Sample records for cardiac mapping channel

  1. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter


    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...

  2. Cardiac ion channels in health and disease. (United States)

    Amin, Ahmad S; Tan, Hanno L; Wilde, Arthur A M


    Cardiac electrical activity depends on the coordinated propagation of excitatory stimuli through the heart and, as a consequence, the generation of action potentials in individual cardiomyocytes. Action potential formation results from the opening and closing (gating) of ion channels that are expressed within the sarcolemma of cardiomyocytes. Ion channels possess distinct genetic, molecular, pharmacologic, and gating properties and exhibit dissimilar expression levels within different cardiac regions. By gating, ion channels permit ion currents across the sarcolemma, thereby creating the different phases of the action potential (e.g., resting phase, depolarization, repolarization). The importance of ion channels in maintaining normal heart rhythm is reflected by the increased incidence of arrhythmias in inherited diseases that are linked to mutations in genes encoding ion channels or their accessory proteins and in acquired diseases that are associated with changes in ion channel expression levels or gating properties. This review discusses ion channels that contribute to action potential formation in healthy hearts and their role in inherited and acquired diseases.

  3. Lidocaine block of cardiac sodium channels


    Bean, BP; Cohen, CJ; Tsien, RW


    Lidocaine block of cardiac sodium channels was studied in voltage-clamped rabbit purkinje fibers at drug concentrations ranging from 1 mM down to effective antiarrhythmic doses (5-20 μM). Dose-response curves indicated that lidocaine blocks the channel by binding one-to-one, with a voltage-dependent K(d). The half-blocking concentration varied from more than 300 μM, at a negative holding potential where inactivation was completely removed, to approximately 10 μM, at a depolarized holding pote...

  4. Lidocaine block of cardiac sodium channels. (United States)

    Bean, B P; Cohen, C J; Tsien, R W


    Lidocaine block of cardiac sodium channels was studied in voltage-clamped rabbit purkinje fibers at drug concentrations ranging from 1 mM down to effective antiarrhythmic doses (5-20 muM). Dose-response curves indicated that lidocaine blocks the channel by binding one-to-one, with a voltage-dependent K(d). The half-blocking concentration varied from more than 300 muM, at a negative holding potential where inactivation was completely removed, to approximately 10 muM, at a depolarized holding potential where inactivation was nearly complete. Lidocaine block showed prominent use dependence with trains of depolarizing pulses from a negative holding potential. During the interval between pulses, repriming of I (Na) displayed two exponential components, a normally recovering component (tauless than 0.2 s), and a lidocaine-induced, slowly recovering fraction (tau approximately 1-2 s at pH 7.0). Raising the lidocaine concentration magnified the slowly recovering fraction without changing its time course; after a long depolarization, this fraction was one-half at approximately 10 muM lidocaine, just as expected if it corresponded to drug-bound, inactivated channels. At less than or equal to 20 muM lidocaine, the slowly recovering fraction grew exponentially to a steady level as the preceding depolarization was prolonged; the time course was the same for strong or weak depolarizations, that is, with or without significant activation of I(Na). This argues that use dependence at therapeutic levels reflects block of inactivated channels, rather than block of open channels. Overall, these results provide direct evidence for the "modulated-receptor hypothesis" of Hille (1977) and Hondeghem and Katzung (1977). Unlike tetrodotoxin, lidocaine shows similar interactions with Na channels of heart, nerve, and skeletal muscle.

  5. Non-invasive Mapping of Cardiac Arrhythmias. (United States)

    Shah, Ashok; Hocini, Meleze; Haissaguerre, Michel; Jaïs, Pierre


    Since more than 100 years, 12-lead electrocardiography (ECG) is the standard-of-care tool, which involves measuring electrical potentials from limited sites on the body surface to diagnose cardiac disorder, its possible mechanism, and the likely site of origin. Several decades of research has led to the development of a 252-lead ECG and computed tomography (CT) scan-based three-dimensional electro-imaging modality to non-invasively map abnormal cardiac rhythms including fibrillation. These maps provide guidance towards ablative therapy and thereby help advance the management of complex heart rhythm disorders. Here, we describe the clinical experience obtained using non-invasive technique in mapping the electrical disorder and guide the catheter ablation of atrial arrhythmias (premature atrial beat, atrial tachycardia, atrial fibrillation), ventricular arrhythmias (premature ventricular beats), and ventricular pre-excitation (Wolff-Parkinson-White syndrome).

  6. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    C.A. Remme; C.R. Bezzina


    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation an

  7. Cardiac potassium channels in health and disease. (United States)

    Brown, A M


    Cardiac K(+)currents regulate resting membrane potential and action potential duration. These tasks are accomplished for the most part by four membrane currents: an inwardly rectifying current (I(K1)), a transient outward current (I(To)), and rapid (I(Kr)), and slow (I(Ks)) delayed rectifier currents. Recent studies have revealed far greater complexity at the molecular level. I(K1) may be produced by at least three genes from the Kir 2 subfamily of the supergene Kir family. The remaining currents appear to be produced by the supergene Kvα family, sometimes in association with the cytoplasmic protein Kvβ family. I(To) may be produced by the Kv4 subfamily, but members of the Kv1 subfamily could contribute, particularly if associated with Kvβ genes. Very rapid currents could be produced by Kv1.5, but Kvs 1.2 and 2.1 might also participate. Additional levels of complexity are possible because members within a Kv subfamily may form heterotetramers, and these, in turn, may associate with different Kvβs. The situation may be simpler for I(Kr) and I(Ks), which at present appear to be produced by the Kv HER gene and the KvLQT1 gene, respectively. Mutations of these two genes have been linked to two forms of hereditary long QT syndrome, and heterologous expression of mutant HERGs has reproduced the pathophysiological phenotype satisfactorily. Sporadic mutations in these and other cardiac K(+)channel genes may provide a basis for hypersensitivity to cardioactive or cardiotoxic drugs. (Trends Cardiovasc Med 1997;7:118-124). © 1997, Elsevier Science Inc.

  8. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, HL; Bink-Boelkens, MTE; Bezzina, CR; Viswanathan, PC; Beaufort-Krol, GCM; van Tintelen, PJ; van den Berg, MP; Wilde, AAM; Balser, [No Value


    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening(1-3); however, a

  9. Functional role of anion channels in cardiac diseases

    Institute of Scientific and Technical Information of China (English)

    Da-yue DUAN; Luis LH LIU; Nathan BOZEAT; Z Maggie HUANG; Sunny Y XIANG; Guan-lei WANG; Linda YE; Joseph R HUME


    In comparison to cation (K+, Na+, and Ca2+) channels, much less is currently known about the functional role of anion (Cl-) channels in cardiovascular physiology and pathophysiology. Over the past 15 years, various types of Cl- currents have been recorded in cardiac cells from different species including humans. All cardiac Cl- channels described to date may be encoded by five different Cl- channel genes: the PKA- and PKC-activated cystic fibrosis tansmembrane conductance regulator (CFTR), the volume-regulated ClC-2 and ClC-3, and the Ca2+-activated CLCA or Bestrophin. Recent studies using multiple approaches to examine the functional role of Cl- channels in the context of health and disease have demonstrated that Cl- channels might contribute to: 1) arrhythmogenesis in myocardial injury; 2) cardiac ischemic preconditioning; and 3) the adaptive remodeling of the heart during myocardial hypertrophy and heart failure. Therefore,anion channels represent very attractive novel targets for therapeutic approaches to the treatment of heart diseases. Recent evidence suggests that Cl- channels,like cation channels, might function as a multiprotein complex or functional module.In the post-genome era, the emergence of functional proteomics has necessitated a new paradigm shift to the structural and functional assessment of integrated Cl- channel multiprotein complexes in the heart, which could provide new insight into our understanding of the underlying mechanisms responsible for heart disease and protection.

  10. Cardiac ion channels and mechanisms for protection against atrial fibrillation

    DEFF Research Database (Denmark)

    Grunnet, Morten; Bentzen, Bo Hjorth; Sørensen, Ulrik S;


    Atrial fibrillation (AF) is recognised as the most common sustained cardiac arrhythmia in clinical practice. Ongoing drug development is aiming at obtaining atrial specific effects in order to prevent pro-arrhythmic, devastating ventricular effects. In principle, this is possible due to a different...... to the recent discovery that Ca(2+)-activated small conductance K(+) channels (SK channels) are important for the repolarisation of atrial action potentials. Finally, an overview of current pharmacological treatment of AF is included....

  11. Fetal cardiac activity analysis during twin pregnancy using a multi-channel SQUID system (United States)

    Costa Monteiro, E.; Schleussner, E.; Kausch, S.; Grimm, B.; Schneider, A.; Hall Barbosa, C.; Haueisen, J.


    The use of SQUID magnetometers for non-invasive in utero assessment of cardiac electrical disturbances has already been shown to be a valuable clinical tool. In this way, its applicability also for the complicated case of twin pregnancy, in which the proximity of the cardiac magnetic source of each fetus can hamper the individual analysis of cardiac electrical activity, is of clinical interest. In this paper, we present fetal magnetocardiography performed on a mother pregnant of twins with 26 weeks gestational age, measured inside a magnetically shielded room, by using two identical 31-channel low- Tc SQUID magnetometer systems. Each sensor array has been positioned over one of the fetuses, according to its heart position previously assessed with the aid of ultrasound measurements. The raw data is initially averaged in time and, afterwards, analyzed by means of time plots and isofield maps. The time recordings allow the study of the morphology of each fetus’ cardiac signal and the cardiac time intervals. The resultant equivalent dipole obtained from the isofield maps indicates the position and orientation of each fetus heart. The results agree with the ultrasound analysis performed immediately before the measurements and used to obtain the approximate location of the fetuses’ hearts. Since a distinct analysis of the cardiac electrical activity of each fetus could be achieved, the results indicate the potential of the fetal magnetocardiography in the individual antenatal diagnosis of each one of the fetuses of a twin pregnancy.

  12. [Mechanically gated cardiac ion channels and their regulation by cytokines]. (United States)

    Kamkin, A G; Makarenko, E Iu


    The publication presents discussion of the modern vision of mechanisms of mechanoelectric feedback in heart as well as most recent findings regarding possible regulation of cardiomyocyte mechanically gated ion channels by endogenous compounds of immune origin--cytokines. Special attention is devoted to description of cytokine action on cardiac cells, in particular to nitrogen oxide effects on ionic currents, which contribute to generation of the action potential of the cardiomyocyte. We hypothesize that cytokines can potentially trigger such mechano-dependent cardiac pathologies as arrhythmias and fibrillation.

  13. Diltiazem and verapamil preferentially block inactivated cardiac calcium channels. (United States)

    Kanaya, S; Arlock, P; Katzung, B G; Hondeghem, L M


    Diltiazem has been proposed to act by blocking calcium channels of cardiac and smooth muscle since it has pharmacological [12-14] and clinical [10] effects that resemble those of verapamil, an agent that has been shown to block these channels [3]. However, block of the slow inward current by diltiazem has not been directly demonstrated. In fact, it has been suggested that diltiazem has an entirely different mechanism of action [7]. We therefore studied the blocking effects of diltiazem and verapamil on cardiac calcium channels by measuring the slow inward current in voltage-clamped ferret myocardium. Both drugs blocked the slow inward current in a use-dependent fashion, i.e. the block was enhanced by increased frequency of activating clamps and by more positive holding potentials. However, we found that short single activating clamps resulted in minimal block, whereas prolonging the clamp step progressively enhanced the blockade. Thus, a single long clamp caused as much blockade as a train of shorter pulses. These results demonstrate that diltiazem and verapamil block the slow inward current by binding to calcium channels in a state-dependent fashion, i.e. inactivated channels have a high affinity for the drugs, while rested and open channels have a lower affinity.

  14. Voltage and Calcium Dual Channel Optical Mapping of Cultured HL-1 Atrial Myocyte Monolayer (United States)

    Zhao, Weiwei; Fast, Vladimir G.; Ye, Tong; Ai, Xun


    Optical mapping has proven to be a valuable technique to detect cardiac electrical activity on both intact ex vivo hearts and in cultured myocyte monolayers. HL-1 cells have been widely used as a 2-Dimensional cellular model for studying diverse aspects of cardiac physiology. However, it has been a great challenge to optically map calcium (Ca) transients and action potentials simultaneously from the same field of view in a cultured HL-1 atrial cell monolayer. This is because special handling and care is required to prepare healthy cells that can be electrically captured and optically mapped. Therefore, we have developed an optimal working protocol for dual channel optical mapping. In this manuscript, we have described in detail how to perform the dual channel optical mapping experiment. This protocol is a useful tool to enhance the understanding of action potential propagation and Ca kinetics in arrhythmia development. PMID:25867896

  15. Cardiac conductive system excitation maps using intracardiac tissue Doppler imaging

    Institute of Scientific and Technical Information of China (English)

    尹立雪; 郑昌琼; 蔡力; 郑翊; 李春梅; 邓燕; 罗芸; 李德玉; 赵树魁


    Objective To precisely visualize cardiac anatomic structures and simultaneously depict ele ctro-mechanical events for the purpose of precise underblood intervention. Methods Intracardiac high-resolution tissue Doppler imaging was used to map realt imemyocardial contractions in response to electrical activation within the anat omic structure of the cardiac conductive system using a canine open-chest model . Results The detailed inner anatomic structure of the cardiac conductive system at differ entsites (i.e., sino-atrial, atrial wall, atrial-ventricular node and ventr icular wall) with the inside onset and propagation of myocardial velocity and ac celeration induced by electrical activation was clearly visualized and quan titatively evaluated.Conclusion The simultaneous single modality visualization of the anatomy, function and electrical events of the cardiac conductive system will foster target pacing and pre cision ablation.

  16. Entropy Rate Maps of Complex Excitable Dynamics in Cardiac Monolayers

    Directory of Open Access Journals (Sweden)

    Alexander Schlemmer


    Full Text Available The characterization of spatiotemporal complexity remains a challenging task. This holds in particular for the analysis of data from fluorescence imaging (optical mapping, which allows for the measurement of membrane potential and intracellular calcium at high spatial and temporal resolutions and, therefore, allows for an investigation of cardiac dynamics. Dominant frequency maps and the analysis of phase singularities are frequently used for this type of excitable media. These methods address some important aspects of cardiac dynamics; however, they only consider very specific properties of excitable media. To extend the scope of the analysis, we present a measure based on entropy rates for determining spatiotemporal complexity patterns of excitable media. Simulated data generated by the Aliev–Panfilov model and the cubic Barkley model are used to validate this method. Then, we apply it to optical mapping data from monolayers of cardiac cells from chicken embryos and compare our findings with dominant frequency maps and the analysis of phase singularities. The studies indicate that entropy rate maps provide additional information about local complexity, the origins of wave breakup and the development of patterns governing unstable wave propagation.

  17. Mapping cardiac surface mechanics with structured light imaging. (United States)

    Laughner, Jacob I; Zhang, Song; Li, Hao; Shao, Connie C; Efimov, Igor R


    Cardiovascular disease often manifests as a combination of pathological electrical and structural heart remodeling. The relationship between mechanics and electrophysiology is crucial to our understanding of mechanisms of cardiac arrhythmias and the treatment of cardiac disease. While several technologies exist for describing whole heart electrophysiology, studies of cardiac mechanics are often limited to rhythmic patterns or small sections of tissue. Here, we present a comprehensive system based on ultrafast three-dimensional (3-D) structured light imaging to map surface dynamics of whole heart cardiac motion. Additionally, we introduce a novel nonrigid motion-tracking algorithm based on an isometry-maximizing optimization framework that forms correspondences between consecutive 3-D frames without the use of any fiducial markers. By combining our 3-D imaging system with nonrigid surface registration, we are able to measure cardiac surface mechanics at unprecedented spatial and temporal resolution. In conclusion, we demonstrate accurate cardiac deformation at over 200,000 surface points of a rabbit heart recorded at 200 frames/s and validate our results on highly contrasting heart motions during normal sinus rhythm, ventricular pacing, and ventricular fibrillation.

  18. Cardiac Mechano-Gated Ion Channels and Arrhythmias. (United States)

    Peyronnet, Rémi; Nerbonne, Jeanne M; Kohl, Peter


    Mechanical forces will have been omnipresent since the origin of life, and living organisms have evolved mechanisms to sense, interpret, and respond to mechanical stimuli. The cardiovascular system in general, and the heart in particular, is exposed to constantly changing mechanical signals, including stretch, compression, bending, and shear. The heart adjusts its performance to the mechanical environment, modifying electrical, mechanical, metabolic, and structural properties over a range of time scales. Many of the underlying regulatory processes are encoded intracardially and are, thus, maintained even in heart transplant recipients. Although mechanosensitivity of heart rhythm has been described in the medical literature for over a century, its molecular mechanisms are incompletely understood. Thanks to modern biophysical and molecular technologies, the roles of mechanical forces in cardiac biology are being explored in more detail, and detailed mechanisms of mechanotransduction have started to emerge. Mechano-gated ion channels are cardiac mechanoreceptors. They give rise to mechano-electric feedback, thought to contribute to normal function, disease development, and, potentially, therapeutic interventions. In this review, we focus on acute mechanical effects on cardiac electrophysiology, explore molecular candidates underlying observed responses, and discuss their pharmaceutical regulation. From this, we identify open research questions and highlight emerging technologies that may help in addressing them.

  19. PET and SPET tracers for mapping the cardiac nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer [Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Karolinska Hospital, 17176 Stockholm (Sweden)


    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[{sup 18}F]fluorodopamine, (-)-6-[{sup 18}F]fluoronorepinephrine and (-)-[{sup 11}C]epinephrine, and radiolabelled catecholamine analogues, such as [{sup 123}I]meta-iodobenzylguanidine, [{sup 11}C]meta-hydroxyephedrine, [{sup 18}F]fluorometaraminol, [{sup 11}C]phenylephrine and meta-[{sup 76}Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[{sup 18}F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility

  20. Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Frankel, Adam


    Cardiac sodium channels are established therapeutic targets for the management of inherited and acquired arrhythmias by class I anti-arrhythmic drugs (AADs). These drugs share a common target receptor bearing two highly conserved aromatic side chains, and are subdivided by the Vaughan...... the inhibition of cardiac sodium channels by clinically relevant drugs and provide information for the directed design of AADs....

  1. Gap-junction channels inhibit transverse propagation in cardiac muscle

    Directory of Open Access Journals (Sweden)

    Ramasamy Lakshminarayanan


    Full Text Available Abstract The effect of adding many gap-junctions (g-j channels between contiguous cells in a linear chain on transverse propagation between parallel chains was examined in a 5 × 5 model (5 parallel chains of 5 cells each for cardiac muscle. The action potential upstrokes were simulated using the PSpice program for circuit analysis. Either a single cell was stimulated (cell A1 or the entire chain was stimulated simultaneously (A-chain. Transverse velocity was calculated from the total propagation time (TPT from when the first AP crossed a Vm of -20 mV and the last AP crossed -20 mV. The number of g-j channels per junction was varied from zero to 100, 1,000 and 10,000 (Rgj of ∞, 100 MΩ, 10 MΩ, 1.0 MΩ, respectively. The longitudinal resistance of the interstitial fluid (ISF space between the parallel chains (Rol2 was varied between 200 KΩ (standard value and 1.0, 5.0, and 10 MΩ. The higher the Rol2 value, the tighter the packing of the chains. It was found that adding many g-j channels inhibited transverse propagation by blocking activation of all 5 chains, unless Rol2 was greatly increased above the standard value of 200 KΩ. This was true for either method of stimulation. This was explained by, when there is strong longitudinal coupling between all 5 cells of a chain awaiting excitation, there must be more transfer energy (i.e., more current to simultaneously excite all 5 cells of a chain.

  2. Efficient mapping of ligand migration channel networks in dynamic proteins. (United States)

    Lin, Tu-Liang; Song, Guang


    For many proteins such as myoglobin, the binding site lies in the interior, and there is no obvious route from the exterior to the binding site in the average structure. Although computer simulations for a limited number of proteins have found some transiently open channels, it is not clear if there exist more channels elsewhere or how the channels are regulated. A systematic approach that can map out the whole ligand migration channel network is lacking. Ligand migration in a dynamic protein resembles closely a well-studied problem in robotics, namely, the navigation of a mobile robot in a dynamic environment. In this work, we present a novel robotic motion planning inspired approach that can map the ligand migration channel network in a dynamic protein. The method combines an efficient spatial mapping of protein inner space with a temporal exploration of protein structural heterogeneity, which is represented by a structure ensemble. The spatial mapping of each conformation in the ensemble produces a partial map of protein inner cavities and their inter-connectivity. These maps are then merged to form a super map that contains all the channels that open dynamically. Results on the pathways in myoglobin for gaseous ligands demonstrate the efficiency of our approach in mapping the ligand migration channel networks. The results, obtained in a significantly less amount of time than trajectory-based approaches, are in agreement with previous simulation results. Additionally, the method clearly illustrates how and what conformational changes open or close a channel.

  3. Small-conductance Ca2+ -activated K+ channels and cardiac arrhythmias. (United States)

    Zhang, Xiao-Dong; Lieu, Deborah K; Chiamvimonvat, Nipavan


    Small-conductance Ca2+ -activated K+ (SK, KCa2) channels are unique in that they are gated solely by changes in intracellular Ca2+ and, hence, function to integrate intracellular Ca2+ and membrane potentials on a beat-to-beat basis. Recent studies have provided evidence for the existence and functional significance of SK channels in the heart. Indeed, our knowledge of cardiac SK channels has been greatly expanded over the past decade. Interests in cardiac SK channels are further driven by recent studies suggesting the critical roles of SK channels in human atrial fibrillation, the SK channel as a possible novel therapeutic target in atrial arrhythmias, and upregulation of SK channels in heart failure in animal models and in human heart failure. However, there remain critical gaps in our knowledge. Specifically, blockade of SK channels in cardiac arrhythmias has been shown to be both antiarrhythmic and proarrhythmic. This contemporary review provides an overview of the literature on the role of cardiac SK channels in cardiac arrhythmias and serves as a discussion platform for the current clinical perspectives. At the translational level, development of SK channel blockers as a new therapeutic strategy in the treatment of atrial fibrillation and the possible proarrhythmic effects merit further considerations and investigations.

  4. Genetic and environmental factors in cardiac sodium channel disease

    NARCIS (Netherlands)

    Mizusawa, Y.


    Cardiac sodium channelopathies, such as long QT syndrome type3 (LQT3), Brugada syndrome (BrS) and cardiac conduction disease (CCD), are heritable diseases associated with mutations in the SCN5A gene and sudden cardiac death. They were classically thought to be a monogenic disease. However, while LQT

  5. UCP3 Regulates Single-Channel Activity of the Cardiac mCa1. (United States)

    Motloch, Lukas J; Gebing, Tina; Reda, Sara; Schwaiger, Astrid; Wolny, Martin; Hoppe, Uta C


    Mitochondrial Ca(2+) uptake (mCa(2+) uptake) is thought to be mediated by the mitochondrial Ca(2+) uniporter (MCU). UCP2 and UCP3 belong to a superfamily of mitochondrial ion transporters. Both proteins are expressed in the inner mitochondrial membrane of the heart. Recently, UCP2 was reported to modulate the function of the cardiac MCU related channel mCa1. However, the possible role of UCP3 in modulating cardiac mCa(2+) uptake via the MCU remains inconclusive. To understand the role of UCP3, we analyzed cardiac mCa1 single-channel activity in mitoplast-attached single-channel recordings from isolated murine cardiac mitoplasts, from adult wild-type controls (WT), and from UCP3 knockout mice (UCP3(-/-)). Single-channel registrations in UCP3(-/-) confirmed a murine voltage-gated Ca(2+) channel, i.e., mCa1, which was inhibited by Ru360. Compared to WT, mCa1 in UCP3(-/-) revealed similar single-channel characteristics. However, in UCP3(-/-) the channel exhibited decreased single-channel activity, which was insensitive to adenosine triphosphate (ATP) inhibition. Our results suggest that beyond UCP2, UCP3 also exhibits regulatory effects on cardiac mCa1/MCU function. Furthermore, we speculate that UCP3 might modulate previously described inhibitory effects of ATP on mCa1/MCU activity as well.

  6. Cardiac activation mapping using ultrasound current source density imaging (UCSDI). (United States)

    Olafsson, Ragnar; Witte, Russell S; Jia, Congxian; Huang, Sheng-Wen; Kim, Kang; O'Donnell, Matthew


    We describe the first mapping of biological current in a live heart using ultrasound current source density imaging (UCSDI). Ablation procedures that treat severe heart arrhythmias require detailed maps of the cardiac activation wave. The conventional procedure is time-consuming and limited by its poor spatial resolution (5-10 mm). UCSDI can potentially improve on existing mapping procedures. It is based on a pressure-induced change in resistivity known as the acousto-electric (AE) effect, which is spatially confined to the ultrasound focus. Data from 2 experiments are presented. A 540 kHz ultrasonic transducer (f/# = 1, focal length = 90 mm, pulse repetition frequency = 1600 Hz) was scanned over an isolated rabbit heart perfused with an excitation-contraction decoupler to reduce motion significantly while retaining electric function. Tungsten electrodes inserted in the left ventricle recorded simultaneously the AE signal and the low-frequency electrocardiogram (ECG). UCSDI displayed spatial and temporal patterns consistent with the spreading activation wave. The propagation velocity estimated from UCSDI was 0.25 +/- 0.05 mm/ms, comparable to the values obtained with the ECG signals. The maximum AE signal-to-noise ratio after filtering was 18 dB, with an equivalent detection threshold of 0.1 mA/ cm(2). This study demonstrates that UCSDI is a potentially powerful technique for mapping current flow and biopotentials in the heart.

  7. Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. (United States)

    Laughner, Jacob I; Ng, Fu Siong; Sulkin, Matthew S; Arthur, R Martin; Efimov, Igor R


    Optical mapping has become an increasingly important tool to study cardiac electrophysiology in the past 20 years. Multiple methods are used to process and analyze cardiac optical mapping data, and no consensus currently exists regarding the optimum methods. The specific methods chosen to process optical mapping data are important because inappropriate data processing can affect the content of the data and thus alter the conclusions of the studies. Details of the different steps in processing optical imaging data, including image segmentation, spatial filtering, temporal filtering, and baseline drift removal, are provided in this review. We also provide descriptions of the common analyses performed on data obtained from cardiac optical imaging, including activation mapping, action potential duration mapping, repolarization mapping, conduction velocity measurements, and optical action potential upstroke analysis. Optical mapping is often used to study complex arrhythmias, and we also discuss dominant frequency analysis and phase mapping techniques used for the analysis of cardiac fibrillation.

  8. Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel

    DEFF Research Database (Denmark)

    Liin, Sara I.; Silverå Ejneby, Malin; Barro-Soria, Rene;


    charge at neutral pH, restore the sensitivity to open IKs channels. PUFA analogs with a positively charged head group inhibit IKs channels. These different PUFA analogs could be developed into drugs to treat cardiac arrhythmias. In support of this possibility, we show that PUFA analogs act...

  9. Mutations in the Kv1.5 channel gene KCNA5 in cardiac arrest patients

    DEFF Research Database (Denmark)

    Nielsen, Nathalie H; Winkel, Bo G; Kanters, Jørgen K


    identified the point mutations P91L and E33V in the KCNA5 gene encoding the Kv1.5 potassium channel that has not previously been associated with arrhythmia. We functionally characterized the mutations in HEK293 cells. The mutated channels behaved similarly to the wild-type with respect to biophysical......Mutations in one of the ion channels shaping the cardiac action potential can lead to action potential prolongation. However, only in a minority of cardiac arrest cases mutations in the known arrhythmia-related genes can be identified. In two patients with arrhythmia and cardiac arrest, we...... characteristics and drug sensitivity. Both patients also carried a D85N polymorphism in KCNE1, which was neither found to influence the Kv1.5 nor the Kv7.1 channel activity. We conclude that although the two N-terminal Kv1.5 mutations did not show any apparent electrophysiological phenotype, it is possible...

  10. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoqi Zhao

    Full Text Available Abstract Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the body. Evidence exhibits that HCN channels play critical roles in the generation and conduction of the electrical impulse and the physiopathological process of some cardiac diseases. They may constitute promising drug targets in the treatment of these cardiac diseases. Pharmacological treatment targeting HCN channels is of benefit to these cardiac conditions.

  11. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound (United States)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei


    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  12. [Myotonia and cardiac conduction defects in myotonic dystrophy and defect in ion channels]. (United States)

    Kubota, Tomoya; Nakamori, Masayuki; Takahashi, Masanori P


    Myotonic dystrophy (DM), the most common hereditary muscle disease in adults, is caused by the unstable genomic expansion of simple sequence repeats. This disease is characterized by myotonia and various multisystemic complications, most commonly those of the cardiac, endocrine, and central nervous systems. The cardiac abnormalities, especially cardiac conduction defects, significantly contribute to morbidity and mortality in DM patients. Therefore, understanding the pathophysiology of cardiac conduction defects in DM is important. The pathomechanism of DM has been thoroughly investigated. The mutant RNA transcripts containing the expanded repeat give rise to a toxic gain-of-function by perturbing splicing factors in the nucleus, leading to the misregulation of alternative pre-mRNA splicing. In particular, several studies, including ours, have shown that myotonia is caused by alternative splicing of the CLCN1 gene coding the voltage-gated chloride channel in skeletal muscle through an "RNA-dominant mechanism". Since the aberrantly spliced isoform does not seem to form a functional channel, the feature of skeletal muscle in DM can be interpreted as a "channelopathy" caused by reduced chloride channel protein. Similarly, we recently identified a misregulation of alternative splicing in an ion channel gene which is known to be responsible for arrhythmic disease showing Mendelian inheritance. Here, we review the cardiac manifestation and RNA-dominant mechanism of DM, and discuss the possible pathophysiology of cardiac conduction defects by referring to hereditary arrhythmic diseases, such as long QT syndrome and Brugada syndrome.

  13. Functional Alterations of Ion Channels From Cardiac Fibroblasts in Heart Diseases

    Directory of Open Access Journals (Sweden)

    Gracious R. Ross


    Full Text Available In an aged population, cardiovascular disease is the leading cause of fatality and morbidity. Age-related fibrotic remodeling of the heart contributes to progressive myocardial dysfunction. Cardiac fibroblasts (CF, responsible for the maintenance of extracellular matrix and fibrosis process, play an important role in cardiac health and disease. CFs influence myocardial function by their chemical, electrical and mechanical interactions with cardiomyocytes through extracellular matrix deposition or secretion of cytokines and growth factors. These, in turn, are modulated by ion channels, macromolecular pores in the plasma membrane that allow selective ionic fluxes of major ions like K+, Ca2+, Na+ or Cl-, which affect membrane potential and cellular signal transduction. The importance of ion channels in modulating various functions of CFs, including proliferation, differentiation, secretion and apoptosis, is being recognized from recent studies of CFs from animal models and tissue from patients with various cardiac pathologies. Understanding the role of ion channels in CFs under physiological conditions and their alterations in age-related cardiac diseases may help facilitate development of novel therapeutic strategies to limit cardiac fibrosis and its adverse effect on myocardial function. This narrative review summarizes the knowledge gained thus far on ion channels in CFs and their relationship with cardiac diseases in human and experimental animal models.

  14. Rescue of mutated cardiac ion channels in inherited arrhythmia syndromes. (United States)

    Balijepalli, Sadguna Y; Anderson, Corey L; Lin, Eric C; January, Craig T


    Inherited arrhythmia syndromes comprise an increasingly complex group of diseases involving mutations in multiple genes encoding ion channels, ion channel accessory subunits and channel interacting proteins, and various regulatory elements. These mutations serve to disrupt normal electrophysiology in the heart, leading to increased arrhythmogenic risk and death. These diseases have added impact as they often affect young people, sometimes without warning. Although originally thought to alter ion channel function, it is now increasingly recognized that mutations may alter ion channel protein and messenger RNA processing, to reduce the number of channels reaching the surface membrane. For many of these mutations, it is also known that several interventions may restore protein processing of mutant channels to increase their surface membrane expression toward normal. In this article, we reviewed inherited arrhythmia syndromes, focusing on long QT syndrome type 2, and discuss the complex biology of ion channel trafficking and pharmacological rescue of disease-causing mutant channels. Pharmacological rescue of misprocessed mutant channel proteins, or their transcripts providing appropriate small molecule drugs can be developed, has the potential for novel clinical therapies in some patients with inherited arrhythmia syndromes.

  15. Digoxin activates sarcoplasmic reticulum Ca(2+)-release channels: a possible role in cardiac inotropy.



    1. The effect of digoxin on rapid 45Ca2+ efflux from cardiac and skeletal sarcoplasmic reticulum (SR) vesicles was investigated. Additionally the interaction of digoxin with single cardiac and skeletal muscle SR Ca(2+)-release channels incorporated into planar phospholipid bilayers and held under voltage clamp was determined. 2. Digoxin (1 nM) increased the initial rate and amount of Ca(2+)-induced release of 45Ca2+ from cardiac SR vesicles, passively loaded with 45CaCl2, at an extravesicular...

  16. Effects of n-3 polyunsaturated fatty acids on cardiac ion channels

    Directory of Open Access Journals (Sweden)

    Cristina eMoreno


    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been reported to exhibit antiarrhythmic properties, attributed to their capability to modulate ion channels. In the present review, we will focus on the effects of PUFAs on cardiac sodium channel (Nav1.5 and two potassium channels (Kv (Kv1.5 and Kv11.1. n-3 marine (docohexaenoic and eicohexapentaenoic acid and plant origin (alpha-linolenic acid PUFAs block Kv1.5 and Kv11.1 channels at physiological concentrations. Also, DHA and EPA decreased Nav1.5 and calcium channels. These effects on Na and Ca channels theoretically should shorten the cardiac APD, whereas the blocking actions of n-3 PUFAs of Kv channels should lengthen the cardiac action potential. Experiments performed in female rabbits fed with a diet rich in n-3 PUFAs show a longer cardiac action potential and effective refractory period. This study was performed to analyze if their antiarrhythmic effects are due to a reduction of triangulation, reverse use-dependence, instability and dispersion of the cardiac action potential (TRIaD as a measure of proarrhythmic effects. Dietary n-3 PUFAs supplementation markedly reduced dofetilide-induced TRIaD and abolished dofetilide-induced torsades de pointes (TdP. Ultrafast sodium channel block by DHA may account for the antiarrhythmic protection of dietary supplements of n-3 PUFAs against dofetilide induced proarrhythmia observed in this animal model. The cardiac effects of n-3 PUFAs resemble those of amiodarone: both block sodium, calcium and potassium channels, have anti-adrenergic properties, can prolong the cardiac action potential, reverse TRIaD and suppress TdP. The main difference is that sodium channel block by n-3 PUFAs has a much faster onset and offset kinetics. Therefore, the electrophysiological profile of n-3 PUFAs appears more desirable: the duration of reduced sodium current (facilitates re-entry is much shorter. The n-3 PUFAs appear as a safer alternative to other antiarrhythmic

  17. Nearinfrared spectral mapping of Titan's mountains and channels


    Barnes, J.W.; Radebaugh, J.; Brown, R. H.; Wall, S.; Soderblum, L.; Lunine, J.; Buratti, B. J.; Baines, K.H.; Sotin, C.; Le Mouelic, S.; Rodriguez, S.; Clark, R.N.; Nicholson, P. D; Jaumann, Ralf (Prof. Dr.); Lopes, R.


    Cassini studies of the surface of Titan are beginning to reveal its nature. In addition to hills, channels, and cobbles seen by the Huygens probe, the Visual and Infrared Mapping Spectrometer (VIMS) and RADAR instruments onboard the orbiter have seen sand dunes , channels , mountains [5, 6], and cryovolcanic candidates. Recently the RADAR team announced the discovery of possible lakes near Titan’s north pole.

  18. Protection of Coronary Endothelial Function during Cardiac Surgery: Potential of Targeting Endothelial Ion Channels in Cardioprotection

    Directory of Open Access Journals (Sweden)

    Qin Yang


    Full Text Available Vascular endothelium plays a critical role in the control of blood flow by producing vasoactive factors to regulate vascular tone. Ion channels, in particular, K+ channels and Ca2+-permeable channels in endothelial cells, are essential to the production and function of endothelium-derived vasoactive factors. Impairment of coronary endothelial function occurs in open heart surgery that may result in reduction of coronary blood flow and thus in an inadequate myocardial perfusion. Hyperkalemic exposure and concurrent ischemia-reperfusion during cardioplegic intervention compromise NO and EDHF-mediated function and the impairment involves alterations of K+ channels, that is, KATP and KCa, and Ca2+-permeable TRP channels in endothelial cells. Pharmacological modulation of these channels during ischemia-reperfusion and hyperkalemic exposure show promising results on the preservation of NO and EDHF-mediated endothelial function, which suggests the potential of targeting endothelial K+ and TRP channels for myocardial protection during cardiac surgery.

  19. Digoxin activates sarcoplasmic reticulum Ca(2+)-release channels: a possible role in cardiac inotropy. (United States)

    McGarry, S J; Williams, A J


    1. The effect of digoxin on rapid 45Ca2+ efflux from cardiac and skeletal sarcoplasmic reticulum (SR) vesicles was investigated. Additionally the interaction of digoxin with single cardiac and skeletal muscle SR Ca(2+)-release channels incorporated into planar phospholipid bilayers and held under voltage clamp was determined. 2. Digoxin (1 nM) increased the initial rate and amount of Ca(2+)-induced release of 45Ca2+ from cardiac SR vesicles, passively loaded with 45CaCl2, at an extravesicular [Ca2+] of 0.1 microM. The efflux in the presence and absence of digoxin was inhibited at pM extravesicular Ca2+ and blocked by 5 mM Mg2+. 3. To elucidate the mechanism of action of digoxin, single-channel recording was used. Digoxin (1-20 nM) increased single-channel open probability (Po) when added to the cytosolic but not the luminal face of the cardiac channel in the presence of sub-maximally activating Ca2+ (0.1 microM-10 microM) with an EC50 of 0.91 nM at 10 microM Ca2+. The mechanisms underlying the action of digoxin appear to be concentration-dependent. The activation observed at 1 nM digoxin appears to be consistent with the sensitization of the channel to the effects of Ca2+. At higher concentrations the drug appears to interact synergistically with Ca2+ to produce values of Po considerably greater than those seen with Ca2+ as the sole activating ligand. 4. Digoxin had no effect on single-channel conductance or the Ca2+/Tris permeability ratio. In channels activated by digoxin the Po was decreased by Mg2+. Single-channels were characteristically modified to along lasting open, but reduced, conductance state when 100 nM ryanodine was added to the cytosolic side of the channel.5. Activation of the cardiac SR Ca2+-release channel was observed with similar concentrations of digitoxin, however, higher concentrations of ouabain were required to increase PO. In contrast, a steroid which is not positively inotropic, chlormadinone acetate, had no effect on either cardiac or

  20. A novel LQT3 mutation implicates the human cardiac sodium channel domain IVS6 in inactivation kinetics

    NARCIS (Netherlands)

    Groenewegen, WA; Bezzina, CR; van Tintelen, JP; Hoorntje, TM; Mannens, MMAM; Wilde, AAM; Jongsma, HJ; Rook, MB


    The Long QT3 syndrome is associated with mutations in the cardiac sodium channel gene SCN5A. Objective: The aim of the present study was the identification and functional characterization of a mutation in a family with the long QT3 syndrome. Methods: The human cardiac sodium channel gene SCN5A was s

  1. Role of Sodium Channel on Cardiac Action Potential

    Directory of Open Access Journals (Sweden)

    S. H. Sabzpoushan


    Full Text Available Sudden cardiac death is a major cause of death worldwide. In most cases, it's caused by abnormal action potential propagation that leads to cardiac arrhythmia. The aim of this article is to study the abnormal action potential propagation through sodium ion concentration variations. We use a new electrophysiological model that is both detailed and computationally efficient. This efficient model is based on the partial differential equation method. The central finite difference method is used for numerical solving of the two-dimensional (2D wave propagation equation. Simulations are implemented in two stages, as a single cardiac cell and as a two-dimensional grid of cells. In both stages, the normal action potential formation in case of a single cell and it's normal propagation in case of a two-dimensional grid of cells were simulated with nominal sodium ion conductance. Then, the effect of sodium ion concentration on the action potential signal was studied by reducing the sodium ion conductance. It is concluded that reducing the sodium ion conductance, decreases both passing ability and conduction velocity of the action potential wave front.

  2. Inherited Cardiac Diseases Caused by Mutations in the Nav1.5 Sodium Channel

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Jacob; Winkel, Bo Gregers; Grunnet, Morten;


    propagation is the depolarizing sodium current, responsible for the initial depolarization of the cardiomyocytes. Recent research has shown that mutations in the SCN5A gene, encoding the cardiac sodium channel Nav1.5, are associated with both rare forms of ventricular arrhythmia, as well as the most frequent...

  3. Phenotypical Manifestations of Mutations in the Genes Encoding Subunits of the Cardiac Sodium Channel

    NARCIS (Netherlands)

    Wilde, Arthur A. M.; Brugada, Ramon


    Variations in the gene encoding for the major sodium channel (Na(v)1.5) in the heart, SCN5A, has been shown to cause a number of arrhythmia syndromes (with or without structural changes in the myocardium), including the long-QT syndrome (type 3), Brugada syndrome, (progressive) cardiac conduction di

  4. Metabolic alterations derived from absence of Two-Pore Channel 1 at cardiac level

    Indian Academy of Sciences (India)



    Two-pore channels (TPCs or TPCNs) are novel voltage-gated ion channels that have been postulated to act as Ca2+ and/orNa+ channels expressed exclusively in acidic organelles such as endosomes and lysosomes. TPCNs participate in theregulation of diverse biological processes and recently have been proposed to be involved in the pathophysiology ofmetabolic disorders such as obesity, fatty liver disease and type 2 diabetes mellitus. Due to the importance of thesepathologies in the development of cardiovascular diseases, we aimed to study the possible role of two-pore channel 1(TPCN1) in the regulation of cardiac metabolism. To explore the cardiac function of TPCN1, we developed proteomicapproaches as 2-DE-MALDI-MS and LC-MALDI-MS in the cardiac left ventricle of TPCN1 KO and WT mice, and foundalterations in several proteins implicated in glucose and fatty acid metabolism in TPCN1 KO vs. WT mice. The resultsconfirmed the altered expression of HFABP, a key fatty acid transport protein, and of enolase and PGK1, the key enzymes inthe glycolytic process. Finally, in vitro experiments performed in neonatal rat cardiomyocytes, in which TPCN1 was silencedusing siRNAs, confirmed that the downregulation of TPCN1 gene expression increased 2-deoxy-D-[3H]-glucose uptake andGLUT4 mobilization into cell peripherals in cardiac cells. Our results are the first to suggest a potential role for TPCNs incardiac metabolism regulation.

  5. The antimalarial drug mefloquine inhibits cardiac inward rectifier K+ channels: evidence for interference in PIP2-channel interaction. (United States)

    López-Izquierdo, Angélica; Ponce-Balbuena, Daniela; Moreno-Galindo, Eloy G; Aréchiga-Figueroa, Iván A; Rodríguez-Martínez, Martín; Ferrer, Tania; Rodríguez-Menchaca, Aldo A; Sánchez-Chapula, José A


    The antimalarial drug mefloquine was found to inhibit the KATP channel by an unknown mechanism. Because mefloquine is a Cationic amphiphilic drug and is known to insert into lipid bilayers, we postulate that mefloquine interferes with the interaction between PIP2 and Kir channels resulting in channel inhibition. We studied the inhibitory effects of mefloquine on Kir2.1, Kir2.3, Kir2.3(I213L), and Kir6.2/SUR2A channels expressed in HEK-293 cells, and on IK1 and IKATP from feline cardiac myocytes. The order of mefloquine inhibition was Kir6.2/SUR2A ≈ Kir2.3 (IC50 ≈ 2 μM) > Kir2.1 (IC50 > 30 μM). Similar results were obtained in cardiac myocytes. The Kir2.3(I213L) mutant, which enhances the strength of interaction with PIP2 (compared to WT), was significantly less sensitive (IC50 = 9 μM). In inside-out patches, continuous application of PIP2 strikingly prevented the mefloquine inhibition. Our results support the idea that mefloquine interferes with PIP2-Kir channels interactions.

  6. MAP decoding of variable length codes over noisy channels (United States)

    Yao, Lei; Cao, Lei; Chen, Chang Wen


    In this paper, we discuss the maximum a-posteriori probability (MAP) decoding of variable length codes(VLCs) and propose a novel decoding scheme for the Huffman VLC coded data in the presence of noise. First, we provide some simulation results of VLC MAP decoding and highlight some features that have not been discussed yet in existing work. We will show that the improvement of MAP decoding over the conventional VLC decoding comes mostly from the memory information in the source and give some observations regarding the advantage of soft VLC MAP decoding over hard VLC MAP decoding when AWGN channel is considered. Second, with the recognition that the difficulty in VLC MAP decoding is the lack of synchronization between the symbol sequence and the coded bit sequence, which makes the parsing from the latter to the former extremely complex, we propose a new MAP decoding algorithm by integrating the information of self-synchronization strings (SSSs), one important feature of the codeword structure, into the conventional MAP decoding. A consistent performance improvement and decoding complexity reduction over the conventional VLC MAP decoding can be achieved with the new scheme.

  7. Use-dependent block of cardiac sodium channels by quaternary derivatives of lidocaine. (United States)

    Gintant, G A; Hoffman, B F


    Modulation of the reduction of fast inward sodium current by local anesthetics due to changes in electrical activity has been termed use-dependent block ( Courtney 1975). To determine the mechanisms responsible for use-dependent block of cardiac sodium channels and to compare use-dependent block in cardiac and nerve preparations, we investigated use-dependent block of cardiac sodium channels by the quaternary lidocaine analogues QX -314 and QX -222 (two agents previously studied in nerve). We used canine cardiac Purkinje fibers, and assessed changes in the fast inward sodium current using changes in the maximum rate of rise of the action potential upstroke (Vmax). Two microelectrode voltage clamp and current clamp techniques were used to control membrane potential prior to stimulated upstrokes . Use-dependent block was not affected by shortening the action potential duration during rapid stimulation. Partial recovery from use-dependent block was observed during rapid stimulation with brief depolarizing prepulses terminating immediately prior to the upstroke. Similar prepulses also prevented the development of use-dependent block following an abrupt increase in the stimulation rate. Hyperpolarizing prepulses during rapid stimulation caused recovery from use-dependent block; recovery was greater and more rapid with increasingly negative prepulses . Hyperpolarization during periods of electrical quiescence also caused greater recovery. These results, interpreted using the modulated receptor hypothesis ( Hille 1977; Hondeghem and Katzung 1977), suggest that use-dependent block of cardiac sodium channels by quaternary local anesthetics is due to drug association with the inactivated sodium channel receptor which occurs only after these drugs gain access to the receptor site through open sodium channels.

  8. Cardiac mechanosensitivity and stretch-activated ion channels. (United States)

    Bett, G C; Sachs, F


    Mechanosensitivity is a ubiquitous property of cells, and mechanosensitive ion channels (MSCs) are hypothesized to be the transducers. In the heart, MSCs are likely to account for changes in beating rate as a function of filling and for initiating stretch-induced arrhythmias (for example, following a myocardial infarction). Pharmacological agents that affect MSCs may provide a new class of antiarrhythmic drugs. © 1997, Elsevier Science Inc. (Trends Cardiovasc Med 1997;7:4-8).

  9. Cardiac specific ATP-sensitive K+ channel (KATP) overexpression results in embryonic lethality. (United States)

    Toib, Amir; Zhang, Hai Xia; Broekelmann, Thomas J; Hyrc, Krzysztof L; Guo, Qiusha; Chen, Feng; Remedi, Maria S; Nichols, Colin G


    Transgenic mice overexpressing SUR1 and gain of function Kir6.2[∆N30, K185Q] K(ATP) channel subunits, under cardiac α-myosin heavy chain (αMHC) promoter control, demonstrate arrhythmia susceptibility and premature death. Pregnant mice, crossed to carry double transgenic progeny, which harbor high levels of both overexpressed subunits, exhibit the most extreme phenotype and do not deliver any double transgenic pups. To explore the fetal lethality and embryonic phenotype that result from K(ATP) overexpression, wild type (WT) and K(ATP) overexpressing embryonic cardiomyocytes were isolated, cultured and voltage-clamped using whole cell and excised patch clamp techniques. Whole mount embryonic imaging, Hematoxylin and Eosin (H&E) and α smooth muscle actin (αSMA) immunostaining were used to assess anatomy, histology and cardiac development in K(ATP) overexpressing and WT embryos. Double transgenic embryos developed in utero heart failure and 100% embryonic lethality by 11.5 days post conception (dpc). K(ATP) currents were detectable in both WT and K(ATP)-overexpressing embryonic cardiomyocytes, starting at early stages of cardiac development (9.5 dpc). In contrast to adult cardiomyocytes, WT and K(ATP)-overexpressing embryonic cardiomyocytes exhibit basal and spontaneous K(ATP) current, implying that these channels may be open and active under physiological conditions. At 9.5 dpc, live double transgenic embryos demonstrated normal looping pattern, although all cardiac structures were collapsed, probably representing failed, non-contractile chambers. In conclusion, K(ATP) channels are present and active in embryonic myocytes, and overexpression causes in utero heart failure and results in embryonic lethality. These results suggest that the K(ATP) channel may have an important physiological role during early cardiac development.

  10. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    Directory of Open Access Journals (Sweden)

    Clemens eMoeller


    Full Text Available The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and Torsades de Pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the gold-standard for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.

  11. Effects of stochastic channel gating and distribution on the cardiac action potential. (United States)

    Lemay, Mathieu; de Lange, Enno; Kucera, Jan P


    Ion channels exhibit stochastic conformational changes determining their gating behavior. In addition, the process of protein turnover leads to a natural variability of the number of membrane and gap junctional channels. Nevertheless, in computational models, these two aspects are scarcely considered and their impacts are largely unknown. We investigated the effects of stochastic current fluctuations and channel distributions on action potential duration (APD), intercellular conduction delays (ICDs) and conduction blocks using a modified ventricular cell model (Rudy et al.) with Markovian formulations of the principal ion currents (to simulate their stochastic open-close gating behavior) and with channel counts drawn from Poisson distributions (to simulate their natural variability). In single cells, APD variability (coefficient of variation: 1.6% at BCL=1000ms) was essentially caused by stochastic channel gating of I(Ks), persistent I(Na) and I(Ca,L). In cell strands, ICD variability induced by stochastic channel gating and Poissonian channel distributions was low under normal conditions. Nonetheless, at low intercellular coupling levels, Poissonian gap junctional channel distribution resulted in a large ICD variability (coefficient of variation >20%), highly heterogeneous conduction patterns and conduction blocks. Therefore, the stochastic behavior of current fluctuations and channel distributions can contribute to the heterogeneity of conduction patterns and to conduction block, as observed previously in experiments in cardiac tissue with altered intercellular coupling.

  12. Nonlinear Algorithms for Channel Equalization and Map Symbol Detection. (United States)

    Giridhar, K.

    The transfer of information through a communication medium invariably results in various kinds of distortion to the transmitted signal. In this dissertation, a feed -forward neural network-based equalizer, and a family of maximum a posteriori (MAP) symbol detectors are proposed for signal recovery in the presence of intersymbol interference (ISI) and additive white Gaussian noise. The proposed neural network-based equalizer employs a novel bit-mapping strategy to handle multilevel data signals in an equivalent bipolar representation. It uses a training procedure to learn the channel characteristics, and at the end of training, the multilevel symbols are recovered from the corresponding inverse bit-mapping. When the channel characteristics are unknown and no training sequences are available, blind estimation of the channel (or its inverse) and simultaneous data recovery is required. Convergence properties of several existing Bussgang-type blind equalization algorithms are studied through computer simulations, and a unique gain independent approach is used to obtain a fair comparison of their rates of convergence. Although simple to implement, the slow convergence of these Bussgang-type blind equalizers make them unsuitable for many high data-rate applications. Rapidly converging blind algorithms based on the principle of MAP symbol-by -symbol detection are proposed, which adaptively estimate the channel impulse response (CIR) and simultaneously decode the received data sequence. Assuming a linear and Gaussian measurement model, the near-optimal blind MAP symbol detector (MAPSD) consists of a parallel bank of conditional Kalman channel estimators, where the conditioning is done on each possible data subsequence that can convolve with the CIR. This algorithm is also extended to the recovery of convolutionally encoded waveforms in the presence of ISI. Since the complexity of the MAPSD algorithm increases exponentially with the length of the assumed CIR, a suboptimal

  13. BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo. (United States)

    Lai, Michael H; Wu, Yuejin; Gao, Zhan; Anderson, Mark E; Dalziel, Julie E; Meredith, Andrea L


    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels play prominent roles in shaping muscle and neuronal excitability. In the cardiovascular system, BK channels promote vascular relaxation and protect against ischemic injury. Recently, inhibition of BK channels has been shown to lower heart rate in intact rodents and isolated hearts, suggesting a novel role in heart function. However, the underlying mechanism is unclear. In the present study, we recorded ECGs from mice injected with paxilline (PAX), a membrane-permeable BK channel antagonist, and examined changes in cardiac conduction. ECGs revealed a 19 ± 4% PAX-induced reduction in heart rate in wild-type but not BK channel knockout (Kcnma1(-/-)) mice. The heart rate decrease was associated with slowed cardiac pacing due to elongation of the sinus interval. Action potential firing recorded from isolated sinoatrial node cells (SANCs) was reduced by 55 ± 15% and 28 ± 9% by application of PAX (3 μM) and iberiotoxin (230 nM), respectively. Furthermore, baseline firing rates from Kcnma1(-/-) SANCs were 33% lower than wild-type SANCs. The slowed firing upon BK current inhibition or genetic deletion was due to lengthening of the diastolic depolarization phase of the SANC action potential. Finally, BK channel immunoreactivity and PAX-sensitive currents were identified in SANCs with HCN4 expression and pacemaker current, respectively, and BK channels cloned from SANCs recapitulated similar activation as the PAX-sensitive current. Together, these data localize BK channels to SANCs and demonstrate that loss of BK current decreases SANC automaticity, consistent with slowed sinus pacing after PAX injection in vivo. Furthermore, these findings suggest BK channels are potential therapeutic targets for disorders of heart rate.

  14. Sudden infant death syndrome caused by cardiac arrhythmias: only a matter of genes encoding ion channels? (United States)

    Sarquella-Brugada, Georgia; Campuzano, Oscar; Cesar, Sergi; Iglesias, Anna; Fernandez, Anna; Brugada, Josep; Brugada, Ramon


    Sudden infant death syndrome is the unexpected demise of a child younger than 1 year of age which remains unexplained after a complete autopsy investigation. Usually, it occurs during sleep, in males, and during the first 12 weeks of life. The pathophysiological mechanism underlying the death is unknown, and the lethal episode is considered multifactorial. However, in cases without a conclusive post-mortem diagnosis, suspicious of cardiac arrhythmias may also be considered as a cause of death, especially in families suffering from any cardiac disease associated with sudden cardiac death. Here, we review current understanding of sudden infant death, focusing on genetic causes leading to lethal cardiac arrhythmias, considering both genes encoding ion channels as well as structural proteins due to recent association of channelopathies and desmosomal genes. We support a comprehensive analysis of all genes associated with sudden cardiac death in families suffering of infant death. It allows the identification of the most plausible cause of death but also of family members at risk, providing cardiologists with essential data to adopt therapeutic preventive measures in families affected with this lethal entity.

  15. Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation (United States)

    Zingman, Leonid V.; Zhu, Zhiyong; Sierra, Ana; Stepniak, Elizabeth; Burnett, Colin M-L.; Maksymov, Gennadiy; Anderson, Mark E.; Coetzee, William A.; Hodgson-Zingman, Denice M.


    Physical activity is one of the most important determinants of cardiac function. The ability of the heart to increase delivery of oxygen and metabolic fuels relies on an array of adaptive responses necessary to match bodily demand while avoiding exhaustion of cardiac resources. The ATP-sensitive potassium (KATP) channel has the unique ability to adjust cardiac membrane excitability in accordance with ATP and ADP levels, and up-regulation of its expression that occurs in response to exercise could represent a critical element of this adaption. However, the mechanism by which KATP channel expression changes result in a beneficial effect on cardiac excitability and function remains to be established. Here, we demonstrate that an exercise-induced rise in KATP channel expression enhanced the rate and magnitude of action potential shortening in response to heart rate acceleration. This adaptation in membrane excitability promoted significant reduction in cardiac energy consumption under escalating workloads. Genetic disruption of normal KATP channel pore function abolished the exercise-related changes in action potential duration adjustment and caused increased cardiac energy consumption. Thus, an expression-driven enhancement in the KATP channel-dependent membrane response to alterations in cardiac workload represents a previously unrecognized mechanism for adaptation to physical activity and a potential target for cardioprotection. PMID:21439969

  16. Crystal orientation mapping via ion channeling: An alternative to EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, C.; Douillard, T.; Yuan, H. [University of Lyon – INSA de Lyon – CNRS, MATEIS, UMR 5510, Bât. Blaise Pascal, 20 Avenue Albert Einstein, 69621 Villeurbanne (France); Blanchard, N.P. [University of Lyon – CNRS, ILM, UMR 5306, Université Lyon I, Bât. A. Kastler, 10 rue A. Byron, 69622 Villeurbanne (France); Descamps-Mandine, A. [University of Lyon – CNRS, INL, UMR 5510, Bât. B. Pascal, INSA de Lyon/Université Lyon I, 69621 Villeurbanne (France); Van de Moortèle, B. [Ecole Normale Supérieure de Lyon – CNRS, LGL, 46 allée d’Italie, 69364 Lyon (France); Rigotti, C. [University of Lyon – INSA de Lyon – CNRS, LIRIS, UMR 5205, INRIA, Bât. Blaise Pascal, 20 Avenue Albert Einstein, 69621 Villeurbanne (France); Epicier, T. [University of Lyon – INSA de Lyon – CNRS, MATEIS, UMR 5510, Bât. Blaise Pascal, 20 Avenue Albert Einstein, 69621 Villeurbanne (France)


    A new method, which we name ion CHanneling ORientation Determination (iCHORD), is proposed to obtain orientation maps on polycrystals via ion channeling. The iChord method exploits the dependence between grain orientation and ion beam induced secondary electron image contrast. At each position of the region of interest, intensity profiles are obtained from a series of images acquired with different orientations with respect to the ion beam. The profiles are then compared to a database of theoretical profiles of known orientation. The Euler triplet associated to the most similar theoretical profile gives the orientation at that position. The proof-of-concept is obtained on a titanium nitride sample. The potentialities of iCHORD as an alternative to EBSD are then discussed. - Highlights: • A new method is proposed to obtain orientation maps via ion channeling. • This method exploits the dependence between grain orientation and SE image contrast. • Intensity profiles are obtained from images acquired with different orientations. • The profiles are then compared to a database of theoretical profiles of known orientation. • The potentialities of this method as an alternative to EBSD are discussed.

  17. Comparison of electrophysiological effects of calcium channel blockers on cardiac repolarization. (United States)

    Lee, Hyang-Ae; Hyun, Sung-Ae; Park, Sung-Gurl; Kim, Ki-Suk; Kim, Sung Joon


    Dihydropyridine (DHP) calcium channel blockers (CCBs) have been widely used to treat of several cardiovascular diseases. An excessive shortening of action potential duration (APD) due to the reduction of Ca(2+) channel current (I Ca) might increase the risk of arrhythmia. In this study we investigated the electrophysiological effects of nicardipine (NIC), isradipine (ISR), and amlodipine (AML) on the cardiac APD in rabbit Purkinje fibers, voltage-gated K(+) channel currents (I Kr, I Ks) and voltage-gated Na(+) channel current (I Na). The concentration-dependent inhibition of Ca(2+) channel currents (I Ca) was examined in rat cardiomyocytes; these CCBs have similar potency on I Ca channel blocking with IC50 (the half-maximum inhibiting concentration) values of 0.142, 0.229, and 0.227 nM on NIC, ISR, and AML, respectively. However, ISR shortened both APD50 and APD90 already at 1 µM whereas NIC and AML shortened APD50 but not APD90 up to 30 µM. According to ion channel studies, NIC and AML concentration-dependently inhibited I Kr and I Ks while ISR had only partial inhibitory effects (NIC and AML could compensate for the AP shortening effects due to the block of I Ca.

  18. Map-Based Channel Model for Urban Macrocell Propagation Scenarios

    Directory of Open Access Journals (Sweden)

    Jose F. Monserrat


    Full Text Available The evolution of LTE towards 5G has started and different research projects and institutions are in the process of verifying new technology components through simulations. Coordination between groups is strongly recommended and, in this sense, a common definition of test cases and simulation models is needed. The scope of this paper is to present a realistic channel model for urban macrocell scenarios. This model is map-based and takes into account the layout of buildings situated in the area under study. A detailed description of the model is given together with a comparison with other widely used channel models. The benchmark includes a measurement campaign in which the proposed model is shown to be much closer to the actual behavior of a cellular system. Particular attention is given to the outdoor component of the model, since it is here where the proposed approach is showing main difference with other previous models.

  19. Rate-dependent activation failure in isolated cardiac cells and tissue due to Na+ channel block. (United States)

    Varghese, Anthony; Spindler, Anthony J; Paterson, David; Noble, Denis


    While it is well established that class-I antiarrhythmics block cardiac sodium channels, the mechanism of action of therapeutic levels of these drugs is not well understood. Using a combination of mathematical modeling and in vitro experiments, we studied the failure of activation of action potentials in single ventricular cells and in tissue caused by Na(+) channel block. Our computations of block and unblock of sodium channels by a theoretical class-Ib antiarrhythmic agent predict differences in the concentrations required to cause activation failure in single cells as opposed to multicellular preparations. We tested and confirmed these in silico predictions with in vitro experiments on isolated guinea-pig ventricular cells and papillary muscles stimulated at various rates (2-6.67 Hz) and exposed to various concentrations (5 × 10(-6) to 500 × 10(-6) mol/l) of lidocaine. The most salient result was that whereas large doses (5 × 10(-4) mol/l or higher) of lidocaine were required to inhibit action potentials temporarily in single cells, much lower doses (5 × 10(-6) mol/l), i.e., therapeutic levels, were sufficient to have the same effect in papillary muscles: a hundredfold difference. Our experimental results and mathematical analysis indicate that the syncytial nature of cardiac tissue explains the effects of clinically relevant doses of Na(+) channel blockers.

  20. Intraoperative cardiac mapping in the treatment of an infant congenital fibroma. (United States)

    Sakamoto, Shun-Ichiro; Shibata, Masafumi; Murata, Hiroshige; Nitta, Takashi


    Surgical treatment for ventricular tachycardia associated with congenital cardiac tumors is rare. Intraoperative electroanatomic mapping was performed in a 23-month-old female infant to identify the arrhythmogenic substrate of the epicardium before tumor resection. Verification of the localized abnormal electrocardiogram on the tumor in the treatment of ventricular tachycardia was useful for successful partial resection and cryoablation of the giant fibroma.

  1. Block of Human Cardiac Sodium Channels by Lacosamide: Evidence for Slow Drug Binding along the Activation Pathway


    Wang, Ging Kuo; Wang, Sho-Ya


    Lacosamide is an anticonvulsant hypothesized to enhance slow inactivation of neuronal Na+ channels for its therapeutic action. Cardiac Na+ channels display less and incomplete slow inactivation, but their sensitivity toward lacosamide remains unknown. We therefore investigated the action of lacosamide in human cardiac Nav1.5 and Nav1.5-CW inactivation-deficient Na+ channels. Lacosamide showed little effect on hNav1.5 Na+ currents at 300 µM when cells were held at −140 mV. With 30-second condi...

  2. Real-time feedback based control of cardiac restitution using optical mapping. (United States)

    Kulkarni, Kanchan; Tolkacheva, Elena G


    Cardiac restitution is the shortening of the action potential duration with an increase in the heart rate. A shorter action potential duration enables a longer diastolic interval which ensures that the heart gets adequate time to refill with blood. At higher rates however, restitution becomes steep and thus, can lead to unstable electrical activity (alternans) in the heart, leading to fatal cardiac rhythms. It has been proposed that maintaining a shallow slope of cardiac restitution could have potentially anti-arrhythmic effects. Previous studies involved the control of action potential duration (APD) or diastolic interval (DI) in isolated tissue samples based on the feedback from single microelectrode recordings. This limited the spatial resolution of the feedback system. Here, we aimed to develop a real time feedback control system that enabled the detection of APDs from various single pixels based on optical mapping recordings. Stimuli were applied after a predefined fixed DI after detection of an APD. We validated our algorithm using optical mapping movies from an ex-vivo rabbit heart. Thus, we provide an optical mapping based approach for the control of cardiac restitution and a potential means to validate its anti-arrhythmic effects.

  3. Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder. (United States)

    Friedrich, Corinna; Rinné, Susanne; Zumhagen, Sven; Kiper, Aytug K; Silbernagel, Nicole; Netter, Michael F; Stallmeyer, Birgit; Schulze-Bahr, Eric; Decher, Niels


    Analyzing a patient with progressive and severe cardiac conduction disorder combined with idiopathic ventricular fibrillation (IVF), we identified a splice site mutation in the sodium channel gene SCN5A. Due to the severe phenotype, we performed whole-exome sequencing (WES) and identified an additional mutation in the KCNK17 gene encoding the K2P potassium channel TASK-4. The heterozygous change (c.262G>A) resulted in the p.Gly88Arg mutation in the first extracellular pore loop. Mutant TASK-4 channels generated threefold increased currents, while surface expression was unchanged, indicating enhanced conductivity. When co-expressed with wild-type channels, the gain-of-function by G88R was conferred in a dominant-active manner. We demonstrate that KCNK17 is strongly expressed in human Purkinje cells and that overexpression of G88R leads to a hyperpolarization and strong slowing of the upstroke velocity of spontaneously beating HL-1 cells. Thus, we propose that a gain-of-function by TASK-4 in the conduction system might aggravate slowed conductivity by the loss of sodium channel function. Moreover, WES supports a second hit-hypothesis in severe arrhythmia cases and identified KCNK17 as a novel arrhythmia gene.

