of systematic screening and social...

  2. Cardiac metastases of osteosarcoma

    International Nuclear Information System (INIS)

    Osteosarcoma is a malignancy whose various sites of metastasis greatly modify its ultimate prognosis. We report a case of simultaneous pulmonary and cardiac metastases in a 41-year-old male patient with osteosarcoma of the tibia, presenting after more then one year of completion of adjuvant therapy with progressive dyspnea and cyanosis. Diagnosis was made on computerized tomogram and echocardiogram. The metastatic mass entirely occupying the right ventricle and the pulmonary artery proved fatal. (author)

  3. Cardiac Tissue Engineering

    OpenAIRE

    MILICA RADISIC; GORDANA VUNJAK-NOVAKOVIC

    2009-01-01

    We hypothesized that clinically sized (1-5 mm thick),compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3) can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of p...

  4. Cardiac developmental toxicity

    OpenAIRE

    Mahler, Gretchen J.; Jonathan T Butcher

    2011-01-01

    Congenital heart disease is a highly prevalent problem with mostly unknown origins. Many cases of CHD likely involve an environmental exposure coupled with genetic susceptibility, but practical and ethical considerations make nongenetic causes of CHD difficult to assess in humans. The development of the heart is highly conserved across all vertebrate species, making animal models an excellent option for screening potential cardiac teratogens. This review will discuss exposures known to cause ...

  5. Penetrating Cardiac Injuries

    OpenAIRE

    ÖZYAZICIOĞLU, Ahmet

    2002-01-01

    Objectives: To present our experience of penetrating cardiac injuries treated at Atatürk University hospital; in 17 years 38 patients were analyzed. Methods: Patients were classified into three groups: group A (stable), 12; group B (shock), 21; and group C (agonal), five. Five patients were treated by pericardial window and three by pericardiocentesis. Two patients in group C, 19 patients in group B and five patients in group A underwent median sternotomy or thoracotomy in the operating room...

  6. Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643)

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Diness, Thomas Goldin; Christ, Torsten;

    2005-01-01

    The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased repolari...

  7. Benign cardiac tumours: cardiac CT and MRI imaging appearances

    International Nuclear Information System (INIS)

    Full text: Primary benign cardiac tumours are rarely found in clinical practice and are generally evaluated with echocardiography. However, with the increasing usage of helical multislice CT, the initial detection and evaluation of these masses may be made by the radiologist during routine daily practice for other indications. The echocardiographic, CT and cardiac MRI appearances of various benign cardiac tumours and masses are described and illustrated in this review

  8. Cardiac tissue engineering

    Directory of Open Access Journals (Sweden)

    MILICA RADISIC

    2005-03-01

    Full Text Available We hypothesized that clinically sized (1-5 mm thick,compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3 can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons, or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz. Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

  9. The potential role of Kv4.3 K+ channel in heart hypertrophy

    OpenAIRE

    Huo, Rong; Sheng, Yue; Guo, Wen-ting; Dong, De-li

    2014-01-01

    Transient outward K+ current (Ito) plays a crucial role in the early phase of cardiac action potential repolarization. Kv4.3 K+ channel is an important component of Ito. The function and expression of Kv4.3 K+ channel decrease in variety of heart diseases, especially in heart hypertrophy/heart failure. In this review, we summarized the changes of cardiac Kv4.3 K+ channel in heart diseases and discussed the potential role of Kv4.3 K+ channel in heart hypertrophy/heart failure. In heart hypertr...

  10. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos.

    Science.gov (United States)

    Duan, Junchao; Yu, Yang; Li, Yang; Li, Yanbo; Liu, Hongcui; Jing, Li; Yang, Man; Wang, Ji; Li, Chunqi; Sun, Zhiwei

    2016-06-01

    The toxicity mechanism of nanoparticles on vertebrate cardiovascular system is still unclear, especially on the low-level exposure. This study was to explore the toxic effect and mechanisms of low-dose exposure of silica nanoparticles (SiNPs) on cardiac function in zebrafish embryos via the intravenous microinjection. The dosage of SiNPs was based on the no observed adverse effect level (NOAEL) of malformation assessment in zebrafish embryos. The mainly cardiac toxicity phenotypes induced by SiNPs were pericardial edema and bradycardia but had no effect on atrioventricular block. Using o-Dianisidine for erythrocyte staining, the cardiac output of zebrafish embryos was decreased in a dose-dependent manner. Microarray analysis and bioinformatics analysis were performed to screen the differential expression genes and possible pathway involved in cardiac function. SiNPs induced whole-embryo oxidative stress and neutrophil-mediated cardiac inflammation in Tg(mpo:GFP) zebrafish. Inflammatory cells were observed in atrium of SiNPs-treated zebrafish heart by histopathological examination. In addition, the expression of TNNT2 protein, a cardiac contraction marker in heart tissue had been down-regulated compared to control group using immunohistochemistry. Confirmed by qRT-PCR and western blot assays, results showed that SiNPs inhibited the calcium signaling pathway and cardiac muscle contraction via the down-regulated of related genes, such as ATPase-related genes (atp2a1l, atp1b2b, atp1a3b), calcium channel-related genes (cacna1ab, cacna1da) and the regulatory gene tnnc1a for cardiac troponin C. Moreover, the protein level of TNNT2 was decreased in a dose-dependent manner. For the first time, our results demonstrated that SiNPs induced cardiac dysfunction via the neutrophil-mediated cardiac inflammation and cardiac contraction in zebrafish embryos. PMID:26551753

  11. MRI in cardiac sarcoidosis and amyloidosis; MRT bei kardialer Sarkoidose und Amyloidose

    Energy Technology Data Exchange (ETDEWEB)

    Bauner, K.U. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); Wintersperger, B. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); University of Toronto, Department of Medical Imaging, Toronto General Hospital, Toronto, ON (Canada)

    2013-01-15

    Sarcoidosis and amyloidosis are both multisystem disorders, which may involve the heart; however, isolated cardiac disease is rare. Diagnosis of cardiac sarcoidosis and amyloidosis is crucial because the patient prognosis is dependent on cardiac involvement and early treatment. Echocardiography is the first line imaging modality in the diagnostic work-up of both diseases, possibly giving hints towards the correct diagnosis. Besides myocardial biopsy and radionuclide studies cardiac magnetic resonance imaging (MRI) is routinely performed in patients suspect of having infiltrative cardiomyopathy. The T1 mapping procedure is currently being evaluated as a new technique for detection and quantification of global myocardial enhancement, as seen in cardiac amyloidosis. Sensitivities and specificities for detection of cardiac sarcoidosis and amyloidosis can be significantly improved by MRI, especially with late gadolinium enhancement (LGE) imaging. In cardiac sarcoidosis the use of LGE is outcome-related while in amyloidosis analysis of T1-mapping may be of prognostic value. If cardiac involvement in sarcoidosis or amyloidosis is suspected cardiac MRI including LGE should be performed for establishing the diagnosis. (orig.) [German] Die Sarkoidose und Amyloidose sind Multisystemerkrankungen, in deren Verlauf es zu einer kardialen Beteiligung kommen kann. Bildgebend wird als primaeres Verfahren die Echokardiographie eingesetzt. Zur weiteren Diagnostik wird neben der Biopsie und nuklearmedizinischen Verfahren v. a. die MRT herangezogen. Als neuere Technik zur Darstellung globaler diffuser Kontrastmittelanreicherungen, wie sie im Rahmen der Amyloidose vorkommen, wird z. Z. das T1-Mapping evaluiert. Durch den Einsatz der MRT, insbesondere des Late-Gadolinium-Enhancements (LGE), koennen die Sensitivitaet und Spezifitaet in der Diagnostik der kardialen Sarkoidose und Amyloidose entscheidend verbessert werden. Bei der Sarkoidose stellt das Vorhandensein eines LGE einen

  12. A portable cadmium telluride multidetector probe for cardiac function monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Arntz, Y.; Chambron, J.; Dumitresco, B.; Eclancher, B. E-mail: eclan@alsace.u-strasbg.fr; Prat, V

    1999-06-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients.

  13. A portable cadmium telluride multidetector probe for cardiac function monitoring

    International Nuclear Information System (INIS)

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients

  14. Role for the Unfolded Protein Response in Heart Disease and Cardiac Arrhythmias

    OpenAIRE

    Man Liu; Dudley, Samuel C

    2015-01-01

    The unfolded protein response (UPR) has been extensively investigated in neurological diseases and diabetes, while its function in heart disease is less well understood. Activated UPR participates in multiple cardiac conditions and can either protect or impair heart function. Recently, the UPR has been found to play a role in arrhythmogenesis during human heart failure by affecting cardiac ion channels expression, and blocking UPR has an antiarrhythmic effect. This review will discuss the rat...

  15. Computer Modelling for Better Diagnosis and Therapy of Patients by Cardiac Resynchronisation Therapy

    OpenAIRE

    Pluijmert, Marieke; Lumens, Joost; Potse, Mark; Delhaas, Tammo; Auricchio, Angelo; Prinzen, Frits W

    2015-01-01

    Mathematical or computer models have become increasingly popular in biomedical science. Although they are a simplification of reality, computer models are able to link a multitude of processes to each other. In the fields of cardiac physiology and cardiology, models can be used to describe the combined activity of all ion channels (electrical models) or contraction-related processes (mechanical models) in potentially millions of cardiac cells. Electromechanical models go one step further by c...

  16. MD300测深系统在河道地形测绘中的应用%Application of MD300 sounding system to the topographic mapping of river channels

    Institute of Scientific and Technical Information of China (English)

    肖华; 唐从胜; 田次平

    2001-01-01

    In recent years,the global positioning system(GPS) technique is rapidly developing,since it is characterized by continuity,real-time,all-weather operation with high accuracy,this technique has found extensive application in survey,positioning,navigation.MD300 sounding system is a new topograpbic survey system especially for water areas supported by GPS.In combination with the development and application of the sounding system carried out by the Jingjiang Investigation Bureau of Hydrology and Water Resources of Changjiang Water Resources Commission,the structural function and system configuration and the implementation methods of the system are presented.From the viewpoint of its practical effect of application,this sounding system has characteristics of accurate positioning,accurate water depth acquisition and high automation procedure,compared with conventional metheds.The system is an ideal river channel mapping system.%近年来,全球定位系统(GPS)技术迅猛发展,由于它具有连续、实时、高精度、全天候的特点,使其在诸如测量、定位、导航中得到广泛应用。MD300测深系统是在GPS支持下的一种全新的水域地形测量系统。结合长江委荆江水文水资源局对该系统的开发、应用,介绍了其结构功能、系统配置及实现方法,从实际运用效果看,与常规测量方法相比,该系统具有定位精确、水深采集准确、自动化程度高等特点,是理想的河道测绘系统。

  17. Indeterminacy of Spatiotemporal Cardiac Alternans

    CERN Document Server

    Zhao, Xiaopeng

    2007-01-01

    Cardiac alternans, a beat-to-beat alternation in action potential duration (at the cellular level) or in ECG morphology (at the whole heart level), is a marker of ventricular fibrillation, a fatal heart rhythm that kills hundreds of thousands of people in the US each year. Investigating cardiac alternans may lead to a better understanding of the mechanisms of cardiac arrhythmias and eventually better algorithms for the prediction and prevention of such dreadful diseases. In paced cardiac tissue, alternans develops under increasingly shorter pacing period. Existing experimental and theoretical studies adopt the assumption that alternans in homogeneous cardiac tissue is exclusively determined by the pacing period. In contrast, we find that, when calcium-driven alternans develops in cardiac fibers, it may take different spatiotemporal patterns depending on the pacing history. Because there coexist multiple alternans solutions for a given pacing period, the alternans pattern on a fiber becomes unpredictable. Usin...

  18. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac p...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....... characterized. An ongoing characterization of the molecular heterogeneity will help appreciate the biosynthetic capacity of the endocrine heart and could introduce new diagnostic possibilities. Notably, different biosynthetic products may not be equal markers of the same pathophysiological processes. An...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  19. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....

  20. An overview of cardiac morphogenesis.

    Science.gov (United States)

    Schleich, Jean-Marc; Abdulla, Tariq; Summers, Ron; Houyel, Lucile

    2013-11-01

    Accurate knowledge of normal cardiac development is essential for properly understanding the morphogenesis of congenital cardiac malformations that represent the most common congenital anomaly in newborns. The heart is the first organ to function during embryonic development and is fully formed at 8 weeks of gestation. Recent studies stemming from molecular genetics have allowed specification of the role of cellular precursors in the field of heart development. In this article we review the different steps of heart development, focusing on the processes of alignment and septation. We also show, as often as possible, the links between abnormalities of cardiac development and the main congenital heart defects. The development of animal models has permitted the unraveling of many mechanisms that potentially lead to cardiac malformations. A next step towards a better knowledge of cardiac development could be multiscale cardiac modelling. PMID:24138816

  1. The KCNQ1 potassium channel: from gene to physiological function

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, Morten; Olesen, Søren-Peter

    2005-01-01

    The voltage-gated KCNQ1 (KvLQT1, Kv7.1) potassium channel plays a crucial role in shaping the cardiac action potential as well as in controlling the water and salt homeostasis in several epithelial tissues. KCNQ1 channels in these tissues are tightly regulated by auxiliary proteins and accessory...... factors, capable of modulating the properties of the channel complexes. This paper reviews the current knowledge about the KCNQ1 channel with a major focus on interacting proteins and physiological functions....

  2. Propranolol Blocks Cardiac and Neuronal Voltage-Gated Sodium Channels

    OpenAIRE

    AlfredLGeorge; DaoWWang

    2010-01-01

    Propranolol is a widely-used, nonselective ß-adrenergic receptor antagonist with proven efficacy in treating cardiovascular disorders and in the prevention of migraine headaches. At plasma concentrations exceeding those required for ß-adrenergic receptor inhibition, propranolol also exhibits antiarrhythmic (“membrane stabilizing”) effects that are not fully explained by ß-blockade. Previous in vitro studies suggested that propranolol may have local anesthetic effects We directl...

  3. Application of HTS technology to cardiac dysrhythmia detection

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, A.L. [Sandia National Labs., Albuquerque, NM (United States); Avrin, W.F. [Quantum Magnetics, Inc., San Diego, CA (United States)

    1994-12-01

    This paper discusses the conceptual design considerations and challenges for development of a contactless, mobile, single channel biomagnetic sensor system based on High-Temperature Superconductor (HTS) Superconducting Quantum Interference Devices (SQUIDs) and employing the Three-SQUID Gradiometer (TSG) concept. Operating in magnetically unshielded environments, as are encountered in many medical scenarios, this instrument class would monitor cardiac electrical activity with minimal patient preparation and intrusiveness, and would notionally be coupled with a clinically adaptive human-system interface (HSI).

  4. Sudden Cardiac Death in Athletes.

    Science.gov (United States)

    Wasfy, Meagan M; Hutter, Adolph M; Weiner, Rory B

    2016-01-01

    There are clear health benefits to exercise; even so, patients with cardiac conditions who engage in exercise and athletic competition may on rare occasion experience sudden cardiac death (SCD). This article reviews the epidemiology and common causes of SCD in specific athlete populations. There is ongoing debate about the optimal mechanism for SCD prevention, specifically regarding the inclusion of the ECG and/or cardiac imaging in routine preparticipation sports evaluation. This controversy and contemporary screening recommendations are also reviewed. PMID:27486488

  5. Cardiac Rehabilitation: Guidelines and Recommendations

    OpenAIRE

    Catherine Monpere

    1998-01-01

    Cardiac rehabilitation has been shown to improve exercise tolerance and symptomatology in patients experiencing angina or heart failure and reduce long term mortality after myocardial infarction, with a good cost-effectiveness ratio. In addition to these `hard' endpoints, cardiac rehabilitation improves the patient's quality of life and risk factor profile through a multifactorial intervention. Indeed, cardiac rehabilitation is no longer restricted to physical reconditioning, but should now b...

  6. Left Ventricular Electromechanical Mapping: A Case Study of Functional Assessment in Coronary Intervention

    OpenAIRE

    Perin, Emerson C.; Silva, Guilherme V.; Sarmento-Leite, Rogerio

    2000-01-01

    Electromechanical mapping is a new diagnostic tool that can be used to identify viable myocardium. In the case reported here, the technique was used before intervention to map areas of viable myocardium; post-intervention mapping showed improved mechanical function of the revascularized areas. Electromechanical mapping offers the potential of assessing left ventricular function in the cardiac catheterization laboratory before and after interventional procedures.

  7. Tetrodotoxin Sensitivity of the Vertebrate Cardiac Na+ Current

    Directory of Open Access Journals (Sweden)

    Jaakko Haverinen

    2011-11-01

    Full Text Available Evolutionary origin and physiological significance of the tetrodotoxin (TTX resistance of the vertebrate cardiac Na+ current (INa is still unresolved. To this end, TTX sensitivity of the cardiac INa was examined in cardiac myocytes of a cyclostome (lamprey, three teleost fishes (crucian carp, burbot and rainbow trout, a clawed frog, a snake (viper and a bird (quail. In lamprey, teleost fishes, frog and bird the cardiac INa was highly TTX-sensitive with EC50-values between 1.4 and 6.6 nmol·L−1. In the snake heart, about 80% of the INa was TTX-resistant with EC50 value of 0.65 μmol·L−1, the rest being TTX-sensitive (EC50 = 0.5 nmol·L−1. Although TTX-resistance of the cardiac INa appears to be limited to mammals and reptiles, the presence of TTX-resistant isoform of Na+ channel in the lamprey heart suggest an early evolutionary origin of the TTX-resistance, perhaps in the common ancestor of all vertebrates.

  8. Diagnostic imaging of cardiac hypertrophy

    International Nuclear Information System (INIS)

    As imaging techniques for cardiac hypertrophy, the ultrasonic dimension gauze technique, echocardiography, ventriculography and the RI technique including emission RI tomography were outlined. (Chiba, N.)

