WorldWideScience

Sample records for cardiac hypertrophy involves

  1. Signaling Pathways Involved in Cardiac Hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Tao Zewei; Li Longgui

    2006-01-01

    Cardiac hypertrophy is the heart's response to a variety of extrinsic and intrinsic stimuli that impose increased biomechanical stress.Traditionally, it has been considered a beneficial mechanism; however, sustained hypertrophy has been associated with a significant increase in the risk of cardiovascular disease and mortality. Delineating intracellular signaling pathways involved in the different aspects of cardiac hypertrophy will permit future improvements in potential targets for therapeutic intervention. Generally, there are two types of cardiac hypertrophies, adaptive hypertrophy, including eutrophy (normal growth) and physiological hypertrophy (growth induced by physical conditioning), and maladaptive hypertrophy, including pathologic or reactive hypertrophy (growth induced by pathologic stimuli) and hypertrophic growth caused by genetic mutations affecting sarcomeric or cytoskeletal proteins. Accumulating observations from animal models and human patients have identified a number of intracellular signaling pathways that characterized as important transducers of the hypertrophic response,including calcineurin/nuclear factor of activated Tcells, phosphoinositide 3-kinases/Akt (PI3Ks/Akt),G protein-coupled receptors, small G proteins,MAPK, PKCs, Gp130/STAT'3, Na+/H+ exchanger,peroxisome proliferator-activated receptors, myocyte enhancer factor 2/histone deacetylases, and many others. Furthermore, recent evidence suggests that adaptive cardiac hypertrophy is regulated in large part by the growth hormone/insulin-like growth factors axis via signaling through the PI3K/Akt pathway. In contrast, pathological or reactive hypertrophy is triggered by autocrine and paracrine neurohormonal factors released during biomechanical stress that signal through the Gq/phosphorlipase C pathway, leading to an increase in cytosolic calcium and activation of PKC.

  2. Physiological and pathological cardiac hypertrophy.

    Science.gov (United States)

    Shimizu, Ippei; Minamino, Tohru

    2016-08-01

    The heart must continuously pump blood to supply the body with oxygen and nutrients. To maintain the high energy consumption required by this role, the heart is equipped with multiple complex biological systems that allow adaptation to changes of systemic demand. The processes of growth (hypertrophy), angiogenesis, and metabolic plasticity are critically involved in maintenance of cardiac homeostasis. Cardiac hypertrophy is classified as physiological when it is associated with normal cardiac function or as pathological when associated with cardiac dysfunction. Physiological hypertrophy of the heart occurs in response to normal growth of children or during pregnancy, as well as in athletes. In contrast, pathological hypertrophy is induced by factors such as prolonged and abnormal hemodynamic stress, due to hypertension, myocardial infarction etc. Pathological hypertrophy is associated with fibrosis, capillary rarefaction, increased production of pro-inflammatory cytokines, and cellular dysfunction (impairment of signaling, suppression of autophagy, and abnormal cardiomyocyte/non-cardiomyocyte interactions), as well as undesirable epigenetic changes, with these complex responses leading to maladaptive cardiac remodeling and heart failure. This review describes the key molecules and cellular responses involved in physiological/pathological cardiac hypertrophy. PMID:27262674

  3. Diagnostic imaging of cardiac hypertrophy

    International Nuclear Information System (INIS)

    As imaging techniques for cardiac hypertrophy, the ultrasonic dimension gauze technique, echocardiography, ventriculography and the RI technique including emission RI tomography were outlined. (Chiba, N.)

  4. Regulation of Cardiac Hypertrophy: the nuclear option

    OpenAIRE

    Kuster, Diederik

    2011-01-01

    textabstractCardiac hypertrophy is the response of the heart to an increased workload. After myocardial infarction (MI) the surviving muscle tissue has to work harder to maintain cardiac output. This sustained increase in workload leads to cardiac hypertrophy. Despite its apparent appropriateness, cardiac hypertrophy is an independent risk factor for the development of heart failure and is therefore called pathological hypertrophy. That hypertrophy is not bad per se, is illustrated by the hyp...

  5. Cardiac Hypertrophy: A Review on Pathogenesis and Treatment

    Directory of Open Access Journals (Sweden)

    Ankur Rohilla

    2012-07-01

    Full Text Available Cardiac hypertrophy has been considered as an important risk factor for cardiac morbidity and mortality whose prevalence has increased during the last few decades. Cardiac hypertrophy, a disease associated with the myocardium, is characterized by thickening of ventricle wall of heart and consequent reduction in the contracting ability of heart to pump the blood. Cardiac hypertrophy has been divided into two types, i.e. physiological and pathological hypertrophy. The exercise-induced increase in the ability of pumping blood leads to thickening of ventricle wall, referred to as physiological hypertrophy. On the other hand, reduced ability of pumping blood as a result of hypertension and volume overload on heart denotes pathological hypertrophy. Numerous mediators have been found to be involved in the pathogenesis of cardiac hypertrophy that include mitogen-activated protein kinase (MAPK, protein kinase C (PKC insulin-like growth factor-I (IGF-I, phosphatidylinositol 3-kinase (PI3K-AKT/PKB, calcinurin-nuclear factor of activated T cells (NFAT and mammalian target of rapamycin (mTOR. The prevention strategy for cardiac hypertrophy involve thiazide diuretics, angiotensin-converting enzyme (ACE inhibitors, angiotensin (Ang II receptor blockers, beta blockers and calcium channel blockers. The present review article highlights the signaling mechanisms involved and the approaches required in the treatment of cardiac hypertrophy.

  6. Mitochondria in cardiac hypertrophy and heart failure

    OpenAIRE

    Rosca, Mariana G.; Tandler, Bernard; Hoppel, Charles L.

    2012-01-01

    Heart failure (HF) frequently is the unfavorable outcome of pathological heart hypertrophy. In contrast to physiological cardiac hypertrophy, which occurs in response to exercise and leads to full adaptation of contractility to the increased wall stress, pathological hypertrophy occurs in response to volume or pressure overload, ultimately leading to contractile dysfunction and HF. Because cardiac hypertrophy impairs the relationship between ATP demand and production, mitochondrial bioenerget...

  7. Regulation of Cardiac Hypertrophy: the nuclear option

    NARCIS (Netherlands)

    D.W.D. Kuster (Diederik)

    2011-01-01

    textabstractCardiac hypertrophy is the response of the heart to an increased workload. After myocardial infarction (MI) the surviving muscle tissue has to work harder to maintain cardiac output. This sustained increase in workload leads to cardiac hypertrophy. Despite its apparent appropriateness, c

  8. Regression of altitude-produced cardiac hypertrophy.

    Science.gov (United States)

    Sizemore, D. A.; Mcintyre, T. W.; Van Liere, E. J.; Wilson , M. F.

    1973-01-01

    The rate of regression of cardiac hypertrophy with time has been determined in adult male albino rats. The hypertrophy was induced by intermittent exposure to simulated high altitude. The percentage hypertrophy was much greater (46%) in the right ventricle than in the left (16%). The regression could be adequately fitted to a single exponential function with a half-time of 6.73 plus or minus 0.71 days (90% CI). There was no significant difference in the rates of regression for the two ventricles.

  9. Cardiac Hypertrophy: A Review on Pathogenesis and Treatment

    OpenAIRE

    Ankur Rohilla; Praveen Kumar; Seema Rohilla; Ashok Kushnoor

    2012-01-01

    Cardiac hypertrophy has been considered as an important risk factor for cardiac morbidity and mortality whose prevalence has increased during the last few decades. Cardiac hypertrophy, a disease associated with the myocardium, is characterized by thickening of ventricle wall of heart and consequent reduction in the contracting ability of heart to pump the blood. Cardiac hypertrophy has been divided into two types, i.e. physiological and pathological hypertrophy. The exercise-induced increase ...

  10. AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress.

    Science.gov (United States)

    Ma, Yuedong; Huang, Huiling; Jiang, Jingzhou; Wu, Lingling; Lin, Chunxi; Tang, Anli; Dai, Gang; He, Jiangui; Chen, Yili

    2016-06-10

    AVE 0991, the nonpeptide angiotensin-(1-7) (Ang-(1-7)) analog, is recognized as having beneficial cardiovascular effects. However, the mechanisms have not been fully elucidated. This study was designed to investigate the effects of AVE 0991 on cardiac hypertrophy and the mechanisms involved. Mice were underwent aortic banding to induce cardiac hypertrophy followed by the administration of AVE 0991 (20 mg kg·day (-1)) for 4 weeks. It was shown that AVE 0991 reduced left ventricular hypertrophy and improved heart function, characterized by decreases in left ventricular weight and left ventricular end-diastolic diameter, and increases in ejection fraction. Moreover, AVE 0991 significantly down-regulated mean myocyte diameter and attenuate the gene expression of the hypertrophic markers. Furthermore, AVE 0991 inhibited the expression of NOX 2 and NOX 4, meaning that AVE 0991 reduced oxidative stress of cardiac hypertrophy mice. Our data showed that AVE 0991 treatment could attenuate cardiac hypertrophy and improve heart function, which may be due to reduce oxidative stress. PMID:26403967

  11. Tomoregulin-1 prevents cardiac hypertrophy after pressure overload in mice by inhibiting TAK1-JNK pathways

    Directory of Open Access Journals (Sweden)

    Dan Bao

    2015-08-01

    Full Text Available Cardiac hypertrophy is associated with many forms of heart disease, and identifying important modifier genes involved in the pathogenesis of cardiac hypertrophy could lead to the development of new therapeutic strategies. Tomoregulin-1 is a growth factor that is primarily involved in embryonic development and adult central nervous system (CNS function, and it is expressed abnormally in a variety of CNS pathologies. Tomoregulin-1 is also expressed in the myocardium. However, the effects of tomoregulin-1 on the heart, particularly on cardiac hypertrophy, remains unknown. The aim of the study is to examine whether and by what mechanism tomoregulin-1 regulates the development of cardiac hypertrophy induced by pressure overload. In this study, we found that tomoregulin-1 was significantly upregulated in two cardiac hypertrophy models: cTnTR92Q transgenic mice and thoracic aorta constriction (TAC-induced cardiac hypertrophy mice. The transgenic overexpression of tomoregulin-1 increased the survival rate, improved the cardiac geometry and functional parameters of echocardiography, and decreased the degree of cardiac hypertrophy of the TAC mice, whereas knockdown of tomoregulin-1 expression resulted in an opposite phenotype and exacerbated phenotypes of cardiac hypertrophy induced by TAC. A possible mechanism by which tomoregulin-1 regulates the development of cardiac hypertrophy in TAC-induced cardiac hypertrophy is through inhibiting TGFβ non-canonical (TAK1-JNK pathways in the myocardium. Tomoregulin-1 plays a protective role in the modulation of adverse cardiac remodeling from pressure overload in mice. Tomoregulin-1 could be a therapeutic target to control the development of cardiac hypertrophy.

  12. p21(CIP1/WAF1)-dependent inhibition of cardiac hypertrophy in response to Angiotensin II involves Akt/Myc and pRb signaling.

    Science.gov (United States)

    Hauck, Ludger; Grothe, Daniela; Billia, Filio

    2016-09-01

    The cyclin-dependent kinase inhibitor p21(CIP1/WAF1) (p21) is highly expressed in the adult heart. However, in response to stress, its expression is downregulated. Therefore, we investigated the role of p21 in the regulation of cardiac hypertrophic growth. At 2 months of age, p21 knockout mice (p21KO) lack an overt cardiac phenotype. In contrast, by 10 months of age, p21KO developed age-dependent cardiac hypertrophy and heart failure. After 3 weeks of trans-aortic banding (TAB), the heart/body weight ratio in 11 week old p21KO mice increased by 57%, as compared to 42% in wild type mice indicating that p21KO have a higher susceptibility to pressure overload-induced cardiac hypertrophy. We then chronically infused 8 week old wild type mice with Angiotensin II (2.0mg/kg/min) or saline subcutaneously by osmotic pumps for 14 days. Recombinant TAT conjugated p21 protein variants (10mg/kg body weight) or saline were intraperitoneally injected once daily for 14 days into Angiotensin II and saline-infused animals. Angiotensin II treated mice developed pathological cardiac hypertrophy with an average increase of 38% in heart/body weight ratios, as compared to saline-treated controls. Reconstitution of p21 function by TAT.p21 protein transduction prevented Angiotensin II-dependent development of cardiac hypertrophy and failure. Taken together, our genetic and biochemical data show an important function of p21 in the regulation of growth-related processes in the heart. PMID:27486069

  13. Identification of a core set of genes that signifies pathways underlying cardiac hypertrophy

    DEFF Research Database (Denmark)

    Strøm, Claes C; Kruhøffer, Mogens; Knudsen, Steen;

    2004-01-01

    Although the molecular signals underlying cardiac hypertrophy have been the subject of intense investigation, the extent of common and distinct gene regulation between different forms of cardiac hypertrophy remains unclear. We hypothesized that a general and comparative analysis of hypertrophic...... gene expression, using microarray technology in multiple models of cardiac hypertrophy, including aortic banding, myocardial infarction, an arteriovenous shunt and pharmacologically induced hypertrophy, would uncover networks of conserved hypertrophy-specific genes and identify novel genes involved in...... hypertrophic signalling. From gene expression analyses (8740 probe sets, n = 46) of rat ventricular RNA, we identified a core set of 139 genes with consistent differential expression in all hypertrophy models as compared to their controls, including 78 genes not previously associated with hypertrophy and 61...

  14. Herbal Supplement Ameliorates Cardiac Hypertrophy in Rats with CCl4-Induced Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Ping-Chun Li

    2012-01-01

    Full Text Available We used the carbon tetrachloride (CCl4 induced liver cirrhosis model to test the molecular mechanism of action involved in cirrhosis-associated cardiac hypertrophy and the effectiveness of Ocimum gratissimum extract (OGE and silymarin against cardiac hypertrophy. We treated male wistar rats with CCl4 and either OGE (0.02 g/kg B.W. or 0.04 g/kg B.W. or silymarin (0.2 g/kg B.W.. Cardiac eccentric hypertrophy was induced by CCl4 along with cirrhosis and increased expression of cardiac hypertrophy related genes NFAT, TAGA4, and NBP, and the interleukin-6 (IL-6 signaling pathway related genes MEK5, ERK5, JAK, and STAT3. OGE or silymarin co-treatment attenuated CCl4-induced cardiac abnormalities, and lowered expression of genes which were elevated by this hepatotoxin. Our results suggest that the IL-6 signaling pathway may be related to CCl4-induced cardiac hypertrophy. OGE and silymarin were able to lower liver fibrosis, which reduces the chance of cardiac hypertrophy perhaps by lowering the expressions of IL-6 signaling pathway related genes. We conclude that treatment of cirrhosis using herbal supplements is a viable option for protecting cardiac tissues against cirrhosis-related cardiac hypertrophy.

  15. Identification of a Core Set of Genes That Signifies Pathways Underlying Cardiac Hypertrophy

    Directory of Open Access Journals (Sweden)

    Søren P. Sheikh

    2006-04-01

    Full Text Available Although the molecular signals underlying cardiac hypertrophy have been the subject of intense investigation, the extent of common and distinct gene regulation between different forms of cardiac hypertrophy remains unclear. We hypothesized that a general and comparative analysis of hypertrophic gene expression, using microarray technology in multiple models of cardiac hypertrophy, including aortic banding, myocardial infarction, an arteriovenous shunt and pharmacologically induced hypertrophy, would uncover networks of conserved hypertrophy-specific genes and identify novel genes involved in hypertrophic signalling. From gene expression analyses (8740 probe sets, n = 46 of rat ventricular RNA, we identified a core set of 139 genes with consistent differential expression in all hypertrophy models as compared to their controls, including 78 genes not previously associated with hypertrophy and 61 genes whose altered expression had previously been reported. We identified a single common gene program underlying hypertrophic remodelling, regardless of how the hypertrophy was induced. These genes constitute the molecular basis for the existence of one main form of cardiac hypertrophy and may be useful for prediction of a common therapeutic approach. Supplementary material for this article can be found at: http://www.interscience.wiley.com/jpages/1531-6912/suppmat

  16. Identification of a Core Set of Genes That Signifies Pathways Underlying Cardiac Hypertrophy

    Science.gov (United States)

    Strøm, Claes C.; Kruhøffer, Mogens; Knudsen, Steen; Stensgaard-Hansen, Frank; Jonassen, Thomas E. N.; Ørntoft, Torben F.; Haunsø, Stig

    2004-01-01

    Although the molecular signals underlying cardiac hypertrophy have been the subject of intense investigation, the extent of common and distinct gene regulation between different forms of cardiac hypertrophy remains unclear. We hypothesized that a general and comparative analysis of hypertrophic gene expression, using microarray technology in multiple models of cardiac hypertrophy, including aortic banding, myocardial infarction, an arteriovenous shunt and pharmacologically induced hypertrophy, would uncover networks of conserved hypertrophy-specific genes and identify novel genes involved in hypertrophic signalling. From gene expression analyses (8740 probe sets, n = 46) of rat ventricular RNA, we identified a core set of 139 genes with consistent differential expression in all hypertrophy models as compared to their controls, including 78 genes not previously associated with hypertrophy and 61 genes whose altered expression had previously been reported. We identified a single common gene program underlying hypertrophic remodelling, regardless of how the hypertrophy was induced. These genes constitute the molecular basis for the existence of one main form of cardiac hypertrophy and may be useful for prediction of a common therapeutic approach. Supplementary material for this article can be found at: http://www.interscience.wiley.com/jpages/1531-6912/suppmat PMID:18629135

  17. Brain renin angiotensin system in cardiac hypertrophy and failure

    Directory of Open Access Journals (Sweden)

    MichaelBader

    2012-01-01

    Full Text Available Brain renin-angiotensin system (RAS is significantly involved in the roles of the endocrine RAS in cardiovascular regulation. Our studies indicate that the brain RAS participates in the development of cardiac hypertrophy and fibrosis through sympathetic activation. Inhibition of sympathetic hyperactivity after myocardial infarction through suppression of the brain RAS appears beneficial. The brain RAS is involved in the modulation of circadian rhythms of arterial pressure, contributing to nondipping hypertension. We conclude that the brain RAS in pathophysiological states interacts synergistically with the chronically overactive RAS through a positive biofeedback in order to maintain a state of alert diseased conditions, such as cardiac hypertrophy and failure. Therefore, targeting brain RAS with drugs such as angiotensin converting inhibitors or receptor blockers having increased brain penetrability could be of advantage. These RAS-targeting drugs are first-line therapy for all heart failure patients. Since the RAS has both endocrine and local tissue components, RAS drugs are being developed to attain increased tissue penetrability and volume of distribution and consequently an efficient inhibition of both RAS components.

  18. Identification of a Core Set of Genes That Signifies Pathways Underlying Cardiac Hypertrophy

    OpenAIRE

    Søren P. Sheikh; Stig Haunsø; Thomas E. N. Jonassen; Torben F. Ørntoft; Frank Stensgaard-Hansen; Mogens Kruhøffer; Steen Knudsen; Claes C. Strøm

    2004-01-01

    Although the molecular signals underlying cardiac hypertrophy have been the subject of intense investigation, the extent of common and distinct gene regulation between different forms of cardiac hypertrophy remains unclear. We hypothesized that a general and comparative analysis of hypertrophic gene expression, using microarray technology in multiple models of cardiac hypertrophy, including aortic banding, myocardial infarction, an arteriovenous shunt and pharmacologically induced hypertrophy...

  19. Carbamazepine alone and in combination with doxycycline attenuates isoproterenol-induced cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Harold Ray Garner

    2010-02-01

    Full Text Available β-adrenergic signaling is involved in the development of cardiac hypertrophy (CH, justifying the use of β-blockers as a therapy to minimize and postpone the consequences of this disease. Evidence suggests that adenylate cyclase, a downstream effector of the β-adrenergic pathway, might be a therapeutic target. We examined the effects of the anti-epileptic drug carbamazepine (CBZ, an inhibitor of adenylate cyclase. In a murine cardiac hypertrophy model, carbamazepine significantly attenuates isoproteronol (ISO-induced cardiac hypertrophy. Carbamazepine also has an effect in transverse aortic banding induced cardiac hypertrophy (TAB (P=0.07. When carbamazepine was given in combination with the antibiotic doxycycline (DOX, which inhibits matrix metalloproteinases (MMPs, therapeutic outcome measured by heart weight-to-body weight and heart weight-to-tibia length ratios was improved compared to either drug alone. Additionally, the combination therapy resulted in an increase in the survival rate over a 56-day period compared to that of untreated mice with cardiac hypertrophy or either drug used alone. Moreover, in support of a role for carbamaze­pine as a β-adrenergic antagonist via cAMP inhibition, a lower heart rate and a lower level of the activated phosphorylated form of the cAMP Response Element-Binding (CREB were observed in heart extracts from mice treated with carbamazepine. Gene expression analysis identified 19 genes whose expression is significantly altered in treated animals and might be responsible for the added benefit provided by the combination therapy. These results suggest that carbamazepine acts as a β-adrenergic antagonist. Carbamazepine and doxycycline are approved by the US Food and Drug Administration (FDA as drugs that might complement medications for cardiac hypertrophy or serve as an alternative therapy to traditional β-blockers. Furthermore, these agents reproducibly impact the expression of genes that may serve as

  20. Speckle Tracking Based Strain Analysis Is Sensitive for Early Detection of Pathological Cardiac Hypertrophy

    OpenAIRE

    Xiangbo An; Jingjing Wang; Hao Li; Zhizhen Lu; Yan Bai; Han Xiao; Youyi Zhang; Yao Song

    2016-01-01

    Cardiac hypertrophy is a key pathological process of many cardiac diseases. However, early detection of cardiac hypertrophy is difficult by the currently used non-invasive method and new approaches are in urgent need for efficient diagnosis of cardiac malfunction. Here we report that speckle tracking-based strain analysis is more sensitive than conventional echocardiography for early detection of pathological cardiac hypertrophy in the isoproterenol (ISO) mouse model. Pathological hypertrophy...

  1. Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, H.J.; Ouyang, W.; Liu, J.H.; Sun, Y.G.; Hu, R.; Huang, L.H.; Xian, J.L. [Southern Medical University, Department of Nuclear Medicine, Zhujiang Hospital, Guangzhou, China, Department of Nuclear Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Jing, C.F.; Zhou, M.J. [Sun Yat-Sen University, South China Sea Marine Biotechnology, National Engineering Research Center, Guangzhou, China, National Engineering Research Center, South China Sea Marine Biotechnology, Sun Yat-Sen University, Guangzhou (China)

    2014-04-11

    Hypertrophy is a major predictor of progressive heart disease and has an adverse prognosis. MicroRNAs (miRNAs) that accumulate during the course of cardiac hypertrophy may participate in the process. However, the nature of any interaction between a hypertrophy-specific signaling pathway and aberrant expression of miRNAs remains unclear. In this study, Spague Dawley male rats were treated with transverse aortic constriction (TAC) surgery to mimic pathological hypertrophy. Hearts were isolated from TAC and sham operated rats (n=5 for each group at 5, 10, 15, and 20 days after surgery) for miRNA microarray assay. The miRNAs dysexpressed during hypertrophy were further analyzed using a combination of bioinformatics algorithms in order to predict possible targets. Increased expression of the target genes identified in diverse signaling pathways was also analyzed. Two sets of miRNAs were identified, showing different expression patterns during hypertrophy. Bioinformatics analysis suggested the miRNAs may regulate multiple hypertrophy-specific signaling pathways by targeting the member genes and the interaction of miRNA and mRNA might form a network that leads to cardiac hypertrophy. In addition, the multifold changes in several miRNAs suggested that upregulation of rno-miR-331*, rno-miR-3596b, rno-miR-3557-5p and downregulation of rno-miR-10a, miR-221, miR-190, miR-451 could be seen as biomarkers of prognosis in clinical therapy of heart failure. This study described, for the first time, a potential mechanism of cardiac hypertrophy involving multiple signaling pathways that control up- and downregulation of miRNAs. It represents a first step in the systematic discovery of miRNA function in cardiovascular hypertrophy.

  2. Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy

    International Nuclear Information System (INIS)

    Hypertrophy is a major predictor of progressive heart disease and has an adverse prognosis. MicroRNAs (miRNAs) that accumulate during the course of cardiac hypertrophy may participate in the process. However, the nature of any interaction between a hypertrophy-specific signaling pathway and aberrant expression of miRNAs remains unclear. In this study, Spague Dawley male rats were treated with transverse aortic constriction (TAC) surgery to mimic pathological hypertrophy. Hearts were isolated from TAC and sham operated rats (n=5 for each group at 5, 10, 15, and 20 days after surgery) for miRNA microarray assay. The miRNAs dysexpressed during hypertrophy were further analyzed using a combination of bioinformatics algorithms in order to predict possible targets. Increased expression of the target genes identified in diverse signaling pathways was also analyzed. Two sets of miRNAs were identified, showing different expression patterns during hypertrophy. Bioinformatics analysis suggested the miRNAs may regulate multiple hypertrophy-specific signaling pathways by targeting the member genes and the interaction of miRNA and mRNA might form a network that leads to cardiac hypertrophy. In addition, the multifold changes in several miRNAs suggested that upregulation of rno-miR-331*, rno-miR-3596b, rno-miR-3557-5p and downregulation of rno-miR-10a, miR-221, miR-190, miR-451 could be seen as biomarkers of prognosis in clinical therapy of heart failure. This study described, for the first time, a potential mechanism of cardiac hypertrophy involving multiple signaling pathways that control up- and downregulation of miRNAs. It represents a first step in the systematic discovery of miRNA function in cardiovascular hypertrophy

  3. APJ ACTS AS A DUAL RECEPTOR IN CARDIAC HYPERTROPHY

    OpenAIRE

    Scimia, Maria Cecilia; Hurtado, Cecilia; Ray, Saugata; Metzler, Scott; Wei, Ke; Wang, Jianming; Woods, Chris E.; Purcell, Nicole H.; Catalucci, Daniele; Akasaka, Takashi; Bueno, Orlando F.; Vlasuk, George P.; Kaliman, Perla; Bodmer, Rolf; Smith, Layton H.

    2012-01-01

    Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues 1 . Here we report that genetic loss of APJ confers resistance to chronic pressure overload by dramatically reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to s...

  4. Differential and Conditional Activation of PKC-Isoforms Dictates Cardiac Adaptation during Physiological to Pathological Hypertrophy

    OpenAIRE

    Shaon Naskar; Kaberi Datta; Arkadeep Mitra; Kanchan Pathak; Ritwik Datta; Trisha Bansal; Sagartirtha Sarkar

    2014-01-01

    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week ...

  5. Supra-physiological dose of testosterone induces pathological cardiac hypertrophy.

    Science.gov (United States)

    Pirompol, Prapawadee; Teekabut, Vassana; Weerachatyanukul, Wattana; Bupha-Intr, Tepmanas; Wattanapermpool, Jonggonnee

    2016-04-01

    Testosterone and androgenic anabolic steroids have been misused for enhancement of physical performance despite many reports on cardiac sudden death. Although physiological level of testosterone provided many regulatory benefits to human health, including the cardiovascular function, supra-physiological levels of the hormone induce hypertrophy of the heart with unclear contractile activation. In this study, dose- and time-dependent effects of high-testosterone treatment on cardiac structure and function were evaluated. Adult male rats were divided into four groups of testosterone treatment for 0, 5, 10, and 20 mg/kg BW for 4, 8, or 12 weeks. Increases in both percentage heart:body weight ratio and cardiomyocyte cross-sectional area in representing hypertrophy of the heart were significantly shown in all testosterone-treated groups to the same degree. In 4-week-treated rats, physiological cardiac hypertrophy was apparent with an upregulation of α-MHC without any change in myofilament contractile activation. In contrast, pathological cardiac hypertrophy was observed in 8- and 12-week testosterone-treated groups, as indicated by suppression of myofilament activation and myocardial collagen deposition without transition of MHC isoforms. Only in 12-week testosterone-treated group, eccentric cardiac hypertrophy was demonstrated with unaltered myocardial stiffness, but significant reductions in the phosphorylation signals of ERK1/2 and mTOR. Results of our study suggest that the outcome of testosterone-induced cardiac hypertrophy is not dose dependent but is rather relied on the factor of exposure to duration in inducing maladaptive responses of the heart. PMID:26850730

  6. N-[11C]-methyl-hydroxyfasudil is a potential biomarker of cardiac hypertrophy

    International Nuclear Information System (INIS)

    Introduction: Pathologic cardiac hypertrophy is one of the leading causes of sudden death from cardiac disease and involves a complex network of bio-signaling mechanisms. To date, the clinical detection and pathologic progression of hypertrophy remains elusive. Here we tested whether imaging Rho kinase activity would serve an accurate proxy for detecting hypertrophy. Specifically, we examine the use of the N-[11C]-methylated derivative of hydroxyfasudil, a Rho kinase inhibitor, as a biomarker for accurate identification of cardiomyocyte hypertrophy. Methods: Both transformed and primary neonatal cardiomyocytes were treated with isoproterenol to induce β-adrenergic receptor stimulation and hypertrophy. Phenotypic hypertrophy was verified using cytochemical evaluation of cell and nuclear size. Western blot and activity assays were used to detect ERK 1/2 mTOR and Rho kinase activation. N-[11C]-methyl-hydroxyfasudil binding was verified using in vitro binding assays with isoproterenol stimulated cells. Results: Isoproterenol induced a rapid and distinct activation of ERK 1/2, mTOR and Rho kinase with negligible cytotoxicity. Subsequent expansion in cell and nuclear size that is typically associated with hypertrophy was also observed. Enhanced retention of N-[11C]-methyl-hydroxyfasudil observed after ISO-induced Rho kinase activation in hypertrophic cells was prevented by pre-treatment with unlabeled hydroxyfasudil. Conclusions: N-[11C]-methyl-hydroxyfasudil is able to measure increased Rho kinase activity via specific binding in hypertrophied cardiomyocytes and demonstrates the potential for molecular imaging of altered Rho kinase activity in diseases such as cardiac hypertrophy

  7. Lean heart: Role of leptin in cardiac hypertrophy and metabolism

    Institute of Scientific and Technical Information of China (English)

    Michael; E; Hall; Romain; Harmancey; David; E; Stec

    2015-01-01

    Leptin is an adipokine that has been linked with the cardiovascular complications resulting from obesity such as hypertension and heart disease. Obese patients have high levels of circulating leptin due to increased fat mass. Clinical and population studies have correlated high levels of circulating leptin with the development of cardiac hypertrophy in obesity. Leptin has also been demonstrated to increase the growth of cultured cardiomyocytes. However, several animal studies of obese leptin deficient mice have not supported a role for leptin in promoting cardiac hypertrophy so the role of leptin in this pathological process remains unclear. Leptin is also an important hormone in the regulation of cardiac metabolism where it supports oxidation of glucose and fatty acids. In addition, leptin plays a critical role in protecting the heart from excess lipid accumulation and the formation of toxic lipids in obesity a condition known as cardiac lipotoxicity. This paper focuses on the data supporting and refuting leptin’s role in promoting cardiac hypertrophy as well as its important role in the regulation of cardiac metabolism and protection against cardiac lipotoxicity.

  8. Through thick and thin: A circulating growth factor inhibits age-related cardiac hypertrophy

    OpenAIRE

    McPherron, Alexandra C

    2013-01-01

    In an intriguing new study, Loffredo et al., report that joining the circulation of old mice with that of young mice reduces age-related cardiac hypertrophy. They also found that the growth factor GDF11 is a circulating negative regulator of cardiac hypertrophy which suggests that raising GDF11 levels may be useful to treat cardiac hypertrophy associated with aging.

  9. Pharmacological targeting of CDK9 in cardiac hypertrophy

    Czech Academy of Sciences Publication Activity Database

    Kryštof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, J.