  4. Object Recognition using Channel-Coded Feature Maps: C++ Implementation Documentation


    Jonsson, Erik


    This report gives an overview and motivates the design of a C++ framework for object recognition using channel-coded feature maps. The code was produced in connection to the work on my PhD thesis Channel-Coded Feature Maps for Object Recognition and Machine Learning. The package contains algorithms ranging from basic image processing routines to specific complex algorithms for creating channel-coded feature maps through piecewise polynomials. Much emphasis has been put in creating a flexible ...

  5. Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders. (United States)

    Verkerk, Arie O; Remme, Carol Ann


    The zebrafish is a cold-blooded tropical freshwater teleost with two-chamber heart morphology. A major advantage of the zebrafish for heart studies is that the embryo is transparent, allowing for easy assessment of heart development, heart rate analysis and phenotypic characterization. Moreover, rapid and effective gene-specific knockdown can be achieved using morpholino oligonucleotides. Lastly, zebrafish are small in size, are easy to maintain and house, grow fast, and have large offspring size, making them a cost-efficient research model. Zebrafish embryonic and adult heart rates as well as action potential (AP) shape and duration and electrocardiogram morphology closely resemble those of humans. However, whether the zebrafish is truly an attractive alternative model for human cardiac electrophysiology depends on the presence and gating properties of the various ion channels in the zebrafish heart, but studies into the latter are as yet limited. The rapid component of the delayed rectifier K(+) current (I(Kr)) remains the best characterized and validated ion current in zebrafish myocytes, and zebrafish may represent a valuable model to investigate human I(Kr) channel-related disease, including long QT syndrome. Arguments against the use of zebrafish as model for human cardiac (patho)electrophysiology include its cold-bloodedness and two-chamber heart morphology, absence of t-tubuli, sarcoplamatic reticulum function, and a different profile of various depolarizing and repolarizing ion channels, including a limited Na(+) current density. Based on the currently available literature, we propose that zebrafish may constitute a relevant research model for investigating ion channel disorders associated with abnormal repolarization, but may be less suitable for studying depolarization disorders or Ca(2+)-modulated arrhythmias.

  6. Zebrafish: a novel research tool for cardiac (pathoelectrophysiology and ion channel disorders

    Directory of Open Access Journals (Sweden)

    Arie O Verkerk


    Full Text Available The zebrafish is a cold-blooded tropical freshwater teleost with a two-chamber heart morphology, typical for non-mammalian vertebrates. A major advantage of the zebrafish for heart studies is that the embryo is transparent, allowing for easy assessment of heart development, heart rate analysis and phenotypic characterization. Moreover, rapid and effective gene-specific knockdown can be achieved using morpholino oligonucleotides. Lastly, zebrafish are small in size, are easy to maintain and house, grow fast, and have large offspring size, making them a cost-efficient research model. Zebrafish embryonic and adult heart rates as well as action potential shape and duration and electrocardiogram morphology closely resemble those of humans. However, whether the zebrafish is truly an attractive alternative model for human cardiac electrophysiology depends on the presence and gating properties of the various ion channels in the zebrafish heart, but studies into the latter are as yet limited. The rapid component of the delayed rectifier K+ current (IKr remains the best characterized and validated ion current in zebrafish myocytes, and zebrafish may represent a valuable model to investigate human IKr channel related disease, including long QT syndrome. Arguments against the use of zebrafish as model for human cardiac (pathoelectrophysiology include its cold-bloodedness and two-chamber heart morphology, absence of t-tubuli, sarcoplamatic reticulum function, and a different profile of various depolarizing and repolarizing ion channels, including a limited Na+ current density. Based on the currently available literature, we propose that zebrafish may constitute a relevant research model for investigating ion channel disorders associated with abnormal repolarization, but may be less suitable for studying depolarization disorders or Ca2+-modulated arrhythmias.

  7. Screening for cardiac HERG potassium channel interacting proteins using the yeast two-hybrid technique. (United States)

    Ma, Qingyan; Yu, Hong; Lin, Jijin; Sun, Yifan; Shen, Xinyuan; Ren, Li


    The human ERG protein (HERG or Kv 11.1) encoded by the human ether-a-go-go-related gene (herg) is the pore-forming subunit of the cardiac delayed rectifier potassium current (IKr) responsible for action potential (AP) repolarization. Mutations in HERG lead to long-QT syndrome, a major cause of arrhythmias. Protein-protein interactions are fundamental for ion channel trafficking, membrane localization, and functional modulation. To identify proteins involved in the regulation of the HERG channel, we conducted a yeast two-hybrid screen of a human heart cDNA library using the C-terminus or N-terminus of HERG as bait. Fifteen proteins were identified as HERG amino terminal (HERG-NT)-interacting proteins, including Caveolin-1 (a membrane scaffold protein with multiple interacting partners, including G-proteins, kinases and NOS), the zinc finger protein, FHL2 and PTPN12 (a non-receptor tyrosine phosphatase). Eight HERG carboxylic terminal (HERG-CT)-interacting proteins were also identified, including the NF-κB-interacting protein myotrophin, We have identified multiple potential interacting proteins that may regulate cardiac IKr through cytoskeletal interactions, G-protein modulation, phosphorylation and downstream second messenger and transcription cascades. These findings provide further insight into dynamic modulation of HERG under physiological conditions and arrhythmogenesis.

  8. BIN1 localizes the L-type calcium channel to cardiac T-tubules.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Hong


    Full Text Available The BAR domain protein superfamily is involved in membrane invagination and endocytosis, but its role in organizing membrane proteins has not been explored. In particular, the membrane scaffolding protein BIN1 functions to initiate T-tubule genesis in skeletal muscle cells. Constitutive knockdown of BIN1 in mice is perinatal lethal, which is associated with an induced dilated hypertrophic cardiomyopathy. However, the functional role of BIN1 in cardiomyocytes is not known. An important function of cardiac T-tubules is to allow L-type calcium channels (Cav1.2 to be in close proximity to sarcoplasmic reticulum-based ryanodine receptors to initiate the intracellular calcium transient. Efficient excitation-contraction (EC coupling and normal cardiac contractility depend upon Cav1.2 localization to T-tubules. We hypothesized that BIN1 not only exists at cardiac T-tubules, but it also localizes Cav1.2 to these membrane structures. We report that BIN1 localizes to cardiac T-tubules and clusters there with Cav1.2. Studies involve freshly acquired human and mouse adult cardiomyocytes using complementary immunocytochemistry, electron microscopy with dual immunogold labeling, and co-immunoprecipitation. Furthermore, we use surface biotinylation and live cell confocal and total internal fluorescence microscopy imaging in cardiomyocytes and cell lines to explore delivery of Cav1.2 to BIN1 structures. We find visually and quantitatively that dynamic microtubules are tethered to membrane scaffolded by BIN1, allowing targeted delivery of Cav1.2 from the microtubules to the associated membrane. Since Cav1.2 delivery to BIN1 occurs in reductionist non-myocyte cell lines, we find that other myocyte-specific structures are not essential and there is an intrinsic relationship between microtubule-based Cav1.2 delivery and its BIN1 scaffold. In differentiated mouse cardiomyocytes, knockdown of BIN1 reduces surface Cav1.2 and delays development of the calcium transient

  9. Biophysics and Molecular Biology of Cardiac Ion Channels for the Safety Pharmacologist. (United States)

    Pugsley, Michael K; Curtis, Michael J; Hayes, Eric S


    Cardiac safety pharmacology is a continuously evolving discipline that uses the basic principles of pharmacology in a regulatory-driven process to generate data to inform risk/benefit assessment of a new chemical entity (NCE). The aim of cardiac safety pharmacology is to characterise the pharmacodynamic/pharmacokinetic (PK/PD) relationship of a drug's adverse effects on the heart using continuously evolving methodology. Unlike Toxicology, safety pharmacology includes within its remit a regulatory requirement to predict the risk of rare cardiotoxic (potentially lethal) events such as torsades de pointes (TdP), which is statistically associated with drug-induced changes in the QT interval of the ECG due to blockade of I Kr or K v11.1 current encoded by hERG. This gives safety pharmacology its unique character. The key issues for the safety pharmacology assessment of a drug on the heart are detection of an adverse effect liability, projection of the data into safety margin calculation and clinical safety monitoring. This chapter will briefly review the current cardiac safety pharmacology paradigm outlined in the ICH S7A and ICH S7B guidance documents and the non-clinical models and methods used in the evaluation of new chemical entities in order to define the integrated risk assessment for submission to regulatory authorities. An overview of how the present cardiac paradigm was developed will be discussed, explaining how it was based upon marketing authorisation withdrawal of many non-cardiovascular compounds due to unanticipated proarrhythmic effects. The role of related biomarkers (of cardiac repolarisation, e.g. prolongation of the QT interval of the ECG) will be considered. We will also provide an overview of the 'non-hERG-centric' concepts utilised in the evolving comprehensive in vitro proarrhythmia assay (CIPA) that details conduct of the proposed ion channel battery test, use of human stem cells and application of in silico models to early cardiac safety

  10. A Portable Diagnostic Device for Cardiac Magnetic Field Mapping

    CERN Document Server

    Mooney, John W; Banham, Edward Reade; Symonds, Chris; Pawlowski, Nick; Varcoe, Benjamin T H


    In this paper we present a portable magnetocardiography device. The focus of this development was delivering a rapid assessment of chest pain in an emergency department. The aim was therefore to produce an inexpensive device that could be rapidly deployed in a noisy unshielded ward environment. We found that induction coil magnetometers with a coil design optimized for magnetic field mapping possess sufficient sensitivity (290f T /{\\mu}V at 30Hz) and low enough noise (73pT raw, 2.1pT after 500 averages) for cycle averaged magnetocardiography and are able to measure depolarisation signals in an unshielded environment. We were unable to observe repolarisation signals to a reasonable fidelity. We present the design of the induction coil sensor array and signal processing routine along with data demonstrating performance in a hospital environment.

  11. Sudden cardiac death and inherited channelopathy: the basic electrophysiology of the myocyte and myocardium in ion channel disease. (United States)

    Martin, Claire A; Matthews, Gareth D K; Huang, Christopher L-H


    Mutations involving cardiac ion channels result in abnormal action potential formation or propagation, leading to cardiac arrhythmias. Despite the large impact on society of sudden cardiac death resulting from such arrhythmias, understanding of the underlying cellular mechanism is poor and clinical risk stratification and treatment consequently limited. Basic research using molecular techniques, as well as animal models, has proved extremely useful in improving our knowledge of inherited arrhythmogenic syndromes. This offers the practitioner tools to accurately diagnose rare disorders and provides novel markers for risk assessment and a basis for new strategies of treatment.

  12. Non-invasive cardiac mapping in clinical practice: Application to the ablation of cardiac arrhythmias. (United States)

    Dubois, Rémi; Shah, Ashok J; Hocini, Mélèze; Denis, Arnaud; Derval, Nicolas; Cochet, Hubert; Sacher, Frédéric; Bear, Laura; Duchateau, Josselin; Jais, Pierre; Haissaguerre, Michel


    Ten years ago, electrocardiographic imaging (ECGI) started to demonstrate its efficiency in clinical settings. The initial application to localize focal ventricular arrhythmias such as ventricular premature beats was probably the easiest to challenge and validates the concept. Our clinical experience in using this non-invasive mapping technique to identify the sources of electrical disorders and guide catheter ablation of atrial arrhythmias (premature atrial beat, atrial tachycardia, atrial fibrillation), ventricular arrhythmias (premature ventricular beats) and ventricular pre-excitation (Wolff-Parkinson-White syndrome) is described here.

  13. MDIMP, a novel cardiac Ca(2+) channel blocker with atrial selectivity. (United States)

    Santamaria-Herrera, Mireille Aline; Ríos-Pérez, Erick Benjamín; de la Rosa, Juan Antonio Manuel; García-Castañeda, Maricela; Osornio-Garduño, Diana Stephanie; Ramos-Mondragón, Roberto; Mancilla-Percino, Teresa; Avila, Guillermo


    In cardiac muscle cells both T-and L-type Ca(2+) channels (TTCCs and LTCCs, respectively) are expressed, and the latter are relevant to a process known as excitation-contraction coupling (ECC). Evidence obtained from docking studies suggests that isoindolines derived from α-amino acids bind to the LTCC CaV1.2. In the present study, we investigated whether methyl (S)-2-(1,3-dihydroisoindol-2-yl)-4-methylpentanoate (MDIMP), which is derived from L-leucine, modulates both Ca(2+) channels and ECC. To this end, mechanical properties, as well as Ca(2+) transients and currents, were all investigated in isolated cardiac myocytes. The effects of MDIMP on CaV1.2 (transiently expressed in 293T/17 cells) were also studied. In this system, evidence was found for an inhibitory action that develops and recovers in min, with an IC50 of 450µM. With respect to myocytes: atrial-TTCCs, atrial-LTCCs, and ventricular-LTCCs were also inhibited, in that order of potency. Accordingly, Ca(2+) transients, contractions, and window currents of LTCCs were all reduced more strongly in atrial cells. Interestingly, while the modulation of LTCCs was state-independent in these cells, it was state-dependent, and dual, on the ventricular ones. Furthermore, practically all of the ventricular LTCCs were closed at resting membrane potentials. This could explain their resistance to MDIMP, as they were affected in only open or inactivated states. All these features in turn explain the preferential down-regulation of the atrial ECC. Thus, our results support the view that isoindolines bind to Ca(2+) channels, improve our knowledge of the corresponding structure-function relationship, and may be relevant for conditions where decreased atrial activity is desired.

  14. Cardiac magnetic field map topology quantified by Kullback-Leibler entropy identifies patients with hypertrophic cardiomyopathy (United States)

    Schirdewan, A.; Gapelyuk, A.; Fischer, R.; Koch, L.; Schütt, H.; Zacharzowsky, U.; Dietz, R.; Thierfelder, L.; Wessel, N.


    Hypertrophic cardiomyopathy (HCM) is a common primary inherited cardiac muscle disorder, defined clinically by the presence of unexplained left ventricular hypertrophy. The detection of affected patients remains challenging. Genetic testing is limited because only in 50%-60% of all HCM diagnoses an underlying mutation can be found. Furthermore, the disease has a varied clinical course and outcome, with many patients having little or no discernible cardiovascular symptoms, whereas others develop profound exercise limitation and recurrent arrhythmias or sudden cardiac death. Therefore prospective screening of HCM family members is strongly recommended. According to the current guidelines this includes serial echocardiographic and electrocardiographic examinations. In this study we investigated the capability of cardiac magnetic field mapping (CMFM) to detect patients suffering from HCM. We introduce for the first time a combined diagnostic approach based on map topology quantification using Kullback-Leibler (KL) entropy and regional magnetic field strength parameters. The cardiac magnetic field was recorded over the anterior chest wall using a multichannel-LT-SQUID system. CMFM was calculated based on a regular 36 point grid. We analyzed CMFM in patients with confirmed diagnosis of HCM (HCM, n =33, 43.8±13 years, 13 women, 20 men), a control group of healthy subjects (NORMAL, n =57, 39.6±8.9 years; 22 women and 35 men), and patients with confirmed cardiac hypertrophy due to arterial hypertension (HYP, n =42, 49.7±7.9 years, 15 women and 27 men). A subgroup analysis was performed between HCM patients suffering from the obstructive (HOCM, n =19) and nonobstructive (HNCM, n =14) form of the disease. KL entropy based map topology quantification alone identified HCM patients with a sensitivity of 78.8% and specificity of 86.9% (overall classification rate 84.8%). The combination of the KL parameters with a regional field strength parameter improved the overall

  15. Negative-dominance phenomenon with genetic variants of the cardiac sodium channel Nav1.5. (United States)

    Sottas, Valentin; Abriel, Hugues


    During the past two decades, many pathological genetic variants in SCN5A, the gene encoding the pore-forming subunit of the cardiac (monomeric) sodium channel Na(v)1.5, have been described. Negative dominance is a classical genetic concept involving a "poison" mutant peptide that negatively interferes with the co-expressed wild-type protein, thus reducing its cellular function. This phenomenon has been described for genetic variants of multimeric K(+) channels, which mechanisms are well understood. Unexpectedly, several pathologic SCN5A variants that are linked to Brugada syndrome also demonstrate such a dominant-negative (DN) effect. The molecular determinants of these observations, however, are not yet elucidated. This review article summarizes recent findings that describe the mechanisms underlying the DN phenomenon of genetic variants of K(+), Ca(2+), Cl(-) and Na(+) channels, and in particular Brugada syndrome variants of Na(v)1.5. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  16. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Gavillet, Bruno; van Bemmelen, Miguel X;


    In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull...

  17. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons


    Sutherland, Stephani P.; Christopher J. Benson; Adelman, John P.; McCleskey, Edwin W.


    Cardiac afferents are sensory neurons that mediate angina, pain that occurs when the heart receives insufficient blood supply for its metabolic demand (ischemia). These neurons display enormous acid-evoked depolarizing currents, and they fire action potentials in response to extracellular acidification that accompanies myocardial ischemia. Here we show that acid-sensing ion channel 3 (ASIC3), but no other known acid-sensing ion channel, reproduces the functional featur...

  18. Molecular pharmacology of cell receptors for cardiac glycosides, opiates, ACTH and ion channel modulators

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowich, M.R.


    The influence of light and oxygen on molecular interactions between the artificial food dye, erythrosine (ERY), and (/sup 3/H)ouabain ((/sup 3/H)OUA) binding sites on (Na/sup +/ + K/sup +/)-ATPase in rat brain and guinea pig heart was investigated. Putative endogenous digitalis-like factors (DLF's) were studied in four in vitro assays for cardiac glycosides. (/sup 3/H)Etorphine binding was characterized in rat brain homogenates, depleted of opioids, from animals acutely and chronically treated with morphine and naloxone, and either unstressed or cold-restraint-stressed. Binding sites for the ion channel modulators (/sup 3/H)verapamil ((/sup 3/H)VER) and (/sup 3/H) phencyclidine ((/sup 3/H)PCP) were characterized in rat brain.

  19. New aspects of HERG K⁺ channel function depending upon cardiac spatial heterogeneity.

    Directory of Open Access Journals (Sweden)

    Pen Zhang

    Full Text Available HERG K(+ channel, the genetic counterpart of rapid delayed rectifier K(+ current in cardiac cells, is responsible for many cases of inherited and drug-induced long QT syndromes. HERG has unusual biophysical properties distinct from those of other K(+ channels. While the conventional pulse protocols in patch-clamp studies have helped us elucidate these properties, their limitations in assessing HERG function have also been progressively noticed. We employed AP-clamp techniques using physiological action potential waveforms recorded from various regions of canine heart to study HERG function in HEK293 cells and identified several novel aspects of HERG function. We showed that under AP-clamp IHERG increased gradually with membrane repolarization, peaked at potentials around 20-30 mV more negative than revealed by pulse protocols and at action potential duration (APD to 60%-70% full repolarization, and fell rapidly at the terminal phase of repolarization. We found that the rising phase of IHERG was conferred by removal of inactivation and the decaying phase resulted from a fall in driving force, which were all determined by the rate of membrane repolarization. We identified regional heterogeneity and transmural gradient of IHERG when quantified with the area covered by IHERG trace. In addition, we observed regional and transmural differences of IHERG in response to dofetilide blockade. Finally, we characterized the influence of HERG function by selective inhibition of other ion currents. Based on our results, we conclude that the distinct biophysical properties of HERG reported by AP-clamp confer its unique function in cardiac repolarization thereby in antiarrhythmia and arrhythmogenesis.

  20. Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel.

    Directory of Open Access Journals (Sweden)

    Andrias O O'Reilly

    Full Text Available Bisphenol A (BPA has attracted considerable public attention as it leaches from plastic used in food containers, is detectable in human fluids and recent epidemiologic studies link BPA exposure with diseases including cardiovascular disorders. As heart-toxicity may derive from modified cardiac electrophysiology, we investigated the interaction between BPA and hNav1.5, the predominant voltage-gated sodium channel subtype expressed in the human heart. Electrophysiology studies of heterologously-expressed hNav1.5 determined that BPA blocks the channel with a K(d of 25.4±1.3 µM. By comparing the effects of BPA and the local anesthetic mexiletine on wild type hNav1.5 and the F1760A mutant, we demonstrate that both compounds share an overlapping binding site. With a key binding determinant thus identified, an homology model of hNav1.5 was generated based on the recently-reported crystal structure of the bacterial voltage-gated sodium channel NavAb. Docking predictions position both ligands in a cavity delimited by F1760 and contiguous with the DIII-IV pore fenestration. Steered molecular dynamics simulations used to assess routes of ligand ingress indicate that the DIII-IV pore fenestration is a viable access pathway. Therefore BPA block of the human heart sodium channel involves the local anesthetic receptor and both BPA and mexiletine may enter the closed-state pore via membrane-located side fenestrations.

  1. hERG (KCNH2 or Kv11.1) K+ channels: screening for cardiac arrhythmia risk. (United States)

    Bowlby, Mark R; Peri, Ravi; Zhang, Howard; Dunlop, John


    Testing new compounds for pro-arrhythmic potential has focused in recent years on avoiding activity at the hERG K+ channel, as hERG block is a common feature of many pro-arrhythmic compounds associated with Torsades de Pointes in humans. Blockers of hERG are well known to prolong cardiac action potentials and lead to long QT syndrome, and activators, although rarer, can lead to short QT syndrome. The most reliable assays of hERG utilize stable cell lines, and include ligand binding, Rb+ flux and electrophysiology (both automated and manual). These assays can be followed by measurement of activity at other ion channels contributing to cardiac contractility and detailed action potential/repolarization measurements in cardiac tissue. An integrated risk assessment for pro-arrhythmic potential is ultimately required, as the constellation of ion channel activities and potencies, along with the mechanism/kinetics of ion channel block, may ultimately be the best predictor of cardiac risk in vivo.

  2. Anesthetic drug midazolam inhibits cardiac human ether-à-go-go-related gene channels: mode of action. (United States)

    Vonderlin, Nadine; Fischer, Fathima; Zitron, Edgar; Seyler, Claudia; Scherer, Daniel; Thomas, Dierk; Katus, Hugo A; Scholz, Eberhard P


    Midazolam is a short-acting benzodiazepine that is in wide clinical use as an anxiolytic, sedative, hypnotic, and anticonvulsant. Midazolam has been shown to inhibit ion channels, including calcium and potassium channels. So far, the effects of midazolam on cardiac human ether-à-go-go-related gene (hERG) channels have not been analyzed. The inhibitory effects of midazolam on heterologously expressed hERG channels were analyzed in Xenopus oocytes using the double-electrode voltage clamp technique. We found that midazolam inhibits hERG channels in a concentration-dependent manner, yielding an IC50 of 170 μM in Xenopus oocytes. When analyzed in a HEK 293 cell line using the patch-clamp technique, the IC50 was 13.6 μM. Midazolam resulted in a small negative shift of the activation curve of hERG channels. However, steady-state inactivation was not significantly affected. We further show that inhibition is state-dependent, occurring within the open and inactivated but not in the closed state. There was no frequency dependence of block. Using the hERG pore mutants F656A and Y652A we provide evidence that midazolam uses a classical binding site within the channel pore. Analyzing the subacute effects of midazolam on hERG channel trafficking, we further found that midazolam does not affect channel surface expression. Taken together, we show that the anesthetic midazolam is a low-affinity inhibitor of cardiac hERG channels without additional effects on channel surface expression. These data add to the current understanding of the pharmacological profile of the anesthetic midazolam.

  3. Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. (United States)

    Helm, Patrick; Beg, Mirza Faisal; Miller, Michael I; Winslow, Raimond L


    The ventricular myocardium is known to exhibit a complex spatial organization, with fiber orientation varying as a function of transmural location. It is now well established that diffusion tensor magnetic resonance imaging (DTMRI) may be used to measure this fiber orientation at high spatial resolution. Cardiac fibers are also known to be organized in sheets with surface orientation varying throughout the ventricles. This article reviews results on use of DTMRI for measuring ventricular fiber orientation, as well as presents new results providing strong evidence that the tertiary eigenvector of the diffusion tensor is aligned locally with the cardiac sheet surface normal. Considered together, these data indicate that DTMRI may be used to reconstruct both ventricular fiber and sheet organization. This article also presents the large deformation diffeomorphic metric mapping (LDDMM) algorithm and shows that this algorithm may be used to bring ensembles of imaged and reconstructed hearts into correspondence (e.g., registration) so that variability of ventricular geometry, fiber, and sheet orientation may be quantified. Ventricular geometry and fiber structure is known to be remodeled in a range of disease processes; however, descriptions of this remodeling have remained subjective and qualitative. We anticipate that use of DTMRI for reconstruction of ventricular anatomy coupled with application of the LDDMM method for image volume registration will enable the detection and quantification of changes in cardiac anatomy that are characteristic of specific disease processes in the heart. Finally, we show that epicardial electrical mapping and DTMRI imaging may be performed in the same hearts. The anatomic data may then be used to simulate electrical conduction in a computational model of the very same heart that was mapped electrically. This facilitates direct comparison and testing of model versus experimental results and opens the door to quantitative measurement

  4. The effects of paeoniflorin monomer of a Chinese herb on cardiac ion channels

    Institute of Scientific and Technical Information of China (English)

    WANG Rong-rong; LI Ning; ZHANG Yin-hui; RAN Yu-qin; PU Jie-lin


    Background Because of the potential proarrhythmic effect of current antiarrhythmic drugs, it is still desirable to find safer antiarrhythmic drugs worldwide. Paeoniflorin is one of the Chinese herb monomers that have different effects on many ion channels. The present study aimed to determine the effects of paeoniflorin on cardiac ion channels.Methods Whole-cell patch-clamp technique was used to record ion channel currents. L-type calcium current (/Ca-L),inward rectifier potassium current (/K1), and transient outward potassium current (/to1) were studied in rat ventricular myocytes and sodium current (/Na), slow delayed rectifier current (/Ks), and HERG current (/Kr) were investigated in transfected human embryonic kidney 293 cells.Results One hundred μmol/L paeoniflorin reduced the peak /ca-L by 40.29% at the test potential of ±10 mV (from (-9.78±0.52) pA/pF to (-5.84±0.89) pA/pF, n=5, P=0.028). The steady-state activation curve was shifted to more positive potential in the presence of the drug. The half activation potentials were (-11.22±0.27) mV vs. (-5.95±0.84) mV (n=5,P=0.007), respectively. However, the steady-state inactivation and the time course of recovery from inactivation were not changed. One hundred μmol/L paeoniflorin completely inhibited the peak /Na and the effect was reversible. Moreover,paeoniflorin inhibited the /K1 by 30.13% at the test potential of -100 mV (from (-25.26±8.21) pA/pF to (-17.65±6.52)pA/pF, n=6, F=0.015) without effects on the reversal potential and the rectification property. By contrast, 100 μmol/L paeoniflorin had no effects on/to1, /Ks or /Kr channels.Conclusions The study demonstrated that paeoniflorin blocked /Ca-L, /Na, and /Kf without affecting /to1, /Ks, or /Kr. The multi-channel block effect may account for its antiarrhythmic effects with less proarrhythmic potential.

  5. Distinct functional defect of three novel Brugada syndrome related cardiac sodium channel mutations

    Directory of Open Access Journals (Sweden)

    Juang Jyh-Ming


    Full Text Available Abstract The Brugada syndrome is characterized by ST segment elevation in the right precodial leads V1-V3 on surface ECG accompanied by episodes of ventricular fibrillation causing syncope or even sudden death. The molecular and cellular mechanisms that lead to Brugada syndrome are not yet completely understood. However, SCN5A is the most well known responsible gene that causes Brugada syndrome. Until now, more than a hundred mutations in SCN5A responsible for Brugada syndrome have been described. Functional studies of some of the mutations have been performed and show that a reduction of human cardiac sodium current accounts for the pathogenesis of Brugada syndrome. Here we reported three novel SCN5A mutations identified in patients with Brugada syndrome in Taiwan (p.I848fs, p.R965C, and p.1876insM. Their electrophysiological properties were altered by patch clamp analysis. The p.I848fs mutant generated no sodium current. The p.R965C and p.1876insM mutants produced channels with steady state inactivation shifted to a more negative potential (9.4 mV and 8.5 mV respectively, and slower recovery from inactivation. Besides, the steady state activation of p.1876insM was altered and was shifted to a more positive potential (7.69 mV. In conclusion, the SCN5A channel defect related to Brugada syndrome might be diverse but all resulted in a decrease of sodium current.

  6. Evaluation of Rigid-Body Motion Compensation in Cardiac Perfusion SPECT Employing Polar-Map Quantification. (United States)

    Pretorius, P Hendrik; Johnson, Karen L; King, Michael A


    We have recently been successful in the development and testing of rigid-body motion tracking, estimation and compensation for cardiac perfusion SPECT based on a visual tracking system (VTS). The goal of this study was to evaluate in patients the effectiveness of our rigid-body motion compensation strategy. Sixty-four patient volunteers were asked to remain motionless or execute some predefined body motion during an additional second stress perfusion acquisition. Acquisitions were performed using the standard clinical protocol with 64 projections acquired through 180 degrees. All data were reconstructed with an ordered-subsets expectation-maximization (OSEM) algorithm using 4 projections per subset and 5 iterations. All physical degradation factors were addressed (attenuation, scatter, and distance dependent resolution), while a 3-dimensional Gaussian rotator was used during reconstruction to correct for six-degree-of-freedom (6-DOF) rigid-body motion estimated by the VTS. Polar map quantification was employed to evaluate compensation techniques. In 54.7% of the uncorrected second stress studies there was a statistically significant difference in the polar maps, and in 45.3% this made a difference in the interpretation of segmental perfusion. Motion correction reduced the impact of motion such that with it 32.8 % of the polar maps were statistically significantly different, and in 14.1% this difference changed the interpretation of segmental perfusion. The improvement shown in polar map quantitation translated to visually improved uniformity of the SPECT slices.

  7. Down-regulation of the cardiac sarcoplasmic reticulum ryanodine channel in severely food-restricted rats

    Directory of Open Access Journals (Sweden)

    V.A. Vizotto


    Full Text Available We have shown that myocardial dysfunction induced by food restriction is related to calcium handling. Although cardiac function is depressed in food-restricted animals, there is limited information about the molecular mechanisms that lead to this abnormality. The present study evaluated the effects of food restriction on calcium cycling, focusing on sarcoplasmic Ca2+-ATPase (SERCA2, phospholamban (PLB, and ryanodine channel (RYR2 mRNA expressions in rat myocardium. Male Wistar-Kyoto rats, 60 days old, were submitted to ad libitum feeding (control rats or 50% diet restriction for 90 days. The levels of left ventricle SERCA2, PLB, and RYR2 were measured using semi-quantitative RT-PCR. Body and ventricular weights were reduced in 50% food-restricted animals. RYR2 mRNA was significantly decreased in the left ventricle of the food-restricted group (control = 5.92 ± 0.48 vs food-restricted group = 4.84 ± 0.33, P < 0.01. The levels of SERCA2 and PLB mRNA were similar between groups (control = 8.38 ± 0.44 vs food-restricted group = 7.96 ± 0.45, and control = 1.52 ± 0.06 vs food-restricted group = 1.53 ± 0.10, respectively. Down-regulation of RYR2 mRNA expressions suggests that chronic food restriction promotes abnormalities in sarcoplasmic reticulum Ca2+ release.

  8. A first generation BAC-based physical map of the channel catfish genome

    Directory of Open Access Journals (Sweden)

    Waldbieser Geoffrey C


    Full Text Available Abstract Background Channel catfish, Ictalurus punctatus, is the leading species in North American aquaculture. Genetic improvement of catfish is performed through selective breeding, and genomic tools will help improve selection efficiency. A physical map is needed to integrate the genetic map with the karyotype and to support fine mapping of phenotypic trait alleles such as Quantitative Trait Loci (QTL and the effective positional cloning of genes. Results A genome-wide physical map of the channel catfish was constructed by High-Information-Content Fingerprinting (HICF of 46,548 Bacterial Artificial Chromosomes (BAC clones using the SNaPshot technique. The clones were assembled into contigs with FPC software. The resulting assembly contained 1,782 contigs and covered an estimated physical length of 0.93 Gb. The validity of the assembly was demonstrated by 1 anchoring 19 of the largest contigs to the microsatellite linkage map 2 comparing the assembly of a multi-gene family to Restriction Fragment Length Polymorphism (RFLP patterns seen in Southern blots, and 3 contig sequencing. Conclusion This is the first physical map for channel catfish. The HICF technique allowed the project to be finished with a limited amount of human resource in a high throughput manner. This physical map will greatly facilitate the detailed study of many different genomic regions in channel catfish, and the positional cloning of genes controlling economically important production traits.

  9. Amino acid substitutions in the FXYD motif enhance phospholemman-induced modulation of cardiac L-type calcium channels. (United States)

    Guo, Kai; Wang, Xianming; Gao, Guofeng; Huang, Congxin; Elmslie, Keith S; Peterson, Blaise Z


    We have found that phospholemman (PLM) associates with and modulates the gating of cardiac L-type calcium channels (Wang et al., Biophys J 98: 1149-1159, 2010). The short 17 amino acid extracellular NH(2)-terminal domain of PLM contains a highly conserved PFTYD sequence that defines it as a member of the FXYD family of ion transport regulators. Although we have learned a great deal about PLM-dependent changes in calcium channel gating, little is known regarding the molecular mechanisms underlying the observed changes. Therefore, we investigated the role of the PFTYD segment in the modulation of cardiac calcium channels by individually replacing Pro-8, Phe-9, Thr-10, Tyr-11, and Asp-12 with alanine (P8A, F9A, T10A, Y11A, D12A). In addition, Asp-12 was changed to lysine (D12K) and cysteine (D12C). As expected, wild-type PLM significantly slows channel activation and deactivation and enhances voltage-dependent inactivation (VDI). We were surprised to find that amino acid substitutions at Thr-10 and Asp-12 significantly enhanced the ability of PLM to modulate Ca(V)1.2 gating. T10A exhibited a twofold enhancement of PLM-induced slowing of activation, whereas D12K and D12C dramatically enhanced PLM-induced increase of VDI. The PLM-induced slowing of channel closing was abrogated by D12A and D12C, whereas D12K and T10A failed to impact this effect. These studies demonstrate that the PFXYD motif is not necessary for the association of PLM with Ca(V)1.2. Instead, since altering the chemical and/or physical properties of the PFXYD segment alters the relative magnitudes of opposing PLM-induced effects on Ca(V)1.2 channel gating, PLM appears to play an important role in fine tuning the gating kinetics of cardiac calcium channels and likely plays an important role in shaping the cardiac action potential and regulating Ca(2+) dynamics in the heart.

  10. Tetrodotoxin Blockade on Canine Cardiac L-Type Ca2+ Channels Depends on pH and Redox Potential (United States)

    Hegyi, Bence; Komáromi, István; Kistamás, Kornél; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Nánási, Péter P.; Szentandrássy, Norbert


    Tetrodotoxin (TTX) is believed to be one of the most selective inhibitors of voltage-gated fast Na+ channels in excitable tissues. Recently, however, TTX has been shown to block L-type Ca2+ current (ICa) in canine cardiac cells. In the present study, the TTX-sensitivity of ICa was studied in isolated canine ventricular myocytes as a function of (1) channel phosphorylation, (2) extracellular pH and (3) the redox potential of the bathing medium using the whole cell voltage clamp technique. Fifty-five micromoles of TTX (IC50 value obtained under physiological conditions) caused 60% ± 2% inhibition of ICa in acidic (pH = 6.4), while only a 26% ± 2% block in alkaline (pH = 8.4) milieu. Similarly, the same concentration of TTX induced 62% ± 6% suppression of ICa in a reductant milieu (containing glutathione + ascorbic acid + dithiothreitol, 1 mM each), in contrast to the 31% ± 3% blockade obtained in the presence of a strong oxidant (100 μM H2O2). Phosphorylation of the channel protein (induced by 3 μM forskolin) failed to modify the inhibiting potency of TTX; an IC50 value of 50 ± 4 μM was found in forskolin. The results are in a good accordance with the predictions of our model, indicating that TTX binds, in fact, to the selectivity filter of cardiac L-type Ca channels. PMID:23771047

  11. Tetrodotoxin Blockade on Canine Cardiac L-Type Ca2+ Channels Depends on pH and Redox Potential

    Directory of Open Access Journals (Sweden)

    Bence Hegyi


    Full Text Available Tetrodotoxin (TTX is believed to be one of the most selective inhibitors of voltage-gated fast Na+ channels in excitable tissues. Recently, however, TTX has been shown to block L-type Ca2+ current (ICa in canine cardiac cells. In the present study, the TTX-sensitivity of ICa was studied in isolated canine ventricular myocytes as a function of (1 channel phosphorylation, (2 extracellular pH and (3 the redox potential of the bathing medium using the whole cell voltage clamp technique. Fifty-five micromoles of TTX (IC50 value obtained under physiological conditions caused 60% ± 2% inhibition of ICa in acidic (pH = 6.4, while only a 26% ± 2% block in alkaline (pH = 8.4 milieu. Similarly, the same concentration of TTX induced 62% ± 6% suppression of ICa in a reductant milieu (containing glutathione + ascorbic acid + dithiothreitol, 1 mM each, in contrast to the 31% ± 3% blockade obtained in the presence of a strong oxidant (100 μM H2O2. Phosphorylation of the channel protein (induced by 3 μM forskolin failed to modify the inhibiting potency of TTX; an IC50 value of 50 ± 4 μM was found in forskolin. The results are in a good accordance with the predictions of our model, indicating that TTX binds, in fact, to the selectivity filter of cardiac L-type Ca channels.

  12. Small conductance Ca2+-activated K+ channels regulate firing properties and excitability in parasympathetic cardiac motoneurons in the nucleus ambiguus. (United States)

    Lin, Min; Hatcher, Jeff T; Chen, Qin-Hui; Wurster, Robert D; Cheng, Zixi Jack


    Small conductance Ca(2+)-activated K(+) channels (SK) regulate action potential (AP) firing properties and excitability in many central neurons. However, the functional roles of SK channels of parasympathetic cardiac motoneurons (PCMNs) in the nucleus ambiguus have not yet been well characterized. In this study, the tracer X-rhodamine-5 (and 6)-isothiocyanate (XRITC) was injected into the pericardial sac to retrogradely label PCMNs in FVB mice at postnatal days 7-9. Two days later, XRITC-labeled PCMNs in brain stem slices were identified. With the use of whole cell current clamp, single APs and spike trains of different frequencies were evoked by current injections. We found that 1) PCMNs have two different firing patterns: the majority of PCMNs (90%) exhibited spike frequency adaptation (SFA) and the rest (10%) showed less or no adaptation; 2) application of the specific SK channel blocker apamin significantly increased spike half-width in single APs and trains and reduced the spike frequency-dependent AP broadening in trains; 3) SK channel blockade suppressed afterhyperpolarization (AHP) amplitude following single APs and trains and abolished spike-frequency dependence of AHP in trains; and 4) SK channel blockade increased the spike frequency but did not alter the pattern of SFA. Using whole cell voltage clamp, we measured outward currents and afterhyperpolarization current (I(AHP)). SK channel blockade revealed that SK-mediated outward currents had both transient and persistent components. After bath application of apamin and Ca(2+)-free solution, we found that apamin-sensitive and Ca(2+)-sensitive I(AHP) were comparable, confirming that SK channels may contribute to a major portion of Ca(2+)-activated K(+) channel-mediated I(AHP). These results suggest that PCMNs have SK channels that significantly regulate AP repolarization, AHP, and spike frequency but do not affect SFA. We conclude that activation of SK channels underlies one of the mechanisms for negative

  13. Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations

    DEFF Research Database (Denmark)

    Shamgar, Liora; Ma, Lijuan; Schmitt, Nicole;


    The slow IKS K+ channel plays a major role in repolarizing the cardiac action potential and consists of the assembly of KCNQ1 and KCNE1 subunits. Mutations in either KCNQ1 or KCNE1 genes produce the long-QT syndrome, a life-threatening ventricular arrhythmia. Here, we show that long-QT mutations...... located in the KCNQ1 C terminus impair calmodulin (CaM) binding, which affects both channel gating and assembly. The mutations produce a voltage-dependent macroscopic inactivation and dramatically alter channel assembly. KCNE1 forms a ternary complex with wild-type KCNQ1 and Ca(2+)-CaM that prevents...... the risk of ventricular arrhythmias. Udgivelsesdato: 2006-Apr-28...

  14. Single-molecule denaturation mapping of DNA in nanofluidic channels

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Silahtaroglu, Asli


    . Consequently, the technique is sensitive to sequence variation without requiring enzymatic labeling or a restriction step. This technique may serve as the basis for a new mapping technology ideally suited for investigating the long-range structure of entire genomes extracted from single cells....

  15. Statistical Metamodeling and Sequential Design of Computer Experiments to Model Glyco-Altered Gating of Sodium Channels in Cardiac Myocytes. (United States)

    Du, Dongping; Yang, Hui; Ednie, Andrew R; Bennett, Eric S


    Glycan structures account for up to 35% of the mass of cardiac sodium ( Nav ) channels. To question whether and how reduced sialylation affects Nav activity and cardiac electrical signaling, we conducted a series of in vitro experiments on ventricular apex myocytes under two different glycosylation conditions, reduced protein sialylation (ST3Gal4(-/-)) and full glycosylation (control). Although aberrant electrical signaling is observed in reduced sialylation, realizing a better understanding of mechanistic details of pathological variations in INa and AP is difficult without performing in silico studies. However, computer model of Nav channels and cardiac myocytes involves greater levels of complexity, e.g., high-dimensional parameter space, nonlinear and nonconvex equations. Traditional linear and nonlinear optimization methods have encountered many difficulties for model calibration. This paper presents a new statistical metamodeling approach for efficient computer experiments and optimization of Nav models. First, we utilize a fractional factorial design to identify control variables from the large set of model parameters, thereby reducing the dimensionality of parametric space. Further, we develop the Gaussian process model as a surrogate of expensive and time-consuming computer models and then identify the next best design point that yields the maximal probability of improvement. This process iterates until convergence, and the performance is evaluated and validated with real-world experimental data. Experimental results show the proposed algorithm achieves superior performance in modeling the kinetics of Nav channels under a variety of glycosylation conditions. As a result, in silico models provide a better understanding of glyco-altered mechanistic details in state transitions and distributions of Nav channels. Notably, ST3Gal4(-/-) myocytes are shown to have higher probabilities accumulated in intermediate inactivation during the repolarization and yield a

  16. A new classifier-based strategy for in-silico ion-channel cardiac drug safety assessment

    Directory of Open Access Journals (Sweden)

    Hitesh eMistry


    Full Text Available There is currently a strong interest in using high-throughput in-vitro ion-channel screening data to make predictions regarding the cardiac toxicity potential of a new compound in both animal and human studies. A recent FDA think tank encourages the use of biophysical mathematical models of cardiac myocytes for this prediction task. However, it remains unclear whether this approach is the most appropriate. Here we examine five literature data-sets that have been used to support the use of four different biophysical models and one statistical model for predicting cardiac toxicity in numerous species using various endpoints. We propose a simple model that represents the balance between repolarisation and depolarisation forces and compare the predictive power of the model against the original results (leave-one-out cross-validation. Our model showed equivalent performance when compared to the four biophysical models and one statistical model. We therefore conclude that this approach should be further investigated in the context of early cardiac safety screening when in-vitro potency data is generated.

  17. Computational modeling of voltage-gated Ca channels inhibition: identification of different effects on uterine and cardiac action potentials

    Directory of Open Access Journals (Sweden)

    Wing Chiu eTong


    Full Text Available The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs. Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models – of uterine smooth muscle cells (USMC, cardiac sinoatrial node cells (SAN and ventricular cells – to investigate the relative effects of reducing two important voltage-gated Ca currents – the L-type (ICaL and T-type (ICaT Ca currents. Reduction of ICaL (10% alone, or ICaT (40% alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine

  18. Aberrant Splicing Promotes Proteasomal Degradation of L-type Ca v 1.2 Calcium Channels by Competitive Binding for CaV β Subunits in Cardiac Hypertrophy

    NARCIS (Netherlands)

    Hu, Zhenyu; Wang, Jiong Wei; Yu, Dejie; Soon, Jia Lin; De Kleijn, Dominique P V; Foo, Roger; Liao, Ping; Colecraft, Henry M.; Soong, Tuck Wah


    Decreased expression and activity of Ca V1.2 calcium channels has been reported in pressure overload-induced cardiac hypertrophy and heart failure. However, the underlying mechanisms remain unknown. Here we identified in rodents a splice variant of Ca V1.2 channel, named Ca V1.2 e21+22, that contain

  19. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity. (United States)

    Judenherc-Haouzi, Annick; Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y; Haouzi, Philippe


    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca(2+) channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg(-1)·min(-1)), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca(2+)]i) transient amplitudes, and L-type Ca(2+) currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca(2+)]i) transient, and ICa The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca(2+) channels.

  20. Public channel cryptography by synchronization of neural networks and chaotic maps. (United States)

    Mislovaty, Rachel; Klein, Einat; Kanter, Ido; Kinzel, Wolfgang


    Two different kinds of synchronization have been applied to cryptography: synchronization of chaotic maps by one common external signal and synchronization of neural networks by mutual learning. By combining these two mechanisms, where the external signal to the chaotic maps is synchronized by the nets, we construct a hybrid network which allows a secure generation of secret encryption keys over a public channel. The security with respect to attacks, recently proposed by Shamir et al., is increased by chaotic synchronization.

  1. Kif5b is an essential forward trafficking motor for the Kv1.5 cardiac potassium channel. (United States)

    Zadeh, Alireza Dehghani; Cheng, Yvonne; Xu, Hongjian; Wong, Nathan; Wang, Zhuren; Goonasekara, Charitha; Steele, David F; Fedida, David


    We have investigated the role of the kinesin I isoform Kif5b in the trafficking of a cardiac voltage-gated potassium channel, Kv1.5. In Kv1.5-expressing HEK293 cells and H9c2 cardiomyoblasts, current densities were increased from control levels of 389 +/- 50.0 and 317 +/- 50.3 pA pF(1), respectively, to 614 +/- 74.3 and 580 +/- 90.9 pA pF(1) in cells overexpressing the Kif5b motor. Overexpression of the Kif5b motor increased Kv1.5 expression additively with several manipulations that reduce channel internalization, suggesting that it is involved in the delivery of the channel to the cell surface. In contrast, expression of a Kif5b dominant negative (Kif5bDN) construct increased Kv1.5 expression non-additively with these manipulations. Thus, the dominant negative acts by indirectly inhibiting endocytosis. The increase in Kv1.5 currents induced by wild-type Kif5b was dependent on Golgi function; a 6 h treatment with Brefeldin A reduced Kv1.5 currents to control levels in Kif5b-overexpressing cells but had little effect on the increase associated with Kif5bDN expression. Finally, expression of the Kif5bDN prior to induction of Kv1.5 in a tetracycline inducible system blocked surface expression of the channel in both HEK293 cells and H9c2 cardiomyoblasts. Thus, Kif5b is essential to anterograde trafficking of a cardiac voltage-gated potassium channel.

  2. A proton leak current through the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype.

    Directory of Open Access Journals (Sweden)

    Pascal Gosselin-Badaroudine

    Full Text Available Cardiac Na(+ channels encoded by the SCN5A gene are essential for initiating heart beats and maintaining a regular heart rhythm. Mutations in these channels have recently been associated with atrial fibrillation, ventricular arrhythmias, conduction disorders, and dilated cardiomyopathy (DCM.We investigated a young male patient with a mixed phenotype composed of documented conduction disorder, atrial flutter, and ventricular tachycardia associated with DCM. Further family screening revealed DCM in the patient's mother and sister and in three of the mother's sisters. Because of the complex clinical phenotypes, we screened SCN5A and identified a novel mutation, R219H, which is located on a highly conserved region on the fourth helix of the voltage sensor domain of Na(v1.5. Three family members with DCM carried the R219H mutation.The wild-type (WT and mutant Na(+ channels were expressed in a heterologous expression system, and intracellular pH (pHi was measured using a pH-sensitive electrode. The biophysical characterization of the mutant channel revealed an unexpected selective proton leak with no effect on its biophysical properties. The H(+ leak through the mutated Na(v1.5 channel was not related to the Na(+ permeation pathway but occurred through an alternative pore, most probably a proton wire on the voltage sensor domain.We propose that acidification of cardiac myocytes and/or downstream events may cause the DCM phenotype and other electrical problems in affected family members. The identification of this clinically significant H(+ leak may lead to the development of more targeted treatments.

  3. Treatment of cardiac arrhythmias in a mouse model of Rett syndrome with Na+-channel-blocking antiepileptic drugs. (United States)

    Herrera, José A; Ward, Christopher S; Pitcher, Meagan R; Percy, Alan K; Skinner, Steven; Kaufmann, Walter E; Glaze, Daniel G; Wehrens, Xander H T; Neul, Jeffrey L


    One quarter of deaths associated with Rett syndrome (RTT), an X-linked neurodevelopmental disorder, are sudden and unexpected. RTT is associated with prolonged QTc interval (LQT), and LQT-associated cardiac arrhythmias are a potential cause of unexpected death. The standard of care for LQT in RTT is treatment with β-adrenergic antagonists; however, recent work indicates that acute treatment of mice with RTT with a β-antagonist, propranolol, does not prevent lethal arrhythmias. In contrast, acute treatment with the Na(+) channel blocker phenytoin prevented arrhythmias. Chronic dosing of propranolol may be required for efficacy; therefore, we tested the efficacy of chronic treatment with either propranolol or phenytoin on RTT mice. Phenytoin completely abolished arrhythmias, whereas propranolol showed no benefit. Surprisingly, phenytoin also normalized weight and activity, but worsened breathing patterns. To explore the role of Na(+) channel blockers on QT in people with RTT, we performed a retrospective analysis of QT status before and after Na(+) channel blocker antiepileptic therapies. Individuals with RTT and LQT significantly improved their QT interval status after being started on Na(+) channel blocker antiepileptic therapies. Thus, Na(+) channel blockers should be considered for the clinical management of LQT in individuals with RTT.

  4. Block of human cardiac sodium channels by lacosamide: evidence for slow drug binding along the activation pathway. (United States)

    Wang, Ging Kuo; Wang, Sho-Ya


    Lacosamide is an anticonvulsant hypothesized to enhance slow inactivation of neuronal Na(+) channels for its therapeutic action. Cardiac Na(+) channels display less and incomplete slow inactivation, but their sensitivity toward lacosamide remains unknown. We therefore investigated the action of lacosamide in human cardiac Nav1.5 and Nav1.5-CW inactivation-deficient Na(+) channels. Lacosamide showed little effect on hNav1.5 Na(+) currents at 300 µM when cells were held at -140 mV. With 30-second conditioning pulses from -90 to -50 mV; however, hNav1.5 Na(+) channels became sensitive to lacosamide with IC50 (50% inhibitory concentration) around 70-80 µM. Higher IC50 values were found at -110 and -30 mV. The development of lacosamide block at -70 mV was slow in wild-type Na(+) channels (τ; 8.04 ± 0.39 seconds, n = 8). This time constant was significantly accelerated in hNav1.5-CW inactivation-deficient counterparts. The recovery from lacosamide block at -70 mV for 10 seconds was relatively rapid in wild-type Na(+) channels (τ; 639 ± 90 milliseconds, n = 8). This recovery was accelerated further in hNav1.5-CW counterparts. Unexpectedly, lacosamide elicited a time-dependent block of persistent hNav1.5-CW Na(+) currents with an IC50 of 242 ± 19 µM (n = 5). Furthermore, both hNav1.5-CW/F1760K mutant and batrachotoxin-activated hNav1.5 Na(+) channels became completely lacosamide resistant, indicating that the lacosamide receptor overlaps receptors for local anesthetics and batrachotoxin. Our results together suggest that lacosamide targets the intermediate preopen and open states of hNav1.5 Na(+) channels. Lacosamide may thus track closely the conformational changes at the hNav1.5-F1760 region along the activation pathway.

  5. Conducting and voltage-dependent behaviors of potassium ion channels reconstituted from diaphragm sarcoplasmic reticulum: comparison with the cardiac isoform. (United States)

    Picher, M; Decrouy, A; Rousseau, E


    Sarcoplasmic reticulum (SR) K+ channels from canine diaphragm were studied upon fusion of longitudinal and junctional membrane vesicles into planar lipid bilayers (PLB). The large-conductance cation selective channel (gamma(max) = 250 pS; Km = 33 mM) displays long-lasting open events which are much more frequent at positive than at negative voltages. A major subconducting state about 45% of the fully-open state current amplitude was occasionally observed at all voltages. The voltage-dependence of the open probability displays a sigmoid relationship that was fitted by the Boltzmann equation and expressed in terms of thermodynamic parameters, namely the free energy (delta Gi) and the effective gating charge (Zs): delta Gi = 0.27 kcal/mol and Zs = -1.19 in 250 mM potassium gluconate (K-gluconate). Kinetic analyses also confirmed the voltage-dependent gating behavior of this channel, and indicate the implication of at least two open and three closed states. The diaphragm SR K+ channel shares several biophysical properties with the cardiac isoform: g = 180 pS, delta Gi = 0.75 kcal/mol, Zs = -1.45 in 150 mM K-gluconate, and a similar sigmoid P(o)/voltage relationship. Little is known about the regulation of the diaphragm and cardiac SR K+ channels. The conductance and gating of these channels were not influenced by physiological concentrations of Ca2+ (0.1 microM-1 mM) or Mg2+ (0.25-1 mM), as well as by cGMP (25-100 microM), lemakalim (1-100 microM), glyburide (up to 10 microM) or charybdotoxin (45-200 nM), added either to the cis or to the trans chamber. The apparent lack of biochemical or pharmacological modulation of these channels implies that they are not related to any of the well characterized surface membrane K+ channels. On the other hand, their voltage sensitivity strongly suggests that their activity could be modulated by putative changes in SR membrane potential that might occur during calcium fluxes.

  6. Structural basis of slow activation gating in the cardiac IKs channel complex

    DEFF Research Database (Denmark)

    Strutz-Seebohm, Nathalie; Pusch, Michael; Wolf, Steffen;


    Accessory ß-subunits of the KCNE gene family modulate the function of various cation channel a-subunits by the formation of heteromultimers. Among the most dramatic changes of biophysical properties of a voltage-gated channel by KCNEs are the effects of KCNE1 on KCNQ1 channels. KCNQ1 and KCNE1 ar...

  7. OPAL REACTOR: Calculation/Experiment comparison of Neutron Flux Mapping in Flux Coolant Channels

    Energy Technology Data Exchange (ETDEWEB)

    Barbot, L.; Domergue, C.; Villard, J. F.; Destouches, C. [CEA, Paris (France); Braoudakis, G.; Wassink, D.; Sinclair, B.; Osborn, J. C.; Huayou, Wu [ANSTO, Syeney (Australia)


    The measurement and calculation of the neutron flux mapping of the OPAL research reactor are presented. Following an investigation of fuel coolant channels using sub-miniature fission chambers to measure thermal neutron flux profiles, neutronic calculations were performed. Comparison between calculation and measurement shows very good agreement.

  8. Roles of store-operated Ca2+ channels in regulating cell cycling and migration of human cardiac c-kit+ progenitor cells. (United States)

    Che, Hui; Li, Gang; Sun, Hai-Ying; Xiao, Guo-Sheng; Wang, Yan; Li, Gui-Rong


    Cardiac c-kit(+) progenitor cells are important for maintaining cardiac homeostasis and can potentially contribute to myocardial repair. However, cellular physiology of human cardiac c-kit(+) progenitor cells is not well understood. The present study investigates the functional store-operated Ca(2+) entry (SOCE) channels and the potential role in regulating cell cycling and migration using confocal microscopy, RT-PCR, Western blot, coimmunoprecipitation, cell proliferation, and migration assays. We found that SOCE channels mediated Ca(2+) influx, and TRPC1, STIM1, and Orai1 were involved in the formation of SOCE channels in human cardiac c-kit(+) progenitor cells. Silencing TRPC1, STIM1, or Orai1 with the corresponding siRNA significantly reduced the Ca(2+) signaling through SOCE channels, decreased cell proliferation and migration, and reduced expression of cyclin D1, cyclin E, and/or p-Akt. Our results demonstrate the novel information that Ca(2+) signaling through SOCE channels regulates cell cycling and migration via activating cyclin D1, cyclin E, and/or p-Akt in human cardiac c-kit(+) cells.

  9. [Development of multi-channels cardiac electrophysiological polygraph with LabVIEW as software platform and its clinical application]. (United States)

    Fan, Shounian; Jiang, Yi; Jiang, Chenxi; Yang, Tianhe; Zhang, Chengyun; Liu, Junshi; Wu, Qiang; Zheng, Yaxi; Liu, Xiaoqiao


    Polygraph has become a necessary instrument in interventional cardiology and fundamental research of medicine up to the present. In this study, a LabView development system (DS) (developed by NI in U.S.) used as software platform, a DAQ data acquisition module and universal computer used as hardware platform, were creatively coupled with our self-made low noise multi-channels preamplifier to develop Multi-channels electrocardiograph. The device possessed the functions such as real time display of physiological process, digit highpass and lowpass, 50Hz filtered and gain adjustment, instant storing, random playback and printing, and process control stimulation. Besides, it was small-sized, economically practical and easy to operate. It could advance the spread of cardiac intervention treatment in hospitals.

  10. A Gibbs Sampling Based MAP Detection Algorithm for OFDM Over Rapidly Varying Mobile Radio Channels

    CERN Document Server

    Panayirci, Erdal; Poor, H Vincent


    In orthogonal frequency-division multiplexing (OFDM) systems operating over rapidly time-varying channels, the orthogonality between subcarriers is destroyed leading to inter-carrier interference (ICI) and resulting in an irreducible error floor. In this paper, a new and low-complexity maximum {\\em a posteriori} probability (MAP) detection algorithm is proposed for OFDM systems operating over rapidly time-varying multipath channels. The detection algorithm exploits the banded structure of the frequency-domain channel matrix whose bandwidth is a parameter to be adjusted according to the speed of the mobile terminal. Based on this assumption, the received signal vector is decomposed into reduced dimensional sub-observations in such a way that all components of the observation vector contributing to the symbol to be detected are included in the decomposed observation model. The data symbols are then detected by the MAP algorithm by means of a Markov chain Monte Carlo (MCMC) technique in an optimal and computatio...

  11. A preprocessing tool for removing artifact from cardiac RR interval recordings using three-dimensional spatial distribution mapping. (United States)

    Stapelberg, Nicolas J C; Neumann, David L; Shum, David H K; McConnell, Harry; Hamilton-Craig, Ian


    Artifact is common in cardiac RR interval data that is recorded for heart rate variability (HRV) analysis. A novel algorithm for artifact detection and interpolation in RR interval data is described. It is based on spatial distribution mapping of RR interval magnitude and relationships to adjacent values in three dimensions. The characteristics of normal physiological RR intervals and artifact intervals were established using 24-h recordings from 20 technician-assessed human cardiac recordings. The algorithm was incorporated into a preprocessing tool and validated using 30 artificial RR (ARR) interval data files, to which known quantities of artifact (0.5%, 1%, 2%, 3%, 5%, 7%, 10%) were added. The impact of preprocessing ARR files with 1% added artifact was also assessed using 10 time domain and frequency domain HRV metrics. The preprocessing tool was also used to preprocess 69 24-h human cardiac recordings. The tool was able to remove artifact from technician-assessed human cardiac recordings (sensitivity 0.84, SD = 0.09, specificity of 1.00, SD = 0.01) and artificial data files. The removal of artifact had a low impact on time domain and frequency domain HRV metrics (ranging from 0% to 2.5% change in values). This novel preprocessing tool can be used with human 24-h cardiac recordings to remove artifact while minimally affecting physiological data and therefore having a low impact on HRV measures of that data.

  12. The β1-subunit of Na(v1.5 cardiac sodium channel is required for a dominant negative effect through α-α interaction.

    Directory of Open Access Journals (Sweden)

    Aurélie Mercier

    Full Text Available Brugada syndrome (BrS is an inherited autosomal dominant cardiac channelopathy. Several mutations on the cardiac sodium channel Na(v1.5 which are responsible for BrS lead to misfolded proteins that do not traffic properly to the plasma membrane. In order to mimic patient heterozygosity, a trafficking defective mutant, R1432G was co-expressed with Wild Type (WT Na(v1.5 channels in HEK293T cells. This mutant significantly decreased the membrane Na current density when it was co-transfected with the WT channel. This dominant negative effect did not result in altered biophysical properties of Na(v1.5 channels. Luminometric experiments revealed that the expression of mutant proteins induced a significant reduction in membrane expression of WT channels. Interestingly, we have found that the auxiliary Na channel β(1-subunit was essential for this dominant negative effect. Indeed, the absence of the β(1-subunit prevented the decrease in WT sodium current density and surface proteins associated with the dominant negative effect. Co-immunoprecipitation experiments demonstrated a physical interaction between Na channel α-subunits. This interaction occurred only when the β(1-subunit was present. Our findings reveal a new role for β(1-subunits in cardiac voltage-gated sodium channels by promoting α-α subunit interaction which can lead to a dominant negative effect when one of the α-subunits shows a trafficking defective mutation.

  13. Modulation of the transient outward current (Ito) in rat cardiac myocytes and human Kv4.3 channels by mefloquine. (United States)

    Perez-Cortes, E J; Islas, A A; Arevalo, J P; Mancilla, C; Monjaraz, E; Salinas-Stefanon, E M


    The antimalarial drug mefloquine, is known to be a potassium channel blocker, although its mechanism of action has not being elucidated and its effects on the transient outward current (Ito) and the molecular correlate, the Kv4.3 channel has not being studied. Here, we describe the mefloquine-induced inhibition of the rat ventricular Ito and of CHO cells co-transfected with human Kv4.3 and its accessory subunit hKChIP2C by whole-cell voltage-clamp. Mefloquine inhibited rat Ito and hKv4.3+KChIP2C currents in a concentration-dependent manner with a limited voltage dependence and similar potencies (IC50=8.9μM and 10.5μM for cardiac myocytes and Kv4.3 channels, respectively). In addition, mefloquine did not affect the activation of either current but significantly modified the hKv4.3 steady-state inactivation and recovery from inactivation. The effects of this drug was compared with that of 4-aminopyridine (4-AP), a well-known potassium channel blocker and its binding site does not seem to overlap with that of 4-AP.

  14. Fractal-Based Lightning Channel Length Estimation from Convex-Hull Flash Areas for DC3 Lightning Mapping Array Data (United States)

    Bruning, Eric C.; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Carey, Larry D.; Koshak, William; Peterson, Harold; MacGorman, Donald R.


    We will use VHF Lightning Mapping Array data to estimate NOx per flash and per unit channel length, including the vertical distribution of channel length. What s the best way to find channel length from VHF sources? This paper presents the rationale for the fractal method, which is closely related to the box-covering method.

  15. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria;


    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/rep...

  16. Nav1.5 cardiac sodium channels, regulation and clinical implications

    Directory of Open Access Journals (Sweden)

    Henry Humberto León-Ariza


    Full Text Available Voltage-gated sodium channels constitute a group of membrane proteins widely distributed thought the body. In the heart, there are at least six different isoforms, being the Nav1.5 the most abundant. The channel is composed of an α subunit that is formed by four domains of six segments each, and four much smaller β subunits that provide stability and integrate other channels into the α subunit. The function of the Nav1.5 channel is modulated by intracellular cytoskeleton proteins, extracellular proteins, calcium concentration, free radicals, and medications, among other things. The study of the channel and its alterations has grown thanks to its association with pathogenic conditions such as Long QT syndrome, Brugada syndrome, atrial fibrillation, arrhythmogenic ventricular dysplasia and complications during ischemic processes.

  17. Sensitivity analysis of the channel estimation deviation to the MAP decoding algorithm

    Institute of Scientific and Technical Information of China (English)

    WAN Ke; FAN Ping-zhi


    As a necessary input parameter for maximum a-posteriori(MAP) decoding algorithm,SNR is normally obtained from the channel estimation unit.Corresponding research indicated that SNR estimation deviation degraded the performance of Turbo decoding significantly.In this paper,MAP decoding algorithm with SNR estimation deviation was investigated in detail,and the degradation mechanism of Turbo decoding was explained analytically.The theoretical analysis and computer simulation disclosed the specific reasons for the performance degradation when SNR estimation was less than the actual value,and for the higher sensitivity of SNR estimation to long-frame Turbo codes.