  9. Sleep Apnea and Nocturnal Cardiac Arrhythmia: A Populational Study

    Directory of Open Access Journals (Sweden)

    Fatima Dumas Cintra

    2014-11-01

    Full Text Available Background: The mechanisms associated with the cardiovascular consequences of obstructive sleep apnea include abrupt changes in autonomic tone, which can trigger cardiac arrhythmias. The authors hypothesized that nocturnal cardiac arrhythmia occurs more frequently in patients with obstructive sleep apnea. Objective: To analyze the relationship between obstructive sleep apnea and abnormal heart rhythm during sleep in a population sample. Methods: Cross-sectional study with 1,101 volunteers, who form a representative sample of the city of São Paulo. The overnight polysomnography was performed using an EMBLA® S7000 digital system during the regular sleep schedule of the individual. The electrocardiogram channel was extracted, duplicated, and then analyzed using a Holter (Cardio Smart® system. Results: A total of 767 participants (461 men with a mean age of 42.00 ± 0.53 years, were included in the analysis. At least one type of nocturnal cardiac rhythm disturbance (atrial/ventricular arrhythmia or beat was observed in 62.7% of the sample. The occurrence of nocturnal cardiac arrhythmias was more frequent with increased disease severity. Rhythm disturbance was observed in 53.3% of the sample without breathing sleep disorders, whereas 92.3% of patients with severe obstructive sleep apnea showed cardiac arrhythmia. Isolated atrial and ventricular ectopy was more frequent in patients with moderate/severe obstructive sleep apnea when compared to controls (p < 0.001. After controlling for potential confounding factors, age, sex and apnea-hypopnea index were associated with nocturnal cardiac arrhythmia. Conclusion: Nocturnal cardiac arrhythmia occurs more frequently in patients with obstructive sleep apnea and the prevalence increases with disease severity. Age, sex, and the Apnea-hypopnea index were predictors of arrhythmia in this sample.

  10. An information-guided channel-hopping scheme for block-fading channels with estimation errors

    KAUST Repository

    Yang, Yuli

    2010-12-01

    Information-guided channel-hopping technique employing multiple transmit antennas was previously proposed for supporting high data rate transmission over fading channels. This scheme achieves higher data rates than some mature schemes, such as the well-known cyclic transmit antenna selection and space-time block coding, by exploiting the independence character of multiple channels, which effectively results in having an additional information transmitting channel. Moreover, maximum likelihood decoding may be performed by simply decoupling the signals conveyed by the different mapping methods. In this paper, we investigate the achievable spectral efficiency of this scheme in the case of having channel estimation errors, with optimum pilot overhead for minimum meansquare error channel estimation, when transmitting over blockfading channels. Our numerical results further substantiate the robustness of the presented scheme, even with imperfect channel state information. ©2010 IEEE.

  11. Characterization of dihydropyridine-sensitive calcium channels

    International Nuclear Information System (INIS)

    The structural and regulatory properties of the dihydropyridine-sensitive calcium channel were studied by isolating protein components of the channel complex from both cardiac and skeletal muscle. Hydrodynamic characterization of the (+)-(3H)PN200-110-labeled cardiac calcium channel revealed that the protein components of the complex had a total molecular mass of 370,000 daltons, a Stokes radius of 86 angstrom, and a frictional ratio of 1.3. A technique is described for the rapid incorporation of the CHAPS solubilized skeletal muscle calcium channel complex into phospholipid vesicles. 45Ca2+ uptake into phospholipid vesicles containing calcium channels was inhibited by phenylalkalamine calcium antagonists. Wheat germ lectin followed by DEAE chromatography of the CHAPS solubilized complex resulted in the dissociation of regulatory components of the complex from channel components. The DEAE preparation gave rise to 45Ca2+ uptake that was not inhibited by verapamil but was inhibited by GTPgS activated G0. The inhibition of 45Ca2+ uptake by verapamil was restored by co-reconstitution of wash fractions from wheat germ lectin chromatography. Phosphorylation of polypeptides in this fraction by polypeptide-dependent protein kinase prevented the restoration of verapamil sensitivity. The partial purification of an endogenous skeletal muscle ADP-ribosyltransferase is also described. ADP-ribosylation of the α2 subunit of the calcium channel complex is enhanced by polylysine and inhibited by GTPγS, suggesting that regulation of this enzyme is under the control of GTP binding proteins. These results suggest a complex model, involving a number of different protein components, for calcium channel regulation in skeletal muscle

  12. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation–contraction coupling, and cardiac arrhythmias

    OpenAIRE

    Chopra, Nagesh; Yang, Tao; Asghari, Parisa; Moore, Edwin D.; Huke, Sabine; Akin, Brandy; Cattolica, Robert A.; Perez, Claudio F.; Hlaing, Thinn; Knollmann-Ritschel, Barbara E. C.; Jones, Larry R.; Pessah, Isaac N; Allen, Paul D.; Franzini-Armstrong, Clara; Knollmann, Björn C.

    2009-01-01

    Heart muscle excitation–contraction (E-C) coupling is governed by Ca2+ release units (CRUs) whereby Ca2+ influx via L-type Ca2+ channels (Cav1.2) triggers Ca2+ release from juxtaposed Ca2+ release channels (RyR2) located in junctional sarcoplasmic reticulum (jSR). Although studies suggest that the jSR protein triadin anchors cardiac calsequestrin (Casq2) to RyR2, its contribution to E-C coupling remains unclear. Here, we identify the role of triadin using mice with ablation of the Trdn gene (...

  13. Cardiac manifestations of myotonic dystrophy type 1

    DEFF Research Database (Denmark)

    Petri, Helle; Vissing, John; Witting, Nanna; Bundgaard, Henning; Køber, Lars

    2012-01-01

    To estimate the degree of cardiac involvement regarding left ventricular ejection fraction, conduction abnormalities, arrhythmia, risk of sudden cardiac death (SCD) and the associations between cardiac involvement and cytosine-thymine-guanine (CTG)-repeat, neuromuscular involvement, age and gender...

  14. The Cardiac Electrophysiology Web Lab.

    Science.gov (United States)

    Cooper, Jonathan; Scharm, Martin; Mirams, Gary R

    2016-01-19

    Computational modeling of cardiac cellular electrophysiology has a long history, and many models are now available for different species, cell types, and experimental preparations. This success brings with it a challenge: how do we assess and compare the underlying hypotheses and emergent behaviors so that we can choose a model as a suitable basis for a new study or to characterize how a particular model behaves in different scenarios? We have created an online resource for the characterization and comparison of electrophysiological cell models in a wide range of experimental scenarios. The details of the mathematical model (quantitative assumptions and hypotheses formulated as ordinary differential equations) are separated from the experimental protocol being simulated. Each model and protocol is then encoded in computer-readable formats. A simulation tool runs virtual experiments on models encoded in CellML, and a website (https://chaste.cs.ox.ac.uk/WebLab) provides a friendly interface, allowing users to store and compare results. The system currently contains a sample of 36 models and 23 protocols, including current-voltage curve generation, action potential properties under steady pacing at different rates, restitution properties, block of particular channels, and hypo-/hyperkalemia. This resource is publicly available, open source, and free, and we invite the community to use it and become involved in future developments. Investigators interested in comparing competing hypotheses using models can make a more informed decision, and those developing new models can upload them for easy evaluation under the existing protocols, and even add their own protocols. PMID:26789753

  15. Antifibrinolytics in cardiac surgery

    Directory of Open Access Journals (Sweden)

    Achal Dhir

    2013-01-01

    Full Text Available Cardiac surgery exerts a significant strain on the blood bank services and is a model example in which a multi-modal blood-conservation strategy is recommended. Significant bleeding during cardiac surgery, enough to cause re-exploration and/or blood transfusion, increases morbidity and mortality. Hyper-fibrinolysis is one of the important contributors to increased bleeding. This knowledge has led to the use of anti-fibrinolytic agents especially in procedures performed under cardiopulmonary bypass. Nothing has been more controversial in recent times than the aprotinin controversy. Since the withdrawal of aprotinin from the world market, the choice of antifibrinolytic agents has been limited to lysine analogues either tranexamic acid (TA or epsilon amino caproic acid (EACA. While proponents of aprotinin still argue against its non-availability. Health Canada has approved its use, albeit under very strict regulations. Antifibrinolytic agents are not without side effects and act like double-edged swords, the stronger the anti-fibrinolytic activity, the more serious the side effects. Aprotinin is the strongest in reducing blood loss, blood transfusion, and possibly, return to the operating room after cardiac surgery. EACA is the least effective, while TA is somewhere in between. Additionally, aprotinin has been implicated in increased mortality and maximum side effects. TA has been shown to increase seizure activity, whereas, EACA seems to have the least side effects. Apparently, these agents do not differentiate between pathological and physiological fibrinolysis and prevent all forms of fibrinolysis leading to possible thrombotic side effects. It would seem prudent to select the right agent knowing its risk-benefit profile for a given patient, under the given circumstances.

  16. Channels Active in the Excitability of Nerves and Skeletal Muscles across the Neuromuscular Junction: Basic Function and Pathophysiology

    Science.gov (United States)

    Goodman, Barbara E.

    2008-01-01

    Ion channels are essential for the basic physiological function of excitable cells such as nerve, skeletal, cardiac, and smooth muscle cells. Mutations in genes that encode ion channels have been identified to cause various diseases and disorders known as channelopathies. An understanding of how individual ion channels are involved in the…

  17. Single ventricle cardiac defect

    International Nuclear Information System (INIS)

    Single ventricle heart is defined as a rare cardiac abnormality with a single ventricle chamber involving diverse functional and physiological defects. Our case is of a ten month-old baby boy who died shortly after admission to the hospital due to vomiting and diarrhoea. Autopsy findings revealed cyanosis of finger nails and ears. Internal examination revealed; large heart, weighing 60 grams, single ventricle, without a septum and upper membranous part. Single ventricle is a rare pathology, hence, this paper aims to discuss this case from a medico-legal point of view. (author)

  18. Channel Networks

    Science.gov (United States)

    Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio; Rigon, Riccardo

    This review proceeds from Luna Leopold's and Ronald Shreve's lasting accomplishments dealing with the study of random-walk and topologically random channel networks. According to the random perspective, which has had a profound influence on the interpretation of natural landforms, nature's resiliency in producing recurrent networks and landforms was interpreted to be the consequence of chance. In fact, central to models of topologically random networks is the assumption of equal likelihood of any tree-like configuration. However, a general framework of analysis exists that argues that all possible network configurations draining a fixed area are not necessarily equally likely. Rather, a probability P(s) is assigned to a particular spanning tree configuration, say s, which can be generally assumed to obey a Boltzmann distribution: P(s) % e^-H(s)/T, where T is a parameter and H(s) is a global property of the network configuration s related to energetic characters, i.e. its Hamiltonian. One extreme case is the random topology model where all trees are equally likely, i.e. the limit case for T6 4 . The other extreme case is T 6 0, and this corresponds to network configurations that tend to minimize their total energy dissipation to improve their likelihood. Networks obtained in this manner are termed optimal channel networks (OCNs). Observational evidence suggests that the characters of real river networks are reproduced extremely well by OCNs. Scaling properties of energy and entropy of OCNs suggest that large network development is likely to effectively occur at zero temperature (i.e. minimizing its Hamiltonian). We suggest a corollary of dynamic accessibility of a network configuration and speculate towards a thermodynamics of critical self-organization. We thus conclude that both chance and necessity are equally important ingredients for the dynamic origin of channel networks---and perhaps of the geometry of nature.

  19. A system for seismocardiography-based identification of quiescent heart phases: implications for cardiac imaging.

    Science.gov (United States)

    Wick, Carson A; Su, Jin-Jyh; McClellan, James H; Brand, Oliver; Bhatti, Pamela T; Buice, Ashley L; Stillman, Arthur E; Tang, Xiangyang; Tridandapani, Srini

    2012-09-01

    Seismocardiography (SCG), a representation of mechanical heart motion, may more accurately determine periods of cardiac quiescence within a cardiac cycle than the electrically derived electrocardiogram (EKG) and, thus, may have implications for gating in cardiac computed tomography. We designed and implemented a system to synchronously acquire echocardiography, EKG, and SCG data. The device was used to study the variability between EKG and SCG and characterize the relationship between the mechanical and electrical activity of the heart. For each cardiac cycle, the feature of the SCG indicating Aortic Valve Closure was identified and its time position with respect to the EKG was observed. This position was found to vary for different heart rates and between two human subjects. A color map showing the magnitude of the SCG acceleration and computed velocity was derived, allowing for direct visualization of quiescent phases of the cardiac cycle with respect to heart rate. PMID:22581141

  20. A Proposal for Mapping Historic Irrigation Channels to Reveal Insights into Agro-Climatic Systems: A Case Study in Upper Austria. GI_Forum 2013 – Creating the GISociety|

    OpenAIRE

    Neuwirth, Christian; Eisank, Clemens; D'Oleire-Oltmanns, Sebastian

    2016-01-01

    Recently, the remains of two historic irrigation channels were re-discovered in the Upper Austrian municipality of Regau. Since the current average precipitation in the region is sufficient to sustain a productive agricultural land use, the irrigation channels raise several questions related to climate variability. To verify different hypotheses such as the construction as a response to a changing climate or the assumed purpose of grassland irrigation, potential coherences are discussed. In a...

  1. Hypokalemia and sudden cardiac death

    DEFF Research Database (Denmark)

    Kjeldsen, Keld

    2010-01-01

    Worldwide, approximately three million people suffer sudden cardiac death annually. These deaths often emerge from a complex interplay of substrates and triggers. Disturbed potassium homeostasis among heart cells is an example of such a trigger. Thus, hypokalemia and, also, more transient...... of fatal arrhythmia and sudden cardiac death a patient is, the more attention should be given to the potassium homeostasis....

  2. Atrial tumors in cardiac MRI

    International Nuclear Information System (INIS)

    Cardiac magnetic resonance imaging (MRI) is an important tool for the diagnosis of cardiac masses. Various cardiac tumors are predisposed to occurring in atrial structures. The aim of this review article is the description of atrial tumors and their morphological features in MRI. In general, cardiac tumors are rare: approximately 0.001-0.03% in autopsy studies. About 75% of them are benign. The most common cardiac tumor is the myxoma. They are predisposed to occur in the atria and show a characteristically strong hyperintense signal on T2-wieghted images in MRI. In other sequences a heterogeneous pattern reflects its variable histological appearance. Lipomas exhibit a signal behavior identical to fatty tissue with a typical passive movement in cine imaging. Fibroelastomas are the most common tumors of the cardiac valves. Consisting of avascular fibrous tissue, they often present with hypointense signal intensities. Thrombi attached to their surface can cause severe emboli even in small tumors. Amongst primary cardiac malignancies, sarcomas are most common and favor the atria. Secondary malignancies of the heart are far more common than primary ones (20-40 times). In case of known malignancies, approximately 10% of patients develop cardiac metastasis at the end of their disease. Lymphogenic metastases favor the pericardium, while hematogenic spread prefers the myocardium. Since they are not real atrial tumors, thrombi and anatomical structures of the atria have to be differentiated from other pathologies. (orig.)

  3. Cardiac arrest – cardiopulmonary resuscitation

    Directory of Open Access Journals (Sweden)

    Basri Lenjani

    2014-01-01

    Conclusions: All survivors from cardiac arrest have received appropriate medical assistance within 10 min from attack, which implies that if cardiac arrest occurs near an institution health care (with an opportunity to provide the emergent health care the rate of survival is higher.

  4. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy.

    Science.gov (United States)

    Diness, Jonas G; Bentzen, Bo H; Sørensen, Ulrik S; Grunnet, Morten

    2015-11-01

    Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti-atrial fibrillation principle. PMID:25830485

  5. Pneumothorax in cardiac pacing

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard;

    2012-01-01

    AIM: To identify risk factors for pneumothorax treated with a chest tube after cardiac pacing device implantation in a population-based cohort.METHODS AND RESULTS: A nationwide cohort study was performed based on data on 28 860 patients from the Danish Pacemaker Register, which included all Danish...... patients who received their first pacemaker (PM) or cardiac resynchronization device from 1997 to 2008. Multiple logistic regression was used to estimate adjusted odds ratios (aOR) with 95% confidence intervals for the association between risk factors and pneumothorax treated with a chest tube. The median...... age was 77 years (25th and 75th percentile: 69-84) and 55% were male (n = 15 785). A total of 190 patients (0.66%) were treated for pneumothorax, which was more often in women [aOR 1.9 (1.4-2.6)], and in patients with age >80 years [aOR 1.4 (1.0-1.9)], a prior history of chronic obstructive pulmonary...

  6. Leadership in cardiac surgery.

    Science.gov (United States)

    Rao, Christopher; Patel, Vanash; Ibrahim, Michael; Ahmed, Kamran; Wong, Kathie A; Darzi, Ara; von Segesser, Ludwig K; Athanasiou, Thanos

    2011-06-01

    Despite the efficacy of cardiac surgery, less invasive interventions with more uncertain long-term outcomes are increasingly challenging surgery as first-line treatment for several congenital, degenerative and ischemic cardiac diseases. The specialty must evolve if it is to ensure its future relevance. More importantly, it must evolve to ensure that future patients have access to treatments with proven long-term effectiveness. This cannot be achieved without dynamic leadership; however, our contention is that this is not enough. The demands of a modern surgical career and the importance of the task at hand are such that the serendipitous emergence of traditional charismatic leadership cannot be relied upon to deliver necessary change. We advocate systematic analysis and strategic leadership at a local, national and international level in four key areas: Clinical Care, Research, Education and Training, and Stakeholder Engagement. While we anticipate that exceptional individuals will continue to shape the future of our specialty, the creation of robust structures to deliver collective leadership in these key areas is of paramount importance. PMID:20884217

  7. Cardiac chamber scintiscanning

    International Nuclear Information System (INIS)

    The two methods of cardiac chamber scintiscanning, i.e. 'first pass' and 'ECG-triggered' examinations, are explained and compared. Two tables indicate the most significant radiation doses of the applied radio tracers, i.e. 99m-Tc-pertechnetate and 99m-Tc-HSA, to which a patient is exposed. These averaged values are calculated from various data given in specialised literature. On the basis of data given in literature, an effective half-life of approximately 5 hours in the intravascular space was calculated for the erythrocytes labelled with technetium 99m. On this basis, the radiation doses for the patients due to 99m-Tc-labelled erythrocytes are estimated. The advantages and disadvantages of the two methods applied for cardiac chamber scintiscanning are put into contrast and compared with the advantages and disadvantages of the quantitative X-ray cardiography of the left heart. The still existing problems connected with the assessment of ECG-triggered images are discussed in detail. The author performed investigations of his own, which concerned the above-mentioned problems. (orig./MG)

  8. Nonlinear interpolation fractal classifier for multiple cardiac arrhythmias recognition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.-H. [Department of Electrical Engineering, Kao-Yuan University, No. 1821, Jhongshan Rd., Lujhu Township, Kaohsiung County 821, Taiwan (China); Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)], E-mail: eechl53@cc.kyu.edu.tw; Du, Y.-C.; Chen Tainsong [Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)

    2009-11-30

    This paper proposes a method for cardiac arrhythmias recognition using the nonlinear interpolation fractal classifier. A typical electrocardiogram (ECG) consists of P-wave, QRS-complexes, and T-wave. Iterated function system (IFS) uses the nonlinear interpolation in the map and uses similarity maps to construct various data sequences including the fractal patterns of supraventricular ectopic beat, bundle branch ectopic beat, and ventricular ectopic beat. Grey relational analysis (GRA) is proposed to recognize normal heartbeat and cardiac arrhythmias. The nonlinear interpolation terms produce family functions with fractal dimension (FD), the so-called nonlinear interpolation function (NIF), and make fractal patterns more distinguishing between normal and ill subjects. The proposed QRS classifier is tested using the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. Compared with other methods, the proposed hybrid methods demonstrate greater efficiency and higher accuracy in recognizing ECG signals.