    2010-01-01

    Roč. 30, č. 4 (2010), s. 646-666. ISSN 0198-6325 R&D Projects: GA ČR GA204/08/0511; GA ČR GA301/09/1832; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : P-TEFb * cardiac myocyte * cardiac hypertrophy Subject RIV: CE - Biochemistry Impact factor: 10.228, year: 2010

  10. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy

    Science.gov (United States)

    Tagawa, H.; Wang, N.; Narishige, T.; Ingber, D. E.; Zile, M. R.; Cooper, G. 4th

    1997-01-01

    We have shown that the cellular contractile dysfunction characteristic of pressure-overload cardiac hypertrophy results not from an abnormality intrinsic to the myofilament portion of the cardiocyte cytoskeleton but rather from an increased density of the microtubule component of the extramyofilament portion of the cardiocyte cytoskeleton. To determine how, in physical terms, this increased microtubule density mechanically overloads the contractile apparatus at the cellular level, we measured cytoskeletal stiffness and apparent viscosity in isolated cardiocytes via magnetic twisting cytometry, a technique by which magnetically induced force is applied directly to the cytoskeleton through integrin-coupled ferromagnetic beads coated with Arg-Gly-Asp (RGD) peptide. Measurements were made in two groups of cardiocytes from cats with right ventricular (RV) hypertrophy induced by pulmonary artery banding: (1) those from the pressure-overloaded RV and (2) those from the normally loaded same-animal control left ventricle (LV). Cytoskeletal stiffness increased almost twofold, from 8.53 +/- 0.77 dyne/cm2 in the normally loaded LV cardiocytes to 16.46 +/- 1.32 dyne/cm2 in the hypertrophied RV cardiocytes. Cytoskeletal apparent viscosity increased almost fourfold, from 20.97 +/- 1.92 poise in the normally loaded LV cardiocytes to 87.85 +/- 6.95 poise in the hypertrophied RV cardiocytes. In addition to these baseline data showing differing stiffness and, especially, apparent viscosity in the two groups of cardiocytes, microtubule depolymerization by colchicine was found to return both the stiffness and the apparent viscosity of the pressure overload-hypertrophied RV cells fully to normal. Conversely, microtubule hyperpolymerization by taxol increased the stiffness and apparent viscosity values of normally loaded LV cardiocytes to the abnormal values given above for pressure-hypertrophied RV cardiocytes. Thus, increased microtubule density constitutes primarily a viscous load on

  11. APJ acts as a dual receptor in cardiac hypertrophy.

    Science.gov (United States)

    Scimia, Maria Cecilia; Hurtado, Cecilia; Ray, Saugata; Metzler, Scott; Wei, Ke; Wang, Jianming; Woods, Chris E; Purcell, Nicole H; Catalucci, Daniele; Akasaka, Takeshi; Bueno, Orlando F; Vlasuk, George P; Kaliman, Perla; Bodmer, Rolf; Smith, Layton H; Ashley, Euan; Mercola, Mark; Brown, Joan Heller; Ruiz-Lozano, Pilar

    2012-08-16

    Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues. Here we report that genetic loss of APJ, a G-protein-coupled receptor, confers resistance to chronic pressure overload by markedly reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin-independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to stretch, indicating that APJ is a mechanosensor. Activation of APJ by stretch increases cardiomyocyte cell size and induces molecular markers of hypertrophy. Whereas apelin stimulates APJ to activate Gαi and elicits a protective response, stretch signals in an APJ-dependent, G-protein-independent fashion to induce hypertrophy. Stretch-mediated hypertrophy is prevented by knockdown of β-arrestins or by pharmacological doses of apelin acting through Gαi. Taken together, our data indicate that APJ is a bifunctional receptor for both mechanical stretch and the endogenous peptide apelin. By sensing the balance between these stimuli, APJ occupies a pivotal point linking sustained overload to cardiomyocyte hypertrophy. PMID:22810587

  12. Myocardial uptake of thallium-201 in rat with cardiac hypertrophy

    International Nuclear Information System (INIS)

    The thallium-201 (TL) has been used in order to diagnose myocardial infarction and ischemia. Although it is well known that TL distributes in the myocardium in proportion to the distribution of coronary blood flow, the biological property of TL in the loaded myocardium remains unclear. We studied the myocardial uptake of TL in rat with cardiac hypertrophy. Experiments were performed in 30 anesthetized rats devided into 3 groups; control group (C,N=14), hypertrophy group (H,N=6) and diltiazem group (D, 0.3 mg/kg/min. IV. N=10). Cardiac hypertrophy was produced with the banding of the ascending aorta. Myocardial blood flow (MBF) was measured by microspheres labeled with Strontium-85. Cardiac weight was increased in H, and both MBF and TL uptake were proportionally increased. MBF was negatively correlated with the extraction fraction in C (r=-0.71), in H (r=-0.66) and in D (r=-0.85), and this relationship in H was significantly different from it in C (p<0.05), but not in D. From these results, we concluded that TL uptake in H is not always dependant on MBF and affected by the altered metabolism of hypertrophied myocardium. (author)

  13. Speckle Tracking Based Strain Analysis Is Sensitive for Early Detection of Pathological Cardiac Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Xiangbo An

    Full Text Available Cardiac hypertrophy is a key pathological process of many cardiac diseases. However, early detection of cardiac hypertrophy is difficult by the currently used non-invasive method and new approaches are in urgent need for efficient diagnosis of cardiac malfunction. Here we report that speckle tracking-based strain analysis is more sensitive than conventional echocardiography for early detection of pathological cardiac hypertrophy in the isoproterenol (ISO mouse model. Pathological hypertrophy was induced by a single subcutaneous injection of ISO. Physiological cardiac hypertrophy was established by daily treadmill exercise for six weeks. Strain analysis, including radial strain (RS, radial strain rate (RSR and longitudinal strain (LS, showed marked decrease as early as 3 days after ISO injection. Moreover, unlike the regional changes in cardiac infarction, strain analysis revealed global cardiac dysfunction that affects the entire heart in ISO-induced hypertrophy. In contrast, conventional echocardiography, only detected altered E/E', an index reflecting cardiac diastolic function, at 7 days after ISO injection. No change was detected on fractional shortening (FS, E/A and E'/A' at 3 days or 7 days after ISO injection. Interestingly, strain analysis revealed cardiac dysfunction only in ISO-induced pathological hypertrophy but not the physiological hypertrophy induced by exercise. Taken together, our study indicates that strain analysis offers a more sensitive approach for early detection of cardiac dysfunction than conventional echocardiography. Moreover, multiple strain readouts distinguish pathological cardiac hypertrophy from physiological hypertrophy.

  14. Type III Transforming Growth Factor-β Receptor Drives Cardiac Hypertrophy Through β-Arrestin2-Dependent Activation of Calmodulin-Dependent Protein Kinase II.

    Science.gov (United States)

    Lou, Jie; Zhao, Dan; Zhang, Ling-Ling; Song, Shu-Ying; Li, Yan-Chao; Sun, Fei; Ding, Xiao-Qing; Yu, Chang-Jiang; Li, Yuan-Yuan; Liu, Mei-Tong; Dong, Chang-Jiang; Ji, Yong; Li, Hongliang; Chu, Wenfeng; Zhang, Zhi-Ren

    2016-09-01

    The role of type III transforming growth factor-β receptor (TβRIII) in the pathogenesis of heart diseases remains largely unclear. Here, we investigated the functional role and molecular mechanisms of TβRIII in the development of myocardial hypertrophy. Western blot and quantitative real time-polymerase chain reaction analyses revealed that the expression of TβRIII was significantly elevated in human cardiac hypertrophic samples. Consistently, TβRIII expression was substantially increased in transverse aortic constriction (TAC)- and isoproterenol-induced mouse cardiac hypertrophy in vivo and in isoproterenol-induced cardiomyocyte hypertrophy in vitro. Overexpression of TβRIII resulted in cardiomyocyte hypertrophy, whereas isoproterenol-induced cardiomyocyte hypertrophy was greatly attenuated by knockdown of TβRIII in vitro. Cardiac-specific transgenic expression of TβRIII independently led to cardiac hypertrophy in mice, which was further aggravated by isoproterenol and TAC treatment. Cardiac contractile function of the mice was not altered in TβRIII transgenic mice; however, TAC led to significantly decreased cardiac contractile function in TβRIII transgenic mice compared with control mice. Conversely, isoproterenol- and TAC-induced cardiac hypertrophy and TAC-induced cardiac contractile function impairment were partially reversed by suppression of TβRIII in vivo. Our data suggest that TβRIII mediates stress-induced cardiac hypertrophy through activation of Ca(2+)/calmodulin-dependent protein kinase II, which requires a physical interaction of β-arrestin2 with both TβRIII and calmodulin-dependent protein kinase II. Our findings indicate that stress-induced increase in TβRIII expression results in cardiac hypertrophy through β-arrestin2-dependent activation of calmodulin-dependent protein kinase II and that transforming growth factor-β and β-adrenergic receptor signaling are not involved in spontaneous cardiac hypertrophy in cardiac

  15. SIRT6 suppresses isoproterenol-induced cardiac hypertrophy through activation of autophagy.

    Science.gov (United States)

    Lu, Jing; Sun, Duanping; Liu, Zhiping; Li, Min; Hong, Huiqi; Liu, Cui; Gao, Si; Li, Hong; Cai, Yi; Chen, Shaorui; Li, Zhuoming; Ye, Jiantao; Liu, Peiqing

    2016-06-01

    Reduction in autophagy has been reported to contribute to the pathogenesis of cardiac hypertrophy. However, the molecular pathways leading to impaired autophagy at the presence of hypertrophic stimuli remain to be elucidated. The present study aimed to investigate the role of sirtuin 6 (SIRT6), a sirtuin family member, in regulating cardiomyocyte autophagy, and its implication in prevention of cardiac hypertrophy. Primary neonatal rat cardiomyocytes (NRCMs) or Sprague-Dawley (SD) rats were submitted to isoproterenol (ISO) treatment, and then the hypertrophic responses and changes in autophagy activity were measured. The influence of SIRT6 on autophagy was observed in cultured NRCMs with gain- and loss-of-function approaches to regulate SIRT6 expression, and further confirmed in vivo by intramyocardial delivery of an adenovirus vector encoding SIRT6 cDNA. In addition, the involvement of SIRT6-mediated autophagy in attenuation of cardiomyocyte hypertrophy induced by ISO was determined basing on genetic or pharmaceutical disruption of autophagy, and the underlying mechanism was preliminarily explored. ISO-caused cardiac hypertrophy accompanying with a significant decrease in autophagy activity. SIRT6 overexpression enhanced autophagy in NRCMs and in rat hearts, whereas knockdown of SIRT6 by RNA interference led to suppression of cardiomyocyte autophagy. Furthermore, the protective effect of SIRT6 against ISO-stimulated hypertrophy was associated with induction of autophagy. SIRT6 promoted nuclear retention of forkhead box O3 transcription factor possibly via attenuating Akt signaling, which was responsible for autophagy activation. Our findings revealed that SIRT6 positively regulates autophagy in cardiomyocytes, which may help to ameliorate ISO-induced cardiac hypertrophy. PMID:27016702

  16. Cardiac hypertrophy and thyroid hormone signaling

    OpenAIRE

    Dillmann, Wolfgang

    2009-01-01

    Thyroid hormone exerts a large number of influences on the cardiovascular system. Increased thyroid hormone action increases the force and speed of systolic contraction and the speed of diastolic relaxation and these are largely beneficial effects. Furthermore, thyroid hormone has marked electrophysiological effects increasing heart rate and the propensity for atrial fibrillation and these effects are largely mal-adaptive. In addition, thyroid hormone markedly increases cardiac angiogenesis a...

  17. Cardiac hypertrophy and thyroid hormone signaling

    OpenAIRE

    Dillmann, Wolfgang

    2010-01-01

    Thyroid hormone exerts a large number of influences on the cardiovascular system. Increased thyroid hormone action increases the force and speed of systolic contraction and the speed of diastolic relaxation and these are largely beneficial effects. Furthermore, thyroid hormone has marked electrophysiological effects increasing heart rate and the propensity for atrial fibrillation and these effects are largely mal-adaptive. In addition, thyroid hormone markedly increases cardiac angiogenesis a...

  18. Cardiac involvement in proximal myotonic myopathy

    OpenAIRE

    von zur Muhlen, F; Klass, C; Kreuzer, H.; Mall, G; Giese, A.; Reimers, C

    1998-01-01

    Proximal myotonic myopathy (PROMM) is a recently described autosomal dominantly inherited disorder resulting in proximal muscle weakness, myotonia, and cataracts. A few patients with cardiac involvement (sinus bradycardia, supraventricular bigeminy, conduction abnormalities) have been reported. The cases of three relatives with PROMM (weakness of neck flexors and proximal extremity muscles, calf hypertrophy, myotonia, cataracts) are reported: a 54 year old man, his 73 year old mother, and 66 ...

  19. Tear me down: Role of calpain in the development of cardiac ventricular hypertrophy

    OpenAIRE

    Patterson, Cam; Portbury, Andrea; Schisler, Jonathan C; Willis, Monte S.

    2011-01-01

    Cardiac hypertrophy develops most commonly in response to hypertension and is an independent risk factor for the development of heart failure. The mechanisms by which cardiac hypertrophy may be reversed to reduce this risk have not been fully determined to the point where mechanism-specific therapies have been developed. Recently, proteases in the calpain family have been implicated in regulating the development of cardiac hypertrophy in preclinical animal models. In this review, we summarize...

  20. Mouse models for the study of postnatal cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    A. Del Olmo-Turrubiarte

    2015-06-01

    Full Text Available The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH, in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP isoproterenol (ISO was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB, neonates (7–15 days and young adults (6 weeks of age. Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR, alpha and beta myosins (α-MHC, β-MHC and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS. Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  1. High incidence and variable clinical outcome of cardiac hypertrophy due to ACAD9 mutations in childhood.

    Science.gov (United States)

    Collet, Marie; Assouline, Zahra; Bonnet, Damien; Rio, Marlène; Iserin, Franck; Sidi, Daniel; Goldenberg, Alice; Lardennois, Caroline; Metodiev, Metodi Dimitrov; Haberberger, Birgit; Haack, Tobias; Munnich, Arnold; Prokisch, Holger; Rötig, Agnès

    2016-08-01

    Acyl-CoA dehydrogenase family, member 9 (ACAD9) mutation is a frequent, usually fatal cause of early-onset cardiac hypertrophy and mitochondrial respiratory chain complex I deficiency in early childhood. We retrospectively studied a series of 20 unrelated children with cardiac hypertrophy and isolated complex I deficiency and identified compound heterozygosity for missense, splice site or frame shift ACAD9 variants in 8/20 patients (40%). Age at onset ranged from neonatal period to 9 years and 5/8 died in infancy. Heart transplantation was possible in 3/8. Two of them survived and one additional patient improved spontaneously. Importantly, the surviving patients later developed delayed-onset neurologic or muscular symptoms, namely cognitive impairment, seizures, muscle weakness and exercise intolerance. Other organ involvement included proximal tubulopathy, renal failure, secondary ovarian failure and optic atrophy. We conclude that ACAD9 mutation is the most frequent cause of cardiac hypertrophy and isolated complex I deficiency. Heart transplantation in children surviving neonatal period should be considered with caution, as delayed-onset muscle and brain involvement of various severity may occur, even if absent prior to transplantation. PMID:26669660

  2. Suppression of calcium‑sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy.

    Science.gov (United States)

    Liu, Lei; Wang, Chao; Lin, Yan; Xi, Yuhui; Li, Hong; Shi, Sa; Li, Hongzhu; Zhang, Weihua; Zhao, Yajun; Tian, Ye; Xu, Changqing; Wang, Lina

    2016-07-01

    The calcium-sensing receptor (CaSR) releases intracellular calcium ([Ca2+]i) by accumulating inositol phosphate. Changes in [Ca2+]i initiate myocardial hypertrophy. Furthermore, autophagy associated with [Ca2+]i. Autophagy has previously been demonstrated to participate in the hypertrophic process. The current study investigated whether suppression of CaSR affects the hypertrophic response via modulating autophagy. Isoproterenol (ISO) was used to induce cardiac hypertrophy in Wistar rats. Hypertrophic status was determined by echocardiographic assessment, hematoxylin and eosin, and Masson's staining. The protein expression levels of CaSR and autophagy level were observed. Changes of hypertrophy and autophagy indicators were observed following intravenous injection of a CaSR inhibitor. An ISO‑induced cardiomyocyte hypertrophy model was established and used determine the involvement of GdCl3. [Ca2+]i was determined using Fluo‑4/AM dye followed by confocal microscopy. The expression levels of various active proteins were analyzed by western blotting. The size of the heart, expression levels of CaSR and autophagy level were markedly increased in hypertrophic myocardium. In addition, the present study demonstrated that the indicators of hypertrophy and autophagy were effectively suppressed by CaSR inhibitor. Furthermore, similar effects were demonstrated in neonatal rat hypertrophic cardiomyocytes treated with ISO. It was also observed that CaSR regulates the Ca2+/calmodulin‑dependent protein kinase kinase β (CaMKKβ)‑AMP‑activated protein kinase (AMPK)‑mammalian target of rapamycin (mTOR) signaling pathway induced by ISO in cardiomyocytes. Furthermore, the AMPK inhibition significantly reduced the autophagy level following CaSR stimulation (P<0.05). The results of the present demonstrated that inhibition of CaSR may ameliorate cardiac hypertrophy induced by ISO and the effect may be associated with the inhibition of autophagy and suppression of the Ca

  3. Urotensin Ⅱ accelerates cardiac fibrosis and hypertrophy of rats induced by isoproterenol

    Institute of Scientific and Technical Information of China (English)

    Yong-gang ZHANG; Yu-guang LI; Bao-guo LIU; Rui-hong WEI; Dong-ming WANG; Xue-rui TAN; Ding-fang BU; Yong-zheng PANG; Chao-shu TANG

    2007-01-01

    Aim: To study whether urotensin Ⅱ (UⅡ), a potent vasoconstrictive peptide, is involved in the development of cardiac hypertrophy and fibrogenesis of rats induced by isoproterenol (ISO). Methods: Thirty male Wistar rats were randomly divided into 3 groups. Group 1 was the healthy control group, group 2 was the ISO group, and group 3 was the ISO+UⅡ group. In groups 2 and 3, ISO (5 mg-kg-1.d-1) was given (sc) once daily for 7 d. Group 3 was also given UⅡ in the first day [3 nmol/kg (5 μg/kg), iv], followed by sc (1.5 μg/kg) twice daily. Group 1 received 0.9% saline. UⅡ receptor (UT) mRNA expression was determined by RT-PCR. The contents of UⅡ and angiotensin Ⅱ (Ang Ⅱ) were determined by radioimmunoassay. In vitro, the effects of UⅡ on DNA/collagen synthesis of cardiac fibroblasts were deter-mined by [3H]thymidine/[3H]proline incorporation. Results: The ratio of heart weight/body weight, plasma lactate dehydrogenase activity, myocardial malondialdehyde and hydroxyproline concentration increased significantly in the ISO group, as well as UT mRNA expression, plasma and cardiac UⅡ and ventricu-lar Ang Ⅱ, compared with the control group (P<0.01). ISO induced significant myocardial fibrogenesis. Moreover, UⅡ+ISO co-treatment significantly increased the changes of biochemical markers of injury and the degree of cardiac hypertro-phy and fibrosis. In vitro, 5x10-9-5x 10-7 mol/L UⅡ stimulated [3]thymidine/[3H] proline incorporation into cardiac fibroblasts in a dose-dependent manner (P<0.01).Conclusion: These results suggest that UⅡ was involved in the development of cardiac fibrosis and hypertrophy by synergistic effects with ISO.

  4. Cardiac pressure overload hypertrophy is differentially regulated by β-adrenergic receptor subtypes

    OpenAIRE

    Zhao, Mingming; Fajardo, Giovanni; Urashima, Takashi; Spin, Joshua M; Poorfarahani, Sara; Rajagopalan, Viswanathan; Huynh, Diem; Connolly, Andrew; Quertermous, Thomas; Bernstein, Daniel

    2011-01-01

    In isolated myocytes, hypertrophy induced by norepinephrine is mediated via α1-adrenergic receptors (ARs) and not β-ARs. However, mice with deletions of both major cardiac α1-ARs still develop hypertrophy in response to pressure overload. Our purpose was to better define the role of β-AR subtypes in regulating cardiac hypertrophy in vivo, important given the widespread clinical use of β-AR antagonists and the likelihood that patients treated with these agents could develop conditions of furth...

  5. The effects of compensated cardiac hypertrophy on dihydropyridine and ryanodine receptors in rat, ferret and guinea-pig hearts.

    Science.gov (United States)

    Rannou, F; Sainte-Beuve, C; Oliviero, P; Do, E; Trouvé, P; Charlemagne, D

    1995-05-01

    The number of dihydropyridine and ryanodine receptors (DHP-R and RyR) has been measured in control and hypertrophied ventricles from rats, guinea pigs and ferrets to determine whether these two channels contribute to the alterations in excitation-contraction coupling (ECC), and in Ca2+ transient during compensated cardiac hypertrophy. We found that ventricular hypertrophy did not change the density of DHP-R. Mild hypertrophy did not alter the density of RyR in the rat but decreased it in the guinea-pig and in the ferret (30% and 36%, respectively). Severe hypertrophy decreased the density of RyR by 20% in the rat and by 34% in the guinea-pig. Therefore, the decrease is greater in ferret and guinea-pig hearts than in rat heart. We conclude that the sarcoplasmic reticulum (SR) Ca2+ release channels but not the L-type Ca2+ channels could contribute to the slowing of intracellular Ca2+ movements and to the reduced velocity of shortening of the hypertrophied hearts. We suggest that, in the guinea pig and ferret hearts which express only the beta myosin heavy chain (MHC) isoform, the reduced velocity of shortening during hypertrophy is related to the decrease in RyR density, whereas in the rat, it is regulated primarily via a shift in the MHC isoform, except in severe hypertrophy in which the moderate decrease in RyR would also be involved. PMID:7473781

  6. The vascular smooth muscle alpha-actin gene is reactivated during cardiac hypertrophy provoked by load.

    OpenAIRE

    Black, F M; Packer, S E; Parker, T G; Michael, L H; Roberts, R; R J Schwartz; Schneider, M D

    1991-01-01

    Cardiac hypertrophy triggered by mechanical load possesses features in common with growth factor signal transduction. A hemodynamic load provokes rapid expression of the growth factor-inducible nuclear oncogene, c-fos, and certain peptide growth factors specifically stimulate the "fetal" cardiac genes associated with hypertrophy, even in the absence of load. These include the gene encoding vascular smooth muscle alpha-actin, the earliest alpha-actin expressed during cardiac myogenesis; howeve...

  7. Fenofibrate unexpectedly induces cardiac hypertrophy in mice lacking MuRF1.

    Science.gov (United States)

    Parry, Traci L; Desai, Gopal; Schisler, Jonathan C; Li, Luge; Quintana, Megan T; Stanley, Natalie; Lockyer, Pamela; Patterson, Cam; Willis, Monte S

    2016-01-01

    The muscle-specific ubiquitin ligase muscle ring finger-1 (MuRF1) is critical in regulating both pathological and physiological cardiac hypertrophy in vivo. Previous work from our group has identified MuRF1's ability to inhibit serum response factor and insulin-like growth factor-1 signaling pathways (via targeted inhibition of cJun as underlying mechanisms). More recently, we have identified that MuRF1 inhibits fatty acid metabolism by targeting peroxisome proliferator-activated receptor alpha (PPARα) for nuclear export via mono-ubiquitination. Since MuRF1-/- mice have an estimated fivefold increase in PPARα activity, we sought to determine how challenge with the PPARα agonist fenofibrate, a PPARα ligand, would affect the heart physiologically. In as little as 3 weeks, feeding with fenofibrate/chow (0.05% wt/wt) induced unexpected pathological cardiac hypertrophy not present in age-matched sibling wild-type (MuRF1+/+) mice, identified by echocardiography, cardiomyocyte cross-sectional area, and increased beta-myosin heavy chain, brain natriuretic peptide, and skeletal muscle α-actin mRNA. In addition to pathological hypertrophy, MuRF1-/- mice had an unexpected differential expression in genes associated with the pleiotropic effects of fenofibrate involved in the extracellular matrix, protease inhibition, hemostasis, and the sarcomere. At both 3 and 8 weeks of fenofibrate treatment, the differentially expressed MuRF1-/- genes most commonly had SREBP-1 and E2F1/E2F promoter regions by TRANSFAC analysis (54 and 50 genes, respectively, of the 111 of the genes >4 and bridges, for the first time, MuRF1's regulation of PPARα, cardiac hypertrophy, and hemostasis. PMID:26764147

  8. Expression profiling reveals differences in metabolic gene expression between exercise-induced cardiac effects and maladaptive cardiac hypertrophy

    DEFF Research Database (Denmark)

    Strøm, Claes C; Aplin, Mark; Ploug, Thorkil;

    2005-01-01

    gene expression in response to exercise. Rats exercised for seven weeks on a treadmill were characterized by invasive blood pressure measurements and echocardiography. RNA was isolated from the left ventricle and analysed on DNA microarrays containing 8740 genes. Selected genes were analysed by......While cardiac hypertrophy elicited by pathological stimuli eventually leads to cardiac dysfunction, exercise-induced hypertrophy does not. This suggests that a beneficial hypertrophic phenotype exists. In search of an underlying molecular substrate we used microarray technology to identify cardiac...... quantitative PCR. The exercise program resulted in cardiac hypertrophy without impaired cardiac function. Principal component analysis identified an exercise-induced change in gene expression that was distinct from the program observed in maladaptive hypertrophy. Statistical analysis identified 267 upregulated...

  9. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure

    Directory of Open Access Journals (Sweden)

    McIver Lauren J

    2009-12-01

    Full Text Available Abstract Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level.

  10. L-arginine inhibits isoproterenol-induced cardiac hypertrophy through nitric oxide and polyamine pathways.

    Science.gov (United States)

    Lin, Yan; Wang, Li-Na; Xi, Yu-Hui; Li, Hong-Zhu; Xiao, Feng-Gang; Zhao, Ya-Jun; Tian, Ye; Yang, Bao-Feng; Xu, Chang-Qing

    2008-08-01

    Polyamines (putrescine, spermidine and spermine) are essential for cell growth and differentiation. Nitric oxide exhibits antihypertrophic functions and inhibits cardiac remodelling. However, the metabolism of polyamines and the potential interactions with nitric oxide in cardiac hypertrophy remain unclear. We randomly divided Wistar rats into four treatment groups: controls, isoproterenol (ISO), ISO and L-arginine, and L-arginine. Isoproterenol (5 mg/kg/day, subcutaneously) and/or L-arginine (800 mg/kg/day, intraperitoneally) was administered once daily for 7 days. The expression of atrial natriuretic peptide mRNA was determined by reverse transcription-polymerase chain reaction, and fibrogenesis of heart was assessed by Van Gieson staining. Polyamines were measured with high-performance liquid chromatography, and plasma nitric oxide content and lactate dehydrogenase (LDH) activity were determined with a spectrophotometer. The expression levels of ornithine decarboxylase, spermidine/spermine N1-acetyltransferase (SSAT), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) were analysed by Western blot. Heart-to-body weight ratio, left ventricle-to-body weight ratio, atrial natriuretic peptide mRNA expression, collagen fibres and LDH activity were elevated, both ornithine decarboxylase and SSAT proteins were up-regulated, and total polyamines were increased in the group treated with ISO. Additionally, the expression of iNOS was up-regulated, eNOS was down-regulated, and nitric oxide levels were low. Notably, cotreatment with L-arginine reversed most of these changes except for SSAT expression,which was further up-regulated. We propose that increased polyamines and decreased nitric oxide are involved in cardiac hypertrophy induced by ISO and suggest that L-arginine pre-treatment can attenuate cardiac hypertrophy through the regulation of key enzymes of the polyamine and nitric oxide pathways. PMID:18816294

  11. MicroRNA-26a protects against cardiac hypertrophy via inhibiting GATA4 in rat model and cultured cardiomyocytes.

    Science.gov (United States)

    Liu, Yan; Wang, Zhiqian; Xiao, Wenliang

    2016-09-01

    Pathological cardiac hypertrophy is characterized by deleterious changes developed in cardiovascular diseases, whereas microRNAs (miRNAs) are involved in the mediation of cardiac hypertrophy. To investigate the role of microRNA-26a (miR-26a) in regulating cardiac hypertrophy and its functioning mechanisms, overexpression and suppression of miR‑26a via its mimic and inhibitor in a transverse abdominal aortic constriction (TAAC)-induced rat model and in angiotensin II (Ang II)-induced cardiomyocytes (CMs) was performed. In the rat model, the heart weight (HW) compared with the body weight (BW), the CM area, and expression of the hypertrophy‑associated factors, atrial natriuretic factor (ANF) and β‑myosin heavy chain (β‑MHC), were assessed. In CMs, the protein synthesis rate was determined using a leucine incorporation assay. Mutation of the GATA‑binding protein 4 (GATA4) 3'‑untranslated region (UTR) and overexpression of GATA4 were performed to confirm whether GATA4 is the target of miR‑26a. The results indicated that miR-26a was significantly downregulated in the heart tissue of the rat model, as well as in Ang II‑induced CMs (Pregulate GATA4 with mutations in the 3'‑UTR, indicating that GATA4 was the direct target of miR‑26a. Overexpression of GATA4 abrogated the inhibitory functions of miR‑26a in cardiac hypertrophy. Taken together, the present study suggested an anti‑hypertrophic role of miR‑26a in cardiac hypertrophy, possibly via inhibition of GATA4. These findings may be useful in terms of facilitating cardiac treatment, with potential therapeutic targets and strategies. PMID:27485101

  12. Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice.

    Science.gov (United States)

    Dolinsky, Vernon W; Chakrabarti, Subhadeep; Pereira, Troy J; Oka, Tatsujiro; Levasseur, Jody; Beker, Donna; Zordoky, Beshay N; Morton, Jude S; Nagendran, Jeevan; Lopaschuk, Gary D; Davidge, Sandra T; Dyck, Jason R B

    2013-10-01

    Resveratrol (RESV) is a polyphenol with pleiotropic effects that include reduction of oxidative stress and increased vascular nitric oxide (NO) production. However, whether or not RESV can prevent rises in blood pressure (BP) is controversial and remains to be firmly established. The purpose of this study was to determine whether RESV attenuates elevated BP and subsequent adaptive cardiac hypertrophy and to better understand the mechanisms involved. The spontaneously hypertensive rat (SHR) and the angiotensin (Ang)-II infused mouse were used as hypertensive models. Compared to a standard control diet, consumption of diets containing RESV by SHRs and Ang-II hypertensive mice, markedly prevented rises in systolic BP. In addition, flow-mediated vasodilation was significantly improved by RESV in SHRs. RESV also reduced serum and cardiac levels of the lipid peroxidation by-product, 4-hydroxy-2-nonenal in the hypertensive rodents and inhibited the production of superoxide in human-derived endothelial cells. Analysis of mesenteric arteries from SHRs and Ang-II infused mice demonstrated that RESV increased endothelial NO synthase (eNOS) phosphorylation by enhancing the LKB1/adenosine monophosphate (AMP)-activated protein kinase (AMPK) signal transduction pathway. Moreover, RESV reduced hypertrophic growth of the myocardium through reduced hemodynamic load and inhibition of the p70 S6 kinase pro-hypertrophic signaling cascade. Overall, we show that high dose RESV reduces oxidative stress, improves vascular function, attenuates high BP and prevents cardiac hypertrophy through the preservation of the LKB1-AMPK-eNOS signaling axis. PMID:23707558

  13. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation

    Institute of Scientific and Technical Information of China (English)

    Yong-nan FU; Han XIAO; Xiao-wei MA; Sheng-yang JIANG; Ming XU; You-yi ZHANG

    2011-01-01

    Aim: To identify the role of metformin in cardiac hypertrophy and investigate the possible mechanism underlying this effect.Methods: Wild type and AMPKα2 knockout (AMPKα2-/-) littermates were subjected to left ventricular pressure overload caused by evaluated using echocardiography and anatomic and histological methods. The antihypertrophic mechanism of metformin was analyzed using Western blotting.Results: Metformin significantly attenuated cardiac hypertrophy induced by pressure overload in wild type mice, but the antihypertrophic actions of metformin were ablated in AMPKx2-/- mice. Furthermore, metformin suppressed the phosphorylation of Akt/protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in response to pressure overload in wild type mice, but not in AMPKα2-/-mice.Conclusion: Long-term administration of metformin may attenuate cardiac hypertrophy induced by pressure overload in nondiabetic mice, and this attenuation is highly dependent on AMPK activation. These findings may provide a potential therapy for patients at risk of developing pathological cardiac hypertrophy.

  14. Scaffold Proteins Regulating Extracellular Regulated Kinase Function in Cardiac Hypertrophy and Disease

    OpenAIRE

    Liang, Yan; Sheikh, Farah

    2016-01-01

    The mitogen activated protein kinase (MAPK)-extracellular regulated kinase 1/2 (ERK1/2) pathway is a central downstream signaling pathway that is activated in cardiac muscle cells during mechanical and agonist-mediated hypertrophy. Studies in genetic mouse models deficient in ERK-associated MAPK components pathway have further reinforced a direct role for this pathway in stress-induced cardiac hypertrophy and disease. However, more recent studies have highlighted that these signaling pathways...

  15. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    Science.gov (United States)

    Nagai-Okatani, Chiaki; Minamino, Naoto

    2016-01-01

    Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl) diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl) diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases. PMID:27281159

  16. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure

    Science.gov (United States)

    Nagai-Okatani, Chiaki; Minamino, Naoto

    2016-01-01

    Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl) diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl) diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases. PMID:27281159

  17. Integrin activation and focal complex formation in cardiac hypertrophy

    Science.gov (United States)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  18. Identification of genes regulated during mechanical load-induced cardiac hypertrophy

    Science.gov (United States)

    Johnatty, S. E.; Dyck, J. R.; Michael, L. H.; Olson, E. N.; Abdellatif, M.; Schneider, M. (Principal Investigator)

    2000-01-01

    Cardiac hypertrophy is associated with both adaptive and adverse changes in gene expression. To identify genes regulated by pressure overload, we performed suppressive subtractive hybridization between cDNA from the hearts of aortic-banded (7-day) and sham-operated mice. In parallel, we performed a subtraction between an adult and a neonatal heart, for the purpose of comparing different forms of cardiac hypertrophy. Sequencing more than 100 clones led to the identification of an array of functionally known (70%) and unknown genes (30%) that are upregulated during cardiac growth. At least nine of those genes were preferentially expressed in both the neonatal and pressure over-load hearts alike. Using Northern blot analysis to investigate whether some of the identified genes were upregulated in the load-independent calcineurin-induced cardiac hypertrophy mouse model, revealed its incomplete similarity with the former models of cardiac growth. Copyright 2000 Academic Press.