  18. Diffuse myocardial fibrosis following tetralogy of Fallot repair: a T1 mapping cardiac magnetic resonance study

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Marcelo F.; Yoo, Shi-Joon; Seed, Mike; Grosse-Wortmann, Lars [The Hospital for Sick Children, University of Toronto, Labatt Family Heart Centre in the Department of Paediatrics and Department of Diagnostic Imaging, Toronto (Canada); Redington, Andrew [The Hospital for Sick Children, University of Toronto, Labatt Family Heart Centre in the Department of Paediatrics, Toronto (Canada); Greiser, Andreas [Siemens AG Healthcare Sector, Erlangen (Germany)


    Adverse ventricular remodeling after tetralogy of Fallot (TOF) repair is associated with diffuse myocardial fibrosis. The goal of this study was to measure post-contrast myocardial T1 in pediatric patients after TOF repair as surrogates of myocardial fibrosis. Children after TOF repair who underwent cardiac magnetic resonance imaging with T1 mapping using the modified look-locker inversion recovery (MOLLI) sequence were included. In addition to routine volumetric and flow data, we measured post-contrast T1 values of the basal interventricular septum, the left ventricular (LV) lateral wall, and the inferior and anterior walls of the right ventricle (RV). Results were compared to data from age-matched healthy controls. The scans of 18 children who had undergone TOF repair and 12 healthy children were included. Post-contrast T1 values of the left ventricular lateral wall (443 ± 54 vs. 510 ± 77 ms, P = 0.0168) and of the right ventricular anterior wall (333 ± 62 vs. 392 ± 72 ms, P = 0.0423) were significantly shorter in children with TOF repair than in controls, suggesting a higher degree of fibrosis. In children with TOF repair, but not in controls, post-contrast T1 values were shorter in the right ventricle than the left ventricle and shorter in the anterior wall of the right ventricle than in the inferior segments. In the TOF group, post-contrast T1 values of the RV anterior wall correlated with the RV end-systolic volume indexed to body surface area (r = 0.54; r{sup 2} = 0.30; P = 0.0238). In children who underwent tetralogy of Fallot repair the myocardium of both ventricles appears to bear an abnormally high fibrosis burden. (orig.)

  19. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)


    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  20. A toxin to nervous, cardiac, and endocrine ERG K+ channels isolated from Centruroides noxius scorpion venom. (United States)

    Gurrola, G B; Rosati, B; Rocchetti, M; Pimienta, G; Zaza, A; Arcangeli, A; Olivotto, M; Possani, L D; Wanke, E


    Toxins isolated from a variety of venoms are tools for probing the physiological function and structure of ion channels. The ether-a-go-go-related genes (erg) codify for the K+ channels (ERG), which are crucial in neurons and are impaired in human long-QT syndrome and Drosophila 'seizure' mutants. We have isolated a peptide from the scorpion Centruroides noxius Hoffmann that has no sequence homologies with other toxins, and demonstrate that it specifically inhibits (IC50=16+/-1 nM) only ERG channels of different species and distinct histogenesis. These results open up the possibility of investigating ERG channel structure-function relationships and novel pharmacological tools with potential therapeutic efficacy.

  1. Computer-aided mapping of stream channels beneath the Lawrence Livermore National Laboratory Super Fund Site

    Energy Technology Data Exchange (ETDEWEB)

    Sick, M. [Lawrence Livermore National Lab., CA (United States)


    The Lawrence Livermore National Laboratory (LLNL) site rests upon 300-400 feet of highly heterogeneous braided stream sediments which have been contaminated by a plume of Volatile Organic Compounds (VOCs). The stream channels are filled with highly permeable coarse grained materials that provide quick avenues for contaminant transport. The plume of VOCs has migrated off site in the TFA area, making it the area of greatest concern. I mapped the paleo-stream channels in the TFA area using SLICE an LLNL Auto-CADD routine. SLICE constructed 2D cross sections and sub-horizontal views of chemical, geophysical, and lithologic data sets. I interpreted these 2D views as a braided stream environment, delineating the edges of stream channels. The interpretations were extracted from Auto-CADD and placed into Earth Vision`s 3D modeling and viewing routines. Several 3D correlations have been generated, but no model has yet been chosen as a best fit.

  2. Tetrodotoxin-sensitive α-subunits of voltage-gated sodium channels are relevant for inhibition of cardiac sodium currents by local anesthetics. (United States)

    Stoetzer, C; Doll, T; Stueber, T; Herzog, C; Echtermeyer, F; Greulich, F; Rudat, C; Kispert, A; Wegner, F; Leffler, A


    The sodium channel α-subunit (Nav) Nav1.5 is regarded as the most prevalent cardiac sodium channel required for generation of action potentials in cardiomyocytes. Accordingly, Nav1.5 seems to be the main target molecule for local anesthetic (LA)-induced cardiotoxicity. However, recent reports demonstrated functional expression of several "neuronal" Nav's in cardiomyocytes being involved in cardiac contractility and rhythmogenesis. In this study, we examined the relevance of neuronal tetrodotoxin (TTX)-sensitive Nav's for inhibition of cardiac sodium channels by the cardiotoxic LAs ropivacaine and bupivacaine. Effects of LAs on recombinant Nav1.2, 1.3, 1.4, and 1.5 expressed in human embryonic kidney cell line 293 (HEK-293) cells, and on sodium currents in murine, cardiomyocytes were investigated by whole-cell patch clamp recordings. Expression analyses were performed by reverse transcription PCR (RT-PCR). Cultured cardiomyocytes from neonatal mice express messenger RNA (mRNA) for Nav1.2, 1.3, 1.5, 1.8, and 1.9 and generate TTX-sensitive sodium currents. Tonic and use-dependent block of sodium currents in cardiomyocytes by ropivacaine and bupivacaine were enhanced by 200 nM TTX. Inhibition of recombinant Nav1.5 channels was similar to that of TTX-resistant currents in cardiomyocytes but stronger as compared to inhibition of total sodium current in cardiomyocytes. Recombinant Nav1.2, 1.3, 1.4, and 1.5 channels displayed significant differences in regard to use-dependent block by ropivacaine. Finally, bupivacaine blocked sodium currents in cardiomyocytes as well as recombinant Nav1.5 currents significantly stronger in comparison to ropivacaine. Our data demonstrate for the first time that cardiac TTX-sensitive sodium channels are relevant for inhibition of cardiac sodium currents by LAs.

  3. Cardiac HCN Channels: From Basic to Bedside%心脏HCN通道:从基础到临床

    Institute of Scientific and Technical Information of China (English)

    范新荣; 王超


    研究表明超极化激活环核苷酸门控阳离子通道(HCN通道)大量分布于心脏及神经系统的特定部位,其介导的起搏电流引起窦房结细胞舒张期去极化,从而在心脏自主搏动及心律的调节等方面发挥着十分重要的生理功能.目前,已克隆得到4种HCN亚型基因,并通过功能表达分析指出各种HCN亚型具有不同的电生理学特性.但是目前有关HCN逶道在心脏电活动中的生理及病理生理机制仍未完全阐明.本篇综述旨在详细阐述心脏HCN通道的生物物理学特性、心脏通道蛋白表达、各种HCN通道突变引起的离子通道疾病以及几种通道阻滞药物电药理学特性的研究进展.%Hyperpolarization-activated cyclic nucleotide-gated ( HCN) channels, responsible for pacemaker current, are widely expressed in heart and nervous system, and HCN mediated currents play a key role in generation and regulation of diastolic depolarization which controls the spontaneous rate in sinoatrial node myocytes. Recently, four mammalian HCN isoforms, respectively termed HCN1-4, have been cloned. When heterologously expressed, each of the four HCN subunits has different electrophysiological properties. However, the physiological and pathophysiological mechanisms of HCN channels on cardiac electric activity have not been revealed completely. In this review we summarize recent insight into the biophysical characteristics of cardiac HCN channels, distribution of channels in heart, five kinds of HCN-related ionic channelopathies and electropharmacological properties of several If blockers.

  4. Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr) and modulates cardiac action potential characteristics

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter


    The repolarizing cardiac rapid delayed rectifier current, I(Kr), is composed of ERG1 channels. It has been suggested that two isoforms of the ERG1 protein, ERG1a and ERG1b, both contribute to I(Kr). Marked heterogeneity in the kinetic properties of native I(Kr) has been described. We hypothesized...

  5. Mutations in conserved amino acids in the KCNQ1 channel and risk of cardiac events in type-1 long-QT syndrome

    DEFF Research Database (Denmark)

    Jons, Christian; Moss, Arthur J; Lopes, Coeli M


    BACKGROUND: Type-1 long-QT syndrome (LQT1) is caused by mutations in the KCNQ1 gene. The purpose of this study was to investigate whether KCNQ1 mutations in highly conserved amino acid residues within the voltage-gated potassium channel family are associated with an increased risk of cardiac even...

  6. Prestimulus EEG microstates influence visual event-related potential microstates in field maps with 47 channels. (United States)

    Kondakor, I; Lehmann, D; Michel, C M; Brandeis, D; Kochi, K; Koenig


    The influence of the immediate prestimulus EEG microstate (sub-second epoch of stable topography/map landscape) on the map landscape of visually evoked 47-channel event-related potential (ERP) microstates was examined using the frequent, non-target stimuli of a cognitive paradigm (12 volunteers). For the two frequent prestimulus microstate classes (oriented left anterior-right posterior and right anterior-left posterior), ERP map series were selectively averaged. The post-stimulus ERP grand average map series was segmented into microstates; 10 were found. The centroid locations of positive and negative map areas extracted as landscape descriptors. Significant differences (MANOVAs and t-tests) between the two prestimulus classes were found in four of the ten ERP microstates. The relative orientation of the two ERP microstate classes was the same as prestimulus in some ERP microstates, but reversed in others. Thus, brain electric microstates at stimulus arrival influence the landscapes of the post-stimulus ERP maps and therefore, information processing; prestimulus microstate effects differed for different post-stimulus ERP microstates.

  7. Using a Combined Platform of Swarm Intelligence Algorithms and GIS to Provide Land Suitability Maps for Locating Cardiac Rehabilitation Defibrillators

    Directory of Open Access Journals (Sweden)



    Full Text Available Background: Cardiac arrest is a condition in which the heart is completely stopped and is not pumping any blood. Although most cardiac arrest cases are reported from homes or hospitals, about 20% occur in public areas. Therefore, these areas need to be investigated in terms of cardiac arrest incidence so that places of high incidence can be identi-fied and cardiac rehabilitation defibrillators installed there.Methods: In order to investigate a study area in Petersburg, Pennsylvania State, and to determine appropriate places for installing defibrillators with 5-year period data, swarm intelligence algorithms were used. Moreover, the location of the defibrillators was determined based on the following five evaluation criteria: land use, altitude of the area, econom-ic conditions, distance from hospitals and approximate areas of reported cases of cardiac arrest for public places that were created in geospatial information system (GIS.Results: The A-P HADEL algorithm results were more precise about 27.36%. The validation results indicated a wider coverage of real values and the verification results confirmed the faster and more exact optimization of the cost func-tion in the PSO method.Conclusion: The study findings emphasize the necessity of applying optimal optimization methods along with GIS and precise selection of criteria in the selection of optimal locations for installing medical facilities because the selected algorithm and criteria dramatically affect the final responses. Meanwhile, providing land suitability maps for installing facilities across hot and risky spots has the potential to save many lives.

  8. Cardiac Fibroblast-Specific Activating Transcription Factor 3 Protects Against Heart Failure by Suppressing MAP2K3-p38 Signaling. (United States)

    Li, Yulin; Li, Zhenya; Zhang, Congcong; Li, Ping; Wu, Yina; Wang, Chunxiao; Lau, Wayne Bond; Ma, Xin-Liang; Du, Jie


    Background -Hypertensive ventricular remodeling is a common cause of heart failure. However, the molecular mechanisms regulating ventricular remodeling remain poorly understood. Methods -We used a discovery-driven/nonbiased approach to indentify increased ATF3 expression in hypertensive heart. We employed loss/gain of function approaches to understand the role of ATF3 in heart failure. We also examine the mechanisms through transcriptome, CHIP-seq analysis and in vivo and vitro experiments. Results -ATF3 expression increased in murine hypertensive heart and human hypertrophic heart. Cardiac fibroblast cells are the primary cell type expressing high ATF3 levels in response to hypertensive stimuli. ATF3 knockout (ATF3KO) markedly exaggerated hypertensive ventricular remodeling, a state rescued by lentivirus-mediated/miRNA-aided cardiac fibroblast-selective ATF3 overexpression. Conversely, conditional cardiac fibroblast cell-specific ATF3 transgenic overexpression significantly ameliorated ventricular remodeling and heart failure. We identified Map2K3 as a novel ATF3 target. ATF3 binds with the Map2K3 promoter, recruiting HDAC1, resulting in Map2K3 gene-associated histone deacetylation, thereby inhibiting Map2K3 expression. Genetic Map2K3 knockdown rescued the pro-fibrotic/hypertrophic phenotype in ATF3KO cells. Finally, we demonstrated that p38 is the downstream molecule of Map2K3 mediating the pro-fibrotic/hypertrophic effects in ATF3KO animals. Inhibition of p38 signaling reduced TGF-β signaling-related pro-fibrotic and hypertrophic gene expression, and blocked exaggerated cardiac remodeling in ATF3KO cells. Conclusions -Our study provides the first evidence that ATF3 upregulation in cardiac fibroblasts in response to hypertensive stimuli protects heart by suppressing Map2K3 expression and subsequent p38-TGF-β signaling. These results suggest that positive modulation of cardiac fibroblast ATF3 may represent a novel therapeutic approach against hypertensive

  9. Non-contact left ventricular endocardial mapping in cardiac resynchronisation therapy


    Lambiase, P. D.; Rinaldi, A.; J. Hauck; Mobb, M; Elliott, D; Mohammad, S; Gill, J. S.; Bucknall, C A


    Background: Up to 30% of patients with heart failure do not respond to cardiac resynchronisation therapy (CRT). This may reflect placement of the coronary sinus lead in regions of slow conduction despite optimal positioning on current criteria.

  10. Characteristics of single large-conductance Ca2+-activated K+ channels and their regulation of action potentials and excitability in parasympathetic cardiac motoneurons in the nucleus ambiguus. (United States)

    Lin, Min; Hatcher, Jeff T; Wurster, Robert D; Chen, Qin-Hui; Cheng, Zixi Jack


    Large-conductance Ca2(+)-activated K+ channels (BK) regulate action potential (AP) properties and excitability in many central neurons. However, the properties and functional roles of BK channels in parasympathetic cardiac motoneurons (PCMNs) in the nucleus ambiguus (NA) have not yet been well characterized. In this study, the tracer X-rhodamine-5 (and 6)-isothiocyanate (XRITC) was injected into the pericardial sac to retrogradely label PCMNs in FVB mice at postnatal 7-9 days. Two days later, XRITC-labeled PCMNs in brain stem slices were identified. Using excised patch single-channel recordings, we identified voltage-gated and Ca(2+)-dependent BK channels in PCMNs. The majority of BK channels exhibited persistent channel opening during voltage holding. These BK channels had a conductance of 237 pS and a 50% opening probability at +27.9 mV, the channel open time constant was 3.37 ms at +20 mV, and dwell time increased exponentially as the membrane potential depolarized. At the +20-mV holding potential, the [Ca2+]50 was 15.2 μM with a P0.5 of 0.4. Occasionally, some BK channels showed a transient channel opening and fast inactivation. Using whole cell voltage clamp, we found that BK channel mediated outward currents and afterhyperpolarization currents (IAHP). Using whole cell current clamp, we found that application of BK channel blocker iberiotoxin (IBTX) increased spike half-width and suppressed fast afterhyperpolarization (fAHP) amplitude following single APs. In addition, IBTX application increased spike half-width and reduced the spike frequency-dependent AP broadening in trains and spike frequency adaption (SFA). Furthermore, BK channel blockade decreased spike frequency. Collectively, these results demonstrate that PCMNs have BK channels that significantly regulate AP repolarization, fAHP, SFA, and spike frequency. We conclude that activation of BK channels underlies one of the mechanisms for facilitation of PCMN excitability.

  11. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability. (United States)

    Altamirano, Julio; Bers, Donald M


    Excitation-contraction coupling in cardiac myocytes occurs by Ca2+-induced Ca2+ release, where L-type Ca2+ current evokes a larger sarcoplasmic reticulum (SR) Ca2+ release. The Ca2+-induced Ca2+ release amplification factor or gain (SR Ca2+ release/I(Ca)) is usually assessed by the V(m) dependence of current and Ca2+ transients. Gain rises at negative V(m), as does single channel I(Ca) (i(Ca)), which has led to the suggestion that the increases of i(Ca) amplitude enhances gain at more negative V(m). However, I(Ca) = NP(o) x i(Ca) (where NP(o) is the number of open channels), and NP(o) and i(Ca) both depend on V(m). To assess how i(Ca) and NP(o) separately influence Ca2+-induced Ca2+ release, we measured I(Ca) and junctional SR Ca2+ release in voltage-clamped rat ventricular myocytes using "Ca2+ spikes" (confocal microscopy). To vary i(Ca) alone, we changed [Ca2+](o) rapidly at constant test V(m) (0 mV) or abruptly repolarized from +120 mV to different V(m) (at constant [Ca2+](o)). To vary NP(o) alone, we altered Ca2+ channel availability by varying holding V(m) (at constant test V(m)). Reducing either i(Ca) or NP(o) alone increased excitation-contraction coupling gain. Thus, increasing i(Ca) does not increase gain at progressively negative test V(m). Such enhanced gain depends on lower NP(o) and reduced redundant Ca2+ channel openings (per junction) and a consequently smaller denominator in the gain equation. Furthermore, modest i(Ca) (at V(m) = 0 mV) may still effectively trigger SR Ca2+ release, whereas at positive V(m) (and smaller i(Ca)), high and well-synchronized channel openings are required for efficient excitation-contraction coupling. At very positive V(m), reduced i(Ca) must explain reduced SR Ca2+ release.

  12. Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET. (United States)

    Kubota, Tomoya; Durek, Thomas; Dang, Bobo; Finol-Urdaneta, Rocio K; Craik, David J; Kent, Stephen B H; French, Robert J; Bezanilla, Francisco; Correa, Ana M


    Voltage-gated sodium channels (Navs) play crucial roles in excitable cells. Although vertebrate Nav function has been extensively studied, the detailed structural basis for voltage-dependent gating mechanisms remain obscure. We have assessed the structural changes of the Nav voltage sensor domain using lanthanide-based resonance energy transfer (LRET) between the rat skeletal muscle voltage-gated sodium channel (Nav1.4) and fluorescently labeled Nav1.4-targeting toxins. We generated donor constructs with genetically encoded lanthanide-binding tags (LBTs) inserted at the extracellular end of the S4 segment of each domain (with a single LBT per construct). Three different Bodipy-labeled, Nav1.4-targeting toxins were synthesized as acceptors: β-scorpion toxin (Ts1)-Bodipy, KIIIA-Bodipy, and GIIIA-Bodipy analogs. Functional Nav-LBT channels expressed in Xenopus oocytes were voltage-clamped, and distinct LRET signals were obtained in the resting and slow inactivated states. Intramolecular distances computed from the LRET signals define a geometrical map of Nav1.4 with the bound toxins, and reveal voltage-dependent structural changes related to channel gating.

  13. Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET (United States)

    Kubota, Tomoya; Durek, Thomas; Dang, Bobo; Finol-Urdaneta, Rocio K.; Craik, David J.; Kent, Stephen B. H.; French, Robert J.; Bezanilla, Francisco; Correa, Ana M.


    Voltage-gated sodium channels (Navs) play crucial roles in excitable cells. Although vertebrate Nav function has been extensively studied, the detailed structural basis for voltage-dependent gating mechanisms remain obscure. We have assessed the structural changes of the Nav voltage sensor domain using lanthanide-based resonance energy transfer (LRET) between the rat skeletal muscle voltage-gated sodium channel (Nav1.4) and fluorescently labeled Nav1.4-targeting toxins. We generated donor constructs with genetically encoded lanthanide-binding tags (LBTs) inserted at the extracellular end of the S4 segment of each domain (with a single LBT per construct). Three different Bodipy-labeled, Nav1.4-targeting toxins were synthesized as acceptors: β-scorpion toxin (Ts1)-Bodipy, KIIIA-Bodipy, and GIIIA-Bodipy analogs. Functional Nav-LBT channels expressed in Xenopus oocytes were voltage-clamped, and distinct LRET signals were obtained in the resting and slow inactivated states. Intramolecular distances computed from the LRET signals define a geometrical map of Nav1.4 with the bound toxins, and reveal voltage-dependent structural changes related to channel gating. PMID:28202723

  14. A New Arithmetic Coding System Combining Source Channel Coding and MAP Decoding

    Institute of Scientific and Technical Information of China (English)

    PANG Yu-ye; SUN Jun; WANG Jia


    A new arithmetic coding system combining source channel coding and maximum a posteriori decoding were proposed.It combines source coding and error correction tasks into one unified process by introducing an adaptive forbidden symbol.The proposed system achieves fixed length code words by adaptively adjusting the probability of the forbidden symbol and adding tail digits of variable length.The corresponding improved MAP decoding metric was derived.The proposed system can improve the performance.Simulations were performed on AWGN channels with various noise levels by using both hard and soft decision with BPSK modulation.The results show its performance is slightly better than that of our adaptive arithmetic error correcting coding system using a forbidden symbol.

  15. Non-invasively measured cardiac magnetic field maps improve the estimation of the current distribution


    Kosch, Olaf; Steinhoff, Uwe; Trahms, Lutz; Trontelj, Zvonko; Jazbinšek, Vojko


    Comprehensive body surface potential mapping (BSPM) and magnetic field mapping (MFM) measurements have been carried out in order to improve the estimation of the current distribution generated by the human heart. Electric and magnetic fields and also the planar gradient of the magnetic field during the QRS complex were imaged as a time series of field maps. A model of the current distribution should explain the features of both BSPM and MFM. Simulated maps generated by a single dipole or a st...

  16. The cardiac L-type calcium channel distal carboxy terminus autoinhibition is regulated by calcium. (United States)

    Crump, Shawn M; Andres, Douglas A; Sievert, Gail; Satin, Jonathan


    The L-type calcium channel (LTCC) provides trigger Ca(2+) for sarcoplasmic reticulum Ca-release, and LTCC function is influenced by interacting proteins including the LTCC distal COOH terminus (DCT) and calmodulin. DCT is proteolytically cleaved and reassociates with the LTCC complex to regulate calcium channel function. DCT reduces LTCC barium current (I(Ba,L)) in reconstituted channel complexes, yet the contribution of DCT to LTCC Ca(2+) current (I(Ca,L)) in cardiomyocyte systems is unexplored. This study tests the hypothesis that DCT attenuates cardiomyocyte I(Ca,L). We measured LTCC current and Ca(2+) transients with DCT coexpressed in murine cardiomyocytes. We also heterologously coexpressed DCT and Ca(V)1.2 constructs with truncations corresponding to the predicted proteolytic cleavage site, Ca(V)1.2Δ1801, and a shorter deletion corresponding to well-studied construct, Ca(V)1.2Δ1733. DCT inhibited I(Ba,L) in cardiomyocytes, and in human embryonic kidney (HEK) 293 cells expressing Ca(V)1.2Δ1801 and Ca(V)1.2Δ1733. Ca(2+)-CaM relieved DCT block in cardiomyocytes and HEK cells. The selective block of I(Ba,L) combined with Ca(2+)-CaM effects suggested that DCT-mediated blockade may be relieved under conditions of elevated Ca(2+). We therefore tested the hypothesis that DCT block is dynamic, increasing under relatively low Ca(2+), and show that DCT reduced diastolic Ca(2+) at low stimulation frequencies but spared high frequency Ca(2+) entry. DCT reduction of diastolic Ca(2+) and relief of block at high pacing frequencies and under conditions of supraphysiological bath Ca(2+) suggests that a physiological function of DCT is to increase the dynamic range of Ca(2+) transients in response to elevated pacing frequencies. Our data motivate the new hypothesis that DCT is a native reverse use-dependent inhibitor of LTCC current.

  17. Effects of BKCa and Kir2.1 Channels on Cell Cycling Progression and Migration in Human Cardiac c-kit+ Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Ying-Ying Zhang

    Full Text Available Our previous study demonstrated that a large-conductance Ca2+-activated K+ current (BKCa, a voltage-gated TTX-sensitive sodium current (INa.TTX, and an inward rectifier K+ current (IKir were heterogeneously present in most of human cardiac c-kit+ progenitor cells. The present study was designed to investigate the effects of these ion channels on cell cycling progression and migration of human cardiac c-kit+ progenitor cells with approaches of cell proliferation and mobility assays, siRNA, RT-PCR, Western blots, flow cytometry analysis, etc. It was found that inhibition of BKCa with paxilline, but not INa.TTX with tetrodotoxin, decreased both cell proliferation and migration. Inhibition of IKir with Ba2+ had no effect on cell proliferation, while enhanced cell mobility. Silencing KCa.1.1 reduced cell proliferation by accumulating the cells at G0/G1 phase and decreased cell mobility. Interestingly, silencing Kir2.1 increased the cell migration without affecting cell cycling progression. These results demonstrate the novel information that blockade or silence of BKCa channels, but not INa.TTX channels, decreases cell cycling progression and mobility, whereas inhibition of Kir2.1 channels increases cell mobility without affecting cell cycling progression in human cardiac c-kit+ progenitor cells.

  18. Effects of BKCa and Kir2.1 Channels on Cell Cycling Progression and Migration in Human Cardiac c-kit+ Progenitor Cells. (United States)

    Zhang, Ying-Ying; Li, Gang; Che, Hui; Sun, Hai-Ying; Xiao, Guo-Sheng; Wang, Yan; Li, Gui-Rong


    Our previous study demonstrated that a large-conductance Ca2+-activated K+ current (BKCa), a voltage-gated TTX-sensitive sodium current (INa.TTX), and an inward rectifier K+ current (IKir) were heterogeneously present in most of human cardiac c-kit+ progenitor cells. The present study was designed to investigate the effects of these ion channels on cell cycling progression and migration of human cardiac c-kit+ progenitor cells with approaches of cell proliferation and mobility assays, siRNA, RT-PCR, Western blots, flow cytometry analysis, etc. It was found that inhibition of BKCa with paxilline, but not INa.TTX with tetrodotoxin, decreased both cell proliferation and migration. Inhibition of IKir with Ba2+ had no effect on cell proliferation, while enhanced cell mobility. Silencing KCa.1.1 reduced cell proliferation by accumulating the cells at G0/G1 phase and decreased cell mobility. Interestingly, silencing Kir2.1 increased the cell migration without affecting cell cycling progression. These results demonstrate the novel information that blockade or silence of BKCa channels, but not INa.TTX channels, decreases cell cycling progression and mobility, whereas inhibition of Kir2.1 channels increases cell mobility without affecting cell cycling progression in human cardiac c-kit+ progenitor cells.

  19. A Lightning Channel Retrieval Algorithm for the North Alabama Lightning Mapping Array (LMA) (United States)

    Koshak, William; Arnold, James E. (Technical Monitor)


    A new multi-station VHF time-of-arrival (TOA) antenna network is, at the time of this writing, coming on-line in Northern Alabama. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The network will support on-going ground validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. It will also provide for many interesting and detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and will offer many interesting comparisons with other meteorological/geophysical wets associated with lightning and thunderstorms. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. In this study, a new revised channel mapping retrieval algorithm is introduced. The algorithm is an extension of earlier work provided in Koshak and Solakiewicz (1996) in the analysis of the NASA Kennedy Space Center (KSC) Lightning Detection and Ranging (LDAR) system. As in the 1996 study, direct algebraic solutions are obtained by inverting a simple linear system of equations, thereby making computer searches through a multi-dimensional parameter domain of a Chi-Squared function unnecessary. However, the new algorithm is developed completely in spherical Earth-centered coordinates (longitude, latitude, altitude), rather than in the (x, y, z) cartesian coordinates employed in the 1996 study. Hence, no mathematical transformations from (x, y, z) into spherical coordinates are required (such transformations involve more numerical error propagation, more computer program coding, and slightly more CPU computing time). The new algorithm also has a more realistic

  20. Cardiac actions of phencyclidine in isolated guinea pig and rat heart: possible involvement of slow channels

    Energy Technology Data Exchange (ETDEWEB)

    Temma, K.; Akera, T.; Ng, Y.C.


    The mechanisms responsible for the positive inotropic effect of phencyclidine were studied in isolated preparations of guinea pig and rat heart. In electrically paced left atrial muscle preparations, phencyclidine increased the force of contraction; rat heart muscle preparations were more sensitive than guinea pig heart muscle preparations. The positive inotropic effect of phencyclidine was not significantly reduced by a combination of phentolamine and nadolol; however, the effect was competitively blocked by verapamil in the presence of phentolamine and nadolol. Inhibition of the outward K+ current by tetraethylammonium chloride also produced a positive inotropic effect; however, the effect of tetraethylammonium was reduced by phentolamine and nadolol, and was almost insensitive to verapamil. The inotropic effect of phencyclidine was associated with a marked prolongation of the action potential duration and a decrease in maximal upstroke velocity of the action potential, with no change in the resting membrane potential. The specific (/sup 3/H)phencyclidine binding observed with membrane preparations from guinea pig ventricular muscle was saturable with a single class of high-affinity binding site. This binding was inhibited by verapamil, diltiazem, or nitrendipine, but not by ryanodine or tetrodotoxin. These results suggest that the positive inotropic effect of phencyclidine results from enhanced Ca/sup 2 +/ influx via slow channels, either by stimulation of the channels or secondary to inhibition of outward K/sup +/ currents.

  1. Relay selection based on MAP estimation for cooperative communication with outdated channel state information

    Institute of Scientific and Technical Information of China (English)

    Ding Wenrui; Fei Li; Gao Qiang; Liu Shuo


    In this paper,we consider an amplify-and-forward (AF) cooperative communication system when the channel state information (CSI) used in relay selection differs from that during data transmission,i.e.,the CSI used in relay selection is outdated.The selected relay may not be actually the best for data transmission and the outage performance of the cooperative system will deteriorate.To improve its performance,we propose a relay selection strategy based on maximum a posteriori (MAP) estimation,where relay is selected based on predicted signal-to-noise ratio (SNR).To reduce the computation complexity,we approximate the a posteriori probability density of SNR and obtain a closed-form predicted SNR,and a relay selection strategy based on the approximate MAP estimation (RS-AMAP) is proposed.The simulation results show that this approximation leads to trivial performance loss from the perspective of outage probability.Compared with relay selection strategies given in the literature,the outage probability is reduced largely through RS-AMAP for medium-to-large transmitting powers and medium-to-high channel correlation coefficients.

  2. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: a study to assess the drug's cardiac ion channel profile. (United States)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K; Lukacs, Peter; Gawali, Vaibhavkumar S; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter


    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias.

  3. The roles and relations of calpastatin, calmodulin and an undefined cytoplasmic factor in the regulation of cardiac L-type Ca2+ channels

    Institute of Scientific and Technical Information of China (English)

    HAO Li-ying; ZHU Tong; HU Hui-yuan; ZHAO Mei-mi; RUI Feng; LIU Yan; ZHAO Jin-sheng; tsuko Minobe; Masaki Kameyama


    Objective To explore the mechanism that cytoplasmic factors could recover L-type Ca2+ channel activity after "run-down'. The factors include ATP, calpastatin and H fraction (a high molecular fraction of bovine cardiac cytoplasm). Methods Single Ca2+ channel activities were recorded with patch clamp technique in guinea-pig cardiac myocytes. Run-down was induced by the inside-out patch formation. Calpastatin (CS), calmodulin(CaM) and three GST-fusion fragment peptides derived from the C-terminal tail of guineapig Car1.2, CT-1 (amino acids number 1509-1791), CTo2 (1777-2003) and CT-3 (1944-2169) were produced as GST fusion proteins. Results (1)CaM + ATP or CS + ATP restored the channels after rundown;however, the CaM or CS's effects became smaller with the longer run-down time. (2)After run down, CaM-dependent protein kinase (CaMKII) produced Ca2+ channel activity to only 2-10% of the basal activity, however, in the presence of CaMKII, the time-dependent nature of the CaM effect was abolished. (3) In pull-down assay, CT-1 treated with CaMKII showed a higher affinity for CaM than that treated with phosphatase. (4)CaMKII was detected in the H fraction of bovine cardiac cytoplasm. Conclusions The results show that CS, CaM and CaMKII are all involved in the maintenance of the basal activity of L-type Ca2+ channels, and that there might be cross talks among the four factors (CS, CaM, CaMKII and the undefined cytoplasmic factor). This work was supported by the grants from the Japan Society for the Promotion of Science and the National Natural Science Foundation of China (No. 30670761, No. 30671726).

  4. Anesthetic drug midazolam inhibits cardiac human ether-à-go-go-related gene channels: mode of action

    Directory of Open Access Journals (Sweden)

    Vonderlin N


    Full Text Available Nadine Vonderlin,1 Fathima Fischer,1 Edgar Zitron,1,2 Claudia Seyler,1 Daniel Scherer,1 Dierk Thomas,1,2 Hugo A Katus,1,2 Eberhard P Scholz1 1Department of Internal Medicine III, University Hospital Heidelberg, 2German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany Abstract: Midazolam is a short-acting benzodiazepine that is in wide clinical use as an anxiolytic, sedative, hypnotic, and anticonvulsant. Midazolam has been shown to inhibit ion channels, including calcium and potassium channels. So far, the effects of midazolam on cardiac human ether-à-go-go-related gene (hERG channels have not been analyzed. The inhibitory effects of midazolam on heterologously expressed hERG channels were analyzed in Xenopus oocytes using the double-electrode voltage clamp technique. We found that midazolam inhibits hERG channels in a concentration-dependent manner, yielding an IC50 of 170 µM in Xenopus oocytes. When analyzed in a HEK 293 cell line using the patch-clamp technique, the IC50 was 13.6 µM. Midazolam resulted in a small negative shift of the activation curve of hERG channels. However, steady-state inactivation was not significantly affected. We further show that inhibition is state-dependent, occurring within the open and inactivated but not in the closed state. There was no frequency dependence of block. Using the hERG pore mutants F656A and Y652A we provide evidence that midazolam uses a classical binding site within the channel pore. Analyzing the subacute effects of midazolam on hERG channel trafficking, we further found that midazolam does not affect channel surface expression. Taken together, we show that the anesthetic midazolam is a low-affinity inhibitor of cardiac hERG channels without additional effects on channel surface expression. These data add to the current understanding of the pharmacological profile of the anesthetic midazolam. Keywords: midazolam, anesthetics, human ether

  5. SpiNon- Invasive Diagnostics and Results of Interventive Treatment of Cardiac Arrhythmia Using the New System of Non-Invasive Surface Mapping “Amycard 01K”

    Directory of Open Access Journals (Sweden)

    Revishvili A. Sh.


    Conclusion. Using results of the surface activation mapping in patients with various cardiac arrhythmias shows its high diagnostic value and the necessity for a preoperative examination. Previously held topical diagnosis of arrhythmogenic substrate will reduce the time of the arrhythmia origin finding, to avoid possible adverse intraoperative complications such as a damage of coronary vessels, as well as reduce the time of intraoperative fluoroscopy.

  6. Echocardiographic mapping of left ventricular resynchronization during cardiac resynchronization therapy procedures

    Institute of Scientific and Technical Information of China (English)

    CHAN Ngai-yin; CHOY Chi-chung; CHEUNG Kar-chun; LAU Chun-leung; LO Ying-keung; CHU Pui-shan; YUEN Ho-chuen; LAU Suet-ting; CHOI Yuen-choi


    Background Cardiac resynchronization therapy (CRT) is an effective electrical therapy for patients with moderate to severe heart failure and cardiac dyssynchrony. This study aimed to investigate the degree of acute left ventricular (LV)resynchronization with biventricular pacing (BVP) at different LV sites and to examine the feasibility of performing transthoracic echocardiography (TTE) to quantify acute LV resynchronization during CRT procedure.Methods Fourteen patients with NYHA Class ⅢⅣ heart failure, LV ejection fraction ≤35%, QRS duration ≥120 ms and septal-lateral delay (SLD) ≥60 ms on tissue Doppler imaging (TDI), underwent CRT implant. TDI was obtained from three apical views during BVP at each accessible LV site and SLD during BVP was derived. Synchronicity gain index (Sg) by SLD was defined as (1+(SLD at baseline - SLD at BVP)/SLD at baseline).Results Seventy-two sites were studied. Positive resynchronization (R+, Sg>1) was found in 42 (58%) sites. R+ was more likely in posterior or lateral than anterior LV sites (66% vs. 36%, P <0.001). Concordance of empirical LV lead implantation sites and sites with R+ was 50% (7/14).Conclusions The degree of acute LV resynchronization by BVP depends on LV lead location and empirical implantation of LV lead results in only 50% concordance with R+. Performing TTE during CRT implantation is feasible to identify LV sites with positive resynchronization.

  7. Developmental mapping of small-conductance calcium-activated potassium channel expression in the rat nervous system. (United States)

    Gymnopoulos, Marco; Cingolani, Lorenzo A; Pedarzani, Paola; Stocker, Martin


    Early electrical activity and calcium influx regulate crucial aspects of neuronal development. Small-conductance calcium-activated potassium (SK) channels regulate action potential firing and shape calcium influx through feedback regulation in mature neurons. These functions, observed in the adult nervous system, make them ideal candidates to regulate activity- and calcium-dependent processes in neurodevelopment. However, to date little is known about the onset of expression and regions expressing SK channel subunits in the embryonic and postnatal development of the central nervous system (CNS). To allow studies on the contribution of SK channels to different phases of development of single neurons and networks, we have performed a detailed in situ hybridization mapping study, providing comprehensive distribution profiles of all three SK subunits (SK1, SK2, and SK3) in the rat CNS during embryonic and postnatal development. SK channel transcripts are expressed at early stages of prenatal CNS development. The three SK channel subunits display different developmental expression gradients in distinct CNS regions, with time points of expression and up- or downregulation that can be associated with a range of diverse developmental events. Their early expression in embryonic development suggests an involvement of SK channels in the regulation of developmental processes. Additionally, this study shows how the postnatal ontogenetic patterns lead to the adult expression map for each SK channel subunit and how their coexpression in the same regions or neurons varies throughout development.

  8. Eps15 Homology Domain-containing Protein 3 Regulates Cardiac T-type Ca2+ Channel Targeting and Function in the Atria* (United States)

    Curran, Jerry; Musa, Hassan; Kline, Crystal F.; Makara, Michael A.; Little, Sean C.; Higgins, John D.; Hund, Thomas J.; Band, Hamid; Mohler, Peter J.


    Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca2+ channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca2+ current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca2+ channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction. PMID:25825486

  9. Cardiac sodium channelopathies

    NARCIS (Netherlands)

    Amin, A.S.; Asghari-Roodsari, A.; Tan, H.L.


    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (I-Na) during phase 0 of the cardiac action potential. The importance of I-Na for normal cardiac electrical activity is reflected by the high incidence of

  10. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Gräßl, Andreas, E-mail: [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Winter, Lukas, E-mail: [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Thalhammer, Christof, E-mail: [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Renz, Wolfgang, E-mail: [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Siemens Healthcare, 91052 Erlangen (Germany); Kellman, Peter, E-mail: [Laboratory of Cardiac Energetics, National Institutes of Health/NHLBI, Bethesda, MD (United States); Martin, Conrad, E-mail: [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); Knobelsdorff-Brenkenhoff, Florian von, E-mail: [Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin (Germany); HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, 13125 Berlin (Germany); Experimental and Clinical Research Center (ECRC), Charité – University Medicine Campus Berlin Buch, 13125 Berlin (Germany); Tkachenko, Valeriy, E-mail: [Experimental and Clinical Research Center (ECRC), Charité – University Medicine Campus Berlin Buch, 13125 Berlin (Germany); and others


    The objective of this work is to design, examine and apply an eight channel transmit/receive coil array tailored for cardiac magnetic resonance imaging at 7.0 T that provides image quality suitable for clinical use, patient comfort, and ease of use. The cardiac coil array was designed to consist of a planar posterior section and a modestly curved anterior section. For radio frequency (RF) safety validation, numerical computations of the electromagnetic field (EMF) and the specific absorption rate (SAR) distribution were conducted. In vivo cardiac imaging was performed using a 2D CINE FLASH technique. For signal-to-noise ratio (SNR) assessment reconstructed images were scaled in SNR units. The parallel imaging capabilities of the coil were examined using GRAPPA and SENSE reconstruction with reduction factors of up to R = 4. The assessment of the RF characteristics yielded a maximum noise correlation of 0.33. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a spatial resolution of 1 mm × 1 mm × 4 mm. The coil array supports 1D acceleration factors of up to R = 3 without impairing image quality significantly. For un-accelerated 2D CINE FLASH acquisitions the results revealed an SNR of approximately 140 for the left ventricular blood pool. Blood/myocardium contrast was found to be approximately 90 for un-accelerated 2D CINE FLASH acquisitions. The proposed 8 channel cardiac transceiver surface coil has the capability to acquire high contrast, high spatial and temporal resolution in vivo images of the heart at 7.0 T.

  11. Singular value decomposition of optically-mapped cardiac rotors and fibrillatory activity (United States)

    Rabinovitch, A.; Biton, Y.; Braunstein, D.; Friedman, M.; Aviram, I.; Yandrapalli, S.; Pandit, S. V.; Berenfeld, O.


    Our progress of understanding how cellular and structural factors contribute to arrhythmia is hampered in part because of controversies as to whether a fibrillating heart is driven by a single, several, or multiple number of sources, whether they are focal or reentrant and how to localize them. Here we demonstrate how a novel usage of the neutral singular value decomposition (SVD) method enables the extraction of the governing spatial and temporal modes of excitation from a rotor and fibrillatory waves. Those modes highlight patterns and regions of organization in the midst of the otherwise seemingly random propagating excitation waves. We apply the method to experimental models of cardiac fibrillation in rabbit hearts. We show that SVD analysis is able to enhance the classification of the heart electrical patterns into regions harboring drivers in the form of fast reentrant activity and other regions of by-standing activity. This enhancement is accomplished without any prior assumptions regarding the spatial, temporal or spectral properties of those drivers. The analysis corroborates that the dominant mode has the highest activation rate and further reveals a new feature: a transfer of modes from the driving to passive regions resulting in a partial reaction of the passive region to the driving region.

  12. Mapping out the customer’s journey : customer search strategy as a basis for channel management

    NARCIS (Netherlands)

    Veen, Gerrita van der; Ossenbruggen, Robert van


    Many companies tailor their communication and interaction with customers by segmenting them into channel usage groups. This study argues that simply focusing on channels has limited effectiveness as increasingly customers today use multiple channels, the online channel contains many different forms,

  13. Mapping bathymetry and rip channels with WorldView2 multispectral data (United States)

    Trimble, S. M.; Houser, C.


    Rip currents are a worldwide coastal hazard that have claimed 616 lives in Costa Rica since 2001 (~50/yr). Lifeguard staff, warning signs, and flag systems have been shown to reduce deaths at rip-prone beaches but are not a perfect system. At Playa Cocles, a popular beach destination along the Caribbean Coast of Costa Rica near Puerto Viejo, lifeguards post flags at the mouth of the 3 to 6 rip currents present each morning. In July 2014, these dangerous currents were measured with floating GPS drogues at speeds up to 3.1 m/s. The purpose of this study is to demonstrate the capability of the Digital Globe WorldView2 (WV2) multispectral satellite for identifying rip channels and mapping bathymetry in the surf zone (20m and less), because rips form at topographically low spots in the bathymetry as a result of feedback amongst waves, substrate, and antecedent bathymetry. WV2 was launched in 2009; it has a 1.1 day pass-over rate with 1.84m ground pixel resolution of 8 bands, including 'yellow' (585-625 nm) and 'coastal blue' (400-450 nm). Using one 25km2 image from 23 December 2009, during the "high season" of tourism, a bathymetric map of Playa Cocles is created and measured for accuracy. Results of the study will assist the Comisión Nacional de Emergencias de Costa Rica and the town of Puerto Viejo by creating a rip current hazard evaluation and prediction system for the rip-prone beach of Playa Cocles. This creation methodology may be repeated for any following dates or other locations in Costa Rica (or anywhere on the globe captured by WV2). Future work will build on this research to determine rip current strength, location, and seasonality from a combination of WV2 satellite information and field data.

  14. Segmentation of B-mode cardiac ultrasound data by Bayesian Probability Maps. (United States)

    Hansson, Mattias; Brandt, Sami S; Lindström, Johan; Gudmundsson, Petri; Jujić, Amra; Malmgren, Andreas; Cheng, Yuanji


    In this paper we present a model for describing the position distribution of the endocardium in the two-chamber apical long-axis view of the heart in clinical B-mode ultrasound cycles. We propose a novel Bayesian formulation, including priors for spatial and temporal smoothness, and preferred shapes and position. The shape model takes into account both endocardium, atrial region and apex. The likelihood is built using a statistical signal model, which attempts to closely model a censored signal. In addition, the use of a censored Gamma mixture model with unknown censoring point, to handle artefacts resulting from left-censoring of the in US clinical B-mode, is to our knowledge novel. The posterior density is sampled by the Gibbs method to estimate the expected latent variable representation of the endocardium, which we call the Bayesian Probability Map; the map describes the probability of pixels being classified as being within the endocardium. The regularization parameters of the model are estimated by cross-validation, and the results are compared against the two-chamber apical model of Chen et al.

  15. Coastal Mapping Program Project TX1405: ROCKY SLOUGH TO PACKERY CHANNEL, TX. (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of the Coastal Mapping Program (CMP) is to provide surveying and mapping information of our nation's coastline. This shoreline mapping effort also...

  16. Applications of pulsed Doppler flow mapping to left sided cardiac valvular lesions. (United States)

    Kalmanson, D; Veyrat, C; Gourtchiglouian, C; Bas, S; Abitbol, G

    The flow mapping procedure has been developed in parallel to the standard pulsed Doppler procedure. It has a different purpose--picking up flow signals at the site of lesions rather than calibrating velocities--and has its own methodology, developed within the last six years. On the basis of invasive correlations performed in 267 cases of valvular heart disease, we review the three-fold purpose of the flow mapping technique: diagnosing lesions, relying on the presence of flow anomalies; assessing their severity, relying on the spatial spreading of these flow signals; and identifying the site of the lesion, which is a specific advantage, relying on the anatomical location of these flow signals and/or on the direction of the jets. For example, using this technique, it is now possible to easily differentiate a cusp tear from a leak of a bioprosthesis, to measure the size of the leaks, and to reconstruct the image of aortic or mitral stenotic areas. These optimal results are only obtained using an appropriate methodology which mainly includes a) the selection of adequate two-dimensional short axis planes in order to explore the diseased valve in its entirety, because of frequent assymetrical orifices, and to pick up the jets at their starting point, b) measurements of the abnormal areas, c) when jets are studied, a three dimensional approach is required in order to cope with the three dimensional nature of the jet and to make available the calculation of three dimensional indices of severity.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Diagnosis of Acute Global Myocarditis Using Cardiac MRI with Quantitative T1 and T2 Mapping: Case Report and Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul Hwan [Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720 (Korea, Republic of); Choi, Eui-Young [Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720 (Korea, Republic of); Greiser, Andreas [Healthcare Sector, Siemens AG, Erlangen D-91052 (Germany); Paek, Mun Young [Siemens Ltd., Seoul 120-837 (Korea, Republic of); Hwang, Sung Ho; Kim, Tae Hoon [Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720 (Korea, Republic of)


    The diagnosis of myocarditis can be challenging given that symptoms, clinical exam findings, electrocardiogram results, biomarkers, and echocardiogram results are often non-specific. Endocardial biopsy is an established method for diagnosing myocarditis, but carries the risk of complications and false negative results. Cardiac magnetic resonance imaging (MRI) has become the primary non-invasive imaging tool in patients with suspected myocarditis. Myocarditis can be diagnosed by using three tissue markers including edema, hyperemia/capillary leak, and necrosis/fibrosis. The interpretation of cardiac MR findings can be confusing, especially when the myocardium is diffusely involved. Using T1 and T2 maps, the diagnosis of myocarditis can be made even in cases of global myocarditis with the help of quantitative analysis. We herein describe a case of acute global myocarditis which was diagnosed by using quantitative T1 and T2 mapping.

  18. High Resolution Mapping and Interpretation of Channel and Floodplain Topography With a Narrow-Beam Terrestrial-Aquatic Lidar (United States)

    McKean, J.; Isaak, D.; Tonina, D.; Wright, W.; Kinzel, P.


    Basic description of channel and floodplain topography remains a fundamental challenge for modeling flow and sediment transport or even simply mapping habitat. Standard field wading and boat surveys of stream topography are limited by costs and logistics to relatively small sample reaches and floodplain maps are seldom well- integrated with channel bathymetry. We used the NASA Experimental Advanced Airborne Research Lidar (EAARL) to map channel and floodplain topography and investigate geomorphic controls on physical habitat in two diverse channels in the watershed of the Middle Fork Salmon River, Idaho. Bear Valley Creek is a small low-gradient gravel-bed stream flowing across an unconfined valley filled with glacial outwash materials. A hierarchy of nested geomorphic features is evident in this channel with the broadest fluvial domains a legacy of ~15,000 years of post-glacial valley evolution. Contemporary hydraulics operate on this broad template and control two smaller scales of pool-riffle morphology. Salmon spawning patterns closely reflect these nested physical domains, demonstrating how geomorphic history can influence modern distributions of aquatic habitat and organisms. In contrast, Big Creek is a higher-gradient stream predominately confined by steep side slopes in a deep valley. Here, the distribution of geomorphic domains and physical habitat is controlled by modern erosion processes and rock quality. Tributaries and valley walls contribute coarse debris, up to large boulders, to the channel, resulting in very rough and poorly organized bed topography. Tributary fans also function as local grade control with sediment deposition in lower-gradient reaches upstream of fans. A GIS toolkit is under development to extract at-a-station channel metrics from EAARL data, including for example, cross section and longitudinal profile characteristics. A new investigation has also begun to further investigate the quality of EAARL data. This study will explore the

  19. Regional contrast agent quantification in a mouse model of myocardial infarction using 3D cardiac T1 mapping

    Directory of Open Access Journals (Sweden)

    Nicolay Klaas


    effective relaxivity of the liposomal contrast agent was only about half the value determined in vitro. Conclusions 3D cardiac T1 mapping by CMR can be used to monitor the accumulation of contrast agents in contrast-enhanced studies of murine myocardial infarction. The contrast agent relaxivity was decreased under in vivo conditions compared to in vitro measurements, which needs consideration when quantifying local contrast agent concentrations.

  20. Contribution of spontaneous L-type Ca2+ channel activation to the genesis of Ca2+ sparks in resting cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guangqin; FU Yu; YANG Dongmei; HAO Xuemei; BAI Shuhua; TANG Yiqun; Edward G LAKATTA; WU Caihong; CHENG Heping


    Ca2+ sparks are the elementary events of intracellular Ca2+ release from the sarcoplasmic reticulum in cardiac myocytes. In order to investigate whether spontaneous L-type Ca2+ channel activation contributes to the genesis of spontaneous Ca2+ sparks, we used confocal laser scanning microscopy and fluo-4 to visualize local Ca2+ sparks in intact rat ventricular myocytes. In the presence of 0.2 mmol/L CdCl2 which inhibits spontaneous L-type Ca2+ channel activation, the rate of occurrence of spontaneous Ca2+ sparks was halved from 4.20 to 2.04 events/(100 μm·s), with temporal and spatial properties of individual Ca2+ sparks unchanged. Analysis of the Cd2+-sensitive spark production revealed an open probability of ~10-5 for L-type channels at the rest membrane potentials (-80 mV). Thus, infrequent and stochastic openings of sarcolemmal L-type Ca2+ channels in resting heart cells contribute significantly to the production of spontaneous Ca2+ sparks.

  1. Role of protein phosphatases in the run down of guinea pig cardiac Cav1.2 Ca2+ channels. (United States)

    Yu, Lifeng; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Feng, Rui; Hao, Liying; Kameyama, Masaki


    This study aimed to investigate protein phosphatases involved in the run down of Cav1.2 Ca(2+) channels. Single ventricular myocytes obtained from adult guinea pig hearts were used to record Ca(2+) channel currents with the patch-clamp technique. Calmodulin (CaM) and ATP were used to restore channel activity in inside-out patches. Inhibitors of protein phosphatases were applied to investigate the role of phosphatases. The specific protein phosphatase type 1 (PP1) inhibitor (PP1 inhibitor-2) and protein phosphatase type 2A (PP2A) inhibitor (fostriecin) abolished the slow run down of Cav1.2 Ca(2+) channels, which was evident as the time-dependent attenuation of the reversing effect of CaM/ATP on the run down. However, protein phosphatase type 2B (PP2B, calcineurin) inhibitor cyclosporine A together with cyclophilin A had no effect on the channel run down. Furthermore, PP1 inhibitor-2 mainly prolonged the open time constants of the channel, specifically, the slow open time. Fostriecin primarily shortened the slow close time constants. Our data suggest that PP1 and PP2A were involved in the slow phase of Cav1.2 Ca(2+) channel run down. In addition, they exerted different effects on the open-close kinetics of the channel. All above support the view that PP1 and PP2A may dephosphorylate distinct phosphorylation sites on the Cav1.2 Ca(2+) channel.

  2. Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome

    NARCIS (Netherlands)

    Rook, Martin B.; Alshinawi, CB; Groenewegen, WA; van Gelder, IC; van Ginneken, ACG; Jongsma, Habo J.; Mannens, MMAM; Wilde, AAM


    Background: Primary dysrhythmias other than those associated with the long QT syndrome, are increasingly recognized. One of these are represented by patients with a history of resuscitation from cardiac arrest but without any structural heart disease. These patients exhibit a distinct electrocardiog

  3. California State Waters Map Series--Santa Barbara Channel Web Services (United States)

    U.S. Geological Survey, Department of the Interior — In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of...

  4. Performance of Unequal Error Protection Using Maximum A- posteriori Probability Algorithm and Modified MAP in Additive White Gaussian Noise and Fading Channel

    Directory of Open Access Journals (Sweden)

    T. Gnanasekaran


    Full Text Available Problem statement: In this study we propose a method to improve the performance of Maximum A-Posteriori Probability Algorithm, which is used in turbo decoder. Previously the performance of turbo decoder is improved by means of scaling the channel reliability value. Approach: A modification in MAP algorithm proposed in this study, which achieves further improvement in forward error correction by means of scaling the extrinsic information in both decoders without introducing any complexity. The encoder is modified with a new puncturing matrix, which yields Unequal Error Protection (UEP. This modified MAP algorithm is analyzed with the traditional turbo code system Equal Error Protection (EEP and also with Unequal Error Protection (UEP both in AWGN channel and fading channel. Result: MAP and modified MAP achieve coding gain of 0.6 dB over EEP in AWGN channel. The MAP and modified MAP achieve coding gain of 0.4 dB and 0.9dB over EEP respectively in Rayleigh fading channel. Modified MAP in UEP class 1 and class 2 gained 0.8 dB and 0.6 dB respectively in AWGN channel where as in fading channel class 1 and 2 gained 0.4 dB and 0.6 dB respectively. Conclusion/Recommendations: The modified MAP algorithm improves the Bit Error Rate (BER performance in EEP as well as UEP both in AWGN and fading channels. We propose modified MAP error correction algorithm with UEP for broad band communication.

  5. Single doses of piracetam affect 42-channel event-related potential microstate maps in a cognitive paradigm. (United States)

    Michel, C M; Lehmann, D


    We examined whether a single administration of piracetam produces dose-dependent effects on brain functions in healthy young men. In 6 subjects, 42-channel event-related EEG potential maps (ERP) were recorded during a task requiring subjects to watch single digits presented in a pseudorandom order on a screen and to press a button after all triplets of three consecutive odd or even digits. The ERP maps to the three digits of the correctly detected triplets were analyzed in terms of their mapped ERP field configuration (landscape). Different landscapes of the maps indicate different configuration of the activated neural population and therefore reflect different functional microstates of the brain. In order to identify these microstates, adaptive segmentation of the map series based on their landscapes was done. Nineteen time segments were found. These segments were tested for direct effects on brain function of three single doses of piracetam (2.9, 4.8 or 9.6 g) and a placebo given double-blind in balanced order. Piracetam mainly affected the map landscape of the time segments following the triplet's last digit. U-shaped dose-dependent effects were found; they were strongest after 4.8 g piracetam. Since these particular ERP segments are recognized to be strongly correlated to cognitive functions, the present findings suggest that single medium doses of piracetam selectively activate differently located or oriented neurons during cognitive steps of information processing.

  6. In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping

    KAUST Repository

    Fortunato, Luca


    Membrane systems for water purification can be seriously hampered by biofouling. The use of optical coherence tomography (OCT) to investigate biofilms in membrane systems has recently increased due to the ability to do the characterization in-situ and non-destructively The OCT biofilm thickness map is presented for the first time as a tool to assess biofilm spatial distribution on a surface. The map allows the visualization and evaluation of the biofilm formation and growth in membrane filtration systems through the use of a false color scale. The biofilm development was monitored with OCT to evaluate the suitability of the proposed approach. A 3D time series analysis of biofilm development in a spacer filled channel representative of a spiral-wound membrane element was performed. The biofilm thickness map enables the time-resolved and spatial-resolved evaluation and visualization of the biofilm deposition pattern in-situ non-destructively.

  7. Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective (United States)

    Klimas, Aleksandra; Entcheva, Emilia


    The ability to perform precise, spatially localized actuation and measurements of electrical activity in the heart is crucial in understanding cardiac electrophysiology and devising new therapeutic solutions for control of cardiac arrhythmias. Current cardiac imaging techniques (i.e. optical mapping) employ voltage- or calcium-sensitive fluorescent dyes to visualize the electrical signal propagation through cardiac syncytium in vitro or in situ with very high-spatiotemporal resolution. The extension of optogenetics into the cardiac field, where cardiac tissue is genetically altered to express light-sensitive ion channels allowing electrical activity to be elicited or suppressed in a precise cell-specific way, has opened the possibility for all-optical interrogation of cardiac electrophysiology. In vivo application of cardiac optogenetics faces multiple challenges and necessitates suitable optical systems employing fiber optics to actuate and sense electrical signals. In this technical perspective, we present a compendium of clinically relevant access routes to different parts of the cardiac electrical conduction system based on currently employed catheter imaging systems and determine the quantitative size constraints for endoscopic cardiac optogenetics. We discuss the relevant technical advancements in microendoscopy, cardiac imaging, and optogenetics and outline the strategies for combining them to create a portable, miniaturized fiber-based system for all-optical interrogation of cardiac electrophysiology in vivo.

  8. Comparative Study in Performance for Subcarrier Mapping in Uplink 4G-LTE under Different Channel Cases

    Directory of Open Access Journals (Sweden)

    Raad Farhood Chisab


    Full Text Available in recent years, wireless communication has experienced a rapid growth and it promises to become a globally important infrastructure. One common design approach in fourth generation 4G systems is Single Carrier Frequency Division Multiple Access (SC-FDMA. It is a single carrier communication technique on the air interface. It has become broadly accepted mainly because of its high resistance to frequency selective fading channels. The third Generation Partnership Project-Long Term Evolution (3GPP-LTE uses this technique in uplink direction because of its lower peak to average power ratio PAPR as compared to Orthogonal Frequency Division Multiple Access (OFDMA that is used for downlink direction. In this paper the LTE in general and SCFDMA will be discuss in details and its performance will be study under two types of subcarrier mapping which are localized and distributed mode also within different channel cases. The results show that the localized subcarrier mapping give lower bit error rate BER than the distributed mode and give different activity under miscellaneous channel cases.

  9. Non-contact left ventricular endocardial mapping for cardiac resynchronisation therapy: a “slow conduction” towards the fast solution (United States)

    Bella, P Della; Carbucicchio, C


    Cardiac resynchronisation therapy can help to improve left ventricular function in patients with heart failure, but only if those regions of myocardium which are mostly compromised by electromechanical desynchronisation can be identified and effectively stimulated PMID:15084532

  10. Non-contact left ventricular endocardial mapping for cardiac resynchronisation therapy: a "slow conduction" towards the fast solution. (United States)

    Della Bella, P; Carbucicchio, C


    Cardiac resynchronisation therapy can help to improve left ventricular function in patients with heart failure, but only if those regions of myocardium which are mostly compromised by electromechanical desynchronisation can be identified and effectively stimulated.

  11. Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. (United States)

    Maltsev, Victor A; Lakatta, Edward G


    For almost half a century it has been thought that the initiation of each heartbeat is driven by surface membrane voltage-gated ion channels (M clocks) within sinoatrial nodal cells. It has also been assumed that pacemaker cell automaticity is initiated at the maximum diastolic potential (MDP). Recent experimental evidence based on confocal cell imaging and supported by numerical modelling, however, shows that initiation of cardiac impulse is a more complex phenomenon and involves yet another clock that resides under the sarcolemma. This clock is the sarcoplasmic reticulum (SR): it generates spontaneous, but precisely timed, rhythmic, submembrane, local Ca(2+) releases (LCR) that appear not at the MDP but during the late, diastolic depolarization (DD). The Ca(2+) clock and M clock dynamically interact, defining a novel paradigm of robust cardiac pacemaker function and regulation. Rhythmic LCRs during the late DD activate inward Na(+)/Ca(2+) exchanger currents and ignite action potentials, which in turn induceCa(2+) transients and SR depletions, resetting the Ca(2+) clock. Both basal and reserve protein kinaseA-dependent phosphorylation of Ca(2+) cycling proteins control the speed and amplitude of SR Ca(2+) cycling to regulate the beating rate by strongly coupled Ca(2+) and M clocks.

  12. FHL2 regulation of cardiac potassium ion channels%FHL2对心脏钾离子通道调控的研究进展

    Institute of Scientific and Technical Information of China (English)



    FHL2 protein consists of four complete and one half LIM domains and belongs to a family that includes LIM domain only.LIM domains are protein-interaction domains and participate in multiple biological functions.Previous studies have shown that FHL2 interacts with a variety of proteins such as receptor proteins,structural proteins,transcription factors,signal transduction proteins and metabolic enzymes.FHL2 also regulates the expression of some genes.Recent studies indicated that FHL2 protein is involved in cardiac potassium ion channel regulation.This review summarizes the structure and expression of FHL2 and the regulation of cardiac potassium ion channels by FHL2.%FHL2蛋白是分子结构中仅含有4个半LIM结构域的蛋白质家族成员.LIM结构域是蛋白质——蛋白质相互作用的主要结构之一,可与多种蛋白结合成复合物发挥生物学功能.研究发现,FHL2能与多种蛋白质相互作用,如受体蛋白、结构蛋白、转录因子、信号转导蛋白及代谢酶类等.FHL2对某些基因的表达发挥调控作用.新近研究发现,FHL2蛋白参与了一些心脏钾离子通道的调控.本文就FHL2的结构特点、分布表达及其参与心脏钾离子通道调控的研究进展做一综述.

  13. Effects of the histamine H1 receptor antagonist hydroxyzine on hERG K+ channels and cardiac action potential duration

    Institute of Scientific and Technical Information of China (English)

    Byung Hoon LEE; Seung Ho LEE; Daehyun CHU; Jin Won HYUN; Han CHOE; Bok Hee CHOI; Su-Hyun JO


    To investigate the effects of hydroxyzine on human ether-a-go-go-related gene (hERG) channels to determine the electrolphysiological basis for its proarrhythmic effects.Methods:hERG channels were expressed in Xenopus oocytes and HEK293 cells,and the effects of hydroxyzine on the channels were examined using two-microelectrode voltage-clamp and patch-clamp techniques,respectively.The effects of hydroxyzine on action potential duration were examined in guinea pig ventricular myocytes using current clamp.Results:Hydroxyzine (0.2 and 2 μmol/L) significantly increased the action potential duration at 90% repolarization (APD90) in both concentration- and time-dependent manners.Hydroxyzine (0.03-3 μmol/L) blocked both the steady-state and tail hERG currents.The block was voltage-dependent,and the values of IC50 for blocking the steady-state and tail currents at +20 mV was 0.18±0.02 μmol/L and 0.16±0.01 μmol/L,respectively,in HEK293 cells.Hydroxyzine (5 μmol/L) affected both the activated and the inactivated states of the channels,but not the closed state.The S6 domain mutation Y652A attenuated the blocking of hERG current by ~6-fold.Conclusion:The results suggest that hydroxyzine could block hERG channels and prolong APD.The tyrosine at position 652 in the channel may be responsible for the proarrhythmic effects of hydroxyzine.

  14. Late Na+ current produced by human cardiac Na+ channel isoform Nav1.5 is modulated by its beta1 subunit. (United States)

    Maltsev, Victor A; Kyle, John W; Undrovinas, Albertas


    Experimental data accumulated over the past decade show the emerging importance of the late sodium current (I(NaL)) for the function of both normal and, especially, failing myocardium, in which I(NaL) is reportedly increased. While recent molecular studies identified the cardiac Na(+) channel (NaCh) alpha subunit isoform (Na(v)1.5) as a major contributor to I (NaL), the molecular mechanisms underlying alterations of I(NaL) in heart failure (HF) are still unknown. Here we tested the hypothesis that I(NaL) is modulated by the NaCh auxiliary beta subunits. tsA201 cells were transfected simultaneously with human Na(v)1.5 (former hH1a) and cardiac beta(1) or beta(2) subunits, and whole-cell patch-clamp experiments were performed. We found that I(NaL) decay kinetics were significantly slower in cells expressing alpha + beta(1) (time constant tau = 0.73 +/- 0.16 s, n = 14, mean +/- SEM, P < 0.05) but remained unchanged in cells expressing alpha + beta(2) (tau = 0.52 +/- 0.09 s, n = 5), compared with cells expressing Na(v)1.5 alone (tau = 0.54 +/- 0.09 s, n = 20). Also, beta(1), but not beta(2), dramatically increased I(NaL) relative to the maximum peak current, I(NaT) (2.3 +/- 0.48%, n = 14 vs. 0.48 +/- 0.07%, n = 6, P < 0.05, respectively) and produced a rightward shift of the steady-state availability curve. We conclude that the auxiliary beta(1) subunit modulates I(NaL), produced by the human cardiac Na(+) channel Na(v)1.5 by slowing its decay and increasing I(NaL) amplitude relative to I(NaT). Because expression of Na(v)1.5 reportedly decreases but beta(1) remains unchanged in chronic HF, the relatively higher expression of beta(1) may contribute to the known I(NaL) increase in HF via the modulation mechanism found in this study.