  9. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin.

    Science.gov (United States)

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-11-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  10. Vasopressin responses to unloading arterial baroreceptors during cardiac nerve blockade in conscious dogs

    Science.gov (United States)

    O'Donnell, C. P.; Keil, L. C.; Thrasher, T. N.

    1992-01-01

    We examined the relative contributions of afferent input from the heart and from arterial baroreceptors in the stimulation of arginine vasopressin (AVP) secretion in response to hypotension caused by thoracic inferior vena caval constriction (TIVCC). Afferent input from cardiac receptors was reversibly blocked by infusing 2% procaine into the pericardial space to anesthetize the cardiac nerves. Acute cardiac nerve blockade (CNB) alone caused a rise in mean arterial pressure (MAP) of 24 +/- 3 mmHg but no change in plasma AVP. If the rise in MAP was prevented by TIVCC, plasma AVP increased by 39 +/- 15 pg/ml, and if MAP was allowed to increase and then was forced back to control by TIVCC, plasma AVP increased by 34 +/- 15 pg/ml. Thus the rise in MAP during CNB stimulated arterial baroreceptors, which in turn compensated for the loss of inhibitory input from cardiac receptors on AVP secretion. These results indicate that the maximum secretory response resulting from complete unloading of cardiac receptors at a normal MAP results in a mean increase in plasma AVP of 39 pg/ml in this group of dogs. When MAP was reduced 25% below control levels (from 95 +/- 5 to 69 +/- 3 mmHg) by TIVCC during pericardial saline infusion, plasma AVP increased by 79 +/- 42 pg/ml. However, the same degree of hypotension during CNB (MAP was reduced from 120 +/- 5 to 71 +/- 3 mmHg) led to a greater (P less than 0.05) increase in plasma AVP of 130 +/- 33 pg/ml. Because completely unloading cardiac receptors can account for an increase of only 39 pg/ml on average in this group of dogs, the remainder of the increase in plasma AVP must be due to other sources of stimulation. We suggest that the principal stimulus to AVP secretion after acute CNB in these studies arises from unloading the arterial baroreceptors.

  11. Affect intensity and cardiac arousal.

    Science.gov (United States)

    Blascovich, J; Brennan, K; Tomaka, J; Kelsey, R M; Hughes, P; Coad, M L; Adlin, R

    1992-07-01

    Relationships between affect intensity and basal, evoked, and perceived cardiac arousal were investigated in 3 experiments. Affect intensity was assessed using Larsen and Diener's (1987) Affect Intensity Measure (AIM). Cardiac arousal was evoked with exercise in the 1st study and with mental arithmetic in the 2nd and 3rd. Perceived cardiac arousal was measured under optimal conditions using a standard heartbeat discrimination procedure. Women as a group scored higher on the AIM. Affect intensity was unrelated to basal or evoked cardiac arousal and was negatively related to perceived cardiac arousal in all 3 studies. Data suggest that affect intensity, although unrelated to actual physiological arousal, is negatively related to the accuracy with which individuals perceive their own arousal. Results are discussed within the context of an expanded arousal-regulation model (Blascovich, 1990). PMID:1494983

  12. Functional cardiac imaging by random access microscopy

    Directory of Open Access Journals (Sweden)

    Claudia eCrocini

    2014-10-01

    Full Text Available Advances in the development of voltage sensitive dyes and Ca2+ sensors in combination with innovative microscopy techniques allowed researchers to perform functional measurements with an unprecedented spatial and temporal resolution. At the moment, one of the shortcomings of available technologies is their incapability of imaging multiple fast phenomena while controlling the biological determinants involved. In the near future, ultrafast deflectors can be used to rapidly scan laser beams across the sample, performing optical measurements of action potential and Ca2+ release from multiple sites within cardiac cells and tissues. The same scanning modality could also be used to control local Ca2+ release and membrane electrical activity by activation of caged compounds and light-gated ion channels. With this approach, local Ca2+ or voltage perturbations could be induced, simulating arrhythmogenic events, and their impact on physiological cell activity could be explored. The development of this optical methodology will provide fundamental insights in cardiac disease, boosting new therapeutic strategies, and, more generally, it will represent a new approach for the investigation of the physiology of excitable cells.

  13. Present Researching Approaches and Future Prospects for Treatment of Cardiac Diseases-Integrative Medicine

    Institute of Scientific and Technical Information of China (English)

    Yan Feng; Hao Xu; Yi-Xin Wang; Li-Ping Ma; Da-Zhuo Shi

    2015-01-01

    The pathogenesis of cardiac diseases is very complex and involved in many gene transcription and protein expression. How to effectively treat the diseases has become the hotspot of modern medicine. Accumulating evidences over the past decades on integrative medicine have shown us hopeful future prospects. With the development of modern biomedicine, such as sketch mapping genomic sequence, functional genomics, proteomics and pharmacogenetics, more advanced techniques could be applied in elucidating the possibly complicated biological networks, or complex pathological and physiological mechanisms underlying cardiac diseases, by which integrative medicine will also bring out some new and more effective strategies in the treatment of cardiac diseases.

  14. Cardiac Na+ Current Regulation by Pyridine Nucleotides

    Science.gov (United States)

    Liu, Man; Sanyal, Shamarendra; Gao, Ge; Gurung, Iman S.; Zhu, Xiaodong; Gaconnet, Georgia; Kerchner, Laurie J.; Shang, Lijuan L.; Huang, Christopher L-H.; Grace, Andrew; London, Barry; Dudley, Samuel C.

    2009-01-01

    Rationale Mutations in glycerol-3-phosphate dehydrogenase 1-like (GPD1-L) protein reduce cardiac Na+ current (INa) and cause Brugada Syndrome (BrS). GPD1-L has >80% amino acid homology with glycerol-3-phosphate dehydrogenase, which is involved in nicotinamide adenine dinucleotide (NAD)-dependent energy metabolism. Objective Therefore, we tested whether NAD(H) could regulate human cardiac sodium channels (Nav1.5). Methods and Results HEK293 cells stably expressing Nav1.5 and rat neonatal cardiomyocytes were used. The influence of NADH/NAD+ on arrhythmic risk was evaluated in wild-type or SCN5A+/− mouse heart. A280V GPD1-L caused a 2.48 ± 0.17-fold increase in intracellular NADH level (P<0.001). NADH application or co-transfection with A280V GPD1-L resulted in decreased INa (0.48 ± 0.09 or 0.19 ±0.04 of control group, respectively; P<0.01), which was reversed by NAD+, chelerythrine, or superoxide dismutase (SOD). NAD+ antagonism of the Na+ channel downregulation by A280V GPD1-L or NADH was prevented by a protein kinase A (PKA) inhibitor, PKAI6–22. The effects of NADH and NAD+ were mimicked by a phorbol ester and forskolin, respectively. Increasing intracellular NADH was associated with an increased risk of ventricular tachycardia (VT) in wild-type mouse hearts. Extracellular application of NAD+ to SCN5A+/− mouse hearts ameliorated the risk of VT. Conclusions Our results show that Nav1.5 is regulated by pyridine nucleotides, suggesting a link between metabolism and INa. This effect required protein kinase C (PKC) activation and was mediated by oxidative stress. NAD+ could prevent this effect by activating PKA. Mutations of GPD1-L may downregulate Nav1.5 by altering the oxidized to reduced NAD(H) balance. PMID:19745168

  15. Finding the rhythm of sudden cardiac death: new opportunities using induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Sallam, Karim; Li, Yingxin; Sager, Philip T; Houser, Steven R; Wu, Joseph C

    2015-06-01

    Sudden cardiac death is a common cause of death in patients with structural heart disease, genetic mutations, or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with sudden cardiac death. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology, including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single-ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell-derived cardiomyocytes resemble, but are not identical, adult human cardiomyocytes and provide a new platform for studying arrhythmic disorders leading to sudden cardiac death. A variety of platforms exist to phenotype cellular models, including conventional and automated patch clamp, multielectrode array, and computational modeling. Induced pluripotent stem cell-derived cardiomyocytes have been used to study long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy, and other hereditary cardiac disorders. Although induced pluripotent stem cell-derived cardiomyocytes are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of sudden cardiac death. PMID:26044252

  16. Channeling experiment

    International Nuclear Information System (INIS)

    Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)

  17. ROLE OF THE INTERCALATED DISC IN CARDIAC PROPAGATION AND ARRHYTHMOGENESIS

    Directory of Open Access Journals (Sweden)

    Andre Georges Kleber

    2014-10-01

    Full Text Available AbstractThis review article discusses mechanisms underlying impulse propagation in cardiac muscle with specific emphasis on the role of the cardiac cell-to-cell junction, called the intercalated disc. The first part of this review deals with the role of gap junction channels, formed by connexin proteins, as a determinant of impulse propagation. It is shown that, depending on the underlying structure of the cellular network, decreasing the conductance of gap junction channels (so-called electrical uncoupling may either only slow, or additionally stabilize propagation and reverse unidirectional propagation block to bidirectional propagation. This is because the safety factor for propagation increases with decreasing intercellular electrical conductance. The role of heterogeneous connexin expression, which may be present in disease states, is also discussed. The hypothesis that so-called ephaptic impulse transmission plays a role in heart and can substitute for electrical coupling has been revived recently. Whereas ephaptic transmission can be demonstrated in theoretical simulations, direct experimental evidence has not yet been presented.The second part of this review deals with the interaction of three protein complexes at the intercalated disc: (1 desmosomal and adherers junction proteins, (2 ion channel proteins, and (3 gap junction channels consisting of connexins. Recent work has revealed multiple interactions between these three protein complexes which occur, at least in part, at the level of protein trafficking. Such interactions are likely to play an important role in the pathogenesis of arrhythmogenic cardiomyopathy, and may reveal new therapeutic concepts and targets.

  18. Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Greenwood, Iain A; Moffatt, James D;

    2009-01-01

    Members of the K(v)7 voltage-gated K(+) channel family are important determinants of cardiac and neuronal membrane excitability. Recently, we and others have shown that K(v)7 channels are also crucial regulators of smooth muscle activity. The aim of the present study was to assess the K(v)7 expre...

  19. Role of calcium activated potassium channels in atrial fibrillation pathophysiology and therapy

    DEFF Research Database (Denmark)

    Diness, Jonas G.; Bentzen, Bo H.; S. Sørensen, Ulrik;

    2015-01-01

    Small-conductance Ca2+-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels since they might constitute a relatively atrial selective target. The present review will give...

  20. Trends in Cardiac Pacemaker Batteries

    Directory of Open Access Journals (Sweden)

    Venkateswara Sarma Mallela

    2004-10-01

    Full Text Available Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future.

  1. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore

    2011-11-01

    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  2. Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation

    DEFF Research Database (Denmark)

    Nielsen, Jonas Bille; Bentzen, Bo Hjorth; Olesen, Morten Salling;

    2014-01-01

    Aims: Atrial fibrillation (AF) is the most common cardiac arrhythmia. Disturbances in cardiac potassium conductance are considered as one of the disease mechanisms in AF. We aimed to investigate if mutations in potassium-channel β-subunits KCNE2 and KCNE3 are associated with early-onset lone AF. ...

  3. Cardiac perioperative complications in noncardiac surgery

    OpenAIRE

    Radovanović Dragana; Kolak Radmila; Stokić Aleksandar; Radovanović Zoran; Jovanović Gordana

    2008-01-01

    Anesthesiologists are confronted with an increasing population of patients undergoing noncardiac surgery who are at risk for cardiac complications in the perioperative period. Perioperative cardiac complications are responsible for significant mortality and morbidity. The aim of the present study was to determine the incidence of perioperative (operative and postoperative) cardiac complications and correlations between the incidence of perioperative cardiac complications and type of surgical ...

  4. Kcne2 deletion creates a multisystem syndrome predisposing to sudden cardiac death

    OpenAIRE

    Hu, Z.; Kant, R.; Anand, M; King, EC; Krogh-Madsen, T; Christini, DJ; Abbott, GW

    2014-01-01

    Background: Sudden cardiac death (SCD) is the leading global cause of mortality, exhibiting increased incidence in patients with diabetes mellitus. Ion channel gene perturbations provide a well-established ventricular arrhythmogenic substrate for SCD. However, most arrhythmia-susceptibility genes, including the KCNE2 K+ channel ß subunit, are expressed in multiple tissues, suggesting potential multiplex SCD substrates. Methods and Results: Using whole-transcript transcriptomics, we uncovered ...

  5. Mice lacking functional TRPV1 are protected from pressure overload cardiac hypertrophy

    OpenAIRE

    Buckley, Cadie L; Stokes, Alexander J.

    2011-01-01

    TRPV1 (transient receptor potential cation channel, subfamily V, member 1) is best studied in peripheral sensory neurons as a pain receptor; however TRPV1 is expressed in numerous tissues and cell types including those of the cardiovascular system. TRPV1 expression is upregulated in the hypertrophic heart, and the channel is positioned to receive stimulatory signals in the hypertrophic heart. We hypothesized that TRPV1 has a role in regulating cardiac hypertrophy. Using transverse aortic cons...

  6. Activation of cardiac chloride conductance by the tyrosine kinase inhibitor, genistein.

    OpenAIRE

    Shuba, L. M.; Asai, T.; Pelzer, S.; McDonald, T. F.

    1996-01-01

    1. Genistein (GST), an inhibitor of protein tyrosine kinase (PTK), Na3VO4 (VO4), an inhibitor of phosphotyrosine phosphatase (PTPase), and forskolin (FSK), an activator of the cyclic AMP-dependent, cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, were applied to guinea-pig ventricular myocytes to probe for a possible role of tyrosine phosphorylation in the regulation of cardiac Cl- channels. 2. Myocytes in the standard whole-cell configuration were pulsed to various pot...

  7. Epigenetic regulation in cardiac fibrosis

    Institute of Scientific and Technical Information of China (English)

    Li-Ming; Yu; Yong; Xu

    2015-01-01

    Cardiac fibrosis represents an adoptive response in the heart exposed to various stress cues. While resolution of the fibrogenic response heralds normalization of heart function, persistent fibrogenesis is usually associated with progressive loss of heart function and eventually heart failure. Cardiac fibrosis is regulated by a myriad of factors that converge on the transcription of genes encoding extracellular matrix proteins, a process the epigenetic machinery plays a pivotal role. In this minireview, we summarize recent advances regarding the epigenetic regulation of cardiac fibrosis focusing on the role of histone and DNA modifications and non-coding RNAs.

  8. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    International Nuclear Information System (INIS)

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility

  9. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  10. Map Projection

    CERN Document Server

    Ghaderpour, Ebrahim

    2014-01-01

    In this paper, we introduce some known map projections from a model of the Earth to a flat sheet of paper or map and derive the plotting equations for these projections. The first fundamental form and the Gaussian fundamental quantities are defined and applied to obtain the plotting equations and distortions in length, shape and size for some of these map projections.

  11. POTASSIUM CHANNELS AS DRUGS TARGETS IN THERAPY OF CARDIOVASCULAR DESEASES: 25 YEARS LATER

    Directory of Open Access Journals (Sweden)

    Protić Dragana

    2013-01-01

    Full Text Available Potassium channels are the most variable ion channel group. They participate in numerous cardiovascular functions, for example regulation of vascular tone, maintenance of resting cardiac membrane potential and excitability of cardiac conduction tissue. Both drugs and endogenous ligands could modulate potassium channel function, belonging to the potassium channel blockers or openers. Modulation of potassium channels could be a therapeutic or adverse drug action. Class III antiarrhythmic agents block the potassium channels, thereby prolonging repolarization phase of action potential with resulting prolongation of effective refractory period. Their effectiveness against supraventricular and ventricular arrhythmias should be weighted against their proarrhythmogenic potential. In addition, numerous other antiarrhythmic agents could modulate potassium channels as well. Diazoxide, minoxidil and nicorandil (well known arterial vasodilators, as well as numerous newly synthesized substances with still unknown therapeutic potential, belong to the potassium channel activators/ openers. Therapeutic use of such vasodilators may involve treatment of hypertension (diazoxide, minoxidil and stable angina (nicorandil. Their use might be accompanied with side effects, such as vasodilation, edema, hypotension and reflex tachycardia. Potassium channel openers have also an important role in the treatment of peripheral vascular disease and pulmonary hypertension. In the future, drugs with selective effects on the vascular or cardiac potassium channels could be useful therapeutic agents.