  19. Cardiac Biomarkers and Left Ventricular Hypertrophy in Asymptomatic Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Reneta Yovcheva Koycheva

    2015-12-01

    Full Text Available BACKGROUND: Cardiac biomarkers are often elevated in dialysis patients showing the presence of left ventricular dysfunction. The aim of the study is to establish the plasma levels of high-sensitivity cardiac troponin T (hs TnT, precursor of B-natriuretic peptide (NT-proBNP and high sensitivity C-reactive protein (hs CRP and their relation to the presence of left ventricular hypertrophy (LVH in patients undergoing hemodialysis without signs of acute coronary syndrome or heart failure. MATERIAL AND METHODS: Were studied 48 patients - 26 men and 22 women. Pre and postdialysis levels of hs cTnT, NT-proBNP and hs CRP were measured at week interim procedure. Patients were divided in two groups according to the presence of echocardiographic evidence of LVH - gr A - 40 patients (with LVH, and gr B - 8 patients (without LVH. RESULTS: In the whole group of patients was found elevated predialysis levels of all three biomarkers with significant increase (p < 0.05 after dialysis with low-flux dialyzers. Predialysis values of NT-proBNP show moderate positive correlation with hs cTnT (r = 0.47 and weaker with hs CRP (r = 0.163. Such dependence is observed in postdialysis values of these biomarkers. There is a strong positive correlation between the pre and postdialysis levels: for hs cTnT (r = 0.966, for NT-proBNP (r = 0.918 and for hs CRP (r = 0.859. It was found a significant difference in the mean values of hs cTnT in gr. A and gr. B (0.07 ± 0.01 versus 0.03 ± 0.01 ng /mL, p < 0.05 and NT-proBNP (15,605.8 ± 2,072.5 versus 2,745.5 ± 533.55 pg /mL, p < 0.05. Not find a significant difference in hs CRP in both groups. CONCLUSIONS: The results indicate the relationship of the studied cardiac biomarkers with LVH in asymptomatic patients undergoing hemodialysis treatment.

  20. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Haipeng; Zhang, Xin [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Cui, Yuqian [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Zhou, Heng [Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan (China); Xu, Dachun [Department of Cardiology, Shanghai Tenth People' s Hospital of Tongji University, Shanghai (China); Shan, Tichao; Zhang, Fan [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Guo, Yuan [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Chen, Yuguo, E-mail: chen919085@163.com [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Department of Emergency, Qilu Hospital of Shandong University, Jinan (China); Wu, Dawei, E-mail: wdwu55@163.com [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China)

    2015-09-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  1. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    International Nuclear Information System (INIS)

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  2. Cardiac arrhythmias and left ventricular hypertrophy in systemic hypertension

    International Nuclear Information System (INIS)

    Background: Hypertensive left ventricular hypertrophy (LVH) is associated with increased risk of arrhythmias and mortality. Objective was to investigate the prevalence of cardiac arrhythmias and LVH in systemic hypertension. Methods: In all subjects blood pressure was measured, electrocardiography and echocardiography was done. Holter monitoring and exercise test perform in certain cases. There were 500 hypertensive patients, 156 (31.2%) men and 344 (69%) women >30 years of age in the study. Among them 177 (35.4%) were diabetic, 224 (45%) were dyslipidemia, 188 (37.6%) were smokers, and 14 (3%) had homocysteinemia. Mean systolic BP (SBP) was 180 +- 20 mm Hg and diastolic BP (DBP) was 95 +- 12 in male and female patients. Left ventricular mass index (LVMI) was 119.2 +- 30 2 2gm/m in male while 103 +- 22 gm/m in female patients. Palpitation was seen in 126 (25%) male and 299 (59.8%) female patients. Atrial fibrillation was noted in 108 (21.6%) male and 125 (25%) female patients, 30 (6%) male and 82 (16.4%) female patients had atrial flutter. Ventricular tachycardia was noted in 37 (7.4%) male and 59 (11.8%) female patients. Holter monitoring showed significant premature ventricular contractions (PVC'S) in 109 (21.8%) male and 128 (25.69%) female patients while Holter showed atrial arrhythmias (APC'S) in 89 (17.8%) males and 119 (23.8%) females. Angiography findings diagnosed coronary artery disease in 119 (23.8%) with CAD male and 225 (45%) without CAD while 47 (9.4%) females presented with CAD and 109 (21.8%) without CAD. Conclusion: A significant association has been demonstrated between hypertension and arrhythmias. Diastolic dysfunction of the left ventricle, left atrial size and function, as well as LVH have been suggested as the underlying risk factors for supraventricular, ventricular arrhythmias and sudden death in hypertensives with LVH. (author)

  3. Knockout of Toll-Like Receptors 2 and 4 Prevents Renal Ischemia-Reperfusion-Induced Cardiac Hypertrophy in Mice

    Science.gov (United States)

    Trentin-Sonoda, Mayra; da Silva, Rogério Cirino; Kmit, Fernanda Vieira; Abrahão, Mariana Vieira; Monnerat Cahli, Gustavo; Brasil, Guilherme Visconde; Muzi-Filho, Humberto; Silva, Paulo André; Tovar-Moll, Fernanda Freire; Vieyra, Adalberto; Medei, Emiliano; Carneiro-Ramos, Marcela Sorelli

    2015-01-01

    We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1β levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation. PMID

  4. Pivotal Role of Regulator of G-protein Signaling 12 in Pathological Cardiac Hypertrophy.

    Science.gov (United States)

    Huang, Jia; Chen, Lijuan; Yao, Yuyu; Tang, Chengchun; Ding, Jiandong; Fu, Cong; Li, Hongliang; Ma, Genshan

    2016-06-01

    Cardiac hypertrophy is a major predictor of heart failure and is regulated by diverse signaling pathways. As a typical multi-domain member of the regulator of G-protein signaling (RGS) family, RGS12 plays a regulatory role in various signaling pathways. However, the precise effect of RGS12 on cardiac hypertrophy remains largely unknown. In this study, we observed increased expression of RGS12 in the development of pathological cardiac hypertrophy and heart failure. We then generated genetically engineered mice and neonatal rat cardiomyocytes to investigate the effects of RGS12 during this pathological process. Four weeks after aortic banding, RGS12-deficient hearts showed decreased cardiomyocyte cross area (374.7±43.2 μm(2) versus 487.1±47.9 μm(2) in controls; Prequirement of the MEK1/2-ERK1/2 signaling for RGS12-mediated cardiac hypertrophy was confirmed in rescue experiments using the MEK1/2-specific inhibitor U0126. In conclusion, our findings provide a novel diagnostic and therapeutic target for pathological cardiac hypertrophy and heart failure. PMID:27091895

  5. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo, E-mail: pompeo.volpe@unipd.it

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.

  6. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    International Nuclear Information System (INIS)

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α1-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy

  7. Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling

    OpenAIRE

    Grossman, William; Paulus, Walter J.

    2013-01-01

    Pressure and volume overload results in concentric and eccentric hypertrophy of cardiac ventricular chambers with, respectively, parallel and series replication of sarcomeres. These divergent patterns of hypertrophy were related 40 years ago to disparate wall stresses in both conditions, with systolic wall stress eliciting parallel replication of sarcomeres and diastolic wall stress, series replication. These observations are relevant to clinical practice, as they relate to the excessive hype...

  8. Inhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Ji

    2015-07-01

    Full Text Available Background: Uncoupling protein 2 (UCP2 is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. Methods: Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC, and then received genipin (a UCP2 selective inhibitor; 25 mg/kg/d, ip or vehicle for three weeks prior to histologic assessment of myocardial hypertrophy. ATP concentration, ROS level, and myocardial apoptosis were also examined. A parallel set of experiments was also conducted in UCP2-/- mice. Results: TAC induced left ventricular hypertrophy, as reflected by increased ventricular weight/thickness and increased size of myocardial cell (vs. sham controls. ATP concentration was decreased; ROS level was increased. Apoptosis and fibrosis markers were increased. TAC increased mitochondrial UCP2 expression in the myocardium at both mRNA and protein levels. Genipin treatment attenuated cardiac hypertrophy and the histologic/biochemical changes described above. Hypertrophy and associated changes induced by TAC in UCP2-/- mice were much less pronounced than in WT mice. Conclusions: Blocking UCP2 expression attenuates cardiac hypertrophy induced by pressure overload.

  9. Suppressor of IKKɛ is an essential negative regulator of pathological cardiac hypertrophy

    Science.gov (United States)

    Deng, Ke-Qiong; Wang, Aibing; Ji, Yan-Xiao; Zhang, Xiao-Jing; Fang, Jing; Zhang, Yan; Zhang, Peng; Jiang, Xi; Gao, Lu; Zhu, Xue-Yong; Zhao, Yichao; Gao, Lingchen; Yang, Qinglin; Zhu, Xue-Hai; Wei, Xiang; Pu, Jun; Li, Hongliang

    2016-01-01

    Although pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide, our understanding of the molecular mechanisms underlying this disease is still poor. Here, we demonstrate that suppressor of IKKɛ (SIKE), a negative regulator of the interferon pathway, attenuates pathological cardiac hypertrophy in rodents and non-human primates in a TANK-binding kinase 1 (TBK1)/AKT-dependent manner. Sike-deficient mice develop cardiac hypertrophy and heart failure, whereas Sike-overexpressing transgenic (Sike-TG) mice are protected from hypertrophic stimuli. Mechanistically, SIKE directly interacts with TBK1 to inhibit the TBK1-AKT signalling pathway, thereby achieving its anti-hypertrophic action. The suppression of cardiac remodelling by SIKE is further validated in rats and monkeys. Collectively, these findings identify SIKE as a negative regulator of cardiac remodelling in multiple animal species due to its inhibitory regulation of the TBK1/AKT axis, suggesting that SIKE may represent a therapeutic target for the treatment of cardiac hypertrophy and heart failure. PMID:27249321

  10. Epac contributes to cardiac hypertrophy and amyloidosis induced by radiotherapy but not fibrosis

    International Nuclear Information System (INIS)

    Background: Cardiac toxicity is a side-effect of anti-cancer treatment including radiotherapy and this translational study was initiated to characterize radiation-induced cardiac side effects in a population of breast cancer patients and in experimental models in order to identify novel therapeutic target. Methods: The size of the heart was evaluated in CO-HO-RT patients by measuring the Cardiac-Contact-Distance before and after radiotherapy (48 months of follow-up). In parallel, fibrogenic signals were studied in a severe case of human radiation-induced pericarditis. Lastly, radiation-induced cardiac damage was studied in mice and in rat neonatal cardiac cardiomyocytes. Results: In patients, time dependent enhancement of the CCD was measured suggesting occurrence of cardiac hypertrophy. In the case of human radiation-induced pericarditis, we measured the activation of fibrogenic (CTGF, RhoA) and remodeling (MMP2) signals. In irradiated mice, we documented decreased contractile function, enlargement of the ventricular cavity and long-term modification of the time constant of decay of Ca2+ transients. Both hypertrophy and amyloid deposition were correlated with the induction of Epac-1; whereas radiation-induced fibrosis correlated with Rho/CTGF activation. Transactivation studies support Epac contribution in hypertrophy stimulation and showed that radiotherapy and Epac displayed specific and synergistic signals. Conclusion: Epac-1 has been identified as a novel regulator of radiation-induced hypertrophy and amyloidosis but not fibrosis in the heart

  11. Compensatory renal hypertrophy following uninephrectomy is calcineurin-independent

    OpenAIRE

    Clintoria R Williams; Wynne, Brandi M.; Walker, Makeeva; Hoover, Robert S.; Gooch, Jennifer L

    2014-01-01

    Calcineurin is a calcium-dependent phosphatase that is involved in many cellular processes including hypertrophy. Inhibition or genetic loss of calcineurin blocks pathological cardiac hypertrophy and diabetic renal hypertrophy. However, calcineurin does not appear to be involved in physiological cardiac hypertrophy induced by exercise. The role of calcineurin in a compensatory, non-pathological model of renal hypertrophy has not been tested. Therefore, in this study, we examined activation of...

  12. Ameliorative role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Randhir; Krishan, Pawan

    2015-04-01

    Fibrates are peroxisome proliferator-activated receptor-α agonists and are clinically used for treatment of dyslipidemia and hypertriglyceridemia. Fenofibrate is reported as a cardioprotective agent in various models of cardiac dysfunction; however, limited literature is available regarding the role of gemfibrozil as a possible cardioprotective agent, especially in a non-obese model of cardiac remodelling. The present study investigated the role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats. Cardiac hypertrophy was induced by partial abdominal aortic constriction in rats and they survived for 4 weeks. The cardiac hypertrophy was assessed by measuring left ventricular weight to body weight ratio, left ventricular wall thickness, and protein and collagen content. The oxidative stress in the cardiac tissues was assessed by measuring thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The haematoxylin-eosin and picrosirius red staining was used to observe cardiomyocyte diameter and collagen deposition, respectively. Moreover, serum levels of cholesterol, high-density lipoproteins, triglycerides, and glucose were also measured. Gemfibrozil (30 mg/kg, p.o.) was administered since the first day of partial abdominal aortic constriction and continued for 4 weeks. The partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy are indicated by significant change in various parameters used in the present study that were ameliorated with gemfibrozil treatment in rats. No significant change in serum parameters was observed between various groups used in the present study. It is concluded that gemfibrozil ameliorates partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy and in rats. PMID:24905340

  13. N-Acetyl Cysteine Inhibits Endothelin-1-Induced ROS Dependent Cardiac Hypertrophy through Superoxide Dismutase Regulation

    Directory of Open Access Journals (Sweden)

    Sobia Mushtaq

    2015-07-01

    Full Text Available Objective: Oxidative stress down regulates antioxidant enzymes including superoxide dismutase (SOD and contributes to the development of cardiac hypertrophy. N-Acetyl cysteine (NAC can enhance the SOD activity, so the aim of this study is to highlight the inhibitory role of NAC against endothelin-1 (ET-1-induced cardiac hypertrophy. Materials and Methods: In this experimental study at QAU from January, 2013 to March, 2013. ET-1 (50 μg/kg and NAC (50 mg/kg were given intraperitoneally to 6-day old neonatal rats in combination or alone. All rats were sacrificed 15 days after the final injection. Histological analysis was carried out to observe the effects caused by both drugs. Reactive oxygen species (ROS analysis and SOD assay were also carried out. Expression level of hypertrophic marker, brain natriuretic peptide (BNP, was detected by western blotting. Results: Our findings showed that ET-1-induced cardiac hypertrophy leading towards heart failure was due to the imbalance of different parameters including free radical-induced oxidative stress and antioxidative enzymes such as SOD. Furthermore NAC acted as an antioxidant and played inhibitory role against ROS-dependent hypertrophy via regulatory role of SOD as a result of oxidative response associated with hypertrophy. Conclusion: ET-1-induced hypertrophic response is associated with increased ROS production and decreased SOD level, while NAC plays a role against free radicals-induced oxidative stress via SOD regulation.

  14. Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy.

    Science.gov (United States)

    Indolfi, Ciro; Curcio, Antonio

    2014-05-01

    Left ventricular hypertrophy is an initial compensatory mechanism in response to cardiac stress that can degenerate into heart failure and sudden cardiac death. Recent studies have shown that microRNAs (miRs) regulate several aspects of cardiovascular diseases. In this issue of the JCI, Bang and colleagues identified an exosome-mediated communication mechanism between cardiac fibroblasts and cardiomyocytes. Specifically, cardiac fibroblasts secrete miR-enriched exosomes, which are subsequently taken up by cardiomyocytes, in which they alter gene expression. In particular, a passenger strand miR, miR-21*, was identified as a potent paracrine factor that induces cardiomyocyte hypertrophy when shuttled through exosomes. These advanced comprehensive analyses represent a major step forward in our understanding of cardiovascular physiopathology, providing a promising adjunctive target for possible therapeutic approaches, namely the miR-mediated paracrine signaling network. PMID:24743143

  15. Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy

    DEFF Research Database (Denmark)

    Christoffersen, Tue E.H.; Aplin, Mark; Strom, Claes C.;

    2006-01-01

    Both atrial (ANP) and brain (BNP) natriuretic peptide affect development of cardiac hypertrophy and fibrosis via binding to natriuretic peptide receptor (NPR)-A in the heart. A putative clearance receptor, NPR-C, is believed to regulate cardiac levels of ANP and BNP. The renin-angiotensin system...... also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system in...

  16. Determinants of Left Ventricular Mass and Hypertrophy in Hemodialysis Patients Assessed by Cardiac Magnetic Resonance Imaging

    OpenAIRE

    Patel, Rajan K.; Oliver, Scott; Patrick B. Mark; Powell, Joanna R.; McQuarrie, Emily P.; Traynor, James P.; Dargie, Henry J; Jardine, Alan G

    2009-01-01

    Background and objectives: Left ventricular hypertrophy (LVH) is an independent risk factor for premature cardiovascular death in hemodialysis (HD) patients and one of the three forms of uremic cardiomyopathy. Cardiovascular magnetic resonance (CMR) is a volume-independent technique to assess cardiac structure. We used CMR to assess the determinants of left ventricular mass (LVM) and LVH in HD patients.

  17. ROLE OF CALCINEURIN IN ANGIOTENSIN II INDUCED CARDIAC MYOCYTE HYPERTROPHY OF RATS

    Institute of Scientific and Technical Information of China (English)

    符民桂; 张继峰; 许松; 庞永政; 刘乃奎; 唐朝枢

    2001-01-01

    Objective. The present study investigated the role of calcineurin in angiotensin II(AngII) induced cardiac myocyte hypertrophy of rats. Method. The primary cardiac myocytes were cultured under the standard conditions. The calcineurin activity in AngII treated cardiomyocytes was tested by using PNPP;protein synethsis rate was assessed by 3H leucine incorporation; atrial natriuretic factor(ANF) Mrna level was determined by Northern blot analysis. Cell viability was estimated by lactate dehydrogenase(LDH) levels in cultured medium and by dyed cell numbers. Result. After stimulation of 10,100 and 1 000nmol/L of AngII, calcineurin activities in the cardiomyocytes were increased by 13% ,57% (P< 0.05) and 228% (P< 0.01) respectively, compared with control group. Cyclosporin A(CsA), a specific inhibitor of calcineurin, markedly inhibited the calcineurin activity and decreased the 3H leucine incorporation in AngII treated cardiomyocytes in a dose dependent manner. It was also found that CsA slightly reduced the Mrna level of ANF gene in AngII stimulated cardiomyocytes. Conclusion. During AngII induced cardiac myocyte hypertrophy, calcineurin signal pathway is activated, and inhibition of the pathway can attenuate AngII induced cardiac myocyte hypertrophy, which suggests that the calcineurin signal pathway may play an important role in AngII induced myocardial hypertrophy of rats.

  18. Nuclear Factor of Activated T cells (NFAT): key regulator of cardiac hypertrophy and skeletal muscle adaptation

    NARCIS (Netherlands)

    Bourajjaj, M.

    2008-01-01

    Despite significant progress in the prevention and treatment of cardiovascular diseases, heart failure is still a leading cause of morbidity and mortality in industrial countries. Sustained cardiac hypertrophy, which is defined as an increase in heart size resulting from an increase in cardiomyocyte

  19. Cardiac involvement in tuberous sclerosis.

    OpenAIRE

    Mühler, E G; Turniski-Harder, V; Engelhardt, W.; von Bernuth, G

    1994-01-01

    OBJECTIVE--To assess the incidence, importance, and history of cardiac involvement in infants and children with tuberous sclerosis. DESIGN--Prospective study; clinical examination, sector and Doppler echocardiography, standard and ambulatory electrocardiography. SETTING--A tertiary referral centre. PATIENTS--21 patients with tuberous sclerosis aged 1 day to 16 years (mean 6.3 years); follow up investigations were available in 14 cases (10 retrospective, 4 prospective; mean follow up 4.3 years...

  20. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy and reduction in sudden cardiac death: the LIFE Study

    DEFF Research Database (Denmark)

    Wachtell, Kristian; Okin, Peter M; Olsen, Michael H;

    2007-01-01

    BACKGROUND: Sudden cardiac death (SCD) occurs more often in patients with ECG left ventricular (LV) hypertrophy. However, whether LV hypertrophy regression is associated with a reduced risk of SCD remains unclear. METHODS AND RESULTS: The Losartan Intervention for End Point Reduction in Hypertens......BACKGROUND: Sudden cardiac death (SCD) occurs more often in patients with ECG left ventricular (LV) hypertrophy. However, whether LV hypertrophy regression is associated with a reduced risk of SCD remains unclear. METHODS AND RESULTS: The Losartan Intervention for End Point Reduction in...

  1. Adult cardiac fibroblast proliferation is modulated by calcium/calmodulin-dependent protein kinase II in normal and hypertrophied hearts.

    Science.gov (United States)

    Martin, Tamara P; Lawan, Ahmed; Robinson, Emma; Grieve, David J; Plevin, Robin; Paul, Andrew; Currie, Susan

    2014-02-01

    Increased adult cardiac fibroblast proliferation results in an increased collagen deposition responsible for the fibrosis accompanying pathological remodelling of the heart. The mechanisms regulating cardiac fibroblast proliferation remain poorly understood. Using a minimally invasive transverse aortic banding (MTAB) mouse model of cardiac hypertrophy, we have assessed fibrosis and cardiac fibroblast proliferation. We have investigated whether calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) regulates proliferation in fibroblasts isolated from normal and hypertrophied hearts. It is known that CaMKIIδ plays a central role in cardiac myocyte contractility, but nothing is known of its role in adult cardiac fibroblast function. The MTAB model used here produces extensive hypertrophy and fibrosis. CaMKIIδ protein expression and activity is upregulated in MTAB hearts and, specifically, in cardiac fibroblasts isolated from hypertrophied hearts. In response to angiotensin II, cardiac fibroblasts isolated from MTAB hearts show increased proliferation rates. Inhibition of CaMKII with autocamtide inhibitory peptide inhibits proliferation in cells isolated from both sham and MTAB hearts, with a significantly greater effect evident in MTAB cells. These results are the first to show selective upregulation of CaMKIIδ in adult cardiac fibroblasts following cardiac hypertrophy and to assign a previously unrecognised role to CaMKII in regulating adult cardiac fibroblast function in normal and diseased hearts. PMID:23881186

  2. INTRACELLULAR REDISTRIBUTION OF CARDIAC ENDOTHELIN-1 RECEPTOR IN RAT DURING MYOCARDIAL HYPERTROPHY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective. In a model of rat cardiac hypertrophy, the changes in the distribution of ET-1 receptors in two subcellular fractions, the sarcolemma and the light vesicles during myocardial hypertrophy were studied. Methods. Cardiac hypertrophy was produced by placing a constricting clip around the suprarenal abdominal aorta of rats, and ET-1 receptor was assayed with radioactive analysis method. Results. It was found that plasma and ventricular ET-1 levels increased significantly on week 2 and week 4 of pressure overload. ET-1 binding studies showed that during myocardial hypertrophy, the maximum binding capacity (Bmax) was increased by 41% (P<0.01) and 65% (P< 0.01) in sarcolemma in H-2 week and H-4 week groups, but was decreased by 24% (P< 0.01) and 21% (P< 0.01) in light vesicles. The sum of Bmax of sarcolemmal and light vesicle fractions was increased by 33% (P< 0.01) and 57% (P< 0.01) in group H-2 week and H-4 week, respectively. ? Conclusion. ET-1 receptors in rat heart were externalized from light vesicles to sarcolemma, which may contribute to the development of myocardial hypertrophy.

  3. Cardiac hypertrophy, arrhythmogenicity and the new myocardial phenotype. II. The cellular adaptational process.

    Science.gov (United States)

    Swynghedauw, B; Chevalier, B; Charlemagne, D; Mansier, P; Carré, F

    1997-07-01

    Ventricular fibrosis is not the only structural determinant of arrhythmias in left ventricular hypertrophy. In an experimental model of compensatory cardiac hypertrophy (CCH) the degree of cardiac hypertrophy is also independently linked to ventricular arrhythmias. Cardiac hypertrophy reflects the level of adaptation, and matches the adaptational modifications of the myocardial phenotype. We suggest that these modifications have detrimental aspects. The increased action potential (AP) and QT duration and the prolonged calcium transient both favour spontaneous calcium oscillations, and both are potentially arrhythmogenic and linked to phenotypic changes in membrane proteins. To date, only two ionic currents have been studied in detail: Ito is depressed (likely the main determinant in AP durations), and If, the pacemaker current, is induced in the overloaded ventricular myocytes. In rat CCH, the two components of the sarcoplasmic reticulum, namely Ca(2+)-ATPase and ryanodine receptors, are down-regulated in parallel. Nevertheless, while the inward calcium current is unchanged, the functionally linked duo composed of the Na+/Ca2+ exchanged and (Na+, K+)-ATPase, is less active. Such an imbalance may explain the prolonged calcium transient. The changes in heart rate variability provide information about the state of the autonomic nervous system and has prognostic value even in CCH. Transgenic studies have demonstrated that the myocardial adrenergic and muscarinic receptor content is also a determining factor. During CCH, several phenotypic membrane changes participate in the slowing of contraction velocity and are thus adaptational. They also have a detrimental counterpart and, together with fibrosis, favour arrhythmias. PMID:9302342

  4. Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines.

    Science.gov (United States)

    Lauriol, Jessica; Cabrera, Janel R; Roy, Ashbeel; Keith, Kimberly; Hough, Sara M; Damilano, Federico; Wang, Bonnie; Segarra, Gabriel C; Flessa, Meaghan E; Miller, Lauren E; Das, Saumya; Bronson, Roderick; Lee, Kyu-Ho; Kontaridis, Maria I

    2016-08-01

    Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy. PMID:27348588

  5. Overview of MicroRNAs in Cardiac Hypertrophy, Fibrosis, and Apoptosis.

    Science.gov (United States)

    Wang, Juan; Liew, Oi Wah; Richards, Arthur Mark; Chen, Yei-Tsung

    2016-01-01

    MicroRNAs (miRNAs) are non-coding RNAs that play essential roles in modulating the gene expression in almost all biological events. In the past decade, the involvement of miRNAs in various cardiovascular disorders has been explored in numerous in vitro and in vivo studies. In this paper, studies focused upon the discovery of miRNAs, their target genes, and functionality are reviewed. The selected miRNAs discussed herein have regulatory effects on target gene expression as demonstrated by miRNA/3' end untranslated region (3'UTR) interaction assay and/or gain/loss-of-function approaches. The listed miRNA entities are categorized according to the biological relevance of their target genes in relation to three cardiovascular pathologies, namely cardiac hypertrophy, fibrosis, and apoptosis. Furthermore, comparison across 86 studies identified several candidate miRNAs that might be of particular importance in the ontogenesis of cardiovascular diseases as they modulate the expression of clusters of target genes involved in the progression of multiple adverse cardiovascular events. This review illustrates the involvement of miRNAs in diverse biological signaling pathways and provides an overview of current understanding of, and progress of research into, of the roles of miRNAs in cardiovascular health and disease. PMID:27213331

  6. Overview of MicroRNAs in Cardiac Hypertrophy, Fibrosis, and Apoptosis

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2016-05-01

    Full Text Available MicroRNAs (miRNAs are non-coding RNAs that play essential roles in modulating the gene expression in almost all biological events. In the past decade, the involvement of miRNAs in various cardiovascular disorders has been explored in numerous in vitro and in vivo studies. In this paper, studies focused upon the discovery of miRNAs, their target genes, and functionality are reviewed. The selected miRNAs discussed herein have regulatory effects on target gene expression as demonstrated by miRNA/3′ end untranslated region (3′UTR interaction assay and/or gain/loss-of-function approaches. The listed miRNA entities are categorized according to the biological relevance of their target genes in relation to three cardiovascular pathologies, namely cardiac hypertrophy, fibrosis, and apoptosis. Furthermore, comparison across 86 studies identified several candidate miRNAs that might be of particular importance in the ontogenesis of cardiovascular diseases as they modulate the expression of clusters of target genes involved in the progression of multiple adverse cardiovascular events. This review illustrates the involvement of miRNAs in diverse biological signaling pathways and provides an overview of current understanding of, and progress of research into, of the roles of miRNAs in cardiovascular health and disease.

  7. Overview of MicroRNAs in Cardiac Hypertrophy, Fibrosis, and Apoptosis

    Science.gov (United States)

    Wang, Juan; Liew, Oi Wah; Richards, Arthur Mark; Chen, Yei-Tsung

    2016-01-01

    MicroRNAs (miRNAs) are non-coding RNAs that play essential roles in modulating the gene expression in almost all biological events. In the past decade, the involvement of miRNAs in various cardiovascular disorders has been explored in numerous in vitro and in vivo studies. In this paper, studies focused upon the discovery of miRNAs, their target genes, and functionality are reviewed. The selected miRNAs discussed herein have regulatory effects on target gene expression as demonstrated by miRNA/3′ end untranslated region (3′UTR) interaction assay and/or gain/loss-of-function approaches. The listed miRNA entities are categorized according to the biological relevance of their target genes in relation to three cardiovascular pathologies, namely cardiac hypertrophy, fibrosis, and apoptosis. Furthermore, comparison across 86 studies identified several candidate miRNAs that might be of particular importance in the ontogenesis of cardiovascular diseases as they modulate the expression of clusters of target genes involved in the progression of multiple adverse cardiovascular events. This review illustrates the involvement of miRNAs in diverse biological signaling pathways and provides an overview of current understanding of, and progress of research into, of the roles of miRNAs in cardiovascular health and disease. PMID:27213331

  8. Knockout of Toll-Like Receptors 2 and 4 Prevents Renal Ischemia-Reperfusion-Induced Cardiac Hypertrophy in Mice

    OpenAIRE

    Trentin-Sonoda, Mayra; da Silva, Rogério Cirino; Kmit, Fernanda Vieira; Abrahão, Mariana Vieira; Monnerat Cahli, Gustavo; Brasil, Guilherme Visconde; Muzi-Filho, Humberto; Silva, Paulo André; Tovar-Moll, Fernanda Freire; Vieyra, Adalberto; Medei, Emiliano; Carneiro-Ramos, Marcela Sorelli

    2015-01-01

    We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) s...

  9. Inhibition of CaMKII does not attenuate cardiac hypertrophy in mice with dysfunctional ryanodine receptor.

    Directory of Open Access Journals (Sweden)

    Asima Chakraborty

    Full Text Available In cardiac muscle, the release of calcium ions from the sarcoplasmic reticulum through ryanodine receptor ion channels (RyR2s leads to muscle contraction. RyR2 is negatively regulated by calmodulin (CaM and by phosphorylation of Ca2+/CaM-dependent protein kinase II (CaMKII. Substitution of three amino acid residues in the CaM binding domain of RyR2 (RyR2-W3587A/L3591D/F3603A, RyR2ADA impairs inhibition of RyR2 by CaM and results in cardiac hypertrophy and early death of mice carrying the RyR2ADA mutation. To test the cellular function of CaMKII in cardiac hypertrophy, mutant mice were crossed with mice expressing the CaMKII inhibitory AC3-I peptide or the control AC3-C peptide in the myocardium. Inhibition of CaMKII by AC3-I modestly reduced CaMKII-dependent phosphorylation of RyR2 at Ser-2815 and markedly reduced CaMKII-dependent phosphorylation of SERCA2a regulatory subunit phospholamban at Thr-17. However the average life span and heart-to-body weight ratio of Ryr2ADA/ADA mice expressing the inhibitory peptide were not altered compared to control mice. In Ryr2ADA/ADA homozygous mice, AC3-I did not alter cardiac morphology, enhance cardiac function, improve sarcoplasmic reticulum Ca2+ handling, or suppress the expression of genes implicated in cardiac remodeling. The results suggest that CaMKII was not required for the rapid development of cardiac hypertrophy in Ryr2ADA/ADA mice.

  10. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.