  15. Effect of testosterone on calcium channels and cardiac function%睾酮对钙离子通道和心脏功能的影响

    Institute of Scientific and Technical Information of China (English)

    周玉文; 曹雪滨; 徐鹏; 张燕; 江明宏


    Testosterone has important effects on human body metabolism, physiology and cardiac pathology. Higher concentrations of testosterone or its chronic effects can increase T- and L-type calcium channel density and lower concentrations or acute effects can block T- and L-type calcium channels, reduce male Q-Tc period and improve sensitivity to insulin and lipid metabolism. Testosterone can increase calcium regulatory proteins and expression of beta-2 receptor, enhance calcium transit rate and reduce calcium overload in case of increase of intracellular calcium concentration. Appropriate concentration of testosterone can sustain a certain vascular tension, improve cardiac conduction or dilate coronary arteries, reduce insulin resistance and incidence of metabolic syndrome, improve myocardial ischemia, reduce apoptosis and myocardial cell fibrosis, protect the heart and enhance cardiac diastolic efficiency.%睾酮对人体的全身代谢、心脏的生理和病理均有着重要的影响.较高浓度的睾酮或其慢性作用可以提高T型、L型钙离子通道的密度,较低浓度或急性作用可以阻滞T型、L型钙离子通道,缩短男性Q-Tc间期,提高对胰岛素的敏感性及改善血脂代谢.睾酮可上调钙调节蛋白、β2受体的表达,在提高细胞内钙离子浓度的情况下,可增加钙瞬变的幅度,减少钙超载.一定浓度的睾酮可以维持血管的一定张力,改善心脏传导或扩张冠脉;减少胰岛素抵抗、代谢综合征的发生,改善心肌缺血、减少心肌细胞凋亡及纤维化,保护心脏,改善心脏收缩舒张效率.

  16. Nuclear translocation of the cardiac L-type calcium channel C-terminus is regulated by sex and 17β-estradiol. (United States)

    Mahmoodzadeh, S; Haase, H; Sporbert, A; Rharass, T; Panáková, D; Morano, I


    The cardiac voltage gated l-type Ca(2+) channel (Cav1.2) constitutes the main entrance gate for Ca(2+) that triggers cardiac contraction. Several studies showed that the distal C-terminus fragment of Cav1.2 α1C subunit (α1C-dCT) is proteolytically cleaved and shuttles between the plasma membrane and the nucleus, which is regulated both developmentally and by Ca(2+). However, the effects of sex and sex hormone 17β-estradiol (E2, estrogen) on α1C-dCT nuclear translocation are still unexplored. To investigate the sexual disparity in the α1C-dCT nuclear translocation, we first generated an antibody directed against a synthetic peptide (GRRASFHLE) located in α1C-dCT, and used it to probe ventricular myocytes from adult female and male mice. Immunocytochemistry of isolated mouse primary adult ventricular myocytes revealed both nuclear staining and cytosolic punctuate staining around the T-tubules. The ratio of nuclear to cytosolic intensity (Inuc/Icyt) was significantly higher in isolated female cardiomyocytes (1.42±0.05) compared to male cardiomyocytes (1.05±0.02). Western blot analysis of nuclear fraction confirmed these data. Furthermore, we found a significant decrease in nuclear staining intensity of α1C-dCT in both female and male cardiomyocytes upon serum withdrawal for 18h (Inuc/Icyt 1.05±0.02 and 0.89±0.02, respectively). Interestingly, subsequent E2 treatment (10(-8)M) for 8h normalized the intracellular distribution of α1C-dCT in male cardiomyocytes (Inuc/Icyt 1.04±0.02), but not in female cardiomyocytes. Acute treatment of male cardiomyocytes with E2 for 45min revealed a similar effect. This effect of E2 was revised by ICI indicating the involvement of ER in this signaling pathway. Taken together, our results showed that the shuttling of α1C-CT in cardiomyocytes is regulated in a sex-dependent manner, and E2-activated ER may play a role in the nuclear shuttling of α1C-dCT in male cardiomyocytes. This may explain, at least partly, the observed

  17. Inhibition by a novel anti-arrhythmic agent, NIP-142, of cloned human cardiac K+ channel Kv1.5 current. (United States)

    Matsuda, T; Masumiya, H; Tanaka, N; Yamashita, T; Tsuruzoe, N; Tanaka, Y; Tanaka, H; Shigenoba, K


    NIP-142 was shown to prolong atrial effective refractory period and to terminate atrial fibrillation and flutter in in vivo canine models. To obtain information on its antiarrhythmic action, we examined the effect of NIP-142 on cloned human cardiac K+ channel Kv1.5 (hKv1.5) currents stably expressed in a human cell line using whole-cell voltage clamp methods. NIP-142 inhibited the hKv1.5 current in a concentration-dependent and voltage-independent manner. The inhibition was larger at the end of depolarizing pulse than at the outward current peak. The IC50 for inhibition of the steady-state phase was 4.75 microM. A cross-over phenomenon was observed when current traces in the absence and presence of NIP-142 were superimposed. Inhibition of hKv1.5 current by NIP-142 was frequency-independent; changing the depolarizing pulse frequencies (0.1, 0.2, 1 Hz) and little effect on the degree of inhibition. NIP-142 decreased the maximal peak amplitude of kHv1.5 current at the first command pulse after 3 min rest in the presence of the drug. These results suggest that NIP-142 has inhibitory effects on the hKv 1.5 current through interaction with both open and closed states of the channel, which may underlie its antiarrhythmic activity in the atria.

  18. Seafloor surface processes and subsurface paleo-channel unconformities mapped using multi-channel seismic and multi-beam sonar data from the Galicia 3D seismic experiment. (United States)

    Gibson, J. C.; Shillington, D. J.; Sawyer, D. S.; Jordan, B.; Morgan, J. K.; Ranero, C.; Reston, T. J.


    In this study we use geophysical methods, stratigraphic relationships, and coring/drilling leg results to assess possible controls on deep-sea channel formation in order to further constrain paleo-channel (PC) and associated unconformity timing/source processes. A series of cut and fill PC are mapped in 3D multi-channel seismic (MCS) data and compared with multi-beam (MB) sonar bathymetry/backscatter data collected during the Galicia 3D survey with the R/V Marcus G. Langseth (2013). The MCS data were collected using four 6 km streamers spaced at 200 m resulting in 25 m x 25 m common mid-point bins within the ~67 km x 20 km 3D volume. The MB data were collected at an average depth of ~4900 m with a constrained swath width of 4.5 km resulting in 11.25x overlap while enabling 25-m bathymetry and 10-m backscatter grids. The PC lie below the mouth of a submarine canyon at the edge of the Galicia abyssal plain and cut pre/syn-rift sediments; they are bound by a rift block to the north and paleo-levees to the south (maximum height of ~180m). From drilling results, the most recent PC is late Miocene in age. In this study, four PC are traced into the basin as unconformities. Several of the PC/unconformities are tentatively correlated with previously interpreted Pyrenean orogeny/compressional Miocene/Oligocene tectonic events. However, one PC/unconformity within this interval has not been previously interpreted. In order test the hypothesis that the unconformities are the result of a significant change in base level indicated by a low shale/sand (SS) ratio, we use seismic surface attributes to calculate the SS ratio and trace the horizontal extent of the unconformities. Additionally, the MB/MCS seafloor morphology reveals sedimentary waves outboard of the canyon mouth. We use backscatter data to compare the extent of recent processes (e.g., Pleistocene glaciation/de-glaciation) with the unconformities by mapping the surface/shallow subsurface SS ratio (volume scattering).

  19. Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. (United States)

    Gurevitz, Michael


    Scorpion alpha and beta toxins interact with voltage-gated sodium channels (Na(v)s) at two pharmacologically distinct sites. Alpha toxins bind at receptor site-3 and inhibit channel inactivation, whereas beta toxins bind at receptor site-4 and shift the voltage-dependent activation toward more hyperpolarizing potentials. The two toxin classes are subdivided to distinct pharmacological groups according to their binding preferences and ability to compete for the receptor sites at Na(v) subtypes. To elucidate the toxin-channel surface of interaction at both receptor sites and clarify the molecular basis of varying toxin preferences, an efficient bacterial system for their expression in recombinant form was established. Mutagenesis accompanied by toxicity, binding and electrophysiological assays, in parallel to determination of the three-dimensional structure using NMR and X-ray crystallography uncovered a bipartite bioactive surface in toxin representatives of all pharmacological groups. Exchange of external loops between the mammalian brain channel rNa(v)1.2a and the insect channel DmNa(v)1 highlighted channel regions involved in the varying sensitivity to assorted toxins. In parallel, thorough mutagenesis of channel external loops illuminated points of putative interaction with the toxins. Amino acid substitutions at external loops S1-S2 and S3-S4 of the voltage sensor module in domain II of rNa(v)1.2a had prominent impact on the activity of the beta-toxin Css4 (from Centruroides suffusus suffusus), and substitutions at external loops S1-S2 and S3-S4 of the voltage sensor module in domain IV affected the activity of the alpha-toxin Lqh2 (from Leiurus quinquestriatus hebraeus). Rosetta modeling of toxin-Na(v) interaction using the voltage sensor module of the potassium channel as template raises commonalities in the way alpha and beta toxins interact with the channel. Css4 interacts with rNa(v)1.2a at a crevice between S1-S2 and S3-S4 transmembrane segments in domain

  20. A cost-effective laser scanning method for mapping stream channel geometry and roughness (United States)

    Lam, Norris; Nathanson, Marcus; Lundgren, Niclas; Rehnström, Robin; Lyon, Steve


    In this pilot project, we combine an Arduino Uno and SICK LMS111 outdoor laser ranging camera to acquire high resolution topographic area scans for a stream channel. The microprocessor and imaging system was installed in a custom gondola and suspended from a wire cable system. To demonstrate the systems capabilities for capturing stream channel topography, a small stream (stream channel resulted in a point spacing of 4mm and a point cloud density of 5600 points/m2 for the 5m by 2m area. A grain size distribution of the streambed material was extracted from the point cloud using a moving window, local maxima search algorithm. The median, 84th and 90th percentiles (common metrics to describe channel roughness) of this distribution were found to be within the range of measured values while the largest modelled element was approximately 35% smaller than its measured counterpart. The laser scanning system captured grain sizes between 30mm and 255mm (coarse gravel/pebbles and boulders based on the Wentworth (1922) scale). This demonstrates that our system was capable of resolving both large-scale geometry (e.g. bed slope and stream channel width) and small-scale channel roughness elements (e.g. coarse gravel/pebbles and boulders) for the study area. We further show that the point cloud resolution is suitable for estimating ecohydraulic parameters such as Manning's n and hydraulic radius. Although more work is needed to fine-tune our system's design, these preliminary results are encouraging, specifically for those with a limited operational budget.

  1. Effect of intracellular Ca2+ and action potential duration on L-type Ca2+ channel inactivation and recovery from inactivation in rabbit cardiac myocytes. (United States)

    Altamirano, Julio; Bers, Donald M


    Ca(2+) current (I(Ca)) recovery from inactivation is necessary for normal cardiac excitation-contraction coupling. In normal hearts, increased stimulation frequency increases force, but in heart failure (HF) this force-frequency relationship (FFR) is often flattened or reversed. Although reduced sarcoplasmic reticulum Ca(2+)-ATPase function may be involved, decreased I(Ca) availability may also contribute. Longer action potential duration (APD), slower intracellular Ca(2+) concentration ([Ca(2+)](i)) decline, and higher diastolic [Ca(2+)](i) in HF could all slow I(Ca) recovery from inactivation, thereby decreasing I(Ca) availability. We measured the effect of different diastolic [Ca(2+)](i) on I(Ca) inactivation and recovery from inactivation in rabbit cardiac myocytes. Both I(Ca) and Ba(2+) current (I(Ba)) were measured. I(Ca) decay was accelerated only at high diastolic [Ca(2+)](i) (600 nM). I(Ba) inactivation was slower but insensitive to [Ca(2+)](i). Membrane potential dependence of I(Ca) or I(Ba) availability was not affected by [Ca(2+)](i) <600 nM. Recovery from inactivation was slowed by both depolarization and high [Ca(2+)](i). We also used perforated patch with action potential (AP)-clamp and normal Ca(2+) transients, using various APDs as conditioning pulses for different frequencies (and to simulate HF APD). Recovery of I(Ca) following longer APD was increasingly incomplete, decreasing I(Ca) availability. Trains of long APs caused a larger I(Ca) decrease than short APD at the same frequency. This effect on I(Ca) availability was exacerbated by slowing twitch [Ca(2+)](i) decline by approximately 50%. We conclude that long APD and slower [Ca(2+)](i) decline lead to cumulative inactivation limiting I(Ca) at high heart rates and might contribute to the negative FFR in HF, independent of altered Ca(2+) channel properties.

  2. Preprocessing of multispectral data and simulation of ERTS data channels to make computer terrain maps of a Yellowstone National Park test site (United States)

    Smedes, H. W.; Spencer, M. M.; Thomson, F. J.


    The possibility of improving the accuracy of terrain classification by preprocessing spectral data was investigated. Terrain maps were made using the following techniques: 1) preprocessing by scan angle function transformation, using the computer-selected best set of three channels; and 2) preprocessing by ratio transformation, using the specified ERTS data channels, simulated by fitting the spectral response of each of the 12 data channels to the ERTS channels by a set of weighting coefficients. By using a simple technique during printout, the maps were produced in color. The normalized scan angle function transformation resulted in the most accurate classification. The best ratio transformation for the Yellowstone Park data was the ratio of each channel to the sum of all channels. A supervised training program involving maximum likelihood decision for selecting the best spectrometer channels and similar techniques for digitizing the data of the analog magnetic tapes were used. Cloud shadows were recognized in addition to eight classes of terrain. Preprocessing of data resulted in more accurate maps, required fewer training areas (hence less preparation and computer time), and enabled much of the area formerly classified as shadow to be reclassified according to actual terrain type.

  3. Channel mapping river miles 29–62 of the Colorado River in Grand Canyon National Park, Arizona, May 2009 (United States)

    Kaplinski, Matt; Hazel, Joseph E.; Grams, Paul E.; Kohl, Keith; Buscombe, Daniel D.; Tusso, Robert B.


    Bathymetric, topographic, and grain-size data were collected in May 2009 along a 33-mi reach of the Colorado River in Grand Canyon National Park, Arizona. The study reach is located from river miles 29 to 62 at the confluence of the Colorado and Little Colorado Rivers. Channel bathymetry was mapped using multibeam and singlebeam echosounders, subaerial topography was mapped using ground-based total-stations, and bed-sediment grain-size data were collected using an underwater digital microscope system. These data were combined to produce digital elevation models, spatially variable estimates of digital elevation model uncertainty, georeferenced grain-size data, and bed-sediment distribution maps. This project is a component of a larger effort to monitor the status and trends of sand storage along the Colorado River in Grand Canyon National Park. This report documents the survey methods and post-processing procedures, digital elevation model production and uncertainty assessment, and procedures for bed-sediment classification, and presents the datasets resulting from this study.

  4. 超极化活化环核苷酸门孔通道与心脏生物起搏器(第二部分)%Hyperpolarization-activated Cyclic nucleotide-gated Channel and Cardiac Biological Pacemaker: Part Ⅱ

    Institute of Scientific and Technical Information of China (English)



    Abstract Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels in the heart modulate cardiac automaticity via the hyperpolarization-activated cation current (named If, Ih, or Iq ).Recent studies have unveiled the molecular identity of HCN (HCN14) channels. HCN isoforms are unevenly expressed in the heart, even in the sinoatrial node. Features of HCN currents have been characterized in cardiac and other types of cells or in cell lines transfected with the HCN isoforms. The factors modulating Ih and the physiological significance of HCN channels in the heart have been extensively investigated in recent years. The hypothesis for transplanting and/or creating biological pacemakers to replace diseased sinoatrial and/or atrioventricular nodes has been postulated and tested in animal models. Local overexpression of HCN2 channels in the left atrium or in the left conductive bundle branch of the left ventricle via gene delivery induced significant Ih and escape rhythms during vagal stimulation in canines. In addition, implantation of human mesenchymal stem cells with overexpression of HCN2 channels to the canine left ventricular wall was associated with formation of spontaneous escape rhythms of left-sided origin during vagal-stimulation-induced sinus arrest. This preliminary data suggest that the use of HCN channels may hold great promise in the development of biological pacemakers.

  5. Mapping the Interaction Anatomy of BmP02 on Kv1.3 Channel (United States)

    Wu, B.; Wu, B. F.; Feng, Y. J.; Tao, J.; Ji, Y. H.


    The potassium channel Kv 1.3 plays a vital part in the activation of T lymphocytes and is an attractive pharmacological target for autoimmune diseases. BmP02, a 28-residue peptide isolated from Chinese scorpion (Buthus martensi Karsch) venom, is a potent and selective Kv1.3 channel blocker. However, the mechanism through which BmP02 recognizes and inhibits the Kv1.3 channel is still unclear. In the present study, a complex molecular model of Kv1.3-BmP02 was developed by docking analysis and molecular dynamics simulations. From these simulations, it appears the large β-turn (residues 10–16) of BmP02 might be the binding interface with Kv 1.3. These results were confirmed by scanning alanine mutagenesis of BmP02, which identified His9, Lys11 and Lys13, which lie within BmP02’s β-turn, as key residues for interacting with Kv1.3. Based on these results and molecular modeling, two negatively charged residues of Kv1.3, D421 and D422, located in turret region, were predicted to act as the binding site for BmP02. Mutation of these residues reduced sensitivity of Kv 1.3 to BmP02 inhibition, suggesting that electrostatic interactions play a crucial role in Kv1.3-BmP02 interaction. This study revealed the molecular basis of Kv 1.3 recognition by BmP02 venom, and provides a novel interaction model for Kv channel-specific blocker complex, which may help guide future drug-design for Kv1.3-related channelopathies.

  6. Structure and function of splice variants of the cardiac voltage-gated sodium channel Na(v)1.5. (United States)

    Schroeter, Annett; Walzik, Stefan; Blechschmidt, Steve; Haufe, Volker; Benndorf, Klaus; Zimmer, Thomas


    Voltage-gated sodium channels mediate the rapid upstroke of the action potential in excitable tissues. The tetrodotoxin (TTX) resistant isoform Na(v)1.5, encoded by the SCN5A gene, is the predominant isoform in the heart. This channel plays a key role for excitability of atrial and ventricular cardiomyocytes and for rapid impulse propagation through the specific conduction system. During recent years, strong evidence has been accumulated in support of the expression of several Na(v)1.5 splice variants in the heart, and in various other tissues and cell lines including brain, dorsal root ganglia, breast cancer cells and neuronal stem cell lines. This review summarizes our knowledge on the structure and putative function of nine Na(v)1.5 splice variants detected so far. Attention will be paid to the distinct biophysical properties of the four functional splice variants, to the pronounced tissue- and species-specific expression, and to the developmental regulation of Na(v)1.5 splicing. The implications of alternative splicing for SCN5A channelopathies, and for a better understanding of genotype-phenotype correlations, are discussed.

  7. Mapping ECoG channel contributions to trajectory and muscle activity prediction in human sensorimotor cortex (United States)

    Nakanishi, Yasuhiko; Yanagisawa, Takufumi; Shin, Duk; Kambara, Hiroyuki; Yoshimura, Natsue; Tanaka, Masataka; Fukuma, Ryohei; Kishima, Haruhiko; Hirata, Masayuki; Koike, Yasuharu


    Studies on brain-machine interface techniques have shown that electrocorticography (ECoG) is an effective modality for predicting limb trajectories and muscle activity in humans. Motor control studies have also identified distributions of “extrinsic-like” and “intrinsic-like” neurons in the premotor (PM) and primary motor (M1) cortices. Here, we investigated whether trajectories and muscle activity predicted from ECoG were obtained based on signals derived from extrinsic-like or intrinsic-like neurons. Three participants carried objects of three different masses along the same counterclockwise path on a table. Trajectories of the object and upper arm muscle activity were predicted using a sparse linear regression. Weight matrices for the predictors were then compared to determine if the ECoG channels contributed more information about trajectory or muscle activity. We found that channels over both PM and M1 contributed highly to trajectory prediction, while a channel over M1 was the highest contributor for muscle activity prediction. PMID:28361947

  8. 16-Channel surface coil for 13C-hyperpolarized spectroscopic imaging of cardiac metabolism in pig heart

    DEFF Research Database (Denmark)

    Frijia, Francesca; Santarelli, Maria Filomena; Koellisch, Ulrich;


    both targets. In this study, a 16-channel receive surface coil was designed for 13C hyperpolarized studies of the pig heart with a clinical 3-T scanner. The coil performance was characterized by phantom experiments and compared with that of a birdcage coil used in transmit/receive mode. Segmental...... limitation due to the low molar concentration of certain metabolites as well as the low flux of conversion. Since 13C-MRS is essentially a semi-quantitative technique, the SNR of the spectra acquired in different myocardial segments should be homogeneous. MRS coil design plays an important role in achieving...... signal distribution in the left ventricle (LV) was assessed by experiments on six healthy mini pigs. The proposed coil showed a significant increase in SNR for the LV wall close to the coil surface with respect to that for the birdcage but also significant segmental inhomogeneity. Hence, the use...

  9. Differential expression of hERG1 channel isoforms reproduces properties of native I(Kr and modulates cardiac action potential characteristics.

    Directory of Open Access Journals (Sweden)

    Anders Peter Larsen

    Full Text Available BACKGROUND: The repolarizing cardiac rapid delayed rectifier current, I(Kr, is composed of ERG1 channels. It has been suggested that two isoforms of the ERG1 protein, ERG1a and ERG1b, both contribute to I(Kr. Marked heterogeneity in the kinetic properties of native I(Kr has been described. We hypothesized that the heterogeneity of native I(Kr can be reproduced by differential expression of ERG1a and ERG1b isoforms. Furthermore, the functional consequences of differential expression of ERG1 isoforms were explored as a potential mechanism underlying native heterogeneity of action potential duration (APD and restitution. METHODOLOGY/PRINCIPAL FINDINGS: The results show that the heterogeneity of native I(Kr can be reproduced in heterologous expression systems by differential expression of ERG1a and ERG1b isoforms. Characterization of the macroscopic kinetics of ERG1 currents demonstrated that these were dependent on the relative abundance of ERG1a and ERG1b. Furthermore, we used a computational model of the ventricular cardiomyocyte to show that both APD and the slope of the restitution curve may be modulated by varying the relative abundance of ERG1a and ERG1b. As the relative abundance of ERG1b was increased, APD was gradually shortened and the slope of the restitution curve was decreased. CONCLUSIONS/SIGNIFICANCE: Our results show that differential expression of ERG1 isoforms may explain regional heterogeneity of I(Kr kinetics. The data demonstrate that subunit dependent changes in channel kinetics are important for the functional properties of ERG1 currents and hence I(Kr. Importantly, our results suggest that regional differences in the relative abundance of ERG1 isoforms may represent a potential mechanism underlying the heterogeneity of both APD and APD restitution observed in mammalian hearts.

  10. Data analysis in cardiac arrhythmias. (United States)

    Rodrigo, Miguel; Pedrón-Torecilla, Jorge; Hernández, Ismael; Liberos, Alejandro; Climent, Andreu M; Guillem, María S


    Cardiac arrhythmias are an increasingly present in developed countries and represent a major health and economic burden. The occurrence of cardiac arrhythmias is closely linked to the electrical function of the heart. Consequently, the analysis of the electrical signal generated by the heart tissue, either recorded invasively or noninvasively, provides valuable information for the study of cardiac arrhythmias. In this chapter, novel cardiac signal analysis techniques that allow the study and diagnosis of cardiac arrhythmias are described, with emphasis on cardiac mapping which allows for spatiotemporal analysis of cardiac signals.Cardiac mapping can serve as a diagnostic tool by recording cardiac signals either in close contact to the heart tissue or noninvasively from the body surface, and allows the identification of cardiac sites responsible of the development or maintenance of arrhythmias. Cardiac mapping can also be used for research in cardiac arrhythmias in order to understand their mechanisms. For this purpose, both synthetic signals generated by computer simulations and animal experimental models allow for more controlled physiological conditions and complete access to the organ.

  11. Estimation of the parameter covariance matrix for aone-compartment cardiac perfusion model estimated from a dynamic sequencereconstructed using map iterative reconstruction algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, Grant T.; Huesman, Ronald H.; Reutter, Bryan W.; Qi,Jinyi; Ghosh Roy, Dilip N.


    In dynamic cardiac SPECT estimates of kinetic parameters ofa one-compartment perfusion model are usually obtained in a two stepprocess: 1) first a MAP iterative algorithm, which properly models thePoisson statistics and the physics of the data acquisition, reconstructsa sequence of dynamic reconstructions, 2) then kinetic parameters areestimated from time activity curves generated from the dynamicreconstructions. This paper provides a method for calculating thecovariance matrix of the kinetic parameters, which are determined usingweighted least squares fitting that incorporates the estimated varianceand covariance of the dynamic reconstructions. For each transaxial slicesets of sequential tomographic projections are reconstructed into asequence of transaxial reconstructions usingfor each reconstruction inthe time sequence an iterative MAP reconstruction to calculate themaximum a priori reconstructed estimate. Time-activity curves for a sumof activity in a blood region inside the left ventricle and a sum in acardiac tissue region are generated. Also, curves for the variance of thetwo estimates of the sum and for the covariance between the two ROIestimates are generated as a function of time at convergence using anexpression obtained from the fixed-point solution of the statisticalerror of the reconstruction. A one-compartment model is fit to the tissueactivity curves assuming a noisy blood input function to give weightedleast squares estimates of blood volume fraction, wash-in and wash-outrate constants specifying the kinetics of 99mTc-teboroxime for theleftventricular myocardium. Numerical methods are used to calculate thesecond derivative of the chi-square criterion to obtain estimates of thecovariance matrix for the weighted least square parameter estimates. Eventhough the method requires one matrix inverse for each time interval oftomographic acquisition, efficient estimates of the tissue kineticparameters in a dynamic cardiac SPECT study can be obtained with

  12. Topographic Mapping and Compression Elasticity Analysis of Skinned Cardiac Muscle Fibers in Vitro with Atomic Force Microscopy and Nanoindentation



    Surface topography and compression elasticity of bovine cardiac muscle fibers in rigor and relaxing state has been studied with atomic force microscopy. Characteristic sarcomere patterns running along the longitudinal axis of the fibers were clearly observed, and Z-lines, M-lines, I-bands, and A-bands can be distinguished through comparing with TEM images and force curves. AFM height images of fibers had shown a sarcomere length of 1.22±0.02μm (n=5) in rigor with a significant 9% increase in ...

  13. High-density interspecific genetic linkage mapping provides insights into genomic incompatibility between channel catfish and blue catfish. (United States)

    Liu, S; Li, Y; Qin, Z; Geng, X; Bao, L; Kaltenboeck, L; Kucuktas, H; Dunham, R; Liu, Z


    Catfish is the leading aquaculture species in the United States. The interspecific hybrid catfish produced by mating female channel catfish with male blue catfish outperform both of their parent species in a number of traits. However, mass production of the hybrids has been difficult because of reproductive isolation. Investigations of genome structure and organization of the hybrids provide insights into the genetic basis for maintenance of species divergence in the face of gene flow, thereby helping develop strategies for introgression and efficient production of the hybrids for aquaculture. In this study, we constructed a high-density genetic linkage map using the hybrid catfish system with the catfish 250K SNP array. A total of 26,238 SNPs were mapped to 29 linkage groups, with 12,776 unique marker positions. The linkage map spans approximately 3240 cM with an average intermarker distance of 0.25 cM. A fraction of markers (986 of 12,776) exhibited significant deviation from the expected Mendelian ratio of segregation, and they were clustered in major genomic blocks across 15 LGs, most notably LG9 and LG15. The distorted markers exhibited significant bias for maternal alleles among the backcross progenies, suggesting strong selection against the blue catfish alleles. The clustering of distorted markers within genomic blocks should lend insights into speciation as marked by incompatibilities between the two species. Such findings should also have profound implications for understanding the genomic evolution of closely related species as well as the introgression of hybrid production programs in aquaculture.

  14. Finite Element Model of Cardiac Electrical Conduction. (United States)

    Yin, John Zhihao


    In this thesis, we develop mathematical models to study electrical conduction of the heart. One important pattern of wave propagation of electrical excitation in the heart is reentry which is believed to be the underlying mechanism of some dangerous cardiac arhythmias such as ventricular tachycardia and ventricular fibrillation. We present in this thesis a new ionic channel model of the ventricular cardiac cell membrane to study the microscopic electrical properties of myocardium. We base our model on recent single channel experiment data and a simple physical diffusion model of the calcium channel. Our ionic channel model of myocardium has simpler differential equations and fewer parameters than previous models. Further more, our ionic channel model achieves better results in simulating the strength-interval curve when we connect the membrane patch model to form a one dimensional cardiac muscle strand. We go on to study a finite element model which uses multiple states and non-nearest neighbor interactions to include curvature and dispersion effects. We create a generalized lattice randomization to overcome the artifacts generated by the interaction between the local dynamics and the regularities of the square lattice. We show that the homogeneous model does not display spontaneous wavefront breakup in a reentrant wave propagation once the lattice artifacts have been smoothed out by lattice randomization with a randomization scale larger than the characteristic length of the interaction. We further develop a finite 3-D 3-state heart model which employs a probability interaction rule. This model is applied to the simulation of Body Surface Laplacian Mapping (BSLM) using a cylindrical volume conductor as the torso model. We show that BSLM has a higher spatial resolution than conventional mapping methods in revealing the underlying electrical activities of the heart. The results of these studies demonstrate that mathematical modeling and computer simulation are very

  15. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone


    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  16. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)


    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  17. Evaluation of the channelized Hotelling observer with an internal-noise model in a train-test paradigm for cardiac SPECT defect detection (United States)

    Brankov, Jovan G.


    The channelized Hotelling observer (CHO) has become a widely used approach for evaluating medical image quality, acting as a surrogate for human observers in early-stage research on assessment and optimization of imaging devices and algorithms. The CHO is typically used to measure lesion detectability. Its popularity stems from experiments showing that the CHO's detection performance can correlate well with that of human observers. In some cases, CHO performance overestimates human performance; to counteract this effect, an internal-noise model is introduced, which allows the CHO to be tuned to match human-observer performance. Typically, this tuning is achieved using example data obtained from human observers. We argue that this internal-noise tuning step is essentially a model training exercise; therefore, just as in supervised learning, it is essential to test the CHO with an internal-noise model on a set of data that is distinct from that used to tune (train) the model. Furthermore, we argue that, if the CHO is to provide useful insights about new imaging algorithms or devices, the test data should reflect such potential differences from the training data; it is not sufficient simply to use new noise realizations of the same imaging method. Motivated by these considerations, the novelty of this paper is the use of new model selection criteria to evaluate ten established internal-noise models, utilizing four different channel models, in a train-test approach. Though not the focus of the paper, a new internal-noise model is also proposed that outperformed the ten established models in the cases tested. The results, using cardiac perfusion SPECT data, show that the proposed train-test approach is necessary, as judged by the newly proposed model selection criteria, to avoid spurious conclusions. The results also demonstrate that, in some models, the optimal internal-noise parameter is very sensitive to the choice of training data; therefore, these models are prone

  18. Evaluation of the channelized Hotelling observer with an internal-noise model in a train-test paradigm for cardiac SPECT defect detection. (United States)

    Brankov, Jovan G


    The channelized Hotelling observer (CHO) has become a widely used approach for evaluating medical image quality, acting as a surrogate for human observers in early-stage research on assessment and optimization of imaging devices and algorithms. The CHO is typically used to measure lesion detectability. Its popularity stems from experiments showing that the CHO's detection performance can correlate well with that of human observers. In some cases, CHO performance overestimates human performance; to counteract this effect, an internal-noise model is introduced, which allows the CHO to be tuned to match human-observer performance. Typically, this tuning is achieved using example data obtained from human observers. We argue that this internal-noise tuning step is essentially a model training exercise; therefore, just as in supervised learning, it is essential to test the CHO with an internal-noise model on a set of data that is distinct from that used to tune (train) the model. Furthermore, we argue that, if the CHO is to provide useful insights about new imaging algorithms or devices, the test data should reflect such potential differences from the training data; it is not sufficient simply to use new noise realizations of the same imaging method. Motivated by these considerations, the novelty of this paper is the use of new model selection criteria to evaluate ten established internal-noise models, utilizing four different channel models, in a train-test approach. Though not the focus of the paper, a new internal-noise model is also proposed that outperformed the ten established models in the cases tested. The results, using cardiac perfusion SPECT data, show that the proposed train-test approach is necessary, as judged by the newly proposed model selection criteria, to avoid spurious conclusions. The results also demonstrate that, in some models, the optimal internal-noise parameter is very sensitive to the choice of training data; therefore, these models are prone

  19. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone (United States)

    Lea, Devin M.; Legleiter, Carl J.


    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study sought to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8-km reach. Aerial photographs from 1994 to 2012 and ground-based surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and DEM developed from LiDAR data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Collectively, we refer to these methods as the stream power gradient (SPG) framework. The results of this study were compromised by methodological limitations of the SPG framework and revealed some complications likely to arise when applying this framework to small, wandering, gravel-bed rivers. Correlations between stream power gradients and sediment flux were generally weak, highlighting the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote

  20. Effect of salvia miltiorrhiza compound liquid on L-type calcium channels in rats with cardiac hypertrophy%丹参复方液对大鼠肥大心肌L型钙电流的影响

    Institute of Scientific and Technical Information of China (English)

    王佐好; 韩晨光; 赵娟; 李海英; 佟长青


    [目的]探讨丹参复方液对高血压性肥大心肌L型钙电流的影响.[方法]利用腹主动脉缩窄法建立高血压性心肌肥大模型,利用灌胃法给予丹参复方液,采用离体大鼠心脏Langendorff灌注法急性分离心肌细胞,利用膜片钳全细胞技术记录L型钙电流,比较正常对照组、高血压未治疗组和丹参复方液组之间的区别.[结果]高血压未治疗组的L型钙电流密度显著高于正常对照组(P0.05).[结论]丹参复方液具有逆转高血压性肥大心肌L型钙电流的药理作用.%[Objective] To observe the effect of Salvia miltiorrhiza SM compound liquid on cardiocyte L-type calcium channel of cardiac hypertrophy induced by hypertension. [Methods] Cardiac hypertrophy models were made by partial hgation abdominal aortic. SM compound liquid was given by intragastric administration. Langendorff system was used to dissociate single ventricular cell. The current of L-type calcium channels was recorded by whole-cell patch clamp recording technique and compared with control group, hypertension without therapy group and SM compound liquid group. [Re-sults] The current density of L-type calcium channels of hypertension without therapy group was higher than that of con-trol group significantly(P0.05) . [Conclusions] SM compound liquid can reverse cardiocyte L type calcium channel of cardiac hypertrophy induced by hypertension.

  1. Quantitative trait loci map for growth and morphometric traits using a channel catfish x blue catfish interspecific hybrid system. (United States)

    Hutson, A M; Liu, Z; Kucuktas, H; Umali-Maceina, G; Su, B; Dunham, R A


    Head length, head depth, head width, body depth, body width, caudal depth, and caudal width and total length and BW were measured for 71 backcross full sibs between the interspecific backcross F1 (female channel catfish [Ictalurus punctatus] × male blue catfish [Ictalurus furcatus]) female × blue catfish male. Body measurements were corrected for both size and the relationship between relative body shape and size, which is critical but usually ignored in fish research. Amplified fragment length polymorphism analysis was used for construction of a QTL map with 44 linkage groups. Eleven of 44 linkage groups had at least 1 significant QTL (P ≤ 0.05) and 11 of 44 at P = 0.10. Linkage group 19 was unique as it had multiple QTL for every trait measured, except for caudal width for which no QTL was identified on any linkage group. Approximately half of the markers measured were associated with positive effects (increase in size) on the traits and half had negative effects (decrease in size). Linkage groups 5, 9, 18, 20, 39, and 40 were significant for multiple traits and always had a trait negative effect. Total length is represented on the map by the most linkage groups and the most markers. The linkage relationships found among BW, total length, and the 7 morphometric traits indicated that multiple trait marker-assisted selection to simultaneously increase BW body depth, body width, and caudal depth while decreasing the head traits with the goal to increase body weight and carcass yield would be very difficult. Multiple genetic enhancement approaches would likely be needed to simultaneously improve BW and body conformation.

  2. Interaction of cardiac sodium current with other ion channel currents and its clinical significance%心脏钠电流与其他离子流的相互作用及其临床意义

    Institute of Scientific and Technical Information of China (English)

    吴志娟; 李泱


    Various ion currents on the myocardial cell membranetakepart in cardiac electric activity under both physiological and pathological conditions. Cardiac sodiumcurrent (INa)is involved in thedepolarization and repolarizationof cardiomyocyte action potential (AP), and exerts an important effect onthe conduction ofAP. So, it is of great importance to explore the interactions, effects, and especially, clinical significance ofINawith other ion channel currents. This studyreviewedthe interaction ofINa with other cardiac currents, andelucidated the mechanism of cardiac arrhythmias fromthe perspective of ion flow interaction.%心肌细胞膜上的离子流共同参与心脏在生理及病理下的电活动。钠离子流(INa)参与心肌细胞动作电位(AP)的除极和复极过程,对AP的传导有重要作用。故研究心脏钠通道与各离子通道的离子流相互关系及影响,意义尤为重要。本文综述了钠离子流与心脏其他离子流间的相互作用关系,试图从离子流相互作用的角度解释心律失常的发生机制。

  3. Mapping an aggregate extraction site off the Eastern English Channel: A methodology in support of monitoring and management (United States)

    Birchenough, Silvana N. R.; Boyd, Siân E.; Vanstaen, Koen; Coggan, Roger A.; Limpenny, David S.


    Each year approximately 23-28 million tonnes of sand and gravel are removed from offshore sediments around England and Wales. This study was located in a licensed marine aggregate extraction site off Shoreham in the Eastern English Channel (EEC thereafter). Results from the multibeam survey showed the presence of dredged pits created by suction hopper dredging and elongated furrows created by trailer suction hopper dredging in the area where sand and gravel had been excavated. Electronic Monitoring System (EMS) contained the dredging intensity recorded annually at the site; this information was combined with particle size data providing interpreted maps, which informed the status of the sediments at the site. The aim of the current study was to explore the presence of marine habitats over a smaller area known as the 'Shoreham Box' in the EEC. Results showed some differences in the community composition produced by the two methods of extraction. There was also indication of enhanced number of species in the area dredged by suction hopper method. Notably, slipper limpets were also observed inhabiting dredged pits and creating permanent habitats in areas cratered by the dredging activity. This study has generated ecological information on the status of species and habitats inhabiting the dredged and undredged area. Management considerations are also discussed to ensure that sound aggregate extraction practices are in place to minimised the effects of aggregate dredging over licensed areas.

  4. Novel algorithm for identifying T-wave current density alternans using synthesized 187-channel vector-projected body surface mapping. (United States)

    Nakai, Kenji; Takahashi, Shin; Suzuki, Atsushi; Hagiwara, Nobuhisa; Futagawa, Keisuke; Shoda, Morio; Shiga, Tsuyoshi; Takahashi, Ken; Okabayashi, Hitoshi; Itoh, Manabu; Kasanuki, Hiroshi


    The noninvasive evaluation of ventricular T-wave alternans (TWA) in patients with lethal ventricular arrhythmias is an important issue. In this study, we propose a novel algorithm to identify T-wave current density alternans (TWCA) using synthesized 187-channel vector-projected body surface mapping (187-ch SAVP-ECG). We recorded 10 min of 187-ch SAVP-ECG using a Mason-Likar lead system in the supine position. A recovery time (RT) dispersion map was obtained by averaging the 187-ch SAVP-ECG. The TWCA value was determined from the relative changes in the averaged current density in the T-wave zone (Tpeak ± 50 ms) for two T-wave types. We registered 20 ECG recordings from normal controls and 11 ECG recordings from nine subjects with long QT syndrome (LQT). We divided LQT syndrome subjects into two groups: group 1 provided 9 ECG recordings without visually apparent TWAs, and group 2 provided 2 ECG recordings with visually apparent TWAs. The QTc interval values in the LQT groups were higher than those in the control (515 ± 60 ms in LQT G-1, 600 ± 27 ms in LQT G-2 vs. 415 ± 19 ms in control, P < 0.001). The RTendc dispersion values among the LQT subjects were higher than those of the control subjects (48 ± 19 ms in LQT G-1, 65 ± 30 ms in LQT G-2 vs. 24 ± 10 ms in control, P < 0.01). The mean TWCA value was significantly higher in the LQT G-2 group with visually apparent TWCAs (0.5 ± 0.2% in control, 2.1 ± 1.2% in LQT G-1, and 32.3 ± 6.9% in LQT G-2). Interestingly, the two-dimensional distribution of TWCA in LQT was inhomogeneous and correlated with the distribution of increased RT dispersion. We conclude that a novel algorithm using 187-ch SAVP-ECG might provide new insights into body surface TWCA.

  5. Accuracy assessment of NOGGIN Plus and MALÅ RAMAC X3M single channel ground penetrating RADAR (GPR) for underground utility mapping (United States)

    Sazali Hashim, Mas; Nizam Saip, Saiful; Hani, Nurfauziah; Pradhan, Biswajeet; Abdullahi, Saleh


    Ground Penetrating Radar (GPR) becomes a popular device in investigation of the underground utilities in recent years. GPR analyses the type and position of utility objects. However, the performance accuracy of GPR models is an important issue that should be considered. This study conducts the accuracy analysis between two models of single channel GPR; NOGGIN PLUS and MALÅ RAMAC X3M, by focusing on the basic principles of single channel GPR, accuracy analysis and calibration methods implemented on GPR. The survey work has been performed to identify the most accurate instrument to detect underground utility objects. In addition, data analysis was carried out to compare between two models of single channel GPR. This study provides proper guidelines and assists surveyors to select the suitable instruments regarding on applications especially on utility mapping in terms of accuracy.

  6. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raffel, David M. E-mail:; Wieland, Donald M


    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation.

  7. Cardiac arrest (United States)

    ... Article.jsp. Accessed June 16, 2014. Myerburg RJ, Castellanos A. Approach to cardiac arrest and life-threatening ... PA: Elsevier Saunders; 2011:chap 63. Myerburg RJ, Castellanos A. Cardiac arrest and audden aardiac death. In: ...

  8. Predicting the onset of period-doubling bifurcations in noisy cardiac systems. (United States)

    Quail, Thomas; Shrier, Alvin; Glass, Leon


    Biological, physical, and social systems often display qualitative changes in dynamics. Developing early warning signals to predict the onset of these transitions is an important goal. The current work is motivated by transitions of cardiac rhythms, where the appearance of alternating features in the timing of cardiac events is often a precursor to the initiation of serious cardiac arrhythmias. We treat embryonic chick cardiac cells with a potassium channel blocker, which leads to the initiation of alternating rhythms. We associate this transition with a mathematical instability, called a period-doubling bifurcation, in a model of the cardiac cells. Period-doubling bifurcations have been linked to the onset of abnormal alternating cardiac rhythms, which have been implicated in cardiac arrhythmias such as T-wave alternans and various tachycardias. Theory predicts that in the neighborhood of the transition, the system's dynamics slow down, leading to noise amplification and the manifestation of oscillations in the autocorrelation function. Examining the aggregates' interbeat intervals, we observe the oscillations in the autocorrelation function and noise amplification preceding the bifurcation. We analyze plots--termed return maps--that relate the current interbeat interval with the following interbeat interval. Based on these plots, we develop a quantitative measure using the slope of the return map to assess how close the system is to the bifurcation. Furthermore, the slope of the return map and the lag-1 autocorrelation coefficient are equal. Our results suggest that the slope and the lag-1 autocorrelation coefficient represent quantitative measures to predict the onset of abnormal alternating cardiac rhythms.

  9. Mutations in genes encoding cardiac ion channels previously associated with sudden infant death syndrome (SIDS) are present with high frequency in new exome data

    DEFF Research Database (Denmark)

    Andreasen, Charlotte Hartig; Refsgaard, Lena; Nielsen, Jonas B;


    Sudden infant death syndrome (SIDS) is the leading cause of death in the first 6 months after birth in the industrialized world. The genetic contribution to SIDS has been investigated intensively and to date, 14 cardiac channelopathy genes have been associated with SIDS. Newly published data from...

  10. Transient receptor potential cation channel A1 (TRPA1) mediates decrements in cardiac mechanical function and dysrhythmia caused by a single air pollution exposure in mice (United States)

    This work, which will be presented at SOT 2014, demonstrates that a single exposure to either ozone or acrolein causes decrements in cardiac function and altered electrical activity (i.e. arrhythmia). The results suggest that this effect is mediated by the airway sensor TRPA1. ...

  11. Cardiac applications of optogenetics. (United States)

    Ambrosi, Christina M; Klimas, Aleksandra; Yu, Jinzhu; Entcheva, Emilia


    In complex multicellular systems, such as the brain or the heart, the ability to selectively perturb and observe the response of individual components at the cellular level and with millisecond resolution in time, is essential for mechanistic understanding of function. Optogenetics uses genetic encoding of light sensitivity (by the expression of microbial opsins) to provide such capabilities for manipulation, recording, and control by light with cell specificity and high spatiotemporal resolution. As an optical approach, it is inherently scalable for remote and parallel interrogation of biological function at the tissue level; with implantable miniaturized devices, the technique is uniquely suitable for in vivo tracking of function, as illustrated by numerous applications in the brain. Its expansion into the cardiac area has been slow. Here, using examples from published research and original data, we focus on optogenetics applications to cardiac electrophysiology, specifically dealing with the ability to manipulate membrane voltage by light with implications for cardiac pacing, cardioversion, cell communication, and arrhythmia research, in general. We discuss gene and cell delivery methods of inscribing light sensitivity in cardiac tissue, functionality of the light-sensitive ion channels within different types of cardiac cells, utility in probing electrical coupling between different cell types, approaches and design solutions to all-optical electrophysiology by the combination of optogenetic sensors and actuators, and specific challenges in moving towards in vivo cardiac optogenetics.

  12. Genetic contribution to iron status: SNPs related to iron deficiency anaemia and fine mapping of CACNA2D3 calcium channel subunit. (United States)

    Baeza-Richer, Carlos; Arroyo-Pardo, Eduardo; Blanco-Rojo, Ruth; Toxqui, Laura; Remacha, Angel; Vaquero, M Pilar; López-Parra, Ana M


    Numerous studies associate genetic markers with iron- and erythrocyte-related parameters, but few relate them to iron-clinical phenotypes. Novel SNP rs1375515, located in a subunit of the calcium channel gene CACNA2D3, is associated with a higher risk of anaemia. The aim of this study is to further investigate the association of this SNP with iron-related parameters and iron-clinical phenotypes, and to explore the potential role of calcium channel subunit region in iron regulation. Furthermore, we aim to replicate the association of other SNPs reported previously in our population. We tested 45 SNPs selected via systematic review and fine mapping of CACNA2D3 region, with haematological and biochemical traits in 358 women of reproductive age. Multivariate analyses include back-step logistic regression and decision trees. The results replicate the association of SNPs with iron-related traits, and also confirm the protective effect of both A allele of rs1800562 (HFE) and G allele of rs4895441 (HBS1L-MYB). The risk of developing anaemia is increased in reproductive age women carriers of A allele of rs1868505 (CACNA2D3) and/or T allele of rs13194491 (HIST1H2BJ). Association of SNPs from fine mapping with ferritin and serum iron suggests that calcium channels could be a potential pathway for iron uptake in physiological conditions.

  13. Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny

    Directory of Open Access Journals (Sweden)

    Leonhard Linta


    Full Text Available Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of, for example, ion selectivity, gating mechanism, composition, or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs and their somatic cell source, keratinocytes from plucked human hair. This comparison revealed that 26% of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6% were downregulated. Additionally, iPSCs express a much higher number of ion channels compared to keratinocytes. Further, to narrow down specificity of ion channel expression in iPS cells we compared their expression patterns with differentiated progeny, namely, neurons and cardiomyocytes derived from iPS cells. To conclude, hiPSCs exhibit a very considerable and diverse ion channel expression pattern. Their detailed analysis could give an insight into their contribution to many cellular processes and even disease mechanisms.

  14. Mapping of dihydropyridine binding residues in a less sensitive invertebrate L-type calcium channel (LCa v 1). (United States)

    Senatore, Adriano; Boone, Adrienne; Lam, Stanley; Dawson, Taylor F; Zhorov, Boris; Spafford, J David


    Invertebrate L-type calcium channel, LCa(v) 1, isolated from the pond snail Lymnaea stagnalis is nearly indistinguishable from mammalian Ca(v) 1.2 (α1C) calcium channel in biophysical characteristics observed in vitro. These L-type channels are likely constrained within a narrow range of biophysical parameters to perform similar functions in the snail and mammalian cardiovascular systems. What distinguishes snail and mammalian L-type channels is a difference in dihydropyridine sensitivity: 100 nM isradipine exhibits a significant block of mammalian Ca(v) 1.2 currents without effect on snail LCa(v)1 currents. The native snail channel serves as a valuable surrogate for validating key residue differences identified from previous experimental and molecular modeling work. As predicted, three residue changes in LCa(v)1 (N_3o18, F_3i10, and I_4i12) replaced with DHP-sensing residues in respective positions of Ca(v) 1.2, (Q_3o18, Y_3i10, and M_4i12) raises the potency of isradipine block of LCa(v)1 channels to that of mammalian Ca(v) 1.2. Interestingly, the single N_3o18_Q mutation in LCa(v) 1 channels lowers DHP sensitivity even further and the triple mutation bearing enhanced isradipine sensitivity, still retains a reduced potency of agonist, (S)-Bay K8644.

  15. Tobi sidescan sonar mapping of carbonate mound provinces and channel heads in the Porcupine Seabight, W of Ireland (United States)

    Huvenne, V.; van Rooij, D.; Wheeler, A.; de Haas, H.; Henriet, J. P.


    A large-scale sidescan sonar survey, using the 30 kHz TOBI system of the SOC, was carried out in summer 2002 over the carbonate mound provinces of the Porcupine Seabight and Rockall Trough, W of Ireland (EASSS III contract HPRI-CT-1999-00047, survey partly on behalf of the Porcupine Studies Group). The survey in the Porcupine Seabight focused on the Hovland-Magellan province in the north and the Belgica province on the eastern flank of the basin. Furthermore a reconnaissance track was added over the canyon heads of the Gollum Channel System further south in the Seabight. Each area has different characteristics. The Hovland-Magellan province shows a very homogeneous backscatter in the sidescan mosaics, indicating a quiet depositional environment. Mounds appear as sharp features with a strong backscatter and an acoustic shadow. Some Hovland mounds form multiple, ridge-like structures of more than a km in length. The Magellan mounds are nearly all buried, but leave subtle topographic effects at the seafloor. The Belgica mound province is characterised by much less homogeneous backscatter and a steeper seafloor slope. The mounds are placed en echelon along the slope and are bound to the W by a blind channel. Smaller down-slope channels are also found between the mounds. Many small, high-backscatter features, interpreted as incipient ('Moira') mounds have been found in this province. Striations in the blind channel, and higher up on the slope of the Belgica province indicate the influence of high current speeds. Pockmarks have been found just south of the Belgica province. The Gollum Channels are steep-flanked, U- or V-shaped channels of ca. 200 m deep. Their steep walls are cut by gullies and feeder channels, and evidence of slope failures is present. Lineations and high-backscatter patches are found on some of the channel floors.

  16. Activation of cardiac ryanodine receptors by cardiac glycosides. (United States)

    Sagawa, Toshio; Sagawa, Kazuko; Kelly, James E; Tsushima, Robert G; Wasserstrom, J Andrew


    This study investigated the effects of cardiac glycosides on single-channel activity of the cardiac sarcoplasmic reticulum (SR) Ca2+ release channels or ryanodine receptor (RyR2) channels and how this action might contribute to their inotropic and/or toxic actions. Heavy SR vesicles isolated from canine left ventricle were fused with artificial planar lipid bilayers to measure single RyR2 channel activity. Digoxin and actodigin increased single-channel activity at low concentrations normally associated with therapeutic plasma levels, yielding a 50% of maximal effect of approximately 0.2 nM for each agent. Channel activation by glycosides did not require MgATP and occurred only when digoxin was applied to the cytoplasmic side of the channel. Similar results were obtained in human RyR2 channels; however, neither the crude skeletal nor the purified cardiac channel was activated by glycosides. Channel activation was dependent on [Ca2+] on the luminal side of the bilayer with maximal stimulation occurring between 0.3 and 10 mM. Rat RyR2 channels were activated by digoxin only at 1 microM, consistent with the lower sensitivity to glycosides in rat heart. These results suggest a model in which RyR2 channel activation by digoxin occurs only when luminal [Ca2+] was increased above 300 microM (in the physiological range). Consequently, increasing SR load (by Na+ pump inhibition) serves to amplify SR release by promoting direct RyR2 channel activation via a luminal Ca2+-sensitive mechanism. This high-affinity effect of glycosides could contribute to increased SR Ca2+ release and might play a role in the inotropic and/or toxic actions of glycosides in vivo.

  17. Strain Mapping and Nanocrystallite Size Determination by Neutron Diffraction in an Aluminum Alloy (AA5083 Severely Plastically Deformed through Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    P. A. González Crespo


    Full Text Available Six specimens of an aluminum alloy (AA-5083 extruded by Equal Channel Angular Pressing following two different routes plus a blank sample were examined with a neutron radiation of 1.5448 Å. Macrostrain maps from the (311 reflection were obtained. A clear difference about accumulated macrostrain with the extrusion cycles between the two routes is shown. The diffraction data of annealed specimens did permit to estimate crystallite sizes that range between 89 nm and 115 nm depending on the routes.

  18. Map of percent scleractinian coral cover along camera tows and ROV tracks in the Auau Channel, Island of Maui, Hawaii (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry and landsat imagery. Optical data were...

  19. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death

    DEFF Research Database (Denmark)

    Nyegaard, Mette; Overgaard, Michael Toft; Søndergaard, Mads


    a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe...... dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser......]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2...

  20. Structure and Regulation of Cardiac L-type Ca2+ Channel and Its Re-lationship with Heart Diseases%心肌L型钙通道结构、调节及与心脏疾病关系

    Institute of Scientific and Technical Information of China (English)

    杨晓敏; 赵俊云; 屠蘅菁; 汤轶波; 王勇


    心肌L型钙通道CaV1. 2是维持心肌细胞兴奋和兴奋-收缩偶联的多亚基跨膜蛋白. 多种信号通路参与CaV1. 2的调节, 其中主要包括蛋白激酶A、 蛋白激酶G和蛋白激酶C途径. CaV1. 2基因突变或调节异常导致心律失常、 心肌肥大和心衰等心脏疾病的发生.%Cardiac L-type calcium channel CaV1. 2 is a transmembrane protein, which is cruci-al for excitement and excitement-contraction coupling in cardiac cells. It is regulated by a variety of second messengers and different kinases such as protein kinase A, protein kinase G, and protein kinase C. The genetic defects or the abnormal regulation of CaV1. 2 can cause a variety of heart dis-eases including arrhythmia, myocardial hypertrophy and heart failure.

  1. Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca[superscript 2+]·calmodulins

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, Jennifer L.; Baker, Mariah R.; Xiong, Liangwen; Loy, Ryan E.; Yang, Guojun; Dirksen, Robert T.; Hamilton, Susan L.; Quiocho, Florante A.; (Baylor); (Rochester-Med)


    Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is an unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.

  2. Cardiac Sarcoidosis. (United States)

    Birnie, David; Ha, Andrew C T; Gula, Lorne J; Chakrabarti, Santabhanu; Beanlands, Rob S B; Nery, Pablo


    Studies suggest clinically manifest cardiac involvement occurs in 5% of patients with pulmonary/systemic sarcoidosis. The principal manifestations of cardiac sarcoidosis (CS) are conduction abnormalities, ventricular arrhythmias, and heart failure. Data indicate that an 20% to 25% of patients with pulmonary/systemic sarcoidosis have asymptomatic (clinically silent) cardiac involvement. An international guideline for the diagnosis and management of CS recommends that patients be screened for cardiac involvement. Most studies suggest a benign prognosis for patients with clinically silent CS. Immunosuppression therapy is advocated for clinically manifest CS. Device therapy, with implantable cardioverter defibrillators, is recommended for some patients.

  3. From complex B(1) mapping to local SAR estimation for human brain MR imaging using multi-channel transceiver coil at 7T. (United States)

    Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortele, Pierre-Francois; Liu, Jiaen; He, Bin


    Elevated specific absorption rate (SAR) associated with increased main magnetic field strength remains a major safety concern in ultra-high-field (UHF) magnetic resonance imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radio-frequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission.

  4. Cardiac Malpositions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Shi Joon; Im, Chung Gie; Yeon, Kyung Mo; Hasn, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)


    Cardiac Malposition refers to any position of the heart other than a left-sided heart in a situs solitus individual. Associated cardiac malformations are so complex that even angiocardiographic and autopsy studies may not afford an accurate information. Although the terms and classifications used to describe the internal cardiac anatomy and their arterial connections in cardiac malpositions differ and tend to be confusing, common agreement exists on the need for a segmental approach to diagnosis. Authors present 18 cases of cardiac malpositions in which cardiac catheterization and angiocardiography were done at the Department of Radiology, Seoul National University Hospital between 1971 and 1979. Authors analyzed the clinical, radiographic, operative and autopsy findings with the emphasis on the angiocardiographic findings. The results are as follows: 1. Among 18 cases with cardiac malpositions, 6 cases had dextrocardia with situs inversus, 9 cases had dextrocardia with situs solitus and 3 cases had levocardia with situs inversus. 2. There was no genuine exception to visceroatrial concordance rule. 3. Associated cardiac malpositions were variable and complex with a tendency of high association of transposition and double outlet varieties with dextrocardia in situs solitus and levocardia in situs inversus. Only one in 6 cases of dextrocardia with situs inversus had pure transposition. 4. In two cases associated pulmonary atresia was found at surgery which was not predicted by angiocardiography. 5. Because many of the associated complex lesions can be corrected surgically provided the diagnosis is accurate, the selective biplane angiocardiography with or without cineradiography is essential.

  5. Maps Showing Sea Floor Topography, Sun-Illuminated Sea Floor Topography, and Backscatter Intensity of Quadrangles 1 and 2 in the Great South Channel Region, Western Georges Bank (United States)

    Valentine, Page C.; Middleton, Tammie J.; Malczyk, Jeremy T.; Fuller, Sarah J.


    The Great South Channel separates the western part of Georges Bank from Nantucket Shoals and is a major conduit for the exchange of water between the Gulf of Maine to the north and the Atlantic Ocean to the south. Water depths range mostly between 65 and 80 m in the region. A minimum depth of 45 m occurs in the east-central part of the mapped area, and a maximum depth of 100 m occurs in the northwest corner. The channel region is characterized by strong tidal and storm currents that flow dominantly north and south. Major topographic features of the seabed were formed by glacial and postglacial processes. Ice containing rock debris moved from north to south, sculpting the region into a broad shallow depression and depositing sediment to form the irregular depressions and low gravelly mounds and ridges that are visible in parts of the mapped area. Many other smaller glacial featuresprobably have been eroded by waves and currents at worksince the time when the region, formerly exposed bylowered sea level or occupied by ice, was invaded by the sea. The low, irregular and somewhat lumpy fabric formed by the glacial deposits is obscured in places by drifting sand and by the linear, sharp fabric formed by modern sand features. Today, sand transported by the strong north-south-flowing tidal and storm currents has formed large, east-west-trending dunes. These bedforms (ranging between 5 and 20 m in height) contrast strongly with, and partly mask, the subdued topography of the older glacial features.

  6. Management of cardiac fibrosis in diabetic rats; the role of peroxisome proliferator activated receptor gamma (PPAR-gamma and calcium channel blockers (CCBs

    Directory of Open Access Journals (Sweden)

    Mohamad Hoda E


    Full Text Available Abstract Background Diabetes mellitus (DM and hypertension (HTN are accused of being responsible for the development of the cardiac fibrosis due to severe cardiomyopathy. Methods Blood glucose (BG test was carried out, lipid concentrations, tumor necrosis factor alpha (TNF-α, transforming growth factor beta (TGF-β, matrix metalloproteinase (MMP-2, collagen-I and collagen-III were measured in male Albino rats weighing 179-219 g. The rats were divided into five groups, kept on either control diet or high fat diet (HFD, and simultaneously treated with rosiglitazone (PPAR-gamma only for one group with 3 mg/kg/day via oral route for 30 days, and with rosiglitazone and felodipine combination for another group with 3 mg/kg/day and 5 mg/kg/day, respectively via oral route for 30 days. Results Diabetic hypertensive (DH rats which fed on a HFD, injected with streptozotocin (STZ (i.p. and obstruction for its right kidney was occurred develop hyperglycemia, hypertension, cardiac fibrosis, hypertriglyceridemia, hypercholesterolemia, increased TNF-α, increased TGF-β, decreased MMP-2, increased collagen-I and increased collagen-III, when compared to rats fed on control diet. Treating the DH rats with rosiglitazone only causes a significant decrease for BG levels by 52.79%, triglycerides (TGs by 24.05%, total cholesterol (T-Chol by 30.23%, low density lipoprotein cholesterol (LDL-C by 40.53%, TNF-α by 20.81%, TGF-β by 46.54%, collagen-I by 48.11% and collagen-III by 53.85% but causes a significant increase for MMP-2 by 272.73%. Moreover, Treating the DH rats with rosiglitazone and felodipine combination causes a significant decrease for BG levels by 61.08%, blood pressure (BP by 16.78%, TGs by 23.80%, T-Chol by 33.27%, LDL-C by 45.18%, TNF-α by 22.82%, TGF-β by 49.31%, collagen-I by 64.15% and collagen-III by 53.85% but causes a significant increase for MMP-2 by 290.91%. Rosiglitazone alone failed to decrease the BP in DH rats in the current dosage and

  7. 绿色通道在青年心脏骤停患者急救中应用的效果%Application effects of green channel emergency care on young patients with cardiac arrest

    Institute of Scientific and Technical Information of China (English)

    陈丹; 黄海燕


    Objective To explore the value of applying green channel emergency care on young patients with cardiac arrest. Methods A total of 130 young patients with cardiac arrest, who were admitted in the Emergency Department from January 2012 to December 2014, were selected as observation group;other 130 youngpatients, admitted from January 2009 to December 2011 were selected as control group. The patients of control group were given traditional model of emergency care, while the patients of observation group were intervened by the new mode of emergency care green channel. Emergency effects, short-term and long-term prognosis in both groups were compared. Results Time of transit, of staying in the emergency room, of auxiliary examination and time before surgery inside the hospital in the observation group were significantly shorter than that of the control group (P<0. 05). Rate of missed diagnosis, incidence of complications and mortality in the early stage in the observation group were significantly lower than that of the control group ( P<0. 05). Results of a 6-month follow-up investigation on the survivors in Emergency Department showed that the incidence of major cardiovascular events in the observation group was significantly lower than that of the control group (χ2 =42. 332,P <0. 01). Conclusions Application of green channel emergency care on young patients with cardiac arrest can save time, reduce rate of missed diagnosis, incidence of complications and mortality in the early stage, and improve long-term prognosis, which makes it worth promoting.%目的 探讨绿色通道急诊护理在青年心脏骤停患者中的应用价值.方法 选择2012年1月—2014年12月急诊科收治的青年心脏骤停患者130例作为观察组,2009年1月—2011年12月急诊科收治的青年心脏骤停患者130例作对照组,对照组给予传统模式进行急诊护理,观察组在新型绿色通道急诊护理模式下进行干预,观察两组的急诊治疗效果、短期

  8. Segmentation and profiling consumers in a multi-channel environment using a combination of self-organizing maps (SOM method, and logistic regression

    Directory of Open Access Journals (Sweden)

    Seyed Ali Akbar Afjeh


    Full Text Available Market segmentation plays essential role on understanding the behavior of people’s interests in purchasing various products and services through various channels. This paper presents an empirical investigation to shed light on consumer’s purchasing attitude as well as gathering information in multi-channel environment. The proposed study of this paper designed a questionnaire and distributed it among 800 people who were at least 18 years of age and had some experiences on purchasing goods and services on internet, catalog or regular shopping centers. Self-organizing map, SOM, clustering technique was performed based on consumer’s interest in gathering information as well as purchasing products through internet, catalog and shopping centers and determined four segments. There were two types of questions for the proposed study of this paper. The first group considered participants’ personal characteristics such as age, gender, income, etc. The second group of questions was associated with participants’ psychographic characteristics including price consciousness, quality consciousness, time pressure, etc. Using multinominal logistic regression technique, the study determines consumers’ behaviors in each four segments.