  12. Cardiac arrhythmias in hypokalemic periodic paralysis: Hypokalemia as only cause?

    Science.gov (United States)

    Stunnenberg, Bas C; Deinum, Jaap; Links, Thera P; Wilde, Arthur A; Franssen, Hessel; Drost, Gea

    2014-09-01

    It is unknown how often cardiac arrhythmias occur in hypokalemic periodic paralysis (HypoPP) and if they are caused by hypokalemia alone or other factors. This systematic review shows that cardiac arrhythmias were reported in 27 HypoPP patients. Cases were confirmed genetically (13 with an R528H mutation in CACNA1S, 1 an R669H mutation in SCN4A) or had a convincing clinical diagnosis of HypoPP (13 genetically undetermined) if reported prior to the availability of genetic testing. Arrhythmias occurred during severe hypokalemia (11 patients), between attacks at normokalemia (4 patients), were treatment-dependent (2 patients), or unspecified (10 patients). Nine patients died from arrhythmia. Convincing evidence for a pro-arrhythmogenic factor other than hypokalemia is still lacking. The role of cardiac expression of defective skeletal muscle channels in the heart of HypoPP patients remains unclear. Clinicians should be aware of and prevent treatment-induced cardiac arrhythmia in HypoPP. PMID:25088161

  13. Mouse models of SCN5A-related cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Flavien eCharpentier

    2012-06-01

    Full Text Available Mutations of SCN5A gene, which encodes the α-subunit of the voltage-gated Na+ channel NaV1.5, underlie hereditary cardiac arrhythmic syndromes such as the type 3 long QT syndrome, cardiac conduction diseases, the Brugada syndrome, the sick sinus syndrome, atrial standstill and numerous overlap syndromes. Patch-clamp studies in heterologous expression systems have provided important information to understand the genotype-phenotype relationships of these diseases. However, they could not clarify how SCN5A mutations can be responsible for such a large spectrum of diseases, for the late age of onset or the progressiveness of some of these diseases and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological mechanisms of cardiac SCN5A-related arrhythmic syndromes and several mouse models have been established. This paper reviews some of the results obtained on these models that, for most of them, recapitulate the clinical phenotypes of the patients. It also points out that these models also have their own limitations. Overall, mouse models appear as powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the secondary cellular consequences of SCN5A mutations such as the expression remodelling of other genes that might participate to the overall phenotype. Finally, they constitute useful tools for addressing the role of genetic and environmental modifiers on cardiac electrical activity.

  14. Cardiac catheterization and angiography. Third edition

    International Nuclear Information System (INIS)

    This book discusses the papers on cardiac catheterization and angiography. The topics covered are: historical perspective and present practice of cardiac catheterization; angiography principles and utilization of radiologic and cineangiographic equipment; complications, incidence and prevention of side effects of cardiac catheterization; techniques; blood flow measurement of heart; pressure measurement; diagnostic techniques of angiography; special catheter techniques; coronary angiography, temporary and permanent pacemakers, potential role of lasers in the cardiac catheterization and evaluation of cardiac function

  15. Antifibrotic therapies to control cardiac fibrosis

    OpenAIRE

    Fan, Zhaobo; Guan, Jianjun

    2016-01-01

    Cardiac fibrosis occurs naturally after myocardial infarction. While the initially formed fibrotic tissue prevents the infarcted heart tissue from rupture, the progression of cardiac fibrosis continuously expands the size of fibrotic tissue and causes cardiac function decrease. Cardiac fibrosis eventually evolves the infarcted hearts into heart failure. Inhibiting cardiac fibrosis from progressing is critical to prevent heart failure. However, there is no efficient therapeutic approach curren...

  16. Robotic Applications in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Alan P. Kypson

    2008-11-01

    Full Text Available Traditionally, cardiac surgery has been performed through a median sternotomy, which allows the surgeon generous access to the heart and surrounding great vessels. As a paradigm shift in the size and location of incisions occurs in cardiac surgery, new methods have been developed to allow the surgeon the same amount of dexterity and accessibility to the heart in confined spaces and in a less invasive manner. Initially, long instruments without pivot points were used, however, more recent robotic telemanipulation systems have been applied that allow for improved dexterity, enabling the surgeon to perform cardiac surgery from a distance not previously possible. In this rapidly evolving field, we review the recent history and clinical results of using robotics in cardiac surgery.

  17. Harmonic Maps and Biharmonic Maps

    OpenAIRE

    Hajime Urakawa

    2015-01-01

    This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.

  18. Late gadolinium enhancement and subclinical cardiac dysfunction on cardiac MRI in asymptomatic HIV-positive men

    Directory of Open Access Journals (Sweden)

    A Loy

    2012-11-01

    Full Text Available Background: HIV is associated with an increased risk of cardiovascular disease (CVD and related clinical events. While traditional risk factors play an important role in the pathology of cardiovascular disease, HIV infection and its sequelae of immune activation and inflammation may have significant effects on the myocardium before becoming clinically evident. Cardiac MRI (CMR can be used to detect the pattern of these subclinical changes. This will lead to a better understanding of risk factors contributing to cardiovascular disease prior to it becoming clinically significant in HIV-positive patients. Methods: Prospective cohort study of 127 asymptomatic HIV-positive men on ART compared to 35 matched controls. Baseline demographics, HIV parameters, 12-lead ECG, routine biochemistry, and traditional cardiovascular risk factors were recorded. Images were acquired on a 3T Achieva Philips MRI scanner with 5 channel phase array cardiac coil and weight-based IV gadolinium was given at 0.15 mmol/kg dose with post-contrast inversion recovery imaging after 10 minutes. Results: 6/127 (4.7% of asymptomatic HIV-positive men had late gadolinium enhancement (LGE on MRI verses 1/35 (2.9% in the control group. In 3/6 (50% of cases this was in a classical infarction pattern with subendocardial involvement. 3/6 (50% were consistent with prior myocarditis. There was no significant difference in mean LVEF (66.93% vs 65.18%, LVMI (60.05g/m2 vs 55.94g/m2 or posterolateral wall thickness (8.28 mm and 8.16 mm between cases and controls respectively. There was significantly more diastolic dysfunction, E:A ratio < 1, found in the HIV-positive group, 18% vs 7% of controls (p = 0.037. Framingham risk did not predict either of these outcomes. Conclusions: There is an increased incidence of LGE detected on CMR in this asymptomatic HIV-positive cohort. Two distinct pathological processes were identifed as causing these changes, myocardial infarction and myocarditis

  19. Cardiac manifestations in systemic sclerosis

    Institute of Scientific and Technical Information of China (English)

    Sevdalina; Lambova

    2014-01-01

    Primary cardiac involvement, which develops as a direct consequence of systemic sclerosis(SSc), may manifest as myocardial damage, fibrosis of the conduction system, pericardial and, less frequently, as valvular disease. In addition, cardiac complications in SSc may develop as a secondary phenomenon due to pulmonary arterial hypertension and kidney pathology. The prevalence of primary cardiac involvement in SSc is variable and difficult to determine because of the diversity of cardiac manifestations, the presence of subclinical periods, the type of diagnostic tools applied, and the diversity of patient populations. When clinically manifested, cardiac involvement is thought to be an important prognostic factor. Profound microvascular disease is a pathognomonic feature of SSc, as both vasospasm and structural alterations are present. Such alterations are thought to predict macrovascular atherosclerosis over time. There are contradictory reports regarding the prevalence of atherosclerosis in SSc. According to some authors, the prevalence of atherosclerosis of the large epicardial coronary arteries is similar to that of the general population, in contrast with other rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus. However, the level of inflammation in SSc is inferior. Thus, the atherosclerotic process may not be as aggressive and not easily detectable in smaller studies. Echocardiography(especially tissue Doppler imaging), single-photon emission computed tomography, magnetic resonance imaging and cardiac computed tomography are sensitive techniques for earlier detection of both structural and functional scleroderma-related cardiac pathologies. Screening for subclinical cardiac involvement via modern, sensitive tools provides an opportunity for early diagnosis and treatment, which is of crucial importance for a positive outcome.

  20. Computational Modeling of Cardiac Electromechanics

    OpenAIRE

    Krishnamoorthi, Shankarjee

    2013-01-01

    Cardiac arrhythmias are a leading cause of death worldwide. Notably, the electrophysiologiy and microstructural requirements for a fatal ventricular arrhythmia remain incompletely understood, thereby the treatment remains largely empirical. Standard antiarrhythmic drug therapy has failed to reduce, and in some instances has increased, the incidence of Sudden Cardiac Death (SCD). Hence, a more complete understanding of the mechanisms that foment a fatal arrhythmia is needed and computational m...

  1. Cardiac Biomarkers in Hyperthyroid Cats

    OpenAIRE

    Sangster, Jodi Kirsten

    2013-01-01

    Background: Hyperthyroidism has substantial effects on the circulatory system. The cardiac biomarkers NT-proBNP and troponin I (cTNI) have proven useful in identifying cats with myocardial disease but have not been as extensively investigated in hyperthyroidism.Hypothesis: Plasma NT-proBNP and cTNI concentrations are higher in cats with primary cardiac disease than in cats with hyperthyroidism and higher in cats with hyperthyroidism than in healthy control cats.Animals: Twenty-three hyperthyr...

  2. Current trends in cardiac rehabilitation

    OpenAIRE

    Dafoe, W; Huston, P

    1997-01-01

    Cardiac rehabilitation can reduce mortality and morbidity for patients with many types of cardiac disease cost-effectively, yet is generally underutilized. Rehabilitation is helpful not only for patients who have had a myocardial infarction but also for those with stable angina or congestive heart failure or those who have undergone myocardial revascularization procedures, a heart transplant or heart valve surgery. The beneficial effects of rehabilitation include a reduction in the rate of de...

  3. An overview of cardiac morphogenesis.

    OpenAIRE

    Schleich, Jean-Marc; Abdulla, Tariq; Summers, Ron; Houyel, Lucile

    2013-01-01

    International audience Accurate knowledge of normal cardiac development is essential for properly understanding the morphogenesis of congenital cardiac malformations that represent the most common congenital anomaly in newborns. The heart is the first organ to function during embryonic development and is fully formed at 8 weeks of gestation. Recent studies stemming from molecular genetics have allowed specification of the role of cellular precursors in the field of heart development. In th...

  4. Gastrointestinal Complications and Cardiac Surgery

    OpenAIRE

    Allen, Sara J.

    2014-01-01

    Gastrointestinal (GI) complications are an uncommon but potentially devastating complication of cardiac surgery. The reported incidence varies between .3% and 5.5% with an associated mortality of .3–87%. A wide range of GI complications are reported with bleeding, mesenteric ischemia, pancreatitis, cholecystitis, and ileus the most common. Ischemia is thought to be the main cause of GI complications with hypoperfusion during cardiac surgery as well as systemic inflammation, hypothermia, drug ...

  5. Cardiac abnormalities after subarachnoid hemorrhage

    OpenAIRE

    Bilt, I.A.C. van der

    2016-01-01

    Aneurysmal subarachnoid hemorrhage(aSAH) is a devastating neurological disease. During the course of the aSAH several neurological and medical complications may occur. Cardiac abnormalities after aSAH are observed often and resemble stress cardiomyopathy or Tako-tsubo cardiomyopathy(Broken Heart Syndrome) that has been described after acute stress. It is a reversible cardiac dysfunction with distinct imaging features(the echocardiographic or left ventricular angiographic image resembles a Tak...

  6. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2

    DEFF Research Database (Denmark)

    Grubb, Søren Jahn; Aistrup, Gary L; Koivumäki, Jussi T;

    2015-01-01

    Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions with...

  7. FGF21 and cardiac physiopathology

    Directory of Open Access Journals (Sweden)

    Anna ePlanavila

    2015-08-01

    Full Text Available The heart is not traditionally considered either a target or a site of fibroblast growth factor-21 (FGF21 production. However, recent findings indicate that FGF21 can act as a cardiomyokine; that is, it is produced by cardiac cells at significant levels and acts in an autocrine manner on the heart itself. The heart is sensitive to the effects of FGF21, both systemic and locally generated, owing to the expression in cardiomyocytes of β-Klotho, the key co-receptor known to confer specific responsiveness to FGF21 action. FGF21 has been demonstrated to protect against cardiac hypertrophy, cardiac inflammation, and oxidative stress. FGF21 expression in the heart is induced in response to cardiac insults, such as experimental cardiac hypertrophy and myocardial infarction in rodents, as well as in failing human hearts. Intracellular mechanisms involving PPARα and Sirt1 mediate transcriptional regulation of the FGF21 gene in response to exogenous stimuli. In humans, circulating FGF21 levels are elevated in coronary heart disease and atherosclerosis, and are associated with a higher risk of cardiovascular events in patients with type 2 diabetes. These findings provide new insights into the role of FGF21 in the heart and may offer potential therapeutic strategies for cardiac disease.

  8. Physiological and pathological cardiac hypertrophy.

    Science.gov (United States)

    Shimizu, Ippei; Minamino, Tohru

    2016-08-01

    The heart must continuously pump blood to supply the body with oxygen and nutrients. To maintain the high energy consumption required by this role, the heart is equipped with multiple complex biological systems that allow adaptation to changes of systemic demand. The processes of growth (hypertrophy), angiogenesis, and metabolic plasticity are critically involved in maintenance of cardiac homeostasis. Cardiac hypertrophy is classified as physiological when it is associated with normal cardiac function or as pathological when associated with cardiac dysfunction. Physiological hypertrophy of the heart occurs in response to normal growth of children or during pregnancy, as well as in athletes. In contrast, pathological hypertrophy is induced by factors such as prolonged and abnormal hemodynamic stress, due to hypertension, myocardial infarction etc. Pathological hypertrophy is associated with fibrosis, capillary rarefaction, increased production of pro-inflammatory cytokines, and cellular dysfunction (impairment of signaling, suppression of autophagy, and abnormal cardiomyocyte/non-cardiomyocyte interactions), as well as undesirable epigenetic changes, with these complex responses leading to maladaptive cardiac remodeling and heart failure. This review describes the key molecules and cellular responses involved in physiological/pathological cardiac hypertrophy. PMID:27262674

  9. Cardiac MRI in suspected myocarditis

    International Nuclear Information System (INIS)

    Purpose: To evaluate the potential of ECG-gated breath-hold MRI in diagnosing acute myocardidits. Material and methods: Cardiac MRI was performed on 21 consecutive patients with suspected myocarditis. ECG-gated breath-hold T2-weighted images with fat suppression were acquired in 3 standard views. T1-weighted imaging (FLASH) was performed 10 min after IV administration of Gd-DTPA. Laboratory data included creatine kinase, troponin T and serological tests, ECG findings and echocardiography. Imaging findings were retrospectively compared to the discharge diagnoses. Signal alterations were semiquantitatively classified. Results: Acute myocarditis was diagnosed in 9 patients and cardiac sarcoidosis in 2 patients. Late enhancement was observed in 4 patients with acute myocarditis and in both patients with cardiac sarcoidosis. Semiquantitative evaluation revealed 9 true positive, 9 true negative, 1 false positive and 2 false negative results. Conclusion: Cardiac MRI has the potential to detect acute myocarditis and to diagnose cardiac sarcoidosis. Late enhancement of Gd-DTPA can be found in both viral myocarditis and cardiac sarcoidosis. (orig.)

  10. Cardiac imaging. A multimodality approach

    International Nuclear Information System (INIS)

    An excellent atlas on modern diagnostic imaging of the heart Written by an interdisciplinary team of experts, Cardiac Imaging: A Multimodality Approach features an in-depth introduction to all current imaging modalities for the diagnostic assessment of the heart as well as a clinical overview of cardiac diseases and main indications for cardiac imaging. With a particular emphasis on CT and MRI, the first part of the atlas also covers conventional radiography, echocardiography, angiography and nuclear medicine imaging. Leading specialists demonstrate the latest advances in the field, and compare the strengths and weaknesses of each modality. The book's second part features clinical chapters on heart defects, endocarditis, coronary heart disease, cardiomyopathies, myocarditis, cardiac tumors, pericardial diseases, pulmonary vascular diseases, and diseases of the thoracic aorta. The authors address anatomy, pathophysiology, and clinical features, and evaluate the various diagnostic options. Key features: - Highly regarded experts in cardiology and radiology off er image-based teaching of the latest techniques - Readers learn how to decide which modality to use for which indication - Visually highlighted tables and essential points allow for easy navigation through the text - More than 600 outstanding images show up-to-date technology and current imaging protocols Cardiac Imaging: A Multimodality Approach is a must-have desk reference for cardiologists and radiologists in practice, as well as a study guide for residents in both fields. It will also appeal to cardiac surgeons, general practitioners, and medical physicists with a special interest in imaging of the heart. (orig.)

  11. Cardiac involvement in myotonic dystrophy

    DEFF Research Database (Denmark)

    Lund, Marie; Diaz, Lars Jorge; Ranthe, Mattis Flyvholm;

    2014-01-01

    genetic testing for DM1. Information on incident cardiac diseases was obtained from the NPR. We estimated standardized incidence ratios (SIRs) of cardiac disease compared with the background population, overall and according to selected diagnostic subgroups (cardiomyopathy, heart failure, conduction...... disorders, arrhythmias, and device implantation). In the DM cohort, SIR for any cardiac disease was 3.42 [95% confidence interval (CI) 3.01-3.86]; for a cardiac disease belonging to the selected subgroups 6.91 (95% CI: 5.93-8.01) and for other cardiac disease 2.59 (95% CI: 2.03-3.25). For a cardiac disease...... belonging to the selected subgroups, the risk was particularly high in the first year after DM diagnosis [SIR 15.4 (95% CI: 10.9-21.3)] but remained significantly elevated in subsequent years [SIR 6.07 (95% CI: 5.11-7.16]). The risk was higher in young cohort members [e.g. 20-39 years: SIR 18.1 (95% CI: 12...

  12. Mapping BFO and DOLCE.

    Science.gov (United States)

    Temal, Lynda; Rosier, Arnaud; Dameron, Olivier; Burgun, Anita

    2010-01-01

    Upper level ontologies are key technology for integrating heterogeneous information coming from different sources. DOLCE and BFO, are the favorite candidates which propose rigorous foundational principles to model any domain. The objective of the AKENATON project is to improve alert management and to support patient-centered medical decision in telecardiology. This requires to integrate information transmitted by implantable cardiac devices with clinical data extracted from patient health records. To achieve this goal, we have designed an ontology of telecardiology based on DOLCE. In order to integrate ontologies based on BFO such as FMA, we have developed a framework for mapping BFO and DOLCE categories in terms of equivalence and subsumption between categories. PMID:20841847

  13. Effect of heat stress on cardiac output and systemic vascular conductance during simulated hemorrhage to presyncope in young men

    DEFF Research Database (Denmark)

    Ganio, Matthew S; Overgaard, Morten; Seifert, Thomas; Secher, Niels H; Johansson, Pär I; Meyer, Martin; Crandall, Craig G

    2012-01-01

    During moderate actual or simulated hemorrhage, as cardiac output decreases, reductions in systemic vascular conductance (SVC) maintain mean arterial pressure (MAP). Heat stress, however, compromises the control of MAP during simulated hemorrhage, and it remains unknown whether this response is due...