    Science.gov (United States)

    Zhu, Zeng-Yan; Gao, Tian; Huang, Yan; Xue, Jie; Xie, Mei-Lin

    2016-04-20

    Apigenin is a natural flavonoid compound that can inhibit hypoxia-inducible factor (HIF)-1α expression in cultured tumor cells under hypoxic conditions. Hypertension-induced cardiac hypertrophy is always accompanied by abnormal myocardial glucolipid metabolism due to an increase of HIF-1α. However, whether or not apigenin may ameliorate the cardiac hypertrophy and abnormal myocardial glucolipid metabolism remains unknown. This study aimed to examine the effects of apigenin. Rats with cardiac hypertrophy induced by renovascular hypertension were treated with apigenin 50-100 mg kg(-1) (the doses can be achieved by pharmacological or dietary supplementation for an adult person) by gavage for 4 weeks. The results showed that after treatment with apigenin, the blood pressure, heart weight, heart weight index, cardiomyocyte cross-sectional area, serum angiotensin II, and serum and myocardial free fatty acids were reduced. It is important to note that apigenin decreased the expression level of myocardial HIF-1α protein. Moreover, apigenin simultaneously increased the expression levels of myocardial peroxisome proliferator-activated receptor (PPAR) α, carnitine palmitoyltransferase (CPT)-1, and pyruvate dehydrogenase kinase (PDK)-4 proteins and decreased the expression levels of myocardial PPARγ, glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter (GLUT)-4 proteins. These findings demonstrated that apigenin could improve hypertensive cardiac hypertrophy and abnormal myocardial glucolipid metabolism in rats, and its mechanisms might be associated with the down-regulation of myocardial HIF-1α expression and, subsequently increasing the expressions of myocardial PPARα and its target genes CPT-1 and PDK-4, and decreasing the expressions of myocardial PPARγ and its target genes GPAT and GLUT-4. PMID:26987380

  11. Simvastatin prevents isoproterenol-induced cardiac hypertrophy through modulation of the JAK/STAT pathway

    Directory of Open Access Journals (Sweden)

    Al-Rasheed NM

    2015-06-01

    Full Text Available Nouf M Al-Rasheed,1 Maha M Al-Oteibi,1 Reem Z Al-Manee,1 Sarah A Al-Shareef,1 Nawal M Al-Rasheed,1 Iman H Hasan,1 Raeesa A Mohamad,2 Ayman M Mahmoud3 1Department of Pharmacology, Faculty of Pharmacy, 2Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; 3Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt Abstract: Simvastatin (SIM is a lipid-soluble inhibitor of hydroxy-3-methylglutaryl coenzyme A reductase with multiple reported therapeutic benefits. The present study was designed to investigate the effect of pretreatment with SIM on isoproterenol (ISO-induced cardiac hypertrophy in rats. Twenty-four male albino Wistar rats weighing 180–200 g were divided into four groups. Groups I and III received normal saline while groups II and IV received SIM (10 mg/kg body weight for 30 days per gavage. In the last 7 days, rats of groups III and IV were administered ISO (5 mg/kg intraperitoneally to induce cardiac hypertrophy. Administration of ISO induced an increase in heart-to-body weight (HW/BW ratio, an increase in serum interleukin-6, and elevated systolic and diastolic blood pressure. Serum levels of lipids, cardiovascular risk indices, and cardiac troponin I and creatine phosphokinase-MB showed significant increase in ISO-induced hypertrophic rats. Histopathological examination of heart tissue revealed focal areas of subendocardium degeneration, mononuclear cellular infiltrations, fibrous tissue deposition, and increased thickness of the myocardium of left ventricle. In addition, ISO-administered rats exhibited significant upregulation of cardiac Janus kinase, phosphorylated signal transducer and activator of transcription, and nuclear factor-kappa B. Pretreatment with SIM significantly prevented ISO-induced cardiac hypertrophy, alleviated the altered biochemical parameters, and improved the heart architecture. In conclusion, our study provides evidence that SIM

  12. Effect of Sodium Tanshinone Ⅱ A Sulfonate on Cardiac Myocyte Hypertrophy and Its Underlying Mechanism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective:To investigate the effects of sodium tanshinone Ⅱ A sulfonate (STS) on the hypertrophy induced by angiotensin Ⅱ (Ang Ⅱ) in primary cultured neonatal rat cardiac myocytes.Methods:The effect of STS on cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-3,5-phenytetrazoliumromide (MTT) assay.As indexes for cardiocyte hypertrophy,cell size was determined by phase contrast microscopy and protein synthesis rate was measured by 3H-leucine incorporation.The proto-oncogene c-fos mRNA expression of cardiocytes was assessed using reverse transcription polymerase chain reaction (RT-PCR).Results:STS could inhibit cardiocyte hypertrophy,increase the protein synthesis rate and enhance proto-oncogene c-los mRNA expression in cardiocytes induced by Ang Ⅱ (P<0.01),with an effect similar to that of Valsartan,the Ang Ⅱ receptor antagonist.Conclusion:STS can prevent the hypertrophy of cardiac myocytes induced by Ang Ⅱ,which may be related to its inhibition of the expression of proto-oncogene c-fos mRNA.

  13. VARIATION AND SIGNIFICANCE OF C-MYC PROTEIN IN RAT CARDIAC VOLUME-OVERLOAD HYPERTROPHY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To investigate the change of c-myc protein,which was chosen as the response indicator to volume-overloab.Methods:The time and spatial course of c-myc protein expression on the model of rat cardiac volume-overload hypertrophy was examined by immunohistochemical study.Results:The immunohistochemical study indicated the expression of c-myc protein was increased obviously at 4-6 hours(62.73%)than that of control(45.41%,P<0.01) after the volume-overload,then decreased gradually along with development of volume-overload hypertrophy and was decreased extremely at 5 months(r=-0.514,p<0.01),Conclusion:There are disorders in the signal transduction pathways governing the hypertrophic response of cardiomyocytes in hypertrophic myocardium.C-myc gene and the product of it may be only the promoter gene of myocardial hypertrophy.Once switching on,c-myc gene and the product of it do not act anymore;While it may be that c-myc gene and the product of it increased following with myocardial hypertrophy,and have not direct relation to the occurrence and development of myocardial hypertrophy.

  14. Endogenous antioxidant defense induction by melon superoxide dismutase reduces cardiac hypertrophy in spontaneously hypertensive rats.

    Science.gov (United States)

    Carillon, Julie; Rugale, Caroline; Rouanet, Jean-Max; Cristol, Jean-Paul; Lacan, Dominique; Jover, Bernard

    2014-08-01

    We assessed the influence of SODB, a melon superoxide dismutase (SOD), on left ventricular (LV) hypertrophy in SHR. SODB (4 or 40U SOD) was given orally for 4 or 28 days to SHR. For each treatment period, LV weight index (LVWI) and cardiomyocytes size were measured. SOD, glutathione peroxidase (GPx) and catalase expressions, and LV production and presence of superoxide anion were determined. Pro-inflammatory markers were also measured. SODB reduced LVWI and cardiomyocytes size after 4 or 28 days. Cardiac SOD and GPx increased by 30-40% with SODB. The presence but not production of superoxide anion was significantly reduced by SODB. No effect of SODB was detected on inflammatory status in any group. The beneficial effect of SODB on cardiac hypertrophy seems to be related to the stimulation of endogenous antioxidant defense, suggesting that SODB may be of interest as a dietary supplementation during conventional antihypertensive therapy. PMID:24601674

  15. Mice lacking functional TRPV1 are protected from pressure overload cardiac hypertrophy

    OpenAIRE

    Buckley, Cadie L; Stokes, Alexander J.

    2011-01-01

    TRPV1 (transient receptor potential cation channel, subfamily V, member 1) is best studied in peripheral sensory neurons as a pain receptor; however TRPV1 is expressed in numerous tissues and cell types including those of the cardiovascular system. TRPV1 expression is upregulated in the hypertrophic heart, and the channel is positioned to receive stimulatory signals in the hypertrophic heart. We hypothesized that TRPV1 has a role in regulating cardiac hypertrophy. Using transverse aortic cons...

  16. Complete mitochondrial genome sequence and mutations of the cardiac hypertrophy model inbred rat strain (Muridae; Rattus).

    Science.gov (United States)

    Zhu, Rong; Meng, Zi-Li; Chen, Liang; Chen, Wei; Wang, Hong; Hong, Yong-qing

    2016-01-01

    In the present work we undertook the complete mitochondrial genome sequencing of a important cardiac hypertrophy model inbred rat strain for the first time. The total length of the mitogenome was 16,308 bp. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region). The mutation events were also reported. PMID:25109625

  17. Adaptations to iron deficiency: cardiac functional responsiveness to norepinephrine, arterial remodeling, and the effect of beta-blockade on cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Walker LeeAnn

    2002-01-01

    Full Text Available Abstract Background Iron deficiency (ID results in ventricular hypertrophy, believed to involve sympathetic stimulation. We hypothesized that with ID 1 intravenous norepinephrine would alter heart rate (HR and contractility, 2 abdominal aorta would be larger and more distensible, and 3 the beta-blocker propanolol would reduce hypertrophy. Methods 1 30 CD rats were fed an ID or replete diet for 1 week or 1 month. Norepinephrine was infused via jugular vein; pressure was monitored at carotid artery. Saline infusions were used as a control. The pressure trace was analyzed for HR, contractility, systolic and diastolic pressures. 2 Abdominal aorta catheters inflated the aorta, while digital microscopic images were recorded at stepwise pressures to measure arterial diameter and distensibility. 3 An additional 10 rats (5 ID, 5 control were given a daily injection of propanolol or saline. After 1 month, the hearts were excised and weighed. Results Enhanced contractility, but not HR, was associated with ID hypertrophic hearts. Systolic and diastolic blood pressures were consistent with an increase in arterial diameter associated with ID. Aortic diameter at 100 mmHg and distensibility were increased with ID. Propanolol was associated with an increase in heart to body mass ratio. Conclusions ID cardiac hypertrophy results in an increased inotropic, but not chronotropic response to the sympathetic neurotransmitter, norepinephrine. Increased aortic diameter is consistent with a flow-dependent vascular remodeling; increased distensibility may reflect decreased vascular collagen content. The failure of propanolol to prevent hypertrophy suggests that ID hypertrophy is not mediated via beta-adrenergic neurotransmission.

  18. TRAF3IP2 mediates aldosterone/salt-induced cardiac hypertrophy and fibrosis.

    Science.gov (United States)

    Sakamuri, Siva S V P; Valente, Anthony J; Siddesha, Jalahalli M; Delafontaine, Patrice; Siebenlist, Ulrich; Gardner, Jason D; Bysani, Chandrasekar

    2016-07-01

    Aberrant activation of the renin-angiotensin-aldosterone system (RAAS) contributes to adverse cardiac remodeling and eventual failure. Here we investigated whether TRAF3 Interacting Protein 2 (TRAF3IP2), a redox-sensitive cytoplasmic adaptor molecule and an upstream regulator of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), mediates aldosterone-induced cardiac hypertrophy and fibrosis. Wild type (WT) and TRAF3IP2-null mice were infused with aldosterone (0.2 mg/kg/day) for 4 weeks along with 1%NaCl in drinking water. Aldosterone/salt, but not salt alone, upregulated TRAF3IP2 expression in WT mouse hearts. Further, aldosterone elevated blood pressure to a similar extent in both WT and TRAF3IP2-null groups. However, TRAF3IP2 gene deletion attenuated aldosterone/salt-induced (i) p65 and c-Jun activation, (ii) extracellular matrix (collagen Iα1 and collagen IIIα1), matrix metalloproteinase (MMP2), lysyl oxidase (LOX), inflammatory cytokine (IL-6 and IL-18), chemokine (CXCL1 and CXCL2), and adhesion molecule (ICAM1) mRNA expression in hearts, (iii) IL-6, IL-18, and MMP2 protein levels, (iv) systemic IL-6 and IL-18 levels, and (iv) cardiac hypertrophy and fibrosis. These results indicate that TRAF3IP2 is a critical signaling intermediate in aldosterone/salt-induced myocardial hypertrophy and fibrosis, and thus a potential therapeutic target in hypertensive heart disease. PMID:27040306

  19. Effects of protein-calorie restriction on mechanical function of hypertrophied cardiac muscle

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Cicogna

    1999-04-01

    Full Text Available OBJECTIVE: To assess the effect of food restriction (FR on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR. METHODS: Isolated papillary muscle preparations of the left ventricle (LV of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1 reduction in the body weight and LV weight of SHR and WKY rats; 2 increase in the time to peak shortening and the time to peak developed tension (DT in the hypertrophied myocardium of the SHR; 3 diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.

  20. Disseminated cysticercosis with pulmonary and cardiac involvement

    OpenAIRE

    Jain Bharat; Sankhe Shilpa; Agrawal Mukta; Naphade Prashant

    2010-01-01

    Pulmonary and cardiac involvement by cysticercosis is extremely rare, and is usually asymptomatic. We report the case of a 19-year-old boy who presented with a history of headache and vomiting and was found to have disseminated cysticercosis with pulmonary and cardiac involvement; the emphasis is on the rare occurrence of pulmonary, cardiac, pancreatic, intraocular, and extradural spinal canal involvement in the same patient. This case demonstrates the extent to which cysticercosis can be dis...

  1. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story

    Directory of Open Access Journals (Sweden)

    Mohammad T. Elnakish

    2015-01-01

    Full Text Available Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models.

  2. Cardiac hypertrophy in the newborn delays the maturation of fatty acid β-oxidation and compromises postischemic functional recovery.

    Science.gov (United States)

    Oka, Tatsujiro; Lam, Victoria H; Zhang, Liyan; Keung, Wendy; Cadete, Virgilio J J; Samokhvalov, Victor; Tanner, Brandon A; Beker, Donna L; Ussher, John R; Huqi, Alda; Jaswal, Jagdip S; Rebeyka, Ivan M; Lopaschuk, Gary D

    2012-05-01

    During the neonatal period, cardiac energy metabolism progresses from a fetal glycolytic profile towards one more dependent on mitochondrial oxidative metabolism. In this study, we identified the effects of cardiac hypertrophy on neonatal cardiac metabolic maturation and its impact on neonatal postischemic functional recovery. Seven-day-old rabbits were subjected to either a sham or a surgical procedure to induce a left-to-right shunt via an aortocaval fistula to cause RV volume-overload. At 3 wk of age, hearts were isolated from both groups and perfused as isolated, biventricular preparations to assess cardiac energy metabolism. Volume-overload resulted in cardiac hypertrophy (16% increase in cardiac mass, P < 0.05) without evidence of cardiac dysfunction in vivo or in vitro. Fatty acid oxidation rates were 60% lower (P < 0.05) in hypertrophied hearts than controls, whereas glycolysis increased 246% (P < 0.05). In contrast, glucose and lactate oxidation rates were unchanged. Overall ATP production rates were significantly lower in hypertrophied hearts, resulting in increased AMP-to-ATP ratios in both aerobic hearts and ischemia-reperfused hearts. The lowered energy generation of hypertrophied hearts depressed functional recovery from ischemia. Decreased fatty acid oxidation rates were accompanied by increased malonyl-CoA levels due to decreased malonyl-CoA decarboxylase activity/expression. Increased glycolysis in hypertrophied hearts was accompanied by a significant increase in hypoxia-inducible factor-1α expression, a key transcriptional regulator of glycolysis. Cardiac hypertrophy in the neonatal heart results in a reemergence of the fetal metabolic profile, which compromises ATP production in the rapidly maturing heart and impairs recovery of function following ischemia. PMID:22408020

  3. Cardiac morphology in left ventricular hypertrophy using thallium-201 myocardial scintigraphy

    International Nuclear Information System (INIS)

    To evaluate cardiac morphology in the patients with various cases of hypertrophy, we measured left ventricular (LV) size using thallium-201 myocardial scintigraphy in 29 normal subjects and in 90 patients. Cardiac shape and dimension were assessed by measuring the wall thickness and external length in the short and long axis of LV image in LAO projection. In aortic stenosis and hypertensive heart disease the shape was spherical and the wall was thickened. In both mitral (MR) and aortic (AR) regurgitations, LV dilatation were shown; spherical shape in chronic MR but ellipsoid shape in acute MR and AR. Decreased LV size but normal shape was observed in mitral stenosis and cor pulmonale. In hypertrophic cardiomyopathy the LV wall was asymmetrically hypertrophied, while in congestive cardiomyopathy the wall is thin with marked LV dilatation and the shape was spherical. We concluded that the heart had characteristic configuration which might reflect cardiac performance or compensate for the load to the heart, and that thallium-201 myocardial scintigraphy is useful in the evaluation of cardiac morphology as well as in diagnosis of myocardial ischemia. (author)

  4. Molecular mechanism of carvedilol in attenuating the reversion to fetal energy metabolism during cardiac hypertrophy development

    Institute of Scientific and Technical Information of China (English)

    胡琴; 李隆贵

    2003-01-01

    Objective: To explore the molecular regulation mechanism of carvedilol in attenuating the reversion back towards fetal energy metabolism during the development of cardiac hypertrophy induced by coarctation of abdominal aorta (CAA) in male Wistar rats. Methods: Hemodynamic and ventricular remodeling parameters, free fatty acid content in the serum were measured in the experimental animals at 16 weeks after the surgical CAA, the rats receiving carvedilol intervention (CAR) after CAA, and those with sham operation (SH). The expressions of muscle carnitine palmitoyltransferaseⅠ (M-CPTⅠ) and medium chain acyl-CoA dehydrogenase (MCAD) mRNA in the cardiac myocytes from every group were studied with RT-PCR. Results: Significant left ventricular hypertrophy were observed in the rats 16 weeks after coarctation operation (P<0.05), together with significant free fatty acids accumulation and downregulation of M-CPTⅠ and MCAD mRNA (P<0.05) in CAA group. Carvedilol at a dose of 30 mg/kg/d for 12 weeks inhibited the left ventricular hypertrophy induced by pressure overload and enhanced the gene expressions of rate-limiting enzyme (M-CPTⅠ) and key enzyme of fatty acid (MCAD) in the CAR group compared with CAA group (P<0.05). Conclusion: Pressure overload-induced hypertrophy in CAA rats causes the reversion back towards fetal enery metabolism, that is, downregulates the expressions of rate-limiting enzyme and key enzyme of fatty acid oxidation. The intervention therapy with carvedilol, a vasodilating alpha- and beta-adrenoreceptor antagonist, attenuates the reversion of the metabolic gene expression to fetal type through upregulating M-CPTⅠ and MCAD mRNA expressions. Thus, carvedilol may exert cardioprotective effects on heart failure by the mechanism of preserving the adult metabolic gene regulation.

  5. Cardiac involvement in myotonic dystrophy

    DEFF Research Database (Denmark)

    Lund, Marie; Diaz, Lars Jorge; Ranthe, Mattis Flyvholm;

    2014-01-01

    genetic testing for DM1. Information on incident cardiac diseases was obtained from the NPR. We estimated standardized incidence ratios (SIRs) of cardiac disease compared with the background population, overall and according to selected diagnostic subgroups (cardiomyopathy, heart failure, conduction...... disorders, arrhythmias, and device implantation). In the DM cohort, SIR for any cardiac disease was 3.42 [95% confidence interval (CI) 3.01-3.86]; for a cardiac disease belonging to the selected subgroups 6.91 (95% CI: 5.93-8.01) and for other cardiac disease 2.59 (95% CI: 2.03-3.25). For a cardiac disease...... belonging to the selected subgroups, the risk was particularly high in the first year after DM diagnosis [SIR 15.4 (95% CI: 10.9-21.3)] but remained significantly elevated in subsequent years [SIR 6.07 (95% CI: 5.11-7.16]). The risk was higher in young cohort members [e.g. 20-39 years: SIR 18.1 (95% CI: 12...

  6. Effect of Salvia Miltiorrhiza on Left Ventricular Hypertrophy and Cardiac Aldosterone in Spontaneously Hypertensive Rats

    Institute of Scientific and Technical Information of China (English)

    韩少杰; 郑智; 任大宏

    2002-01-01

    Summary: Chronic treatment with Salvia Miltiorrhiza preventing left ventricular hypertrophy(LVH) and its possible mechanism-inhibiting the action of cardiac aldosterone in spontaneouslyhypertensive rats (SHR) were investigated. Normotensive Wistar-kyoto (WKY) rats and SHRswere used. Part of SHRs was treated with Salvia Miltiorrhiza for 12 weeks. Systolic blood pres-sure (SBP) and left ventricular mass index were measured. Sections of heart tissue were stainedwith HE method and VanGieson method. Collagen volume fraction was determined in the left ven-tricle by automatically quantitative morphometry. Cardiac aldosterone concentration was measuredby radioimmunoassay. The results indicated that compared with WKY rats, SHRs exhibited high-er SBP, left ventricular collagen volume fraction, and aldosterone concentration (all P<0. 05).After the treatment with Salvia Miltiorrhiza, SBP, left ventricular collagen volume fraction, andaldosterone concentration in SHR were decreased as compared with control group (P<0. 05) ex-cept SBP. It was concluded that chronic treatment with Salvia Miltiorrhiza could prevent left ven-tricular hypertrophy in SHR, significantly inhibit collagen compositions in left ventricle. Themechanism was probably related with the inhibition of the cardiac aldosterone action.

  7. Hypertension is a conditional factor for the development of cardiac hypertrophy in type 2 diabetic mice.

    Directory of Open Access Journals (Sweden)

    Marc van Bilsen

    Full Text Available BACKGROUND: Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice. METHODS: Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII for 4 wks to induce mild hypertension (n = 9-10 per group. Left ventricular (LV function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immunohistochemical analysis to assess effects on hypertrophy, fibrosis and inflammation. RESULTS: Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01 and cardiomyocyte size (+53% and +31%, p<0.001. This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK, while accumulation of Advanced Glycation End products (AGEs and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice. CONCLUSIONS: Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling.

  8. Combinational effect of resveratrol and atorvastatin on isoproterenol-induced cardiac hypertrophy in rats

    Directory of Open Access Journals (Sweden)

    Songjukta Chakraborty

    2015-01-01

    Full Text Available Introduction: Resveratrol is a natural polyphenol present mainly in grapes. It has been shown to offer strong cardio protection in animal models due to its ability to correct lipid peroxidation and maintain antioxidants level. Atorvastatin, a HMG-CoA reductase inhibitor, lowers cholesterol level and is commonly prescribed to heart patients. Our aim in this study was to see the combination effect of these two drugs against Isoproterenol-induced cardiac hypertrophy in rats. Materials and Methods: Wister Albino rats were treated with resveratrol (20 mg/kg/day, p.o, atorvastatin (20 mg/kg/day, p.o and in combination (resveratrol [10 mg/kg/day, p.o] + atorvastatin [10 mg/kg/day, p.o] for a period of 25 days and from 15 th till 25 th day Isoproterenol (5 mg/kg/day, s.c was co-administered to rats to induce cardiac hypertrophy. Results: A significant increase in creatine kinase, lactate dehydrogenase, aspartate transaminase and lipid peroxidation with the significant decrease in reduced glutathione, superoxide dismutase and catalase were observed in Isoproterenol treated rats. Resveratrol, atorvastatin and their combination significantly reversed the effect. The histopathological studies and myocardial infarct size evaluation also confirmed the protection. Conclusion: Comparing the data we came to this conclusion that atorvastatin although showed the protection along all the parameters, the extent of protection offered by resveratrol alone and in combination were more effective. Hence, it can be concluded that resveratrol, an herbal nutritional supplement, alone and in combination is better against cardiac hypertrophy.

  9. Duration-controlled swimming exercise training induces cardiac hypertrophy in mice

    OpenAIRE

    F.S. Evangelista; P.C. Brum; J.E. Krieger

    2003-01-01

    Exercise training associated with robust conditioning can be useful for the study of molecular mechanisms underlying exercise-induced cardiac hypertrophy. A swimming apparatus is described to control training regimens in terms of duration, load, and frequency of exercise. Mice were submitted to 60- vs 90-min session/day, once vs twice a day, with 2 or 4% of the weight of the mouse or no workload attached to the tail, for 4 vs 6 weeks of exercise training. Blood pressure was unchanged in all g...

  10. Thyroid hormone induces cardiac myocyte hypertrophy in a TRα1-specific manner that requires TAK1 and p38 MAPK.

    OpenAIRE

    Kinugawa, Koichiro; Jeong, Mark Y.; Bristow, Michael R.; Long, Carlin S.

    2005-01-01

    Alterations in thyroid hormone receptor (TR)1 isoform expression have been reported in models of both physiologic and pathologic cardiac hypertrophy as well as in patients with heart failure. In this report, we demonstrate that thyroid hormone (TH) induces hypertrophy as a direct result of binding to the TRα1 isoform and moreover, that over-expression of TRα1 alone is also associated with a hypertrophic phenotype, even in the absence of ligand. The mechanism of TH and TRα1-specific hypertroph...

  11. Cardiac hypertrophy and failure--a disease of adaptation. Modifications in membrane proteins provide a molecular basis for arrhythmogenicity.

    Science.gov (United States)

    Moalic, J M; Charlemagne, D; Mansier, P; Chevalier, B; Swynghedauw, B

    1993-05-01

    Cardiac hypertrophy is the physiological adaptation of the heart to chronic mechanical overload. Cardiac failure indicates the limits of the process. Cardiac hypertrophy is only one example of biological adaptation and results from the induction of several changes in gene expression, mostly of the fetal type, including those coding for the myosin heavy chain or the alpha-subunit of the Na+,K(+)-ATPase. From a thermodynamic point of view, the decrease in Vmax allows the heart to produce a normal tension at a lower cost. This process results from changes both in the sarcomere and in the expression of certain membrane proteins. The decrease in calcium transient is determined by several changes in membrane proteins that result in a rather fragile equilibrium in terms of calcium homeostasis. Any abnormal input in calcium will have exaggerated detrimental consequences on a hypertrophied myocyte and may cause automaticity and arrhythmias or an exaggerated response to anoxia in terms of compliance. PMID:8485830

  12. Endogenous resident c-Kit cardiac stem cells increase in mice with an exercise-induced, physiologically hypertrophied heart

    Directory of Open Access Journals (Sweden)

    Camila Ferreira Leite

    2015-07-01

    Full Text Available Physical activity evokes well-known adaptations in the cardiovascular system. Although exercise training induces cardiac remodeling, whether multipotent stem cells play a functional role in the hypertrophic process remains unknown. To evaluate this possibility, C57BL/6 mice were subjected to swimming training aimed at achieving cardiac hypertrophy, which was morphologically and electrocardiographically characterized. Subsequently, c-Kit+Lin− and Sca-1+Lin− cardiac stem cells (CSCs were quantified using flow cytometry while cardiac muscle-derived stromal cells (CMSCs, also known as cardiac-derived mesenchymal stem cells were assessed using in vitro colony-forming unit fibroblast assay (CFU-F. Only the number of c-Kit+Lin− cells increased in the hypertrophied heart. To investigate a possible extracardiac origin of these cells, a parabiotic eGFP transgenic/wild-type mouse model was used. The parabiotic pairs were subjected to swimming, and the wild-type heart in particular was tested for eGFP+ stem cells. The results revealed a negligible number of extracardiac stem cells in the heart, allowing us to infer a cardiac origin for the increased amount of detected c-Kit+ cells. In conclusion, the number of resident Sca-1+Lin− cells and CMSCs was not changed, whereas the number of c-Kit+Lin− cells was increased during physiological cardiac hypertrophy. These c-Kit+Lin− CSCs may contribute to the physiological cardiac remodeling that result from exercise training.

  13. Steroidal and Nonsteroidal Mineralocorticoid Receptor Antagonists Cause Differential Cardiac Gene Expression in Pressure Overload-induced Cardiac Hypertrophy.

    Science.gov (United States)

    Grune, Jana; Benz, Verena; Brix, Sarah; Salatzki, Janek; Blumrich, Annelie; Höft, Beata; Klopfleisch, Robert; Foryst-Ludwig, Anna; Kolkhof, Peter; Kintscher, Ulrich

    2016-05-01

    Pharmacological blockade of mineralocorticoid receptors (MR) is known as an efficacious therapy in chronic heart failure. Therapy with steroidal MR antagonists such as spironolactone or eplerenone (EPL) is often limited because of side effects. Recently, a new highly selective and potent, nonsteroidal MR antagonist, finerenone (FIN), has been developed. To investigate the effects of FIN on pressure-induced cardiac hypertrophy, the transverse aortic constriction (TAC) model was used in C57BL/6 mice treated with FIN (10 mg·kg·d), EPL (200 mg·kg·d) or vehicle (VEH). First, we analyzed cardiac gene expression 4 weeks after TAC using a pathway-focused quantitative polymerase chain reaction array. FIN caused a distinct cardiac gene expression profile compared to VEH and EPL, including differential expression of BNP (brain natriuretic peptide) and Tnnt2 (troponin T type 2). FIN treatment led to a significant reduction of TAC-induced left ventricular (LV) wall thickening assessed by echocardiography. In accordance, FIN-treated mice showed a significant lower increase of calculated left ventricular mass compared with VEH- and EPL-treated mice (FIN: 28.4 ± 3.7 mg; EPL: 38.4 ± 4.3 mg; VEH: 39.3 ± 3.1 mg; P < 0.05). These data show beneficial effects of nonsteroidal MR antagonism by FIN on left ventricular mass development in pressure overload associated with a distinct cardiac gene expression profile. PMID:26859196

  14. Duration-controlled swimming exercise training induces cardiac hypertrophy in mice

    Directory of Open Access Journals (Sweden)

    F.S. Evangelista

    2003-12-01

    Full Text Available Exercise training associated with robust conditioning can be useful for the study of molecular mechanisms underlying exercise-induced cardiac hypertrophy. A swimming apparatus is described to control training regimens in terms of duration, load, and frequency of exercise. Mice were submitted to 60- vs 90-min session/day, once vs twice a day, with 2 or 4% of the weight of the mouse or no workload attached to the tail, for 4 vs 6 weeks of exercise training. Blood pressure was unchanged in all groups while resting heart rate decreased in the trained groups (8-18%. Skeletal muscle citrate synthase activity, measured spectrophotometrically, increased (45-58% only as a result of duration and frequency-controlled exercise training, indicating that endurance conditioning was obtained. In groups which received duration and endurance conditioning, cardiac weight (14-25% and myocyte dimension (13-20% increased. The best conditioning protocol to promote physiological hypertrophy, our primary goal in the present study, was 90 min, twice a day, 5 days a week for 4 weeks with no overload attached to the body. Thus, duration- and frequency-controlled exercise training in mice induces a significant conditioning response qualitatively similar to that observed in humans.

  15. Effects of estrogen, an ERα agonist and raloxifene on pressure overload induced cardiac hypertrophy.

    Directory of Open Access Journals (Sweden)

    Christina Westphal

    Full Text Available The aim of this study was to investigate the effects of 17β-estradiol (E2, the selective ERα agonist 16α-LE2, and the selective estrogen receptor modulator (SERM raloxifene on remodeling processes during the development of myocardial hypertrophy (MH in a mouse model of pressure overload. Myocardial hypertrophy in ovariectomized female C57Bl/6J mice was induced by transverse aortic constriction (TAC. Two weeks after TAC, placebo treated mice developed left ventricular hypertrophy and mild systolic dysfunction. Estrogen treatment, but not 16α-LE2 or raloxifene reduced TAC induced MH compared to placebo. E2, 16α-LE2 and raloxifene supported maintenance of cardiac function in comparison with placebo. Nine weeks after induction of pressure overload, MH was present in all TAC groups, most pronounced in the raloxifene treated group. Ejection fraction (EF was decreased in all animals. However, 16α-LE2 treated animals showed a smaller reduction of EF than animals treated with placebo. E2 and 16α-LE2, but not raloxifene diminished the development of fibrosis and reduced the TGFβ and CTGF gene expression. Treatment with E2 or 16α-LE2 but not with raloxifene reduced survival rate after TAC significantly in comparison with placebo treatment. In conclusion, E2 and 16α-LE2 slowed down the progression of MH and reduced systolic dysfunction after nine weeks of pressure overload. Raloxifene did not reduce MH but improved cardiac function two weeks after TAC. However, raloxifene was not able to maintain EF in the long term period.

  16. Effects of pressure- or volume-overload hypertrophy on passive stiffness in isolated adult cardiac muscle cells

    Science.gov (United States)

    Kato, S.; Koide, M.; Cooper, G. 4th; Zile, M. R.

    1996-01-01

    It has been hypothesized that the changes in myocardial stiffness induced by chronic hemodynamic overloading are dependent on changes in the passive stiffness of the cardiac muscle cell (cardiocyte). However, no previous studies have examined the passive constitutive properties of cardiocytes isolated from animals with myocardial hypertrophy. Accordingly, changes in relative passive stiffness of cardiocytes isolated from animals with chronic pressure- or volume-overload hypertrophy were determined by examining the effects of anisosmotic stress on cardiocyte size. Anisosmotic stress was produced by altering superfusate osmolarity. Hypertrophied cardiocytes were enzymatically isolated from 16 adult cats with right ventricular (RV) pressure-overload hypertrophy induced by pulmonary artery banding (PAB) and from 6 adult cats with RV volume-overload hypertrophy induced by creating an atrial septal defect (ASD). Left ventricular (LV) cardiocytes from each cat served as nonhypertrophied, normally loaded, same-animal controls. Superfusate osmolarity was decreased from 305 +/- 3 to 135 +/- 5 mosM and increased to 645 +/- 4 mosM. During anisosmotic stress, there were no significant differences between hypertrophied RV and normal LV cardiocytes in pressure overload PAB cats with respect to percent change in cardiocyte area (47 +/- 2% in RV vs. 48 +/- 2% in LV), diameter (46 +/- 3% in RV vs. 48 +/- 2% in LV), or length (2.4 +/- 0.2% in RV vs. 2.0 +/- 0.3% in LV), or sarcomere length (1.5 +/- 0.1% in RV vs. 1.3 +/- 0.3% in LV). Likewise, there were no significant differences in cardiocyte strain between hypertrophied RV and normal LV cardiocytes from ASD cats. In conclusion, chronic pressure-overload hypertrophy and chronic volume-overload hypertrophy did not alter the cardiocyte response to anisosmotic stress. Thus chronic overload hypertrophy did not alter relative passive cardiocyte stiffness.