  9. Acute alteration of cardiac ECG, action potential, I{sub Kr} and the human ether-a-go-go-related gene (hERG) K{sup +} channel by PCB 126 and PCB 77

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi-Hyeong; Park, Won Sun; Jo, Su-Hyun, E-mail:


    Polychlorinated biphenyls (PCBs) have been known as serious persistent organic pollutants (POPs), causing developmental delays and motor dysfunction. We have investigated the effects of two PCB congeners, 3,3′,4,4′-tetrachlorobiphenyl (PCB 77) and 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on ECG, action potential, and the rapidly activating delayed rectifier K{sup +} current (I{sub Kr}) of guinea pigs' hearts, and hERG K{sup +} current expressed in Xenopus oocytes. PCB 126 shortened the corrected QT interval (QTc) of ECG and decreased the action potential duration at 90% (APD{sub 90}), and 50% of repolarization (APD{sub 50}) (P < 0.05) without changing the action potential duration at 20% (APD{sub 20}). PCB 77 decreased APD{sub 20} (P < 0.05) without affecting QTc, APD{sub 90}, and APD{sub 50}. The PCB 126 increased the I{sub Kr} in guinea-pig ventricular myocytes held at 36 °C and hERG K{sup +} current amplitude at the end of the voltage steps in voltage-dependent mode (P < 0.05); however, PCB 77 did not change the hERG K{sup +} current amplitude. The PCB 77 increased the diastolic Ca{sup 2+} and decreased Ca{sup 2+} transient amplitude (P < 0.05), however PCB 126 did not change. The results suggest that PCB 126 shortened the QTc and decreased the APD{sub 90} possibly by increasing I{sub Kr}, while PCB 77 decreased the APD{sub 20} possibly by other modulation related with intracellular Ca{sup 2+}. The present data indicate that the environmental toxicants, PCBs, can acutely affect cardiac electrophysiology including ECG, action potential, intracellular Ca{sup 2+}, and channel activity, resulting in toxic effects on the cardiac function in view of the possible accumulation of the PCBs in human body. -- Highlights: ► PCBs are known as serious environmental pollutants and developmental disruptors. ► PCB 126 shortened QT interval of ECG and action potential duration. ► PCB 126 increased human ether-a-go-go-related K{sup +} current and I{sub Kr}.

  10. Detection of cardiac biomarkers exploiting surface enhanced Raman scattering (SERS) using a nanofluidic channel based biosensor towards coronary point-of-care diagnostics (United States)

    Benford, Melodie E.; Wang, Miao; Kameoka, Jun; Coté, Gerard L.


    According to the World Health Organization, cardiovascular disease is the most common cause of death in the world. In the US, over 115 million people visit the emergency department (ED), 5 million of which may have acute coronary syndrome (ACS). Cardiac biomarkers can provide early identification and diagnosis of ACS, and can provide information on the prognosis of the patient by assessing the risk of death. In addition, the biomarkers can serve as criteria for admission, indicate possibility of re-infarction, or eliminate ACS as a diagnosis altogether. We propose a SERSbased multi-marker approach towards a point-of-care diagnostic system for ACS. Using a nanofluidic device consisting of a microchannel leading into a nanochannel, we formed SERS active sites by mechanically aggregating gold particles (60 nm) at the entrance to the nanochannel (40nm×1μm). The induced capillary flow produces a high density of aggregated nanoparticles at this precise region, creating areas with enhanced electromagnetic fields within the aggregates, shifting the plasmon resonance to the near infrared region, in resonance with incident laser wavelength. With this robust sensing platform, we were able to obtain qualitative information of brain natriuretic peptide (biomarker of ventricular dysfunction or pulmonary stress), troponin I (biomarker of myocardial necrosis), and C-reactive protein (biomarker of inflammation potentially caused by atherosclerosis).

  11. Cardiac cameras. (United States)

    Travin, Mark I


    Cardiac imaging with radiotracers plays an important role in patient evaluation, and the development of suitable imaging instruments has been crucial. While initially performed with the rectilinear scanner that slowly transmitted, in a row-by-row fashion, cardiac count distributions onto various printing media, the Anger scintillation camera allowed electronic determination of tracer energies and of the distribution of radioactive counts in 2D space. Increased sophistication of cardiac cameras and development of powerful computers to analyze, display, and quantify data has been essential to making radionuclide cardiac imaging a key component of the cardiac work-up. Newer processing algorithms and solid state cameras, fundamentally different from the Anger camera, show promise to provide higher counting efficiency and resolution, leading to better image quality, more patient comfort and potentially lower radiation exposure. While the focus has been on myocardial perfusion imaging with single-photon emission computed tomography, increased use of positron emission tomography is broadening the field to include molecular imaging of the myocardium and of the coronary vasculature. Further advances may require integrating cardiac nuclear cameras with other imaging devices, ie, hybrid imaging cameras. The goal is to image the heart and its physiological processes as accurately as possible, to prevent and cure disease processes.

  12. RTK定位技术于河道测绘工程中的认识%Understanding of RTK Positioning Technology in Channel Surveying and Mapping Engineering

    Institute of Scientific and Technical Information of China (English)



    在水运工程中,由于大量的人力、物力和财力的投入,使得水运工程受到了社会各界的高度关注。测绘技术的应用能够大大提高准确性,降低工程的成本。本文对RTK定位技术在水运河道测绘中的应用进行了分析,以供读者参考。%In the port&waterway engineering, due to the large input of manpower, material resources and financial, which makes the water transportation engineering received the at ention from al walks of life. The application of surveying and mapping technology can greatly improve the accuracy and reduce the cost of engineering. This article carries on the an-alysis of the application of the GPS-RTK positioning tec-hnology in water transport channel surveying and mapping, in order to provide reference for readers.

  13. Discovery of triazolopyridinone GS-462808, a late sodium current inhibitor (Late INai) of the cardiac Nav1.5 channel with improved efficacy and potency relative to ranolazine. (United States)

    Koltun, Dmitry O; Parkhill, Eric Q; Elzein, Elfatih; Kobayashi, Tetsuya; Jiang, Robert H; Li, Xiaofen; Perry, Thao D; Avila, Belem; Wang, Wei-Qun; Hirakawa, Ryoko; Smith-Maxwell, Catherine; Wu, Lin; Dhalla, Arvinder K; Rajamani, Sridharan; Mollova, Nevena; Stafford, Brian; Tang, Jennifer; Belardinelli, Luiz; Zablocki, Jeff A


    Previously we disclosed the discovery of potent Late INa current inhibitor 2 (GS-458967, IC50 of 333nM) that has a good separation of late versus peak Nav1.5 current, but did not have a favorable CNS safety window due to high brain penetration (3-fold higher partitioning into brain vs plasma) coupled with potent inhibition of brain sodium channel isoforms (Nav1.1, 1.2, 1.3). We increased the polar surface area from 50 to 84Å(2) by adding a carbonyl to the core and an oxadiazole ring resulting in 3 GS-462808 that had lower brain penetration and serendipitously lower activity at the brain isoforms. Compound 3 has an improved CNS window (>20 rat and dog) relative to 2, and improved anti-ischemic potency relative to ranolazine. The development of 3 was not pursued due to liver lesions in 7day rat toxicology studies.

  14. Contribution of intracellular calcium and pH in ischemic uncoupling of cardiac gap junction channels formed of connexins 43, 40, and 45: a critical function of C-terminal domain.

    Directory of Open Access Journals (Sweden)

    Giriraj Sahu

    Full Text Available Ischemia is known to inhibit gap junction (GJ mediated intercellular communication. However the detail mechanisms of this inhibition are largely unknown. In the present study, we determined the vulnerability of different cardiac GJ channels formed of connexins (Cxs 43, 40, and 45 to simulated ischemia, by creating oxygen glucose deprived (OGD condition. 5 minutes of OGD decreased the junctional conductance (Gj of Cx43, Cx40 and Cx45 by 53±3%, 64±1% and 85±2% respectively. Reduction of Gj was prevented completely by restricting the change of both intracellular calcium ([Ca(2+]i and pH (pHi with potassium phosphate buffer. Clamping of either [Ca(2+]i or pHi, through BAPTA (2 mM or HEPES (80 mM respectively, offered partial resistance to ischemic uncoupling. Anti-calmodulin antibody attenuated the uncoupling of Cx43 and Cx45 significantly but not of Cx40. Furthermore, OGD could reduce only 26±2% of Gj in C-terminus (CT truncated Cx43 (Cx43-Δ257. Tethering CT of Cx43 to the CT-truncated Cx40 (Cx40-Δ249, and Cx45 (Cx45-Δ272 helped to resist OGD mediated uncoupling. Moreover, CT domain played a significant role in determining the junction current density and plaque diameter. Our results suggest; OGD mediated uncoupling of GJ channels is primarily due to elevated [Ca(2+]i and acidic pHi, though the latter contributes more. Among Cx43, Cx40 and Cx45, Cx43 is the most resistant to OGD while Cx45 is the most sensitive one. CT of Cx43 has major necessary elements for OGD induced uncoupling and it can complement CT of Cx40 and Cx45.

  15. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T(1) mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study.

    NARCIS (Netherlands)

    Ng, A.C.; Auger, D.; Delgado, V.; Elderen, S.G. van; Bertini, M.; Siebelink, H.M.; Geest, R.J. van der; Bonetti, C.; Velde, E.T. van der; Roos, A. de; Smit, J.W.A.; Leung, D.Y.; Bax, J.J.; Lamb, H.J.


    BACKGROUND: Diabetic patients have increased interstitial myocardial fibrosis on histological examination. Magnetic resonance imaging (MRI) T(1) mapping is a previously validated imaging technique that can quantify the burden of global and regional interstitial fibrosis. However, the association bet

  16. A multiresolution restoration method for cardiac SPECT (United States)

    Franquiz, Juan Manuel

    Single-photon emission computed tomography (SPECT) is affected by photon attenuation and image blurring due to Compton scatter and geometric detector response. Attenuation correction is important to increase diagnostic accuracy of cardiac SPECT. However, in attenuation-corrected scans, scattered photons from radioactivity in the liver could produce a spillover of counts into the inferior myocardial wall. In the clinical setting, blurring effects could be compensated by restoration with Wiener and Metz filters. Inconveniences of these procedures are that the Wiener filter depends upon the power spectra of the object image and noise, which are unknown, while Metz parameters have to be optimized by trial and error. This research develops an alternative restoration procedure based on a multiresolution denoising and regularization algorithm. It was hypothesized that this representation leads to a more straightforward and automatic restoration than conventional filters. The main objective of the research was the development and assessment of the multiresolution algorithm for compensating the liver spillover artifact. The multiresolution algorithm decomposes original SPECT projections into a set of sub-band frequency images. This allows a simple denoising and regularization procedure by discarding high frequency channels and performing inversion only in low and intermediate frequencies. The method was assessed in bull's eye polar maps and short- axis attenuation-corrected reconstructions of a realistic cardiac-chest phantom with a custom-made liver insert and different 99mTc liver-to-heart activity ratios. Inferior myocardial defects were simulated in some experiments. The cardiac phantom in free air was considered as the gold standard reference. Quantitative analysis was performed by calculating contrast of short- axis slices and the normalized chi-square measure, defect size and mean and standard deviation of polar map counts. The performance of the multiresolution

  17. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.


    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  18. Compensatory up-regulation of cardiac SR Ca2+-pump by heat-shock counteracts SR Ca2+-channel activation by ischemia/reperfusion. (United States)

    O'Brien, P J; Li, G O; Locke, M; Klabunde, R E; Ianuzzo, C D


    We tested the hypothesis that heat-shock protected myocardial Ca2+-cycling by sarcoplasmic reticulum from ischemia and reperfusion (I/R) injury. Twenty-four hours after increasing body temperature to 42 degrees C for 15 min, rat hearts were isolated, Langendorff-perfused, and subjected to 30 min ischemia then 30 min reperfusion. Left ventricles were homogenized and their ionized Ca2+ concentration monitored with indo- during Ca2+-uptake in the presence and absence of the Ca2+-release channel (CRC) modulator ryanodine. Tissue content of heat-shock protein 72 (HSP 72) was analyzed. Exposure to I/R resulted in a 37% enhancement of CRC activity but no effect on Ca2+-pumping activity, resulting in 25% decreased net Ca2+-uptake activity. Pre-exposure to heat-shock resulted in a 10-fold increase in HSP 72, and a 25% enhancement of maximal Ca2+-pumping activity which counteracted the effect of I/R on CRC and net Ca2+-uptake activities. This protection of SR Ca2+-cycling was associated with partial protection of myocardial physiological performance. Net Ca2+-uptake activity was correlated with the left ventricular developed pressure and its rate of change. We conclude that one of the mechanisms by which heat-shock protects myocardium from I/R injury is to upregulate SR Ca2+-pumping activity to counteract the enhanced SR Ca2+-release produced by I/R.

  19. Cardiac Optogenetics: Enhancement by All-trans-Retinal. (United States)

    Yu, Jinzhu; Chen, Kay; Lucero, Rachel V; Ambrosi, Christina M; Entcheva, Emilia


    All-trans-Retinal (ATR) is a photosensitizer, serving as the chromophore for depolarizing and hyperpolarizing light-sensitive ion channels and pumps (opsins), recently employed as fast optical actuators. In mammalian optogenetic applications (in brain and heart), endogenous ATR availability is not considered a limiting factor, yet it is unclear how ATR modulation may affect the response to optical stimulation. We hypothesized that exogenous ATR may improve light responsiveness of cardiac cells modified by Channelrhodopsin2 (ChR2), hence lowering the optical pacing energy. In virally-transduced (Ad-ChR2(H134R)-eYFP) light-sensitive cardiac syncytium in vitro, ATR supplements ≤2 μM improved cardiomyocyte viability and augmented ChR2 membrane expression several-fold, while >4 μM was toxic. Employing integrated optical actuation (470 nm) and optical mapping, we found that 1-2 μM ATR dramatically reduced optical pacing energy (over 30 times) to several μW/mm(2), lowest values reported to date, but also caused action potential prolongation, minor changes in calcium transients and no change in conduction. Theoretical analysis helped explain ATR-caused reduction of optical excitation threshold in cardiomyocytes. We conclude that cardiomyocytes operate at non-saturating retinal levels, and carefully-dosed exogenous ATR can enhance the performance of ChR2 in cardiac cells and yield energy benefits over orders of magnitude for optogenetic stimulation.

  20. Influence of mannan-binding lectin and MAp44 on outcome in comatose survivors of out-of-hospital cardiac arrest

    DEFF Research Database (Denmark)

    Bro-Jeppesen, John; Kjaergaard, Jesper; Thiel, Steffen


    randomized Target Temperature Management (TTM) trial, we measured MBL and MAp44 levels at baseline, 24, 48 and 72 h after OHCA in 169 consecutive patients randomly assigned to TTM at 33 °C or 36 °C for 24h. Primary outcome was 30 days mortality and secondary outcome was favorable neurological outcome...... MAp44 levels were not associated with mortality, p=0.25. There was no significant difference in neurological outcome between the two MBL groups assessed by CPC (p=0.69) and mRS (p=0.91). In multivariable models, baseline MBL (OR=1.0, p=0.70), (OR=1.5, p=0.30) and MAp44 levels (OR=1.0, p=0.99), (OR=1...

  1. Cardiac MRI. T2-mapping versus T2-weighted dark-blood TSE imaging for myocardial edema visualization in acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Nassenstein, K.; Nensa, F.; Schlosser, T.; Umutlu, L.; Lauenstein, T. [University Hospital Essen (Germany). Dept. of Diagnostic and Interventional Radiology and Neuroradiology; Bruder, O. [Elisabeth Hospital, Essen (Germany). Dept. of Cardiology and Angiology; Maderwald, S.; Ladd, M.E. [Duisburg-Essen Univ., Essen (Germany). Erwin L. Hahn Institute for Magnetic Resonance Imaging


    Purpose: To assess the diagnostic accuracy of T2 mapping for the detection of myocardial edema in acute myocardial infarction (AMI), and to compare this diagnostic accuracy with that of the current standard for myocardial edema imaging, which is T2w dark-blood TSE imaging. Materials and Methods: 29 patients with AMI were examined at 1.5 T. For the visualization of myocardial edema, T2 maps, calculated from three T2w SSFP images, and T2w dark-blood TSE images were acquired in standard short- and long-axis views. Cine SSFP images were acquired for the analysis of left ventricular (LV) function and late gadolinium enhancement images (LGE) for the visualization of myocardial necrosis. The T2 maps as well as the T2w dark-blood TSE images were evaluated twice independently from the cine SSFP and LGE images. The presence or absence of myocardial edema was rated visually for each LV segment. As the standard of reference, the infarct zone was defined based on the cine SSFP and the LGE images. Results: In this segment-based analysis, T2 mapping showed a sensitivity of 82 % and a specificity of 94 % for the detection of edema in the infarct zone. T2w dark-blood TSE imaging revealed a sensitivity of 50 % and a specificity of 98 %. T2 mapping showed a higher intra-rater agreement compared to T2w dark-blood TSE imaging ({kappa}: 0.87 vs. 0.76). Conclusions: T2 mapping allows for the visualization of myocardial edema in AMI with a high sensitivity and specificity, and features better diagnostic accuracy in terms of a higher sensitivity compared to T2w dark-blood TSE imaging. (orig.)

  2. Cardiac Rehabilitation (United States)

    ... your risk of future heart problems, and to improve your health and quality of life. Cardiac rehabilitation programs increase ... exercise routine at home or at a local gym. You may also continue to ... health concerns. Education about nutrition, lifestyle and weight loss ...

  3. Ion channels in toxicology. (United States)

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier


    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  4. Electrophysiological properties of mouse and epitope-tagged human cardiac sodium channel Nav1.5 expressed in HEK293 cells [v2; ref status: indexed,

    Directory of Open Access Journals (Sweden)

    Katja Reinhard


    Full Text Available Background: The pore-forming subunit of the cardiac sodium channel, Nav1.5, has been previously found to be mutated in genetically determined arrhythmias. Nav1.5 associates with many proteins that regulate its function and cellular localisation. In order to identify more in situ Nav1.5 interacting proteins, genetically-modified mice with a high-affinity epitope in the sequence of Nav1.5 can be generated. Methods: In this short study, we (1 compared the biophysical properties of the sodium current (INa generated by the mouse Nav1.5 (mNav1.5 and human Nav1.5 (hNav1.5 constructs that were expressed in HEK293 cells, and (2 investigated the possible alterations of the biophysical properties of the human Nav1.5 construct that was modified with specific epitopes. Results: The biophysical properties of mNav1.5 were similar to the human homolog. Addition of epitopes either up-stream of the N-terminus of hNav1.5 or in the extracellular loop between the S5 and S6 transmembrane segments of domain 1, significantly decreased the amount of INa and slightly altered its biophysical properties. Adding green fluorescent protein (GFP to the N-terminus did not modify any of the measured biophysical properties of hNav1.5. Conclusions: These findings have to be taken into account when planning to generate genetically-modified mouse models that harbour specific epitopes in the gene encoding mNav1.5.

  5. Phosphodiesterase 4B in the cardiac L-type Ca²⁺ channel complex regulates Ca²⁺ current and protects against ventricular arrhythmias in mice. (United States)

    Leroy, Jérôme; Richter, Wito; Mika, Delphine; Castro, Liliana R V; Abi-Gerges, Aniella; Xie, Moses; Scheitrum, Colleen; Lefebvre, Florence; Schittl, Julia; Mateo, Philippe; Westenbroek, Ruth; Catterall, William A; Charpentier, Flavien; Conti, Marco; Fischmeister, Rodolphe; Vandecasteele, Grégoire


    β-Adrenergic receptors (β-ARs) enhance cardiac contractility by increasing cAMP levels and activating PKA. PKA increases Ca²⁺-induced Ca²⁺ release via phosphorylation of L-type Ca²⁺ channels (LTCCs) and ryanodine receptor 2. Multiple cyclic nucleotide phosphodiesterases (PDEs) regulate local cAMP concentration in cardiomyocytes, with PDE4 being predominant for the control of β-AR-dependent cAMP signals. Three genes encoding PDE4 are expressed in mouse heart: Pde4a, Pde4b, and Pde4d. Here we show that both PDE4B and PDE4D are tethered to the LTCC in the mouse heart but that β-AR stimulation of the L-type Ca²⁺ current (ICa,L) is increased only in Pde4b-/- mice. A fraction of PDE4B colocalized with the LTCC along T-tubules in the mouse heart. Under β-AR stimulation, Ca²⁺ transients, cell contraction, and spontaneous Ca²⁺ release events were increased in Pde4b-/- and Pde4d-/- myocytes compared with those in WT myocytes. In vivo, after intraperitoneal injection of isoprenaline, catheter-mediated burst pacing triggered ventricular tachycardia in Pde4b-/- mice but not in WT mice. These results identify PDE4B in the CaV1.2 complex as a critical regulator of ICa,L during β-AR stimulation and suggest that distinct PDE4 subtypes are important for normal regulation of Ca²⁺-induced Ca²⁺ release in cardiomyocytes.

  6. Cardiac Calcification

    Directory of Open Access Journals (Sweden)

    Morteza Joorabian


    Full Text Available There is a spectrum of different types of cardiac"ncalcifications with the importance and significance"nof each type of cardiac calcification, especially"ncoronary artery calcification. Radiologic detection of"ncalcifications within the heart is quite common. The"namount of coronary artery calcification correlates"nwith the severity of coronary artery disease (CAD."nCalcification of the aortic or mitral valve may indicate"nhemodynamically significant valvular stenosis."nMyocardial calcification is a sign of prior infarction,"nwhile pericardial calcification is strongly associated"nwith constrictive pericarditis. A spectrum of different"ntypes of cardiac calcifications (linear, annular,"ncurvilinear,... could be seen in chest radiography and"nother imaging modalities. So a carful inspection for"ndetection and reorganization of these calcifications"nshould be necessary. Numerous modalities exist for"nidentifying coronary calcification, including plain"nradiography, fluoroscopy, intravascular ultrasound,"nMRI, echocardiography, and conventional, helical and"nelectron-beam CT (EBCT. Coronary calcifications"ndetected on EBCT or helical CT can be quantifie,"nand a total calcification score (Cardiac Calcification"nScoring may be calculated. In an asymptomatic"npopulation and/or patients with concomitant risk"nfactors like diabetes mellitus, determination of the"npresence of coronary calcifications identifies the"npatients at risk for future myocardial infarction and"ncoronary artery disease. In patients without coronary"ncalcifications, future cardiovascular events could"nbe excluded. Therefore, detecting and recognizing"ncalcification related to the heart on chest radiography"nand other imaging modalities such as fluoroscopy, CT"nand echocardiography may have important clinical"nimplications.

  7. On partially entanglement breaking channels

    CERN Document Server

    Chruscinski, D; Chruscinski, Dariusz; Kossakowski, Andrzej


    Using well known duality between quantum maps and states of composite systems we introduce the notion of Schmidt number of a quantum channel. It enables one to define classes of quantum channels which partially break quantum entanglement. These classes generalize the well known class of entanglement breaking channels.

  8. Three-dimensional visualization maps of suspended-sediment concentrations during placement of dredged material in 21st Avenue West Channel Embayment, Duluth-Superior Harbor, Duluth, Minnesota, 2015 (United States)

    Groten, Joel T.; Ellison, Christopher A.; Mahoney, Mollie H.


    Excess sediment in rivers and estuaries poses serious environmental and economic challenges. The U.S. Army Corps of Engineers (USACE) routinely dredges sediment in Federal navigation channels to maintain commercial shipping operations. The USACE initiated a 3-year pilot project in 2013 to use navigation channel dredged material to aid in restoration of shoreline habitat in the 21st Avenue West Channel Embayment of the Duluth-Superior Harbor. Placing dredged material in the 21st Avenue West Channel Embayment supports the restoration of shallow bay aquatic habitat aiding in the delisting of the St. Louis River Estuary Area of Concern.The U.S. Geological Survey, in cooperation with the USACE, collected turbidity and suspended-sediment concentrations (SSCs) in 2014 and 2015 to measure the horizontal and vertical distribution of SSCs during placement operations of dredged materials. These data were collected to help the USACE evaluate the use of several best management practices, including various dredge material placement techniques and a silt curtain, to mitigate the dispersion of suspended sediment.Three-dimensional visualization maps are a valuable tool for assessing the spatial displacement of SSCs. Data collection was designed to coincide with four dredged placement configurations that included periods with and without a silt curtain as well as before and after placement of dredged materials. Approximately 230 SSC samples and corresponding turbidity values collected in 2014 and 2015 were used to develop a simple linear regression model between SSC and turbidity. Using the simple linear regression model, SSCs were estimated for approximately 3,000 turbidity values at approximately 100 sampling sites in the 21st Avenue West Channel Embayment of the Duluth-Superior Harbor. The estimated SSCs served as input for development of 12 three-dimensional visualization maps.

  9. HCN Channels and Heart Rate

    Directory of Open Access Journals (Sweden)

    Ilaria Dentamaro


    Full Text Available Hyperpolarization and Cyclic Nucleotide (HCN -gated channels represent the molecular correlates of the “funny” pacemaker current (If, a current activated by hyperpolarization and considered able to influence the sinus node function in generating cardiac impulses. HCN channels are a family of six transmembrane domain, single pore-loop, hyperpolarization activated, non-selective cation channels. This channel family comprises four members: HCN1-4, but there is a general agreement to consider HCN4 as the main isoform able to control heart rate. This review aims to summarize advanced insights into the structure, function and cellular regulation of HCN channels in order to better understand the role of such channels in regulating heart rate and heart function in normal and pathological conditions. Therefore, we evaluated the possible therapeutic application of the selective HCN channels blockers in heart rate control.

  10. 表达心脏SCN5A基因的人胚肾细胞钠电流特性及其对钠通道阻滞剂的反应性%Features of Cardiac Sodium Channel Expressed in Human Embryonic Kidney Cells and Its Response to Sodium Channel Blockers

    Institute of Scientific and Technical Information of China (English)

    刘洋; Hector Barajas-Martinez; 阮磊; 全小庆; 张存泰; 王琳; 胡丹; 白融


    Objective To investigate the features of the cardiac sodium channel (SCN5A) expressed in the human embryonic kidney cells,and to test its response to the sodium channel blockers. Methods Wild-type SCN5A gene was co-expressed with SCN1B gene in human embryonic kidney cells and the membrane currents were measured using a whole-cell patch clamp technique in the absence or presence of flecainide and lidocaine. Results The transfection efficiency of SCN5A gene was about 60%. The peak sodium current amplitude recorded at a test pulse of -40 mV was -8 nA;the peak sodium current amplitude was decreased by (21. 1 + 4. 6)% [C - 435. 8± 30. 5) pA/pF vs. ( — 343. 9 ± 27. 1) pA/pF,P<0. 01] in the presence of 100 jumol/L flecainide. The treatment with flecainide resulted in a negative shift of both curves of the voltage dependence of activation [ - 6. 08 mV,( -51. 88 + 1. 20) mV vs. C - 57. 96 + 0. 79) mV,P<0. 05] and of inactivation [ - 9. 08 mV, ( -94. 12 + 0.13) mV vs. ( -103.20 + 0.11) mV, P<0. 05]. At stimulus frequencies of 1 Hz and 10 Hz, flecainide produced (64.5 + 10. 7) % and (83. 5 + 12. 2) % (P<0. 01) reduction in sodium current,respectively. The presence of 30 jumol/Llidocaine led to a 2-fold prolongation of the constant of fast recovery time and a 3-fold prolongation of the constant of slow recovery time from the inactivation status of the sodium channel. Conclusion The human embryonic kidney cells which express the cardiac sodium channel can be used to screen the safety and pharmacodynamics of gene-specific sodium channel blockers.%目的 利用人胚肾293细胞表达心脏钠通道SCN5A基因并研究其钠电流特性和对钠通道阻滞剂的反应性.方法 野生型SCN5A基因和SCN1B基因共表达于人胚肾293细胞,应用全细胞膜片钳技术记录给药(氟卡尼与利多卡因)前后的钠电流.结果 SCN5A基因转染效率约为60%;测试电压为-40 mV时记录到钠电流峰值大小约为-8 nA;100 μmol/L的氟卡尼轻度抑制钠

  11. Inherited arrhythmias: The cardiac channelopathies

    Directory of Open Access Journals (Sweden)

    Shashank P Behere


    Full Text Available Ion channels in the myocardial cellular membrane are responsible for allowing the cardiac action potential. Genetic abnormalities in these channels can predispose to life-threatening arrhythmias. We discuss the basic science of the cardiac action potential; outline the different clinical entities, including information regarding overlapping diagnoses, touching upon relevant genetics, new innovations in screening, diagnosis, risk stratification, and management. The special considerations of sudden unexplained death and sudden infant death syndrome are discussed. Scientists and clinicians continue to reconcile the rapidly growing body of knowledge regarding the molecular mechanisms and genetics while continuing to improve our understanding of the various clinical entities and their diagnosis and management in clinical setting. Two separate searches were run on the National Center for Biotechnology Information′s website. The first using the term cardiac channelopathies was run on the PubMed database using filters for time (published in past 5 years and age (birth-18 years, yielding 47 results. The second search using the medical subject headings (MeSH database with the search terms "Long QT Syndrome" (MeSH and "Short QT Syndrome" (MeSH and "Brugada Syndrome" (MeSH and "Catecholaminergic Polymorphic Ventricular Tachycardia" (MeSH, applying the same filters yielded 467 results. The abstracts of these articles were studied, and the articles were categorized and organized. Articles of relevance were read in full. As and where applicable, relevant references and citations from the primary articles where further explored and read in full.

  12. Cardiac MRI in Athletes

    NARCIS (Netherlands)

    Luijkx, T.


    Cardiac magnetic resonance imaging (CMR) is often used in athletes to image cardiac anatomy and function and is increasingly requested in the context of screening for pathology that can cause sudden cardiac death (SCD). In this thesis, patterns of cardiac adaptation to sports are investigated with C

  13. Ion channelopathy and hyperphosphorylation contributing to cardiac arrhythmias

    Institute of Scientific and Technical Information of China (English)

    De-zai DAI; Feng YU


    The occurrence of cardiac arrhythmias is related to the abnormality of ion channels not only in sarcolemma but also in the sarcoplasmic reticulum, which regulates the process of calcium release and up-take intracellularly. Patterns of ion channelopathy in the sarcolemma can be divided into single channel disorder from gene mutations and multiple channels disorder in a diseased hypertrophied heart. Abnormal RyR2, FKBP12.6, SERCA2a, and PLB are also involved in the initiation of cardiac arrhythmias. Maladjustment by hyperphosphorylation on the ion channels in the sarcolemma and RyR2-FKBP12.6 and SERCA2a-PLB is discussed. Hyperphosphorylation, which is the main abnormality upstream to ion channels, can be targeted for suppressing the deterioration of ion channelopathy in terms of new drug discovery in the treatment and prevention of malignant cardiac arrhythmias.

  14. Resolution of abnormal cardiac MRI T2 signal following immune suppression for cardiac sarcoidosis. (United States)

    Crouser, Elliott D; Ruden, Emily; Julian, Mark W; Raman, Subha V


    Cardiac MR (CMR) with late gadolinium enhancement is commonly used to detect cardiac damage in the setting of cardiac sarcoidosis. The addition of T2 mapping to CMR was recently shown to enhance cardiac sarcoidosis detection and correlates with increased cardiac arrhythmia risk. This study was conducted to determine if CMR T2 abnormalities and related arrhythmias are reversible following immune suppression therapy. A retrospective study of subjects with cardiac sarcoidosis with abnormal T2 signal on baseline CMR and a follow-up CMR study at least 4 months later was conducted at The Ohio State University from 2011 to 2015. Immune suppression treated participants had a significant reduction in peak myocardial T2 value (70.0±5.5 vs 59.2±6.1 ms, pretreatment vs post-treatment; p=0.017), and 83% of immune suppression treated subjects had objective improvement in cardiac arrhythmias. Two subjects who had received inadequate immune suppression treatment experienced progression of cardiac sarcoidosis. This report indicates that abnormal CMR T2 signal represents an acute inflammatory manifestation of cardiac sarcoidosis that is potentially reversible with adequate immune suppression therapy.

  15. G-Protein Inwardly Rectifying Potassium Channel 1 (GIRK1 Knockdown Decreases Beta-Adrenergic, MAP Kinase and Akt Signaling in the MDA-MB-453 Breast Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Michael W. Hance


    Full Text Available Previous data from our laboratory have indicated that there is a functional link between the beta-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in breast cancer cell lines and that these pathways are involved in growth regulation of these cells. To determine functionality, MDA-MB-453 breast cancer cells were stimulated with ethanol, known to open GIRK channels. Decreased GIRK1 protein levels were seen after treatment with 0.12% ethanol. In addition, serum-free media completely inhibited GIRK1 protein expression. This data indicates that there are functional GIRK channels in breast cancer cells and that these channels are involved in cellular signaling. In the present research, to further define the signaling pathways involved, we performed RNA interference (siRNA studies. Three stealth siRNA constructs were made starting at bases 1104, 1315, and 1490 of the GIRK1 sequence. These constructs were transfected into MDA-MB-453 cells, and both RNA and protein were isolated. GIRK1, β2-adrenergic and 18S control levels were determined using real-time PCR 24 hours after transfection. All three constructs decreased GIRK1 mRNA levels. However, β2 mRNA levels were unchanged by the GIRK1 knockdown. GIRK1 protein levels were also reduced by the knockdown, and this knockdown led to decreases in beta-adrenergic, MAP kinase and Akt signaling.

  16. Channel Cross Sections, FEMA DFIRM preliminary map out now, to be published in 2009, Published in 2008, 1:12000 (1in=1000ft) scale, Brown County, WI. (United States)

    NSGIC GIS Inventory (aka Ramona) — This Channel Cross Sections dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from Other information as of 2008. It is described as 'FEMA...

  17. Cardiac ryanodine receptor gene (hRyR2) mutation underlying catecholaminergic polymorphic ventricular tachycardia in a Chinese adolescent presenting with sudden cardiac arrest and cardiac syncope

    Institute of Scientific and Technical Information of China (English)

    Ngai-Shing Mok; Ching-Wan Lam; Nai-Chung Fong; Yim-Wo Hui; Yuen-Choi Choi; Kwok-Yin Chan


    @@ Sudden cardiac death (SCD) in children and adolescents is uncommon and yet it is devastating for both victim's family and the society.Recently, it was increasingly recognized that SCD in young patients with structurally normal heart may be caused by inheritable primary electrical diseases due to the malfunction of cardiac ion channels, a disease entity known as the ion channelopathies.Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a specific form of ion channelopathy which can cause cardiac syncope or SCD in young patients by producing catecholamine-induced bi-directional ventricular tachycardia (BiVT), polymorphic VT and ventricular fibrillation (VF) during physical exertion or emotion.1-7 We reported here an index case of CPVT caused by cardiac ryanodine receptor gene (hRyR2)mutation which presented as cardiac syncope and sudden cardiac arrest in a Chinese adolescent female.

  18. A new sodium channel alpha-subunit gene (Scn9a) from Schwann cells maps to the Scn1a, Scn2a, Scn3a cluster of mouse chromosome 2. (United States)

    Beckers, M C; Ernst, E; Belcher, S; Howe, J; Levenson, R; Gros, P


    We have used a total of 27 AXB/BXA recombinant inbred mouse strains to determine the chromosomal location of a newly identified gene encoding an alpha-subunit isoform of the sodium channel from Schwann cells, Scn9a. Linkage analysis established that Scn9a mapped to the proximal segment of mouse chromosome 2. The segregation of restriction fragment length polymorphisms in 145 progeny from a Mus spretus x C57BL/6J backcross indicates that Scn9a is very tightly linked to Scn1a (gene encoding the type I sodium channel alpha-subunit of the brain) and forms part of a cluster of four Scna genes located on mouse chromosome 2.

  19. A new sodium channel {alpha}-subunit gene (Scn9a) from Schwann cells maps to the Scn1a, Scn2a, Scn3a cluster of mouse chromosome 2

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, M.C.; Ernst, E.; Gros, P. [McGill Univ., Montreal (Canada)


    We have used a total of 27 AXB/BXA recombinant inbred mouse strains to determine the chromosomal location of a newly identified gene encoding an {alpha}-subunit isoform of the sodium channel from Schwann cells, Scn9a. Linkage analysis established that Scn9a mapped to the proximal segment of mouse chromosome 2. The segregation of restriction fragment length polymorphisms in 145 progeny from a Mus spretus x C57BL/6J backcross indicates that Scn9a is very tightly linked to Scn1a (gene encoding the type I sodium channel {alpha}-subunit of the brain) and forms part of a cluster of four Scna genes located on mouse chromosome 2. 17 refs., 1 fig., 3 tabs.

  20. 三维标测系统指导下复杂心律失常的经导管射频消融治疗%Three-dimensional mapping for radiofrequency catheter ablation of complex cardiac arrhythmias

    Institute of Scientific and Technical Information of China (English)

    洪浪; 王洪; 赖珩莉; 尹秋林; 陈章强; 陆林祥; 邱赞; 肖承伟


    目的:探讨在三维标测系统指导下,经导管复杂心律失常射频消融治疗的有效性与安全性. 方法:选择2006年2月至2008年9月住院患者98例,其中阵发性房颤50例、持续性或永久性房颤6例、心房扑动9例、房性心动过速(房速)9例、室性心动过速(室速)或频发室性早搏24例.在EnSite NavX或Array系统(72例)或CARTO系统(26例)指导下进行射频消融手术. 结果:84例一次手术成功(85.71%),7例再次导管消融成功,成功率合计92.86%.50例房颤一次手术成功,5例再次消融后3例成功.9例心房扑动患者中7例一次手术成功,1例复发再次消融成功.9例房速中7例一次手术成功,1例复发再次消融成功.24例室速、室早患者中20例一次消融成功,4例行再次消融2例成功.共有并发症6例:心包填塞4例,左前降支远端栓塞1例、术后肺栓塞1例. 结论:三维标测系统可清晰地显示心脏三维立体结构,对复杂疑难心律失常的射频消融治疗具有较好的指导作用,提高消融的成功率并增加手术安全性.%Objective:To explore the validity and safety of radiofrequeney catheter ablation of complex cardiac arrhythmias guided by a three-dimensional mapping system. Methods.. A cohort of 98 consecutive inpatients were registered from February 2006 to September 2008, of which 68 cases were male and 30 cases were female, with an average age of (50.2 ± 19. 7) years ranging from 9 to 88 years of age. These patients suffered from various arrhythmias including paroxysmal atrial fibrillation (50 cases), persistent or permanent atrial fibrillation (6 cases), atrial flutter (9 cases), atrial tachy-cardia (9 cases), ventricular tachycardia or frequent episode ventricular premature beat (24 cases). A total of 72 cases underwent radiofrequency catheter ablation of arrhythmias guided by an En-Site3000/NavX or Array mapping system, and 26 cases guided by a CARTO mapping system. Re-suits:Successful ablation of

  1. [Sudden cardiac death in individuals with normal hearts: an update]. (United States)

    González-Melchor, Laila; Villarreal-Molina, Teresa; Iturralde-Torres, Pedro; Medeiros-Domingo, Argelia


    Sudden death (SD) is a tragic event and a world-wide health problem. Every year, near 4-5 million people experience SD. SD is defined as the death occurred in 1h after the onset of symptoms in a person without previous signs of fatality. It can be named "recovered SD" when the case received medical attention, cardiac reanimation effective defibrillation or both, surviving the fatal arrhythmia. Cardiac channelopathies are a group of diseases characterized by abnormal ion channel function due to genetic mutations in ion channel genes, providing increased susceptibility to develop cardiac arrhythmias and SD. Usually the death occurs before 40 years of age and in the autopsy the heart is normal. In this review we discuss the main cardiac channelopathies involved in sudden cardiac death along with current management of cases and family members that have experienced such tragic event.

  2. Development of the cardiac conduction system and cardiac anatomy in relation to genesis and treatment of arrhythmias

    NARCIS (Netherlands)

    Jongbloed, Monica Reina Maria


    Clinical mapping studies demonstrate that cardiac arrhythmias are often encountered at specific anatomical sites. The anatomical development of the heart and the cardiac conduction system are narrowly related. The thesis starts with a Chapter 1 that provides a general overview of the basics of cardi

  3. Platelets and cardiac arrhythmia

    Directory of Open Access Journals (Sweden)

    Jonas S De Jong


    Full Text Available Sudden cardiac death remains one of the most prevalent modes of death in industrialized countries, and myocardial ischemia due to thrombotic coronary occlusion is its primary cause. The role of platelets in the occurrence of SCD extends beyond coronary flow impairment by clot formation. Here we review the substances released by platelets during clot formation and their arrhythmic properties. Platelet products are released from three types of platelet granules: dense core granules, alpha-granules, and platelet lysosomes. The physiologic properties of dense granule products are of special interest as a potential source of arrhythmic substances. They are released readily upon activation and contain high concentrations of serotonin, histamine, purines, pyrimidines, and ions such as calcium and magnesium. Potential arrhythmic mechanisms of these substances, e.g. serotonin and high energy phosphates, include induction of coronary constriction, calcium overloading, and induction of delayed after-depolarizations. Alpha-granules produce thromboxanes and other arachidonic acid products with many potential arrhythmic effects mediated by interference with cardiac sodium, calcium and potassium channels. Alpha-granules also contain hundreds of proteins that could potentially serve as ligands to receptors on cardiomyocytes. Lysosomal products probably do not have an important arrhythmic effect. Platelet products and ischemia can induce coronary permeability, thereby enhancing interaction with surrounding cardiomyocytes. Antiplatelet therapy is known to improve survival after myocardial infarction. Although an important part of this effect results from prevention of coronary clot formation, there is evidence to suggest that antiplatelet therapy also induces anti-arrhythmic effects during ischemia by preventing the release of platelet activation products.

  4. Mapping the Interaction Site for a β-Scorpion Toxin in the Pore Module of Domain III of Voltage-gated Na+ Channels* (United States)

    Zhang, Joel Z.; Yarov-Yarovoy, Vladimir; Scheuer, Todd; Karbat, Izhar; Cohen, Lior; Gordon, Dalia; Gurevitz, Michael; Catterall, William A.


    Activation of voltage-gated sodium (Nav) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of NaV channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIVE15A. Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on NaV channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on NaV channels acts synergistically to modify channel gating and paralyze prey. PMID:22761417

  5. Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels. (United States)

    Zhang, Joel Z; Yarov-Yarovoy, Vladimir; Scheuer, Todd; Karbat, Izhar; Cohen, Lior; Gordon, Dalia; Gurevitz, Michael; Catterall, William A


    Activation of voltage-gated sodium (Na(v)) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of Na(V) channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIV(E15A). Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on Na(V) channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on Na(V) channels acts synergistically to modify channel gating and paralyze prey.

  6. Phospholemman: a novel cardiac stress protein. (United States)

    Cheung, Joseph Y; Zhang, Xue-Qian; Song, Jianliang; Gao, Erhe; Rabinowitz, Joseph E; Chan, Tung O; Wang, Jufang


    Phospholemman (PLM), a member of the FXYD family of regulators of ion transport, is a major sarcolemmal substrate for protein kinases A and C in cardiac and skeletal muscle. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. Functionally, when phosphorylated at serine(68), PLM stimulates Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger in cardiac myocytes. In heterologous expression systems, PLM modulates the gating of cardiac L-type Ca(2+) channel. Therefore, PLM occupies a key modulatory role in intracellular Na(+) and Ca(2+) homeostasis and is intimately involved in regulation of excitation-contraction (EC) coupling. Genetic ablation of PLM results in a slight increase in baseline cardiac contractility and prolongation of action potential duration. When hearts are subjected to catecholamine stress, PLM minimizes the risks of arrhythmogenesis by reducing Na(+) overload and simultaneously preserves inotropy by inhibiting Na(+)/Ca(2+) exchanger. In heart failure, both expression and phosphorylation state of PLM are altered and may partly account for abnormalities in EC coupling. The unique role of PLM in regulation of Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and potentially L-type Ca(2+) channel in the heart, together with the changes in its expression and phosphorylation in heart failure, make PLM a rational and novel target for development of drugs in our armamentarium against heart failure. Clin Trans Sci 2010; Volume 3: 189-196.

  7. Structural mapping of the voltage-dependent sodium channel. Distance between the tetrodotoxin and Centruroides suffusus suffusus II beta-scorpion toxin receptors. (United States)

    Darbon, H; Angelides, K J


    A 7- dimethylaminocoumarin -4-acetate fluorescent derivative of toxin II from the venom of the scorpion Centruroides suffusus suffusus (Css II) has been prepared to study the structural, conformational, and cellular properties of the beta-neurotoxin receptor site on the voltage-dependent sodium channel. The derivative retains high affinity for its receptor site on the synaptosomal sodium channel with a KD of 7 nM and site capacity of 1.5 pmol/mg of synaptosomal protein. The fluorescent toxin is very environmentally sensitive and the fluorescence emission upon binding indicates that the Css II receptor is largely hydrophobic. Binding of tetrodotoxin or batrachotoxin does not alter the spectroscopic properties of bound Css II, whereas toxin V from Leiurus quinquestriatus effects a 10-nm blue shift to a more hydrophobic environment. This is the first direct indication of conformational coupling between these separate neurotoxin receptor sites. The distance between the tetrodotoxin and Css II scorpion toxin receptors on the sodium channel was measured by fluorescence resonance energy transfer. Efficiencies were measured by both donor quenching and acceptor-sensitized emission. The distance between these two neurotoxin sites is about 34 A. The implications of these receptor locations together with other known molecular distances are discussed in terms of a molecular structure of the voltage-dependent sodium channel.

  8. Optogenetic control of the cardiac conduction system (Conference Presentation) (United States)

    Crocini, Claudia; Ferrantini, Cecilia; Coppini, Raffaele; Loew, Leslie M.; Cerbai, Elisabetta; Poggesi, Corrado; Pavone, Francesco S.; Sacconi, Leonardo


    Fatal cardiac arrhythmias are a major medical and social issue in Western countries. Current implantable pacemaker/defibrillators have limited effectiveness and are plagued by frequent malfunctions and complications. Here, we aim at setting up a new method to map and control the electrical activity of whole isolated mouse hearts. We employ a transgenic mouse model expressing Channel Rhodopsin-2 (ChR2) in the heart coupled with voltage optical mapping to monitor and control action potential propagation. The whole heart is loaded with the fluorinated red-shifted voltage sensitive dye (di-4-ANBDQPQ) and imaged with the central portion (128 x 128 pixel) of sCMOS camera operating at frame rate of 1.6 kHz. The wide-field imaging system is implemented with a random access ChR2 activation developed using two orthogonally-mounted acousto-optical deflectors (AODs). AODs rapidly scan different sites of the sample with a commutation time of 4 μs, allowing us to design ad hoc ChR2-stimulation pattern. First, we demonstrate the capability of our system in manipulating the conduction system of the whole mouse heart by changing the electrical propagation features. Then, we explore the efficacy of the random access ChR2 stimulation in inducing arrhythmias as well as to restore the cardiac sinus rhythm during an arrhythmic event. This work shows the potentiality of this new method for studying the mechanisms of arrhythmias and reentry in healthy and diseased hearts, as well as the basis of intra-ventricular dyssynchrony.

  9. Cardiac tamponade (image) (United States)

    Cardiac tamponade is a condition involving compression of the heart caused by blood or fluid accumulation in the space ... they cannot adequately fill or pump blood. Cardiac tamponade is an emergency condition that requires hospitalization.

  10. What Is Cardiac Rehabilitation? (United States)

    ANSWERS by heart Treatments + Tests What Is Cardiac Rehabilitation? A cardiac rehabilitation (rehab) program takes place in a hospital or ... special help in making lifestyle changes. During your rehabilitation program you’ll… • Have a medical evaluation to ...

  11. Progress and promises of human cardiac magnetic resonance at ultrahigh fields: A physics perspective (United States)

    Niendorf, Thoralf; Graessl, Andreas; Thalhammer, Christof; Dieringer, Matthias A.; Kraus, Oliver; Santoro, Davide; Fuchs, Katharina; Hezel, Fabian; Waiczies, Sonia; Ittermann, Bernd; Winter, Lukas


    A growing number of reports eloquently speak about explorations into cardiac magnetic resonance (CMR) at ultrahigh magnetic fields (B0 ⩾ 7.0 T). Realizing the progress, promises and challenges of ultrahigh field (UHF) CMR this perspective outlines current trends in enabling MR technology tailored for cardiac MR in the short wavelength regime. For this purpose many channel radiofrequency (RF) technology concepts are outlined. Basic principles of mapping and shimming of transmission fields including RF power deposition considerations are presented. Explorations motivated by the safe operation of UHF-CMR even in the presence of conductive implants are described together with the physics, numerical simulations and experiments, all of which detailing antenna effects and RF heating induced by intracoronary stents at 7.0 T. Early applications of CMR at 7.0 T and their clinical implications for explorations into cardiovascular diseases are explored including assessment of cardiac function, myocardial tissue characterization, MR angiography of large and small vessels as well as heteronuclear MR of the heart and the skin. A concluding section ventures a glance beyond the horizon and explores future directions. The goal here is not to be comprehensive but to inspire the biomedical and diagnostic imaging communities to throw further weight behind the solution of the many remaining unsolved problems and technical obstacles of UHF-CMR with the goal to transfer MR physics driven methodological advancements into extra clinical value.

  12. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents

    Directory of Open Access Journals (Sweden)

    Jennifer H Hou


    Full Text Available The cardiac action potential (AP and the consequent cytosolic Ca2+ transient are key indicators of cardiac function. Natural developmental processes, as well as many drugs and pathologies change the waveform, propagation, or variability (between cells or over time of these parameters. Here we apply a genetically encoded dual-function calcium and voltage reporter (CaViar to study the development of the zebrafish heart in vivo between 1.5 and 4 days post fertilization (dpf. We developed a high-sensitivity spinning disk confocal microscope and associated software for simultaneous three-dimensional optical mapping of voltage and calcium. We produced a transgenic zebrafish line expressing CaViar under control of the heart-specific cmlc2 promoter, and applied ion channel blockers at a series of developmental stages to map the maturation of the action potential in vivo. Early in development, the AP initiated via a calcium current through L-type calcium channels. Between 90 – 102 hours post fertilization (hpf, the ventricular AP switched to a sodium-driven upswing, while the atrial AP remained calcium driven. In the adult zebrafish heart, a sodium current drives the AP in both the atrium and ventricle. Simultaneous voltage and calcium imaging with genetically encoded reporters provides a new approach for monitoring cardiac development, and the effects of drugs on cardiac function.

  13. Radiolytic mapping of solvent-contact surfaces in Photosystem II of higher plants: experimental identification of putative water channels within the photosystem. (United States)

    Frankel, Laurie K; Sallans, Larry; Bellamy, Henry; Goettert, Jost S; Limbach, Patrick A; Bricker, Terry M


    Photosystem II uses water as an enzymatic substrate. It has been hypothesized that this water is vectored to the active site for water oxidation via water channels that lead from the surface of the protein complex to the Mn4O5Ca metal cluster. The radiolysis of water by synchrotron radiation produces amino acid residue-modifying OH(•) and is a powerful technique to identify regions of proteins that are in contact with water. In this study, we have used this technique to oxidatively modify buried amino acid residues in higher plant Photosystem II membranes. Fourier transform ion cyclotron resonance mass spectrometry was then used to identify these oxidized amino acid residues that were located in several core Photosystem II subunits (D1, D2, CP43, and CP47). While, as expected, the majority of the identified oxidized residues (≈75%) are located on the solvent-exposed surface of the complex, a number of buried residues on these proteins were also modified. These residues form groups which appear to lead from the surface of the complex to the Mn4O5Ca cluster. These residues may be in contact with putative water channels in the photosystem. These results are discussed within the context of a number of largely computational studies that have identified putative water channels in Photosystem II.

  14. Over-phosphorylation of FKBP12.6, phospholamban,relating to exacerbation of cardiac arrhythmias and failure

    Institute of Scientific and Technical Information of China (English)



    AIM: Cardiac arrhythmias occur severely in diseased and failing hearts and remain an important cause of mortality in cardiovascular disorders. It was intended to explore mechanisms of abnormal ion channels underlying cardiac arrhythmias and failure and in responses to drug interventions. METHODS: Chronic infarction plus isoproterenol (ISO) medication or L-thyroxin (THY) repetitive medication promote cardiac remodeling and exaggerated

  15. Mechanisms of cardiac pain. (United States)

    Foreman, Robert D; Garrett, Kennon M; Blair, Robert W


    Angina pectoris is cardiac pain that typically is manifested as referred pain to the chest and upper left arm. Atypical pain to describe localization of the perception, generally experienced more by women, is referred to the back, neck, and/or jaw. This article summarizes the neurophysiological and pharmacological mechanisms for referred cardiac pain. Spinal cardiac afferent fibers mediate typical anginal pain via pathways from the spinal cord to the thalamus and ultimately cerebral cortex. Spinal neurotransmission involves substance P, glutamate, and transient receptor potential vanilloid-1 (TRPV1) receptors; release of neurokinins such as nuclear factor kappa b (NF-kb) in the spinal cord can modulate neurotransmission. Vagal cardiac afferent fibers likely mediate atypical anginal pain and contribute to cardiac ischemia without accompanying pain via relays through the nucleus of the solitary tract and the C1-C2 spinal segments. The psychological state of an individual can modulate cardiac nociception via pathways involving the amygdala. Descending pathways originating from nucleus raphe magnus and the pons also can modulate cardiac nociception. Sensory input from other visceral organs can mimic cardiac pain due to convergence of this input with cardiac input onto spinothalamic tract neurons. Reduction of converging nociceptive input from the gallbladder and gastrointestinal tract can diminish cardiac pain. Much work remains to be performed to discern the interactions among complex neural pathways that ultimately produce or do not produce the sensations associated with cardiac pain.

  16. Dequantization Via Quantum Channels (United States)

    Andersson, Andreas


    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large- m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  17. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan


    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  18. Buerger's Disease and Anaesthesia: The Neglected Cardiac Angle

    Directory of Open Access Journals (Sweden)

    Shagun Bhatia Shah


    Full Text Available Distal limb amputations and respiratory complications are common in patients with Buerger’s disease. Nicotine in cigarette is arrhythmogenic as it blocks cardiac potassium channels. Preoperative Holter ECG monitoring may be useful if preoperative electrocardiogram is normal. If the patient is undergoing major surgery, preservative free lignocaine & amiodarone infusions and a cardioverter defibrillator should be available for the intraoperative cardiac rhythm disturbances.

  19. Heart-brain interactions in cardiac arrhythmia. (United States)

    Taggart, P; Critchley, H; Lambiase, P D


    This review examines current knowledge of the effects of higher brain centres and autonomic control loops on the heart with particular relevance to arrhythmogenesis. There is now substantial evidence that higher brain function (cortex), the brain stem and autonomic nerves affect cardiac electrophysiology and arrhythmia, and that these may function as an interactive system. The roles of mental stress and emotion in arrhythmogenesis and sudden cardiac death are no longer confined to the realms of anecdote. Advances in molecular cardiology have identified cardiac cellular ion channel mutations conferring vulnerability to arrhythmic death at the myocardial level. Indeed, specific channelopathies such as long QT syndrome and Brugada syndrome are selectively sensitive to either sympathetic or vagal stimulation. There is increasing evidence that afferent feedback from the heart to the higher centres may affect efferent input to the heart and modulate the cardiac electrophysiology. The new era of functional neuroimaging has identified the central neural circuitry in this brain-heart axis. Since precipitants of sudden fatal arrhythmia are frequently environmental and behavioural, central pathways translating stress into autonomic effects on the heart might be considered as therapeutic targets. These brain-heart interactions help explain the apparent randomness of sudden cardiac events and provide new insights into future novel therapies to prevent sudden death.

  20. Study of a MHEMT heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel MBE-grown on a GaAs substrate using reciprocal space mapping

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, A. N., E-mail:; Bugaev, A. S. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation); Ermakova, M. A. [Federal Agency on Technical Regulating and Metrology, Center for Study of Surface and Vacuum Properties (Russian Federation); Ruban, O. A. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation)


    The crystallographic characteristics of the design elements of a metamorphic high-electron-mobility (MHEMT) heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel are determined based on reciprocal space mapping. The heterostructure is grown by molecular beam epitaxy on the vicinal surface of a GaAs substrate with a deviation angle from the (001) plane of 2° and consists of a stepped metamorphic buffer containing six layers including an inverse step, a high-temperature buffer layer with constant composition, and active HEMT layers. The InAs content in the layers of the metamorphic buffer is varied from 0.1 to 0.48. Reciprocal space maps are constructed for the (004) symmetric reflection and (224)+ asymmetric reflection. It is found that the heterostructure layers are characterized both by a tilt angle relative to the plane of the (001) substrate and a rotation angle around the [001] axis. The tilt angle of the layer increases as the InAs concentration in the layer increases. It is shown that a high-temperature buffer layer of constant composition has the largest degree of relaxation compared with all other layers of the heterostructure.

  1. The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Nardi, Antonio; Calloe, Kirstine


    -channel analysis revealed that NS11021 increased the open probability of the channel by altering gating kinetics without affecting the single-channel conductance. NS11021 (10 microM) influenced neither a number of cloned Kv channels nor endogenous Na(+) and Ca(2+) channels (L- and T-type) in guinea pig cardiac...

  2. Recent genetic discoveries implicating ion channels in human cardiovascular diseases. (United States)

    George, Alfred L


    The term 'channelopathy' refers to human genetic disorders caused by mutations in genes encoding ion channels or their interacting proteins. Recent advances in this field have been enabled by next-generation DNA sequencing strategies such as whole exome sequencing with several intriguing and unexpected discoveries. This review highlights important discoveries implicating ion channels or ion channel modulators in cardiovascular disorders including cardiac arrhythmia susceptibility, cardiac conduction phenotypes, pulmonary and systemic hypertension. These recent discoveries further emphasize the importance of ion channels in the pathophysiology of human disease and as important druggable targets.

  3. Computational approaches to understand cardiac electrophysiology and arrhythmias (United States)

    Roberts, Byron N.; Yang, Pei-Chi; Behrens, Steven B.; Moreno, Jonathan D.


    Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy. PMID:22886409

  4. Marketing cardiac CT programs. (United States)

    Scott, Jason


    There are two components of cardiac CT discussed in this article: coronary artery calcium scoring (CACS) and coronary computed tomography angiography (CCTA).The distinctive advantages of each CT examination are outlined. In order to ensure a successful cardiac CT program, it is imperative that imaging facilities market their cardiac CT practices effectively in order to gain a competitive advantage in this valuable market share. If patients receive quality care by competent individuals, they are more likely to recommend the facility's cardiac CT program. Satisfied patients will also be more willing to come back for any further testing.


    Directory of Open Access Journals (Sweden)

    Enrique eBalderas


    Full Text Available Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS, voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

  6. Mapping of long-range INS promoter interactions reveals a role for calcium-activated chloride channel ANO1 in insulin secretion. (United States)

    Xu, Zhixiong; Lefevre, Gaelle M; Gavrilova, Oksana; Foster St Claire, Mark B; Riddick, Gregory; Felsenfeld, Gary


    We used circular chromatin conformation capture (4C) to identify a physical contact in human pancreatic islets between the region near the insulin (INS) promoter and the ANO1 gene, lying 68 Mb away on human chromosome 11, which encodes a Ca(2+)-dependent chloride ion channel. In response to glucose, this contact was strengthened and ANO1 expression increased, whereas inhibition of INS gene transcription by INS promoter targeting siRNA decreased ANO1 expression, revealing a regulatory effect of INS promoter on ANO1 expression. Knockdown of ANO1 expression caused decreased insulin secretion in human islets, establishing a physical proximity-dependent feedback loop involving INS transcription, ANO1 expression, and insulin secretion. To explore a possible role of ANO1 in insulin metabolism, we carried out experiments in Ano1(+/-) mice. We observed reduced serum insulin levels and insulin-to-glucose ratios in high-fat diet-fed Ano1(+/-) mice relative to Ano1(+/+) mice fed the same diet. Our results show that determination of long-range contacts within the nucleus can be used to detect novel and physiologically relevant mechanisms. They also show that networks of long-range physical contacts are important to the regulation of insulin metabolism.

  7. Reduction in dynamin-2 is implicated in ischaemic cardiac arrhythmias. (United States)

    Shi, Dan; Xie, Duanyang; Zhang, Hong; Zhao, Hong; Huang, Jian; Li, Changming; Liu, Yi; Lv, Fei; The, Erlinda; Liu, Yuan; Yuan, Tianyou; Wang, Shiyi; Chen, Jinjin; Pan, Lei; Yu, Zuoren; Liang, Dandan; Zhu, Weidong; Zhang, Yuzhen; Li, Li; Peng, Luying; Li, Jun; Chen, Yi-Han


    Ischaemic cardiac arrhythmias cause a large proportion of sudden cardiac deaths worldwide. The ischaemic arrhythmogenesis is primarily because of the dysfunction and adverse remodelling of sarcolemma ion channels. However, the potential regulators of sarcolemma ion channel turnover and function in ischaemic cardiac arrhythmias remains unknown. Our previous studies indicate that dynamin-2 (DNM2), a cardiac membrane-remodelling GTPase, modulates ion channels membrane trafficking in the cardiomyocytes. Here, we have found that DNM2 plays an important role in acute ischaemic arrhythmias. In rat ventricular tissues and primary cardiomyocytes subjected to acute ischaemic stress, the DNM2 protein and transcription levels were markedly down-regulated. This DNM2 reduction was coupled with severe ventricular arrhythmias. Moreover, we identified that the down-regulation of DNM2 within cardiomyocytes increases the action potential amplitude and prolongs the re-polarization duration by depressing the retrograde trafficking of Nav1.5 and Kir2.1 channels. These effects are likely to account for the DNM2 defect-induced arrhythmogenic potentials. These results suggest that DNM2, with its multi-ion channel targeting properties, could be a promising target for novel antiarrhythmic therapies.

  8. Cardiac Procedures and Surgeries (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Cardiac Procedures and Surgeries Updated:Sep 16,2016 If you've had ... degree of coronary artery disease (CAD) you have. Cardiac Procedures and Surgeries Angioplasty Also known as Percutaneous Coronary Interventions [PCI], ...

  9. [Advances in cardiac pacing]. (United States)

    de Carranza, María-José Sancho-Tello; Fidalgo-Andrés, María Luisa; Ferrer, José Martínez; Mateas, Francisco Ruiz


    This article contains a review of the current status of remote monitoring and follow-up involving cardiac pacing devices and of the latest developments in cardiac resynchronization therapy. In addition, the most important articles published in the last year are discussed.

  10. Designing a Multichannel Map Service Concept

    Directory of Open Access Journals (Sweden)

    Hanna-Marika Halkosaari


    Full Text Available This paper introduces a user-centered design process for developing a multichannel map service. The aim of the service is to provide hikers with interactive maps through several channels. In a multichannel map service, the same spatial information is available through various channels, such as printed maps, Web maps, mobile maps, and other interactive media. When properly networked, the channels share a uniform identity so that the user experiences the different channels as a part of a single map service. The traditional methods of user-centered design, such as design probes, personas, and scenarios, proved useful even in the emerging field of developing multichannel map services. The findings emphasize the need to involve users and multidisciplinary teams in the conceptual phases of designing complex services aimed at serving various kinds of users.

  11. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc


    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  12. Clofibrate, calcium and cardiac muscle. (United States)

    Fairhurst, A S; Wickie, G; Peabody, T


    The anti-hyperlipidemic drug clofibrate produces negative inotropic effects and arrythmias in isolated perfused rabbit heart Langendorff preparations. In electrically stimulated rat left atria, clofibrate produces negative inotropic effects, the speed of onset and extent of which are decreased by raising the Ca concentration of the bathing medium. Sensitivity of isolated rat atria to clofibrate is not increased when the tissues are stimulated under slow Ca channel conditions, in which the tissues are activated by either isoproterenol or dibutyryl cyclic AMP, although sensitivity to clofibrate is decreased when atria are exposed to increasing concentrations of norepinephrine. Increasing the stimulation frequency of isolated guinea-pig atria to produce a positive treppe also decreases the inhibitory effect of clofibrate, while in rat atria the typical negative treppe is altered towards a positive treppe in presence of clofibrate. The effects of paired electrical stimulation are not diminished by the drug, suggesting that Ca release from the sarcoplasmic reticulum is not affected by clofibrate, although the drug inhibits the rate of Ca uptake by isolated cardiac sarcoplasmic reticulum and mitochondria. These results suggest that clofibrate has multiple effects on Ca functions in cardiac muscle.

  13. Optogenetic Light Crafting Tools for the Control of Cardiac Arrhythmias. (United States)

    Richter, Claudia; Christoph, Jan; Lehnart, Stephan E; Luther, Stefan


    The control of spatiotemporal dynamics in biological systems is a fundamental problem in nonlinear sciences and has important applications in engineering and medicine. Optogenetic tools combined with advanced optical technologies provide unique opportunities to develop and validate novel approaches to control spatiotemporal complexity in neuronal and cardiac systems. Understanding of the mechanisms and instabilities underlying the onset, perpetuation, and control of cardiac arrhythmias will enable the development and translation of novel therapeutic approaches. Here we describe in detail the preparation and optical mapping of transgenic channelrhodopsin-2 (ChR2) mouse hearts, cardiac cell cultures, and the optical setup for photostimulation using digital light processing.

  14. Sea Anemone Toxins Affecting Potassium Channels (United States)

    Diochot, Sylvie; Lazdunski, Michel

    The great diversity of K+ channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of toxins acting on voltage-sensitive sodium and, more recently, potassium channels. Currently there are three major structural groups of sea anemone K+ channel (SAK) toxins that have been characterized. Radioligand binding and electrophysiological experiments revealed that each group contains peptides displaying selective activities for different subfamilies of K+ channels. Short (35-37 amino acids) peptides in the group I display pore blocking effects on Kv1 channels. Molecular interactions of SAK-I toxins, important for activity and binding on Kv1 channels, implicate a spot of three conserved amino acid residues (Ser, Lys, Tyr) surrounded by other less conserved residues. Long (58-59 amino acids) SAK-II peptides display both enzymatic and K+ channel inhibitory activities. Medium size (42-43 amino acid) SAK-III peptides are gating modifiers which interact either with cardiac HERG or Kv3 channels by altering their voltage-dependent properties. SAK-III toxins bind to the S3C region in the outer vestibule of Kv channels. Sea anemones have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of autoimmune diseases.