  14. A voltage-activated proton current in human cardiac fibroblasts

    International Nuclear Information System (INIS)

    A voltage-activated proton current in human cardiac fibroblasts, measured using the whole-cell recording configuration of the patch-clamp technique, is reported. Increasing the pH of the bathing solution shifted the current activation threshold to more negative potentials and increased both the current amplitude and its rate of activation. Changing the pH gradient by one unit caused a 51 mV shift in the reversal potential of the current, demonstrating a high selectivity for protons of the channel carrying the current. Extracellularly applied Zn2+ reversibly inhibited the current. Activation of the current contributes to the resting membrane conductance under conditions of intracellular acidosis. It is proposed that this current in cardiac fibroblasts is involved in the regulation of the intracellular pH and the membrane potential under physiological conditions as well as in response to pathological conditions such as ischemia

  15. River channel adjustments in Southern Italy over the past 150 years and implications for channel recovery

    Science.gov (United States)

    Scorpio, Vittoria; Aucelli, Pietro P. C.; Giano, Salvatore I.; Pisano, Luca; Robustelli, Gaetano; Rosskopf, Carmen M.; Schiattarella, Marcello

    2015-12-01

    Multi-temporal GIS analysis of topographic maps and aerial photographs along with topographic and geomorphological surveys are used to assess evolutionary trends and key control factors of channel adjustments for five major rivers in southern Italy (the Trigno, Biferno, Volturno, Sinni and Crati rivers) to support assessment of channel recovery and river restoration. Three distinct phases of channel adjustment are identified over the past 150 years primarily driven by human disturbances. Firstly, slight channel widening dominated from the last decades of the nineteenth century to the 1950s. Secondly, from the 1950s to the end of the 1990s, altered sediment fluxes induced by in-channel mining and channel works brought about moderate to very intense incision (up to 6-7 m) accompanied by strong channel narrowing (up to 96%) and changes in channel configuration from multi-threaded to single-threaded patterns. Thirdly, the period from around 2000 to 2015 has been characterized by channel stabilization and local widening. Evolutionary trajectories of the rivers studied are quite similar to those reconstructed for other Italian rivers, particularly regarding the second phase of channel adjustments and ongoing transitions towards channel recovery in some reaches. Analyses of river dynamics, recovery potential and connectivity with sediment sources of the study reaches, framed in their catchment context, can be used as part of a wider interdisciplinary approach that views effective river restoration alongside sustainable and risk-reduced river management.

  16. Channel strategy adaptation

    OpenAIRE

    Rangan, V. Kasturi; Nueno, Jose L

    1999-01-01

    Using transaction cost theory, considerable research in marketing has focused on the conditions under which firms would use direct or vertically integrated versus indirect or arms length channels of distribution. Data from the field, however, indicate that channel configurations are more varied and complex, with multiple channels and composite channels being just as common as direct and indirect channels. In an attempt to explain this variety, this paper revisits the influence on channel stru...

  17. Cardiac output during exercise

    DEFF Research Database (Denmark)

    Siebenmann, C; Rasmussen, P.; Sørensen, H.;

    2015-01-01

    Several techniques assessing cardiac output (Q) during exercise are available. The extent to which the measurements obtained from each respective technique compares to one another, however, is unclear. We quantified Q simultaneously using four methods: the Fick method with blood obtained from the...... right atrium (Q(Fick-M)), Innocor (inert gas rebreathing; Q(Inn)), Physioflow (impedance cardiography; Q(Phys)), and Nexfin (pulse contour analysis; Q(Pulse)) in 12 male subjects during incremental cycling exercise to exhaustion in normoxia and hypoxia (FiO2  = 12%). While all four methods reported a...... progressive increase in Q with exercise intensity, the slopes of the Q/oxygen uptake (VO2) relationship differed by up to 50% between methods in both normoxia [4.9 ± 0.3, 3.9 ± 0.2, 6.0 ± 0.4, 4.8 ± 0.2 L/min per L/min (mean ± SE) for Q(Fick-M), Q(Inn), QP hys and Q(Pulse), respectively; P = 0.001] and...

  18. Analysis of cardiac interventricular septum motion in different respiratory states

    Science.gov (United States)

    Tautz, Lennart; Feng, Li; Otazo, Ricardo; Hennemuth, Anja; Axel, Leon

    2016-03-01

    The interaction between the left and right heart ventricles (LV and RV) depends on load and pressure conditions that are affected by cardiac contraction and respiration cycles. A novel MRI sequence, XD-GRASP, allows the acquisition of multi-dimensional, respiration-sorted and cardiac-synchronized free-breathing image data. In these data, effects of the cardiac and respiratory cycles on the LV/RV interaction can be observed independently. To enable the analysis of such data, we developed a semi-automatic exploration workflow. After tracking a cross-sectional line positioned over the heart, over all motion states, the septum and heart wall border locations are detected by analyzing the grey-value profile under the lines. These data are used to quantify septum motion, both in absolute units and as a fraction of the heart size, to compare values for different subjects. In addition to conventional visualization techniques, we used color maps for intuitive exploration of the variable values for this multi-dimensional data set. We acquired short-axis image data of nine healthy volunteers, to analyze the position and the motion of the interventricular septum in different breathing states and different cardiac cycle phases. The results indicate a consistent range of normal septum motion values, and also suggest that respiratory phase-dependent septum motion is greatest near end-diastolic phases. These new methods are a promising tool to assess LV/RV ventricle interaction and the effects of respiration on this interaction.

  19. The other side of cardiac Ca2+ signaling: transcriptional control

    Directory of Open Access Journals (Sweden)

    Alejandro eDomínguez-Rodríquez

    2012-11-01

    Full Text Available Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling, but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling. ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII and phosphatase calcineurin, both of which are activated by the complex Ca2+/ /Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n or cytoplasmic ([Ca2+]c, and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs in [Ca2+]c, needed to activate calcineurin.

  20. The inhibitory effect of the antipsychotic drug haloperidol on HERG potassium channels expressed in Xenopus oocytes

    OpenAIRE

    Suessbrich, H; Schönherr, R; Heinemann, S H; Attali, B.; Lang, F.; Busch, A.E.

    1997-01-01

    The antipsychotic drug haloperidol can induce a marked QT prolongation and polymorphic ventricular arrhythmias. In this study, we expressed several cloned cardiac K+ channels, including the human ether-a-go-go related gene (HERG) channels, in Xenopus oocytes and tested them for their haloperidol sensitivity.Haloperidol had only little effects on the delayed rectifier channels Kv1.1, Kv1.2, Kv1.5 and IsK, the A-type channel Kv1.4 and the inward rectifier channel Kir2.1 (inhibition

  1. Automatic color map digitization by spectral classification

    Science.gov (United States)

    Chu, N. Y.; Anuta, P. E.

    1979-01-01

    A method of converting polygon map information into a digital form which does not require manual tracing of polygon edges is discussed. The maps must be in color-coded format with a unique color for each category in the map. Color scanning using a microdensitometer is employed and a three-channel color separation digital data set is generated. The digital data are then classified by using a Gaussian maximum likelihood classifier, and the resulting digitized map is evaluated. Very good agreement is observed between the classified and original map.

  2. Brain mapping

    Directory of Open Access Journals (Sweden)

    Blaž Koritnik

    2004-08-01

    Full Text Available Cartography of the brain ("brain mapping" aims to represent the complexities of the working brain in an understandable and usable way. There are four crucial steps in brain mapping: (1 acquiring data about brain structure and function, (2 transformation of data into a common reference, (3 visualization and interpretation of results, and (4 databasing and archiving. Electrophysiological and functional imaging methods provide information about function of the human brain. A prerequisite for multisubject, multidimensional and multimodal mapping is transformation of individual images to match a standard brain template. To produce brain maps, color, contours, and other visual cues are used to differentiate metabolic rates, electrical field potentials, receptor densities, and other attributes of structure or function. Databases are used to organize and archive data records. By relating the maps to cognitive functions and psychological models, brain mapping offers a prerequisite for the understanding of organizational principles of the human brain.

  3. Comparison of Left Ventricular Electromechanical Mapping and Left Ventricular Angiography: Defining Practical Standards for Analysis of NOGA™ Maps

    OpenAIRE

    Sarmento-Leite, Rogerio; Silva, Guilherme V.; Dohman, Hans F.R.; Rocha, Ricardo Mourilhe; Dohman, Hans J.F.; de Mattos, Nelson Durval S.G.; Carvalho, Luis Antonio; Gottschall, Carlos A.M.; Perin, Emerson C.

    2003-01-01

    We performed this prospective cohort study to correlate the findings of left ventricular angiography (LVA) and NOGA™ left ventricular electromechanical mapping (LVEM) in the evaluation of cardiac wall motion and also to establish standards for wall motion assessment by LVEM. Fifty-five patients (35 men; mean age, 60.4 ± 11.8 years) eligible for elective left cardiac catheterization underwent LVA and LVEM. Wall motion scores, LV ejection fractions (LVEF), and LV volumes derived from LVA versus...

  4. Effect of cardiac motion on body surface electrocardiographic potentials: an MRI-based simulation study

    International Nuclear Information System (INIS)

    This paper describes an electrical model of cardiac ventricles incorporating real geometry and motion. The heart anatomy and its motion through the cardiac cycle are obtained from segmentations of multiple-slice MRI time sequences; the special conduction system is constructed using an automated mapping procedure from an existing static heart model. The heart model is mounted in an anatomically realistic voxel model of the human body. The cardiac electrical source and surface potentials are determined numerically using both a finite-difference scheme and a boundary-element method with the incorporation of the motion of the heart. The electrocardiograms (ECG) and body surface potential maps are calculated and compared to the static simulation in the resting heart. The simulations demonstrate that introducing motion into the cardiac model modifies the ECG signals, with the most obvious change occurring during the T-wave at peak contraction of the ventricles. Body surface potential maps differ in some local positions during the T-wave, which may be of importance to a number of cardiac models, including those incorporating inverse methods

  5. Effect of cardiac motion on body surface electrocardiographic potentials: an MRI-based simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Wei Qing [School of Information Technology and Electrical Engineering, University of Queensland, QLD (Australia); Liu Feng [School of Information Technology and Electrical Engineering, University of Queensland, QLD (Australia); Appleton, Ben [School of Information Technology and Electrical Engineering, University of Queensland, QLD (Australia); Xia Ling [Department of Biomedical Engineering, Zhejiang University, Hangzhou (China); Liu Nianjun [School of Information Technology and Electrical Engineering, University of Queensland, QLD (Australia); Wilson, Stephen [School of Information Technology and Electrical Engineering, University of Queensland, QLD (Australia); Riley, Robyn [Cardiac MRI Centre, Prince Charles Hospital, Brisbane, QLD (Australia); Strugnel, Wendy [Cardiac MRI Centre, Prince Charles Hospital, Brisbane, QLD (Australia); Slaughter, Richard [Cardiac MRI Centre, Prince Charles Hospital, Brisbane, QLD (Australia); Denman, Russel [Cardiac MRI Centre, Prince Charles Hospital, Brisbane, QLD (Australia); Crozier, Stuart [School of Information Technology and Electrical Engineering, University of Queensland, QLD (Australia)

    2006-07-21

    This paper describes an electrical model of cardiac ventricles incorporating real geometry and motion. The heart anatomy and its motion through the cardiac cycle are obtained from segmentations of multiple-slice MRI time sequences; the special conduction system is constructed using an automated mapping procedure from an existing static heart model. The heart model is mounted in an anatomically realistic voxel model of the human body. The cardiac electrical source and surface potentials are determined numerically using both a finite-difference scheme and a boundary-element method with the incorporation of the motion of the heart. The electrocardiograms (ECG) and body surface potential maps are calculated and compared to the static simulation in the resting heart. The simulations demonstrate that introducing motion into the cardiac model modifies the ECG signals, with the most obvious change occurring during the T-wave at peak contraction of the ventricles. Body surface potential maps differ in some local positions during the T-wave, which may be of importance to a number of cardiac models, including those incorporating inverse methods.

  6. Effect of cardiac motion on body surface electrocardiographic potentials: an MRI-based simulation study

    Science.gov (United States)

    Wei, Qing; Liu, Feng; Appleton, Ben; Xia, Ling; Liu, Nianjun; Wilson, Stephen; Riley, Robyn; Strugnel, Wendy; Slaughter, Richard; Denman, Russel; Crozier, Stuart

    2006-07-01

    This paper describes an electrical model of cardiac ventricles incorporating real geometry and motion. The heart anatomy and its motion through the cardiac cycle are obtained from segmentations of multiple-slice MRI time sequences; the special conduction system is constructed using an automated mapping procedure from an existing static heart model. The heart model is mounted in an anatomically realistic voxel model of the human body. The cardiac electrical source and surface potentials are determined numerically using both a finite-difference scheme and a boundary-element method with the incorporation of the motion of the heart. The electrocardiograms (ECG) and body surface potential maps are calculated and compared to the static simulation in the resting heart. The simulations demonstrate that introducing motion into the cardiac model modifies the ECG signals, with the most obvious change occurring during the T-wave at peak contraction of the ventricles. Body surface potential maps differ in some local positions during the T-wave, which may be of importance to a number of cardiac models, including those incorporating inverse methods.

  7. Yampa River channel elevation at Deerlodge Park, CO

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S Geological Survey Scientific Investigations Map provides raster data that can be used to assess channel response to streamflow alteration scenarios...

  8. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    Recently, in human geography there has been a considerable attention paid to retheorising maps; less as a product and more as practice. This refers to the notion that rather than reading maps as fixed representations, digital mapping is by nature a dynamic, performative, and participatory practice....... In particular, mapping environmental damage, endangered species, and human made disasters has become one of the focal point of affective knowledge production. These ‘more-than-humangeographies’ practices include notions of species, space and territory, and movement towards a new political ecology...

  9. Quantitative cardiac SPECT

    International Nuclear Information System (INIS)

    This thesis studied automated statistical mapping in myocardial perfusion SPECT to detect coronary artery disease (CAD). Registering myocardial studies to a 3D template allows an analysis on a voxel by voxel basis. Normal mean and standard deviation templates were created for each sex by registering 25 male and 25 female studies to a standard shape and position. A test group of 104 patients undergoing dipyridamole technetium-99m tetrofosmin SPECT and angiography were used to assess the automated method. Patients were divided into those with angiographic evidence of CAD (n=56) and those without (n=48). The test studies were registered to the templates and count normalized by minimizing the sum of absolute differences. A Z-score map of the statistical differences between registered study and template were calculated for all voxels within the myocardium. The contrast (Z-score) and extent (number of voxels in a cluster exceeding the contrast threshold) thresholds for detection of CAD were optimized using receiver operating characteristic (ROC) analysis. The optimal thresholds resulted in a sensitivity of 73% and a specificity of 92% for automatic detection of CAD. The area under the fitted ROC curve (±1 SE) was 0.86±0.08 for a Z-score contrast threshold of 5. The performance of this method and that of three experienced observers was compared by continuous ROC analysis. There was no statistically significant difference between the performances of the three observers and that of automatic detection in terms of the area under the ROC curves (p≥0.25). The use of this automated statistical mapping approach shows a performance comparable with experienced observers, but avoids observer variability

  10. Computed tomography of cardiac pseudotumors and neoplasms.

    Science.gov (United States)

    Anavekar, Nandan S; Bonnichsen, Crystal R; Foley, Thomas A; Morris, Michael F; Martinez, Matthew W; Williamson, Eric E; Glockner, James F; Miller, Dylan V; Breen, Jerome F; Araoz, Philip A

    2010-07-01

    Important features of cardiac masses can be clearly delineated on cardiac computed tomography (CT) imaging. This modality is useful in identifying the presence of a mass, its relationship with cardiac and extracardiac structures, and the features that distinguish one type of mass from another. A multimodality approach to the evaluation of cardiac tumors is advocated, with the use of echocardiography, CT imaging and magnetic resonance imaging as appropriately indicated. In this article, various cardiac masses are described, including pseudotumors and true cardiac neoplasms, and the CT imaging findings that may be useful in distinguishing these rare entities are presented. PMID:20705174

  11. Cardiac output monitoring

    Directory of Open Access Journals (Sweden)

    Mathews Lailu

    2008-01-01

    Full Text Available Minimally invasive and non-invasive methods of estimation of cardiac output (CO were developed to overcome the limitations of invasive nature of pulmonary artery catheterization (PAC and direct Fick method used for the measurement of stroke volume (SV. The important minimally invasive techniques available are: oesophageal Doppler monitoring (ODM, the derivative Fick method (using partial carbon dioxide (CO 2 breathing, transpulmonary thermodilution, lithium indicator dilution, pulse contour and pulse power analysis. Impedance cardiography is probably the only non-invasive technique in true sense. It provides information about haemodynamic status without the risk, cost and skill associated with the other invasive or minimally invasive techniques. It is important to understand what is really being measured and what assumptions and calculations have been incorporated with respect to a monitoring device. Understanding the basic principles of the above techniques as well as their advantages and limitations may be useful. In addition, the clinical validation of new techniques is necessary to convince that these new tools provide reliable measurements. In this review the physics behind the working of ODM, partial CO 2 breathing, transpulmonary thermodilution and lithium dilution techniques are dealt with. The physical and the physiological aspects underlying the pulse contour and pulse power analyses, various pulse contour techniques, their development, advantages and limitations are also covered. The principle of thoracic bioimpedance along with computation of CO from changes in thoracic impedance is explained. The purpose of the review is to help us minimize the dogmatic nature of practice favouring one technique or the other.

  12. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart

    Science.gov (United States)

    Sung, Derrick; Mills, Robert W.; Schettler, Jan; Narayan, Sanjiv M.; Omens, Jeffrey H.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    INTRODUCTION: Mechanical stimulation can induce electrophysiologic changes in cardiac myocytes, but how mechanoelectric feedback in the intact heart affects action potential propagation remains unclear. METHODS AND RESULTS: Changes in action potential propagation and repolarization with increased left ventricular end-diastolic pressure from 0 to 30 mmHg were investigated using optical mapping in isolated perfused rabbit hearts. With respect to 0 mmHg, epicardial strain at 30 mmHg in the anterior left ventricle averaged 0.040 +/- 0.004 in the muscle fiber direction and 0.032 +/- 0.006 in the cross-fiber direction. An increase in ventricular loading increased average epicardial activation time by 25%+/- 3% (P action potential duration at 20% repolarization (APD20) but did at 80% repolarization (APD80), from 179 +/- 7 msec to 207 +/- 5 msec (P action potential duration by a load-dependent mechanism that may not involve stretch-activated channels.