  17. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O' Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  18. Severe Left Ventricular Hypertrophy, Small Pericardial Effusion, and Diffuse Late Gadolinium Enhancement by Cardiac Magnetic Resonance Suspecting Cardiac Amyloidosis: Endomyocardial Biopsy Reveals an Unexpected Diagnosis

    Directory of Open Access Journals (Sweden)

    Nina P. Hofmann

    2016-01-01

    Full Text Available Left ventricular (LV hypertrophy can be related to a multitude of cardiac disorders, such as hypertrophic cardiomyopathy (HCM, cardiac amyloidosis, and hypertensive heart disease. Although the presence of LV hypertrophy is generally associated with poorer cardiac outcomes, the early differentiation between these pathologies is crucial due to the presence of specific treatment options. The diagnostic process with LV hypertrophy requires the integration of clinical evaluation, electrocardiography (ECG, echocardiography, biochemical markers, and if required CMR and endomyocardial biopsy in order to reach the correct diagnosis. Here, we present a case of a patient with severe LV hypertrophy (septal wall thickness of 23 mm, LV mass of 264 g, and LV mass index of 147 g/m2, severely impaired longitudinal function, and preserved radial contractility (ejection fraction = 55%, accompanied by small pericardial effusion and diffuse late gadolinium enhancement (LGE by cardiac magnetic resonance (CMR. Due to the imaging findings, an infiltrative cardiomyopathy, such as cardiac amyloidosis, was suspected. However, amyloid accumulation was excluded by endomyocardial biopsy, which revealed the presence of diffuse myocardial fibrosis in an advanced hypertensive heart disease.

  19. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase.

    Science.gov (United States)

    Touyz, Rhian M; Mercure, Chantel; He, Ying; Javeshghani, Danesh; Yao, Guoying; Callera, Glaucia E; Yogi, Alvaro; Lochard, Nadheige; Reudelhuber, Timothy L

    2005-04-01

    The gp91phox-containing NADPH oxidase is the major source of reactive oxygen species (ROS) in the cardiovascular system and inactivation of gp91phox has been reported to blunt hypertension and cardiac hypertrophy seen in angiotensin (Ang) II-infused animals. In the current study, we sought to determine the role of gp91phox-derived ROS on cardiovascular outcomes of chronic exposure to Ang II. The gp91phox-deficient mice were crossed with transgenic mice expressing active human renin in the liver (TTRhRen). TTRhRen mice exhibit chronic Ang II-dependent hypertension and frank cardiac hypertrophy by age 10 to 12 weeks. Four genotypes of mice were generated: control, TTRhRen trangenics (TTRhRen), gp91phox-deficient (gp91-), and TTRhRen transgenic gp91phox-deficient (TTRhRen/gp91-). Eight to 10 mice/group were studied. ROS levels were significantly reduced (P<0.05) in the heart and aorta of TTRhRen/gp91- and gp91-mice compared with control counterparts, and this was associated with reduced cardiac, aortic, and renal NADPH oxidase activity (P<0.05). Systolic blood pressure (SBP), cardiac mass, and cardiac fibrosis were increased in TTRhRen versus controls. In contrast to its action on ROS generation, gp91phox inactivation had no effect on development of hypertension or cardiac hypertrophy in TTRhRen mice, although interstitial fibrosis was reduced. Cardiac and renal expression of gp91phox homologues, Nox1 and Nox4, was not different between groups. Thus, although eliminating gp91phox-associated ROS production may be important in cardiovascular consequences in acute insult models, it does not prevent the development of hypertension and cardiac hypertrophy in a model in which the endogenous renin-angiotensin system is chronically upregulated. PMID:15753233

  20. Postnatal ablation of Foxm1 from cardiomyocytes causes late onset cardiac hypertrophy and fibrosis without exacerbating pressure overload-induced cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Craig Bolte

    Full Text Available Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2 plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.

  1. Carnitine palmitoyl transferase-I inhibition is not associated with cardiac hypertrophy in rats fed a high fat diet

    Science.gov (United States)

    Cardiac lipotoxicity is characterized by hypertrophy and contractile dysfunction and can be triggered by impaired mitochondrial fatty acid oxidation and lipid accumulation. The present study investigated the effect of dietary fatty acid intake alone and in combination with inhibition of mitochondria...

  2. Cardiac involvement in Duchenne and Becker muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    Sophie; Mavrogeni; George; Markousis-Mavrogenis; Antigoni; Papavasiliou; Genovefa; Kolovou

    2015-01-01

    Duchenne and Becker muscular dystrophy(DMD/BMD) are X-linked muscular diseases responsible for over 80% of all muscular dystrophies. Cardiac disease is a common manifestation,not necessarily related to the degree of skeletal myopathy; it may be the predominant manifestation with or without any other evidence of muscular disease. Death is usually due to ventricular dysfunction,heart block or malignant arrhythmias. Not only DMD/BMD patients,but also female carriers may present cardiac involvement. Clinically overt heart failure in dystrophinopathies may be delayed or absent,due to relative physical inactivity. The commonest electrocardiographic findings include conduction defects,arrhythmias(supraventricular or ventricular),hypertrophy and evidence of myocardial necrosis. Echocardiography can assess a marked variability of left ventricular dysfunction,independently of age of onset or mutation groups. Cardiovascular magnetic resonance(CMR) has documented a pattern of epicardial fibrosis in both dystrophinopathies’ patients and carriers that can be observed even if overt muscular disease is absent. Recently,new CMR techniques,such as postcontrast myocardial T1 mapping,have been used in Duchenne muscular dystrophy to detect diffuse myocardial fibrosis. A combined approach using clinical assessment and CMR evaluation may motivate early cardioprotective treatment in both patients and asymptomatic carriers and delay the development of serious cardiac complications.

  3. Adiponectin is required for cardiac MEF2 activation during pressure overload induced hypertrophy.

    Science.gov (United States)

    Dadson, Keith; Turdi, Subat; Hashemi, Sarah; Zhao, Jianzhong; Polidovitch, Nazar; Beca, Sanja; Backx, Peter H; McDermott, John C; Sweeney, Gary

    2015-09-01

    Cardiomyocyte (CM) hypertrophy and increased heart mass in response to pressure overload are associated with hyper-activation of the myocyte enhancer factor-2 (MEF2) family of transcriptional regulators, and concomitant initiation of the fetal gene program. Adiponectin, an adipokine that is reduced in individuals with obesity and diabetes, has been characterized both as a negative regulator or permissive factor in cardiac hypertrophy. We therefore sought to analyze temporal regulation of MEF2 activity in response to pressure overload (PO) and changes in adiponectin status. To address this we crossed a well characterized transgenic MEF2 "sensor" mouse (MEF2-lacZ) with adiponectin null mice (Ad-KO) to create compound MEF2 lacZ/Ad-KO mice. Initially, we established that transverse aortic banding induced PO in wild-type (WT) mice increased heart mass and CM hypertrophy from 1 to 4weeks following surgery, indicated by increased CM diameter and heart weight/tibia length ratio. This was associated with cardiac dysfunction determined by echocardiography. Hypertrophic changes and dysfunction were observed in Ad-KO mice 4weeks following surgery. MEF2 lacZ activity and endogenous ANF mRNA levels, used as indicators of hypertrophic gene activation, were both robustly increased in WT mice after MTAB but attenuated in the Ad-KO background. Furthermore, activation of the pro-hypertrophic molecule p38 was increased following MTAB surgery in WT mice, but not in Ad-KO animals, and treatment of primary isolated CM with recombinant adiponectin induced p38 phosphorylation in a time dependent manner. Adiponectin also increased MEF2 activation in primary cardiomyocytes, an effect attenuated by p38 MAPK inhibition. In conclusion, our data indicate that robust hypertrophic MEF2 activation in the heart in vivo requires a background of adiponectin signaling and that adiponectin signaling in primary isolated CM directly enhances MEF2 activity through activation of p38 MAPK. We conclude that

  4. Salt-sensitive hypertension and cardiac hypertrophy in transgenic mice expressing a corin variant identified in blacks.

    Science.gov (United States)

    Wang, Wei; Cui, Yujie; Shen, Jianzhong; Jiang, Jingjing; Chen, Shenghan; Peng, Jianhao; Wu, Qingyu

    2012-11-01

    Blacks represent a high-risk population for salt-sensitive hypertension and heart disease, but the underlying mechanism remains unclear. Corin is a cardiac protease that regulates blood pressure by activating natriuretic peptides. A corin gene variant (T555I/Q568P) was identified in blacks with hypertension and cardiac hypertrophy. In this study, we tested the hypothesis that the corin variant contributes to the hypertensive and cardiac hypertrophic phenotype in vivo. Transgenic mice were generated to express wild-type (WT) or T555I/Q568P variant corin in the heart under the control of α-myosin heavy chain promoter. The mice were crossed into a corin knockout (KO) background to create KO/TgWT and KO/TgV mice that expressed WT or variant corin, respectively, in the heart. Functional studies showed that KO/TgV mice had significantly higher levels of proatrial natriuretic peptide in the heart compared with that in control KO/TgWT mice, indicating that the corin variant was defective in processing natriuretic peptides in vivo. By radiotelemetry, corin KO/TgV mice were found to have hypertension that was sensitive to dietary salt loading. The mice also developed cardiac hypertrophy at 12 to 14 months of age when fed a normal salt diet or at a younger age when fed a high-salt diet. The phenotype of salt-sensitive hypertension and cardiac hypertrophy in KO/TgV mice closely resembles the pathological findings in blacks who carry the corin variant. The results indicate that corin defects may represent an important mechanism in salt-sensitive hypertension and cardiac hypertrophy in blacks. PMID:22987923

  5. Mitochondrial Transcription Factors TFA, TFB1 and TFB2: A Search for DNA Variants/Haplotypes and the Risk of Cardiac Hypertrophy

    OpenAIRE

    Cristina Alonso-Montes; Castro, Mónica G.; Julián R. Reguero; Andreas Perrot; Cemil Özcelik; Christian Geier; Posch, Maximilian G.; César Morís; Victoria Alvarez; Marta Ruiz-Ortega; Eliecer Coto

    2008-01-01

    Mitochondrial transcription factors mtTFA, mtTFB1 and mtTFB2 are required for the replication of mitochondrial DNA (mtDNA), regulating the number of mtDNA copies. Mice with a mtTFA deletion showed a reduced number of mtDNA copies, a reduction in respiratory chain activity, and a characteristic dilated cardiomyopathy. DNA variants in these genes could be involved in the risk for cardiac hypertrophy (HCM). We determined the variation in the TFAM, TFB1M, and TFB2M genes (using SSCA, DHPLC, and d...

  6. Canine cardiac myosin with special referrence to pressure overload cardiac hypertrophy. I. Subunit composition.

    Science.gov (United States)

    Siemankowski, R F; Dreizen, P

    1978-12-10

    In studies of myosin from left and right ventricles of normal hearts and hypertrophic hearts at 5 weeks and 13 weeks after aortic banding, polyacrylamide gel electrophoresis shows intermediate molecular weight components which derive from heavy chains fragmented in the presence of dodecyl sulfate. The proportion of degraded heavy chains is greater in myosin from hypertrophic hearts than normal hearts, with comparable degradation in left and right ventricle myosin. The observed fragmentation of myosin results from proteolysis due to contaminant proteases or a thermally activated, heat-stable nonenzymatic process, or both. The susceptibility of heavy chains to crude myofibrillar proteases differs in normal and hypertrophic cardiac myosin; however, the kinetics of tryptic digestion are identical for both myosins. With precautions to minimize proteolytic artifacts on dodecyl sulfate-polyacrylamide gel electrophoresis, preparations of myosin from left and right ventricles of normal and hypertrophic hearts exhibit comparable subunit composition, with approximately molar ratios of heavy chains, light chain L1, and light chain L2. Comparable stoichiometry for the light chain fraction is determined by high speed sedimentation equilibrium at pH 11 and direct fractionation of the different cardiac myosins. We do not confirm reports (e.g. Wikman-Coffelt, J., Fenner, C., Smith, A., and Mason, D. T. (1975) J. Biol. Chem. 250, 1257-1262) of different proportions of light chains in left and right ventricle myosin of normal and hypertrophic canine hearts. The light chains display microheterogeneity, with L1 generating two isoelectric variants and L2 generating two major and two minor variants, but identical mobilities and isoelectric values are obtained in the different myosin preparations. PMID:152317

  7. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Suo, Yu-Ping [Department of Obstetrics and Gynecology, Shanxi Provincial People' s Hospital, Taiyuan 030012 (China); Yue, Li-Ying [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China)

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  8. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    International Nuclear Information System (INIS)

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  9. Electrocardiographic Characterization of Cardiac Hypertrophy in Mice that Overexpress the ErbB2 Receptor Tyrosine Kinase

    DEFF Research Database (Denmark)

    Sysa-Shah, Polina; Sørensen, Lars L; Abraham, M Roselle;

    2015-01-01

    Electrocardiography is an important method for evaluation and risk stratification of patients with cardiac hypertrophy. We hypothesized that the recently developed transgenic mouse model of cardiac hypertrophy (ErbB2(tg)) will display distinct ECG features, enabling WT (wild type) mice to be......, the ECG recordings of ErbB2(tg) mice were characterized by higher P- and R-wave amplitudes, broader QRS complexes, inverted T waves, and ST interval depression. Pearson's correlation matrix analysis of combined WT and ErbB2(tg) data revealed significant correlation between heart weight and the ECG...... distinguished from transgenic mice without using conventional PCR genotyping. We evaluated more than 2000 mice and developed specific criteria for genotype determination by using cageside ECG, during which unanesthetized mice were manually restrained for less than 1 min. Compared with those from WT counterparts...

  10. Effects of rutin from leaves and flowers of buckwheat (Fagopyrum esculentum Moench.) on angiotensin II-induced hypertrophy of cardiac myocytes and proliferation of fibroblasts

    OpenAIRE

    Han, Shu-ying; Chu, Jin-Xiu; Li, Guang-min; Zhu, Li-Sha; Shi, Rui-Fang

    2010-01-01

    Rutin was isolated from dried leaves and flowers of buckwheat (Fagopyrum esculentum Moench.). The effects of rutin on angiotensin II-induced hypertrophy of cultured cardiac myocytes and proliferation of cardiac fibroblasts of neonatal rats were evaluated by analyzing the cell surface area, measuring the protein synthesis rate through 3H-leucine incorporation, and the MTT method. Rutin (0.8 to 8.0 mg/l) exhibited a strong inhibition on the hypertrophy and proliferation. The results...

  11. Carnitine Palmitoyltransferase-1b (CPT1b) Deficiency Aggravates Pressure-Overload-Induced Cardiac Hypertrophy due to Lipotoxicity

    Science.gov (United States)

    He, Lan; Kim, Teayoun; Long, Qinqiang; Liu, Jian; Wang, Peiyong; Zhou, Yiqun; Ding, Yishu; Prasain, Jeevan; Wood, Philip A.; Yang, Qinglin

    2012-01-01

    Background Carnitine palmitoyltransferase 1(CPT1) is a rate-limiting step of mitochondrial β-oxidation by controlling the mitochondrial uptake of long-chain acyl-CoAs. The muscle isoform, CPT1b, is the predominant isoform expressed in the heart. It has been suggested that inhibiting CPT-1 activity by specific CPT-1 inhibitors exerts protective effects against cardiac hypertrophy and heart failure. However, clinical and animal studies have shown mixed results, thereby posting concerns on the safety of this class of drugs. Preclinical studies using genetically modified animal models should provide a better understanding of targeting CPT1 in order to evaluate it as a safe and effective therapeutic approach. Methods and Results Heterozygous CPT1b knockout mice (CPT1b+/−) were subjected to transverse aorta constriction (TAC)-induced pressure-overload. These mice showed overtly normal cardiac structure/function under the basal condition. Under a severe pressure-overload condition induced by two weeks of transverse aorta constriction (TAC), CPT1b+/− mice were susceptible to premature death with congestive heart failure. Under a milder pressure-overload condition, CPT1b+/− mice exhibited exacerbated cardiac hypertrophy and remodeling compared with that in wild-type littermates. There were more pronounced impairments of cardiac contraction with greater eccentric cardiac hypertrophy in CPT1b+/− than in controlled mice. Moreover, the CPT1b+/− heart exhibited exacerbated mitochondrial abnormalities and myocardial lipid accumulation with elevated triglycerides and ceramide content, leading to greater cardiomyocytes apoptosis. Conclusions We conclude that CPT1b deficiency can cause lipotoxicity in the heart under pathological stress, leading to exacerbation of cardiac pathology. Therefore, caution should be applied in the clinical use of CPT-1 inhibitors. PMID:22932257

  12. EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats

    Institute of Scientific and Technical Information of China (English)

    Rui SHENG; Zhen-lun GU; Mei-lin XIE; Wen-xuan ZHOU; Ci-yi GUO

    2007-01-01

    Aim: To investigate the effects of epigallocatechin gallate (EGCG) on pressure overload and hydrogen peroxide (H2O2) induced cardiac myocyte apoptosis. Methods: Cardiac hypertrophy was established in rats by abdominal aortic constriction. EGCG 25, 50 and 100 mg/kg were administered intragastrically (ig). Cultured newborn rat cardiomyocytes were preincubated with EGCG, and oxidative stress injury was induced by H2O2. Results: In cardiac hypertrophy induced by AC in rats, relative to the model group, EGCG 25, 50 and 100 mg/kg ig for 6weeks dose-dependently reduced systolic blood pressure (SBP) and heart weight indices, decreased malondialdehyde (MDA) content, and increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, both in serum and in the myocardium. Also, treatment with EGCG 50 and 100 mg/kg markedly improved cardiac structure and inhibited fibrosis in HE and van Gieson (VG) stain, and reduced apoptotic myocytes in the hypertrophic myocardium detected by terminal transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Inthe Western blot analysis, EGCG significantly inhibited pressure overload-inducedp53 increase and bcl-2 decrease. In H2O2-induced cardiomyocyte injury, when preincubated with myocytes for 6-48 h, EGCG 12.5-200 mg/L increased cell viability determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay. EGCG also attenuated H2O2-induced lactate dehydrogenase (LDH) release and MDA formation. Meanwhile, EGCG 50 and 100 mg/L significantly inhibited the cardiomyocyte apoptotic rate in flow cytometry. Conclusion: EGCG inhibits cardiac myocyte apoptosis and oxidative stress in pressure overload in-duced cardiac hypertrophy. Also, EGCG prevented cardiomyocyte apoptosis from oxidative stress in vitro. The mechanism might be related to the inhibitory effects of EGCG on p53 induction and bcl-2 decrease.

  13. Genetically Modified Mouse Models Used for Studying the Role of the AT2 Receptor in Cardiac Hypertrophy and Heart Failure

    Directory of Open Access Journals (Sweden)

    Maria D. Avila

    2011-01-01

    Full Text Available The actions of Angiotensin II have been implicated in many cardiovascular conditions. It is widely accepted that the cardiovascular effects of Angiotensin II are mediated by different subtypes of receptors: AT1 and AT2. These membrane-bound receptors share a part of their nucleic acid but seem to have different distribution and pathophysiological actions. AT1 mediates most of the Angiotensin II actions since it is ubiquitously expressed in the cardiovascular system of the normal adult. Moreover AT2 is highly expressed in the developing fetus but its expression in the cardiovascular system is low and declines after birth. However the expression of AT2 appears to be modulated by pathological states such as hypertension, myocardial infarction or any pathology associated to tissue remodeling or inflammation. The specific role of this receptor is still unclear and different studies involving in vivo and in vitro experiments have shown conflicting data. It is essential to clarify the role of the AT2 receptor in the different pathological states as it is a potential site for an effective therapeutic regimen that targets the Angiotensin II system. We will review the different genetically modified mouse models used to study the AT2 receptor and its association with cardiac hypertrophy and heart failure.

  14. Surgical optimization and characterization of a minimally invasive aortic banding procedure to induce cardiac hypertrophy in mice.

    Science.gov (United States)

    Martin, Tamara P; Robinson, Emma; Harvey, Adam P; MacDonald, Margaret; Grieve, David J; Paul, Andrew; Currie, Susan

    2012-07-01

    Left ventricular pressure overload in response to aortic banding is an invaluable model for studying progression of cardiac hypertrophy and transition to heart failure. Traditional aortic banding has recently been superceded by minimally invasive transverse aortic banding (MTAB), which does not require ventilation so is less technically challenging. Although the MTAB approach is superior, few laboratories have documented success, and minimal information on the model is available. The aim of this study was to optimize conditions for MTAB and to characterize the development and progression of cardiac hypertrophy. Isofluorane proved the most suitable anaesthetic for MTAB surgery in mice, and 1 week after surgery the MTAB animals showed significant increases in systolic blood pressure (MTAB 110 ± 6 mmHg versus sham 78 ± 3 mmHg, n = 7, P MTAB 6.2 ± 0.2 versus sham 5.1 ± 0.1, n = 12, P MTAB 31.7 ± 1% versus sham 36.6 ± 1.4%, P = 0.01) and diastolic dysfunction (e.g. left ventricular end-diastolic pressure, MTAB 12.7 ± 1.0 mmHg versus sham 6.7 ± 0.8 mmHg, P MTAB hearts, signifying an inflammatory response. More pronounced remodelling was observed 4 weeks postsurgery (heart weight to body weight ratio, MTAB 9.1 ± 0.6 versus sham 4.6 ± 0.04, n = 10, P MTAB 24.3 ± 2.5% versus sham 43.6 ± 1.7%, n = 10, P = 0.003), together with a significant increase in cardiac fibrosis and further cardiac inflammation. Our findings demonstrate that MTAB is a relevant experimental model for studying development and progression of cardiac hypertrophy, which will be highly valuable for future studies examining potential novel therapeutic interventions in this setting. PMID:22447975

  15. Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression.

    Science.gov (United States)

    Morales, Cyndi R; Li, Dan L; Pedrozo, Zully; May, Herman I; Jiang, Nan; Kyrychenko, Viktoriia; Cho, Geoffrey W; Kim, Soo Young; Wang, Zhao V; Rotter, David; Rothermel, Beverly A; Schneider, Jay W; Lavandero, Sergio; Gillette, Thomas G; Hill, Joseph A

    2016-01-01

    Altering chromatin structure through histone posttranslational modifications has emerged as a key driver of transcriptional responses in cells. Modulation of these transcriptional responses by pharmacological inhibition of class I histone deacetylases (HDACs), a group of chromatin remodeling enzymes, has been successful in blocking the growth of some cancer cell types. These inhibitors also attenuate the pathogenesis of pathological cardiac remodeling by blunting and even reversing pathological hypertrophy. The mechanistic target of rapamycin (mTOR) is a critical sensor and regulator of cell growth that, as part of mTOR complex 1 (mTORC1), drives changes in protein synthesis and metabolism in both pathological and physiological hypertrophy. We demonstrated through pharmacological and genetic methods that inhibition of class I HDACs suppressed pathological cardiac hypertrophy through inhibition of mTOR activity. Mice genetically silenced for HDAC1 and HDAC2 had a reduced hypertrophic response to thoracic aortic constriction (TAC) and showed reduced mTOR activity. We determined that the abundance of tuberous sclerosis complex 2 (TSC2), an mTOR inhibitor, was increased through a transcriptional mechanism in cardiomyocytes when class I HDACs were inhibited. In neonatal rat cardiomyocytes, loss of TSC2 abolished HDAC-dependent inhibition of mTOR activity, and increased expression of TSC2 was sufficient to reduce hypertrophy in response to phenylephrine. These findings point to mTOR and TSC2-dependent control of mTOR as critical components of the mechanism by which HDAC inhibitors blunt pathological cardiac growth. These results also suggest a strategy to modulate mTOR activity and facilitate the translational exploitation of HDAC inhibitors in heart disease. PMID:27048565

  16. FAK-related nonkinase attenuates hypertrophy induced by angiotensin-Ⅱ in cultured neonatal rat cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    Jin QIN; Zheng-xiang LIU

    2006-01-01

    Aim: To examine the inhibitory effect of FAK-related nonkinase (FRNK) in cardiac hypertrophy in vitro and investigate the possible mechanisms. Methods: A functional fragment of FRNK cDNA was amplified by reverse transcription-polymerase chain reaction and cloned into the vector pcDNA3.1. Hypertrophy in neonatal rat cardiac myocytes was established with angiotensin-Ⅱ stimulation. The pcDNA3.1-FRNK or pcDNA3.1 was respectively transfected into cardiomyocytes by Lipofectamine 2000. The surface area and mRNA expression of atrial natriuretic peptide (ANP) of myocytes were employed to detect cardiac hypertrophy. NF-κB p65 protein in nuclear extracts, phosphorylation levels of ERK1/2 (p-ERK1/2) and AKT (p-AKT), as well as total ERK1/2, and AKT in variant treated cardiomyocytes were determined by Western blot. Results: Under the stimulation of angiotensin Ⅱ, the surface area of myocytes and levels of ANP mRNA were significantly increased. But transient transfection with pcDNA3.1-FRNK in advance may reduce the surface area and expression of ANP mRNA of hypertrophic myocytes. The protein levels of NF-κB p65 in nuclear extracts and p-ERK1/2, p-AKT in FRNK treated cardiomyocytes were significantly decreased compared with that in angiotensin-Ⅱ induced cardiomyocytes, while different treatments had little effect on total ERK1/2 and AKT. Conclusion: FRNK may inhibit angiotensin-Ⅱ-induced cardiomyocyte hypertrophy via decreasing phosphorylation levels at ERK1/2 and AKT, consequently downregulating nuclear translocation of NF-κB p65.

  17. Mitochondria and left ventricular hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Haiyan Zhu; Shiwen Wang

    2008-01-01

    @@ Introduction Left ventricular hypertrophy (LVH) is one of the vicious organ damages of essential hypertension.It contributes a lot to high mortality of essential hypertension due to sudden cardiac death,ventricular arrhythmia and heart failure.Many factors involve in the pathogenesis of hypertension-induced LVH including inherited variants as well as environmental factors.

  18. Visualization of transcoronary ablation of septal hypertrophy in patients with hypertrophic obstructive cardiomyopathy: a comparison between cardiac MRI, invasive measurements and echocardiography

    OpenAIRE

    Sohns, Christian; Sossalla, Samuel; Schmitto, Jan D; Jacobshagen, Claudius; Raab, Björn; Obenauer, Silvia; Maier, Lars S.

    2010-01-01

    Objective Hypertrophic obstructive cardiomyopathy (HOCM) is treated by surgical myectomy or transcoronary ablation of septal hypertrophy (TASH). The aim of this study was to visualize the feasibility, success and short-term results of TASH on the basis of cardiac MRI (CMR) in comparison with cardiac catheterization and echocardiography. Methods In this in vivo study, nine patients with HOCM were treated with TASH. Patients were evaluated by transthoracic echocardiography, invasive cardiac ang...

  19. O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy

    OpenAIRE

    Facundo, Heberty T.; Brainard, Robert E.; Watson, Lewis J.; Ngoh, Gladys A.; Hamid, Tariq; Prabhu, Sumanth D.; Jones, Steven P.

    2012-01-01

    The regulation of cardiomyocyte hypertrophy is a complex interplay among many known and unknown processes. One specific pathway involves the phosphatase calcineurin, which regulates nuclear translocation of the essential cardiac hypertrophy transcription factor, nuclear factor of activated T-cells (NFAT). Although metabolic dysregulation is frequently described during cardiac hypertrophy, limited insights exist regarding various accessory pathways. One metabolically derived signal, beta-O-lin...

  20. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    International Nuclear Information System (INIS)

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ETA receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibited increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, β-myosin heavy chain (β-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ETA receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and β-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ETA receptor as primary determinants of hypertension and cardiac pathology in AhR null mice

  1. Gene Product Expression of Cyclin D2 and p16 During the Transition from Cardiac Myocyte Hyperplasia to Hypertrophy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The current study was to investigate mRNA expression of cyclin D2 and p16 during the transition from cardiac myocyte hyperplasia to hypertrophy. Cultured cardiac myocytes (CM) and fibroblasts (FC) obtained from 1-day-old Sparague-Dawley rats were used in this study. We have determined (1) hyperplasia by cell growth curve and fluorescence activated cell sorting (FACS); and (2) ultrastructure by electron microscope observation; and (3) expressions of cyclin D2 mRNA and p16 mRNA by using in situ hybridization and image analysis. The results were shown (1) Results of cell growth curve and FACS analysis showed CM could proliferate in the first 3 cultured days (4 days in postnatal development). But the ability decreased quickly, concomitant with the differentiation. (2) The ultrastructure of CM showed the large amount of myofilaments and mitochondrion and FC showed moderate amount of rough endoplasmic reticulum. (3) The expression of cyclin D2 mRNA in 3-, 4-, 5-day CM group was 0.89 times(p<0.05), 0.80 times (p<0.05)and 0.56 times (p<0.01)of that in 1-day group respectively. P16 mRNA in 2-, 3-, 4-, 5-day CM group were 1.63 times(p<0.01),1.72 times(p<0.01),1.99 times (p<0.01)and 2.84 times (p<0.01) of that in 1-day group respectively. It can be concluded that cultured neonatal rat cardiac myocytes could proliferate during the first 3 cultured days, but the ability of proliferation decreased, from the fourth day, concomitant with differentiation. Cyclin D2 and p16 have the key roles during the transition from myocyte hyperplasia to hypertrophy.

  2. Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy

    DEFF Research Database (Denmark)

    Hinrichsen, R.; Hansen, A.H.; Busk, P.K.;

    2008-01-01

    /6-phosphorylated retinoblastoma protein (pRb) during hypertrophy and expression of an unphosphorylatable pRb mutant impaired hypertrophic growth in cardiomyocytes. Transcription factor E2F was activated by hypertrophic elicitors but activation was impaired by pharmacological inhibition of cyclin D-cdk4...

  3. Low carbohydrate/high-fat diet attenuates cardiac hypertrophy, remodeling, and altered gene expression in hypertension

    Science.gov (United States)

    The effects of dietary fat intake on the development of left ventricular hypertrophy and accompanying structural and molecular remodeling in response to hypertension are not understood. The present study compared the effects of a high-fat versus a low-fat diet on development of left ventricular hype...

  4. Ischemic Stroke Due to Cardiac Involvement: Emery Dreifuss Patient

    Directory of Open Access Journals (Sweden)

    Ersin Kasım Ulusoy

    2015-08-01

    Full Text Available Emery-Dreifuss muscular dystrophy (EDMD is a hereditary disease. It is characterized by early-onset contractures, slowly progressive weakness, fatigue related to skapulo-humero-peroneal muscle weakness, cardiomyopathy which develops in adulthood and cardiac conduction system block. Cardiac involvement has a prognostic significance in patients with EDMD and even sudden cardiac death may be the first clinical presentation. In this article, an EDMD patient with ischemic stroke clinic who didn’t have regular cardiac follow-up was reported and the importance of the treatment of cardiac diseases which could play a role in ischemic stroke etiology and the implantation of pace-maker was mentioned.

  5. Prolonged TSH receptor A subunit immunization of female mice leads to a long-term model of Graves' disease, tachycardia, and cardiac hypertrophy.