  15. On one-qubit channels

    CERN Document Server

    Verstraete, F; Verstraete, Frank; Verschelde, Henri


    We use the duality between completely positive linear maps and states to characterize all possible 1-qubit channels. This leads to a transparent way of characterizing all extreme points of the set of completely positive trace preserving maps. We show that these extremal maps arise in a natural way in problems such as to optimally enhance fidelity and optimal cloning. Next we use normal forms, previously derived for mixed states of two qubits, to derive interesting representations of CP-maps. It follows that a generic CP-map on 1 qubit can be interpreted as being a composition of a (reversible) filtering operation, followed by a unital map, followed by filtering again. It is furthermore shown that a map is entanglement breaking iff the dual state associated to it is separable, and how this implies that the Kraus operators can be chosen to be all of rank one.

  16. Operational Characterization of Divisibility of Dynamical Maps (United States)

    Bae, Joonwoo; Chruściński, Dariusz


    In this work, we show the operational characterization to the divisibility of dynamical maps in terms of the distinguishability of quantum channels. It is proven that the distinguishability of any pair of quantum channels does not increase under divisible maps, in which the full hierarchy of divisibility is isomorphic to the structure of entanglement between system and environment. This shows that (i) channel distinguishability is the operational quantity signifying (detecting) divisibility (indivisibility) of dynamical maps and (ii) the decision problem for the divisibility of maps is as hard as the separability problem in entanglement theory. We also provide the information-theoretic characterization to the divisibility of maps with conditional min-entropy.

  17. Magnetocardiographic and electrocardiographic exercise mapping in healthy subjects. (United States)

    Takala, P; Hänninen, H; Montone, J; Mäkijärvi, M; Nenonen, J; Oikarinen, L; Simeliu, K; Toivonen, L; Katil, T


    In 12-lead electrocardiography (ECG), detection of myocardial ischemia is based on ST-segment changes in exercise testing. Magnetocardiography (MCG) is a complementary method to the ECG for a noninvasive study of the electric activity of the heart. In the MCG, ST-segment changes due to stress have also been found in healthy subjects. To further study the normal response to exercise, we performed MCG mappings in 12 healthy volunteers during supine bicycle ergometry. We also recorded body surface potential mapping (BSPM) with 123 channels using the same protocol. In this paper we compare, for the first time, multichannel MCG recorded in bicycle exercise testing with BSPM over the whole thorax in middle-aged healthy subjects. We quantified changes induced by the exercise in the MCG and BSPM with parameters based on signal amplitude, and correlation between signal distributions at rest and after exercise. At the ST-segment and T-wave apex, the exercise induced a magnetic field component outward the precordium and the minimum value of the MCG signal over the mapped area was found to be amplified. The response to exercise was smaller in the BSPM than in the MCG. A negative component in the MCG signal at the repolarization period of the cardiac cycle should be considered as a normal response to exercise. Therefore, maximum ST-segment depression over the mapped area in the MCG may not be an eligible parameter when evaluating the presence of ischemia.

  18. Two models of anisotropic propagation of a cardiac excitation wave (United States)

    Erofeev, I. S.; Agladze, K. I.


    Propagation of the action potential in the real heart is direction-dependent (anisotropic). We propose two general physical models explaining this anisotropy on the cellular level. The first, "delay" model takes into account the frequency of the cell-cell transitions in different directions of propagation, assuming each transition requires some small time interval. The second model relies on the assumption that the action potential transmits to the next cell only from the area at the pole of the previous cell. We estimated parameters of both models by doing optical mapping and fluorescent staining of cardiac cell samples grown on polymer fiber substrate. Both models gave reasonable estimations, but predicted different behaviors of the anisotropy ratio (ratio of the highest and lowest wave velocities) after addition of the suppressor of sodium channels such as lidocaine. The results of the experiment on lidocaine effect on anisotropy ratio were in favor of the first, "delay" model. Estimated average cell-cell transition delay was 240 ± 80 μs, which is close to the characteristic values of synaptic delay.

  19. Cardiac tumors: echo assessment. (United States)

    Mankad, Rekha; Herrmann, Joerg


    Cardiac tumors are exceedingly rare (0.001-0.03% in most autopsy series). They can be present anywhere within the heart and can be attached to any surface or be embedded in the myocardium or pericardial space. Signs and symptoms are nonspecific and highly variable related to the localization, size and composition of the cardiac mass. Echocardiography, typically performed for another indication, may be the first imaging modality alerting the clinician to the presence of a cardiac mass. Although echocardiography cannot give the histopathology, certain imaging features and adjunctive tools such as contrast imaging may aid in the differential diagnosis as do the adjunctive clinical data and the following principles: (1) thrombus or vegetations are the most likely etiology, (2) cardiac tumors are mostly secondary and (3) primary cardiac tumors are mostly benign. Although the finding of a cardiac mass on echocardiography may generate confusion, a stepwise approach may serve well practically. Herein, we will review such an approach and the role of echocardiography in the assessment of cardiac masses.

  20. A Novel Alpha Cardiac Actin (ACTC1) Mutation Mapping to a Domain in Close Contact with Myosin Heavy Chain Leads to a Variety of Congenital Heart Defects, Arrhythmia and Possibly Midline Defects (United States)

    Augière, Céline; Mégy, Simon; El Malti, Rajae; Boland, Anne; El Zein, Loubna; Verrier, Bernard; Mégarbané, André; Deleuze, Jean-François; Bouvagnet, Patrice


    Background A Lebanese Maronite family presented with 13 relatives affected by various congenital heart defects (mainly atrial septal defects), conduction tissue anomalies and midline defects. No mutations were found in GATA4 and NKX2-5. Methods and Results A set of 399 poly(AC) markers was used to perform a linkage analysis which peaked at a 2.98 lod score on the long arm of chromosome 15. The haplotype analysis delineated a 7.7 meganucleotides genomic interval which included the alpha-cardiac actin gene (ACTC1) among 36 other protein coding genes. A heterozygous missense mutation was found (c.251T>C, p.(Met84Thr)) in the ACTC1 gene which changed a methionine residue conserved up to yeast. This mutation was absent from 1000 genomes and exome variant server database but segregated perfectly in this family with the affection status. This mutation and 2 other ACTC1 mutations (p.(Glu101Lys) and p.(Met125Val)) which result also in congenital heart defects are located in a region in close apposition to a myosin heavy chain head region by contrast to 3 other alpha-cardiac actin mutations (p.(Ala297Ser),p.(Asp313His) and p.(Arg314His)) which result in diverse cardiomyopathies and are located in a totally different interaction surface. Conclusions Alpha-cardiac actin mutations lead to congenital heart defects, cardiomyopathies and eventually midline defects. The consequence of an ACTC1 mutation may in part be dependent on the interaction surface between actin and myosin. PMID:26061005

  1. Molecular Basis of Cardiac Myxomas

    Directory of Open Access Journals (Sweden)

    Pooja Singhal


    Full Text Available Cardiac tumors are rare, and of these, primary cardiac tumors are even rarer. Metastatic cardiac tumors are about 100 times more common than the primary tumors. About 90% of primary cardiac tumors are benign, and of these the most common are cardiac myxomas. Approximately 12% of primary cardiac tumors are completely asymptomatic while others present with one or more signs and symptoms of the classical triad of hemodynamic changes due to intracardiac obstruction, embolism and nonspecific constitutional symptoms. Echocardiography is highly sensitive and specific in detecting cardiac tumors. Other helpful investigations are chest X-rays, magnetic resonance imaging and computerized tomography scan. Surgical excision is the treatment of choice for primary cardiac tumors and is usually associated with a good prognosis. This review article will focus on the general features of benign cardiac tumors with an emphasis on cardiac myxomas and their molecular basis.

  2. Drosophila KCNQ channel displays evolutionarily conserved electrophysiology and pharmacology with mammalian KCNQ channels.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available Of the five human KCNQ (Kv7 channels, KCNQ1 with auxiliary subunit KCNE1 mediates the native cardiac I(Ks current with mutations causing short and long QT cardiac arrhythmias. KCNQ4 mutations cause deafness. KCNQ2/3 channels form the native M-current controlling excitability of most neurons, with mutations causing benign neonatal febrile convulsions. Drosophila contains a single KCNQ (dKCNQ that appears to serve alone the functions of all the duplicated mammalian neuronal and cardiac KCNQ channels sharing roughly 50-60% amino acid identity therefore offering a route to investigate these channels. Current information about the functional properties of dKCNQ is lacking therefore we have investigated these properties here. Using whole cell patch clamp electrophysiology we compare the biophysical and pharmacological properties of dKCNQ with the mammalian neuronal and cardiac KCNQ channels expressed in HEK cells. We show that Drosophila KCNQ (dKCNQ is a slowly activating and slowly-deactivating K(+ current open at sub-threshold potentials that has similar properties to neuronal KCNQ2/3 with some features of the cardiac KCNQ1/KCNE1 accompanied by conserved sensitivity to a number of clinically relevant KCNQ blockers (chromanol 293B, XE991, linopirdine and opener (zinc pyrithione. We also investigate the molecular basis of the differential selectivity of KCNQ channels to the opener retigabine and show a single amino acid substitution (M217W can confer sensitivity to dKCNQ. We show dKCNQ has similar electrophysiological and pharmacological properties as the mammalian KCNQ channels, allowing future study of physiological and pathological roles of KCNQ in Drosophila and whole organism screening for new modulators of KCNQ channelopathies.

  3. Generation of cardiac pacemaker cells by programming and differentiation. (United States)

    Husse, Britta; Franz, Wolfgang-Michael


    A number of diseases are caused by faulty function of the cardiac pacemaker and described as "sick sinus syndrome". The medical treatment of sick sinus syndrome with electrical pacemaker implants in the diseased heart includes risks. These problems may be overcome via "biological pacemaker" derived from different adult cardiac cells or pluripotent stem cells. The generation of cardiac pacemaker cells requires the understanding of the pacing automaticity. Two characteristic phenomena the "membrane-clock" and the "Ca(2+)-clock" are responsible for the modulation of the pacemaker activity. Processes in the "membrane-clock" generating the spontaneous pacemaker firing are based on the voltage-sensitive membrane ion channel activity starting with slow diastolic depolarization and discharging in the action potential. The influence of the intracellular Ca(2+) modulating the pacemaker activity is characterized by the "Ca(2+)-clock". The generation of pacemaker cells started with the reprogramming of adult cardiac cells by targeted induction of one pacemaker function like HCN1-4 overexpression and enclosed in an activation of single pacemaker specific transcription factors. Reprogramming of adult cardiac cells with the transcription factor Tbx18 created cardiac cells with characteristic features of cardiac pacemaker cells. Another key transcription factor is Tbx3 specifically expressed in the cardiac conduction system including the sinoatrial node and sufficient for the induction of the cardiac pacemaker gene program. For a successful cell therapeutic practice, the generated cells should have all regulating mechanisms of cardiac pacemaker cells. Otherwise, the generated pacemaker cells serve only as investigating model for the fundamental research or as drug testing model for new antiarrhythmics. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  4. Quantum Markov Channels for Qubits

    CERN Document Server

    Daffer, S; McIver, J K; Daffer, Sonja; Wodkiewicz, Krzysztof; Iver, John K. Mc


    We examine stochastic maps in the context of quantum optics. Making use of the master equation, the damping basis, and the Bloch picture we calculate a non-unital, completely positive, trace-preserving map with unequal damping eigenvalues. This results in what we call the squeezed vacuum channel. A geometrical picture of the effect of stochastic noise on the set of pure state qubit density operators is provided. Finally, we study the capacity of the squeezed vacuum channel to transmit quantum information and to distribute EPR states.

  5. Reproducibility of area at risk assessment in acute myocardial infarction by T1- and T2-mapping sequences in cardiac magnetic resonance imaging in comparison to Tc99m-sestamibi SPECT. (United States)

    Langhans, Birgit; Nadjiri, Jonathan; Jähnichen, Christin; Kastrati, Adnan; Martinoff, Stefan; Hadamitzky, Martin


    Area at risk (AAR) is an important parameter for the assessment of the salvage area after revascularization in acute myocardial infarction (AMI). By combining AAR assessment by T2-weighted imaging and scar quantification by late gadolinium enhancement imaging cardiovascular magnetic resonance (CMR) offers a promising alternative to the "classical" modality of Tc99m-sestamibi single photon emission tomography (SPECT). Current T2 weighted sequences for edema imaging in CMR are limited by low contrast to noise ratios and motion artifacts. During the last years novel CMR imaging techniques for quantification of acute myocardial injury, particularly the T1-mapping and T2-mapping, have attracted rising attention. But no direct comparison between the different sequences in the setting of AMI or a validation against SPECT has been reported so far. We analyzed 14 patients undergoing primary coronary revascularization in AMI in whom both a pre-intervention Tc99m-sestamibi-SPECT and CMR imaging at a median of 3.4 (interquartile range 3.3-3.6) days after the acute event were performed. Size of AAR was measured by three different non-contrast CMR techniques on corresponding short axis slices: T2-weighted, fat-suppressed turbospin echo sequence (TSE), T2-mapping from T2-prepared balanced steady state free precession sequences (T2-MAP) and T1-mapping from modified look locker inversion recovery (MOLLI) sequences. For each CMR sequence, the AAR was quantified by appropriate methods (absolute values for mapping sequences, comparison with remote myocardium for other sequences) and correlated with Tc99m-sestamibi-SPECT. All measurements were performed on a 1.5 Tesla scanner. The size of the AAR assessed by CMR was 28.7 ± 20.9 % of left ventricular myocardial volume (%LV) for TSE, 45.8 ± 16.6 %LV for T2-MAP, and 40.1 ± 14.4 %LV for MOLLI. AAR assessed by SPECT measured 41.6 ± 20.7 %LV. Correlation analysis revealed best correlation with SPECT for T2-MAP at a T2-threshold of 60 ms

  6. Cardiac Tumors; Tumeurs cardiaques

    Energy Technology Data Exchange (ETDEWEB)

    Laissy, J.P.; Fernandez, P. [Centre Hospitalier Universitaire Bichat Claude Bernard, Service d' Imagerie, 76 - Rouen (France); Mousseaux, E. [Hopital Europeen Georges Pompidou (HEGP), Service de Radiologie Cardio Vasculaire et Interventionnelle, 75 - Paris (France); Dacher, J.N. [Centre Hospitalier Universitaire Charles Nicolle, 75 - Rouen (France); Crochet, D. [Centre Hospitalier Universitaire, Hopital Laennec, Centre Hemodynamique, Radiologie Thoracique et Vasculaire, 44 - Nantes (France)


    Metastases are the most frequent tumors of the heart even though they seldom are recognized. Most primary cardiac tumors are benign. The main role of imaging is to differentiate a cardiac tumor from thrombus and rare pseudo-tumors: tuberculoma, hydatid cyst. Echocardiography is the fist line imaging technique to detect cardiac tumors, but CT and MRl arc useful for further characterization and differential diagnosis. Myxoma of the left atrium is the most frequent benign cardiac tumor. It usually is pedunculated and sometimes calcified. Sarcoma is the most frequent primary malignant tumor and usually presents as a sessile infiltrative tumor. Lymphoma and metastases are usually recognized by the presence of known tumor elsewhere of by characteristic direct contiguous involvement. Diagnosing primary and secondary pericardial tumors often is difficult. Imaging is valuable for diagnosis, characterization, pre-surgical evaluation and follow-up. (author)

  7. Socially differentiated cardiac rehabilitation

    DEFF Research Database (Denmark)

    Meillier, Lucette Kirsten; Nielsen, Kirsten Melgaard; Larsen, Finn Breinholt;


    to a standard rehabilitation programme (SRP). If patients were identified as socially vulnerable, they were offered an extended version of the rehabilitation programme (ERP). Excluded patients were offered home visits by a cardiac nurse. Concordance principles were used in the individualised programme elements......%. Patients were equally distributed to the SRP and the ERP. No inequality was found in attendance and adherence among referred patients. Conclusions: It seems possible to overcome unequal referral, attendance, and adherence in cardiac rehabilitation by organisation of systematic screening and social......Aim: The comprehensive cardiac rehabilitation (CR) programme after myocardial infarction (MI) improves quality of life and results in reduced cardiac mortality and recurrence of MI. Hospitals worldwide face problems with low participation rates in rehabilitation programmes. Inequality...

  8. Cardiac arrest - cardiopulmonary resuscitation

    Institute of Scientific and Technical Information of China (English)

    Basri Lenjani; Besnik Elshani; Nehat Baftiu; Kelmend Pallaska; Kadir Hyseni; Njazi Gashi; Nexhbedin Karemani; Ilaz Bunjaku; Taxhidin Zaimi; Arianit Jakupi


    Objective:To investigate application of cardiopulmonary resuscitation(CPR) measures within the golden minutes inEurope.Methods:The material was taken from theUniversityClinical Center ofKosovo -EmergencyCentre inPristina, during the two(2) year period(2010-2011).The collected date belong to the patients with cardiac arrest have been recorded in the patients' log book protocol at the emergency clinic.Results:During the2010 to2011 in the emergency center of theCUCK inPristina have been treated a total of269 patients with cardiac arrest, of whom159 or59.1% have been treated in2010, and110 patients or40.9% in2011.Of the269 patients treated in the emergency centre,93 or34.6% have exited lethally in the emergency centre, and176 or 65.4% have been transferred to other clinics.In the total number of patients with cardiac arrest, males have dominated with186 cases, or69.1%.The average age of patients included in the survey was56.7 year oldSD±16.0 years.Of the269 patients with cardiac arrest, defibrillation has been applied for93 or34.6% of patients.In the outpatient settings defibrillation has been applied for3 or3.2% of patients.Patients were defibrillated with application of one to four shocks. Of27 cases with who have survived cardiac arrest, none of them have suffered cardiac arrest at home,3 or11.1% of them have suffered cardiac arrest on the street, and24 or88.9% of them have suffered cardiac arrest in the hospital.5 out of27 patients survived have ended with neurological impairment.Cardiac arrest cases were present during all days of the week, but frequently most reported cases have been onMonday with32.0% of cases, and onFriday with24.5% of cases. Conclusions:All survivors from cardiac arrest have received appropriate medical assistance within10 min from attack, which implies that if cardiac arrest occurs near an institution health care(with an opportunity to provide the emergent health care) the rate of survival is higher.

  9. Cardiac imaging in adults

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, C.C.


    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  10. Port Access Cardiac Surgery. (United States)

    Viganó, Mario; Minzioni, Gaetano; Spreafico, Patrizio; Rinaldi, Mauro; Pasquino, Stefano; Ceriana, Piero; Locatelli, Alessandro


    The port-access technique for cardiac surgery was recently developed at Stanford University in California as a less invasive method to perform some cardiac operations. The port-access system has been described in detail elsewhere. It is based on femoral arterial and venous access for cardiopulmonary bypass (CPB) and on the adoption of a specially designed triple-lumen catheter described originally by Peters, and subsequently modified and developed in the definitive configuration called the endoaortic clamp.

  11. Awareness in cardiac anesthesia.

    LENUS (Irish Health Repository)

    Serfontein, Leon


    Cardiac surgery represents a sub-group of patients at significantly increased risk of intraoperative awareness. Relatively few recent publications have targeted the topic of awareness in this group. The aim of this review is to identify areas of awareness research that may equally be extrapolated to cardiac anesthesia in the attempt to increase understanding of the nature and significance of this scenario and how to reduce it.

  12. Post cardiac injury syndrome

    DEFF Research Database (Denmark)

    Nielsen, S L; Nielsen, F E


    The post-pericardiotomy syndrome is a symptom complex which is similar in many respects to the post-myocardial infarction syndrome and these are summarized under the diagnosis of the Post Cardiac Injury Syndrome (PCIS). This condition, which is observed most frequently after open heart surgery, i...... on the coronary vessels, with cardiac tamponade and chronic pericardial exudate. In the lighter cases, PCIS may be treated with NSAID and, in the more severe cases, with systemic glucocorticoid which has a prompt effect....

  13. Autonomic cardiac innervation


    Hasan, Wohaib


    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targe...

  14. Infected cardiac hydatid cyst


    Ceviz, M; Becit, N; Kocak, H.


    A 24 year old woman presented with chest pain and palpitation. The presence of a semisolid mass—an echinococcal cyst or tumour—in the left ventricular apex was diagnosed by echocardiography, computed tomography, and magnetic resonance imaging. The infected cyst was seen at surgery. The cyst was removed successfully by using cardiopulmonary bypass with cross clamp.

Keywords: cardiac hydatid cyst; infected cardiac hydatid cyst

  15. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng


    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  16. Cardiac Causes of Sudden Infant Death

    Directory of Open Access Journals (Sweden)

    Fatih Aygün


    Full Text Available The mechanism and causes of sudden infant death syndrome (SIDS is still remains its mystery. The pathophysiology of SIDS is not clear. Sleeping in prone position is thought to contribute to pathophysiology. Schwartz was the first physician suggesting that SIDS can be associated with heart and autonomic nervous system. Congenital long QT syndrome may trigger SIDS by causing ventricular tachycardia. Normal cardiac rhythm is regulated by ion channels and specific proteins, but genetical analyses clearly demonstrated that 5 ion channel genes were responsible for rare arrhythmias. The infections, fever and sleeping in prone position can increase the risk of long QT syndrome in babies having mutations in cardiac ion channels. In this review we tried to draw attention to SIDS as an important cause of death in childhood period and association of SIDS with long QT syndrome which is not necessarily noticed by physicians. (The Jo­ur­nal of Cur­rent Pe­di­at­rics 2014;1:37-42

  17. Genetic and physiologic dissection of the vertebrate cardiac conduction system.

    Directory of Open Access Journals (Sweden)

    Neil C Chi


    Full Text Available Vertebrate hearts depend on highly specialized cardiomyocytes that form the cardiac conduction system (CCS to coordinate chamber contraction and drive blood efficiently and unidirectionally throughout the organism. Defects in this specialized wiring system can lead to syncope and sudden cardiac death. Thus, a greater understanding of cardiac conduction development may help to prevent these devastating clinical outcomes. Utilizing a cardiac-specific fluorescent calcium indicator zebrafish transgenic line, Tg(cmlc2:gCaMP(s878, that allows for in vivo optical mapping analysis in intact animals, we identified and analyzed four distinct stages of cardiac conduction development that correspond to cellular and anatomical changes of the developing heart. Additionally, we observed that epigenetic factors, such as hemodynamic flow and contraction, regulate the fast conduction network of this specialized electrical system. To identify novel regulators of the CCS, we designed and performed a new, physiology-based, forward genetic screen and identified for the first time, to our knowledge, 17 conduction-specific mutations. Positional cloning of hobgoblin(s634 revealed that tcf2, a homeobox transcription factor gene involved in mature onset diabetes of the young and familial glomerulocystic kidney disease, also regulates conduction between the atrium and the ventricle. The combination of the Tg(cmlc2:gCaMP(s878 line/in vivo optical mapping technique and characterization of cardiac conduction mutants provides a novel multidisciplinary approach to further understand the molecular determinants of the vertebrate CCS.

  18. The effect of lysophosphatidylcholine on cardiac T-type Ca2+ channel current and its mechanism%溶血磷脂酰胆碱对心室肌细胞T型钙离子通道电流的影响及机制探讨

    Institute of Scientific and Technical Information of China (English)

    刘刚; 田立; 郑明奇; 郭继鸿


    Objective To study the effects of lysophosphatidylcholine (LPC) on T-type calcium channel currents (ICa,T) in cardiomyocytes and underlying intracellular signaling pathways. Methods Neonatal rat cardiomyocytes by u-sing of enzyme digestion methods were prepared for recording the T-type Ca2+ channel current with or without LPC (10 fimol/L) . Human cardiac T-type calcium channel al-subunits, Cav3. 1 and Cav3. 2 were stablely expressed in human embryonic kidney (HEK) 293 cells. ICa,T was recorded by whole-cell patch clamp technique in pretreated with several kinds of kinase inhibitors for lh followed by 10 ujnol/L LPC purfusing for 10 min. Results ① LPC markedly accelerated the spontaneous beating rates of neonatal rat cardiomyocytes (40 ±6 hpm vs 61 ±7 hpm, n =6) , and augmented the ICa,T(3. 7 ±0.4 pA/pF,re = 15 vs4.4±0.5 pA/pF,n = 12) ; ② LPC exerted no effect on the Cav3.1 T-type Ca2+ channel current (ICaV3.1). In contrast, LPC significantly up-regulated the Cav3.2 T-type Ca2+ channel current (ICaV3.2 ) [47.5 ±3.8 pA/ pF(50 μmol/L,n=8) vs 42.3+3.0 pA/pF( 10 μmol/L,n = 12) vs 36. 7 ±2. 2 PA/pF(n = 20) ] ; ③ Pre-treated with Ro-32-0432 (30 nmol/L) , a specific inhibitor of protein kinase Ca, the up-regulated ICaV3.2 by LPC was completely blocked, which mimiced the role of pan-PKC inhibitor (chelerythrine, 5 μmol/L) in the modulation of LPC on ICaV3.2 (chelerythrine: 12. 7 ± 2. 6 pA/pF, n = 8; Ro-32-0432:12. 9 ±2. 3 pA/pF, n=9). However, specific inhibitors of PKCβI,PKCβI did not interfered the effect of LPC on ICaV3.2.Conclusion LPC stimulates ICa.T via PKCα activation, which may accelerate the pathophysiological cardiac automaticity. [ Chinese Journal of Cardiac Pacing and Electrophysiobgy,2012,26(6):520 -524]%目的 研究溶血磷脂酰胆碱(LPC)对心肌细胞T型钙通道电流(ICa,T)的影响并探讨其机制.方法 新生大鼠心室肌细胞由酶法消化分离获得后,使用全细胞膜片钳技术记录LPC(10 μmol/L)处理前后的

  19. [Psychosomatic aspects of cardiac arrhythmias]. (United States)

    Siepmann, Martin; Kirch, Wilhelm


    Emotional stress facilitates the occurrence of cardiac arrhythmias including sudden cardiac death. The prevalence of anxiety and depression is increased in cardiac patients as compared to the normal population. The risk of cardiovascular mortality is enhanced in patients suffering from depression. Comorbid anxiety disorders worsen the course of cardiac arrhythmias. Disturbance of neurocardiac regulation with predominance of the sympathetic tone is hypothesized to be causative for this. The emotional reaction to cardiac arrhythmias is differing to a large extent between individuals. Emotional stress may result from coping with treatment of cardiac arrhythmias. Emotional stress and cardiac arrhythmias may influence each other in the sense of a vicious circle. Somatoform cardiac arrhythmias are predominantly of psychogenic origin. Instrumental measures and frequent contacts between physicians and patients may facilitate disease chronification. The present review is dealing with the multifaceted relationships between cardiac arrhythmias and emotional stress. The underlying mechanisms and corresponding treatment modalities are discussed.

  20. Targeting GIRK Channels for the Development of New Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Kenneth eWalsh


    Full Text Available G protein-coupled inward rectifier K+ (GIRK channels represent novel targets for the development of new therapeutic agents. GIRK channels are activated by a large number of G protein-coupled receptors (GPCRs and regulate the electrical activity of neurons, cardiac myocytes and β-pancreatic cells. Abnormalities in GIRK channel function have been implicated in the patho-physiology of neuropathic pain, drug addiction, cardiac arrhythmias and other disorders. However, the pharmacology of these channels remains largely unexplored. In this paper we describe the development of a screening assay for identifying new modulators of neuronal and cardiac GIRK channels. Pituitary (AtT20 and cardiac (HL-1 cell lines expressing GIRK channels were cultured in 96-well plates, loaded with oxonol membrane potential-sensitive dyes and measured using a fluorescent imaging plate reader. Activation of the endogenous GPCRs in the cells caused a rapid, time-dependent decrease in the fluorescent signal; indicative of K+ efflux through the GIRK channels (GPCR stimulation versus control, Z’-factor = 0.5-0.7. As expected this signal was inhibited by addition of Ba2+ and the GIRK channel toxin tertiapin-Q. To test the utility of the assay for screening GIRK channel blockers, cells were incubated for 5 minutes with a compound library of Na+ and K+ channel modulators. Ion transporter inhibitors such as 5-(N,N-hexamethylene-amiloride and SCH-28080 were identified as blockers of the GIRK channel at sub-micromolar concentrations. Thus, the screening assay will be useful for expanding the limited pharmacology of the GIRK channel and in developing new agents for the treatment of GIRK channelopathies.

  1. Human cardiac systems electrophysiology and arrhythmogenesis: iteration of experiment and computation. (United States)

    Holzem, Katherine M; Madden, Eli J; Efimov, Igor R


    Human cardiac electrophysiology (EP) is a unique system for computational modelling at multiple scales. Due to the complexity of the cardiac excitation sequence, coordinated activity must occur from the single channel to the entire myocardial syncytium. Thus, sophisticated computational algorithms have been developed to investigate cardiac EP at the level of ion channels, cardiomyocytes, multicellular tissues, and the whole heart. Although understanding of each functional level will ultimately be important to thoroughly understand mechanisms of physiology and disease, cardiac arrhythmias are expressly the product of cardiac tissue-containing enough cardiomyocytes to sustain a reentrant loop of activation. In addition, several properties of cardiac cellular EP, that are critical for arrhythmogenesis, are significantly altered by cell-to-cell coupling. However, relevant human cardiac EP data, upon which to develop or validate models at all scales, has been lacking. Thus, over several years, we have developed a paradigm for multiscale human heart physiology investigation and have recovered and studied over 300 human hearts. We have generated a rich experimental dataset, from which we better understand mechanisms of arrhythmia in human and can improve models of human cardiac EP. In addition, in collaboration with computational physiologists, we are developing a database for the deposition of human heart experimental data, including thorough experimental documentation. We anticipate that accessibility to this human heart dataset will further human EP computational investigations, as well as encourage greater data transparency within the field of cardiac EP.

  2. Mechanosensitive Channels (United States)

    Martinac, Boris

    Living cells are exposed to a variety of mechanical stimuli acting throughout the biosphere. The range of the stimuli extends from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. Cellular membranes present a major target for these stimuli. To detect mechanical forces acting upon them cell membranes are equipped with mechanosensitive (MS) ion channels. Functioning as molecular mechanoelectrical transducers of mechanical forces into electrical and/or chemical intracellular signals these channels play a critical role in the physiology of mechanotransduction. Studies of prokaryotic MS channels and recent work on MS channels of eukaryotes have significantly increased our understanding of their gating mechanism, physiological functions, and evolutionary origins as well as their role in the pathology of disease.

  3. Cardiac radiology: centenary review. (United States)

    de Roos, Albert; Higgins, Charles B


    During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.

  4. Manifold learning for shape guided segmentation of cardiac boundaries: application to 3D+t cardiac MRI. (United States)

    Eslami, Abouzar; Yigitsoy, Mehmet; Navab, Nassir


    In this paper we propose a new method for shape guided segmentation of cardiac boundaries based on manifold learning of the shapes represented by the phase field approximation of the Mumford-Shah functional. A novel distance is defined to measure the similarity of shapes without requiring deformable registration. Cardiac motion is compensated and phases are mapped into one reference phase, that is the end of diastole, to avoid time warping and synchronization at all cardiac phases. Non-linear embedding of these 3D shapes extracts the manifold of the inter-subject variation of the heart shape to be used for guiding the segmentation for a new subject. For validation the method is applied to a comprehensive dataset of 3D+t cardiac Cine MRI from normal subjects and patients.

  5. The quantum capacity with symmetric side channels

    CERN Document Server

    Smith, G; Winter, A; Smith, Graeme; Smolin, John A.; Winter, Andreas


    We present an upper bound for the quantum channel capacity that is both additive and convex. Our bound can be interpreted as the capacity of a channel for high-fidelity communication when assisted by the family of all channels mapping symmetrically to their output and environment. The bound seems to be quite tight, and for degradable quantum channels it coincides with the unassisted channel capacity. Using this symmetric side channel capacity, we find new upper bounds on the capacity of the depolarizing channel. We also briefly indicate an analogous notion for distilling entanglement using the same class of (one-way) channels, yielding one of the few genuinely 1-LOCC monotonic entanglement measures.

  6. Cardiac abnormalities assessed by non-invasive techniques in patients with newly diagnosed idiopathic inflammatory myopathies

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Simonsen, Jane Angel; Diederichsen, Axel Cosmus Pyndt;


    , cardiac troponin-I (TnI), electrocardiogram (standard 12-lead and 48-h Holter monitoring), echocardiography with tissue Doppler measures, cardiac magnetic resonance (CMR) imaging with T2 mapping and semi-quantitative (99m)technetium pyrophosphate ((99m)Tc-PYP) scintigraphy. RESULTS: Dyspnoea was present....... The myocardial (99m)Tc-PYP uptake and CMR results differed between patients and controls, albeit not with statistical significance. Overall, cardiac abnormalities were demonstrated in 9 (64%) of the patients versus 2 (14%) of the controls (p=0.02). CONCLUSIONS: Cardiac abnormalities assessed by TnI, ECG...

  7. Pediatric cardiac postoperative care

    Directory of Open Access Journals (Sweden)

    Auler Jr. José Otávio Costa


    Full Text Available The Heart Institute of the University of São Paulo, Medical School is a referral center for the treatment of congenital heart diseases of neonates and infants. In the recent years, the excellent surgical results obtained in our institution may be in part due to modern anesthetic care and to postoperative care based on well-structured protocols. The purpose of this article is to review unique aspects of neonate cardiovascular physiology, the impact of extracorporeal circulation on postoperative evolution, and the prescription for pharmacological support of acute cardiac dysfunction based on our cardiac unit protocols. The main causes of low cardiac output after surgical correction of heart congenital disease are reviewed, and methods of treatment and support are proposed as derived from the relevant literature and our protocols.

  8. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O;


    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed...... for the situation at hand. Due to challenging circumstances, the cost assessment turned out to be ex-post and top-down. RESULTS: Cost per treatment sequence is estimated to be approximately euro 976, whereas the incremental cost (compared with usual care) is approximately euro 682. The cost estimate is uncertain...... and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  9. Toothache of cardiac origin. (United States)

    Kreiner, M; Okeson, J P


    Pain referred to the orofacial structures can sometimes be a diagnostic challenge for the clinician. In some instances, a patient may complain of tooth pain that is completely unrelated to any dental source. This poses a diagnostic and therapeutic problem for the dentist. Cardiac pain most commonly radiates to the left arm, shoulder, neck, and face. In rare instances, angina pectoris may present as dental pain. When this occurs, an improper diagnosis frequently leads to unnecessary dental treatment or, more significantly, a delay of proper treatment. This delay may result in the patient experiencing an acute myocardial infarction. It is the dentist's responsibility to establish a proper diagnosis so that the treatment will be directed toward the source of pain and not to the site of pain. This article reviews the literature concerning referred pain of cardiac origin and presents a case report of toothache of cardiac origin.

  10. The cardiac anxiety questionnaire: cross-validation among cardiac inpatients

    NARCIS (Netherlands)

    Beek, M.H. van; Oude Voshaar, R.C.; Deelen, F.M. van; Balkom, A.J. van; Pop, G.A.; Speckens, A.E.


    OBJECTIVE: General anxiety symptoms are common in patients with cardiac disease and considered to have an adverse effect on cardiac prognosis. The role of specific cardiac anxiety, however, is still unknown. The aim of this study is to examine the factor structure, reliability, and validity of the D


    NARCIS (Netherlands)

    van Beek, M. H. C. T.; Voshaar, R. C. Oude; van Deelen, F. M.; van Balkom, A. J. L. M.; Pop, G.; Speckens, A. E. M.


    Objective: General anxiety symptoms are common in patients with cardiac disease and considered to have an adverse effect on cardiac prognosis. The role of specific cardiac anxiety, however, is still unknown. The aim of this study is to examine the factor structure, reliability, and validity of the D

  12. Spatial repolarization heterogeneity detected by magnetocardiography correlates with cardiac iron overload and adverse cardiac events in beta-thalassemia major.

    Directory of Open Access Journals (Sweden)

    Chun-An Chen

    Full Text Available BACKGROUND: Patients with transfusion-dependent beta-thalassemia major (TM are at risk for myocardial iron overload and cardiac complications. Spatial repolarization heterogeneity is known to be elevated in patients with certain cardiac diseases, but little is known in TM patients. The purpose of this study was to evaluate spatial repolarization heterogeneity in patients with TM, and to investigate the relationships between spatial repolarization heterogeneity, cardiac iron load, and adverse cardiac events. METHODS AND RESULTS: Fifty patients with TM and 55 control subjects received 64-channel magnetocardiography (MCG to determine spatial repolarization heterogeneity, which was evaluated by a smoothness index of QTc (SI-QTc, a standard deviation of QTc (SD-QTc, and a QTc dispersion. Left ventricular function and myocardial T2* values were assessed by cardiac magnetic resonance. Patients with TM had significantly greater SI-QTc, SD-QTc, and QTc dispersion compared to the control subjects (all p values<0.001. Spatial repolarization heterogeneity was even more pronounced in patients with significant iron overload (T2*<20 ms, n = 20 compared to those with normal T2* (all p values<0.001. Loge cardiac T2* correlated with SI-QTc (r = -0.609, p<0.001, SD-QTc (r = -0.572, p<0.001, and QTc dispersion (r = -0.622, p<0.001, while all these indices had no relationship with measurements of the left ventricular geometry or function. At the time of study, 10 patients had either heart failure or arrhythmia. All 3 indices of repolarization heterogeneity were related to the presence of adverse cardiac events, with areas under the receiver operating characteristic curves (ranged between 0.79 and 0.86, similar to that of cardiac T2*. CONCLUSIONS: Multichannel MCG demonstrated that patients with TM had increased spatial repolarization heterogeneity, which is related to myocardial iron load and adverse cardiac events.

  13. The tenth annual Ion Channel Retreat, Vancouver, Canada, June 25-27, 2012. (United States)

    Kimlicka, Lynn; Jamieson, Ashley Lauren; Liang, Sophia; Brugger, Saranna; Liang, Dong


    Ten years after Aurora Biomed (Vancouver, British Columbia, Canada) hosted the inaugural Ion Channel Retreat, this event is recognized as a leading conference for ion channel researchers. Held annually in Vancouver, this meeting consistently provides an outlet for researchers to share their findings while learning about new concepts, methods, and technologies. Researchers use this forum to discuss and debate a spectrum of topics from ion channel research and technology to drug discovery and safety. The Retreat covered key subjects in the ion channel industry, including ion channels as disease targets, transient receptor protein channels as pain and disease targets, ion channels as pain targets, ion channel structure and function, ion channel screening technologies, cardiac safety and toxicology, and cardiac function and pharmacology.

  14. The ninth annual Ion Channel Retreat, Vancouver, Canada, June 27-29, 2011. (United States)

    Brugger, Saranna; Garate, Marco; Papaianni, Gina; Volnoukhin, Maria; Zhan, Chris; Gill, Sikander; Liang, Sophia; Liang, Dong


    Nine years ago Aurora Biomed Inc. (Vancouver, Canada) committed to gathering the brightest minds and the most innovative research companies at one conference. The Ion Channel Retreat provides a podium for scientific discourse spanning a wide range of ion channel disciplines. This conference has consistently provided a venue for people to share knowledge, exchange ideas, and establish partnerships. This conference continues to expand and grow each year, demonstrating the value of such a conference. Attendees at the 2011 Ion Channel retreat presented ion channel research from 12 different countries, representing research groups located on 5 of the 7 continents. Aurora Biomed's 2011 Retreat covered a variety of topics including Ion Channels as Disease Targets, Ion Channels as Pain Targets, TRP-channels, Ion Channel Screening Technologies, Cardiac Function and Pharmacology, Cardiac Safety and Toxicology, and Structure and Function of Ion Channels.

  15. Perioperative management of cardiac disease. (United States)

    Aresti, N A; Malik, A A; Ihsan, K M; Aftab, S M E; Khan, W S


    Pre-existing cardiac disease contributes significantly to morbidity and mortality amongst patients undergoing non cardiac surgery. Patients with pre-existing cardiac disease or with risk factors for it, have as much as a 3.9% risk of suffering a major perioperative cardiac event (Lee et al 1999, Devereaux 2005). Furthermore, the incidence of perioperative myocardial infarction (MI) is increased 10 to 50 fold in patients with previous coronary events (Jassal 2008).

  16. Synergistic activation of cardiac genes by myocardin and Tbx5.

    Directory of Open Access Journals (Sweden)

    Chunbo Wang

    Full Text Available Myocardial differentiation is associated with the activation and expression of an array of cardiac specific genes. However, the transcriptional networks that control cardiac gene expression are not completely understood. Myocardin is a cardiac and smooth muscle-specific expressed transcriptional coactivator of Serum Response Factor (SRF and is able to potently activate cardiac and smooth muscle gene expression during development. We hypothesize that myocardin discriminates between cardiac and smooth muscle specific genes by associating with distinct co-factors. Here, we show that myocardin directly interacts with Tbx5, a member of the T-box family of transcription factors involved in the Holt-Oram syndrome. Tbx5 synergizes with myocardin to activate expression of the cardiac specific genes atrial natriuretic factor (ANF and alpha myosin heavy chain (α-MHC, but not that of smooth muscle specific genes SM22 or smooth muscle myosin heavy chain (SM-MHC. We found that this synergistic activation of shared target genes is dependent on the binding sites for Tbx5, T-box factor-Binding Elements (TBEs. Myocardin and Tbx5 physically interact and their interaction domains were mapped to the basic domain and the coil domain of myocardin and Tbx5, respectively. Our analysis demonstrates that the Tbx5G80R mutation, which leads to the Holt-Oram syndrome in humans, failed to synergize with myocardin to activate cardiac gene expression. These data uncover a key role for Tbx5 and myocardin in establishing the transcriptional foundation for cardiac gene activation and suggest that the interaction of myocardin and Tbx5 maybe involved in cardiac development and diseases.

  17. Gender-related differences in β-adrenergic receptor-mediated cardiac remodeling. (United States)

    Zhu, Baoling; Liu, Kai; Yang, Chengzhi; Qiao, Yuhui; Li, Zijian


    Cardiac remodeling is the pathological basis of various cardiovascular diseases. In this study, we found gender-related differences in β-adrenergic receptor (AR)-mediated pathological cardiac remodeling. Cardiac remodeling model was established by subcutaneous injection of isoprenaline (ISO) for 14 days. Heart rate (HR), mean arterial pressure (MAP), and echocardiography were obtained on 7th and 14th days during ISO administration. Myocardial cross-sectional area and the ratio of heart mass to tibia length (HM/TL) were detected to assess cardiac hypertrophy. Picro-Sirius red staining (picric acid + Sirius red F3B) was used to evaluate cardiac fibrosis. Myocardial capillary density was assessed by immunohistochemistry for von Willebrand factor. Further, real-time PCR was used to measure the expression of β1-AR and β2-AR. Results showed that ISO induced cardiac remodeling, the extent of which was different between female and male mice. The extent of increase in cardiac wall thickness, myocardial cross-sectional area, and collagen deposition in females was less than that in males. However, no gender-related difference was observed in HR, MAP, cardiac function, and myocardial capillary density. The distinctive decrease of β2-AR expression, rather than a decrease of β1-AR expression, seemed to result in gender-related differences in cardiac remodeling.

  18. Ativação elétrica ventricular na ressincronização cardíaca caracterizada pelo mapeamento eletrocardiográfico de superfície Ventricular electrical activation in cardiac resynchronization as characterized by body surface potential mapping

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Pastore


    Full Text Available OBJETIVOS: Avaliar a ativação elétrica cardíaca usando Mapeamento Eletrocardiográfico de Superfície (MES, em pacientes com ICC e bloqueio de ramo esquerdo [BRE] submetidos a terapia de ressincronização cardíaca (CRT com implante de marca-passo átrio-biventricular (MP-BIV. MÉTODOS: Foram analisados os tempos médios de ativação elétrica cardíaca no ventrículo direito (tempo médio de ativação do VD [mVD], área ântero-septal (mAS, e ventrículo esquerdo (mVE, de 28 pacientes (idade média 61,2±9,5 anos, ICC classe III-IV NYHA, fração de ejeção OBJECTIVES: To assess cardiac electrical activation by using body surface potential mapping (BSPM, in patients with congestive heart failure (CHF and left bundle branch block (LBBB undergoing cardiac resynchronization therapy (CRT with biventricular pacemaker (BIV-PM implantation. METHODS: Mean cardiac electrical activation times were analyzed in the right ventricle (RV (mean RV activation time = mRV, anteroseptal area (mAS, and left ventricle (mLV of 28 patients (mean age 61.2 ± 9.5 years; NYHA class III-IV CHF; ejection fraction <40%; LBBB of mean QRS 181.2±19.4ms, SÂQRS -8.5º±68.6º, as shown in their BSPM isochronous maps, before and after implantation of atriobiventricular pacemaker, comparing those with values obtained from a control group of normal individuals [CG], in three situations: (1 native LBBB; (2 RV pacing; and (3 atriobiventricular pacing. RESULTS: Situation (1: mRV and mAS values were similar (41.0±11.8ms x 43.6±13.4ms, with delayed mLV (81.0±12.5ms, p<0.01 and asynchronous with RV and AS areas; situation (2: mRV was greater than in CG (86.8±22.9ms, p<0.001, with greater difference between mAS and mLV (63.4±20.7ms vs. 102.7±20.3ms; p<0,001; situation (3: mLV and mRV were similar (72.0±32.0ms vs. 71.6±32.3ms, mRV was greater than in CG and native LBBB (71.6±32.3ms vs. 35.1±10.9ms and 41.0±11.8ms; p<0.001, and mAS was close to CG and native LBBB values

  19. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter


    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...

  20. 辛伐他汀对大鼠心肌肥厚的防治作用及其与钙通道的关系%The effects of simvastatin on cardiac hypertrophy and association on calcium channel modulation in rats with myocardial hypertrophy induced by abdominal aortic constriction

    Institute of Scientific and Technical Information of China (English)

    吴扬; 杨惠超; 陈翔


    Objective To investigate the effects of simvastatin(SIM)on cardiac hypertrophy and association with calcium channel modulation in rats with myocardial hypertrophy.Methods Myocardial hypertrophy was induced by abdominal aortic constriction(AAC)in adult SD rats.Following groups were studied(n=8 each):sham group,AAC group,AAC+verapamil group(10 mg·kg-1·d-3 per gavage for 4 weeks),AAC+SIM group(10 mg·kg-1·d-1 per gavage for 4 weeks)AAC+SIM+mevalonic acid (50 mg·kg-1·d-1 per gavage for 4 weeks)group.Systolic blood pressure(SBP),echocardiography,heart weight/body weight(HW/BW)and left ventricle weight/body weisht(LVW/BW)ratios were measured.The protein and mRNA expressions of L-type calcium channel subunit α1C and T-type calcium channel subunit α1 G and α1 H were detected by Western blot and RT-PCR respectively.Results SBP,HW/BW,LVW/BW,IVS and LVPW thickness,left ventricular weights were significantly increased in AAC rats and these effects could be significantly reduced by verapamil and SIM.The protein and mRNA expressions of α1G and α1H were significantly increased in AAC rats which could also be significantly inhibited by SIM or verapamil.The effects of SIM could be blocked by cotreatment with mevalonic acid.Protein and mRNA expressions of L-type calcium channel α1C were similar among groups.Conclusion Similar as verapamil,SIM could prevent AAC induced cardiac hypertrophy,possibly via inhibiting T-type calcium channel subunit α1 G and α1 H re-expression.%目的 探讨辛伐他汀对心肌肥厚的防治作用及其与钙通道活动的关系.方法 采用腹主动脉缩窄术建立心肌肥厚动物模型.尾动脉无创测量大鼠收缩压.称量心脏重量/体重(HW/BW)、左心室重量/体重(LVW/BW)比值.采用超声心动图检测动物心脏构型及射血功能.应用RT-PCR和Western blot分别检测心肌L-型钙通道亚单位Cav1.2(α,C)、T-型钙通道亚单位Cav3.1 (α1G)、Cav3.2(α1H)mRNA及其蛋白表达的变化.结果 (1)腹主

  1. Cardiac troponins and high-sensitivity cardiac troponin assays. (United States)

    Conrad, Michael J; Jarolim, Petr


    Measurement of circulating cardiac troponins I and T has become integral to the diagnosis of myocardial infarction. This article discusses the structure and function of the troponin complex and the release of cardiac troponin molecules from the injured cardiomyocyte into the circulation. An overview of current cardiac troponin assays and their classification according to sensitivity is presented. The diagnostic criteria, role, and usefulness of cardiac troponin for myocardial infarction are discussed. In addition, several examples are given of the usefulness of high-sensitivity cardiac troponin assays for short-term and long-term prediction of adverse events.

  2. Cardiac Risk Assessment (United States)

    ... Risk Assessment Related tests: Lipid Profile , VLDL Cholesterol , hs-CRP , Lp(a) Overview | Common Questions | Related Pages What ... cardiac risk include: High-sensitivity C-reactive protein (hs-CRP) : Studies have shown that measuring CRP with a ...

  3. The cardiac malpositions. (United States)

    Perloff, Joseph K


    Dextrocardia was known in the 17th century and was 1 of the first congenital malformations of the heart to be recognized. Fifty years elapsed before Matthew Baillie published his account of complete transposition in a human of the thoracic and abdominal viscera to the opposite side from what is natural. In 1858, Thomas Peacock stated that "the heart may be congenitally misplaced in various ways, occupying either an unusual position within the thorax, or being situated external to that cavity." In 1915, Maude Abbott described ectopia cordis, and Richard Paltauf's remarkable illustrations distinguished the various types of dextrocardia. In 1928, the first useful classification of the cardiac malpositions was proposed, and in 1966, Elliott et al's radiologic classification set the stage for clinical recognition. The first section of this review deals with the 3 basic cardiac malpositions in the presence of bilateral asymmetry. The second section deals with cardiac malpositions in the presence of bilateral left-sidedness or right-sidedness. Previous publications on cardiac malpositions are replete with an arcane vocabulary that confounds rather than clarifies. Even if the terms themselves are understood, inherent complexity weighs against clarity. This review was designed as a guided tour of an unfamiliar subject.

  4. Hepato-cardiac disorders

    Institute of Scientific and Technical Information of China (English)

    Yasser; Mahrous; Fouad; Reem; Yehia


    Understanding the mutual relationship between the liver and the heart is important for both hepatologists and cardiologists. Hepato-cardiac diseases can be classified into heart diseases affecting the liver, liver diseases affecting the heart, and conditions affecting the heart and the liver at the same time. Differential diagnoses of liver injury are extremely important in a cardiologist’s clinical practice calling for collaboration between cardiologists and hepatologists due to the many other diseases that can affect the liver and mimic haemodynamic injury. Acute and chronic heart failure may lead to acute ischemic hepatitis or chronic congestive hepatopathy. Treatment in these cases should be directed to the primary heart disease. In patients with advanced liver disease, cirrhotic cardiomyopathy may develop including hemodynamic changes, diastolic and systolic dysfunctions, reduced cardiac performance and electrophysiological abnormalities. Cardiac evaluation is important for patients with liver diseases especially before and after liver transplantation. Liver transplantation may lead to the improvement of all cardiac changes and the reversal of cirrhotic cardiomyopathy. There are systemic diseases that may affect both the liver and the heart concomitantly including congenital, metabolic and inflammatory diseases as well as alcoholism. This review highlights these hepatocardiac diseases

  5. Bipartite depolarizing maps (United States)

    Lami, Ludovico; Huber, Marcus


    We introduce a 3-parameter class of maps (1) acting on a bipartite system which are a natural generalisation of the depolarizing channel (and include it as a special case). Then, we find the exact regions of the parameter space that alternatively determine a positive, completely positive, entanglement-breaking, or entanglement-annihilating map. This model displays a much richer behaviour than the one shown by a simple depolarizing channel, yet it stays exactly solvable. As an example of this richness, positive partial transposition but not entanglement-breaking maps is found in Theorem 2. A simple example of a positive yet indecomposable map is provided (see the Remark at the end of Section IV). The study of the entanglement-annihilating property is fully addressed by Theorem 7. Finally, we apply our results to solve the problem of the entanglement annihilation caused in a bipartite system by a tensor product of local depolarizing channels. In this context, a conjecture posed in the work of Filippov [J. Russ. Laser Res. 35, 484 (2014)] is affirmatively answered, and the gaps that the imperfect bounds of Filippov and Ziman [Phys. Rev. A 88, 032316 (2013)] left open are closed. To arrive at this result, we furthermore show how the Hadamard product between quantum states can be implemented via local operations.

  6. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate


    Ivanov, Vadim; Ivanova, Svetlana; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; Rath, Matthias


    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition...

  7. MicroRNAs in cardiac arrhythmia

    DEFF Research Database (Denmark)

    Hedley, Paula L; Carlsen, Anting L; Christiansen, Kasper M


    LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within...... messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including...... cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain...

  8. Brands & Channels

    Institute of Scientific and Technical Information of China (English)

    Alice Yang


    @@ "Brands" and "Channels" are the two most important things in Ku-Hai Chen's eyes when doing business with Main-land China. Ku-Hai Chen, Executive Director of the International Trade Institute of Taiwan External Trade Development Council (TAITRA), flies frequently between Chinese Taipei and Mainland China, and was in Beijing earlier this month for his seminar.

  9. Positron Channeling

    CERN Document Server

    Badikyan, Karen


    The possibility of channeling the low-energy relativistic positrons around separate crystallographic axes with coaxial symmetry of negative ions in some types of crystals is shown. The process of annihilation of positrons with electrons of medium was studied in detail.

  10. 右心室造影结合CARTO标测指引射频导管消融法洛四联症术后室性心动过速%Radiofrequency catheter ablation of ventricular tachycardia guided by right ventriculography and CARTO electroanatomic mapping in patients after cardiac surgery for tetralogy of Fallot

    Institute of Scientific and Technical Information of China (English)

    梁延春; 王祖禄; 梁明; 韩雅玲


    AIM: To investigate the results of radiofrequency catheter ablation of ventricular tachycardia ( VT) guided by right ventriculography and CARTO electroanatomic mapping in patients after cardiar surgery for tetralogy of Fallot (TOF). METHODS; Included in the study were five patients (four males and one female, aged 6-38 years) who had palpitations and sustained VT for 2-16 years after cardiac surgery for TOF. Two patienls had a history ofsyncope. All patients had been ineffectively treated with antiarrhythmie drugs. No ICD was implanted. Right ventricular angiography and CARTO electroanatomic mapping system were used for directing mapping and ablating VT. First, right ventriculography was con-ducted to show right ventricle anatomy and to locate the pulmonary valve. For mappable VT, the VT mapping techniques included activation, entrainment and voltage mapping using standard criteria, and radiofrequency energy was delivered to the sites. For unmappable VT, the site of origin was approximated by the site of pace mapping that generated QRS complexes similar to those of VT. Radiofrequency ablation was performed as linear lesions based on the location of the best pace map, the location of valvular anatomic boundaries and the substrate defined by the voltage mapping. The sites with late potential or fragmented potential were also ablated. Irrigated RF energy was delivered to all patients. RESULTS; Six morphologies of VT (five sustained and one nonsustained VT) were induced in live patients, including two morphologies of VT induced in one patient. Only one with nonsustained VT could be induced in one patient. The cycle lengths of VT were 230 - 310 msec. In three patients, mapping and ablation were performed during VT. In another two patients, mapping was performed during sinus rhythm because of unmappable VT. All 6 VT were caused by scar-related reentry and were eliminated successfully in five patients. During 12 -30 months of follow-up, no VT recurred in the patients

  11. Identifying potential functional impact of mutations and polymorphisms: Linking heart failure, increased risk of arrhythmias and sudden cardiac death.

    Directory of Open Access Journals (Sweden)



    Full Text Available Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behaviour has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis and the degradation of ion channel α-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking.

  12. Cardiac Tropism of Borrelia burgdorferi: An Autopsy Study of Sudden Cardiac Death Associated with Lyme Carditis. (United States)

    Muehlenbachs, Atis; Bollweg, Brigid C; Schulz, Thadeus J; Forrester, Joseph D; DeLeon Carnes, Marlene; Molins, Claudia; Ray, Gregory S; Cummings, Peter M; Ritter, Jana M; Blau, Dianna M; Andrew, Thomas A; Prial, Margaret; Ng, Dianna L; Prahlow, Joseph A; Sanders, Jeanine H; Shieh, Wun Ju; Paddock, Christopher D; Schriefer, Martin E; Mead, Paul; Zaki, Sherif R


    Fatal Lyme carditis caused by the spirochete Borrelia burgdorferi rarely is identified. Here, we describe the pathologic, immunohistochemical, and molecular findings of five case patients. These sudden cardiac deaths associated with Lyme carditis occurred from late summer to fall, ages ranged from young adult to late 40s, and four patients were men. Autopsy tissue samples were evaluated by light microscopy, Warthin-Starry stain, immunohistochemistry, and PCR for B. burgdorferi, and immunohistochemistry for complement components C4d and C9, CD3, CD79a, and decorin. Post-mortem blood was tested by serology. Interstitial lymphocytic pancarditis in a relatively characteristic road map distribution was present in all cases. Cardiomyocyte necrosis was minimal, T cells outnumbered B cells, plasma cells were prominent, and mild fibrosis was present. Spirochetes in the cardiac interstitium associated with collagen fibers and co-localized with decorin. Rare spirochetes were seen in the leptomeninges of two cases by immunohistochemistry. Spirochetes were not seen in other organs examined, and joint tissue was not available for evaluation. Although rare, sudden cardiac death caused by Lyme disease might be an under-recognized entity and is characterized by pancarditis and marked tropism of spirochetes for cardiac tissues.

  13. Cardiac neural crest contributes to cardiomyogenesis in zebrafish. (United States)

    Sato, Mariko; Yost, H Joseph


    In birds and mammals, cardiac neural crest is essential for heart development and contributes to conotruncal cushion formation and outflow tract septation. The zebrafish prototypical heart lacks outflow tract septation, raising the question of whether cardiac neural crest exists in zebrafish. Here, results from three distinct lineage-labeling approaches identify zebrafish cardiac neural crest cells and indicate that these cells have the ability to generate MF20-positive muscle cells in the myocardium of the major chambers during development. Fate-mapping demonstrates that cardiac neural crest cells originate both from neural tube regions analogous to those found in birds, as well as from a novel region rostral to the otic vesicle. In contrast to other vertebrates, cardiac neural crest invades the myocardium in all segments of the heart, including outflow tract, atrium, atrioventricular junction, and ventricle in zebrafish. Three distinct groups of premigratory neural crest along the rostrocaudal axis have different propensities to contribute to different segments in the heart and are correspondingly marked by unique combinations of gene expression patterns. Zebrafish will serve as a model for understanding interactions between cardiac neural crest and cardiovascular development.

  14. Vector flow mapping for assessing Beagle dogs′ left ventricular vortex in selective bi-polar single site cardiac pacing%超声血流向量成像评价健康比格犬心脏不同位点起搏左心室血流涡旋

    Institute of Scientific and Technical Information of China (English)

    丁戈琦; 尹立雪; 王志刚; 陆景; 李文华; 张红梅


    Objective To investigate the changes of left ventricular(LV) vortex strength(VS) and distribution during selective cardiac pacing in a phases of cardiac cycle using vector flow mapping techniques ,and associate with LV mechanical performance ,so as to provide basic experimental database for optimizing the sites of the artificial cardiac pacing in clinic conditions .Methods Eight heathy open‐chest Beagle dog models were employed for selective right ventricular apical (RVAP ) ,left ventricular apical (LVAP) and lateral wall pacing (LVLP) .The standard two‐dimensional apical three views with color Doppler flow and dynamic two‐dimensional images were acquired consecutively in three cardiac cycles for further off‐line analysis ,conventional parameters were measured at same time .Results Compared with baseline ,LVSV ,LVEF ,LVCO and dp/dtmax were both reduced ,and the parameters obtained leftside cardiac pacing were lower than that of right ventricular pacing ( P < 0 0.5) ,there′s no significant difference in E/Vp .The vortex pattern ,distribution and vorticity at six typical phases induced by selective cardiac pacing were totally different from those at baseline with sinus rhythm ,and leftside pacing were worsen than RVAP ,the LVAP were most obvious .On multivariable regression analysis ,the VS during ES (VSES ) at baseline was independently related to late‐diastolic VS and longitudinal strain (R2 = 0 6.3 ,P < 0 0.01 and P=0 0.03 ,respectively) .Conclusions The selective cardiac pacing could induce intracardiac vortex changes and differ from that at baseline ,and the persistence of vortex from late diastole into ES is a haemodynamic measure of coupling between diastole and systole .%目的:应用超声血流向量成像(VFM)技术评价健康比格犬心脏不同位点起搏心动周期内左室流场涡旋分布、强度变化及心肌力学参数,探讨起搏状态下心腔内涡旋变化特征,为临床优化人工心脏起搏位点提供流体

  15. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)


    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key compon

  16. Visualization and analysis of functional cardiac MRI data (United States)

    McVeigh, Elliot R.; Guttman, Michael A.; Poon, Eric; Pisupati, Chandrasekhar; Moore, Christopher C.; Zerhouni, Elias A.; Solaiyappan, Meiyappan; Heng, PhengAnn


    Rapid analysis of large multi-dimensional data sets is critical for the successful implementation of a comprehensive MR cardiac exam. We have developed a software package for the analysis and visualization of cardiac MR data. The program allows interactive visualization of time and space stacks of MRI data, automatic segmentation of myocardial borders and myocardial tagging patterns, and visualization of functional parameters such a motion, strain, and blood flow, mapped as colors in an interactive dynamic 3D volume rendering of the beating heart.

  17. Endocytic regulation of voltage-dependent potassium channels in the heart. (United States)

    Ishii, Kuniaki; Norota, Ikuo; Obara, Yutaro


    Understanding the regulation of cardiac ion channels is critical for the prevention of arrhythmia caused by abnormal excitability. Ion channels can be regulated by a change in function (qualitative) and a change in number (quantitative). Functional changes have been extensively investigated for many ion channels including cardiac voltage-dependent potassium channels. By contrast, the regulation of ion channel numbers has not been widely examined, particularly with respect to acute modulation of ion channels. This article briefly summarizes stimulus-induced endocytic regulation of major voltage-dependent potassium channels in the heart. The stimuli known to cause their endocytosis include receptor activation, drugs, and low extracellular [K(+)], following which the potassium channels undergo either clathrin-mediated or caveolin-mediated endocytosis. Receptor-mediated endocytic regulation has been demonstrated for Kv1.2, Kv1.5, KCNQ1 (Kv7.1), and Kv4.3, while drug-induced endocytosis has been demonstrated for Kv1.5 and hERG. Low [K(+)](o)-induced endocytosis might be unique for hERG channels, whose electrophysiological characteristics are known to be under strong influence of [K(+)](o). Although the precise mechanisms have not been elucidated, it is obvious that major cardiac voltage-dependent potassium channels are modulated by endocytosis, which leads to changes in cardiac excitability.

  18. An information-guided channel-hopping scheme for block-fading channels with estimation errors

    KAUST Repository

    Yang, Yuli


    Information-guided channel-hopping technique employing multiple transmit antennas was previously proposed for supporting high data rate transmission over fading channels. This scheme achieves higher data rates than some mature schemes, such as the well-known cyclic transmit antenna selection and space-time block coding, by exploiting the independence character of multiple channels, which effectively results in having an additional information transmitting channel. Moreover, maximum likelihood decoding may be performed by simply decoupling the signals conveyed by the different mapping methods. In this paper, we investigate the achievable spectral efficiency of this scheme in the case of having channel estimation errors, with optimum pilot overhead for minimum meansquare error channel estimation, when transmitting over blockfading channels. Our numerical results further substantiate the robustness of the presented scheme, even with imperfect channel state information. ©2010 IEEE.

  19. When the clock strikes: Modeling the relation between circadian rhythms and cardiac arrhythmias

    CERN Document Server

    Seenivasan, Pavithraa; Sridhar, S; Sinha, Sitabhra


    It has recently been observed that the occurrence of sudden cardiac death has a close statistical relationship with the time of day, viz., ventricular fibrillation is most likely to occur between 12 am-6 am, with 6 pm-12 am being the next most likely period. Consequently there has been significant interest in understanding how cardiac activity is influenced by the circadian clock, i.e., temporal oscillations in physiological activity with a period close to 24 hours and synchronized with the day-night cycle. Although studies have identified the genetic basis of circadian rhythms at the intracellular level, the mechanisms by which they influence cardiac pathologies are not yet fully understood. Evidence has suggested that diurnal variations in the conductance properties of ion channel proteins that govern the excitation dynamics of cardiac cells may provide the crucial link. In this paper, we investigate the relationship between the circadian rhythm as manifested in modulations of ion channel properties and the...

  20. Comparison study of temporal regularization methods for fully 5D reconstruction of cardiac gated dynamic SPECT (United States)

    Niu, Xiaofeng; Yang, Yongyi; King, Michael A.