  13. Animal models of cardiac cachexia.

    Science.gov (United States)

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. PMID:27317993

  14. Vitamin D and Cardiac Differentiation.

    Science.gov (United States)

    Kim, Irene M; Norris, Keith C; Artaza, Jorge N

    2016-01-01

    Calcitriol (1,25-dihydroxycholecalciferol or 1,25-D3) is the hormonally active metabolite of vitamin D. Experimental studies of vitamin D receptors and 1,25-D3 establish calcitriol to be a critical regulator of the structure and function of the heart. Clinical studies link vitamin D deficiency with cardiovascular disease (CVD). Emerging evidence demonstrates that calcitriol is highly involved in CVD-related signaling pathways, particularly the Wnt signaling pathway. Addition of 1,25-D3 to cardiomyocyte cells and examination of its effects on cardiomyocytes and mainly Wnt11 signaling allowed the specific characterization of the role of calcitriol in cardiac differentiation. 1,25-D3 is demonstrated to: (i) inhibit cell proliferation without promoting apoptosis; (ii) decrease expression of genes related to the regulation of the cell cycle; (iii) promote formation of cardiomyotubes; (iv) induce expression of casein kinase-1-α1, a negative regulator of the canonical Wnt signaling pathway; and (v) increase expression of noncanonical Wnt11, which has been recognized to induce cardiac differentiation during embryonic development and in adult cells. Thus, it appears that vitamin D promotes cardiac differentiation through negative modulation of the canonical Wnt signaling pathway and upregulation of noncanonical Wnt11 expression. Future work to elucidate the role(s) of vitamin D in cardiovascular disorders will hopefully lead to improvement and potentially prevention of CVD, including abnormal cardiac differentiation in settings such as postinfarction cardiac remodeling. PMID:26827957

  15. Cardiac factors in orthostatic hypotension

    Science.gov (United States)

    Löllgen, H.; Dirschedl, P.; Koppenhagen, K.; Klein, K. E.

    Cardiac function is determined by preload, afterload, heart rate and contractility. During orthostatic stress, the footward blood shift is compensated for by an increase of afterload. LBNP is widely used to analyze effects of volume displacement during orthostatic stress. Comparisons of invasive ( right heart catheterization) and non-invasive approach (echocardiography) yielded similar changes. Preload and afterload change with graded LBNP, heart rate increases, and stroke volume and cardiac output decrease. Thus, the working point on the left ventricular function curve is shifted to the left and downward, similar to hypovolemia. However, position on the Frank-Starling curve, the unchanged ejection fraction, and the constant Vcf indicate a normal contractile state during LBNP. A decrease of arterial oxygen partial pressure during LBNP shwos impaired ventilation/perfusion ratio. Finally, LBNP induced cardiac and hemodynamic changes can be effectively countermeasured by dihydroergotamine, a potent venoconstrictor. Comparison of floating catheter data with that of echocardiography resulted in close correlation for cardiac output and stroke volume. In addition, cardiac dimensions changed in a similar way during LBNP. From our findings, echocardiography as a non-invasive procedure can reliably used in LBNP and orthostatic stress tests. Some informations can be obtained on borderline values indicating collaps or orthostatic syncope. Early fainters can be differentiated from late fainters by stroke volume changes.

  16. Cardiac Penetrating Injuries and Pseudoaneurysm

    Institute of Scientific and Technical Information of China (English)

    CHEN Shifeng

    2002-01-01

    Objective To discuss the early diagnosis and treatment of cardiac penetrating injuries and pseudoaneurysm. Methods 18 cases of cardiac penetrating injuries, in which 2 cases were complicated with pseudoaneurysm, were diagnosed by emergency operation and color Doppler echocardiography between May 1973 and Dec. 2001 in our hospital. The basis for emergency operation is the injured path locating in cardiac dangerous zone, severe shock or pericardial tamponade. ResultsAmong 18 cases of this study, 17 cases underwent emergency operation. During the operation, 11 cases were found injured in right ventricle, 2 cases were found injured in right atrium, 1 case was found injured in pulmonary artery,4 cases were found injured in left ventricle, 2 cases were found complicated with pseudoaneurysm. 17cases underwent cardiac repair including 1 case of rupture of aneurysm. 1 case underwent elective aneurysm resection. In whole group, 15 cases survived(83.33% ), 3 cases died( 16.67%). The cause of death is mainly hemorrhagic shock. Conclusion Highly suspicious cardiac penetrating injuries or hemopericaridium should undergo direct operative exploration. Pseudoaneurysm should be resected early,which can prevent severe complications.

  17. APPLICATION OF MIND MAPPING ON NURSING OF CORONARY CT ANGIOGRAPHY IN HIGH-RISK NON-CARDIAC SURGERY%思维导图在高危非心脏手术冠状动脉 CT 造影护理中的应用

    Institute of Scientific and Technical Information of China (English)

    曹丽妃; 丁汉军; 吴红珍; 崔嵩

    2015-01-01

    Objective To explore the influence of mind mapping on the image quality of coronary CT angiog -raphy (CCTA) in high-risk non-cardiac surgery.Methods According to the different periods , 168 patients were dividedinto control group ( n=83 ) and observation group ( n=85 ) .The control group was givenregular nursing , while the mindmapping was applied in coronary CT angiography in the observation group .The compliance in CCTA and image quality was compared between the two groups .Results 69 patients in observation group with the applica-tion of mind mapping had a good compliance in CCTA , while only 13 patients in control group had a good compliance in CCTA, with statistically significant difference (χ2 =27.66, p<0.01).The scores of image quality of 83 patients in the observation group were higher than 3, however, only 36 patients in the control group had the image quality with scores higher than 3.The difference was statistically significant (u=39.36, p<0.01).Conclusion Mind mappin-gin coronary CT angiography can enhance image quality of CCTA by relieving patients 'nervousness and fear , and im-provingtheir compliance in examinations .%目的:探讨思维导图对高危非心脏手术冠状动脉CT造影(CCTA)成像质量的影响。方法将168例患者按时间段分为对照组83例和观察组85例,对照组给予常规护理,观察组将思维导图应用于冠状动脉CT造影检查中。比较两组患者CCTA检查依从性和图像质量评分情况。结果应用思维导图后,观察组患者CCTA检查依从性良好达69例,对照组仅13例,两组比较,差异有统计学意义(χ2=27.66,p<0.01);观察组图像质量评分高于3分以上者有83例,对照组仅36例,两组比较,差异有统计学意义( u=39.36,p<0.01)。结论 CCTA检查中应用思维导图能够帮助患者减轻紧张恐惧心理,提升患者在检查中的依从性,达到提高CCTA成像质量的目的。

  18. Imaging of the atria and cardiac conduction system – from experiment to computer modelling

    OpenAIRE

    Hao, Guoliang

    2013-01-01

    Background: Experimental mapping and computer modelling provide important platforms to study the fundamental mechanisms underlying normal and abnormal activation of the heart. However, accurate computer modelling requires detailed anatomical models and needs support and validation from experimental data. Aims: 1) Construction of detailed anatomical heart models with the cardiac conduction system (CCS). 2) Mapping of the electrical activation sequence in rabbit atria to support and validate co...

  19. Numerical simulation of antiarrhythmic drugs effects on cardiac action potential

    Czech Academy of Sciences Publication Activity Database

    Převorovská, Světlana; Maršík, František

    Brno : Brno University of Technology, 2006 - (Burša, J.; Fuis, V.), s. 170-171 ISBN 80-214-3232-2. [ Human Biomechanics 2006. Hrotovice (CZ), 13.11.2006-16.11.2006] R&D Projects: GA ČR(CZ) GA106/03/1073; GA ČR(CZ) GA106/03/0958 Institutional research plan: CEZ:AV0Z20760514 Keywords : human cardiovascular system * cardiac action potential * antiarrhytmmic drugs-cell channel interaction Subject RIV: BK - Fluid Dynamics

  20. Mobile radio channels

    CERN Document Server

    Pätzold, Matthias

    2011-01-01

    Providing a comprehensive overview of the modelling, analysis and simulation of mobile radio channels, this book gives a detailed understanding of fundamental issues and examines state-of-the-art techniques in mobile radio channel modelling. It analyses several mobile fading channels, including terrestrial and satellite flat-fading channels, various types of wideband channels and advanced MIMO channels, providing a fundamental understanding of the issues currently being investigated in the field. Important classes of narrowband, wideband, and space-time wireless channels are explored in deta

  1. Cognitive maps

    DEFF Research Database (Denmark)

    Minder, Bettina; Laursen, Linda Nhu; Lassen, Astrid Heidemann

    2014-01-01

    . Conceptual clustering is used to analyse and order information according to concepts or variables from within the data. The cognitive maps identified are validated through the comments of some of the same experts. The study presents three cognitive maps and respective world-views explaining how the design...

  2. Causal mapping

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2006-01-01

    The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method......The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method...

  3. CT diagnosis of cardiac lipoma

    International Nuclear Information System (INIS)

    Objective: To investigate the application of CT in the diagnosis of cardiac lipoma. Methods: Retrospective analysis of 6 patients with cardiac lipoma confirmed by operation and pathology was done. Four patients had singles slice electron beam CT plain and contrast and movie scan. Two patients had 64-slice CT plain and enhanced scan. Results: (1) One patient was isolated intracavitary lipoma in the right artrium, 1 patient was isolated intrapericardial lipoma and 4 patients were intramural lipomas. Of the 4 intramural lipoma, 2 were infiltrative lipomas located in the left ventricle wall or the right ventricle and septum, 2 patients were isolated in the atrio-ventricular septum. (2) CT and three-dimensional reconstruction could depict the location, shape, size, margin and characteristic fat density of lipoma, indicating the diagnosis and classifications. The displacement of coronary artery, pulmonary inflammation and effusions of pericardium and pleural cavity could also be revealed. Conclusion: Cardiac lipoma can be accurately diagnosed and classified by CT. (authors)

  4. Mechanical Regulation of Cardiac Development

    Directory of Open Access Journals (Sweden)

    HuseyinCagatayYalcin

    2014-08-01

    Full Text Available Mechanical forces are an essential contributor to and unavoidable component of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.

  5. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    Science.gov (United States)

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich

    2016-08-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.

  6. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart

    OpenAIRE

    Xie, Jian; Cha, Seung-Kuy; An, Sung-Wan; Kuro-o, Makoto; Birnbaumer, Lutz; Huang, Chou-Long

    2012-01-01

    Klotho is a membrane protein predominantly produced in the kidney that exerts some anti-ageing effects. Ageing is associated with an increased risk of heart failure; whether Klotho is cardioprotective is unknown. Here we show that Klotho-deficient mice have no baseline cardiac abnormalities but develop exaggerated pathological cardiac hypertrophy and remodeling in response to stress. Cardioprotection by Klotho in normal mice is mediated by downregulation of TRPC6 channels in the heart. We dem...

  7. Natriuretic peptides modulate ATP-sensitive K+ channels in rat ventricular cardiomyocytes

    OpenAIRE

    Burley, Dwaine S.; Charles D Cox; Zhang, Jin; Wann, Kenneth T.; Baxter, Gary F.

    2014-01-01

    B-type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), and (Cys-18)-atrial natriuretic factor (4–23) amide (C-ANF), are cytoprotective under conditions of ischemia–reperfusion, limiting infarct size. ATP-sensitive K+ channel (KATP) opening is also cardioprotective, and although the KATP activation is implicated in the regulation of cardiac natriuretic peptide release, no studies have directly examined the effects of natriuretic peptides on cardiac KATP activity. Normoxic cardi...

  8. Channel nut tool

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  9. Channels that do not generate coherence

    Science.gov (United States)

    Hu, Xueyuan

    2016-07-01

    We define the non-coherence-generating channel as the completely positive trace-preserving map which does not generate quantum coherence from an incoherent state. The incoherent operations are the strict subset of the non-coherence-generating channels. Although the relative entropy of coherence is monotonically decreasing under the non-coherence-generating channels, we prove that the coherence of formation may increase under such channels. Interestingly, by building a mathematical relation between the coherence of formation and the entanglement of formation, we show that the coherence of formation of a single-qubit state is never increased by a non-coherence-generating channel. This leads to the superadditivity property for the coherence increasing power of quantum channels, namely, while two channels cannot increase coherence individually, they may increase the quantum coherence of a composed system. Further, we derive the general form of the rank-2 non-coherence-generating qubit channels. Our results contribute to the resource theory of quantum coherence.

  10. The effects of cytoskeletal disruption and mechanical load on cardiac conduction

    OpenAIRE

    Wright, Adam Thomas

    2010-01-01

    Myocardial disease is often associated with altered cardiac conduction and increased incidence of arrhythmia. Underlying mechanisms responsible for changes in conduction include altered calcium handling, myocardial remodeling, and mechanically induced changes in electrophysiology. The goal of this work was to utilize optical mapping experimental techniques and genetically modified mouse models to investigate two of these mechanisms: myocardial remodeling associated with disruption of the cyto...

  11. Experimental determination of conduction channels in atomic scale conductors based on shot noise measurements

    OpenAIRE

    Vardimon, Ran; Klionsky, Marina; Tal, Oren

    2013-01-01

    We present an experimental procedure for obtaining the conduction channels of low-dimensional conductors based on shot noise measurements. The transmission coefficient for each channel is determined numerically from the measured conductance and Fano factor. The channel analysis is demonstrated for atomic contacts of Ag, Au, Al and Pt, showing their channel evolution as a function of conductance and mechanical elongation. This approach can be readily applied to map the conduction channels in a...

  12. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard;

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  13. How Is Sudden Cardiac Arrest Diagnosed?

    Science.gov (United States)

    ... heart (a sign of CHD). MUGA Test or Cardiac MRI A MUGA (multiple gated acquisition) test shows how ... create pictures of many parts of your heart. Cardiac MRI (magnetic resonance imaging) is a safe procedure that ...

  14. An update on insertable cardiac monitors

    DEFF Research Database (Denmark)

    Olsen, Flemming J; Biering-Sørensen, Tor; Krieger, Derk W

    2015-01-01

    Continuous cardiac rhythm monitoring has undergone compelling progress over the past decades. Cardiac monitoring has emerged from 12-lead electrocardiograms being performed at the discretion of the treating physician to in-hospital telemetry, Holter monitoring, prolonged external event monitoring...

  15. Sudden Cardiac Arrest (SCA) Risk Assessment

    Science.gov (United States)

    ... Find a Specialist Share Twitter Facebook SCA Risk Assessment Sudden Cardiac Arrest (SCA) occurs abruptly and without ... of all ages and health conditions. Start Risk Assessment The Sudden Cardiac Arrest (SCA) Risk Assessment Tool ...

  16. Amendable Gaussian channels:restoring entanglement via a unitary filter

    OpenAIRE

    Pasquale, A.; Mari, A.; Porzio, A.; Giovannetti, V.

    2013-01-01

    We show that there exist Gaussian channels which are amendable. A channel is amendable if when applied twice is entanglement breaking while there exists a unitary filter such that, when interposed between the first and second action of the map, prevents the global transformation from being entanglement breaking [Phys. Rev. A 86, 052302 (2012)]. We find that, depending on the structure of the channel, the unitary filter can be a squeezing transformation or a phase shift operation. We also prop...

  17. Channel Modelling for Multiprobe Over-the-Air MIMO Testing

    Directory of Open Access Journals (Sweden)

    Pekka Kyösti

    2012-01-01

    a fading emulator, an anechoic chamber, and multiple probes. Creation of a propagation environment inside an anechoic chamber requires unconventional radio channel modelling, namely, a specific mapping of the original models onto the probe antennas. We introduce two novel methods to generate fading emulator channel coefficients; the prefaded signals synthesis and the plane wave synthesis. To verify both methods we present a set of simulation results. We also show that the geometric description is a prerequisite for the original channel model.

  18. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function.

    Science.gov (United States)

    Chiellini, Grazia; Frascarelli, Sabina; Ghelardoni, Sandra; Carnicelli, Vittoria; Tobias, Sandra C; DeBarber, Andrea; Brogioni, Simona; Ronca-Testoni, Simonetta; Cerbai, Elisabetta; Grandy, David K; Scanlan, Thomas S; Zucchi, Riccardo

    2007-05-01

    3-Iodothyronamine T1AM is a novel endogenous thyroid hormone derivative that activates the G protein-coupled receptor known as trace anime-associated receptor 1 (TAAR1). In the isolated working rat heart and in rat cardiomyocytes, T1AM produced a reversible, dose-dependent negative inotropic effect (e.g., 27+/-5, 51+/-3, and 65+/-2% decrease in cardiac output at 19, 25, and 38 microM concentration, respectively). An independent negative chronotropic effect was also observed. The hemodynamic effects of T1AM were remarkably increased in the presence of the tyrosine kinase inhibitor genistein, whereas they were attenuated in the presence of the tyrosine phosphatase inhibitor vanadate. No effect was produced by inhibitors of protein kinase A, protein kinase C, calcium-calmodulin kinase II, phosphatidylinositol-3-kinase, or MAP kinases. Tissue cAMP levels were unchanged. In rat ventricular tissue, Western blot experiments with antiphosphotyrosine antibodies showed reduced phosphorylation of microsomal and cytosolic proteins after perfusion with synthetic T1AM; reverse transcriptase-polymerase chain reaction experiments revealed the presence of transcripts for at least 5 TAAR subtypes; specific and saturable binding of [125I]T1AM was observed, with a dissociation constant in the low micromolar range (5 microM); and endogenous T1AM was detectable by tandem mass spectrometry. In conclusion, our findings provide evidence for the existence of a novel aminergic system modulating cardiac function. PMID:17284482

  19. Cardiac Metastasis from Invasive Thymoma Via the Superior Vena Cava: Cardiac MRI Findings

    International Nuclear Information System (INIS)

    Cardiac tumors are rare, and metastatic deposits are more common than primary cardiac tumors. We present cardiac magnetic resonance imaging (MRI) findings of a 50-year-old woman with invasive thymoma. Cardiac MRI revealed a heterogeneous, lobulated anterior mediastinal mass invading the superior vena cava and extending to the right atrium. In cine images there was no invasion to the right atrial wall.