    Science.gov (United States)

    Holthoff, Hans-Peter; Goebel, Sylvia; Li, Zhongmin; Faßbender, Julia; Reimann, Andreas; Zeibig, Stefan; Lohse, Martin J; Münch, Götz; Ungerer, Martin

    2015-04-01

    A transient model for human Graves' disease was successfully established in mice using up to 3 immunizations with recombinant adenovirus expressing the extracellular A-subunit of the human TSH receptor (TSHR) (Ad-TSHR). We studied extension of adenovirally induced TSHR A-subunit immunization in mice by using a novel protocol of long-term 3- and 4-weekly injections. Generation of TSHR binding stimulatory antibodies (capacity to stimulate cAMP activity in TSHR-expressing test cells), goiter, and histological thyroid alterations were maintained for at least 9 months in all Ad-TSHR-immunized mice. In response to injection of 10(10) plaque-forming units of Ad-TSHR, also elevated mean serum T4 levels were observed throughout the study. Moreover, cardiac organ involvement (tachycardia and hypertrophy) were consistently observed in these mice. Higher doses of Ad-TSHR (10(11) plaque-forming units) did not produce consistent elevation of T4 and were not associated with a clear increase in heart rate vs controls, probably because these high doses provoked an immune response-induced tachycardia on their own. In summary, a long-term model of Graves' disease induced by a relatively simple protocol of continuing monthly immunizations should allow to investigate long-term disease mechanisms and may possibly obviate the need for more complicated disease models. Moreover, the clinical outcome predictor of tachycardia and cardiac involvement was reliably detected in the model. PMID:25562617

  6. Adiponectin Upregulates MiR-133a in Cardiac Hypertrophy through AMPK Activation and Reduced ERK1/2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Ying Li

    Full Text Available Adiponectin and miR-133a are key regulators in cardiac hypertrophy. However, whether APN has a potential effect on miR-133a remains unclear. In this study, we aimed to investigate whether APN could regulate miR-133a expression in Angiotensin II (Ang II induced cardiac hypertrophy in vivo and in vitro. Lentiviral-mediated adiponectin treatment attenuated cardiac hypertrophy induced by Ang II infusion in male wistar rats as determined by reduced cell surface area and mRNA levels of atrial natriuretic peptide (ANF and brain natriuretic peptide (BNP, also the reduced left ventricular end-diastolic posterior wall thickness (LVPWd and end-diastolic interventricular septal thickness (IVSd. Meanwhile, APN elevated miR-133a level which was downregulated by Ang II. To further investigate the underlying molecular mechanisms, we treated neonatal rat ventricular myocytes (NRVMs with recombinant rat APN before Ang II stimulation. Pretreating cells with recombinant APN promoted AMP-activated protein kinase (AMPK phosphorylation and inhibited ERK activation. By using the inhibitor of AMPK or a lentiviral vector expressing AMPK short hairpin RNA (shRNA cancelled the positive effect of APN on miR-133a. The ERK inhibitor PD98059 reversed the downregulation of miR-133a induced by Ang II. These results indicated that the AMPK activation and ERK inhibition were responsible for the positive effect of APN on miR-133a. Furthermore, adiponectin receptor 1 (AdipoR1 mRNA expression was inhibited by Ang II stimulation. The positive effects of APN on AMPK activation and miR-133a, and the inhibitory effect on ERK phosphorylation were inhibited in NRVMs transfected with lentiviral AdipoR1shRNA. In addition, APN depressed the elevated expression of connective tissue growth factor (CTGF, a direct target of miR-133a, through the AMPK pathway. Taken together, our data indicated that APN reversed miR-133a levels through AMPK activation, reduced ERK1/2 phosphorylation in

  7. Pressure overload-induced mild cardiac hypertrophy reduces left ventricular transmural differences in mitochondrial respiratory chain activity and increases oxidative stress

    OpenAIRE

    BernardGENY; MichelKINDO; LaurentMONASSIER; FabriceFAVRET

    2012-01-01

    Objective: Increased mechanical stress and contractility characterizes normal left ventricular subendocardium (Endo) but whether Endo mitochondrial respiratory chain complex activities is reduced as compared to subepicardium (Epi) and whether pressure overload-induced left ventricular hypertrophy (LVH) might modulate transmural gradients through increased reactive oxygen species (ROS) production is unknown. Methods: LVH was induced by 6 weeks abdominal aortic banding and cardiac structure...

  8. Phenotyping of left and right ventricular function in mouse models of compensated hypertrophy and heart failure with cardiac MRI.

    Directory of Open Access Journals (Sweden)

    Bastiaan J van Nierop

    Full Text Available BACKGROUND: Left ventricular (LV and right ventricular (RV function have an important impact on symptom occurrence, disease progression and exercise tolerance in pressure overload-induced heart failure, but particularly RV functional changes are not well described in the relevant aortic banding mouse model. Therefore, we quantified time-dependent alterations in the ventricular morphology and function in two models of hypertrophy and heart failure and we studied the relationship between RV and LV function during the transition from hypertrophy to heart failure. METHODS: MRI was used to quantify RV and LV function and morphology in healthy (n = 4 and sham operated (n = 3 C57BL/6 mice, and animals with a mild (n = 5 and a severe aortic constriction (n = 10. RESULTS: Mice subjected to a mild constriction showed increased LV mass (P0.05. Animals with a severe constriction progressively developed LV hypertrophy (P<0.001, depressed LVEF (P<0.001, followed by a declining RVEF (P<0.001 and the development of pulmonary remodeling, as compared to controls during a 10-week follow-up. Myocardial strain, as a measure for local cardiac function, decreased in mice with a severe constriction compared to controls (P<0.05. CONCLUSIONS: Relevant changes in mouse RV and LV function following an aortic constriction could be quantified using MRI. The well-controlled models described here open opportunities to assess the added value of new MRI techniques for the diagnosis of heart failure and to study the impact of new therapeutic strategies on disease progression and symptom occurrence.

  9. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ.

    Science.gov (United States)

    Lin, Ying-Hsi; Warren, Chad M; Li, Jieli; McKinsey, Timothy A; Russell, Brenda

    2016-08-01

    The mechanotransduction signaling pathways initiated in heart muscle by increased mechanical loading are known to lead to long-term transcriptional changes and hypertrophy, but the rapid events for adaptation at the sarcomeric level are not fully understood. The goal of this study was to test the hypothesis that actin filament assembly during cardiomyocyte growth is regulated by post-translational modifications (PTMs) of CapZβ1. In rapidly hypertrophying neonatal rat ventricular myocytes (NRVMs) stimulated by phenylephrine (PE), two-dimensional gel electrophoresis (2DGE) of CapZβ1 revealed a shift toward more negative charge. Consistent with this, mass spectrometry identified CapZβ1 phosphorylation on serine-204 and acetylation on lysine-199, two residues which are near the actin binding surface of CapZβ1. Ectopic expression of dominant negative PKCɛ (dnPKCɛ) in NRVMs blunted the PE-induced increase in CapZ dynamics, as evidenced by the kinetic constant (Kfrap) of fluorescence recovery after photobleaching (FRAP), and concomitantly reduced phosphorylation and acetylation of CapZβ1. Furthermore, inhibition of class I histone deacetylases (HDACs) increased lysine-199 acetylation on CapZβ1, which increased Kfrap of CapZ and stimulated actin dynamics. Finally, we show that PE treatment of NRVMs results in decreased binding of HDAC3 to myofibrils, suggesting a signal-dependent mechanism for the regulation of sarcomere-associated CapZβ1 acetylation. Taken together, this dual regulation through phosphorylation and acetylation of CapZβ1 provides a novel model for the regulation of myofibril growth during cardiac hypertrophy. PMID:27185186

  10. Pressure overload stimulated cardiac hypertrophy leads to a rapid decrease in the mRNA for creatine kinase

    International Nuclear Information System (INIS)

    Cardiac hypertrophy (CH) leads to a decrease in creatine kinase (CK) enzymatic activity. To determine if the mRNA for CK also decreases with CH, they performed the following studies. Cardiac RNA was isolated from rats subjected to either abdominal aortic stenosis (AS) or sham surgery. Through Northern blot analysis, total cardiac RNA was quantitated with a CK specific 32P-labelled cDNA clone. At 3 and 8 days post-constriction, the mRNA for CK decreases by 54.6 +/- 7% and 65.3 +/- 18% respectively, whereas the heart weight increases by 19% and 37% relative to controls. Further studies indicate that CK mRNA also decreases by 41.8% in hypothyroid rats (Tx) but decreases by a total of 68.1% in Tx rats subjected to 8 days of AS. Pressure overload stimulated CH leads to a rapid decrease in CK mRNA in normal and Tx rats. This CK mRNA decrease may account for the decreased efficiency of contraction seen in CH

  11. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function

    Czech Academy of Sciences Publication Activity Database

    McDermott-Roe, Ch.; Ye, J.; Ahmed, R.; Sun, X. M.; Serafín, A.; Ware, J.; Bottolo, L.; Muckett, P.; Caňas, X.; Zhang, J.; Rowe, G. C.; Buchan, R.; Lu, H.; Braithwaite, A.; Mancini, M.; Hauton, D.; Martí, R.; García-Arumí, E.; Hubner, N.; Jacob, H.; Serikawa, T.; Zídek, Václav; Papoušek, František; Kolář, František; Cardona, M.; Ruiz-Meana, M.; García-Dorado, D.; Comella, J. X.; Felkin, L. E.; Barton, P. J. R.; Arany, Z.; Pravenec, Michal; Petretto, E.; Sanchis, D.; Cook, S.A.

    2011-01-01

    Roč. 478, č. 7367 (2011), s. 114-118. ISSN 0028-0836 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA301/08/0166 Institutional research plan: CEZ:AV0Z50110509 Keywords : left ventricular hypertrophy * endonuclease G * mitochondrial dysfunction Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 36.280, year: 2011

  12. Recent progress of adrenergic receptors on cardiac hypertrophy%肾上腺素能受体与心肌肥大的研究进展

    Institute of Scientific and Technical Information of China (English)

    黄丹(综述); 毛建文; 李春梅(审校)

    2015-01-01

    心肌肥大是一种较缓慢而有力的代偿形式,然而它不是无限度的,心肌肥大最终将引起心室功能异常而导致心力衰竭,这往往是心血管疾病患者的主要死因之一。肾上腺素能受体(adrenergic receptor,AR)是介导儿茶酚胺作用的一类组织受体,研究表明AR与心肌肥大和心力衰竭的发生密切相关。因此,本文就几种AR与心肌肥大近年的研究进展进行综述,以便更好的了解心肌肥大的发生机理。%Cardiac hypertrophy is a relatively slow but powerful compensatory pattern. However, it is not unlimited, excessive cardiac hypertrophy will eventually cause ventricular dysfunction leading to heart failure, which is one of the main causes of death in patients with cardiovascular disease. Adrenergic receptor is a kind of receptors which mediate the effect of catecholamine. Studies have shown that there is a close relationship between adrenergic receptors and cardiac hypertrophy. Here, we reviewed the advance of study on relationship between adrenergic receptors and cardiac hypertrophy, in recent years. It will help us to better understand the mechanism of cardiac hypertrophy.

  13. Ischemic Stroke Due to Cardiac Involvement: Emery Dreifuss Patient

    OpenAIRE

    Ersin Kasım Ulusoy; Tolga Kunak; Şule Bilen; Fikri Ak

    2015-01-01

    Emery-Dreifuss muscular dystrophy (EDMD) is a hereditary disease. It is characterized by early-onset contractures, slowly progressive weakness, fatigue related to skapulo-humero-peroneal muscle weakness, cardiomyopathy which develops in adulthood and cardiac conduction system block. Cardiac involvement has a prognostic significance in patients with EDMD and even sudden cardiac death may be the first clinical presentation. In this article, an EDMD patient with ischemic stroke clinic who didn’t...

  14. PULMONARY ARTERIAL DISEASE ASSOCIATED WITH RIGHT-SIDED CARDIAC HYPERTROPHY AND CONGESTIVE HEART FAILURE IN ZOO MAMMALS HOUSED AT 2,100 M ABOVE SEA LEVEL.

    Science.gov (United States)

    Juan-Sallés, Carles; Martínez, Liliana Sofía; Rosas-Rosas, Arely G; Parás, Alberto; Martínez, Osvaldo; Hernández, Alejandra; Garner, Michael M

    2015-12-01

    Subacute and chronic mountain sickness of humans and the related brisket disease of cattle are characterized by right-sided congestive heart failure in individuals living at high altitudes as a result of sustained hypoxic pulmonary hypertension. Adaptations to high altitude and disease resistance vary among species, breeds, and individuals. The authors conducted a retrospective survey of right-sided cardiac hypertrophy associated with pulmonary arterial hypertrophy or arteriosclerosis in zoo mammals housed at Africam Safari (Puebla, México), which is located at 2,100 m above sea level. Seventeen animals with detailed pathology records matched the study criterion. Included were 10 maras (Dolichotis patagonum), 2 cotton-top tamarins (Saguinus oedipus oedipus), 2 capybaras (Hydrochaeris hydrochaeris), and 1 case each of Bennet's wallaby (Macropus rufogriseus), nilgai antelope (Boselaphus tragocamelus), and scimitar-horned oryx (Oryx dammah). All had right-sided cardiac hypertrophy and a variety of arterial lesions restricted to the pulmonary circulation and causing arterial thickening with narrowing of the arterial lumen. Arterial lesions most often consisted of medial hypertrophy or hyperplasia of small and medium-sized pulmonary arteries. All maras also had single or multiple elevated plaques in the pulmonary arterial trunk consisting of fibrosis, accompanied by chondroid metaplasia in some cases. Both antelopes were juvenile and died with right-sided congestive heart failure associated with severe pulmonary arterial lesions. To the authors' knowledge, this is the first description of cardiac and pulmonary arterial disease in zoo mammals housed at high altitudes. PMID:26667539

  15. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival

    OpenAIRE

    Oh, Hidemasa; Taffet, George E.; Youker, Keith A.; Entman, Mark L.; Overbeek, Paul A.; Michael, Lloyd H.; Schneider, Michael D.

    2001-01-01

    Cardiac muscle regeneration after injury is limited by “irreversible” cell cycle exit. Telomere shortening is one postulated basis for replicative senescence, via down-regulation of telomerase reverse transcriptase (TERT); telomere dysfunction also is associated with greater sensitivity to apoptosis. Forced expression of TERT in cardiac muscle in mice was sufficient to rescue telomerase activity and telomere length. Initially, the ventricle was hypercellular, with increased myocyte density an...

  16. Prostaglandin E Receptor Subtype 4 Signaling in the Heart: Role in Ischemia/Reperfusion Injury and Cardiac Hypertrophy

    Science.gov (United States)

    Cai, Yin; Tang, Eva Hoi Ching; Ma, Haichun

    2016-01-01

    Prostaglandin E2 (PGE2) is an endogenous lipid mediator, produced from the metabolism of arachidonic acids, upon the sequential actions of phospholipase A2, cyclooxygenases, and prostaglandin E synthases. The various biological functions governed by PGE2 are mediated through its four distinct prostaglandin E receptors (EPs), designated as EP1, EP2, EP3, and EP4, among which the EP4 receptor is the one most widely distributed in the heart. The availability of global or cardiac-specific EP4 knockout mice and the development of selective EP4 agonists/antagonists have provided substantial evidence to support the role of EP4 receptor in the heart. However, like any good drama, activation of PGE2-EP4 signaling exerts both protective and detrimental effects in the ischemic heart disease. Thus, the primary object of this review is to provide a comprehensive overview of the current progress of the PGE2-EP4 signaling in ischemic heart diseases, including cardiac hypertrophy and myocardial ischemia/reperfusion injury. A better understanding of PGE2-EP4 signaling should promote the development of more effective therapeutic approaches to treat the ischemic heart diseases without triggering unwanted side effects. PMID:27190998

  17. Cell contact as an independent factor modulating cardiac myocyte hypertrophy and survival in long-term primary culture

    Science.gov (United States)

    Clark, W. A.; Decker, M. L.; Behnke-Barclay, M.; Janes, D. M.; Decker, R. S.

    1998-01-01

    Cardiac myocytes maintained in cell culture develop hypertrophy both in response to mechanical loading as well as to receptor-mediated signaling mechanisms. However, it has been shown that the hypertrophic response to these stimuli may be modulated through effects of intercellular contact achieved by maintaining cells at different plating densities. In this study, we show that the myocyte plating density affects not only the hypertrophic response and features of the differentiated phenotype of isolated adult myocytes, but also plays a significant role influencing myocyte survival in vitro. The native rod-shaped phenotype of freshly isolated adult myocytes persists in an environment which minimizes myocyte attachment and spreading on the substratum. However, these conditions are not optimal for long-term maintenance of cultured adult cardiac myocytes. Conditions which promote myocyte attachment and spreading on the substratum, on the other hand, also promote the re-establishment of new intercellular contacts between myocytes. These contacts appear to play a significant role in the development of spontaneous activity, which enhances the redevelopment of highly differentiated contractile, junctional, and sarcoplasmic reticulum structures in the cultured adult cardiomyocyte. Although it has previously been shown that adult cardiac myocytes are typically quiescent in culture, the addition of beta-adrenergic agonists stimulates beating and myocyte hypertrophy, and thereby serves to increase the level of intercellular contact as well. However, in densely-plated cultures with intrinsically high levels of intercellular contact, spontaneous contractile activity develops without the addition of beta-adrenergic agonists. In this study, we compare the function, morphology, and natural history of adult feline cardiomyocytes which have been maintained in cultures with different levels of intercellular contact, with and without the addition of beta-adrenergic agonists

  18. Arrhythmogenicity of the hypertrophied and senescent heart and relationship to membrane proteins involved in the altered calcium handling.

    Science.gov (United States)

    Carré, F; Rannou, F; Sainte Beuve, C; Chevalier, B; Moalic, J M; Swynghedauw, B; Charlemagne, D

    1993-10-01

    The high incidence of arrhythmias in human left ventricular hypertrophy has been well established but the mechanisms of arrhythmias are not well defined. In attempt to clarify these mechanisms, we tried to determine if a relationship might exist in the hypertrophied or senescent hearts between the incidence of arrhythmias and alterations in the gene expression of the main membrane proteins involved in the regulation of calcium movements. Holter monitoring was used in young and senescent rats where hypertrophy had been induced by aortic stenosis and hyperthyroidism (young rats) or by DOCA-salt treatment (senescent rats). Different types of spontaneous arrhythmias were detected. In the aortic stenosis group, the heart rate and the number of supraventricular premature beats were increased significantly, whereas the number of ventricular premature beats was increased in some animals but not in all. In senescent rats, the numbers of ventricular and supraventricular premature beats and the incidence of atrioventricular block were very high. At the cellular level, the density of calcium channels from the sarcolemma and of the alpha 1 subunit of the Na+/K(+)-ATPase were unchanged in the hypertrophied and senescent hearts but most of the proteins involved in the regulation of calcium movements (calcium release channel and Ca(2+)-ATPase from the sarcoplasmic reticulum, Na+/Ca2+ exchange, and beta adrenergic and muscarinic receptors from the sarcolemma) have a decreased density or activity. These changes might account for the slowing of the maximum shortening velocity and the impaired contractility of the hypertrophied and senescent hearts.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8275524

  19. Pressure mediated hypertrophy and mechanical stretch up-regulate expression of the long form of leptin receptor (ob-Rb in rat cardiac myocytes

    Directory of Open Access Journals (Sweden)

    Matsui Hiroki

    2012-12-01

    Full Text Available Abstract Background Hyperleptinemia is known to participate in cardiac hypertrophy and hypertension, but the relationship between pressure overload and leptin is poorly understood. We therefore examined the expression of leptin (ob and the leptin receptor (ob-R in the pressure-overloaded rat heart. We also examined gene expressions in culture cardiac myocytes to clarify which hypertension-related stimulus induces these genes. Results Pressure overload was produced by ligation of the rat abdominal aorta, and ob and ob-R isoform mRNAs were measured using a real-time polymerase chain reaction (PCR. We also measured these gene expressions in neonatal rat cardiac myocytes treated with angiotensin II (ANGII, endothelin-1 (ET-1, or cyclic mechanical stretch. Leptin and the long form of the leptin receptor (ob-Rb gene were significantly increased 4 weeks after banding, but expression of the short form of the leptin receptor (ob-Ra was unchanged. ob-Rb protein expression was also detected by immunohistochemistry in hypertrophied cardiac myocytes after banding. Meanwhile, plasma leptin concentrations were not different between the control and banding groups. In cultured myocytes, ANGII and ET-1 increased only ob mRNA expression. However, mechanical stretch activated both ob and ob-Rb mRNA expression in a time-dependent manner, but ob-Ra mRNA was unchanged by any stress. Conclusions We first demonstrated that both pressure mediated hypertrophy and mechanical stretch up-regulate ob-Rb gene expression in heart and cardiac myocytes, which are thought to be important for leptin action in cardiac myocytes. These results suggest a new local mechanism by which leptin affects cardiac remodeling in pressure-overloaded hearts.

  20. Dipyridamole-thallium tests are predictive of severe cardiac arrhythmias in patients with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    In a population of patients with chronic renal failure (CRF) and a high prevalence of left ventricular hypertrophy (LVH) undergoing chronic hemodialysis, the authors investigated the association between the results of dipyridamole-thallium tests (DTTs) and the occurrence of ventricular arrhythmias. They observed a positive significant association between positive DTTs and the occurrence of severe forms of ventricular arrhythmias. A significant association was also observed between the presence of severe LVH and the occurrence of severe ventricular arrhythmias. However, no association was found between the presence of LVH and the positivity of the DTT. As most of their patients with positive DTTs had unimpaired coronary circulations, they conclude that positive DTTs, although falsely indicative of impaired myocardial blood supply, does have an important clinical relevance, indicating increased risk of morbidity (and, possibly, mortality) due to ventricular arrhythmias in a population of CRF patients submitted to chronic renal function replacement program

  1. miR-218 Involvement in Cardiomyocyte Hypertrophy Is Likely through Targeting REST

    OpenAIRE

    Jing-Jing Liu; Cui-Mei Zhao; Zhi-Gang Li; Yu-Mei Wang; Wei Miao; Xiu-Juan Wu; Wen-Jing Wang; Chang Liu; Duo Wang; Kang Wang; Li Li; Lu-Ying Peng

    2016-01-01

    MicroRNAs (miRNAs) have been identified as key players in cardiomyocyte hypertrophy, which is associated with significant risks of heart failure. However, many microRNAs are still not recognized for their functions in pathophysiological processes. In this study, we evaluated effects of miR-218 in cardiomyocyte hypertrophy using both in vitro and in vivo models. We found that miR-218 was evidently downregulated in a transverse aortic constriction (TAC) mouse model. Overexpression of miR-218 is...

  2. Cardiac involvement in children with neuro-muscular disorders

    Directory of Open Access Journals (Sweden)

    E. N. Arkhipova

    2015-01-01

    Full Text Available Many inherited neuromuscular disorders include cardiac involvement as a typical clinical feature. Among the most common of them is the group of muscular dystrophies. Dilated cardiomyopathy, ventricular arrhythmias, atrial fibrillations, atrioventricular and intraventricular conduction abnormalities, and sudden cardiac death are well known pathological findings in Duchenne muscular dystrophies, myotonic dystrophy type I and 2, Emery-Dreifuss muscular dystrophies and different types of limb-girdle muscular dystrophies and other disorders. Detection of cardiac pathology in patients with different muscular dystrophies is possible with ECG, echocardiography and cardiovascular magnetic resonance imaging, which are recommended for screening and early cardioprotective treatment.

  3. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: A cellular signal for hypertrophy in cardiac muscle

    OpenAIRE

    Mascareno, Eduardo; Dhar, Manya; M.A.Q. SIDDIQUI

    1998-01-01

    The role of the peptide hormone angiotensin (AngII) in promoting myocardial hypertrophy is well documented. Our studies demonstrate that AngII uses a signaling pathway in cardiac myocytes in which the promoter of the gene encoding its prohormone, angiotensinogen, serves as the target site for activated signal transduction and activator of transcription (STAT) proteins. Gel mobility-shift assay revealed that STAT3 and STAT6 are selectively activated by AngII treatment of cardiomyocytes in cult...

  4. Pressure overload-induced mild cardiac hypertrophy reduces left ventricular transmural differences in mitochondrial respiratory chain activity and increases oxidative stress

    OpenAIRE

    Kindo, Michel; Gerelli, Sébastien; Bouitbir, Jamal; Charles, Anne-Laure; Zoll, Joffrey; Hoang Minh, Tam; Monassier, Laurent; Favret, Fabrice; Piquard, François; Geny, Bernard

    2012-01-01

    Objective: Increased mechanical stress and contractility characterizes normal left ventricular (LV) subendocardium (Endo) but whether Endo mitochondrial respiratory chain complex activities is reduced as compared to subepicardium (Epi) and whether pressure overload-induced LV hypertrophy (LVH) might modulate transmural gradients through increased reactive oxygen species (ROS) production is unknown. Methods: LVH was induced by 6 weeks abdominal aortic banding and cardiac structure and function...

  5. Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling.

    Science.gov (United States)

    Wang, Shudong; Luo, Manyu; Zhang, Zhiguo; Gu, Junlian; Chen, Jing; Payne, Kristen McClung; Tan, Yi; Wang, Yuehui; Yin, Xia; Zhang, Xiang; Liu, Gilbert C; Wintergerst, Kupper; Liu, Quan; Zheng, Yang; Cai, Lu

    2016-09-01

    Childhood obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), in adulthood, due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors; however, its role in ORCH and underlying mechanism(s) remain unclear and were explored here in mice with obesity induced with high-fat diet (HFD). Four week old mice were fed on either HFD (60%kcal fat) or normal diet (ND, 10% kcal fat) for 3 or 6 months, respectively. Either diet contained one of three different zinc quantities: deficiency (ZD, 10mg zinc per 4057kcal), normal (ZN, 30mg zinc per 4057kcal) or supplement (ZS, 90mg zinc per 4057kcal). HFD induced a time-dependent obesity and ORCH, which was accompanied by increased cardiac inflammation and p38 MAPK activation. These effects were worsened by ZD in HFD/ZD mice and attenuated by ZS in HFD/ZS group, respectively. Also, administration of a p38 MAPK specific inhibitor in HFD mice for 3 months did not affect HFD-induced obesity, but completely abolished HFD-induced, and zinc deficiency-worsened, ORCH and cardiac inflammation. In vitro exposure of adult cardiomyocytes to palmitate induced cell hypertrophy accompanied by increased p38 MAPK activation, which was heightened by zinc depletion with its chelator TPEN. Inhibition of p38 MAPK with its specific siRNA also prevented the effects of palmitate on cardiomyocytes. These findings demonstrate that ZS alleviates but ZD heightens cardiac hypertrophy in HFD-induced obese mice through suppressing p38 MAPK-dependent cardiac inflammatory and hypertrophic pathways. PMID:27346292

  6. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid

    OpenAIRE

    Mingyue Zhao; Lihui Lu; Song Lei; Hua Chai; Siyuan Wu; Xiaoju Tang; Qinxue Bao; Li Chen; Wenchao Wu; Xiaojing Liu

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardi...

  7. Cardiac involvement in children with neuro-muscular disorders

    OpenAIRE

    E. N. Arkhipova

    2015-01-01

    Many inherited neuromuscular disorders include cardiac involvement as a typical clinical feature. Among the most common of them is the group of muscular dystrophies. Dilated cardiomyopathy, ventricular arrhythmias, atrial fibrillations, atrioventricular and intraventricular conduction abnormalities, and sudden cardiac death are well known pathological findings in Duchenne muscular dystrophies, myotonic dystrophy type I and 2, Emery-Dreifuss muscular dystrophies and different types of limb-gir...

  8. Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction.

    Science.gov (United States)

    Ceylan-Isik, Asli F; Kandadi, Machender R; Xu, Xihui; Hua, Yinan; Chicco, Adam J; Ren, Jun; Nair, Sreejayan

    2013-10-01

    Apelin has been recognized as an adipokine that plays an important role in regulating energy metabolism and is credited with antiobesity and antidiabetic properties. This study was designed to examine the effect of exogenous apelin on obesity-associated cardiac dysfunction. Oral glucose tolerance test, echocardiography, cardiomyocyte contractile and intracellular Ca(2+) properties were assessed in adult C57BL/6J mice fed - low or a - high-fat diet for 24weeks followed by apelin treatment (100nmol/kg, i.p. for 2weeks). High-fat diet resulted in increased left ventricular diastolic and systolic diameters, and wall thickness, compromised fractional shortening, impaired cardiomyocyte mechanics (peak-shortening, maximal velocity of shortening/relengthening, and duration of shortening and relengthening) and compromised intracellular Ca(2+) handling, all of which were reconciled by apelin. Apelin treatment also reversed high fat diet-induced changes in intracellular Ca(2+) regulatory proteins, ER stress, and autophagy. In addition, microRNAs (miR) -133a, miR-208 and miR-1 which were elevated following high-fat feeding were attenuated by apelin treatment. In cultured cardiomyocytes apelin reconciled palmitic acid-induced cardiomyocyte contractile anomalies. Collectively, these data depict a pivotal role of apelin in obesity-associated cardiac contractile dysfunction, suggesting a therapeutic potential of apelin in the management of cardiac dysfunction associated with obesity. PMID:23859766

  9. Targeted disruption of the heat shock protein 20–phosphodiesterase 4D (PDE4D interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy

    Directory of Open Access Journals (Sweden)

    Tamara P. Martin

    2014-01-01

    Full Text Available Phosphorylated heat shock protein 20 (HSP20 is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20–phosphodiesterase 4D (PDE4D complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20–PDE4D interaction leads to attenuation of pathological cardiac remodelling.

  10. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex

    OpenAIRE

    Li, Hui-Hua; Kedar, Vishram; Zhang, Chunlian; McDonough, Holly; Arya, Ranjana; Wang, Da-Zhi; Patterson, Cam

    2004-01-01

    Calcineurin, which binds to the Z-disc in cardiomyocytes via α-actinin, promotes cardiac hypertrophy in response to numerous pathologic stimuli. However, the endogenous mechanisms regulating calcineurin activity in cardiac muscle are not well understood. We demonstrate that a muscle-specific F-box protein called atrogin-1, or muscle atrophy F-box, directly interacts with calcineurin A and α-actinin-2 at the Z-disc of cardiomyocytes. Atrogin-1 associates with Skp1, Cul1, and Roc1 to assemble a...

  11. Changes in myosin isozyme expression during cardiac hypertrophy in hyperthyroid rabbits.

    Science.gov (United States)

    Seiden, D; Srivatsan, M; Navidad, P A

    1989-01-01

    The myosin isozyme distribution in the left ventricle and in the interventricular septum of rabbits was studied after 3, 7, 11, 14 and 21 days of L-thyroxine (500 micrograms/kg/day) administration. Histochemical procedures were employed to identify V1 and V3 by their Ca2+ ATPase activity and their proportions were quantified through polyacrylamide gel electrophoresis. In the left ventricle, the subepicardium was the first to show the shift from V3 to V1, followed by the subendocardium. The intermediate region became heterogeneous by 11 days and remained so until 21 days. The right subendocardial and the intermediate regions of the interventricular septum were heterogeneous in the normal rabbit and hyperthyroidism resulted in a shift from V3 to V1 in both the right and left subendocardial regions of the septum. Like the left ventricle, the intermediate region of the interventricular septum remained heterogeneous. Localized accumulations of collagen were seen in all regions of the left ventricle and interventricular septum. From these results we conclude that in thyrotoxic myocardial hypertrophy the isozymic shift from V3 to V1 is progressive, region-specific and is directly correlated with the period of hyperthyroidism in the first 2 weeks. Prolonged hyperthyroidism results in localized accumulation of collagen which does not exhibit any regional specificity. PMID:2528881

  12. The effect of obesity on electrocardiographic detection of hypertensive left ventricular hypertrophy: recalibration against cardiac magnetic resonance.

    Science.gov (United States)

    Rodrigues, J C L; McIntyre, B; Dastidar, A G; Lyen, S M; Ratcliffe, L E; Burchell, A E; Hart, E C; Bucciarelli-Ducci, C; Hamilton, M C K; Paton, J F R; Nightingale, A K; Manghat, N E

    2016-03-01

    Electrocardiograph (ECG) criteria for left ventricular hypertrophy (LVH) are a widely used clinical tool. We recalibrated six ECG criteria for LVH against gold-standard cardiac magnetic resonance (CMR) and assessed the impact of obesity. One hundred and fifty consecutive tertiary hypertension clinic referrals for CMR (1.5 T) were reviewed. Patients with cardiac pathology potentially confounding hypertensive LVH were excluded (n=22). The final sample size was 128 (age: 51.0±15.2 years, 48% male). LVH was defined by CMR. From a 12-lead ECG, Sokolow-Lyon voltage and product, Cornell voltage and product, Gubner-Ungerleidger voltage and Romhilt-Estes score were evaluated, blinded to the CMR. ECG diagnostic performance was calculated. LVH by CMR was present in 37% and obesity in 51%. Obesity significantly reduced ECG sensitivity, because of significant attenuation in mean ECG values for Cornell voltage (22.2±5.7 vs 26.4±9.4 mm, PECG specificity, because of significantly higher prevalence of LV remodeling (no LVH but increased mass-to-volume ratio) in obese subjects without LVH (36% vs 16%, PECG LVH criteria values. Obesity-specific partition values were generated at fixed 95% specificity; Cornell voltage had highest sensitivity in non-obese (56%) and Sokolow-Lyon product in obese patients (24%). Obesity significantly lowers ECG sensitivity at detecting LVH, by attenuating ECG LVH values, and lowers ECG specificity through changes associated with LV remodeling. Our obesity-specific ECG partition values could improve the diagnostic performance in obese patients with hypertension. PMID:26040440

  13. Isolation of Related Genes of Cardiac Hypertrophy in Pressure overloaded Rat Models with Subtractive Hybridization%压力负荷型心肌肥厚大鼠心肌组织相关基因的分离

    Institute of Scientific and Technical Information of China (English)

    田靫; 潘德思; 陈兰英

    2000-01-01

    Cardiac hypertrophy is intensively related with the morbidity of heart failure,atherosclerosis and stroke. The rat models of left ventricular hypertrophy caused by abdominal aorta constriction and the method of subtractive hybridization to isolate genes expressing differently were used during cardiac hypertrophy. 24 cDNA segments were isolated and identified by colony and dot hybridization. Sequence homogenous comparison showed that some of them were very similar to known genes or segments, others were limitedly homogenous and the rest were not found to be significantly homogenous.