    Temporal regularization plays a critical role in cardiac gated dynamic SPECT reconstruction, of which the goal is to obtain an image sequence from a single acquisition which simultaneously shows both cardiac motion and tracer distribution change over the course of imaging (termed 5D). In our recent work, we explored two different approaches for temporal regularization of the dynamic activities in gated dynamic reconstruction without the use of fast camera rotation: one is the dynamic EM (dEM) approach which is imposed on the temporal trend of the time activity of each voxel, and the other is a B-spline modeling approach in which the time activity is regulated by a set of B-spline basis functions. In this work, we extend the B-spline approach to fully 5D reconstruction and conduct a thorough quantitative comparison with the dEM approach. In the evaluation of the reconstruction results, we apply a number of quantitative measures on two major aspects of the reconstructed dynamic images: (1) the accuracy of the reconstructed activity distribution in the myocardium and (2) the ability of the reconstructed dynamic activities to differentiate perfusion defects from normal myocardial wall uptake. These measures include the mean square error (MSE), bias-variance analysis, accuracy of time-activity curves (TAC), contrast-to-noise ratio of a defect, composite kinetic map of the left ventricle wall and perfusion defect detectability with channelized Hotelling observer. In experiments, we simulated cardiac gated imaging with the NURBS-based cardiac-torso phantom and Tc99m-Teboroxime as the imaging agent, where acquisition with the equivalent of only three full camera rotations was used during the imaging period. The results show that both dEM and B-spline 5D could achieve similar overall accuracy in the myocardium in terms of MSE. However, compared to dEM 5D, the B-spline approach could achieve a more accurate reconstruction of the voxel TACs; in particular, B-spline 5D could

  1. Cardiac nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gerson, M.C.


    The book begins with a review of the radionuclide methods available for evaluating cardiac perfusion and function. The authors discuss planar and tomographic thallium myocardial imaging, first-pass and equilibrium radionuclide angiography, and imaging with infarct-avid tracers. Several common but more specialized procedures are then reviewed: nonogemetric measurement of left ventricular volume, phase (Fourier) analysis, stroke volume ratio, right ventricular function, and diastolic function. A separate chapter is devoted to drug interventions and in particular the use of radionuclide ventriculography to monitor doxorubicin toxicity and therapy of congestive heart failure. The subsequent chapters provide a comprehensive guide to test selection, accuracy, and results in acute myocardial infarction, in postmyocardial infarction, in chronic coronary artery disease, before and after medical or surgical revascularization, in valvular heart disease, in cardiomyopathies, and in cardiac trauma.

  2. Sudden Cardiac Death

    Directory of Open Access Journals (Sweden)

    Yipsy María Gutiérrez Báez


    Full Text Available Since the second half of the twentieth century, dying suddenly due to heart-related problems has become the main health issue in all countries where infectious diseases are not prevalent. Sudden death from cardiac causes is an important global health problem. Major databases were searched for the leading causes of sudden cardiac death. It has been demonstrated that there is a group of hereditary diseases with structural alterations or without apparent organic cause that explains many cases of sudden death in young people, whether related or not to physical exertion. Certain population groups are at higher risk for this disease. They are relatively easy to identify and can be the target of primary prevention measures.

  3. Cardiac arrhythmias in pregnancy. (United States)

    Knotts, Robert J; Garan, Hasan


    As more women with repaired congenital heart disease survive to their reproductive years and many other women are delaying pregnancy until later in life, a rising concern is the risk of cardiac arrhythmias during pregnancy. Naturally occurring cardiovascular changes during pregnancy increase the likelihood that a recurrence of a previously experienced cardiac arrhythmia or a de novo arrhythmia will occur. Arrhythmias should be thoroughly investigated to determine if there is a reversible etiology, and risks/benefits of treatment options should be fully explored. We discuss the approach to working up and treating various arrhythmias during pregnancy with attention to fetal and maternal risks as well as treatment of fetal arrhythmias. Acute management in stable patients includes close monitoring and intravenous pharmacologic therapy, while DC cardioversion should be used to terminate arrhythmias in hemodynamically unstable patients. Long-term management may require continued oral antiarrhythmic therapy, with particular attention to fetal safety, to prevent complications associated with arrhythmias.

  4. Na+ channel function, regulation, structure, trafficking and sequestration (United States)

    Chen-Izu, Ye; Shaw, Robin M; Pitt, Geoffrey S; Yarov-Yarovoy, Vladimir; Sack, Jon T; Abriel, Hugues; Aldrich, Richard W; Belardinelli, Luiz; Cannell, Mark B; Catterall, William A; Chazin, Walter J; Chiamvimonvat, Nipavan; Deschenes, Isabelle; Grandi, Eleonora; Hund, Thomas J; Izu, Leighton T; Maier, Lars S; Maltsev, Victor A; Marionneau, Celine; Mohler, Peter J; Rajamani, Sridharan; Rasmusson, Randall L; Sobie, Eric A; Clancy, Colleen E; Bers, Donald M


    This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na+ channel function and regulation, Na+ channel structure and function, and Na+ channel trafficking, sequestration and complexing. PMID:25772290

  5. The KCNQ1 potassium channel: from gene to physiological function

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, Morten; Olesen, Søren-Peter


    The voltage-gated KCNQ1 (KvLQT1, Kv7.1) potassium channel plays a crucial role in shaping the cardiac action potential as well as in controlling the water and salt homeostasis in several epithelial tissues. KCNQ1 channels in these tissues are tightly regulated by auxiliary proteins and accessory...... factors, capable of modulating the properties of the channel complexes. This paper reviews the current knowledge about the KCNQ1 channel with a major focus on interacting proteins and physiological functions....

  6. Nonlinear channelizer (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio


    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  7. Cardiac surgery 2015 reviewed. (United States)

    Doenst, Torsten; Strüning, Constanze; Moschovas, Alexandros; Gonzalez-Lopez, David; Essa, Yasin; Kirov, Hristo; Diab, Mahmoud; Faerber, Gloria


    For the year 2015, almost 19,000 published references can be found in PubMed when entering the search term "cardiac surgery". The last year has been again characterized by lively discussions in the fields where classic cardiac surgery and modern interventional techniques overlap. Lacking evidence in the field of coronary revascularization with either percutaneous coronary intervention or bypass surgery has been added. As in the years before, CABG remains the gold standard for the revascularization of complex stable triple-vessel disease. Plenty of new information has been presented comparing the conventional to transcatheter aortic valve implantation (TAVI) demonstrating similar short- and mid-term outcomes at high and low risk, but even a survival advantage with transfemoral TAVI at intermediate risk. In addition, there were many relevant and interesting other contributions from the purely operative arena. This review article will summarize the most pertinent publications in the fields of coronary revascularization, surgical treatment of valve disease, heart failure (i.e., transplantation and ventricular assist devices), and aortic surgery. While the article does not have the expectation of being complete and cannot be free of individual interpretation, it provides a condensed summary that is intended to give the reader "solid ground" for up-to-date decision-making in cardiac surgery.

  8. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)


    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  9. Cardiac tissue engineering

    Directory of Open Access Journals (Sweden)



    Full Text Available We hypothesized that clinically sized (1-5 mm thick,compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3 can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons, or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz. Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

  10. Restoring the impaired cardiac calcium homeostasis and cardiac function in iron overload rats by the combined deferiprone and N-acetyl cysteine (United States)

    Wongjaikam, Suwakon; Kumfu, Sirinart; Khamseekaew, Juthamas; Chattipakorn, Siriporn C.; Chattipakorn, Nipon


    Intracellular calcium [Ca2+]i dysregulation plays an important role in the pathophysiology of iron overload cardiomyopathy. Although either iron chelators or antioxidants provide cardioprotection, a comparison of the efficacy of deferoxamine (DFO), deferiprone (DFP), deferasirox (DFX), N-acetyl cysteine (NAC) or a combination of DFP plus NAC on cardiac [Ca2+]i homeostasis in chronic iron overload has never been investigated. Male Wistar rats were fed with either a normal diet or a high iron (HFe) diet for 4 months. At 2 months, HFe rats were divided into 6 groups and treated with either a vehicle, DFO (25 mg/kg/day), DFP (75 mg/kg/day), DFX (20 mg/kg/day), NAC (100 mg/kg/day), or combined DFP plus NAC. At 4 months, the number of cardiac T-type calcium channels was increased, whereas cardiac sarcoplasmic-endoplasmic reticulum Ca2+ ATPase (SERCA) was decreased, leading to cardiac iron overload and impaired cardiac [Ca2+]i homeostasis. All pharmacological interventions restored SERCA levels. Although DFO, DFP, DFX or NAC alone shared similar efficacy in improving cardiac [Ca2+]i homeostasis, only DFP + NAC restored cardiac [Ca2+]i homeostasis, leading to restoring left ventricular function in the HFe-fed rats. Thus, the combined DFP + NAC was more effective than any monotherapy in restoring cardiac [Ca2+]i homeostasis, leading to restored myocardial contractility in iron-overloaded rats. PMID:28287621

  11. Genetic Mapping (United States)

    ... Fact Sheets Fact Sheets En Español: Mapeo Genético Genetic Mapping What is genetic mapping? How do researchers create ... genetic map? What are genetic markers? What is genetic mapping? Among the main goals of the Human Genome ...

  12. When the clock strikes: Modeling the relation between circadian rhythms and cardiac arrhythmias (United States)

    Seenivasan, Pavithraa; Menon, Shakti N.; Sridhar, S.; Sinha, Sitabhra


    It has recently been observed that the occurrence of sudden cardiac death has a close statistical relationship with the time of day, viz., ventricular fibrillation is most likely to occur between 12am-6am, with 6pm-12am being the next most likely period. Consequently there has been significant interest in understanding how cardiac activity is influenced by the circadian clock, i.e., temporal oscillations in physiological activity with a period close to 24 hours and synchronized with the day-night cycle. Although studies have identified the genetic basis of circadian rhythm at the intracellular level, the mechanisms by which they influence cardiac pathologies are not yet fully understood. Evidence has suggested that diurnal variations in the conductance properties of ion channel proteins that govern the excitation dynamics of cardiac cells may provide the crucial link. In this paper, we investigate the relationship between the circadian rhythm as manifested in modulations of ion channel properties and the susceptibility to cardiac arrhythmias by using a mathematical model that describes the electrical activity in ventricular tissue. We show that changes in the channel conductance that lead to extreme values for the duration of action potentials in cardiac cells can result either in abnormally high-frequency reentrant activity or spontaneous conduction block of excitation waves. Both phenomena increase the likelihood of wavebreaks that are known to initiate potentially life- threatening arrhythmias. Thus, disruptive cardiac excitation dynamics are most likely to occur in time-intervals of the day-night cycle during which the channel properties are closest to these extreme values, providing an intriguing relation between circadian rhythms and cardiac pathologies.

  13. Application of HTS technology to cardiac dysrhythmia detection

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, A.L. [Sandia National Labs., Albuquerque, NM (United States); Avrin, W.F. [Quantum Magnetics, Inc., San Diego, CA (United States)


    This paper discusses the conceptual design considerations and challenges for development of a contactless, mobile, single channel biomagnetic sensor system based on High-Temperature Superconductor (HTS) Superconducting Quantum Interference Devices (SQUIDs) and employing the Three-SQUID Gradiometer (TSG) concept. Operating in magnetically unshielded environments, as are encountered in many medical scenarios, this instrument class would monitor cardiac electrical activity with minimal patient preparation and intrusiveness, and would notionally be coupled with a clinically adaptive human-system interface (HSI).

  14. Concept Maps


    Schwendimann, Beat Adrian


    A concept map is a node-link diagram showing the semantic relationships among concepts. The technique for constructing concept maps is called "concept mapping". A concept map consists of nodes, arrows as linking lines, and linking phrases that describe the relationship between nodes. Two nodes connected with a labeled arrow are called a proposition. Concept maps are versatile graphic organizers that can represent many different forms of relationships between concepts. The relationship between...

  15. Inhibition of HERG potassium channels by celecoxib and its mechanism.

    Directory of Open Access Journals (Sweden)

    Roman V Frolov

    Full Text Available BACKGROUND: Celecoxib (Celebrex, a widely prescribed selective inhibitor of cyclooxygenase-2, can modulate ion channels independently of cyclooxygenase inhibition. Clinically relevant concentrations of celecoxib can affect ionic currents and alter functioning of neurons and myocytes. In particular, inhibition of Kv2.1 channels by celecoxib leads to arrhythmic beating of Drosophila heart and of rat heart cells in culture. However, the spectrum of ion channels involved in human cardiac excitability differs from that in animal models, including mammalian models, making it difficult to evaluate the relevance of these observations to humans. Our aim was to examine the effects of celecoxib on hERG and other human channels critically involved in regulating human cardiac rhythm, and to explore the mechanisms of any observed effect on the hERG channels. METHODS AND RESULTS: Celecoxib inhibited the hERG, SCN5A, KCNQ1 and KCNQ1/MinK channels expressed in HEK-293 cells with IC(50s of 6.0 µM, 7.5 µM, 3.5 µM and 3.7 µM respectively, and the KCND3/KChiP2 channels expressed in CHO cells with an IC(50 of 10.6 µM. Analysis of celecoxib's effects on hERG channels suggested gating modification as the mechanism of drug action. CONCLUSIONS: The above channels play a significant role in drug-induced long QT syndrome (LQTS and short QT syndrome (SQTS. Regulatory guidelines require that all new drugs under development be tested for effects on the hERG channel prior to first administration in humans. Our observations raise the question of celecoxib's potential to induce cardiac arrhythmias or other channel related adverse effects, and make a case for examining such possibilities.

  16. Indeterminacy of Spatiotemporal Cardiac Alternans

    CERN Document Server

    Zhao, Xiaopeng


    Cardiac alternans, a beat-to-beat alternation in action potential duration (at the cellular level) or in ECG morphology (at the whole heart level), is a marker of ventricular fibrillation, a fatal heart rhythm that kills hundreds of thousands of people in the US each year. Investigating cardiac alternans may lead to a better understanding of the mechanisms of cardiac arrhythmias and eventually better algorithms for the prediction and prevention of such dreadful diseases. In paced cardiac tissue, alternans develops under increasingly shorter pacing period. Existing experimental and theoretical studies adopt the assumption that alternans in homogeneous cardiac tissue is exclusively determined by the pacing period. In contrast, we find that, when calcium-driven alternans develops in cardiac fibers, it may take different spatiotemporal patterns depending on the pacing history. Because there coexist multiple alternans solutions for a given pacing period, the alternans pattern on a fiber becomes unpredictable. Usin...

  17. Channels Active in the Excitability of Nerves and Skeletal Muscles across the Neuromuscular Junction: Basic Function and Pathophysiology (United States)

    Goodman, Barbara E.


    Ion channels are essential for the basic physiological function of excitable cells such as nerve, skeletal, cardiac, and smooth muscle cells. Mutations in genes that encode ion channels have been identified to cause various diseases and disorders known as channelopathies. An understanding of how individual ion channels are involved in the…

  18. Optogenetics for in vivo cardiac pacing and resynchronization therapies. (United States)

    Nussinovitch, Udi; Gepstein, Lior


    Abnormalities in the specialized cardiac conduction system may result in slow heart rate or mechanical dyssynchrony. Here we apply optogenetics, widely used to modulate neuronal excitability, for cardiac pacing and resynchronization. We used adeno-associated virus (AAV) 9 to express the Channelrhodopsin-2 (ChR2) transgene at one or more ventricular sites in rats. This allowed optogenetic pacing of the hearts at different beating frequencies with blue-light illumination both in vivo and in isolated perfused hearts. Optical mapping confirmed that the source of the new pacemaker activity was the site of ChR2 transgene delivery. Notably, diffuse illumination of hearts where the ChR2 transgene was delivered to several ventricular sites resulted in electrical synchronization and significant shortening of ventricular activation times. These findings highlight the unique potential of optogenetics for cardiac pacing and resynchronization therapies.

  19. Fibroblast growth factor homologous factors in the heart: a potential locus for cardiac arrhythmias. (United States)

    Wei, Eric Q; Barnett, Adam S; Pitt, Geoffrey S; Hennessey, Jessica A


    The four fibroblast growth factor homologous factors (FHFs; FGF11-FGF14) are intracellular proteins that bind and modulate voltage-gated sodium channels (VGSCs). Although FHFs have been well studied in neurons and implicated in neurologic disease, their role in cardiomyocytes was unclear until recently. This review discusses the expression profile and function of FHFs in mouse and rat ventricular cardiomyocytes. Recent data show that FGF13 is the predominant FHF in the murine heart, directly binds the cardiac VGSC α subunit, and is essential for normal cardiac conduction. FHF loss-of-function mutations may be unrecognized causes of cardiac arrhythmias, such as long QT and Brugada syndromes.

  20. Tetrodotoxin Sensitivity of the Vertebrate Cardiac Na+ Current

    Directory of Open Access Journals (Sweden)

    Jaakko Haverinen


    Full Text Available Evolutionary origin and physiological significance of the tetrodotoxin (TTX resistance of the vertebrate cardiac Na+ current (INa is still unresolved. To this end, TTX sensitivity of the cardiac INa was examined in cardiac myocytes of a cyclostome (lamprey, three teleost fishes (crucian carp, burbot and rainbow trout, a clawed frog, a snake (viper and a bird (quail. In lamprey, teleost fishes, frog and bird the cardiac INa was highly TTX-sensitive with EC50-values between 1.4 and 6.6 nmol·L−1. In the snake heart, about 80% of the INa was TTX-resistant with EC50 value of 0.65 μmol·L−1, the rest being TTX-sensitive (EC50 = 0.5 nmol·L−1. Although TTX-resistance of the cardiac INa appears to be limited to mammals and reptiles, the presence of TTX-resistant isoform of Na+ channel in the lamprey heart suggest an early evolutionary origin of the TTX-resistance, perhaps in the common ancestor of all vertebrates.

  1. Sleep Apnea and Nocturnal Cardiac Arrhythmia: A Populational Study

    Directory of Open Access Journals (Sweden)

    Fatima Dumas Cintra


    Full Text Available Background: The mechanisms associated with the cardiovascular consequences of obstructive sleep apnea include abrupt changes in autonomic tone, which can trigger cardiac arrhythmias. The authors hypothesized that nocturnal cardiac arrhythmia occurs more frequently in patients with obstructive sleep apnea. Objective: To analyze the relationship between obstructive sleep apnea and abnormal heart rhythm during sleep in a population sample. Methods: Cross-sectional study with 1,101 volunteers, who form a representative sample of the city of São Paulo. The overnight polysomnography was performed using an EMBLA® S7000 digital system during the regular sleep schedule of the individual. The electrocardiogram channel was extracted, duplicated, and then analyzed using a Holter (Cardio Smart® system. Results: A total of 767 participants (461 men with a mean age of 42.00 ± 0.53 years, were included in the analysis. At least one type of nocturnal cardiac rhythm disturbance (atrial/ventricular arrhythmia or beat was observed in 62.7% of the sample. The occurrence of nocturnal cardiac arrhythmias was more frequent with increased disease severity. Rhythm disturbance was observed in 53.3% of the sample without breathing sleep disorders, whereas 92.3% of patients with severe obstructive sleep apnea showed cardiac arrhythmia. Isolated atrial and ventricular ectopy was more frequent in patients with moderate/severe obstructive sleep apnea when compared to controls (p < 0.001. After controlling for potential confounding factors, age, sex and apnea-hypopnea index were associated with nocturnal cardiac arrhythmia. Conclusion: Nocturnal cardiac arrhythmia occurs more frequently in patients with obstructive sleep apnea and the prevalence increases with disease severity. Age, sex, and the Apnea-hypopnea index were predictors of arrhythmia in this sample.

  2. From syncitium to regulated pump: a cardiac muscle cellular update. (United States)

    Korzick, Donna H


    The primary purpose of this article is to present a basic overview of some key teaching concepts that should be considered for inclusion in an six- to eight-lecture introductory block on the regulation of cardiac performance for graduate students. Within the context of cardiac excitation-contraction coupling, this review incorporates information on Ca(2+) microdomains and local control theory, with particular emphasis on the role of Ca(2+) sparks as a key regulatory component of ventricular myocyte contraction dynamics. Recent information pertaining to local Ca(2+) cycling in sinoatrial nodal cells (SANCs) as a mechanism underlying cardiac automaticity is also presented as part of the recently described coupled-clock pacemaker system. The details of this regulation are emerging; however, the notion that the sequestration and release of Ca(2+) from internal stores in SANCs (similar to that observed in ventricular myocytes) regulates the rhythmic excitation of the heart (i.e., membrane ion channels) is an important advancement in this area. The regulatory role of cardiac adrenergic receptors on cardiac rate and function is also included, and fundamental concepts related to intracellular signaling are discussed. An important point of emphasis is that whole organ cardiac dynamics can be traced back to cellular events regulating intracellular Ca(2+) homeostasis and, as such, provides an important conceptual framework from which students can begin to think about whole organ physiology in health and disease. Greater synchrony of Ca(2+)-regulatory mechanisms between ventricular and pacemaker cells should enhance student comprehension of complex regulatory phenomenon in cardiac muscle.

  3. RyR2 modulates a Ca2+-activated K+ current in mouse cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Mu

    Full Text Available In cardiomyocytes, Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs binds to and activates RyR2 channels, resulting in subsequent Ca2+ release from the sarcoplasmic reticulum (SR and cardiac contraction. Previous research has documented the molecular coupling of small-conductance Ca2+-activated K+ channels (SK channels to VDCCs in mouse cardiac muscle. Little is known regarding the role of RyRs-sensitive Ca2+ release in the SK channels in cardiac muscle. In this study, using whole-cell patch clamp techniques, we observed that a Ca2+-activated K+ current (IK,Ca recorded from isolated adult C57B/L mouse atrial myocytes was significantly decreased by ryanodine, an inhibitor of ryanodine receptor type 2 (RyR2, or by the co-application of ryanodine and thapsigargin, an inhibitor of the sarcoplasmic reticulum calcium ATPase (SERCA (p<0.05, p<0.01, respectively. The activation of RyR2 by caffeine increased the IK,Ca in the cardiac cells (p<0.05, p<0.01, respectively. We further analyzed the effect of RyR2 knockdown on IK,Ca and Ca2+ in isolated adult mouse cardiomyocytes using a whole-cell patch clamp technique and confocal imaging. RyR2 knockdown in mouse atrial cells transduced with lentivirus-mediated small hairpin interference RNA (shRNA exhibited a significant decrease in IK,Ca (p<0.05 and [Ca2+]i fluorescence intensity (p<0.01. An immunoprecipitated complex of SK2 and RyR2 was identified in native cardiac tissue by co-immunoprecipitation assays. Our findings indicate that RyR2-mediated Ca2+ release is responsible for the activation and modulation of SK channels in cardiac myocytes.

  4. Case Report: Penetrating Cardiac Injury

    Directory of Open Access Journals (Sweden)

    Adem Grbolar


    Full Text Available Summary: Penetrating cardiac injurys caused by gunshots and penetrating tools have high mortality rates. The way of injury, how the cardiac area is effected and the presence of cardiac tamponadecauses mortality in different rates. However the better treatment quality of hospitals, increasingoperative techniques, and internel care unit quality has not been change during the years. Searching the literature, we want to present a 42 years old male patient whowas injured by knife and had a 1 cm skin wound on chest with cardiac tamponade. After sternotomy a 7 cm laseration was observed in heart. Cardioraphy was performed.

  5. Cardiac surgery for Kartagener syndrome. (United States)

    Tkebuchava, T; von Segesser, L K; Niederhäuser, U; Bauersfeld, U; Turina, M


    Two patients (one girl, one boy) with Kartagener syndrome (situs inversus, bronchiectasis, sinusitis), despite pulmonary problems and associated congenital cardiac anomalies, were operated on at the ages of 4 years and 7 years, respectively. They had had previous palliative treatment at the age of 3 months and 1.3 years, respectively. Both postoperative periods after total correction were without significant complications. Long-term follow-up was available for 9 and 19 years, respectively, with no manifestations of heart insufficiency. Both patients are physically active, and neither requires cardiac medication. Patients with Kartagener syndrome and associated congenital cardiac anomalies can successfully undergo multiple cardiac operations with good long-term outcome.

  6. Voltage-gated ion channel dysfunction precedes cardiomyopathy development in the dystrophic heart.

    Directory of Open Access Journals (Sweden)

    Xaver Koenig

    Full Text Available Duchenne muscular dystrophy (DMD, caused by mutations in the dystrophin gene, is associated with severe cardiac complications including cardiomyopathy and cardiac arrhythmias. Recent research suggests that impaired voltage-gated ion channels in dystrophic cardiomyocytes accompany cardiac pathology. It is, however, unknown if the ion channel defects are primary effects of dystrophic gene mutations, or secondary effects of the developing cardiac pathology.To address this question, we first investigated sodium channel impairments in cardiomyocytes derived from dystrophic neonatal mice prior to cardiomyopahty development, by using the whole cell patch clamp technique. Besides the most common model for DMD, the dystrophin-deficient mdx mouse, we also used mice additionally carrying an utrophin mutation. In neonatal cardiomyocytes, dystrophin-deficiency generated a 25% reduction in sodium current density. In addition, extra utrophin-deficiency significantly altered sodium channel gating parameters. Moreover, also calcium channel inactivation was considerably reduced in dystrophic neonatal cardiomyocytes, suggesting that ion channel abnormalities are universal primary effects of dystrophic gene mutations. To assess developmental changes, we also studied sodium channel impairments in cardiomyocytes derived from dystrophic adult mice, and compared them with the respective abnormalities in dystrophic neonatal cells. Here, we found a much stronger sodium current reduction in adult cardiomyocytes. The described sodium channel impairments slowed the upstroke of the action potential in adult cardiomyocytes, and only in dystrophic adult mice, the QRS interval of the electrocardiogram was prolonged.Ion channel impairments precede pathology development in the dystrophic heart, and may thus be considered potential cardiomyopathy triggers.

  7. Mutation in S6 domain of HCN4 channel in patient with suspected Brugada syndrome modifies channel function. (United States)

    Biel, Stephanie; Aquila, Marco; Hertel, Brigitte; Berthold, Anne; Neumann, Thomas; DiFrancesco, Dario; Moroni, Anna; Thiel, Gerhard; Kauferstein, Silke


    Diseases such as the sick sinus and the Brugada syndrome are cardiac abnormalities, which can be caused by a number of genetic aberrances. Among them are mutations in HCN4, a gene, which encodes the hyperpolarization-activated, cyclic nucleotide-gated ion channel 4; this pacemaker channel is responsible for the spontaneous activity of the sinoatrial node. The present genetic screening of patients with suspected or diagnosed Brugada or sick sinus syndrome identified in 1 out of 62 samples the novel mutation V492F. It is located in a highly conserved site of hyperpolarization-activated cyclic nucleotide-gated (HCN)4 channel downstream of the filter at the start of the last transmembrane domain S6. Functional expression of mutant channels in HEK293 cells uncovered a profoundly reduced channel function but no appreciable impact on channel synthesis and trafficking compared to the wild type. The inward rectifying HCN4 current could be partially rescued by an expression of heteromeric channels comprising wt and mutant monomers. These heteromeric channels were responsive to cAMP but they required a more negative voltage for activation and they exhibited a lower current density than the wt channel. This suggests a dominant negative effect of the mutation in patients, which carry this heterozygous mutation. Such a modulation of HCN4 activity could be the cause of the diagnosed cardiac abnormality.

  8. Next generation sequencing for molecular confirmation of hereditary sudden cardiac death syndromes. (United States)

    Márquez, Manlio F; Cruz-Robles, David; Ines-Real, Selene; Vargas-Alarcón, Gilberto; Cárdenas, Manuel


    Hereditary sudden cardiac death syndromes comprise a wide range of diseases resulting from alteration in cardiac ion channels. Genes involved in these syndromes represent diverse mutations that cause the altered encoding of the diverse proteins constituting these channels, thus affecting directly the currents of the corresponding ions. In the present article we will briefly review how to arrive to a clinical diagnosis and we will present the results of molecular genetic studies made in Mexican subjects attending the SCD Syndromes Clinic of the National Institute of Cardiology of Mexico City.

  9. Virtual cardioscopy: interactive endocardial visualization to guide RF cardiac ablation (United States)

    Holmes, David R., III; Rettmann, Maryam E.; Cameron, Bruce M.; Camp, Jon J.; Robb, Richard A.


    Cardiac arrhythmias are a debilitating, potentially life threatening condition involving aberrant electrical activity in the heart which results in abnormal heart rhythm. Virtual cardioscopy can play an important role in minimally invasive treatment of cardiac arrhythmias. Second and third generation image-guidance systems are now available for the treatment of arrhythmias using RF ablation catheters. While these 3D tools provide useful information to the clinician, additional enhancements to the virtual cardioscopy display paradigm are critical for optimal therapy guidance. Based on input from clinical collaborators, several key visualization techniques have been developed to enhance the use of virtual cardioscopy during cardiac ablation procedures. We have identified, designed and incorporated several visual cues important to successful virtual cardioscopy. These features include the use of global reference maps, parametric mapping, and focused navigation and targeting using abnormal electro-physiologic activity. Our virtual cardioscopy system is designed for real-time use during RF cardiac ablation procedures. Several unique visualizations from our virtual cardioscopy system will be presented. Evaluation of the system with phantom and animal studies will be presented. This research is supported by grant EB002834 from the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health.

  10. Detection of late radiation damage on left atrial fibrosis using cardiac late gadolinium enhancement magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Y. Jessica Huang, PhD


    Conclusions: With LGE-MRI and 3-dimensional dose mapping on the treatment planning system, it is possible to define subclinical cardiac damage and distinguish intrinsic cardiac tissue change from radiation induced cardiac tissue damage. Imaging myocardial injury secondary to EBRT using MRI may be a useful modality to follow cardiac toxicity from EBRT and help identify individuals who are more susceptible to EBRT damage. LGE-MRI may provide essential information to identify early screening strategy for affected cancer survivors after EBRT treatment.

  11. Cardiac elastography: detecting pathological changes in myocardium tissues (United States)

    Konofagou, Elisa E.; Harrigan, Timothy; Solomon, Scott


    Estimation of the mechanical properties of the cardiac muscle has been shown to play a crucial role in the detection of cardiovascular disease. Elastography was recently shown feasible on RF cardiac data in vivo. In this paper, the role of elastography in the detection of ischemia/infarct is explored with simulations and in vivo experiments. In finite-element simulations of a portion of the cardiac muscle containing an infarcted region, the cardiac cycle was simulated with successive compressive and tensile strains ranging between -30% and 20%. The incremental elastic modulus was also mapped uisng adaptive methods. We then demonstrated this technique utilizing envelope-detected sonographic data (Hewlett-Packard Sonos 5500) in a patient with a known myocardial infarction. In cine-loop and M-Mode elastograms from both normal and infarcted regions in simulations and experiments, the infarcted region was identifed by the up to one order of magnitude lower incremental axial displacements and strains, and higher modulus. Information on motion, deformation and mechanical property should constitute a unique tool for noninvasive cardiac diagnosis.

  12. Nonlinear interpolation fractal classifier for multiple cardiac arrhythmias recognition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.-H. [Department of Electrical Engineering, Kao-Yuan University, No. 1821, Jhongshan Rd., Lujhu Township, Kaohsiung County 821, Taiwan (China); Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)], E-mail:; Du, Y.-C.; Chen Tainsong [Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)


    This paper proposes a method for cardiac arrhythmias recognition using the nonlinear interpolation fractal classifier. A typical electrocardiogram (ECG) consists of P-wave, QRS-complexes, and T-wave. Iterated function system (IFS) uses the nonlinear interpolation in the map and uses similarity maps to construct various data sequences including the fractal patterns of supraventricular ectopic beat, bundle branch ectopic beat, and ventricular ectopic beat. Grey relational analysis (GRA) is proposed to recognize normal heartbeat and cardiac arrhythmias. The nonlinear interpolation terms produce family functions with fractal dimension (FD), the so-called nonlinear interpolation function (NIF), and make fractal patterns more distinguishing between normal and ill subjects. The proposed QRS classifier is tested using the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. Compared with other methods, the proposed hybrid methods demonstrate greater efficiency and higher accuracy in recognizing ECG signals.

  13. 血流向量图评价心脏再同步化治疗中长期患者暂时中断起搏器前后左心室流场演变%Evaluation on left ventricular intra-cardiac flow field before and after temporary interruption of pacemaker in mid-to-long-term cardiac resynchronization therapy patients by vector flow mapping

    Institute of Scientific and Technical Information of China (English)

    叶晶晶; 纳丽莎; 刘丽文; 马斌; 沈敏; 左蕾; 高文霞; 周海燕


    目的 应用血流向量图(VFM)评价心脏再同步化治疗(CRT)中长期患者暂时中断起搏器前后左室收缩期血液流场变化特征以及心功能变化情况.方法 严格按照入选标准选择起搏器植入术后6个月以上的对CRT有反应的患者32例,分别于中断起搏器前后行超声心动图检查,依次测量左室短轴舒张末内径(LVEDD)及收缩末内径(LVESD),左室舒张末容积(LVEDV)及收缩末容积(LVESV),并计算左室射血分数(LVEF),测量左室压力最大上升速率(LVDp/Dtmax),主动脉瓣上血流速度时间积分(AV-VTI),二尖瓣反流容积(MRV)、面积(MRA).利用VFM软件采集左室内血流向量图像,启用涡流模式图,取二尖瓣关闭瞬间(MVC)、主动脉瓣开放瞬间(AVO)、主动脉血流速度达峰瞬间(APV)以及主动脉瓣关闭瞬间(AVC)四个节点,分别测量涡流的横径(DH)、纵径(DL)、流量(FV)、深度(VD),计算涡流面积(VA),计算从主动脉瓣开放到主动脉血流速度达峰时涡流流量的衰减率(FV-CR%)和面积的衰减率(VA-CR%),并观察其演变特征.结果 与起搏器关闭前比较,关闭起搏器10 min后患者的AV-VTI、LVDp/Dtmax均降低,差异均具有统计学意义(P<0.05);据VFM观测从主动脉瓣开放到主动脉血流速度达峰时左室腔FV-CR%、VA-CR%均减低,差异均具有统计学意义(P<0.01);且LVEF与VA-CR%存在正相关,起搏器关闭前后其相关系数分别为0.632(P<0.01)和0.654(P<0.01).结论 暂时中断起搏器后常规超声心动图测量参数及VFM参数均出现明显恶化.VFM技术能够客观有效地反映中断起搏器前后左室收缩期血液流场特征的改变与左室功能的变化及其相关关系,并提示远期持续CRT治疗的必要性.%Objective To evaluate left ventricular systolic function and intra-cardiac flow field before and after temporary interruption of pacemaker in mid-to-long-term cardiac resynchronization therapy patients by vector flow

  14. Hypokalemia and sudden cardiac death

    DEFF Research Database (Denmark)

    Kjeldsen, Keld


    Worldwide, approximately three million people suffer sudden cardiac death annually. These deaths often emerge from a complex interplay of substrates and triggers. Disturbed potassium homeostasis among heart cells is an example of such a trigger. Thus, hypokalemia and, also, more transient...... of fatal arrhythmia and sudden cardiac death a patient is, the more attention should be given to the potassium homeostasis....

  15. The Danish Cardiac Rehabilitation Database

    DEFF Research Database (Denmark)

    Zwisler, Ann-Dorthe; Rossau, Henriette Knold; Nakano, Anne


    AIM OF DATABASE: The Danish Cardiac Rehabilitation Database (DHRD) aims to improve the quality of cardiac rehabilitation (CR) to the benefit of patients with coronary heart disease (CHD). STUDY POPULATION: Hospitalized patients with CHD with stenosis on coronary angiography treated with percutane...

  16. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter


    . An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  17. [Cardiac myxoma with cerebral metastases]. (United States)

    Bazin, A; Peruzzi, P; Baudrillard, J C; Pluot, M; Rousseaux, P


    A 56 year old woman developed multiple metastases in the cerebrum and cerebellum, four years after cardiac intervention on a left atrial myxoma. The absence of stroke is noteworthy. Multiple high density lesions with contrast enhancement were seen by CT scan, suggesting metastatic neoplasms. Histological examination confirmed the diagnosis of metastases of cardiac myxoma. Only four cases were recorded in the literature.

  18. Health Instruction Packages: Cardiac Anatomy. (United States)

    Phillips, Gwen; And Others

    Text, illustrations, and exercises are utilized in these five learning modules to instruct nurses, students, and other health care professionals in cardiac anatomy and functions and in fundamental electrocardiographic techniques. The first module, "Cardiac Anatomy and Physiology: A Review" by Gwen Phillips, teaches the learner to draw…

  19. Pneumothorax in cardiac pacing

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard;


    AIM: To identify risk factors for pneumothorax treated with a chest tube after cardiac pacing device implantation in a population-based cohort.METHODS AND RESULTS: A nationwide cohort study was performed based on data on 28 860 patients from the Danish Pacemaker Register, which included all Danish...... patients who received their first pacemaker (PM) or cardiac resynchronization device from 1997 to 2008. Multiple logistic regression was used to estimate adjusted odds ratios (aOR) with 95% confidence intervals for the association between risk factors and pneumothorax treated with a chest tube. The median...... age was 77 years (25th and 75th percentile: 69-84) and 55% were male (n = 15 785). A total of 190 patients (0.66%) were treated for pneumothorax, which was more often in women [aOR 1.9 (1.4-2.6)], and in patients with age >80 years [aOR 1.4 (1.0-1.9)], a prior history of chronic obstructive pulmonary...

  20. Leadership in cardiac surgery. (United States)

    Rao, Christopher; Patel, Vanash; Ibrahim, Michael; Ahmed, Kamran; Wong, Kathie A; Darzi, Ara; von Segesser, Ludwig K; Athanasiou, Thanos


    Despite the efficacy of cardiac surgery, less invasive interventions with more uncertain long-term outcomes are increasingly challenging surgery as first-line treatment for several congenital, degenerative and ischemic cardiac diseases. The specialty must evolve if it is to ensure its future relevance. More importantly, it must evolve to ensure that future patients have access to treatments with proven long-term effectiveness. This cannot be achieved without dynamic leadership; however, our contention is that this is not enough. The demands of a modern surgical career and the importance of the task at hand are such that the serendipitous emergence of traditional charismatic leadership cannot be relied upon to deliver necessary change. We advocate systematic analysis and strategic leadership at a local, national and international level in four key areas: Clinical Care, Research, Education and Training, and Stakeholder Engagement. While we anticipate that exceptional individuals will continue to shape the future of our specialty, the creation of robust structures to deliver collective leadership in these key areas is of paramount importance.

  1. Map Projection

    CERN Document Server

    Ghaderpour, Ebrahim


    In this paper, we introduce some known map projections from a model of the Earth to a flat sheet of paper or map and derive the plotting equations for these projections. The first fundamental form and the Gaussian fundamental quantities are defined and applied to obtain the plotting equations and distortions in length, shape and size for some of these map projections.

  2. Functional cardiac imaging by random access microscopy

    Directory of Open Access Journals (Sweden)

    Claudia eCrocini


    Full Text Available Advances in the development of voltage sensitive dyes and Ca2+ sensors in combination with innovative microscopy techniques allowed researchers to perform functional measurements with an unprecedented spatial and temporal resolution. At the moment, one of the shortcomings of available technologies is their incapability of imaging multiple fast phenomena while controlling the biological determinants involved. In the near future, ultrafast deflectors can be used to rapidly scan laser beams across the sample, performing optical measurements of action potential and Ca2+ release from multiple sites within cardiac cells and tissues. The same scanning modality could also be used to control local Ca2+ release and membrane electrical activity by activation of caged compounds and light-gated ion channels. With this approach, local Ca2+ or voltage perturbations could be induced, simulating arrhythmogenic events, and their impact on physiological cell activity could be explored. The development of this optical methodology will provide fundamental insights in cardiac disease, boosting new therapeutic strategies, and, more generally, it will represent a new approach for the investigation of the physiology of excitable cells.

  3. 心内组织多普勒超声显像标测心脏传导系统心肌兴奋心肌电和机械兴奋多参数显像%Cardiac conductive system excitation maps using intracardiac ultrasound catheter with tissue Doppler imaging:multiparametric imaging of electrical and mechanical activation

    Institute of Scientific and Technical Information of China (English)

    尹立雪; 蔡力; 李春梅; 邓燕; 罗芸; 郑昌琼; 李德舆; 赵树魁


    feasible tissue Doppler maps of myocardial contraction in response to electrical activation of cardiac conductive system using intracardiac ultrasound catheter with high resolution tissue Doppler imaging (TDI).Methods Open-chest model of five dogs were used. An intracardiac ultrasound catheter with TDI capabilities was introduced into SVC, right atria and ventricle. The stimulating electrode was placed within ventricular subepicardium and subendocardium. 2D gray-scale ultrasonic examination was performed to observe the anatomic structure of sino-atrial node (SAN), right Koch's triangle, IVS and free ventricular wall. M-mode and 2D TDI were obtained to map myocardial velocity and acceleration with normal sinus rhyme at different sites of cardiac conductive system described above. Mapping of ventricular myocardial velocity and acceleration was performed during pacing. The regional myocardial excitation on the 2D TDI images was analyzed using a dedicated method for quantification.Results The detail anatomic structure of SAN with a dramatic increase of velocity and acceleration of SAN was presented at the beginning of atrial electrical excitation. The changes of velocity and acceleration of SAN as a time sequence curve quantitatively demonstrated the process of SAN′s excitation. A high value distribution of velocity and acceleration within right Koch′s triangle progressed into upper IVS before the early ventricular electrical excitation. The ventricular onset of myocardial velocity and acceleration induced by electrical stimulation was exactly at the location of electrical stimulating sites with size less than 5 mm, and coextended as concentric circle within ventricular wall. The delay of myocardial contraction is less than 7 ms.Conclusions The onset and propagation of myocardial velocity and acceleration can be defined within cardiac conductive system using intracardiac ultrasonic catheter with TDI. This techniqne will provide a simultaneous single visualization of

  4. Present Researching Approaches and Future Prospects for Treatment of Cardiac Diseases-Integrative Medicine

    Institute of Scientific and Technical Information of China (English)

    Yan Feng; Hao Xu; Yi-Xin Wang; Li-Ping Ma; Da-Zhuo Shi


    The pathogenesis of cardiac diseases is very complex and involved in many gene transcription and protein expression. How to effectively treat the diseases has become the hotspot of modern medicine. Accumulating evidences over the past decades on integrative medicine have shown us hopeful future prospects. With the development of modern biomedicine, such as sketch mapping genomic sequence, functional genomics, proteomics and pharmacogenetics, more advanced techniques could be applied in elucidating the possibly complicated biological networks, or complex pathological and physiological mechanisms underlying cardiac diseases, by which integrative medicine will also bring out some new and more effective strategies in the treatment of cardiac diseases.

  5. Sequencing of SCN5A Identifies Rare and Common Variants Associated With Cardiac Conduction : Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium

    NARCIS (Netherlands)

    Magnani, Jared W.; Brody, Jennifer A.; Prins, Bram P.; Arking, Dan E.; Lin, Honghuang; Yin, Xiaoyan; Liu, Ching-Ti; Morrison, Alanna C.; Zhang, Feng; Spector, Tim D.; Alonso, Alvaro; Bis, Joshua C.; Heckbert, Susan R.; Lumley, Thomas; Sitlani, Colleen M.; Cupples, Adrienne; Lubitz, Steven A.; Soliman, Elsayed Z.; Pulit, Sara L.; Newton-Cheh, Christopher; O'Donnell, Christopher J.; Ellinor, Patrick T.; Benjamin, Emelia J.; Muzny, Donna M.; Gibbs, Richard A.; Santibanez, Jireh; Taylor, Herman A.; Rotter, Jerome I.; Lange, Leslie A.; Psaty, Bruce M.; Jackson, Rebecca; Rich, Stephen S.; Boerwinkle, Eric; Jamshidi, Yalda; Sotoodehnia, Nona


    Background-The cardiac sodium channel SCN5A regulates atrioventricular and ventricular conduction. Genetic variants in this gene are associated with PR and QRS intervals. We sought to characterize further the contribution of rare and common coding variation in SCN5A to cardiac conduction. Methods an

  6. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system

    NARCIS (Netherlands)

    Bezzina, CR; Rook, MB; Groenewegen, WA; Herfst, LJ; van der Wal, AC; Lam, J; Jongsma, HJ; Wilde, AAM; Mannens, MMAM


    Cardiac conduction defects associate with mutations in SCN5A, the gene encoding the cardiac Na+ channel. In the present study, we characterized a family in which the proband was born in severe distress with irregular wide complex tachycardia. His older sister died at 1 year of age from severe conduc

  7. Ionic mechanisms underlying cardiac toxicity of the organochloride solvent trichloromethane. (United States)

    Zhou, Yuan; Wu, Hui-Jun; Zhang, Yan-Hui; Sun, Hai-Ying; Wong, Tak-Ming; Li, Gui-Rong


    Trichloromethane (chloroform) is widely used for industrial chemical synthesis and also as an organic solvent in laboratories or ingredient of pesticides. Sudden death resulted from cardiac arrhythmias has been reported in clinic with acute trichloromethane intoxication. The present study was designed to investigate ionic mechanisms underlying arrhythmogenic effect (cardiac toxicity) of trichloromethane in isolated rat hearts and ventricular myocytes and HEK 293 cells stably expressing human Nav1.5, HCN2, or hERG channel using conventional electrophysiological approaches. It was found that trichloromethane (5mM) induced bradycardia and atrial-ventricular conduction blockade or ventricular fibrillation, and inhibited cardiac contractile function in isolated rat hearts. It shortened action potential duration (APD) in isolated rat ventricular myocytes, and increased the threshold current for triggering action potential, but had no effect on the inward rectifier K(+) current I(K1). However, trichloromethane significantly inhibited the L-type calcium current I(Ca.L) and the transient outward potassium current I(to) in a concentration-dependent manner (IC(50)s: 1.01 and 2.4mM, respectively). In HEK 293 cells stably expressing cardiac ion channel genes, trichloromethane reduced hNav1.5, HCN2, and hERG currents with IC(50)s of 8.2, 3.3, and 4.0mM, respectively. These results demonstrate for the first time that trichloromethane can induce bradycardia or ventricular fibrillation, and the arrhythmogenic effect of trichloromethane is related to the inhibition of multiple ionic currents including I(Ca.L), I(to), I(Na), HCN2, and hERG channels.

  8. Role of the intercalated disc in cardiac propagation and arrhythmogenesis. (United States)

    Kleber, Andre G; Saffitz, Jeffrey E


    This review article discusses mechanisms underlying impulse propagation in cardiac muscle with specific emphasis on the role of the cardiac cell-to-cell junction, called the "intercalated disc."The first part of this review deals with the role of gap junction channels, formed by connexin proteins, as a determinant of impulse propagation. It is shown that, depending on the underlying structure of the cellular network, decreasing the conductance of gap junction channels (so-called "electrical uncoupling") may either only slow, or additionally stabilize propagation and reverse unidirectional propagation block to bidirectional propagation. This is because the safety factor for propagation increases with decreasing intercellular electrical conductance. The role of heterogeneous connexin expression, which may be present in disease states, is also discussed. The hypothesis that so-called ephaptic impulse transmission plays a role in heart and can substitute for electrical coupling has been revived recently. Whereas ephaptic transmission can be demonstrated in theoretical simulations, direct experimental evidence has not yet been presented. The second part of this review deals with the interaction of three protein complexes at the intercalated disc: (1) desmosomal and adherens junction proteins, (2) ion channel proteins, and (3) gap junction channels consisting of connexins. Recent work has revealed multiple interactions between these three protein complexes which occur, at least in part, at the level of protein trafficking. Such interactions are likely to play an important role in the pathogenesis of arrhythmogenic cardiomyopathy, and may reveal new therapeutic concepts and targets.


    Directory of Open Access Journals (Sweden)

    Andre Georges Kleber


    Full Text Available AbstractThis review article discusses mechanisms underlying impulse propagation in cardiac muscle with specific emphasis on the role of the cardiac cell-to-cell junction, called the intercalated disc. The first part of this review deals with the role of gap junction channels, formed by connexin proteins, as a determinant of impulse propagation. It is shown that, depending on the underlying structure of the cellular network, decreasing the conductance of gap junction channels (so-called electrical uncoupling may either only slow, or additionally stabilize propagation and reverse unidirectional propagation block to bidirectional propagation. This is because the safety factor for propagation increases with decreasing intercellular electrical conductance. The role of heterogeneous connexin expression, which may be present in disease states, is also discussed. The hypothesis that so-called ephaptic impulse transmission plays a role in heart and can substitute for electrical coupling has been revived recently. Whereas ephaptic transmission can be demonstrated in theoretical simulations, direct experimental evidence has not yet been presented.The second part of this review deals with the interaction of three protein complexes at the intercalated disc: (1 desmosomal and adherers junction proteins, (2 ion channel proteins, and (3 gap junction channels consisting of connexins. Recent work has revealed multiple interactions between these three protein complexes which occur, at least in part, at the level of protein trafficking. Such interactions are likely to play an important role in the pathogenesis of arrhythmogenic cardiomyopathy, and may reveal new therapeutic concepts and targets.

  10. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... mechanism of regulation. Besides being regulated by cell volume, KCNQ1 is also modulated by the interaction of the ß subunit KCNE1 giving rise to the cardiac IKs delayed rectifier potassium current. Apart from altering the kinetic characteristics of the KCNQ1 channel current, KCNE1 also augments the KCNQ1...

  11. Activation of ERG2 potassium channels by the diphenylurea NS1643

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Olesen, Søren-Peter; Grunnet, Morten


    Three members of the ERG potassium channel family have been described (ERG1-3 or Kv 11.1-3). ERG1 is by far the best characterized subtype and it constitutes the molecular component of the cardiac I(Kr) current. All three channel subtypes are expressed in neurons but their function remains unclear...

  12. Frequency-dependent modulation of KCNQ1 and HERG1 potassium channels

    DEFF Research Database (Denmark)

    Diness, Thomas Goldin; Hansen, Rie Schultz; Olesen, Søren-Peter;


    To obtain information about a possible frequency-dependent modulation of HERG1 and hKCNQ1 channels, we performed heterologous expression in Xenopus laevis oocytes. Channel activation was obtained by voltage protocols roughly imitating cardiac action potentials at frequencies of 1, 3, 5.8, and 8.3...

  13. Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Greenwood, Iain A; Moffatt, James D


    Members of the K(v)7 voltage-gated K(+) channel family are important determinants of cardiac and neuronal membrane excitability. Recently, we and others have shown that K(v)7 channels are also crucial regulators of smooth muscle activity. The aim of the present study was to assess the K(v)7 expre...

  14. Role of calcium activated potassium channels in atrial fibrillation pathophysiology and therapy

    DEFF Research Database (Denmark)

    Diness, Jonas G.; Bentzen, Bo H.; S. Sørensen, Ulrik


    Small-conductance Ca2+-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels since they might constitute a relatively atrial selective target. The present review will give...

  15. Forest Management Effects on Channel Wood and Wood-Channel Interactions in Caspar Creek, California (United States)

    Hilton, S.


    First-cycle logging in much of California's redwood region converted streams with some of the highest known wood volumes and piece sizes to efficient log transport channels. A century later, second-growth trees are still much smaller than old growth, and later logging and stream cleaning have further affected potential wood inputs and large woody debris (LWD) volumes in channels. At Caspar Creek, a 50-year paired watershed study creates an opportunity to compare the effects of two second-growth forest management strategies on wood dynamics in these channels, and to examine how the resulting differences in LWD affect channel form and process. Both the North and South Forks of Caspar Creek started the 20th century with almost no in-channel wood and little potential LWD as a result of clearcut logging, burning, and channel clearing. Stands had partially regrown by 1968, when near-channel roadbuilding and selective logging in the 424-ha South Fork watershed again reduced potential channel LWD. Trees that fell into the channel during logging were removed, along with some instream wood. Logging began in the 384-ha North Fork in 1989 using ridgetop roads; buffer strips were left between the mainstem channel and upslope clearcuts. Potential LWD in the buffer strips was reduced by selective cutting, but channel LWD was not immediately affected. LWD mapping, inventories, and tagging, channel cross-sections and photos, and pool mapping and volume measurements show differences in channel wood and LWD-channel interactions between the two watersheds. Windthrow from buffer strips increased the total channel LWD volume in the North Fork in the mid 1990's while reducing potential future LWD. These higher LWD loads increased pool volumes and enabled increased sediment storage, particularly upstream of logjams. In the South Fork, total LWD volumes are lower and a higher proportion of the wood is residual old growth pieces, some of which entered the channel during the 1970's logging

  16. Topographic mapping (United States)



    The U.S. Geological Survey (USGS) produced its first topographic map in 1879, the same year it was established. Today, more than 100 years and millions of map copies later, topographic mapping is still a central activity for the USGS. The topographic map remains an indispensable tool for government, science, industry, and leisure. Much has changed since early topographers traveled the unsettled West and carefully plotted the first USGS maps by hand. Advances in survey techniques, instrumentation, and design and printing technologies, as well as the use of aerial photography and satellite data, have dramatically improved mapping coverage, accuracy, and efficiency. Yet cartography, the art and science of mapping, may never before have undergone change more profound than today.

  17. Proper Voltage-Dependent Ion Channel Function in Dysferlin-Deficient Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Lena Rubi


    Full Text Available Background/Aims: Dysferlin plays a decisive role in calcium-dependent membrane repair in myocytes. Mutations in the encoding DYSF gene cause a number of myopathies, e.g. limb-girdle muscular dystrophy type 2B (LGMD2B. Besides skeletal muscle degenerative processes, dysferlin deficiency is also associated with cardiac complications. Thus, both LGMD2B patients and dysferlin-deficient mice develop a dilated cardiomyopathy. We and others have recently reported that dystrophin-deficient ventricular cardiomyocytes from mouse models of Duchenne muscular dystrophy show significant abnormalities in voltage-dependent ion channels, which may contribute to the pathophysiology in dystrophic cardiomyopathy. The aim of the present study was to investigate if dysferlin, like dystrophin, is a regulator of cardiac ion channels. Methods and Results: By using the whole cell patch-clamp technique, we compared the properties of voltage-dependent calcium and sodium channels, as well as action potentials in ventricular cardiomyocytes isolated from the hearts of normal and dysferlin-deficient (dysf mice. In contrast to dystrophin deficiency, the lack of dysferlin did not impair the ion channel properties and left action potential parameters unaltered. In connection with normal ECGs in dysf mice these results suggest that dysferlin deficiency does not perturb cardiac electrophysiology. Conclusion: Our study demonstrates that dysferlin does not regulate cardiac voltage-dependent ion channels, and implies that abnormalities in cardiac ion channels are not a universal characteristic of all muscular dystrophy types.

  18. Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation

    DEFF Research Database (Denmark)

    Nielsen, Jonas Bille; Bentzen, Bo Hjorth; Olesen, Morten Salling;


    Aims: Atrial fibrillation (AF) is the most common cardiac arrhythmia. Disturbances in cardiac potassium conductance are considered as one of the disease mechanisms in AF. We aimed to investigate if mutations in potassium-channel β-subunits KCNE2 and KCNE3 are associated with early-onset lone AF. ...

  19. Physics of Cardiac Arrhythmogenesis (United States)

    Karma, Alain


    A normal heartbeat is orchestrated by the stable propagation of an excitation wave that produces an orderly contraction. In contrast, wave turbulence in the ventricles, clinically known as ventricular fibrillation (VF), stops the heart from pumping and is lethal without prompt defibrillation. I review experimental, computational, and theoretical studies that have shed light on complex dynamical phenomena linked to the initiation, maintenance, and control of wave turbulence. I first discuss advances made to understand the precursor state to a reentrant arrhythmia where the refractory period of cardiac tissue becomes spatiotemporally disordered; this is known as an arrhythmogenic tissue substrate. I describe observed patterns of transmembrane voltage and intracellular calcium signaling that can contribute to this substrate, and symmetry breaking instabilities to explain their formation. I then survey mechanisms of wave turbulence and discuss novel methods that exploit electrical pacing stimuli to control precursor patterns and low-energy pulsed electric fields to control turbulence.

  20. Mediastinitis after cardiac transplantation

    Directory of Open Access Journals (Sweden)

    Noedir A. G. Stolf


    Full Text Available OBJECTIVE: Assessment of incidence and behavior of mediastinitis after cardiac transplantation. METHODS: From 1985 to 1999, 214 cardiac transplantations were performed, 12 (5.6% of the transplanted patients developed confirmed mediastinitis. Patient's ages ranged from 42 to 66 years (mean of 52.3±10.0 years and 10 (83.3% patients were males. Seven (58.3% patients showed sternal stability on palpation, 4 (33.3% patients had pleural empyema, and 2 (16.7% patients did not show purulent secretion draining through the wound. RESULTS: Staphylococcus aureus was the infectious agent identified in the wound secretion or in the mediastinum, or both, in 8 (66.7% patients. Staphylococcus epidermidis was identified in 2 (16.7% patients, Enterococcus faecalis in 1 (8.3% patient, and the cause of mediastinitis could not be determined in 1 (8.3% patient. Surgical treatment was performed on an emergency basis, and the extension of the débridement varied with local conditions. In 2 (16.7% patients, we chose to leave the surgical wound open and performed daily dressings with granulated sugar. Total sternal resection was performed in only 1 (8.3% patient. Out of this series, 5 (41.7% patients died, and the causes of death were related to the infection. Autopsy revealed persistence of mediastinitis in 1 (8.3% patient. CONCLUSION: Promptness in diagnosing mediastinitis and precocious surgical drainage have changed the natural evolution of this disease. Nevertheless, observance of the basic precepts of prophylaxis of infection is still the best way to treat mediastinitis.

  1. Molecular cloning and functional expression of the Equine K+ channel KV11.1 (Ether à Go-Go-related/KCNH2 gene) and the regulatory subunit KCNE2 from equine myocardium

    DEFF Research Database (Denmark)

    Pedersen, Philip Juul; Thomsen, Kirsten Brolin; Olander, Emma Rie;


    The KCNH2 and KCNE2 genes encode the cardiac voltage-gated K+ channel KV11.1 and its auxiliary β subunit KCNE2. KV11.1 is critical for repolarization of the cardiac action potential. In humans, mutations or drug therapy affecting the KV11.1 channel are associated with prolongation of the QT inter...

  2. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)


    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  3. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore


    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  4. Fetal cardiac rhabdomyoma: case report

    Directory of Open Access Journals (Sweden)

    Seyed Mostafa Ghavami


    Full Text Available Background: The primary manifestation of cardiac tumors in embryonic period is a very rare condition. Cardiac rhabdomyomas most frequently arise in the ventricular myocardium, they may also occur in the atria and the epicardial surface. In spite of its benign nature, the critical location of the tumor inside the heart can lead to lethal arrhythmias and chamber obstruction. Multiple rhabdomyomas are strongly associated with tuberous sclerosis which is associated with mental retardation and epilepsy of variable severity. Ultrasonography as a part of routine prenatal screening, is the best method for the diagnosis of cardiac rhabdomyomas. In the review of articles published in Iran, fetal cardiac rhabdomyoma was not reported. Case presentation: We report a case of cardiac rhabdomyoma on a 24-year-old gravid 1, referred to Day Medical Imaging Center for routine evaluation of fetal abnormalities at 31 weeks of her gestational age. Ultrasonographic examination displayed a homogenous echogenic mass (13×9mm, originating from the left ventricle of the fetal heart. It was a normal pregnancy without any specific complications. Other organs of the fetus were found normal and no cardiac abnormalities were appeared. No Pericardial fluid effusion was found. The parents did not have consanguineous marriage. They did not also have any specific disease such as tuberous sclerosis. Conclusion: The clinical features of cardiac rhabdomyomas vary widely, depending on the location, size, and number of tumors in the heart. Although cardiac rhabdomyoma is a benign tumor in many affected fetuses, an early prenatal diagnosis of the tumor is of great significance in making efficient planning and providing adequate follow up visits of the patients and the complications such as, heart failure and outlet obstruction of cardiac chambers.

  5. River channel adjustments in Southern Italy over the past 150 years and implications for channel recovery (United States)

    Scorpio, Vittoria; Aucelli, Pietro P. C.; Giano, Salvatore I.; Pisano, Luca; Robustelli, Gaetano; Rosskopf, Carmen M.; Schiattarella, Marcello


    Multi-temporal GIS analysis of topographic maps and aerial photographs along with topographic and geomorphological surveys are used to assess evolutionary trends and key control factors of channel adjustments for five major rivers in southern Italy (the Trigno, Biferno, Volturno, Sinni and Crati rivers) to support assessment of channel recovery and river restoration. Three distinct phases of channel adjustment are identified over the past 150 years primarily driven by human disturbances. Firstly, slight channel widening dominated from the last decades of the nineteenth century to the 1950s. Secondly, from the 1950s to the end of the 1990s, altered sediment fluxes induced by in-channel mining and channel works brought about moderate to very intense incision (up to 6-7 m) accompanied by strong channel narrowing (up to 96%) and changes in channel configuration from multi-threaded to single-threaded patterns. Thirdly, the period from around 2000 to 2015 has been characterized by channel stabilization and local widening. Evolutionary trajectories of the rivers studied are quite similar to those reconstructed for other Italian rivers, particularly regarding the second phase of channel adjustments and ongoing transitions towards channel recovery in some reaches. Analyses of river dynamics, recovery potential and connectivity with sediment sources of the study reaches, framed in their catchment context, can be used as part of a wider interdisciplinary approach that views effective river restoration alongside sustainable and risk-reduced river management.

  6. Epigenetic regulation in cardiac fibrosis

    Institute of Scientific and Technical Information of China (English)

    Li-Ming; Yu; Yong; Xu


    Cardiac fibrosis represents an adoptive response in the heart exposed to various stress cues. While resolution of the fibrogenic response heralds normalization of heart function, persistent fibrogenesis is usually associated with progressive loss of heart function and eventually heart failure. Cardiac fibrosis is regulated by a myriad of factors that converge on the transcription of genes encoding extracellular matrix proteins, a process the epigenetic machinery plays a pivotal role. In this minireview, we summarize recent advances regarding the epigenetic regulation of cardiac fibrosis focusing on the role of histone and DNA modifications and non-coding RNAs.

  7. Cardiac Involvement in Ankylosing Spondylitis (United States)

    Ozkan, Yasemin


    Ankylosing spondylitis is one of the subgroup of diseases called “seronegative spondyloarthropathy”. Frequently, it affects the vertebral colon and sacroiliac joint primarily and affects the peripheral joints less often. This chronic, inflammatory and rheumatic disease can also affect the extraarticular regions of the body. The extraarticular affections can be ophthalmologic, cardiac, pulmonary or neurologic. The cardiac affection can be 2-10% in all patients. Cardiac complications such as left ventricular dysfunction, aortitis, aortic regurgitation, pericarditis and cardiomegaly are reviewed. PMID:27222669

  8. Acupuncture therapy related cardiac injury. (United States)

    Li, Xue-feng; Wang, Xian


    Cardiac injury is the most serious adverse event in acupuncture therapy. The causes include needling chest points near the heart, the cardiac enlargement and pericardial effusion that will enlarge the projected area on the body surface and make the proper depth of needling shorter, and the incorrect needling method of the points. Therefore, acupuncture practitioners must be familiar with the points of the heart projected area on the chest and the correct needling methods in order to reduce the risk of acupuncture therapy related cardiac injury.

  9. Dynamical memory effects in correlated quantum channels (United States)

    Addis, Carole; Karpat, Göktuǧ; Macchiavello, Chiara; Maniscalco, Sabrina


    Memory effects play a fundamental role in the study of the dynamics of open quantum systems. There exist two conceptually distinct notions of memory discussed for quantum channels in the literature. In quantum information theory quantum channels with memory are characterized by the existence of correlations between successive applications of the channel on a sequence of quantum systems. In open quantum systems theory memory effects arise dynamically during the time evolution of quantum systems and define non-Markovian dynamics. Here we relate and combine these two different concepts of memory. In particular, we study the interplay between correlations between multiple uses of quantum channels and non-Markovianity as nondivisibility of the t -parametrized family of channels defining the dynamical map.

  10. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy


    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  11. Normal cardiac function in mice with supraphysiological cardiac creatine levels. (United States)

    Santacruz, Lucia; Hernandez, Alejandro; Nienaber, Jeffrey; Mishra, Rajashree; Pinilla, Miguel; Burchette, James; Mao, Lan; Rockman, Howard A; Jacobs, Danny O


    Creatine and phosphocreatine levels are decreased in heart failure, and reductions in myocellular phosphocreatine levels predict the severity of the disease and portend adverse outcomes. Previous studies of transgenic mouse models with increased creatine content higher than two times baseline showed the development of heart failure and shortened lifespan. Given phosphocreatine's role in buffering ATP content, we tested the hypothesis whether elevated cardiac creatine content would alter cardiac function under normal physiological conditions. Here, we report the creation of transgenic mice that overexpress the human creatine transporter (CrT) in cardiac muscle under the control of the α-myosin heavy chain promoter. Cardiac transgene expression was quantified by qRT-PCR, and human CrT protein expression was documented on Western blots and immunohistochemistry using a specific anti-CrT antibody. High-energy phosphate metabolites and cardiac function were measured in transgenic animals and compared with age-matched, wild-type controls. Adult transgenic animals showed increases of 5.7- and 4.7-fold in the content of creatine and free ADP, respectively. Phosphocreatine and ATP levels were two times as high in young transgenic animals but declined to control levels by the time the animals reached 8 wk of age. Transgenic mice appeared to be healthy and had normal life spans. Cardiac morphometry, conscious echocardiography, and pressure-volume loop studies demonstrated mild hypertrophy but normal function. Based on our characterization of the human CrT protein expression, creatine and phosphocreatine content, and cardiac morphometry and function, these transgenic mice provide an in vivo model for examining the therapeutic value of elevated creatine content for cardiac pathologies.