  20. Performance of automated software in the assessment of segmental left ventricular function in cardiac CT: Comparison with cardiac magnetic resonance

    International Nuclear Information System (INIS)

    To evaluate the accuracy, reliability and time saving potential of a novel cardiac CT (CCT)-based, automated software for the assessment of segmental left ventricular function compared to visual and manual quantitative assessment of CCT and cardiac magnetic resonance (CMR). Forty-seven patients with suspected or known coronary artery disease (CAD) were enrolled in the study. Wall thickening was calculated. Segmental LV wall motion was automatically calculated and shown as a colour-coded polar map. Processing time for each method was recorded. Mean wall thickness in both systolic and diastolic phases on polar map, CCT, and CMR was 9.2 ± 0.1 mm and 14.9 ± 0.2 mm, 8.9 ± 0.1 mm and 14.5 ± 0.1 mm, 8.3 ± 0.1 mm and 13.6 ± 0.1 mm, respectively. Mean wall thickening was 68.4 ± 1.5 %, 64.8 ± 1.4 % and 67.1 ± 1.4 %, respectively. Agreement for the assessment of LV wall motion between CCT, CMR and polar maps was good. Bland-Altman plots and ICC indicated good agreement between CCT, CMR and automated polar maps of the diastolic and systolic segmental wall thickness and thickening. The processing time using polar map was significantly decreased compared with CCT and CMR. Automated evaluation of segmental LV function with polar maps provides similar measurements to manual CCT and CMR evaluation, albeit with substantially reduced analysis time. (orig.)

  1. Performance of automated software in the assessment of segmental left ventricular function in cardiac CT: Comparison with cardiac magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Capital Medical University, Department of Radiology, Beijing Anzhen Hospital, Beijing (China); Meinel, Felix G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Ludwig-Maximilians-University Hospital, Institute for Clinical Radiology, Munich (Germany); Schoepf, U.J. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Canstein, Christian [Siemens Medical Solutions USA, Malvern, PA (United States); Spearman, James V. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); De Cecco, Carlo N. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Departments of Radiological Sciences, Oncology and Pathology, Latina (Italy)

    2015-12-15

    To evaluate the accuracy, reliability and time saving potential of a novel cardiac CT (CCT)-based, automated software for the assessment of segmental left ventricular function compared to visual and manual quantitative assessment of CCT and cardiac magnetic resonance (CMR). Forty-seven patients with suspected or known coronary artery disease (CAD) were enrolled in the study. Wall thickening was calculated. Segmental LV wall motion was automatically calculated and shown as a colour-coded polar map. Processing time for each method was recorded. Mean wall thickness in both systolic and diastolic phases on polar map, CCT, and CMR was 9.2 ± 0.1 mm and 14.9 ± 0.2 mm, 8.9 ± 0.1 mm and 14.5 ± 0.1 mm, 8.3 ± 0.1 mm and 13.6 ± 0.1 mm, respectively. Mean wall thickening was 68.4 ± 1.5 %, 64.8 ± 1.4 % and 67.1 ± 1.4 %, respectively. Agreement for the assessment of LV wall motion between CCT, CMR and polar maps was good. Bland-Altman plots and ICC indicated good agreement between CCT, CMR and automated polar maps of the diastolic and systolic segmental wall thickness and thickening. The processing time using polar map was significantly decreased compared with CCT and CMR. Automated evaluation of segmental LV function with polar maps provides similar measurements to manual CCT and CMR evaluation, albeit with substantially reduced analysis time. (orig.)

  2. Amphibian ryanodine receptor isoforms are related to those of mammalian skeletal or cardiac muscle.

    Science.gov (United States)

    Lai, F A; Liu, Q Y; Xu, L; el-Hashem, A; Kramarcy, N R; Sealock, R; Meissner, G

    1992-08-01

    The ryanodine receptor (RyR)-Ca2+ release channels of frog skeletal muscle have been purified as 30S protein complexes comprised of two high molecular weight polypeptides. The upper and lower bands of the frog doublet comigrated on sodium dodecyl sulfate polyacylamide gels with the mammalian skeletal and cardiac RyR polypeptides, respectively. Immunoblot analysis showed that a polyclonal antiserum to the rat skeletal RyR preferentially cross-reacted with the upper band, whereas monoclonal antibodies to the canine cardiac RyR preferentially cross-reacted with the lower band of the frog receptor doublet. Immunoprecipitation studies indicated the presence of two homooligomer 30S RyR complexes comprised of either the lower or upper polypeptide band of the frog doublet, and immunocytochemical staining revealed their colocalization in frog gastrocnemius muscle. After planar lipid bilayer reconstitution of the 30S frog RyR, single-channel currents were observed that exhibited a Na+ and Ca2+ conductance and pharmacological characteristics similar to those of the mammalian skeletal and cardiac Ca2+ release channels. These results suggest that amphibian skeletal muscle expresses two distinct RyR isoforms that share epitopes in common with the mammalian skeletal or cardiac RyR. PMID:1325114

  3. Pregnancy as a cardiac stress model

    OpenAIRE

    Chung, Eunhee; Leinwand, Leslie A.

    2014-01-01

    Cardiac hypertrophy occurs during pregnancy as a consequence of both volume overload and hormonal changes. Both pregnancy- and exercise-induced cardiac hypertrophy are generally thought to be similar and physiological. Despite the fact that there are shared transcriptional responses in both forms of cardiac adaptation, pregnancy results in a distinct signature of gene expression in the heart. In some cases, however, pregnancy can induce adverse cardiac events in previously healthy women witho...

  4. Regulation of Cardiac Hypertrophy: the nuclear option

    OpenAIRE

    Kuster, Diederik

    2011-01-01

    textabstractCardiac hypertrophy is the response of the heart to an increased workload. After myocardial infarction (MI) the surviving muscle tissue has to work harder to maintain cardiac output. This sustained increase in workload leads to cardiac hypertrophy. Despite its apparent appropriateness, cardiac hypertrophy is an independent risk factor for the development of heart failure and is therefore called pathological hypertrophy. That hypertrophy is not bad per se, is illustrated by the hyp...

  5. Traumatic Tricuspid Regurgitation Following Cardiac Massage

    OpenAIRE

    Na, Sungwon; Nam, Sang Beom; Lee, Yong Kyung; Oh, Young Jun; Kwak, Young-Lan

    2007-01-01

    We report a 66-yr-old male patient who developed tricuspid regurgitation secondary to internal cardiac massage. After uneventful off-pump coronary artery bypass surgery, the subject experienced cardiac arrest in the intensive care unit. External cardiac massage was initiated and internal cardiac massage was performed eventually. A transesophageal echocardiography revealed avulsion of the anterior papillary muscle and chordae to the anterior leaflet after successful cardiopulmonary resuscitati...

  6. [Cardiac output monitoring by impedance cardiography in cardiac surgery].

    Science.gov (United States)

    Shimizu, H; Seki, S; Mizuguchi, A; Tsuchida, H; Watanabe, H; Namiki, A

    1990-04-01

    The cardiac output monitoring by impedance cardiography, NCCOM3, was evaluated in adult patients (n = 12) who were subjected to coronary artery bypass grafting. Values of cardiac output measured by impedance cardiography were compared to those by the thermodilution method. Changes of base impedance level used as an index of thoracic fluid volume were also investigated before and after cardiopulmonary bypass (CPB). Correlation coefficient (r) of the values obtained by thermodilution with impedance cardiography was 0.79 and the mean difference was 1.29 +/- 16.9 (SD)% during induction of anesthesia. During the operation, r was 0.83 and the mean difference was -14.6 +/- 18.7%. The measurement by impedance cardiography could be carried out through the operation except when electro-cautery was used. Base impedance level before CPB was significantly lower as compared with that after CPB. There was a negative correlation between the base impedance level and central venous pressure (CVP). No patients showed any signs suggesting lung edema and all the values of CVP, pulmonary artery pressure and blood gas analysis were within normal ranges. From the result of this study, it was concluded that cardiac output monitoring by impedance cardiography was useful in cardiac surgery, but further detailed examinations will be necessary on the relationship between the numerical values of base impedance and the clinical state of the patients. PMID:2362347

  7. Health Literacy Predicts Cardiac Knowledge Gains in Cardiac Rehabilitation Participants

    Science.gov (United States)

    Mattson, Colleen C.; Rawson, Katherine; Hughes, Joel W.; Waechter, Donna; Rosneck, James

    2015-01-01

    Objective: Health literacy is increasingly recognised as a potentially important patient characteristic related to patient education efforts. We evaluated whether health literacy would predict gains in knowledge after completion of patient education in cardiac rehabilitation. Method: This was a re-post observational analysis study design based on…

  8. Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels.

    Science.gov (United States)

    Cai, Tianfu; Luo, Ji; Meng, Er; Ding, Jiuping; Liang, Songping; Wang, Sheng; Liu, Zhonghua

    2015-06-01

    Peptide toxins often have pharmacological applications and are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a group of potential VGSC inhibitors have been reported from tarantula venoms, little is known about the mechanism of their interaction with VGSCs. In this study, we showed that hainantoxin-IV (β-TRTX-Hn2a, HNTX-IV in brief), a 35-residue peptide from Ornithoctonus hainana venom, preferentially inhibited rNav1.2, rNav1.3 and hNav1.7 compared with rNav1.4 and hNav1.5. hNav1.7 was the most sensitive to HNTX-IV (IC50∼21nM). In contrast to many other tarantula toxins that affect VGSCs, HNTX-IV at subsaturating concentrations did not alter activation and inactivation kinetics in the physiological range of voltages, while very large depolarization above +70mV could partially activate toxin-bound hNav1.7 channel, indicating that HNTX-IV acts as a gating modifier rather than a pore blocker. Site-directed mutagenesis indicated that the toxin bound to site 4, which was located on the extracellular S3-S4 linker of hNav1.7 domain II. Mutants E753Q, D816N and E818Q of hNav1.7 decreased toxin affinity for hNav1.7 by 2.0-, 3.3- and 130-fold, respectively. In silico docking indicated that a three-toed claw substructure formed by residues with close contacts in the interface between HNTX-IV and hNav1.7 domain II stabilized the toxin-channel complex, impeding movement of the domain II voltage sensor and inhibiting hNav1.7 activation. Our data provide structural details for structure-based drug design and a useful template for the design of highly selective inhibitors of a specific subtype of VGSCs. PMID:25218973

  9. Childhood cancer survivors: cardiac disease & social outcomes

    NARCIS (Netherlands)

    E.A.M. Feijen

    2015-01-01

    The thesis is divided in two parts; Cardiac health problems and healthcare consumption & social outcomes in CCS. The general aims of part 1 creates optimal conditions for the evaluation of cardiac events in 5-year childhood cancer survivors, evaluation of the long term risk of cardiac events, and to

  10. MRI of cardiac rhabdomyoma in the fetus

    Energy Technology Data Exchange (ETDEWEB)

    Kivelitz, Dietmar E.; Muehler, Matthias [Institut fuer Radiologie, Medizinische Fakultaet, Humboldt-Universitaet zu Berlin, Charite, Schumannstrasse 20/21, 10098, Berlin (Germany); Rake, Annett; Chaoui, Rabih [Klinik fuer Gynaekologie und Geburtshilfe, Medizinische Fakultaet, Humboldt-Universitaet zu Berlin, Charite, Schumannstrasse 20/21, 10098, Berlin (Germany); Scheer, Ianina [Klinik fuer Strahlenheilkunde, Abteilung Paediatrische Radiologie, Medizinische Fakultaet, Humboldt-Universitaet zu Berlin, Charite, Schumannstrasse 20/21, 10098, Berlin (Germany)

    2004-08-01

    Primary cardiac tumors are rarely diagnosed in utero and are usually seen on prenatal echocardiography. Cardiac rhabdomyomata can be associated with tuberous sclerosis. Prenatal MRI can be performed to assess associated malformations. This case report illustrates the ability of fetal MRI to image cardiac rhabdomyata and compares it with prenatal and postnatal echocardiography. (orig.)

  11. Telocytes in exercise-induced cardiac growth.

    Science.gov (United States)

    Xiao, Junjie; Chen, Ping; Qu, Yi; Yu, Pujiao; Yao, Jianhua; Wang, Hongbao; Fu, Siyi; Bei, Yihua; Chen, Yan; Che, Lin; Xu, Jiahong

    2016-05-01

    Exercise can induce physiological cardiac growth, which is featured by enlarged cardiomyocyte cell size and formation of new cardiomyocytes. Telocytes (TCs) are a recently identified distinct interstitial cell type, existing in many tissues and organs including heart. TCs have been shown to form a tandem with cardiac stem/progenitor cells in cardiac stem cell niches, participating in cardiac regeneration and repair. Although exercise-induced cardiac growth has been confirmed as an important way to promote cardiac regeneration and repair, the response of cardiac TCs to exercise is still unclear. In this study, 4 weeks of swimming training was used to induce robust healthy cardiac growth. Exercise can induce an increase in cardiomyocyte cell size and formation of new cardiomyocytes as determined by Wheat Germ Lectin and EdU staining respectively. TCs were identified by three immunofluorescence stainings including double labelling for CD34/vimentin, CD34/platelet-derived growth factor (PDGF) receptor-α and CD34/PDGF receptor-β. We found that cardiac TCs were significantly increased in exercised heart, suggesting that TCs might help control the activity of cardiac stem/progenitor cells, cardiomyocytes or endothelial cells. Adding cardiac TCs might help promote cardiac regeneration and renewal. PMID:26987685

  12. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-01-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial function. Therefore, this study examined mitochondrial respiratory rates in the smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscle. Cardiac, skele...

  13. Technique for producing cardiac radionuclide motion images

    International Nuclear Information System (INIS)

    Sequential frames of different portions of the cardiac cycle are gated into a minicomputer by using an EKG signal recorded onto digital tape simultaneously with imaging information. Serial display of these frames on the computer oscilloscope or projection of 35-mm half frames of these images provides a cardiac motion image with information content adequate for qualitatively assessing cardiac motion. (U.S.)

  14. Regulation of Cardiac Hypertrophy: the nuclear option

    NARCIS (Netherlands)

    D.W.D. Kuster (Diederik)

    2011-01-01

    textabstractCardiac hypertrophy is the response of the heart to an increased workload. After myocardial infarction (MI) the surviving muscle tissue has to work harder to maintain cardiac output. This sustained increase in workload leads to cardiac hypertrophy. Despite its apparent appropriateness, c

  15. Cardiac Repolarization Abnormalities and Potential Evidence for Loss of Cardiac Sodium Currents on ECGs of Patients with Chagas' Heart Disease

    Science.gov (United States)

    Schlegel, T. T.; Medina, R.; Jugo, D.; Nunez, T. J.; Borrego, A.; Arellano, E.; Arenare, B.; DePalma, J. L.; Greco, E. C.; Starc, V.

    2007-01-01

    Some individuals with Chagas disease develop right precordial lead ST segment elevation in response to an ajmaline challenge test, and the prevalence of right bundle branch block (RBBB) is also high in Chagas disease. Because these same electrocardiographic abnormalities occur in the Brugada syndrome, which involves genetically defective cardiac sodium channels, acquired damage to cardiac sodium channels may also occur in Chagas disease. We studied several conventional and advanced resting 12-lead/derived Frank-lead ECG parameters in 34 patients with Chagas -related heart disease (mean age 39 14 years) and in 34 age-/gender-matched healthy controls. All ECG recordings were of 5-10 min duration, obtained in the supine position using high fidelity hardware/software (CardioSoft, Houston, TX). Even after excluding those Chagas patients who had resting BBBs, tachycardia and/or pathologic arrhythmia (n=8), significant differences remained in multiple conventional and advanced ECG parameters between the Chagas and control groups (n=26/group), especially in their respective QT interval variability indices, maximal spatial QRS-T angles and low frequency HRV powers (p=0.0006, p=0.0015 and p=0.0314 respectively). In relation to the issue of potential damage to cardiac sodium channels, the Chagas patients had: 1) greater than or equal to twice the incidence of resting ST segment elevation in leads V1-V3 (n=10/26 vs. n=5/26) and of both leftward (n=5/26 versus n=0/26) and rightward (n=7/26 versus n=3/26) QRS axis deviation than controls; 2) significantly increased filtered (40-250 Hz) QRS interval durations (92.1 8.5 versus 85.3 plus or minus 9.0 ms, p=0.022) versus controls; and 3) significantly decreased QT and especially JT interval durations versus controls (QT interval: 387.5 plus or minus 26.4 versus 408.9 plus or minus 34.6 ms, p=0.013; JT interval: 290.5 plus or minus 26.3 versus 314.8 plus or minus 31.3 ms; p=0.0029). Heart rates and Bazett-corrected QTc/JTc intervals

  16. CALS Mapping

    DEFF Research Database (Denmark)

    Collin, Ib; Nielsen, Povl Holm; Larsen, Michael Holm

    1998-01-01

    To enhance the industrial applications of CALS, CALS Center Danmark has developed a cost efficient and transparent assessment, CALS Mapping, to uncover the potential of CALS - primarily dedicated to small and medium sized enterprises. The idea behind CALS Mapping is that the CALS State of the...... enterprise is, when applied in a given organisation modified with respect to the industry regarded, hence irrelevant measure parameters are eliminated to avoid redundancy. This assessment of CALS Mapping, quantify the CALS potential of an organisation with the purpose of providing decision support to the top...

  17. Genetic Manipulation of The Cardiac Mitochondrial Phosphate Carrier does not affect Permeability Transition

    OpenAIRE

    Gutiérrez-Aguilar, Manuel; Douglas, Diana L.; Gibson, Anne K.; Domeier, Timothy L.; Molkentin, Jeffery D.; Baines, Christopher P.

    2014-01-01

    The Mitochondrial Permeability Transition (MPT) pore is a voltage-sensitive unselective channel known to instigate necrotic cell death during cardiac disease. Recent models suggest that the isomerase cyclophilin D (CypD) regulates the MPT pore by binding to either the F0F1-ATP synthase lateral stalk or the mitochondrial phosphate carrier (PiC). Here we confirm that CypD, through its N-terminus, can directly bind PiC. We then generated cardiac-specific mouse strains overexpressing or with decr...

  18. Kcne4 deletion sex- and age-specifically impairs cardiac repolarization in mice.

    Science.gov (United States)

    Crump, Shawn M; Hu, Zhaoyang; Kant, Ritu; Levy, Daniel I; Goldstein, Steve A N; Abbott, Geoffrey W

    2016-01-01

    Myocardial repolarization capacity varies with sex, age, and pathology; the molecular basis for this variation is incompletely understood. Here, we show that the transcript for KCNE4, a voltage-gated potassium (Kv) channel β subunit associated with human atrial fibrillation, was 8-fold more highly expressed in the male left ventricle compared with females in young adult C57BL/6 mice (P 45% (P 3-fold (P = 0.01) to match noncastrated levels. KCNE4 is thereby shown to be a DHT-regulated determinant of cardiac excitability and a molecular substrate for sex- and age-dependent cardiac arrhythmogenesis. PMID:26399785

  19. The Earliest Ion Channels

    Science.gov (United States)

    Pohorille, A.; Wilson, M. A.; Wei, C.