  14. Cardiac MRI assessed left ventricular hypertrophy in differentiating hypertensive heart disease from hypertrophic cardiomyopathy attributable to a sarcomeric gene mutation

    International Nuclear Information System (INIS)

    To evaluate the value of cardiac magnetic resonance imaging (CMRI)-assessed left ventricular hypertrophy (LVH) in differentiating between hypertensive heart disease and hypertrophic cardiomyopathy (HCM). 95 unselected subjects with mild-to-moderate hypertension, 24 patients with HCM attributable to the D175N mutation of the α-tropomyosin gene and 17 control subjects were studied by cine CMRI. Left ventricular (LV) quantitative and qualitative characteristics were evaluated. LV maximal end-diastolic wall thickness, wall thickness-to-LV volume ratio, end-diastolic septum thickness and septum-to-lateral wall thickness ratio were useful measures for differentiating between LVH due to hypertension and HCM. The most accurate measure for identifying patients with HCM was the LV maximal wall thickness ≥17 mm, with a sensitivity, specificity, negative predictive value, positive predictive value, and accuracy of 90%, 93%, 86%, 95% and 91%, respectively. LV maximal wall thickness in the anterior wall, or regional bulging in left ventricular wall was found only in patients with HCM. LV mass index was not discriminant between patients with HCM and those with LVH due to hypertension. LV maximal thickness measured by CMRI is the best anatomical parameter in differentiating between LVH due to mild-to-moderate hypertension and HCM attributable to a sarcomeric mutation. CMRI assessment of location and quality of LVH is also of value in differential diagnosis. (orig.)

  15. Cardiac MRI assessed left ventricular hypertrophy in differentiating hypertensive heart disease from hypertrophic cardiomyopathy attributable to a sarcomeric gene mutation

    Energy Technology Data Exchange (ETDEWEB)

    Sipola, Petri [Kuopio University Hospital, Department of Clinical Radiology, Kuopio (Finland); University of Eastern Finland, Institute of Clinical Medicine, Faculty of Health Sciences, Kuopio (Finland); Magga, Jarkko; Peuhkurinen, Keijo [Kuopio University Hospital, Department of Medicine, Kuopio (Finland); Husso, Minna [Kuopio University Hospital, Department of Clinical Radiology, Kuopio (Finland); Jaeaeskelaeinen, Pertti; Kuusisto, Johanna [Kuopio University Hospital, Department of Medicine, Kuopio (Finland); Kuopio University Hospital, Heart Center, P.O. Box 1777, Kuopio (Finland)

    2011-07-15

    To evaluate the value of cardiac magnetic resonance imaging (CMRI)-assessed left ventricular hypertrophy (LVH) in differentiating between hypertensive heart disease and hypertrophic cardiomyopathy (HCM). 95 unselected subjects with mild-to-moderate hypertension, 24 patients with HCM attributable to the D175N mutation of the {alpha}-tropomyosin gene and 17 control subjects were studied by cine CMRI. Left ventricular (LV) quantitative and qualitative characteristics were evaluated. LV maximal end-diastolic wall thickness, wall thickness-to-LV volume ratio, end-diastolic septum thickness and septum-to-lateral wall thickness ratio were useful measures for differentiating between LVH due to hypertension and HCM. The most accurate measure for identifying patients with HCM was the LV maximal wall thickness {>=}17 mm, with a sensitivity, specificity, negative predictive value, positive predictive value, and accuracy of 90%, 93%, 86%, 95% and 91%, respectively. LV maximal wall thickness in the anterior wall, or regional bulging in left ventricular wall was found only in patients with HCM. LV mass index was not discriminant between patients with HCM and those with LVH due to hypertension. LV maximal thickness measured by CMRI is the best anatomical parameter in differentiating between LVH due to mild-to-moderate hypertension and HCM attributable to a sarcomeric mutation. CMRI assessment of location and quality of LVH is also of value in differential diagnosis. (orig.)

  16. Influence of metabolic dysfunction on cardiac mechanics in decompensated hypertrophy and heart failure.

    Science.gov (United States)

    Tewari, Shivendra G; Bugenhagen, Scott M; Vinnakota, Kalyan C; Rice, J Jeremy; Janssen, Paul M L; Beard, Daniel A

    2016-05-01

    Alterations in energetic state of the myocardium are associated with decompensated heart failure in humans and in animal models. However, the functional consequences of the observed changes in energetic state on mechanical function are not known. The primary aim of the study was to quantify mechanical/energetic coupling in the heart and to determine if energetic dysfunction can contribute to mechanical failure. A secondary aim was to apply a quantitative systems pharmacology analysis to investigate the effects of drugs that target cross-bridge cycling kinetics in heart failure-associated energetic dysfunction. Herein, a model of metabolite- and calcium-dependent myocardial mechanics was developed from calcium concentration and tension time courses in rat cardiac muscle obtained at different lengths and stimulation frequencies. The muscle dynamics model accounting for the effect of metabolites was integrated into a model of the cardiac ventricles to simulate pressure-volume dynamics in the heart. This cardiac model was integrated into a simple model of the circulation to investigate the effects of metabolic state on whole-body function. Simulations predict that reductions in metabolite pools observed in canine models of heart failure can cause systolic dysfunction, blood volume expansion, venous congestion, and ventricular dilation. Simulations also predict that myosin-activating drugs may partially counteract the effects of energetic state on cross-bridge mechanics in heart failure while increasing myocardial oxygen consumption. Our model analysis demonstrates how metabolic changes observed in heart failure are alone sufficient to cause systolic dysfunction and whole-body heart failure symptoms. PMID:27085901

  17. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China)

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  18. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    International Nuclear Information System (INIS)

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  19. Pressure overload-induced mild cardiac hypertrophy reduces leftventricular transmural differences in mitochondrial respiratory chainactivity and increases oxidative stress

    Directory of Open Access Journals (Sweden)

    Michel eKINDO

    2012-08-01

    Full Text Available Objective: Increased mechanical stress and contractility characterizes normal left ventricular subendocardium (Endo but whether Endo mitochondrial respiratory chain complex activities is reduced as compared to subepicardium (Epi and whether pressure overload-induced left ventricular hypertrophy (LVH might modulate transmural gradients through increased reactive oxygen species (ROS production is unknown. Methods: LVH was induced by 6 weeks abdominal aortic banding and cardiac structure and function were determined with echocardiography and catheterization in sham-operated and LVH rats (n=10 for each group. Mitochondrial respiration rates, coupling, content and ROS production were measured in LV Endo and Epi, using saponin-permeabilised fibres, Amplex Red fluorescence and citrate synthase activity.Results: In sham, a transmural respiratory gradient was observed with decreases in endo maximal oxidative capacity (-36.7%, P<0.01 and complex IV activity (-57.4%, P<0.05. Mitochondrial hydrogen peroxide (H2O2 production was similar in both LV layers.Aortic banding induced mild LVH (+31.7% LV mass, associated with normal LV fractional shortening and end diastolic pressure. LVH reduced maximal oxidative capacity (-23.6 and -33.3%, increased mitochondrial H2O2 production (+86.9 and +73.1%, free radical leak (+27.2% and +36.3% and citrate synthase activity (+27.2% and +36.3% in Endo and Epi, respectively.Transmural mitochondrial respiratory chain complex IV activity was reduced in LVH (-57.4 vs –12.2%; P=0.02. Conclusions: Endo mitochondrial respiratory chain complexes activities are reduced compared to LV Epi. Mild LVH impairs mitochondrial oxidative capacity, increases oxidative stress and reduces transmural complex IV activity. Further studies will be helpful to determine whether reduced LV transmural gradient in mitochondrial respiration might be a new marker of a transition from uncomplicated toward complicated LVH.

  20. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xin-Ai; Jia, Lin-Lin [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Meng [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Yuan, Zu-Yi [Department of Cardiovascular Medicine, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Guo, Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Li, Hui-Hua [Key Laboratory of Remodeling-related Cardiovascular Diseases, Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Liu, Hao, E-mail: haoliu75@163.com [Department of Neurosurgery, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-11-15

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  1. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  2. Effects of combination of irbesartan and perindopril on calcineurin expression and sarcoplasmic reticulum Ca2+-ATPase activity in rat cardiac pressure-overload hypertrophy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Aim: To observe effects of angiotensin (Ang) Ⅱ receptor antagonist (AT1) irbesartan and angiotensin-converting enzyme (ACE) inhibitor perindopril on rat myocardium calcineurin expression and sarcoplasmic reticulum Ca2+-ATPase activity in the model of pressure-overload cardiac hypertrophy. Methods: Forty male adult Sprague Dawley rats were divided into 5 groups.One group was treated by sham operation; four groups were myocardium hypertrophy cases caused by banding aortic above renal artery. Drugs were given one week after operation. Group 1: sham group, rats (n=8) were gavaged with normal saline 2 ml/(kg·d)(ig); Group 2: control group, rats (n=8) were treated with normal saline 2 ml/(kg·d) (ig); Group 3: rats (n=8) were given perindopril 2 mg/(kg·d) (ig); Group 4: rats (n=8) were treated with irbesartan 20 mg/(kg·d) (ig); Group 5: rats (n=8) were given irbesartan 20 mg/(kg·d) plus perindopril 2 mg/(kg·d) (ig). Morphometric determination, calcineurin expression and sarcoplasmic reticulum Ca2+-ATPase activity were done at the end of 6 week of drug intervention. Expression of calcineurin in myocardium was detected by immunohistochemistry. Results: Left ventricular mass index (LVMI), transverse diameter of myocardial cell (TDM), calcineurin activity were remarkably decreased after drug intervention and this decrease was most remarkable in the combination drug therapy group. Sarcoplasmic reticulum Ca2+-ATPase activity was increased after drug intervention, especially in the combined drug therapy group. Calcineurin expression in myocardium was remarkably decreased after drug intervention. LVMI was positively correlated with TDM and calcineurin, negatively correlated with sarcoplasmic reticulum Ca2+-ATPase. Conclusion:These data suggest that irbesartan and perindopril inhibit cardiac hypertrophy through the increased activity of sarcoplasmic reticulum Ca2+-ATPase and decreased expression of calcineurin. Their combination had better effects on regressing of

  3. Role of the scaffolding protein Homer 1a in cardiac hypertrophy

    OpenAIRE

    Chiarello, Carmelina

    2013-01-01

    Homer proteins are a family of scaffolding proteins involved in many intracellular signaling pathways, in both excitable and non-excitable cells. These proteins participate in the assembly and regulation of functional signaling complexes, facilitating the cross-talk between surface membrane receptors and channels in the membranes of intracellular compartments (Worley PF. et al., 2007). Homer proteins are constitutively expressed in the brain, where their scaffolding function is important for ...

  4. PARM-1 is an endoplasmic reticulum molecule involved in endoplasmic reticulum stress-induced apoptosis in rat cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Koji Isodono

    Full Text Available To identify novel transmembrane and secretory molecules expressed in cardiac myocytes, signal sequence trap screening was performed in rat neonatal cardiac myocytes. One of the molecules identified was a transmembrane protein, prostatic androgen repressed message-1 (PARM-1. While PARM-1 has been identified as a gene induced in prostate in response to castration, its function is largely unknown. Our expression analysis revealed that PARM-1 was specifically expressed in hearts and skeletal muscles, and in the heart, cardiac myocytes, but not non-myocytes expressed PARM-1. Immunofluorescent staining showed that PARM-1 was predominantly localized in endoplasmic reticulum (ER. In Dahl salt-sensitive rats, high-salt diet resulted in hypertension, cardiac hypertrophy and subsequent heart failure, and significantly stimulated PARM-1 expression in the hearts, with a concomitant increase in ER stress markers such as GRP78 and CHOP. In cultured cardiac myocytes, PARM-1 expression was stimulated by proinflammatory cytokines, but not by hypertrophic stimuli. A marked increase in PARM-1 expression was observed in response to ER stress inducers such as thapsigargin and tunicamycin, which also induced apoptotic cell death. Silencing PARM-1 expression by siRNAs enhanced apoptotic response in cardiac myocytes to ER stresses. PARM-1 silencing also repressed expression of PERK and ATF6, and augmented expression of CHOP without affecting IRE-1 expression and JNK and Caspase-12 activation. Thus, PARM-1 expression is induced by ER stress, which plays a protective role in cardiac myocytes through regulating PERK, ATF6 and CHOP expression. These results suggested that PARM-1 is a novel ER transmembrane molecule involved in cardiac remodeling in hypertensive heart disease.

  5. A transgenic platform for testing drugs intended for reversal of cardiac remodeling identifies a novel 11βHSD1 inhibitor rescuing hypertrophy independently of re-vascularization.

    Directory of Open Access Journals (Sweden)

    Oren Gordon

    Full Text Available RATIONALE: Rescuing adverse myocardial remodeling is an unmet clinical goal and, correspondingly, pharmacological means for its intended reversal are urgently needed. OBJECTIVES: To harness a newly-developed experimental model recapitulating progressive heart failure development for the discovery of new drugs capable of reversing adverse remodeling. METHODS AND RESULTS: A VEGF-based conditional transgenic system was employed in which an induced perfusion deficit and a resultant compromised cardiac function lead to progressive remodeling and eventually heart failure. Ability of candidate drugs administered at sequential remodeling stages to reverse hypertrophy, enlarged LV size and improve cardiac function was monitored. Arguing for clinical relevance of the experimental system, clinically-used drugs operating on the Renin-Angiotensin-Aldosterone-System (RAAS, namely, the ACE inhibitor Enalapril and the direct renin inhibitor Aliskerin fully reversed remodeling. Remodeling reversal by these drugs was not accompanied by neovascularization and reached a point-of-no-return. Similarly, the PPARγ agonist Pioglitazone was proven capable of reversing all aspects of cardiac remodeling without affecting the vasculature. Extending the arsenal of remodeling-reversing drugs to pathways other than RAAS, a specific inhibitor of 11β-hydroxy-steroid dehydrogenase type 1 (11β HSD1, a key enzyme required for generating active glucocorticoids, fully rescued myocardial hypertrophy. This was associated with mitigating the hypertrophy-associated gene signature, including reversing the myosin heavy chain isoform switch but in a pattern distinguishable from that associated with neovascularization-induced reversal. CONCLUSIONS: A system was developed suitable for identifying novel remodeling-reversing drugs operating in different pathways and for gaining insights into their mechanisms of action, exemplified here by uncoupling their vascular affects.

  6. Determinants of Discrepancies in Detection and Comparison of the Prognostic Significance of Left Ventricular Hypertrophy by Electrocardiogram and Cardiac Magnetic Resonance Imaging

    OpenAIRE

    Bacharova, Ljuba; Chen, Haiying; Estes, E. Harvey; Mateasik, Anton; Bluemke, David A.; Lima, Joao A. C.; Burke, Gregory L; Soliman, Elsayed Z

    2014-01-01

    Despite the low sensitivity of the electrocardiogram (ECG) in detecting left ventricular hypertrophy (LVH), ECG-LVH is known to be a strong predictor of cardiovascular risk. Understanding reasons for the discrepancies in detection of LVH by ECG versus imaging could help improve the diagnostic ability of ECG. We examined factors associated with false-positive and false-negative ECG-LVH, using cardiac MRI as the gold standard. We also compared the prognostic significance of ECG-LVH and MRI-LVH ...

  7. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tongyi [Department of Cardiothoracic Surgery, No. 401 Hospital of PLA, Qingdao (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zhang, Ben [Centre of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Yang, Fan; Cai, Chengliang; Wang, Guokun [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Han, Qingqi, E-mail: handoctor@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zou, Liangjian, E-mail: zouliangjiansh@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2015-05-08

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction. Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression

  8. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    International Nuclear Information System (INIS)

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction. Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression

  9. Apolipoprotein A-I Mimetic Peptide D-4F Reduces Cardiac Hypertrophy and Improves Apolipoprotein A-I-Mediated Reverse Cholesterol Transport From Cardiac Tissue in LDL Receptor-null Mice Fed a Western Diet.

    Science.gov (United States)

    Han, Jie; Zhang, Song; Ye, Ping; Liu, Yong-Xue; Qin, Yan-Wen; Miao, Dong-Mei

    2016-05-01

    Epidemiological studies have suggested that hypercholesterolemia is an independent determinant of increased left ventricular (LV) mass. Because high-density lipoprotein and its major protein apolipoprotein A-I (apoA-I) mediate reverse cholesterol transport (RCT) and have cardiac protective effects, we hypothesized that the apoA-I mimetic peptide D-4F could promote RCT in cardiac tissue and decrease cardiac hypertrophy induced by hypercholesterolemia. Low-density lipoprotein receptor-null mice were fed by a Western diet for 18 weeks and then randomized to receive water, or D-4F 0.3 mg/mL, or D-4F 0.5 mg/mL added to drinking water for 6 weeks. After D-4F administration, an increase in high-density lipoprotein cholesterol and a decrease in low-density lipoprotein cholesterol, total cholesterol, and triglyceride in a trend toward dose-responsivity were found in cardiac tissue. Ultrasound biomicroscopy revealed a reduction in LV posterior wall end-diastolic dimension, and an increase in mitral valve E/A ratio and LV ejection fraction. Hematoxylin-eosin staining showed reduced LV wall thickness and myocardial cell diameter. The protein levels of ABCA1 and LXRα were elevated in cardiac tissue of D-4F treated mice compared with the controls (P < 0.05). These results demonstrated that D-4F treatment reduced cardiac hypertrophy, and improved cardiac performance in low-density lipoprotein receptor-null mice fed a Western diet, presumably through the LXRα-ABCA1 pathway associated with enhanced myocardial RCT. PMID:26828321

  10. Cardiac involvement in Emery Dreifuss muscular dystrophy: a case series

    OpenAIRE

    Buckley, A.; Dean, J.; Mahy, I

    1999-01-01

    Three patients with Emery Dreifuss muscular dystrophy are reported. Emery Dreifuss muscular dystrophy is an X linked muscular dystrophy, in which locomotor involvement is characteristically mild and slowly progressive. The effect on the heart becomes apparent in the teenage years and is characterised by cardiac conduction defects and infiltration of the myocardium by fibrous and adipose tissue. It first affects the atria, which results in atrial paralysis; treatment with ventricular pacing is...

  11. Cardiac hypertrophy in hypertension

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jaroslav; Vaněčková, Ivana; Kadlecová, Michaela; Behuliak, Michal; Zicha, Josef

    New York: Springer, 2013 - (Ošťádal, B.; Dhalla, N.), s. 251-267. (Advances in Biochemistry in Health and Disease). ISBN 978-1-4614-5202-7 R&D Projects: GA ČR(CZ) GAP304/12/0259 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : heart * hypertension * gender Subject RIV: ED - Physiology

  12. Effects of the cyclo-oxygenase inhibitor, fenbufen, on clenbuterol-induced hypertrophy of cardiac and skeletal muscle of rats.

    OpenAIRE

    Palmer, R. M.; Delday, M. I.; McMillan, D. N.; Noble, B. S.; Bain, P.; Maltin, C.A.

    1990-01-01

    1. When rats were fed with clenbuterol for 7 days skeletal muscle mass increased by 21% in the tonic soleus and phasic plantaris muscles and a 16% hypertrophy of the heart was also induced. Fenbufen, fed to rats for the same period, blocked the hypertrophy of the heart but not that of the skeletal muscles. 2. When feeding of fenbufen commenced 3 days before the administration of clenbuterol, plasma prosta-glandin F2 alpha (PGF2 alpha) was reduced by 79%; there was again no effect of fenbufen ...

  13. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin

    DEFF Research Database (Denmark)

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia; Ellis, Jessica M; Willis, Monte S; Coleman, Rosalind A

    2014-01-01

    and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1...

  14. Cardiac hypertrophy induced by exercise training:the function of AT1 receptor, autophagy and miRNAs%运动性心脏肥大:AT1受体、细胞自噬和 miRNAs 的调节

    Institute of Scientific and Technical Information of China (English)

    钱帅伟; 张瑞萍; 张安民

    2014-01-01

    As a mechanical and exogenous stimulus , exercise training induces cardiac physiological hypertro-phy, and the cardiac structure is changed slowly , steadily and coordinately.Simultaneously, energy metabolism and func-tion of the cardiac muscle are also improved .These are positive adaptations in the heart when experiencing endurance exer -cise training.Recently, angiotensinⅡtype 1 (AT1) receptor, autophagy and miRNAs are all considered as important reg-ulators to cardiac hypertrophy induced by exercise training at different molecular levels .Fully understanding the relations and the important role of AT1 receptor, autophagy and miRNAs in cardiac physiological hypertrophy will further enrich the signaling pathway of cardiac hypertrophy induced by exercise training .

  15. Living high training low induces physiological cardiac hypertrophy accompanied by down-regulation and redistribution of the renin-angiotensin system

    Institute of Scientific and Technical Information of China (English)

    Wei SHI; J Gary MESZAROS; Shao-ju ZENG; Ying-yu SUN; Ming-xue ZUO

    2013-01-01

    Aim:Living high training low" (LHTL) is an exercise-training protocol that refers living in hypoxia stress and training at normal level of O2.In this study,we investigated whether LHTL caused physiological heart hypertrophy accompanied by changes of biomarkers in reninangiotensin system in rats.Methods:Adult male SD rats were randomly assigned into 4 groups,and trained on living low-sedentary (LLS,control),living lowtraining low (LLTL),living high-sedentary (LHS) and living high-training low (LHTL) protocols,respectively,for 4 weeks.Hematological parameters,hemodynamic measurement,heart hypertrophy and plasma angiotensin Ⅱ (Ang Ⅱ) level of the rats were measured.The gene and protein expression of angiotensin-converting enzyme (ACE),angiotensinogen (AGT) and angiotensin Ⅱ receptor Ⅰ (AT1) in heart tissue was assessed using RT-PCR and immunohistochemistry,respectively.Results:LLTL,LHS and LHTL significantly improved cardiac function,increased hemoglobin concentration and RBC.At the molecular level,LLTL,LHS and LHTL significantly decreased the expression of ACE,AGT and AT1 genes,but increased the expression of ACE and AT1 proteins in heart tissue.Moreover,ACE and AT1 protein expression was significantly increased in the endocardium,but unchanged in the epicardium.Conclusion:LHTL training protocol suppresses ACE,AGT and AT1 gene expression in heart tissue,but increases ACE and AT1 protein expression specifically in the endocardium,suggesting that the physiological heart hypertrophy induced by LHTL is regulated by regionspecific expression of renin-angiotensin system components.

  16. Asociación de la hipertrofía ventricular izquierda con eventos cardiacos posteriores a intervencionismo coronario percutáneo. Association of left ventricular hypertrophy with cardiac events after percutaneous coronary intervention.

    Directory of Open Access Journals (Sweden)

    Luis R. Llerena Rojas

    2011-01-01

    Full Text Available Introduction: Left ventricular hypertrophy is not included in the prognostic models of cardiacevents after percutaneous coronary intervention.Objective To determine the association of left ventricular hypertrophy with the presenceof cardiac events during 4 years follow-up after percutaneous coronary intervention.Method 80 hypertensive patients without prior revascularization, undergoing successfulpercutaneous coronary intervention with bare-metal stents at the NationalCardiology and Cardiovascular Surgery Institute between December 2002 andApril 2004, were prospectively included. The demographic, clinical and angiographiccharacteristics were included in our database during the procedure.We made a 4 years follow-up.Results Restenosis (p<0.02 was more frequent in the group of hypertensive patientswith hypertrophy of both anterior and posterior left ventricle walls. Univariateregression analysis showed that left ventricular hypertrophy associates with ahigher restenosis incidence (OR 3.12; CI 95% 1.20-8.14.Conclusions Left ventricular hypertrophy is a risk marker of restenosis after percutaneouscoronary intervention. There was no association with any other cardiac eventduring the long follow-up of hypertensive patients.

  17. Markers of collagen synthesis is related to blood pressure and vascular hypertrophy: a LIFE substudy

    DEFF Research Database (Denmark)

    Olsen, M H; Christensen, M K; Wachtell, K;

    2005-01-01

    Cardiac fibrosis and high levels of circulating collagen markers has been associated with left ventricular (LV) hypertrophy. However, the relationship to vascular hypertrophy and blood pressure (BP) load is unclear. In 204 patients with essential hypertension and electrocardiographic LV hypertrophy...

  18. Exercise training can prevent cardiac hypertrophy induced by sympathetic hyperactivity with modulation of kallikrein-kinin pathway and angiogenesis.

    Directory of Open Access Journals (Sweden)

    José Antônio Silva

    Full Text Available Sympathetic hyperactivity induces adverse effects in myocardial. Recent studies have shown that exercise training induces cardioprotection against sympathetic overload; however, relevant mechanisms of this issue remain unclear. We analyzed whether exercise can prevent pathological hypertrophy induced by sympathetic hyperactivity with modulation of the kallikrein-kinin and angiogenesis pathways. Male Wistar rats were assigned to non-trained group that received vehicle; non-trained isoproterenol treated group (Iso, 0.3 mg kg(-1 day-(1; and trained group (Iso+Exe which was subjected to sympathetic hyperactivity with isoproterenol. The Iso rats showed hypertrophy and myocardial dysfunction with reduced force development and relaxation of muscle. The isoproterenol induced severe fibrosis, apoptosis and reduced myocardial capillary. Interestingly, exercise blunted hypertrophy, myocardial dysfunction, fibrosis, apoptosis and capillary decreases. The sympathetic hyperactivity was associated with high abundance of ANF mRNA and β-MHC mRNA, which was significantly attenuated by exercise. The tissue kallikrein was augmented in the Iso+Exe group, and kinin B1 receptor mRNA was increased in the Iso group. Moreover, exercise induced an increase of kinin B2 receptor mRNA in myocardial. The myocardial content of eNOS, VEGF, VEGF receptor 2, pAkt and Bcl-2 were increased in the Iso+Exe group. Likewise, increased expression of pro-apoptotic Bad in the Iso rats was prevented by prior exercise. Our results represent the first demonstration that exercise can modulate kallikrein-kinin and angiogenesis pathways in the myocardial on sympathetic hyperactivity. These findings suggest that kallikrein-kinin and angiogenesis may have a key role in protecting the heart.

  19. The muscle-specific gene C10orf71 is associated with pathological cardiac hypertrophy%肌肉特异基因C10orf71参与病理性心肌肥厚

    Institute of Scientific and Technical Information of China (English)

    王晓建; 甄一松; 王长鑫; 王继征; 苏明; 俞莉萍; 刘继斌; 惠汝太

    2012-01-01

    Purpose The transcripion factor MEF2 play an improtant role in pathological cardiac hypertrophy via regulating the expression of downstream muscle-specific target genes. Up to date, however, these target genes of MEF2 remain largely unkown. Methods and Results To explore muscle-specific genes which was regulated by MEF2, we scaned the alignments from 3 vertebrate genomes (human, mouse and chicken) using self-developed program CardioSignalScan. To filter out non-muscle specific genes, we integrated the annotation of genes with the Unigene containing expressed sequence tags (EST) from heart or muscle. Among 111 genes, C3orf43 and C10orf7I were identified as novle muslce-specific genes which may be regulated by MEF. Furthermore, the expression of C10orf71 was upregulated by 1.6 fold (P=0.012) in pathological cardiac hypertrophy. Conclusion C10orf71 was a novle muscle-specific gene which was involved in cardiac hypetrophy.%目的 转录因子MEF2通过调控肌肉特异表达基因在病理性心肌肥厚的发生发展中发挥重要的作用,但是直到目前,MEF2下游靶基因所知甚少.方法和结果 我们使用自主研发的cardiosignalscan对人、小鼠和原鸡的全基因组核心启动子序列进行筛选,发现了111条启动子区含有MEF2保守结合位点的基因.整合EST表达序列数据库后,我们发现C3orf43和C10orf71是两条受MEF2调控同时在肌肉特异表达的新基因.进一步的功能研究表明,C10orf71在病理性心脏肥厚中显著升高1.6倍(P=0.012),提示C10orf71可能参与了病理性心肌肥厚病程.结论 C10orf71是一个新的受MEF2调控的在肌肉特异表达的新基因,并可能参与了病理性心肌肥厚病程.

  20. Naringin Mitigates Cardiac Hypertrophy by Reducing Oxidative Stress and Inactivating c-Jun Nuclear Kinase-1 Protein in Type I Diabetes.

    Science.gov (United States)

    Adebiyi, A Olubunmi; Adebiyi, Oluwafeysetan O; Owira, Peter M O

    2016-02-01

    Cardiac hypertrophy (CH) in type 1 diabetes mellitus is attributed to increased oxidative stress-associated activation of c-Jun Nuclear Kinase (JNK). We investigated the effects of naringin on hyperglycemia-associated oxidative stress, activation of JNK-1, and CH. Male Sprague-Dawley rats (225-250 g) (n = 7) were divided into 6 groups. Groups I and II were orally treated with distilled water [3.0 mL/kg body weight/day (BW)] and naringin (50 mg/kg BW), respectively. Groups III-VI were rendered diabetic by a single intraperitoneal injection of 65 mg/kg BW of streptozotocin. Groups III, IV, and V were further treated with insulin (4.0 I.U, s.c, twice daily), naringin (50 mg/kg BW), and ramipril (3.0 mg/kg BW), respectively. After 56 days, the animals were sacrificed and then plasma and cardiac tissues obtained for further analysis. Naringin treatment of diabetic rats significantly reversed oxidative stress, lipid peroxidation, proteins oxidation, CH indices, and JNK protein activation compared with untreated diabetic animals. Our results do suggest that naringin mitigates CH by inhibiting oxidative stress leading to inactivation of JNK-1. Naringin supplements could therefore ameliorate CH in diabetic patients. PMID:26421421

  1. Inducible Conditional Vascular-Specific Overexpression of Peroxisome Proliferator-Activated Receptor Beta/Delta Leads to Rapid Cardiac Hypertrophy

    Science.gov (United States)

    Wagner, Kay-Dietrich; Vukolic, Ana; Baudouy, Delphine; Michiels, Jean-François

    2016-01-01

    Peroxisome proliferator-activated receptors are nuclear receptors which function as ligand-activated transcription factors. Among them, peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in the heart and thought to have cardioprotective functions due to its beneficial effects in metabolic syndrome. As we already showed that PPARβ/δ activation resulted in an enhanced cardiac angiogenesis and growth without impairment of heart function, we were interested to determine the effects of a specific activation of PPARβ/δ in the vasculature on cardiac performance under normal and in chronic ischemic heart disease conditions. We analyzed the effects of a specific PPARβ/δ overexpression in endothelial cells on the heart using an inducible conditional vascular-specific mouse model. We demonstrate that vessel-specific overexpression of PPARβ/δ induces rapid cardiac angiogenesis and growth with an increase in cardiomyocyte size. Upon myocardial infarction, vascular overexpression of PPARβ/δ, despite the enhanced cardiac vessel formation, does not protect against chronic ischemic injury. Our results suggest that the proper balance of PPARβ/δ activation in the different cardiac cell types is required to obtain beneficial effects on the outcome in chronic ischemic heart disease. PMID:27057154

  2. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential role of fibroblast growth factor-2 and factors related to ventricular hypertrophy.

    Science.gov (United States)

    Corda, S; Mebazaa, A; Gandolfini, M P; Fitting, C; Marotte, F; Peynet, J; Charlemagne, D; Cavaillon, J M; Payen, D; Rappaport, L; Samuel, J L

    1997-11-01

    Pericardial fluid (PF) may contain myocardial growth factors that exert paracrine actions on cardiac myocytes. The aims of this study were (1) to investigate the effects of human PF and serum, collected from patients undergoing cardiac surgery, on the growth of cultured adult rat cardiac myocytes and (2) to relate the growth activity of both fluids to the adaptive changes in overloaded human hearts. Both PF and serum increased the rate of protein synthesis, measured by [14C]phenylalanine incorporation in adult rat cardiomyocytes (PF, +71.9 +/- 8.2% [n = 17]; serum, +14.9 +/- 6.5% [n = 13]; both P < .01 versus control medium). The effects of both PF and serum on cardiomyocyte growth correlated positively with the respective left ventricular (LV) mass. However, the magnitude of change with PF was 3-fold greater than with serum (P < .01). These trophic effects of PF were mimicked by exogenous basic fibroblast growth factor (FGF2) and inhibited by anti-FGF2 antibodies and transforming growth factor-beta (TGF-beta), suggesting a relationship to FGF2. In addition, FGF2 concentration in PF was 20 times greater than in serum. On the other hand, the LV mass-dependent trophic effect, present in both fluids, was independent of FGF2 concentration or other factors, such as angiotensin II, atrial natriuretic factor, and TGF-beta. These data suggest that FGF2 in human PF is a major determining factor in normal myocyte growth, whereas unidentified LV mass-dependent factor(s), present in both PF and serum, participates in the development of ventricular hypertrophy. PMID:9351441

  3. Low coronary perfusion pressure is associated with endocardial fibrosis in a rat model of volume overload cardiac hypertrophy A redução da pressão de perfusão coronariana está associada com a fibrose endocárdica no modelo de hipertrofia por sobrecarga de volume em ratos

    OpenAIRE

    Maria Carolina Guido; Márcia Kiyomi Koike; Clovis de Carvalho Frimm

    2004-01-01

    Left ventricular hypertrophy following volume overload is regarded as an example of cardiac remodeling without increased fibrosis accumulation. However, infarction is associated with increased fibrosis within the noninfarcted, hypertrophied myocardium, particularly in the subendocardial regions. It is conceivable to suppose that, as also occurs postinfarction, low coronary driving pressure may also interfere with accumulation of myocardial fibrosis following aortocaval fistula. PURPOSE: To in...