  12. Mouse models of SCN5A-related cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Flavien eCharpentier


    Full Text Available Mutations of SCN5A gene, which encodes the α-subunit of the voltage-gated Na+ channel NaV1.5, underlie hereditary cardiac arrhythmic syndromes such as the type 3 long QT syndrome, cardiac conduction diseases, the Brugada syndrome, the sick sinus syndrome, atrial standstill and numerous overlap syndromes. Patch-clamp studies in heterologous expression systems have provided important information to understand the genotype-phenotype relationships of these diseases. However, they could not clarify how SCN5A mutations can be responsible for such a large spectrum of diseases, for the late age of onset or the progressiveness of some of these diseases and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological mechanisms of cardiac SCN5A-related arrhythmic syndromes and several mouse models have been established. This paper reviews some of the results obtained on these models that, for most of them, recapitulate the clinical phenotypes of the patients. It also points out that these models also have their own limitations. Overall, mouse models appear as powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the secondary cellular consequences of SCN5A mutations such as the expression remodelling of other genes that might participate to the overall phenotype. Finally, they constitute useful tools for addressing the role of genetic and environmental modifiers on cardiac electrical activity.

  13. 3-OST-7 regulates BMP-dependent cardiac contraction.

    Directory of Open Access Journals (Sweden)

    Shiela C Samson


    Full Text Available The 3-O-sulfotransferase (3-OST family catalyzes rare modifications of glycosaminoglycan chains on heparan sulfate proteoglycans, yet their biological functions are largely unknown. Knockdown of 3-OST-7 in zebrafish uncouples cardiac ventricular contraction from normal calcium cycling and electrophysiology by reducing tropomyosin4 (tpm4 expression. Normal 3-OST-7 activity prevents the expansion of BMP signaling into ventricular myocytes, and ectopic activation of BMP mimics the ventricular noncontraction phenotype seen in 3-OST-7 depleted embryos. In 3-OST-7 morphants, ventricular contraction can be rescued by overexpression of tropomyosin tpm4 but not by troponin tnnt2, indicating that tpm4 serves as a lynchpin for ventricular sarcomere organization downstream of 3-OST-7. Contraction can be rescued by expression of 3-OST-7 in endocardium, or by genetic loss of bmp4. Strikingly, BMP misregulation seen in 3-OST-7 morphants also occurs in multiple cardiac noncontraction models, including potassium voltage-gated channel gene, kcnh2, affected in Romano-Ward syndrome and long-QT syndrome, and cardiac troponin T gene, tnnt2, affected in human cardiomyopathies. Together these results reveal 3-OST-7 as a key component of a novel pathway that constrains BMP signaling from ventricular myocytes, coordinates sarcomere assembly, and promotes cardiac contractile function.

  14. Cardiac arrhythmias in hypokalemic periodic paralysis: Hypokalemia as only cause? (United States)

    Stunnenberg, Bas C; Deinum, Jaap; Links, Thera P; Wilde, Arthur A; Franssen, Hessel; Drost, Gea


    It is unknown how often cardiac arrhythmias occur in hypokalemic periodic paralysis (HypoPP) and if they are caused by hypokalemia alone or other factors. This systematic review shows that cardiac arrhythmias were reported in 27 HypoPP patients. Cases were confirmed genetically (13 with an R528H mutation in CACNA1S, 1 an R669H mutation in SCN4A) or had a convincing clinical diagnosis of HypoPP (13 genetically undetermined) if reported prior to the availability of genetic testing. Arrhythmias occurred during severe hypokalemia (11 patients), between attacks at normokalemia (4 patients), were treatment-dependent (2 patients), or unspecified (10 patients). Nine patients died from arrhythmia. Convincing evidence for a pro-arrhythmogenic factor other than hypokalemia is still lacking. The role of cardiac expression of defective skeletal muscle channels in the heart of HypoPP patients remains unclear. Clinicians should be aware of and prevent treatment-induced cardiac arrhythmia in HypoPP.

  15. Mapping Deeply


    Denis Wood


    This is a description of an avant la lettre deep mapping project carried out by a geographer and a number of landscape architecture students in the early 1980s. Although humanists seem to take the “mapping” in deep mapping more metaphorically than cartographically, in this neighborhood mapping project, the mapmaking was taken literally, with the goal of producing an atlas of the neighborhood. In this, the neighborhood was construed as a transformer, turning the stuff of the world (gas, wate...

  16. Use of cardiac biomarkers in neonatology. (United States)

    Vijlbrief, Daniel C; Benders, Manon J N L; Kemperman, Hans; van Bel, Frank; de Vries, Willem B


    Cardiac biomarkers are used to identify cardiac disease in term and preterm infants. This review discusses the roles of natriuretic peptides and cardiac troponins. Natriuretic peptide levels are elevated during atrial strain (atrial natriuretic peptide (ANP)) or ventricular strain (B-type natriuretic peptide (BNP)). These markers correspond well with cardiac function and can be used to identify cardiac disease. Cardiac troponins are used to assess cardiomyocyte compromise. Affected cardiomyocytes release troponin into the bloodstream, resulting in elevated levels of cardiac troponin. Cardiac biomarkers are being increasingly incorporated into clinical trials as indicators of myocardial strain. Furthermore, cardiac biomarkers can possibly be used to guide therapy and improve outcome. Natriuretic peptides and cardiac troponins are potential tools in the diagnosis and treatment of neonatal disease that is complicated by circulatory compromise. However, clear reference ranges need to be set and validation needs to be carried out in a population of interest.

  17. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution (United States)

    Ding, Yichen; Lee, Juhyun; Ma, Jianguo; Sung, Kevin; Yokota, Tomohiro; Singh, Neha; Dooraghi, Mojdeh; Abiri, Parinaz; Wang, Yibin; Kulkarni, Rajan P.; Nakano, Atsushi; Nguyen, Thao P.; Fei, Peng; Hsiai, Tzung K.


    Light-sheet fluorescence microscopy (LSFM) serves to advance developmental research and regenerative medicine. Coupled with the paralleled advances in fluorescence-friendly tissue clearing technique, our cardiac LSFM enables dual-sided illumination to rapidly uncover the architecture of murine hearts over 10 by 10 by 10 mm3 in volume; thereby allowing for localizing progenitor differentiation to the cardiomyocyte lineage and AAV9-mediated expression of exogenous transmembrane potassium channels with high contrast and resolution. Without the steps of stitching image columns, pivoting the light-sheet and sectioning the heart mechanically, we establish a holistic strategy for 3-dimentional reconstruction of the “digital murine heart” to assess aberrant cardiac structures as well as the spatial distribution of the cardiac lineages in neonates and ion-channels in adults.

  18. The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition

    Directory of Open Access Journals (Sweden)

    Timothy S. Luongo


    Full Text Available Cardiac contractility is mediated by a variable flux in intracellular calcium (Ca2+, thought to be integrated into mitochondria via the mitochondrial calcium uniporter (MCU channel to match energetic demand. Here, we examine a conditional, cardiomyocyte-specific, mutant mouse lacking Mcu, the pore-forming subunit of the MCU channel, in adulthood. Mcu−/− mice display no overt baseline phenotype and are protected against mCa2+ overload in an in vivo myocardial ischemia-reperfusion injury model by preventing the activation of the mitochondrial permeability transition pore, decreasing infarct size, and preserving cardiac function. In addition, we find that Mcu−/− mice lack contractile responsiveness to acute β-adrenergic receptor stimulation and in parallel are unable to activate mitochondrial dehydrogenases and display reduced bioenergetic reserve capacity. These results support the hypothesis that MCU may be dispensable for homeostatic cardiac function but required to modulate Ca2+-dependent metabolism during acute stress.

  19. The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. (United States)

    Luongo, Timothy S; Lambert, Jonathan P; Yuan, Ancai; Zhang, Xueqian; Gross, Polina; Song, Jianliang; Shanmughapriya, Santhanam; Gao, Erhe; Jain, Mohit; Houser, Steven R; Koch, Walter J; Cheung, Joseph Y; Madesh, Muniswamy; Elrod, John W


    Cardiac contractility is mediated by a variable flux in intracellular calcium (Ca(2+)), thought to be integrated into mitochondria via the mitochondrial calcium uniporter (MCU) channel to match energetic demand. Here, we examine a conditional, cardiomyocyte-specific, mutant mouse lacking Mcu, the pore-forming subunit of the MCU channel, in adulthood. Mcu(-/-) mice display no overt baseline phenotype and are protected against mCa(2+) overload in an in vivo myocardial ischemia-reperfusion injury model by preventing the activation of the mitochondrial permeability transition pore, decreasing infarct size, and preserving cardiac function. In addition, we find that Mcu(-/-) mice lack contractile responsiveness to acute β-adrenergic receptor stimulation and in parallel are unable to activate mitochondrial dehydrogenases and display reduced bioenergetic reserve capacity. These results support the hypothesis that MCU may be dispensable for homeostatic cardiac function but required to modulate Ca(2+)-dependent metabolism during acute stress.

  20. Yampa River channel elevation at Deerlodge Park, CO (United States)

    U.S. Geological Survey, Department of the Interior — The U.S Geological Survey Scientific Investigations Map provides raster data that can be used to assess channel response to streamflow alteration scenarios indicated...

  1. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2

    DEFF Research Database (Denmark)

    Grubb, Søren Jahn; Aistrup, Gary L; Koivumäki, Jussi T


    Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions...

  2. Pacemaker current inhibition in experimental human cardiac sympathetic activation: a double-blind, randomized, crossover study

    NARCIS (Netherlands)

    Schroeder, C.; Heusser, K.; Zoerner, A.A.; Grosshennig, A.; Wenzel, D.; May, M.; Sweep, F.C.; Mehling, H.; Luft, F.C.; Tank, J.; Jordan, J.


    Hyperpolarization-activated, cyclic nucleotide-gated 4 (HCN4) channels comprise the final pathway for autonomic heart rate (HR) regulation. We hypothesized that HCN4 inhibition could reverse autonomic imbalance in a human model of cardiac sympathetic activation. Nineteen healthy men ingested oral me

  3. Recent developments in cardiac pacing. (United States)

    Rodak, D J


    Indications for cardiac pacing continue to expand. Pacing to improve functional capacity, which is now common, relies on careful patient selection and technical improvements, such as complex software algorithms and diagnostic capabilities.

  4. Robotic Applications in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Alan P. Kypson


    Full Text Available Traditionally, cardiac surgery has been performed through a median sternotomy, which allows the surgeon generous access to the heart and surrounding great vessels. As a paradigm shift in the size and location of incisions occurs in cardiac surgery, new methods have been developed to allow the surgeon the same amount of dexterity and accessibility to the heart in confined spaces and in a less invasive manner. Initially, long instruments without pivot points were used, however, more recent robotic telemanipulation systems have been applied that allow for improved dexterity, enabling the surgeon to perform cardiac surgery from a distance not previously possible. In this rapidly evolving field, we review the recent history and clinical results of using robotics in cardiac surgery.

  5. Late gadolinium enhancement and subclinical cardiac dysfunction on cardiac MRI in asymptomatic HIV-positive men

    Directory of Open Access Journals (Sweden)

    A Loy


    Full Text Available Background: HIV is associated with an increased risk of cardiovascular disease (CVD and related clinical events. While traditional risk factors play an important role in the pathology of cardiovascular disease, HIV infection and its sequelae of immune activation and inflammation may have significant effects on the myocardium before becoming clinically evident. Cardiac MRI (CMR can be used to detect the pattern of these subclinical changes. This will lead to a better understanding of risk factors contributing to cardiovascular disease prior to it becoming clinically significant in HIV-positive patients. Methods: Prospective cohort study of 127 asymptomatic HIV-positive men on ART compared to 35 matched controls. Baseline demographics, HIV parameters, 12-lead ECG, routine biochemistry, and traditional cardiovascular risk factors were recorded. Images were acquired on a 3T Achieva Philips MRI scanner with 5 channel phase array cardiac coil and weight-based IV gadolinium was given at 0.15 mmol/kg dose with post-contrast inversion recovery imaging after 10 minutes. Results: 6/127 (4.7% of asymptomatic HIV-positive men had late gadolinium enhancement (LGE on MRI verses 1/35 (2.9% in the control group. In 3/6 (50% of cases this was in a classical infarction pattern with subendocardial involvement. 3/6 (50% were consistent with prior myocarditis. There was no significant difference in mean LVEF (66.93% vs 65.18%, LVMI (60.05g/m2 vs 55.94g/m2 or posterolateral wall thickness (8.28 mm and 8.16 mm between cases and controls respectively. There was significantly more diastolic dysfunction, E:A ratio < 1, found in the HIV-positive group, 18% vs 7% of controls (p = 0.037. Framingham risk did not predict either of these outcomes. Conclusions: There is an increased incidence of LGE detected on CMR in this asymptomatic HIV-positive cohort. Two distinct pathological processes were identifed as causing these changes, myocardial infarction and myocarditis

  6. The ET axis mediates arrhythmogenesis and compromised cardiac function in two cardiomyopathy models

    Institute of Scientific and Technical Information of China (English)

    YuFENG; De-zaiDAI; YuanZHANG; Hai-boHE; Min-youQI; YinDAI; FengYU


    AIM Endothelin 1(ET-1), a potent vasoconstrictor peptide, is also regarded as an important etiological factor involved in many cardiac diseases like heart failure and cardiac hypertrophy. It mediates pathologic changes by forming an """"ET axis"""" at the upstream to ion channels, such as stimulating oxidant stress, eliciting cardiac remodeling by proliferation of cardiomyocytes, inducing apoptosis, affecting signal transduction pathway, and modulating intranuclear gene transcription. The purpose of this study was to investigate the pivotal role by ET axis in worsening arrhythmias and cardiac function in experimental hypertrophic cardiomyopathy (HCM) and heart failure (HF) models. METHODS The rat HCM model was induced by s.c L-thyroxin (L-thy, 0.2mg/Kg/d) for 10d,

  7. Collective response of self-organized clusters of mechanosensitive channels. (United States)

    Guseva, Ksenia; Thiel, Marco; Booth, Ian; Miller, Samantha; Grebogi, Celso; de Moura, Alessandro


    Mechanosensitive channels are ion channels activated by membrane tension. We investigate the influence of the spatial distribution of bacterial mechanosensitive channels on activation (gating). Based on elastic short-range interactions we map this physical process onto an Ising-like model, which enables us to predict the clustering of channels and the effects of clustering on their gating. We conclude that the aggregation of channels and the consequent interactions among them leads to a global cooperative gating behavior with potentially dramatic consequences for the cell.

  8. Collective response of self-organised clusters of mechanosensitive channels

    CERN Document Server

    Guseva, Ksenia; Booth, Ian; Miller, Samantha; Grebogi, Celso; de Moura, Alessandro


    Mechanosensitive channels are ion channels activated by membrane tension. We investigate the influence of bacterial mechanosensitive channels spatial distribution on activation (gating). Based on elastic short-range interactions we map this physical process onto an Ising-like model, which enables us to predict the clustering of channels and the effects of clustering on their gating. We conclude that the aggregation of channels and the consequent interactions among them leads to a global cooperative gating behaviour with potentially dramatic consequences for the cell.

  9. Cardiac manifestations in systemic sclerosis

    Institute of Scientific and Technical Information of China (English)

    Sevdalina; Lambova


    Primary cardiac involvement, which develops as a direct consequence of systemic sclerosis(SSc), may manifest as myocardial damage, fibrosis of the conduction system, pericardial and, less frequently, as valvular disease. In addition, cardiac complications in SSc may develop as a secondary phenomenon due to pulmonary arterial hypertension and kidney pathology. The prevalence of primary cardiac involvement in SSc is variable and difficult to determine because of the diversity of cardiac manifestations, the presence of subclinical periods, the type of diagnostic tools applied, and the diversity of patient populations. When clinically manifested, cardiac involvement is thought to be an important prognostic factor. Profound microvascular disease is a pathognomonic feature of SSc, as both vasospasm and structural alterations are present. Such alterations are thought to predict macrovascular atherosclerosis over time. There are contradictory reports regarding the prevalence of atherosclerosis in SSc. According to some authors, the prevalence of atherosclerosis of the large epicardial coronary arteries is similar to that of the general population, in contrast with other rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus. However, the level of inflammation in SSc is inferior. Thus, the atherosclerotic process may not be as aggressive and not easily detectable in smaller studies. Echocardiography(especially tissue Doppler imaging), single-photon emission computed tomography, magnetic resonance imaging and cardiac computed tomography are sensitive techniques for earlier detection of both structural and functional scleroderma-related cardiac pathologies. Screening for subclinical cardiac involvement via modern, sensitive tools provides an opportunity for early diagnosis and treatment, which is of crucial importance for a positive outcome.

  10. Cardiac transplantation in Friedreich ataxia. (United States)

    Yoon, Grace; Soman, Teesta; Wilson, Judith; George, Kristen; Mital, Seema; Dipchand, Anne I; McCabe, Jane; Logan, William; Kantor, Paul


    In this article, we describe a 14-year-old boy with a confirmed diagnosis of Friedreich ataxia who underwent cardiac transplantation for left ventricular failure secondary to dilated cardiomyopathy with restrictive physiology. His neurological status prior to transplantation reflected early signs of neurological disease, with evidence of dysarthria, weakness, mild gait impairment, and limb ataxia. We review the ethical issues considered during the process leading to the decision to offer cardiac transplantation.

  11. Cardiac Transplantation in Friedreich Ataxia


    Yoon, Grace; Soman, Teesta; Wilson, Judith; George, Kristen; Mital, Seema; Dipchand, Anne I; McCabe, Jane; Logan, William; Kantor, Paul


    In this paper, we describe a 14-year-old boy with a confirmed diagnosis of Friedreich ataxia who underwent cardiac transplantation for left ventricular failure secondary to dilated cardiomyopathy with restrictive physiology. His neurological status prior to transplantation reflected early signs of neurologic disease, with evidence of dysarthria, weakness, mild gait impairment, and limb ataxia. We review the ethical issues considered during the process leading to the decision to offer cardiac ...

  12. Ion channel modulators as potential positive inotropic compound for treatment of heart failure. (United States)

    Doggrell, S; Hoey, A; Brown, L


    1. Current positive inotropy therapy of heart failure is associated with major problems: digoxin and the phosphodiesterase inhibitors can cause life-threatening toxicity while beta-adrenoceptor agonists become less effective inotropic compounds as heart failure progresses. A new approach to positive inotropy is ion channel modulation. 2. An increased influx of Na+ during the cardiac action potential, as measured with DPI 201-106 and BDF 9148 which increase the probability of the open state of the Na+ channel, will increase force of contraction. 3. Activation of L-type Ca2+ channels with Bay K 8644 will increase influx of Ca2+ and increase the force of contraction. However the Ca2+ channel activators developed to date have little potential for the treatment of heart failure as they are vasoconstrictors. 4. Blocking cardiac K+ channels is a possible mechanism of positive inotropy. Terikalant inhibits the inward rectifying K+ channel, tedisamil inhibits the transient outward K+ channel and dofetilide is one of the newly developed inhibitors of the slow delayed outward rectifying K+ channel. All these drugs prolong the cardiac action potential to increase Ca2+ entry and force of contraction. 5. Thus drugs which increase Na+ influx or block K+ channels represent exciting possibilities for positive inotropy and the potential of these compounds for the treatment of heart failure needs to be fully evaluated.

  13. [Stem cells and cardiac regeneration]. (United States)

    Perez Millan, Maria Ines; Lorenti, Alicia


    Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty). A variety of stem cells could be used for cardiac repair: from cardiac and extracardiac sources. Each cell type has its own profile of advantages, limitations, and practicability issues in specific clinical settings. Differentiation of bone marrow stem cells to cardiomyocyte-like cells have been observed under different culture conditions. The presence of resident cardiac stem cell population capable of differentiation into cardiomyocyte or vascular lineage suggests that these cells could be used for cardiac tissue repair, and represent a great promise for clinical application. Stem cells mobilization by cytokines may also offer a strategy for cardiac regeneration. The use of stem cells (embryonic and adult) may hold the key to replacing cells lost in many devastating diseases. This potential benefit is a major focus for stem cell research.

  14. Cardiac Regeneration and Stem Cells. (United States)

    Zhang, Yiqiang; Mignone, John; MacLellan, W Robb


    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world.

  15. Cardiac imaging. A multimodality approach

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, Manfred [Johannes Gutenberg University Hospital, Mainz (Germany); Erbel, Raimund [University Hospital Essen (Germany). Dept. of Cardiology; Kreitner, Karl-Friedrich [Johannes Gutenberg University Hospital, Mainz (Germany). Clinic and Polyclinic for Diagnostic and Interventional Radiology; Barkhausen, Joerg (eds.) [University Hospital Schleswig-Holstein, Luebeck (Germany). Dept. of Radiology and Nuclear Medicine


    An excellent atlas on modern diagnostic imaging of the heart Written by an interdisciplinary team of experts, Cardiac Imaging: A Multimodality Approach features an in-depth introduction to all current imaging modalities for the diagnostic assessment of the heart as well as a clinical overview of cardiac diseases and main indications for cardiac imaging. With a particular emphasis on CT and MRI, the first part of the atlas also covers conventional radiography, echocardiography, angiography and nuclear medicine imaging. Leading specialists demonstrate the latest advances in the field, and compare the strengths and weaknesses of each modality. The book's second part features clinical chapters on heart defects, endocarditis, coronary heart disease, cardiomyopathies, myocarditis, cardiac tumors, pericardial diseases, pulmonary vascular diseases, and diseases of the thoracic aorta. The authors address anatomy, pathophysiology, and clinical features, and evaluate the various diagnostic options. Key features: - Highly regarded experts in cardiology and radiology off er image-based teaching of the latest techniques - Readers learn how to decide which modality to use for which indication - Visually highlighted tables and essential points allow for easy navigation through the text - More than 600 outstanding images show up-to-date technology and current imaging protocols Cardiac Imaging: A Multimodality Approach is a must-have desk reference for cardiologists and radiologists in practice, as well as a study guide for residents in both fields. It will also appeal to cardiac surgeons, general practitioners, and medical physicists with a special interest in imaging of the heart. (orig.)

  16. Activation of big conductance Ca(2+)-activated K (+) channels (BK) protects the heart against ischemia-reperfusion injury

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Osadchii, Oleg; Jespersen, Thomas;


    complexes, while producing no effect on cardiac K(ATP) channels. The cardioprotective effects of NS11021-induced BK channel activation were studied in isolated, perfused rat hearts subjected to 35 min of global ischemia followed by 120 min of reperfusion. 3 microM NS11021 applied prior to ischemia...... (3 microM) antagonized the protective effect. These findings suggest that tissue damage induced by ischemia and reperfusion can be reduced by activation of cardiac BK channels.......Activation of the large-conductance Ca(2+)-activated K(+) channel (BK) in the cardiac inner mitochondrial membrane has been suggested to protect the heart against ischemic injury. However, these findings are limited by the low selectivity profile and potency of the BK channel activator (NS1619...

  17. Recurrent late cardiac tamponade following cardiac surgery : a deceiving and potentially lethal complication

    NARCIS (Netherlands)

    Harskamp, Ralf E.; Meuzelaar, Jacobus J.


    Background - Cardiac tamponade, characterized by inflow obstruction of the heart chambers by extracardiac compression, is a potentially lethal complication following cardiac surgery. Case report - We present a case of recurrent cardiac tamponade following valve surgery. At first presentation, diagno

  18. Calcium Imaging in Pluripotent Stem Cell-Derived Cardiac Myocytes. (United States)

    Walter, Anna; Šarić, Tomo; Hescheler, Jürgen; Papadopoulos, Symeon


    The possibility to generate cardiomyocytes (CMs) from disease-specific induced pluripotent stem cells (iPSCs) is a powerful tool for the investigation of various cardiac diseases in vitro. The pathological course of various cardiac conditions, causatively heterogeneous, often converges into disturbed cellular Ca(2+) cycling. The gigantic Ca(2+) channel of the intracellular Ca(2+) store of CMs, the ryanodine receptor type 2 (RyR2), controls Ca(2+) release and therefore plays a crucial role in Ca(2+) cycling of CMs. In the present protocol we describe ways to measure and analyze global as well as local cellular Ca(2+) release events in CMs derived from a patient carrying a CPVT-causing RyR2 mutation.

  19. Integrative systems models of cardiac excitation-contraction coupling. (United States)

    Greenstein, Joseph L; Winslow, Raimond L


    Excitation-contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca²(+) transport. The complexity and integrative nature of heart cell electrophysiology and Ca²(+) cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems biology is that the detailed nature of local signaling events, such as those that occur in the cardiac dyad, have important consequences at higher biological scales. Multiscale modeling techniques have revealed many mechanistic links between microscale events, such as Ca²(+) binding to a channel protein, and macroscale phenomena, such as excitation-contraction coupling gain. Here, we review experimentally based multiscale computational models of excitation-contraction coupling and the insights that have been gained through their application.

  20. Risk factors and the effect of cardiac resynchronization therapy on cardiac and non-cardiac mortality in MADIT-CRT

    DEFF Research Database (Denmark)

    Perkiomaki, Juha S; Ruwald, Anne-Christine; Kutyifa, Valentina;


    causes, 108 (63.9%) deemed cardiac, and 61 (36.1%) non-cardiac. In multivariate analysis, increased baseline creatinine was significantly associated with both cardiac and non-cardiac deaths [hazard ratio (HR) 2.97, P ...AIMS: To understand modes of death and factors associated with the risk for cardiac and non-cardiac deaths in patients with cardiac resynchronization therapy with implantable cardioverter-defibrillator (CRT-D) vs. implantable cardioverter-defibrillator (ICD) therapy, which may help clarify...... the action and limitations of cardiac resynchronization therapy (CRT) in relieving myocardial dysfunction. METHODS AND RESULTS: In Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy (MADIT-CRT), during 4 years of follow-up, 169 (9.3%) of 1820 patients died of known...

  1. Collection Mapping. (United States)

    Harbour, Denise


    Explains collection mapping for library media collections. Discusses purposes for creating collection maps, including helping with selection and weeding decisions, showing how the collection supports the curriculum, and making budget decisions; and methods of data collection, including evaluating a collaboratively taught unit with the classroom…

  2. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    of environmental knowledge production. It uses InfoAmazonia, the databased platform on Amazon rainforests, as an example of affective geo-visualization within information mapping that enhances embodiment in the experience of the information. Amazonia is defined as a digitally created affective (map)space within...

  3. Causal mapping

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard


    The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method......The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method...

  4. Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel SCN5A mutation

    DEFF Research Database (Denmark)

    Holst, Anders G; Liang, Bo; Jespersen, Thomas


    Mutations in the cardiac sodium channel encoded by the gene SCN5A can result in a wide array of phenotypes. We report a case of a young male with a novel SCN5A mutation (R121W) afflicted by sick sinus syndrome, progressive cardiac conduction disorder, atrial flutter and ventricular tachycardia. His...... the spectrum of SCN5A loss-of-function associated disease entities should be viewed as one syndrome....

  5. Cardiac output during exercise

    DEFF Research Database (Denmark)

    Siebenmann, C; Rasmussen, P.; Sørensen, H.


    Several techniques assessing cardiac output (Q) during exercise are available. The extent to which the measurements obtained from each respective technique compares to one another, however, is unclear. We quantified Q simultaneously using four methods: the Fick method with blood obtained from...... the right atrium (Q(Fick-M)), Innocor (inert gas rebreathing; Q(Inn)), Physioflow (impedance cardiography; Q(Phys)), and Nexfin (pulse contour analysis; Q(Pulse)) in 12 male subjects during incremental cycling exercise to exhaustion in normoxia and hypoxia (FiO2  = 12%). While all four methods reported...... a progressive increase in Q with exercise intensity, the slopes of the Q/oxygen uptake (VO2) relationship differed by up to 50% between methods in both normoxia [4.9 ± 0.3, 3.9 ± 0.2, 6.0 ± 0.4, 4.8 ± 0.2 L/min per L/min (mean ± SE) for Q(Fick-M), Q(Inn), QP hys and Q(Pulse), respectively; P = 0...

  6. [Calpains and cardiac diseases]. (United States)

    Perrin, C; Vergely, C; Rochette, L


    Calpains are a large family of cytosolic cysteine proteases composed of at least fourteen distinct isoforms. The family can be divided into two groups on the basis of distribution: ubiquitous and tissue-specific. Our current knowledge about calpains properties apply mainly to the ubiquitous isozymes, micro- and milli-calpain (classic calpains). These forms are activated after autolysis. Translocation and subsequent interactions with phospholipids of these enzymes increase their activity. Calpains are able to cleave a subset of substrates, as enzymes, structural and signalling proteins. Cardiac pathologies, such as heart failure, atrial fibrillation or clinical states particularly ischemia reperfusion, are associated with an increase of cytosolic calcium and in this regards, calpain activation has been evoked as one of the mediators leading to myocardial damage. Calpain activities have been shown to be increased in hearts experimentally subjected to ischemia reperfusion or during hypertrophy, but also in atrial tissue harvested from patients suffering from atrial fibrillations. These activities have been related to an increase of the proteolysis of different myocardial components, particularly, troponins, which are major regulators of the contraction of cardiomyocytes. Moreover, recent works have demonstrated that calpains are involved in the development of myocardial cell death by necrosis or apoptosis.

  7. Cardiac Imaging System (United States)


    Although not available to all patients with narrowed arteries, balloon angioplasty has expanded dramatically since its introduction with an estimated further growth to 562,000 procedures in the U.S. alone by 1992. Growth has fueled demand for higher quality imaging systems that allow the cardiologist to be more accurate and increase the chances of a successful procedure. A major advance is the Digital Cardiac Imaging (DCI) System designed by Philips Medical Systems International, Best, The Netherlands and marketed in the U.S. by Philips Medical Systems North America Company. The key benefit is significantly improved real-time imaging and the ability to employ image enhancement techniques to bring out added details. Using a cordless control unit, the cardiologist can manipulate images to make immediate assessment, compare live x-ray and roadmap images by placing them side-by-side on monitor screens, or compare pre-procedure and post procedure conditions. The Philips DCI improves the cardiologist's precision by expanding the information available to him.

  8. Classification of cardiac excitation patterns during atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Reich Christian


    Full Text Available The goal of this research was to classify cardiac excitation patterns during atrial fibrillation (AFib. For this purpose, virtual models of intracardiac mapping catheters were moved across in-silico cardiac tissue to extract local activation times (LATs of each catheter electrode from simulated cardiac action potential (AP signals. The resulting LAT patterns consisting of the LATs of all electrodes resemble patterns measured in clinical cases. The LATs represent the input information for features that were used to separate four different excitation patterns during AFib. Those four excitation patterns were plane wave, ectopic focus (spherical wave, rotor (spiral wave and block. A feature selection algorithm was used to investigate the features concerning their power to classify the different simulated excitation patterns. The scores of the selected features were used to train and optimize a support vector machine (SVM. The optimized and cross-validated SVM was then used to classify the simulated cardiac excitation patterns. The achieved overall classification accuracy of this SVM model was 98.4 %.

  9. Mutational consequences of aberrant ion channels in neurological disorders. (United States)

    Kumar, Dhiraj; Ambasta, Rashmi K; Kumar, Pravir


    Neurological channelopathies are attributed to aberrant ion channels affecting CNS, PNS, cardiac, and skeletal muscles. To maintain the homeostasis of excitable tissues, functional ion channels are necessary to rely electrical signals, whereas any malfunctioning serves as an intrinsic factor to develop neurological channelopathies. Molecular basis of these disease is studied based on genetic and biophysical approaches, e.g., loci positional cloning, whereas pathogenesis and bio-behavioral analysis revealed the dependency on genetic mutations and inter-current triggering factors. Although electrophysiological studies revealed the possible mechanisms of diseases, analytical study of ion channels remained unsettled and therefore underlying mechanism in channelopathies is necessary for better clinical application. Herein, we demonstrated (i) structural and functional role of various ion channels (Na(+), K(+), Ca(2+),Cl(-)), (ii) pathophysiology involved in the onset of their associated channelopathies, and (iii) comparative sequence and phylogenetic analysis of diversified sodium, potassium, calcium, and chloride ion channel subtypes.

  10. Hormones and sex differences: changes in cardiac electrophysiology with pregnancy. (United States)

    Bett, Glenna C L


    Disruption of cardiac electrical activity resulting in palpitations and syncope is often an early symptom of pregnancy. Pregnancy is a time of dramatic and dynamic physiological and hormonal changes during which numerous demands are placed on the heart. These changes result in electrical remodelling which can be detected as changes in the electrocardiogram (ECG). This gestational remodelling is a very under-researched area. There are no systematic large studies powered to determine changes in the ECG from pre-pregnancy, through gestation, and into the postpartum period. The large variability between patients and the dynamic nature of pregnancy hampers interpretation of smaller studies, but some facts are consistent. Gestational cardiac hypertrophy and a physical shift of the heart contribute to changes in the ECG. There are also electrical changes such as an increased heart rate and lengthening of the QT interval. There is an increased susceptibility to arrhythmias during pregnancy and the postpartum period. Some changes in the ECG are clearly the result of changes in ion channel expression and behaviour, but little is known about the ionic basis for this electrical remodelling. Most information comes from animal models, and implicates changes in the delayed-rectifier channels. However, it is likely that there are additional roles for sodium channels as well as changes in calcium homoeostasis. The changes in the electrical profile of the heart during pregnancy and the postpartum period have clear implications for the safety of pregnant women, but the field remains relatively undeveloped.

  11. The other side of cardiac Ca2+ signaling: transcriptional control

    Directory of Open Access Journals (Sweden)

    Alejandro eDomínguez-Rodríquez


    Full Text Available Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling, but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling. ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII and phosphatase calcineurin, both of which are activated by the complex Ca2+/ /Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n or cytoplasmic ([Ca2+]c, and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs in [Ca2+]c, needed to activate calcineurin.

  12. Large fraction of crystal directions leads to ion channeling (United States)

    Nordlund, K.; Djurabekova, F.; Hobler, G.


    It is well established that when energetic ions are moving in crystals, they may penetrate much deeper if they happen to be directed in some specific crystal directions. This `channeling' effect is utilized for instance in certain ion beam analysis methods and has been described by analytical theories and atomistic computer simulations. However, there have been very few systematic studies of channeling in directions other than the principal low-index ones. We present here a molecular dynamics-based approach to calculate ion channeling systematically over all crystal directions, providing ion `channeling maps' that easily show in which directions channeling is expected. The results show that channeling effects can be quite significant even at energies below 1 keV, and that in many cases, significant planar channeling occurs also in a wide range of crystal directions between the low-index principal ones. In all of the cases studied, a large fraction (˜20 -60 % ) of all crystal directions show channeling. A practical implication of this is that modern experiments on randomly oriented nanostructures will have a large probability of channeling. It also means that when ion irradiations are carried out on polycrystalline samples, channeling effects on the results cannot a priori be assumed to be negligible. The maps allow for easy selection of good `nonchanneling' directions in experiments or alternatively finding wide channels for beneficial uses of channeling. We implement channeling theory to also give the fraction of channeling directions in a manner directly comparable to the simulations. The comparison shows good qualitative agreement. In particular, channeling theory is very good at predicting which channels are active at a given energy. This is true down to sub-keV energies, provided the penetration depth is not too small.

  13. Sodium ion channel mutations in glioblastoma patients correlate with shorter survival

    Directory of Open Access Journals (Sweden)

    Velculescu Victor E


    Full Text Available Abstract Background Glioblastoma Multiforme (GBM is the most common and invasive astrocytic tumor associated with dismal prognosis. Treatment for GBM patients has advanced, but the median survival remains a meager 15 months. In a recent study, 20,000 genes from 21 GBM patients were sequenced that identified frequent mutations in ion channel genes. The goal of this study was to determine whether ion channel mutations have a role in disease progression and whether molecular targeting of ion channels is a promising therapeutic strategy for GBM patients. Therefore, we compared GBM patient survival on the basis of presence or absence of mutations in calcium, potassium and sodium ion transport genes. Cardiac glycosides, known sodium channel inhibitors, were then tested for their ability to inhibit GBM cell proliferation. Results Nearly 90% of patients showed at least one mutation in ion transport genes. GBM patients with mutations in sodium channels showed a significantly shorter survival compared to patients with no sodium channel mutations, whereas a similar comparison based on mutational status of calcium or potassium ion channel mutations showed no survival differences. Experimentally, targeting GBM cells with cardiac glycosides such as digoxin and ouabain demonstrated preferential cytotoxicity against U-87 and D54 GBM cells compared to non-tumor astrocytes (NTAs. Conclusions These pilot studies of GBM patients with sodium channel mutations indicate an association with a more aggressive disease and significantly shorter survival. Moreover, inhibition of GBM cells by ion channel inhibitors such as cardiac glycosides suggest a therapeutic strategy with relatively safe drugs for targeting GBM ion channel mutations. Key Words: glioblastoma multiforme, ion channels, mutations, small molecule inhibitors, cardiac glycosides.

  14. Channel Modelling for Multiprobe Over-the-Air MIMO Testing

    Directory of Open Access Journals (Sweden)

    Pekka Kyösti


    a fading emulator, an anechoic chamber, and multiple probes. Creation of a propagation environment inside an anechoic chamber requires unconventional radio channel modelling, namely, a specific mapping of the original models onto the probe antennas. We introduce two novel methods to generate fading emulator channel coefficients; the prefaded signals synthesis and the plane wave synthesis. To verify both methods we present a set of simulation results. We also show that the geometric description is a prerequisite for the original channel model.

  15. Na+ channel β subunits: Overachievers of the ion channel family

    Directory of Open Access Journals (Sweden)

    William J Brackenbury


    Full Text Available Voltage gated Na+ channels (VGSCs in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B-SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted protein. A growing body of work shows that VGSC β subunits are multifunctional. While they do not form the ion channel pore, β subunits alter gating, voltage-dependence, and kinetics of VGSC α subunits and thus regulate cellular excitability in vivo. In addition to their roles in channel modulation, β subunits are members of the immunoglobulin (Ig superfamily of cell adhesion molecules (CAMs and regulate cell adhesion and migration. β subunits are also substrates for sequential proteolytic cleavage by secretases. An example of the multifunctional nature of β subunits is β1, encoded by SCN1B, that plays a critical role in neuronal migration and pathfinding during brain development, and whose function is dependent on Na+ current and γ-secretase activity. Functional deletion of SCN1B results in Dravet Syndrome, a severe and intractable pediatric epileptic encephalopathy. β subunits are emerging as key players in a wide variety of pathophysiologies, including epilepsy, cardiac arrhythmia, multiple sclerosis, Huntington’s disease, neuropsychiatric disorders, neuropathic and inflammatory pain, and cancer. β subunits mediate multiple signaling pathways on different timescales, regulating electrical excitability, adhesion, migration, pathfinding, and transcription. Importantly, some β subunit functions may operate independent of α subunits. Thus, β subunits perform critical roles during development and disease. As such, they may prove useful in disease diagnosis and therapy.

  16. Mobile radio channels

    CERN Document Server

    Pätzold, Matthias


    Providing a comprehensive overview of the modelling, analysis and simulation of mobile radio channels, this book gives a detailed understanding of fundamental issues and examines state-of-the-art techniques in mobile radio channel modelling. It analyses several mobile fading channels, including terrestrial and satellite flat-fading channels, various types of wideband channels and advanced MIMO channels, providing a fundamental understanding of the issues currently being investigated in the field. Important classes of narrowband, wideband, and space-time wireless channels are explored in deta

  17. Visualization of cardiac wavefronts using data fusion (United States)

    Kynor, David B.; Dietz, Anthony; Friets, Eric; Peterson, Jon; Bergstrom, Ursula; Triedman, John; Hammer, Peter


    Catheter ablation has emerged as a highly effective treatment for arrhythmias that are constrained by known, easily located, anatomic landmarks. However, this treatment has enjoyed limited success for arrhythmias that are characterized by complex activation patterns or are not anatomically constrained. This class of arrhythmias, which includes atrial fibrillation and ventricular tachycardia resulting from ischemic heart disease, demands improved mapping tools. Current technology forces the cardiologist to view cardiac anatomy independently from the functional information contained in the electrical activation patterns. This leads to difficulties in interpreting the large volumes of data provided by high-density recording catheters and in mapping patients with abnormal anatomy (e.g., patients with congenital heart disease). The goal of this is work is development of new data processing and display algorithms that will permit the clinician to view activation sequences superimposed onto existing fluoroscopic images depicting the location of recording catheters within the heart. In cases where biplane fluoroscopic images and x-ray camera position data are available, the position of the catheters can be reconstructed in three-dimensions.

  18. K sup + channel openers activate brain sulfonylurea-sensitive K sup + channels and block neurosecretion

    Energy Technology Data Exchange (ETDEWEB)

    Schmid-Antomarchi, H.; Amoroso, S.; Fosset, M.; Lazdunski, M. (Centre National de la Recherche Scientifique, Valbonne (France))


    Vascular K{sup +} channel openers such as cromakalim, nicorandil, and pinacidil potently stimulate {sup 86}Rb{sup +} efflux from slices of substantia nigra. This {sup 86}Rb{sup +} efflux is blocked by antidiabetic sulfonylureas, which are known to be potent and specific blockers of ATP-regulated K{sup +} channels in pancreatic beta cells, cardiac cells, and smooth muscle cells. K{sub 0.5}, the half-maximal effect of the enantiomer ({minus})-cromakalim, is as low as 10 nM, whereas K{sub 0.5} for nicorandil is 100 nM. These two compounds appear to have a much higher affinity for nerve cells than for smooth muscle cells. Openers of sulfonylurea-sensitive K{sup +} channels lead to inhibition of {gamma}-aminobutyric acid release. There is an excellent relationship between potency to activate {sup 86}Rb{sup +} efflux and potency to inhibit neurotransmitter release.

  19. Regulation of the cardiac muscle ryanodine receptor by glutathione transferases. (United States)

    Dulhunty, Angela F; Hewawasam, Ruwani; Liu, Dan; Casarotto, Marco G; Board, Philip G


    Glutathione transferases (GSTs) are generally recognized for their role in phase II detoxification reactions. However, it is becoming increasingly apparent that members of the GST family also have a diverse range of other functions that are, in general, unrelated to detoxification. One such action is a specific inhibition of the cardiac isoform of the ryanodine receptor (RyR2) intracellular Ca(2+) release channel. In this review, we compare functional and physical interactions between members of the GST family, including GSTO1-1, GSTA1-1, and GSTM2-2, with RyR2 and with the skeletal isoform of the ryanodine receptor (RyR1). The active part of the muscle-specific GSTM2-2 is localized to its nonenzymatic C-terminal α-helical bundle, centered around α-helix 6. The GSTM2-2 binding site is in divergent region 3 (DR3 region) of RyR2. The sequence differences between the DR3 regions of RyR1 and RyR2 explain the specificity of the GSTs for one isoform of the protein. GSTM2-2 is one of the few known endogenous inhibitors of the cardiac RyR and is likely to be important in maintaining low RyR2 activity during diastole. We discuss interactions between a nonenzymatic member of the GST structural family, the CLIC-2 (type 2 chloride intracellular channel) protein, which inhibits both RyR1 and RyR2. The possibility that the GST and CLIC2 proteins bind to different sites on the RyR, and that different structures within the GST and CLIC proteins bind to RyR channels, is discussed. We conclude that the C-terminal part of GSTM2-2 may provide the basis of a therapeutic compound for use in cardiac disorders.

  20. Dynamical maps and density matrices

    Energy Technology Data Exchange (ETDEWEB)

    Asorey, M [Departamento de Fisica Teorica. Facultad de Ciencias. Universidad de Zaragoza, 50009 Zaragoza (Spain); Kossakowski, A [Institute of Physics, Nicolaus Copernicus University Torun 87-100 (Poland); Marmo, G [Dipartimento di Scienze Fisiche, Universita Federico II di Napoli and INFN, Sezione di Napoli Complesso University di Monte Sant' Angelo, Via Cintia, 80125 Napoli (Italy); Sudarshan, E C G [Department of Physics. University of Texas at Austin Austin, Texas 78712-1081 (United States)


    The relations between dynamical maps and quantum states of bipartite systems are analyzed from the perspective of quantum conditional probability. In particular, we explore new interesting relations between completely positive maps, which correspond to quantum channels, and states of bipartite systems which correspond to correlations between the initial and final states. The new connection emerges in a natural way from the generalisation of the classical concept of conditional probability. We develop applications of these relations which prove to be very useful in both directions, either for the classification of positive maps which are not completely positive, the classification of non-decomposable dynamical maps or for the classification of positive partial transpose and entangled states.

  1. Channel nut tool

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Marvin


    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  2. Dying from cardiac tamponade

    Directory of Open Access Journals (Sweden)

    Powari Manish


    Full Text Available Abstract Background To determine the causes of cardiac tamponade (CT, focussing especially on haemopericardium (HP, as a terminal mode of death, within a 430,000 rural English population. Methods Our hospital mortuary register and, all postmortem reports between 1995 and 2004 inclusive, were interrogated for patients dying of CT or HP. The causes of CT/HP and selected morphological characteristics were then determined. Results 14,368 postmortems were performed in this period: of these, 461 patients died of CT. Three cases were due to non-haemorrhagic pericardial effusion. HP accounted for the remaining 458 cases of which, five were post-traumatic, 311 followed rupture of an acute myocardial infarction (RAMI, 138 after intra-pericardial rupture of dissecting ascending aortic aneurysms (RD3A and four were due to miscellaneous causes. HP was more commonly due to RAMI. Men tended to die from RAMI or RD3A earlier than women. RAMI or RD3A were commoner in men Two thirds of RAMI were associated with coronary artery thrombosis. Anterior free wall rupture was commonest overall, and in women, but posterior free wall rupture was commoner in men. The volume of intrapericardial blood in RAMI (mean = 440 ml and RD3A (mean = 498 ml varied between 150 and 1000 ml: intrapericardial blood volume was greater in men than in women dying from either RAMI or RD3A. Conclusion At postmortem, CT is most often related to HP, attributable to either RAMI or intrapericardial RD3A. Post-traumatic and other causes of CT are infrequent.

  3. Cardiac output monitoring

    Directory of Open Access Journals (Sweden)

    Mathews Lailu


    Full Text Available Minimally invasive and non-invasive methods of estimation of cardiac output (CO were developed to overcome the limitations of invasive nature of pulmonary artery catheterization (PAC and direct Fick method used for the measurement of stroke volume (SV. The important minimally invasive techniques available are: oesophageal Doppler monitoring (ODM, the derivative Fick method (using partial carbon dioxide (CO 2 breathing, transpulmonary thermodilution, lithium indicator dilution, pulse contour and pulse power analysis. Impedance cardiography is probably the only non-invasive technique in true sense. It provides information about haemodynamic status without the risk, cost and skill associated with the other invasive or minimally invasive techniques. It is important to understand what is really being measured and what assumptions and calculations have been incorporated with respect to a monitoring device. Understanding the basic principles of the above techniques as well as their advantages and limitations may be useful. In addition, the clinical validation of new techniques is necessary to convince that these new tools provide reliable measurements. In this review the physics behind the working of ODM, partial CO 2 breathing, transpulmonary thermodilution and lithium dilution techniques are dealt with. The physical and the physiological aspects underlying the pulse contour and pulse power analyses, various pulse contour techniques, their development, advantages and limitations are also covered. The principle of thoracic bioimpedance along with computation of CO from changes in thoracic impedance is explained. The purpose of the review is to help us minimize the dogmatic nature of practice favouring one technique or the other.

  4. Patch in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Alireza Alizadeh Ghavidel


    Full Text Available Introduction: Excessive bleeding presents a risk for the patient in cardiovascular surgery. Local haemostatic agents are of great value to reduce bleeding and related complications. TachoSil (Nycomed, Linz, Austria is a sterile, haemostatic agent that consists of an equine collagen patchcoated with human fibrinogen and thrombin. This study evaluated the safety and efficacy of TachoSil compared to conventional technique.Methods: Forty-two patients scheduled for open heart surgeries, were entered to this study from August 2010 to May 2011. After primary haemostatic measures, patients divided in two groups based on surgeon’s judgment. Group A: 20 patients for whom TachoSil was applied and group B: 22 patients that conventional method using Surgicel (13 patients or wait and see method (9 cases, were performed in order to control the bleeding. In group A, 10 patients were male with mean age of 56.95±15.67 years and in group B, 9 cases were male with mean age of 49.95±14.41 years. In case group 70% (14/20 of the surgeries were redo surgeries versus 100% (22/22 in control group.Results: Baseline characteristics were similar in both groups. In TachoSil group 75% of patients required transfusion versus 90.90% in group B (P=0.03.Most transfusions consisted of packed red blood cell; 2±1.13 units in group A versus 3.11±1.44 in group B (P=0.01, however there were no significant differences between two groups regarding the mean total volume of intra and post-operative bleeding. Re-exploration was required in 10% in group A versus 13.63% in group B (P=0.67.Conclusion: TachoSil may act as a superior alternative in different types of cardiac surgery in order to control the bleeding and therefore reducing transfusion requirement.

  5. CALS Mapping

    DEFF Research Database (Denmark)

    Collin, Ib; Nielsen, Povl Holm; Larsen, Michael Holm


    To enhance the industrial applications of CALS, CALS Center Danmark has developed a cost efficient and transparent assessment, CALS Mapping, to uncover the potential of CALS - primarily dedicated to small and medium sized enterprises. The idea behind CALS Mapping is that the CALS State...... enterprise is, when applied in a given organisation modified with respect to the industry regarded, hence irrelevant measure parameters are eliminated to avoid redundancy. This assessment of CALS Mapping, quantify the CALS potential of an organisation with the purpose of providing decision support to the top...

  6. Automated segmentation of cardiac visceral fat in low-dose non-contrast chest CT images (United States)

    Xie, Yiting; Liang, Mingzhu; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.


    Cardiac visceral fat was segmented from low-dose non-contrast chest CT images using a fully automated method. Cardiac visceral fat is defined as the fatty tissues surrounding the heart region, enclosed by the lungs and posterior to the sternum. It is measured by constraining the heart region with an Anatomy Label Map that contains robust segmentations of the lungs and other major organs and estimating the fatty tissue within this region. The algorithm was evaluated on 124 low-dose and 223 standard-dose non-contrast chest CT scans from two public datasets. Based on visual inspection, 343 cases had good cardiac visceral fat segmentation. For quantitative evaluation, manual markings of cardiac visceral fat regions were made in 3 image slices for 45 low-dose scans and the Dice similarity coefficient (DSC) was computed. The automated algorithm achieved an average DSC of 0.93. Cardiac visceral fat volume (CVFV), heart region volume (HRV) and their ratio were computed for each case. The correlation between cardiac visceral fat measurement and coronary artery and aortic calcification was also evaluated. Results indicated the automated algorithm for measuring cardiac visceral fat volume may be an alternative method to the traditional manual assessment of thoracic region fat content in the assessment of cardiovascular disease risk.

  7. Nuclear imaging in cardiac amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Glaudemans, A.W.J.M.; Slart, R.H.J.A.; Veltman, N.C.; Dierckx, R.A.J.O. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); Zeebregts, C.J. [University Medical Center Groningen, Department of Surgery (Division of Vascular Surgery), Groningen (Netherlands); Tio, R.A. [University Medical Center Groningen, Department of Cardiology, Groningen (Netherlands); Hazenberg, B.P.C. [University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen (Netherlands)


    Amyloidosis is a disease characterized by depositions of amyloid in organs and tissues. It can be localized (in just one organ) or systemic. Cardiac amyloidosis is a debilitating disease and can lead to arrhythmias, deterioration of heart function and even sudden death. We reviewed PubMed/Medline, without time constraints, on the different nuclear imaging modalities that are used to visualize myocardial amyloid involvement. Several SPECT tracers have been used for this purpose. The results with these tracers in the evaluation of myocardial amyloidosis and their mechanisms of action are described. Most clinical evidence was found for the use of {sup 123}I-MIBG. Myocardial defects in MIBG activity seem to correlate well with impaired cardiac sympathetic nerve endings due to amyloid deposits. {sup 123}I-MIBG is an attractive option for objective evaluation of cardiac sympathetic level and may play an important role in the indirect measurement of the effect of amyloid myocardial infiltration. Other, less sensitive, options are {sup 99m}Tc-aprotinin for imaging amyloid deposits and perhaps {sup 99m}Tc-labelled phosphate derivatives, especially in the differential diagnosis of the aetiology of cardiac amyloidosis. PET tracers, despite the advantage of absolute quantification and higher resolution, are not yet well evaluated for the study of cardiac amyloidosis. Because of these advantages, there is still the need for further research in this field. (orig.)

  8. Cardiac Penetrating Injuries and Pseudoaneurysm

    Institute of Scientific and Technical Information of China (English)

    CHEN Shifeng


    Objective To discuss the early diagnosis and treatment of cardiac penetrating injuries and pseudoaneurysm. Methods 18 cases of cardiac penetrating injuries, in which 2 cases were complicated with pseudoaneurysm, were diagnosed by emergency operation and color Doppler echocardiography between May 1973 and Dec. 2001 in our hospital. The basis for emergency operation is the injured path locating in cardiac dangerous zone, severe shock or pericardial tamponade. ResultsAmong 18 cases of this study, 17 cases underwent emergency operation. During the operation, 11 cases were found injured in right ventricle, 2 cases were found injured in right atrium, 1 case was found injured in pulmonary artery,4 cases were found injured in left ventricle, 2 cases were found complicated with pseudoaneurysm. 17cases underwent cardiac repair including 1 case of rupture of aneurysm. 1 case underwent elective aneurysm resection. In whole group, 15 cases survived(83.33% ), 3 cases died( 16.67%). The cause of death is mainly hemorrhagic shock. Conclusion Highly suspicious cardiac penetrating injuries or hemopericaridium should undergo direct operative exploration. Pseudoaneurysm should be resected early,which can prevent severe complications.

  9. 心功能不同的风湿性心脏瓣膜病心房颤动患者超极化激活环核苷酸门控阳离子通道4的表达水平研究%Expression Level of Hyperpolarization-activated Cyclic Nucleotide-gated Channel 4 in Patients With Atrial Fibrillation Associated With Rheumatic Valvular Heart Disease of Different Cardiac Functions

    Institute of Scientific and Technical Information of China (English)

    张健; 李发鹏; 甘天翊; 许国军; 何卫; 周贤惠; 汤宝鹏; 李耀东; 郭霞


    目的:探讨超极化激活环核苷酸门控阳离子通道4(HCN4)基因在风湿性心脏瓣膜病心房颤动伴心力衰竭患者与心功能正常的风湿性心脏瓣膜病心房颤动患者心房肌中的表达水平。方法选取2008—2011年新疆医科大学第一附属医院因心脏瓣膜病需接受开胸换瓣手术患者45例,根据其心功能分级,将美国纽约心脏病协会( NYHA)分级为Ⅱ~Ⅲ级者27例作为试验组,将心功能正常者18例作为对照组。采用实时荧光定量PCR( Real-time PCR)和蛋白质免疫印迹法( Western-blotting)分别测定两组患者HCN4 mRNA及蛋白表达水平。结果对照组HCN4 mRNA表达水平为(1.12±0.69),低于试验组的(4.91±1.51)(t =0.021,P <0.05)。对照组 HCN4蛋白表达水平为(1.02±0.15),低于试验组的(2.01±0.92)(t=0.031,P<0.001)。结论 HCN4在心力衰竭与心功能正常的风湿性心脏瓣膜病心房颤动患者的心房肌中均有表达,且随着心功能不全的加重,HCN4表达水平上调。%Objective To investigate the expression level of hyperpolarization -activated cyclic nucleotide -gated channel 4(HCN4)in the atrial muscle of patients with atrial fibrillation associated with rheumatic valvular heart disease with heart failure or normal cardiac function. Methods We enrolled 45 patients with valvular heart disease who were going to receive thoracotomy for valve replacement in the First Affiliated Hospital of Xinjiang medical University from 2008 to 2011. According to cardiac functional grading,we assigned 27 patients who were at grade Ⅱ-Ⅲin NYHA grading into trial group and assigned 18 patients with normal cardiac function as control group. Real -time PCR and Western -blotting were employed to determine mRNA level and protein expression level of HCN4 of the two groups. Results The mRNA expression level of HCN4 in control group was(1. 12 ±0. 69),lower than that of trial group which was(4

  10. Forward trafficking of ion channels: what the clinician needs to know. (United States)

    Smyth, James W; Shaw, Robin M


    Each heartbeat requires precisely orchestrated action potential propagation through the myocardium, achieved by coordination of about a million ion channels on the surface of each cardiomyocyte. Specific ion channels must occur within discrete subdomains of the sarcolemma to exert their electrophysiological effects with highest efficiency (e.g., voltage-gated Ca(2+) channels at T-tubules and gap junctions at intercalated discs). Regulation of ion channel movement to their appropriate membrane subdomain is an exciting research frontier with opportunity for novel therapeutic manipulation of ion channels in the treatment of heart disease. Although much research has generally focused on internalization and subsequent degradation of ion channels, the field of forward trafficking of de novo ion channels from the cell interior to the sarcolemma has now emerged as a key regulatory step in cardiac electrophysiological function. In this brief review, we provide an overview of the current understanding of the cellular biology governing the forward trafficking of ion channels.

  11. Cardiac resynchronization therapy by targeted left ventricular lead placemem to the latest ventricular electrical activating site mapped in the coronary sinus branches%电生理标测冠状静脉窦分支最延迟电激动处植入左室导线行心脏再同步化治疗

    Institute of Scientific and Technical Information of China (English)

    梁延春; 于海波; 孙毅; 金志清; 许国卿; 付柳静; 李世倍; 王祖禄; 韩雅玲


    Objective To explore cardiac resynchronization therapy (CRT) by placing left ventricular (LV) lead at the latest ventricular electrical activating site mapped in the coronary sinus (CS) branches. Methods Ten patients with moderate to severe congestive heart failure [New York Heart Association (NYHA) functional class Ⅲ or Ⅳ], depressed LV ejection fraction (LVEF) < 0.35, and wide QRS complex ≥ 120 ms were included for implantation of a CRT device. LV activating sequence was mapped in the CS branchs, and the latest ventricular electrical activating site was considered as the target site for LV lead placement. The feasibility and curative effect of this kind of CRT were observed. Results Seven patients were diagnosed with dilated cardiomyopathy and 3 patients as ischemic cardiomyopathy. The heart rhythm was sinus rhythm in 7 patients and persistent atrial fibrillation in 3 patients. ECG showed Left bundle branch block in 9 patients and intraventricular conduction block in the other 1 patient. Electrophysiological mapping were performed in 28 CS branches which were considered as a possible site for LV lead placement and LV lead was successfully placed at the latest LV electrical activating site in all 10 patients. There were 116 ±28 ms activating time delay at the latest LV electrical ac-tiviating site than the QRS onset of ECG. QRS complex were significantly narrowed immediately after CRT than before CRT (121 ±17 ms vs 153 ±30 ms, P<0.0l). The period after CRT procedure exceeded 3 months in 8 of 10 patients. All eight patients were respondere to CRT (8/8, 100% ) and 3 patients as super respondere ( 3/8, 37. 5% ) , the other 1 ischemic cardiomyopathy patient died of acute myocardial infarction 2 months after CRT procedure . The following clinical variables 3 months after CRT procedure were markedly improved than variables before CRT in these 8 responders (all P < 0.01). NYHA class was improved (1.6 ±0.5 vs 3.3 ±0.5) and the 6-min walk test was increased (405

  12. Mapping VADEMECUM



    The work plan for the implementation of the Convention on Long-Range Transboundary Air Pollution under the UN Economic Commission for Europe (UN ECE) includes the production of maps of critical loads, critical levels, and exceedances as a basis for developing potential abatement strategies for sulphur and nitrogen. This Vademecum is designed to provide guidance to those responsible for calculating and mapping critical loads, critical levels, and exceedances on a national or regional scale. Th...

  13. Performance of automated software in the assessment of segmental left ventricular function in cardiac CT: Comparison with cardiac magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Capital Medical University, Department of Radiology, Beijing Anzhen Hospital, Beijing (China); Meinel, Felix G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Ludwig-Maximilians-University Hospital, Institute for Clinical Radiology, Munich (Germany); Schoepf, U.J. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Canstein, Christian [Siemens Medical Solutions USA, Malvern, PA (United States); Spearman, James V. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); De Cecco, Carlo N. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Departments of Radiological Sciences, Oncology and Pathology, Latina (Italy)


    To evaluate the accuracy, reliability and time saving potential of a novel cardiac CT (CCT)-based, automated software for the assessment of segmental left ventricular function compared to visual and manual quantitative assessment of CCT and cardiac magnetic resonance (CMR). Forty-seven patients with suspected or known coronary artery disease (CAD) were enrolled in the study. Wall thickening was calculated. Segmental LV wall motion was automatically calculated and shown as a colour-coded polar map. Processing time for each method was recorded. Mean wall thickness in both systolic and diastolic phases on polar map, CCT, and CMR was 9.2 ± 0.1 mm and 14.9 ± 0.2 mm, 8.9 ± 0.1 mm and 14.5 ± 0.1 mm, 8.3 ± 0.1 mm and 13.6 ± 0.1 mm, respectively. Mean wall thickening was 68.4 ± 1.5 %, 64.8 ± 1.4 % and 67.1 ± 1.4 %, respectively. Agreement for the assessment of LV wall motion between CCT, CMR and polar maps was good. Bland-Altman plots and ICC indicated good agreement between CCT, CMR and automated polar maps of the diastolic and systolic segmental wall thickness and thickening. The processing time using polar map was significantly decreased compared with CCT and CMR. Automated evaluation of segmental LV function with polar maps provides similar measurements to manual CCT and CMR evaluation, albeit with substantially reduced analysis time. (orig.)

  14. A visible light imaging device for cardiac rate detection with reduced effect of body movement (United States)

    Jiang, Xiaotian; Liu, Ming; Zhao, Yuejin


    A visible light imaging system to detect human cardiac rate is proposed in this paper. A color camera and several LEDs, acting as lighting source, were used to avoid the interference of ambient light. From people's forehead, the cardiac rate could be acquired based on photoplethysmography (PPG) theory. The template matching method was used after the capture of video. The video signal was discomposed into three signal channels (RGB) and the region of interest was chosen to take the average gray value. The green channel signal could provide an excellent waveform of pulse wave on the account of green lights' absorptive characteristics of blood. Through the fast Fourier transform, the cardiac rate was exactly achieved. But the research goal was not just to achieve the cardiac rate accurately. With the template matching method, the effects of body movement are reduced to a large extent, therefore the pulse wave can be detected even while people are in the moving state and the waveform is largely optimized. Several experiments are conducted on volunteers, and the results are compared with the ones gained by a finger clamped pulse oximeter. The contrast results between these two ways are exactly agreeable. This method to detect the cardiac rate and the pulse wave largely reduces the effects of body movement and can probably be widely used in the future.

  15. The enhancement of cardiac toxicity by concomitant administration of Berberine and macrolides. (United States)

    Zhi, Duo; Feng, Pan-Feng; Sun, Jia-Liang; Guo, Fengfeng; Zhang, Rui; Zhao, Xin; Li, Bao-Xin


    As is well-known, hERG plays an essential role in phase III repolarization of cardiac action potentials. Blocking of hERG channels can lead to LQTS. Inhibition of the metabolism of CYPs activities may elevate plasma levels, to further increase accumulation of drug on cardiac. The elevated serum levels may however elicit unexpected toxicities. Therefore, the inhibition tests of hERG and CYP are central to the preclinical studies because they may lead to severe cardiac toxicity. Berberine is widely used as an antibacterial agent and often combined with macrolides to treat gastropathy. Our objective was to assess cardiac toxicity during the combined use of Berberine with macrolides. (1) Azithromycin reduced hERG currents by accelerated channel inactivation. (2) The combination of Berberine with Azithromycin reduced hERG currents, producing an inhibitive effect stronger than use of a single drug alone, due to the high binding affinity for the onset of inactivation. (3) When cells were perfused concomitantly with Berberine and Clarithromycin, they showed a stronger inhibitive effect on hERG currents by decreasing the time constant for the onset of inactivation. (4) The combined administration of Berberine with Clarithromycin had a powerful inhibitive effect on CYP3A activities than use of a single drug alone. Collectively, these results demonstrated that concomitant use of Berberine with macrolides may require close monitoring because of potential drug toxicities, especially cardiac toxicity.

  16. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development (United States)

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich


    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7-7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.

  17. Quantum channels and memory effects (United States)

    Caruso, Filippo; Giovannetti, Vittorio; Lupo, Cosmo; Mancini, Stefano


    Any physical process can be represented as a quantum channel mapping an initial state to a final state. Hence it can be characterized from the point of view of communication theory, i.e., in terms of its ability to transfer information. Quantum information provides a theoretical framework and the proper mathematical tools to accomplish this. In this context the notion of codes and communication capacities have been introduced by generalizing them from the classical Shannon theory of information transmission and error correction. The underlying assumption of this approach is to consider the channel not as acting on a single system, but on sequences of systems, which, when properly initialized allow one to overcome the noisy effects induced by the physical process under consideration. While most of the work produced so far has been focused on the case in which a given channel transformation acts identically and independently on the various elements of the sequence (memoryless configuration in jargon), correlated error models appear to be a more realistic way to approach the problem. A slightly different, yet conceptually related, notion of correlated errors applies to a single quantum system which evolves continuously in time under the influence of an external disturbance which acts on it in a non-Markovian fashion. This leads to the study of memory effects in quantum channels: a fertile ground where interesting novel phenomena emerge at the intersection of quantum information theory and other branches of physics. A survey is taken of the field of quantum channels theory while also embracing these specific and complex settings.

  18. Cystic Fibrosis Gene Encodes a cAMP-Dependent Chloride Channel in Heart (United States)

    Hart, Padraig; Warth, John D.; Levesque, Paul C.; Collier, Mei Lin; Geary, Yvonne; Horowitz, Burton; Hume, Joseph R.


    cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significnatly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.