    2009-12-01

    Supplying protocells with ions required assistance from channels spanning their membrane walls. The earliest channels were most likely short proteins that formed transmembrane helical bundles surrounding a water-filled pore. These simple aggregates were capable of transporting ions with efficiencies comparable to those of complex, contemporary ion channels. Channels with wide pores exhibited little ion selectivity but also imposed only modest constraints on amino acid sequences of channel-forming proteins. Channels with small pores could have been selective but also might have required a more precisely defined sequence of amino acids. In contrast to modern channels, their protocellular ancestors had only limited capabilities to regulate ion flux. It is postulated that subsequent evolution of ion channels progressed primarily to acquire precise regulation, and not high efficiency or selectivity. It is further proposed that channels and the surrounding membranes co-evolved.

  20. Gramicidin Channels: Versatile Tools

    Science.gov (United States)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  1. Aircraft noise effects on sleep: a systematic comparison of EEG awakenings and automatically detected cardiac activations

    International Nuclear Information System (INIS)

    Polysomnography is the gold standard for investigating noise effects on sleep, but data collection and analysis are sumptuous and expensive. We recently developed an algorithm for the automatic identification of cardiac activations associated with cortical arousals, which uses heart rate information derived from a single electrocardiogram (ECG) channel. We hypothesized that cardiac activations can be used as estimates for EEG awakenings. Polysomnographic EEG awakenings and automatically detected cardiac activations were systematically compared using laboratory data of 112 subjects (47 male, mean ± SD age 37.9 ± 13 years), 985 nights and 23 855 aircraft noise events (ANEs). The probability of automatically detected cardiac activations increased monotonically with increasing maximum sound pressure levels of ANEs, exceeding the probability of EEG awakenings by up to 18.1%. If spontaneous reactions were taken into account, exposure–response curves were practically identical for EEG awakenings and cardiac activations. Automatically detected cardiac activations may be used as estimates for EEG awakenings. More investigations are needed to further validate the ECG algorithm in the field and to investigate inter-individual differences in its ability to predict EEG awakenings. This inexpensive, objective and non-invasive method facilitates large-scale field studies on the effects of traffic noise on sleep

  2. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2012-02-01

    OBJECTIVE: This article reviews the optimal cardiac MRI sequences for and the spectrum of imaging appearances of cardiac tumors. CONCLUSION: Recent technologic advances in cardiac MRI have resulted in the rapid acquisition of images of the heart with high spatial and temporal resolution and excellent myocardial tissue characterization. Cardiac MRI provides optimal assessment of the location, functional characteristics, and soft-tissue features of cardiac tumors, allowing accurate differentiation of benign and malignant lesions.

  3. Investigations of the Navβ1b sodium channel subunit in human ventricle; functional characterization of the H162P Brugada Syndrome mutant

    DEFF Research Database (Denmark)

    Yuan, Lei; Koivumaki, Jussi; Liang, Bo;

    2014-01-01

    Brugada Syndrome (BrS) is a rare inherited disease which can give rise to ventricular arrhythmia and ultimately sudden cardiac death. Numerous loss-of-function mutations in the cardiac sodium channel Nav1.5 have been associated with BrS. However, few mutations in the auxiliary Navβ1-4 subunits have...

  4. Multi-Channel Retailing

    Directory of Open Access Journals (Sweden)

    Dirk Morschett, Dr.,

    2005-01-01

    Full Text Available Multi-channel retailing entails the parallel use by retailing enterprises of several sales channels. The results of an online buyer survey which has been conducted to investigate the impact of multi-channel retailing (i.e. the use of several retail channels by one retail company on consumer behaviour show that the frequently expressed concern that the application of multi-channel systems in retailing would be associated with cannibalization effects, has proven unfounded. Indeed, the appropriate degree of similarity, consistency, integration and agreement achieves the exact opposite. Different channels create different advantages for consumers. Therefore the total benefit an enterprise which has a multi-channel system can offer to its consumers is larger, the greater the number of available channels. The use of multi-channel systems is associated with additional purchases in the different channels. Such systems are thus superior to those offering only one sales channel to their customers. Furthermore, multi-channel systems with integrated channels are superior to those in which the channels are essentially autonomous and independent of one another. In integrated systems, consumers can achieve synergy effects in the use of sales-channel systems. Accordingly, when appropriately formulated, multi-channel systems in retailing impact positively on consumers. They use the channels more frequently, buy more from them and there is a positive customer-loyalty impact. Multi-channel systems are strategic options for achieving customer loyalty, exploiting customer potential and for winning new customers. They are thus well suited for approaching differing and varied target groups.

  5. Approximate analytical solutions for excitation and propagation in cardiac tissue

    Science.gov (United States)

    Greene, D'Artagnan; Shiferaw, Yohannes

    2015-04-01

    It is well known that a variety of cardiac arrhythmias are initiated by a focal excitation in heart tissue. At the single cell level these currents are typically induced by intracellular processes such as spontaneous calcium release (SCR). However, it is not understood how the size and morphology of these focal excitations are related to the electrophysiological properties of cardiac cells. In this paper a detailed physiologically based ionic model is analyzed by projecting the excitation dynamics to a reduced one-dimensional parameter space. Based on this analysis we show that the inward current required for an excitation to occur is largely dictated by the voltage dependence of the inward rectifier potassium current (IK 1) , and is insensitive to the detailed properties of the sodium current. We derive an analytical expression relating the size of a stimulus and the critical current required to induce a propagating action potential (AP), and argue that this relationship determines the necessary number of cells that must undergo SCR in order to induce ectopic activity in cardiac tissue. Finally, we show that, once a focal excitation begins to propagate, its propagation characteristics, such as the conduction velocity and the critical radius for propagation, are largely determined by the sodium and gap junction currents with a substantially lesser effect due to repolarizing potassium currents. These results reveal the relationship between ion channel properties and important tissue scale processes such as excitation and propagation.

  6. Response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Versteeg, Henneke; Schiffer, Angélique A; Widdershoven, Jos W; Meine, Mathias M; Doevendans, Pieter A; Pedersen, Susanne S.

    2009-01-01

    Cardiac resynchronization therapy (CRT) is a promising treatment for a subgroup of patients with advanced congestive heart failure and a prolonged QRS interval. Despite the majority of patients benefiting from CRT, 10-40% of patients do not respond to this treatment and are labeled as nonresponders...

  7. Rejection in the cardiac transplant

    International Nuclear Information System (INIS)

    Standard chest radiography remains the most frequent applied method for monitoring post surgical cardiac transplant patients. Evidence suggests that after the 1st month cardiac enlargement is indeed a useful indicator of rejection, sometimes being caused by pericardial effusion and/or changes in left ventricular mass. Opportunistic infections, either pulmonary lesions or mediastinal abscesses, as well as malignant tumours may all occur and require evaluation or exclusion. Conventional computed transmission tomography is an excellent technique for surveying the entire thorax relatively non-invasively and is recommended whenever pulmonary, cardiac or mediastinal changes are unexplained. Coronary arteriography with or without digital subtraction remains the definitive method for examining the coronary arteries. Left ventricular function can be evaluated with either angiography or other non-invasive methods including such techniques as echocardiography and nuclear medicine. More recently monoclonal antibody labels for antimyosin show promise for identifying rejection. Ultrafast CT scanning is now available in a number of centres. It allows millisecond cross-sectional cine-tomography of the heart as well as of the whole chest, and also provides 3-D quantitative analyses of end-diastolic and systolic function including regional wall thickening dynamics and estimations of myocardial mass. Right, as well as left-sided cardiac chambers, are demonstrated routinely during the same ultrafast CT procedure. MRI, like ultrafast CT, is a new technique still being explored. MRI as well as MR spectroscopy are regarded as diagnostic radiology procedures. (author). 32 refs.; 3 figs.; 3 tabs

  8. Cardiac functional analysis with MRI

    International Nuclear Information System (INIS)

    Cardiovascular diseases (CVD) are among the leading causes of death worldwide. Even in the 21st century CVD will still be the most frequent cause of morbidity and mortality. Precise evaluation of cardiac function is therefore mandatory for therapy planning and monitoring. In this article the contribution of MRI-based analysis of cardiac function will be addressed. Nowadays cine-MRI is considered as the standard of reference (SOR) in cardiac functional analysis. ECG-triggered steady-state free precession (SSFP) sequences are mainly used as they stand out due to short acquisition times and excellent contrast between the myocardium and the ventricular cavity. An indispensible requirement for cardiac functional analysis is an exact planning of the examination and based on that the coverage of the whole ventricle in short axial slices. By means of dedicated post-processing software, manual or semi-automatic segmentation of the endocardial and epicardial contours is necessary for functional analysis. In this way end-diastolic volume (EDV), end-systolic volume (ESV) and the ejection fraction (EF) are defined and regional wall motion abnormalities (RWMA) can be detected. (orig.)

  9. Molecular therapies for cardiac arrhythmias

    NARCIS (Netherlands)

    G.J.J. Boink

    2013-01-01

    Despite the ongoing advances in pharmacology, devices and surgical approaches to treat heart rhythm disturbances, arrhythmias are still a significant cause of death and morbidity. With the introduction of gene and cell therapy, new avenues have arrived for the local modulation of cardiac disease. Th

  10. The cardiac patient in Ramadan.

    Science.gov (United States)

    Chamsi-Pasha, Majed; Chamsi-Pasha, Hassan

    2016-01-01

    Ramadan is one of the five fundamental pillars of Islam. During this month, the majority of the 1.6 billion Muslims worldwide observe an absolute fast from dawn to sunset without any drink or food. Our review shows that the impact of fasting during Ramadan on patients with stable cardiac disease is minimal and does not lead to any increase in acute events. Most patients with the stable cardiac disease can fast safely. Most of the drug doses and their regimen are easily manageable during this month and may need not to be changed. Ramadan fasting is a healthy nonpharmacological means for improving cardiovascular risk factors. Most of the Muslims, who suffer from chronic diseases, insist on fasting Ramadan despite being exempted by religion. The Holy Quran specifically exempts the sick from fasting. This is particularly relevant if fasting worsens one's illness or delays recovery. Patients with unstable angina, recent myocardial infarction, uncontrolled hypertension, decompensated heart failure, recent cardiac intervention or cardiac surgery or any debilitating diseases should avoid fasting. PMID:27144139

  11. Cardiac pacemakers and nuclear batteries

    International Nuclear Information System (INIS)

    Following the introduction giving the indications for cardiac pacemaker therapy with special regard to the use of pacemakers powered by nuclear batteries, reference is made to the resulting radiation exposure of the patient. The activities of the Federal Health Office in this field such as recommendations and surveys including the entire Federal Republic are outlined. (orig.)

  12. CARDIAC TRANSPLANTATION: AN ANESTHETIC CHALLENGE

    OpenAIRE

    Premalatha; Jayaraman,

    2014-01-01

    : Heart transplantation has emerged as the definitive therapy for patients with end-stage cardiomyopathy. The two most common forms of cardiac disease that lead to transplantation are ischemic cardiomyopathy and dilated cardiomyopathy, which together comprise approximately 90% of cases. The other less common forms of heart disease include viral cardiomyopathy, infiltrative cardiomyopathy, postpartum cardiomyopathy, valvular heart disease and congenital heart disease

  13. Epidural analgesia for cardiac surgery

    NARCIS (Netherlands)

    V. Svircevic; M.M. Passier; A.P. Nierich; D. van Dijk; C.J. Kalkman; G.J. van der Heijden

    2013-01-01

    Background A combination of general anaesthesia (GA) with thoracic epidural analgesia (TEA) may have a beneficial effect on clinical outcomes by reducing the risk of perioperative complications after cardiac surgery. Objectives The objective of this review was to determine the impact of perioperativ

  14. Historical highlights in cardiac pacing.

    Science.gov (United States)

    Geddes, L A

    1990-01-01

    The benchmarks in cardiac pacing are identified, beginning with F. Steiner (1871), who rhythmically stimulated the chloroform-arrested hearts of 3 horses, 1 donkey, 10 dogs, 14 cats, and 8 rabbits. The chloroform-arrested heart in human subjects was paced by T. Greene in the following year (1872) in the UK. In 1882, H. Ziemssen in Germany applied cardiac pacing to a 42-year old woman who had a large defect in the anterior left chest wall subsequent to resection of an enchondroma. Intentional cardiac pacing did not occur until 1932, when A.A. Hyman in the US demonstrated that cardiac pacing could be clinically practical. Hyman made a batteryless pacemaker for delivery in induction shock stimuli (60-120/min) to the atria. His pacemaker was powered by a hand-wound, spring-driven generator which provided 6 min of pacemaking without rewinding. Closed-chest ventricular pacing was introduced in the US in 1952 by P.M. Zoll et al. Zoll (1956) also introduced closed-chest ventricular defibrillation. W.L. Weirich et al. (1958) demonstrated that direct-heart stimulation in closed-chest patients could be achieved with slender wire electrodes. S. Furman and J.B. Schwedel (1959) developed a monopolar catheter electrode for ventricular pacing in man. In the same year, W. Greatbatch and W.M. Chardack developed the implantable pacemaker. PMID:18238328

  15. Novel perspectives in cancer therapy: Targeting ion channels.

    Science.gov (United States)

    Arcangeli, Annarosa; Becchetti, Andrea

    2015-01-01

    By controlling ion fluxes at multiple time scales, ion channels shape rapid cell signals, such as action potential and synaptic transmission, as well as much slower processes, such as mitosis and cell migration. As is currently increasingly recognized, a variety of channel types are involved in cancer hallmarks, and regulate specific stages of neoplastic progression. Long-term in vitro work has established that inhibition of these ion channels impairs the growth of cancer cells. Recently, these studies have been followed up in vivo, hence revealing that ion channels constitute promising pharmacological targets in oncology. The channel proteins can be often accessed from the extracellular milieu, which allows use of lower drug doses and decrease untoward toxicity. However, because of the central physiological roles exerted by ion channels in excitable cells, other types of side effects may arise, the gravest of which is cardiac arrhythmia. A paradigmatic case is offered by Kv11.1 (hERG1) channels. HERG1 blockers attenuate the progression of both hematologic malignancies and solid tumors, but may also lead to the lengthening of the electrocardiographic QT interval, thus predisposing the patient to ventricular arrhythmias. These side effects can be avoided by specifically inhibiting the channel isoforms which are highly expressed in certain tumors, such as Kv11.1B and the neonatal forms of voltage-gated Na(+) channels. Preclinical studies are also being explored in breast and prostate cancer (targeting voltage-gated Na(+) channels), and gliomas (targeting CLC-3). Overall, the possible approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1) the development of specific inhibitors for the channel subtypes expressed in specific tumors; (2) drug delivery into the tumor by using antibodies or nanotechnology-based approaches; (3) combination regimen therapy and (4) blocking specific conformational states of the ion channel. We believe

  16. Participatory maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    towards a new political ecology. This type of digital cartographies has been highlighted as the ‘processual turn’ in critical cartography, whereas in related computational journalism it can be seen as an interactive and iterative process of mapping complex and fragile ecological developments. This paper......There has recently been considerable attention paid to digital, spatial visualisations in digital journalism and technology studies; less as a product and more as practice. This refers to the notion that rather than reading maps as fixed representations, digital mapping is by nature a dynamic...... is defined as a digitally created affective (map)space within which journalistic practice can be seen as dynamic, performative interactions between journalists, ecosystems, space, and species....

  17. Brain mapping

    OpenAIRE

    Blaž Koritnik

    2004-01-01

    Cartography of the brain ("brain mapping") aims to represent the complexities of the working brain in an understandable and usable way. There are four crucial steps in brain mapping: (1) acquiring data about brain structure and function, (2) transformation of data into a common reference, (3) visualization and interpretation of results, and (4) databasing and archiving. Electrophysiological and functional imaging methods provide information about function of the human brain. A prere...

  18. Noise map

    OpenAIRE

    Němcová, Michaela

    2015-01-01

    The aim of this paper is to introduce the measurement of noise and create a noise map in a geographic information system. The first part is focused on describing the physical properties of sound in space, atmospheric and physiological acoustics. It also deals with the physiological effects of noise on the human body and technology needed for measure and process noise. Other part describes the structure of a geographic information system and noise map. The last part is about the practical crea...

  19. Rethinking maps

    OpenAIRE

    Kitchin, Rob; Dodge, Martin

    2007-01-01

    In this paper we argue that cartography is profitably conceived as a processual, rather than representational, science. Building on recent analysis concerning the philosophical underpinnings of cartography we question the ontological security of maps, contending that it is productive to rethink cartography as ontogenetic in nature; that is maps emerge through practices and have no secure ontological status. Drawing on the concepts of transduction and technicity we contend that ...

  20. Cardiac arrest: resuscitation and reperfusion.

    Science.gov (United States)

    Patil, Kaustubha D; Halperin, Henry R; Becker, Lance B

    2015-06-01

    The modern treatment of cardiac arrest is an increasingly complex medical procedure with a rapidly changing array of therapeutic approaches designed to restore life to victims of sudden death. The 2 primary goals of providing artificial circulation and defibrillation to halt ventricular fibrillation remain of paramount importance for saving lives. They have undergone significant improvements in technology and dissemination into the community subsequent to their establishment 60 years ago. The evolution of artificial circulation includes efforts to optimize manual cardiopulmonary resuscitation, external mechanical cardiopulmonary resuscitation devices designed to augment circulation, and may soon advance further into the rapid deployment of specially designed internal emergency cardiopulmonary bypass devices. The development of defibrillation technologies has progressed from bulky internal defibrillators paddles applied directly to the heart, to manually controlled external defibrillators, to automatic external defibrillators that can now be obtained over-the-counter for widespread use in the community or home. But the modern treatment of cardiac arrest now involves more than merely providing circulation and defibrillation. As suggested by a 3-phase model of treatment, newer approaches targeting patients who have had a more prolonged cardiac arrest include treatment of the metabolic phase of cardiac arrest with therapeutic hypothermia, agents to treat or prevent reperfusion injury, new strategies specifically focused on pulseless electric activity, which is the presenting rhythm in at least one third of cardiac arrests, and aggressive post resuscitation care. There are discoveries at the cellular and molecular level about ischemia and reperfusion pathobiology that may be translated into future new therapies. On the near horizon is the combination of advanced cardiopulmonary bypass plus a cocktail of multiple agents targeted at restoration of normal metabolism and