  4. Increased cardiac myocyte PDE5 levels in human and murine pressure overload hypertrophy cntribute to adverse LV remodeling

    OpenAIRE

    Vandenwijngaert, Sara; Pokreisz, Peter; Hermans, Hadewich; Gillijns, Hilde; Pellens, Marijke; Bax, Noortje A M; Coppiello, Giulia; Oosterlinck, Wouter; Balogh, Agnes; Papp, Zoltan; Bouten, Carlijn V. C.; Bartunek, Jozef; D'Hooge, Jan; Luttun, Aernout; Verbeken, Erik

    2013-01-01

    Background: The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC). Methodology/Principal Findings: In patients with severe aortic stenosi...

  5. Cardiac involvement in Duchenne and Becker muscular dystrophy

    OpenAIRE

    Mavrogeni, Sophie; Markousis-Mavrogenis, George; Papavasiliou, Antigoni; Kolovou, Genovefa

    2015-01-01

    Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked muscular diseases responsible for over 80% of all muscular dystrophies. Cardiac disease is a common manifestation, not necessarily related to the degree of skeletal myopathy; it may be the predominant manifestation with or without any other evidence of muscular disease. Death is usually due to ventricular dysfunction, heart block or malignant arrhythmias. Not only DMD/BMD patients, but also female carriers may present cardiac invol...

  6. Atorvastatin prevents connexin43 remodeling in hypertrophied left ventricular myocardium of spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-juan; YAO Lei; CHEN Tu-gang; YU Min; WANG Li-hong; CHEN Jun-zhu

    2007-01-01

    Background Connexin43 (Cx43) is the predominant gap junction protein in heart and is involved in the control of cell-to-cell communication to modulate the contractility and the electrical coupling of cardiac myocytes. Left ventricular(LV) hypertrophy is accompanied by changes of Cx43 expression. Recent studies have demonstrated that statins reduced cardiac hypertrophy. However, it is unknown whether statins can affect Cx43 expression in hypertrophied left ventricular myocardium. This study was designed to assess the effects of atorvastatin on LV hypertrophy and Cx43 expression in spontaneously hypertensive rats (SHR).Methods Nine-week old SHRs were randomly divided into two groups. Some received atorvastatin at 30 mg/kg by oral gavage once daily for 8 weeks (SHR-A); others received vehicle. Age-matched Wistar-Kyoto rats (WKY) received atorvastatin or vehicle for 8 weeks were used as controls. At the end of the experiment, we investigated LV hypertrophy and the expression of Cx43 in LV myocardium in four groups. Cx43 expression was investigated by the methods of Western blotting, immunohistochemistry, and transmission electron microscope. LV hypertrophy was accessed by pathological analysis and plasma brain natriuretic peptide (BNP) level.Results LV hypertrophy was prominent in untreated SHR. In SHR, LV myocardium Cx43 level was upregulated, and the distribution of Cx43 was displaced from their usual locations to other sites at various distances away from the intercalated disks. After atorvastatin treatment, myocardium Cx43 level was reduced in SHR-A, and the distribution of Cx43 gap junction became much regular and confined to intercalated disk. Statins also prevented LV hypertrophy in SHR.Conclusions These results provide novel in vivo evidence for the key role of Cx43 gap junctions in LV hypertrophy and the possible mechanism in anti-hypertrophic effect of statins. Atorvastatin treatment may have beneficial effects on LV hypertrophy in spontaneously hypertensive

  7. Exendin-4 therapy still offered an additional benefit on reducing transverse aortic constriction-induced cardiac hypertrophy-caused myocardial damage in DPP-4 deficient rats.

    Science.gov (United States)

    Lu, Hung-I; Chung, Sheng-Ying; Chen, Yi-Ling; Huang, Tein-Hung; Zhen, Yen-Yi; Liu, Chu-Feng; Chang, Meng-Wei; Chen, Yung-Lung; Sheu, Jiunn-Jye; Chua, Sarah; Yip, Hon-Kan; Lee, Fan-Yen

    2016-01-01

    Inhibition of dipeptidyl peptidase-IV (DPP-4) enzyme activity has been revealed to protect myocardium from ischemia-reperfusion through enhancing the endogenous glucagon-like peptide-1 (GLP-1) level. However, whether exogenous supply of exendin-4, an analogue of GLP-1, would still offer benefit for protecting myocardial damage from trans-aortic constriction (TAC)-induced hypertrophic cardiomyopathy in preexistence of DPP-4 deficiency (DPP-4(D)) remained unclear. Male-adult (DPP-4(D)) rats (n = 32) were randomized into group 1 [sham control (SC)], group 2 (DPP-4(D) + TAC), group 3 [DPP-4(D) + TAC + exendin-4 10 µg/day], and group 4 [DPP-4(D) + TAC + exendin-4 10 µg + exendin-9-39 10 µg/day]. The rats were sacrificed by day 60 after last echocardiographic examination. By day 60 after TAC, left ventricular ejection fraction (LVEF) (%) was highest in group 1 and lowest in group 2, and significantly lower in group 4 than that in group 3 (all p Sirius red), and cellular expressions of DNA-damaged markers (Ki-67+, γ-H2AX+, CD90+/53BP1+) displayed an identical pattern, whereas cellular expressions of angiogenesis (CD31+, α-SMA+) and sarcomere length exhibited an opposite pattern compared to that of oxidative stress among the four groups (all p < 0.001). Take altogether, Exendin-4 effectively suppressed TAC-induced pathological cardiac hypertrophy in DPP-4(D) rat. PMID:27158369

  8. Characteristics of left ventricular hypertrophy estimated by MIBG and BMIPP cardiac scintigraphy in patients undergoing peritoneal dialysis

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hiroshige; Oda, Hiroshi; Ohno, Michiya; Watanabe, Sachirow; Kotoo, Yasunori; Matsuno, Yukihiko [Gifu Prefectural Hospital (Japan)

    2002-12-01

    Left ventricular hypertrophy (LVH) has been reported as a major factor in morbidity and mortality in chronic dialysis patients. However, cardiovascular mortality in peritoneal dialysis (PD) patients with LVH is substantially similar to that in hemodialysis (HD) patients. The present study sought to study whether sympathetic nerve activity and fatty acid metabolism of the myocardium estimated by {sup 123}I metaiodobenzylguanidine (MIBG) and {sup 123}I {beta}-methyl-p-iodophenyl-pentadecanoic acid (BMIPP) myocardial scintigraphy are impaired or not in PD patients with LVH. The underlying disease of 45 PD patients enrolled in this study was chronic glomerulonephritis in all cases. Serum levels of natriuretic peptides (arterial natriuretic peptide (ANP), brain natriuretic peptide (BNP)) and free carnitine and MIBG, BMIPP myocardial scintigraphy and 2-dimensional echocardiography were measured in these 45 PD patients. The following results were obtained. The prevalence of increased left ventricular mass index (LVMI) was 84.4%. LVMI correlated with age, and serum levels of ANP and BNP, and inversely correlated with a heart-to-mediastinum ratio (H/M) estimated by MIBG and BMIPP myocardial scintigraphy. Percentages of the normal image of MIBG and BMIPP measured with a single photon emission computed tomography (SPECT) were 37.8% and 62.2%, respectively. The PD patients showing the diffuse defect of MIBG or BMIPP imaging had the decrease in left ventricular ejection fraction (LVEF). Especially, the serum level of free carnitine was reduced in the PD patients with diffuse defect of BMIPP SPECT. From these results, we concluded that PD patients with LVH showed impaired sympathetic nerve activity and fatty acid metabolism of the myocardium. Metabolic and functional disturbances of the myocardium may influence mortality in PD patients. (author)

  9. Characteristics of left ventricular hypertrophy estimated by MIBG and BMIPP cardiac scintigraphy in patients undergoing peritoneal dialysis

    International Nuclear Information System (INIS)

    Left ventricular hypertrophy (LVH) has been reported as a major factor in morbidity and mortality in chronic dialysis patients. However, cardiovascular mortality in peritoneal dialysis (PD) patients with LVH is substantially similar to that in hemodialysis (HD) patients. The present study sought to study whether sympathetic nerve activity and fatty acid metabolism of the myocardium estimated by 123I metaiodobenzylguanidine (MIBG) and 123I β-methyl-p-iodophenyl-pentadecanoic acid (BMIPP) myocardial scintigraphy are impaired or not in PD patients with LVH. The underlying disease of 45 PD patients enrolled in this study was chronic glomerulonephritis in all cases. Serum levels of natriuretic peptides (arterial natriuretic peptide (ANP), brain natriuretic peptide (BNP)) and free carnitine and MIBG, BMIPP myocardial scintigraphy and 2-dimensional echocardiography were measured in these 45 PD patients. The following results were obtained. The prevalence of increased left ventricular mass index (LVMI) was 84.4%. LVMI correlated with age, and serum levels of ANP and BNP, and inversely correlated with a heart-to-mediastinum ratio (H/M) estimated by MIBG and BMIPP myocardial scintigraphy. Percentages of the normal image of MIBG and BMIPP measured with a single photon emission computed tomography (SPECT) were 37.8% and 62.2%, respectively. The PD patients showing the diffuse defect of MIBG or BMIPP imaging had the decrease in left ventricular ejection fraction (LVEF). Especially, the serum level of free carnitine was reduced in the PD patients with diffuse defect of BMIPP SPECT. From these results, we concluded that PD patients with LVH showed impaired sympathetic nerve activity and fatty acid metabolism of the myocardium. Metabolic and functional disturbances of the myocardium may influence mortality in PD patients. (author)

  10. Estrogen Inhibits Cardiomyocyte Hypertrophy in Vitro: ANTAGONISM OF CALCINEURIN-RELATED HYPERTROPHY THROUGH INDUCTION OF MCIP1*

    OpenAIRE

    Pedram, Ali; Razandi, Mahnaz; Aitkenhead, Mark; Levin, Ellis R.

    2005-01-01

    Evidence from in vivo studies suggests that some imputs to cardiac hypertrophy are opposed by the actions of estrogen. However, the mechanisms of E2 action in this respect are mainly unknown. An important pathway that is utilized by multiple hypertrophic stimuli involves the activation of the tyrosine phosphatase, calcineurin (PP2B). Here we show that 17β -estradiol (E2) significantly prevents angiotensin II (AngII)- or endothelin-1 (ET-1)-induced new protein synthesis, skeletal muscle actin ...

  11. Right ventricular 18F-FDG uptake is an important indicator for cardiac involvement in patients with suspected cardiac sarcoidosis

    International Nuclear Information System (INIS)

    Cardiac sarcoidosis is most commonly found in the left ventricular (LV) free wall. Presence in the right ventricle (RV) is less common but might be useful for detecting cardiac involvement of sarcoidosis. 18F-fluoro-deoxyglucose (18F-FDG) PET has been used to detect LV regions with cardiac sarcoidosis. However, the same has not been done for RV involvement. The aims of the current study were to evaluate RV 18F-FDG uptake and its relationship to the distribution of LV wall 18F-FDG-positive segments in the LV, and to evaluate whether patients with positive RV 18F-FDG uptake met the 1993 diagnostic criteria of the Japanese Ministry of Health and Welfare (JMHW) guidelines regarding sarcoidosis with suspected cardiac involvement. Fifty-nine biopsy-proven extra-cardiac sarcoidosis patients (age 56.1 ± 14.7 years) with suspected cardiac involvement based on abnormal electrocardiography or echocardiography findings underwent fasting 18F-FDG PET or PET/CT. The LV wall was divided into 17 segments and RV uptake was also evaluated. Among 59 patients, 35 (59.3%) showed some abnormal 18F-FDG uptake in the RV and/or LV wall. With respect to the RV wall, 13 (22.0%) showed abnormal 18F-FDG uptake. The number of LV-involved segments was 4.8 ± 2.4 in the patients with RV 18F-FDG uptake, which was significantly higher than in the patients without RV uptake, 1.8 ± 2.2 (P < 0.0001). Patients with RV uptake more frequently met the diagnostic criteria of the 1993 JMHW guidelines (n=27), than did those without RV uptake (84.6 vs. 34.8%, P=0.0033). 18F-FDG PET identified RV involvement less frequently than LV involvement in this study population. However, patients who had RV uptake showed a greater number of LV-involved segments and met the JMHW diagnostic criteria more frequently. Although RV uptake is less frequent, 18F-FDG RV uptake may be useful in diagnosing cardiac involvement in sarcoidosis. (author)

  12. Churg-Strauss Syndrome with Cardiac Involvement: A Case Report with CT and MRI Findings

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seong Joo; Cho, Young Jun; Kim, Keum; Hwang, Cheol Mok; Kim, Dae Ho [Dept. of Radiology, Konyang University College of Medicine, Daegu (Korea, Republic of); Choi, Eu Gene [Dept. of Internal Medicine, Konyang University College of Medicine, Daegu (Korea, Republic of)

    2012-02-15

    This is a case report of Churg-Strauss Syndrome (CSS) associated with cardiac involvement which is demonstrated in chest CT and cardiac MRI (CMR) without specific cardiac symptoms. A 32-year-old woman had a 3-year history of bronchial asthma, chronic sinusitis, and otitis media. The patient had various typical findings of CSS. The patient had no specific cardiac symptoms or signs such as chest pain, palpitations, syncope, or murmur, but she had diffuse low attenuation lesions in the inner wall of the left ventricle (LV) in contrast-enhanced CT. This corresponded to the area of subendocardial hyperenhancement in delayed contrast-enhanced CMR images. She was treated with steroids for 2 months. Follow-up delayed contrast-enhanced CMR of the LV showed a decrease in the size of the subendocardial enhancement area, and she had no symptoms. Therefore, the radiologist and clinician both should pay careful attention to observe possible cardiac involvement in case of CSS.

  13. Churg-Strauss Syndrome with Cardiac Involvement: A Case Report with CT and MRI Findings

    International Nuclear Information System (INIS)

    This is a case report of Churg-Strauss Syndrome (CSS) associated with cardiac involvement which is demonstrated in chest CT and cardiac MRI (CMR) without specific cardiac symptoms. A 32-year-old woman had a 3-year history of bronchial asthma, chronic sinusitis, and otitis media. The patient had various typical findings of CSS. The patient had no specific cardiac symptoms or signs such as chest pain, palpitations, syncope, or murmur, but she had diffuse low attenuation lesions in the inner wall of the left ventricle (LV) in contrast-enhanced CT. This corresponded to the area of subendocardial hyperenhancement in delayed contrast-enhanced CMR images. She was treated with steroids for 2 months. Follow-up delayed contrast-enhanced CMR of the LV showed a decrease in the size of the subendocardial enhancement area, and she had no symptoms. Therefore, the radiologist and clinician both should pay careful attention to observe possible cardiac involvement in case of CSS.

  14. Cardiac involvement in Wegener’s granulomatosis resistant to induction therapy

    OpenAIRE

    Miszalski-Jamka, Tomasz; Szczeklik, Wojciech; Sokołowska, Barbara; Miszalski-Jamka, Karol; Karwat, Krzysztof; Grządziel, Gabriel; Mazur, Wojciech; Kereiakes, Dean J.; Musiał, Jacek

    2011-01-01

    Objectives The aim of the study was to assess cardiac involvement in patients with Wegener’s granulomatosis (WG), who failed to achieve remission following >6 months induction therapy for life or organ threatening disease. Methods Eleven WG patients (eight males, mean age 47 ± 13 years), who failed to achieve remission despite >6 months induction therapy, underwent transthoracic echocardiography (TTE) and cardiac magnetic resonance (CMR). Results Cardiac involvement was present in 9 (82%) pat...

  15. Progenitor Cell Therapy in a Porcine Acute Myocardial Infarction Model Induces Cardiac Hypertrophy, Mediated by Paracrine Secretion of Cardiotrophic Factors Including TGFβ1

    Science.gov (United States)

    Doyle, Brendan; Sorajja, Paul; Hynes, Brian; Kumar, Arun H.S.; Araoz, Phillip A.; Stalboerger, Paul G.; Miller, Dylan; Reed, Cynthia; Schmeckpeper, Jeffrey; Wang, Shaohua; Liu, Chunsheng; Terzic, Andre; Kruger, David; Riederer, Stephen

    2008-01-01

    Administration of endothelial progenitor cells (EPC) is a promising therapy for post-infarction cardiac repair. However, the mechanisms that underlie apparent beneficial effects on myocardial remodeling are unclear. In a porcine model of acute myocardial infarction, we investigated the therapeutic effects of a mixed population of culture modified peripheral blood mononuclear cells (termed hereafter porcine EPC). Porcine EPC were isolated using methods identical to those previously adopted for harvest of EPC in human cell therapy studies. In addition the therapeutic effects of paracrine factors secreted by these cells was evaluated in vitro and in vivo. Intracoronary injection of autologous porcine EPC was associated with increased infarct territory mass and improved regional ventricular systolic function at 2 months compared to control. Treatment with conditioned media derived from autologous EPC was associated with similar improved effects on infarct territory mass and function. Histologic analysis of the infarct territory revealed significantly increased cardiomyocyte size in EPC and conditioned media treated groups, when compared to controls. A paracrine EPC effect was also verified in a pure myocardial preparation in which cardiomyocytes devoid of fibroblast, neuronal and vascular elements directly responded by increasing cell mass when exposed to the same conditioned media. Analysis of conditioned media revealed elevated levels of TGFβ1 (human 267.3±11.8 pg/ml, porcine 57.1±6.1 pg/ml), a recognized mediator of hypertrophic signaling in the heart. Neutralizing antibodies to TGFβ1 attenuated the pro-hypertrophic effect of conditioned media, and use of recombinant TGFβ1 added to fresh media replicated the pro-hypertrophic effects of conditioned media in vitro. These data demonstrate the potential of paracrine factors secreted from endothelial progenitor cells to induce cardiomyocyte hypertrophy contributing to increased infarct territory LV mass, with

  16. Cardiac involvement of primary hyperoxaluria accompanied by non-compaction cardiomyopathy and patent ductus arteriosus.

    Science.gov (United States)

    Arat, Nurcan; Akyıldız, Murat; Tellioğlu, Gürkan; Tokat, Yaman

    2015-04-01

    Primary hyperoxaluria is a rare hereditary metabolic disorder resulting in accumulation of calcium oxalate in visceral organs, including the heart. We report a 19-year-old male with non- compaction cardiomyopathy combined with patent ductus arteriosus awaiting combined liver-kidney transplantation for primary hyperoxaluria. After surgical closure of the patent ductus arteriosus, the patient underwent a successful renal and subsequent liver transplantation. The presence of hypertrophic cardiomyopathy in hyperoxaluria patients has been reported before, but this is the first report of non-compaction myocardium with patent ductus arteriosus in a patient with primary hyperoxaluria. At the third month after combined liver and renal transplantation, improvement in cardiac functions were observed. Primary hyperoxaluria is a clinical entity to be taken into consideration in differential diagnosis of hypertrophied myocardium with high myocardial echocardiographic intensity. In cases of hyperoxaluria, additional congenital abnormalities may complicate the clinical picture. PMID:25906003

  17. Incidence of sudden cardiac death associated with coronary artery occlusion in dogs with hypertension and left ventricular hypertrophy is reduced by chronic beta-adrenergic blockade.

    Science.gov (United States)

    Dellsperger, K C; Martins, J B; Clothier, J L; Marcus, M L

    1990-09-01

    Because beta-adrenergic blockade has as one of its many effects altered electrophysiological abnormalities after dogs with left ventricular hypertrophy have been subjected to coronary occlusion, we tested the hypothesis that metoprolol (200-400 mg/day) would reduce mortality rates in dogs with one-kidney, one clip left ventricular hypertrophy while a similar reduction in arterial pressure with enalapril (20-40 mg/day) would not. Dogs with left ventricular hypertrophy were given metoprolol or enalapril for 5-7 days before a 3-hour coronary occlusion. Infarct size and risk area were measured with triphenyltetrazolium chloride stain and barium angiography, respectively. For control (n = 15), left ventricular hypertrophy (n = 17), left ventricular hypertrophy plus metoprolol (n = 12), and left ventricular hypertrophy plus enalapril (n = 15) groups, mean arterial pressure, ratio of infarct size to risk area, and dogs experiencing sudden death were 110 +/- 4, 142 +/- 4, 121 +/- 7, and 120 +/- 3 mm Hg; 44 +/- 5%, 65 +/- 5%, 44 +/- 7%, and 30 +/- 4%; and 27%, 65%, 17%, and 53%, respectively. Thus, the excessive increase in early mortality occurring when dogs with hypertension and left ventricular hypertrophy undergo coronary occlusion is interrupted with beta-blockade, possibly via electrophysiological effects rather than by changes in arterial pressure or infarct size. PMID:1975521

  18. Effects of Hypertension and Exercise on Cardiac Proteome Remodelling

    Directory of Open Access Journals (Sweden)

    Bernardo A. Petriz

    2014-01-01

    Full Text Available Left ventricle hypertrophy is a common outcome of pressure overload stimulus closely associated with hypertension. This process is triggered by adverse molecular signalling, gene expression, and proteome alteration. Proteomic research has revealed that several molecular targets are associated with pathologic cardiac hypertrophy, including angiotensin II, endothelin-1 and isoproterenol. Several metabolic, contractile, and stress-related proteins are shown to be altered in cardiac hypertrophy derived by hypertension. On the other hand, exercise is a nonpharmacologic agent used for hypertension treatment, where cardiac hypertrophy induced by exercise training is characterized by improvement in cardiac function and resistance against ischemic insult. Despite the scarcity of proteomic research performed with exercise, healthy and pathologic heart proteomes are shown to be modulated in a completely different way. Hence, the altered proteome induced by exercise is mostly associated with cardioprotective aspects such as contractile and metabolic improvement and physiologic cardiac hypertrophy. The present review, therefore, describes relevant studies involving the molecular characteristics and alterations from hypertensive-induced and exercise-induced hypertrophy, as well as the main proteomic research performed in this field. Furthermore, proteomic research into the effect of hypertension on other target-demerged organs is examined.

  19. High prevalence of cardiac involvement in patients with myotonic dystrophy type 1

    DEFF Research Database (Denmark)

    Petri, Helle; Witting, Nanna; Ersbøll, Mads Kristian;

    2014-01-01

    of controls. Thus, the optimal strategy for assessing cardiac involvement in DM1 is unclear. METHOD: In this large single-centre study, we evaluated 129 unselected DM1 patients (49.6% men), mean (SD) age 44 (14.7) years with family history, physical examination, electrocardiogram (ECG......BACKGROUND: Patients with myotonic dystrophy type 1 (DM1) have a three-fold higher risk of sudden cardiac death (SCD) than age-matched healthy controls. Despite numerous attempts to define the cardiac phenotype and natural history, existing literature suffers from low power, selection-bias and lack......), echocardiography, Holter-monitoring and muscle strength testing. RESULTS: Cardiac involvement was found in 71 patients (55%) and included: 1) Conduction abnormalities: atrio-ventricular block grade I (AVB grade I) (23.6%), AVB grade II (5.6%), right/left bundle branch block (5.5/3.2%) and prolonged QTc (7.2%); 2...

  20. Cardiac involvement in Kawasaki disease in Pakistani children

    Directory of Open Access Journals (Sweden)

    Saleem Akhtar

    2012-01-01

    Conclusions: A higher incidence of coronary artery involvement was found in our study. Presentation after 10 days of illness increases the risk of coronary artery involvement. High index of suspicion among the general pediatricians about the disease can possibly be helpful for early referral and treatment.

  1. Determinants of discrepancies in detection and comparison of the prognostic significance of left ventricular hypertrophy by electrocardiogram and cardiac magnetic resonance imaging.

    Science.gov (United States)

    Bacharova, Ljuba; Chen, Haiying; Estes, E Harvey; Mateasik, Anton; Bluemke, David A; Lima, Joao A C; Burke, Gregory L; Soliman, Elsayed Z

    2015-02-15

    Despite the low sensitivity of the electrocardiogram (ECG) in detecting left ventricular hypertrophy (LVH), ECG-LVH is known to be a strong predictor of cardiovascular risk. Understanding reasons for the discrepancies in detection of LVH by ECG versus imaging could help improve the diagnostic ability of ECG. We examined factors associated with false-positive and false-negative ECG-LVH, using cardiac magnetic resonance imaging (MRI) as the gold standard. We also compared the prognostic significance of ECG-LVH and MRI-LVH as predictors of cardiovascular events. This analysis included 4,748 participants (mean age 61.9 years, 53.5% females, 61.7% nonwhites). Logistic regression with stepwise selection was used to identify factors associated with false-positive (n = 208) and false-negative (n = 387), compared with true-positive (n = 208) and true-negative (n = 4,041) ECG-LVH, respectively. A false-negative ECG-LVH status was associated with increased odds of Hispanic race/ethnicity, current smoking, hypertension, increased systolic blood pressure, prolongation of QRS duration, and higher body mass index and with lower odds of increased ejection fraction (model-generalized R(2) = 0.20). A false-positive ECG-LVH status was associated with lower odds of black race, Hispanic race/ethnicity, minor ST-T abnormalities, increased systolic blood pressure, and presence of any major electrocardiographic abnormalities (model-generalized R(2) = 0.29). Both ECG-LVH and MRI-LVH were associated with an increased risk of cardiovascular disease events (hazard ratio 1.51, 95% confidence interval 1.03 to 2.20 and hazard ratio 1.81, 95% confidence interval 1.33 to 2.46, respectively). In conclusion, discrepancy in LVH detection by ECG and MRI can be relatively improved by considering certain participant characteristics. Discrepancy in diagnostic performance, yet agreement on predictive ability, suggests that LVH by ECG and LVH by imaging are likely to be two distinct but somehow related

  2. Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress

    OpenAIRE

    Kumar, Radhakrishnan Rajesh; Narasimhan, Madhusudhanan; Shanmugam, Gobinath; Hong, Jennifer; Devarajan, Asokan; Palaniappan, Sethu; Zhang, Jianhua; Halade, Ganesh V; Darley-Usmar, Victor M.; Hoidal, John R.; Rajasekaran, Namakkal S.

    2016-01-01

    Background Anomalies in myocardial structure involving myocyte growth, hypertrophy, differentiation, apoptosis, necrosis etc. affects its function and render cardiac tissue more vulnerable to the development of heart failure. Although oxidative stress has a well-established role in cardiac remodeling and dysfunction, the mechanisms linking redox state to atrial cardiomyocyte hypertrophic changes are poorly understood. Here, we investigated the role of nuclear erythroid-2 like factor-2 (Nrf2),...

  3. Cardiac involvement in myotonic muscular dystrophy (Steinert's disease): a prospective study of 25 patients

    International Nuclear Information System (INIS)

    The presence, degree and frequency of disorders of cardiac conduction and rhythm and of regional or global myocardial dystrophy or myotonia have not previously been studied prospectively and systematically in the same population of patients with myotonic dystrophy. Accordingly, 25 adults with classic Steinert's disease underwent electrocardiography, 24-hour ambulatory electrocardiography, vectorcardiography, chest x-rays, echocardiography, electrophysiologic studies, and technetium-99m angiography. Clinically important cardiac manifestations of myotonic dystrophy reside in specialized tissues rather than in myocardium. Involvement is relatively specific, primarily assigned to the His-Purkinje system. The cardiac muscle disorder takes the form of dystrophy rather than myotonia, and is not selective, appearing with approximately equal distribution in all 4 chambers. Myocardial dystrophy seldom results in clinically overt ventricular failure, but may be responsible for atrial and ventricular arrhythmias. Since myotonic dystrophy is genetically transmitted, a primary biochemical defect has been proposed with complete expression of the gene toward striated muscle tissue, whether skeletal or cardiac. Specialized cardiac tissue and myocardium have close, if not identical, embryologic origins, so it is not surprising that the genetic marker affects both. Cardiac involvement is therefore an integral part of myotonic dystrophy, targeting particularly the infranodal conduction system, to a lesser extent the sinus node, and still less specifically, the myocardium

  4. Electrocardiography as the First Step for the Further Examination of Cardiac Involvement in Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Takao Kato

    2016-01-01

    Full Text Available Introduction. Cardiac involvement of myasthenia gravis (MG accompanies a poor prognosis. In the present study, we aimed to investigate the relationship between ECG abnormality and cardiac involvement. Methods. Of 178 patients diagnosed with MG between 2001 and 2013 at our hospital, we retrospectively analyzed consecutive 58 patients who underwent both ECG and echocardiography and without underlying cardiovascular disease. ECG abnormalities were defined by computer-assigned Minnesota-codes. Cardiac damage was defined as either (1 ejection fraction (EF 8 on echocardiography. Results. Thirty-three patients (56.8% had ECG abnormality. An elevated E/e′ was observed in patients with ECG abnormality compared to those without ECG abnormality (11.2±3.2, 8.7±2.2, resp., p=0.03. Among patients with ECG abnormality, 14 of 15 patients showed cardiac damage. Among patients without ECG abnormality, 6 of 33 patients showed cardiac damage (p=0.003. Reduced EF was observed in five patients (8.6% with ECG abnormality and none in patients without ECG abnormality. Conclusions. ECG may aid as the first step for the further examination of cardiac damage in patients with MG.

  5. Coronary ostial involvement in acute aortic dissection: detection with 64-slice cardiac CT.

    LENUS (Irish Health Repository)

    Ryan, E Ronan

    2012-02-01

    A 41-year-old man collapsed after lifting weights at a gym. Following admission to the emergency department, a 64-slice cardiac computed tomography (CT) revealed a Stanford Type A aortic dissection arising from a previous coarctation repair. Multiphasic reconstructions demonstrated an unstable, highly mobile aortic dissection flap that extended proximally to involve the right coronary artery ostium. Our case is an example of the application of electrocardiogram-gated cardiac CT in directly visualizing involvement of the coronary ostia in acute aortic dissection, which may influence surgical management.

  6. Cardiac involvement in patients with limb-girdle muscular dystrophy type 2 and Becker muscular dystrophy

    DEFF Research Database (Denmark)

    Sveen, Marie-Louise; Thune, Jens Jakob; Køber, Lars;

    2008-01-01

    Rigshospitalet. Patients One hundred one patients with LGMD2A-I and BMD and 29 patients with LGMD2 and no molecular diagnosis. MAIN OUTCOME MEASURES: Clinical investigation, echocardiography, and electrocardiographic findings. RESULTS: Cardiac involvement was present in 24 of 100 patients (24%) with LGMD2A-I and......OBJECTIVE: To investigate the extent of cardiac involvement in patients with 1 of the 12 groups of recessively inherited limb-girdle muscular dystrophy type 2 (LGMD2A-L) and Becker muscular dystrophy (BMD). DESIGN: Prospective screening. SETTING: Neuromuscular Clinic and Department of Cardiology at...

  7. Extranodal Rosai-Dorfman Disease Involving the Left Atrium: Cardiac MRI, CT, and PET Scan Findings

    OpenAIRE

    Vistasp J. Daruwalla; Keyur Parekh; Hassan Tahir; Collins, Jeremy D; James Carr

    2015-01-01

    Rosai-Dorfman disease (RDD) is a rare entity that usually involves the lymph nodes but extranodal involvements have been seen in numerous cases, although RDD with cardiovascular involvement is extremely rare. We describe a case of a young male who presented with intermittent palpitations and was found to have a left atrium mass. Our case not only emphasizes the rarity of the above lesion but also highlights the importance of modern-day imaging like computed tomography, Cardiac Magnetic Resona...

  8. Hypertrophied hearts: what of sevoflurane cardioprotection?

    DEFF Research Database (Denmark)

    Larsen, Jens Kjærgaard Rolighed; Smerup, Morten Holdgaard; Hasenkam, John Michael;

    2009-01-01

    cardioprotection with anaesthetics remain controversial--in contrast to solid experimental evidence. Concomitant left ventricular hypertrophy is found in some cardiac surgery patients and could change cardioprotection efficacy. Hypertrophy could potentially render the heart less susceptible to sevoflurane...... cardioprotection and more susceptible to ischaemic injury. We investigated whether hypertrophy blocks sevoflurane cardioprotection, and whether tolerance to ischaemia is altered by left ventricular hypertrophy, in an established experimental animal model of ischaemia-reperfusion. METHODS: Anaesthetized juvenile...... left ventricular hypertrophy development in two further groups and these animals underwent identical ischaemia-reperfusion protocols, with or without sevoflurane cardioprotection. Myocardial infarct sizes were compared post-mortem. RESULTS: The mean myocardial infarct size (% of area-at-risk) was...

  9. Progression of cardiac involvement in patients with limb-girdle type 2 and Becker muscular dystrophies

    DEFF Research Database (Denmark)

    Petri, Helle; Sveen, Marie-Louise; Thune, Jens Jakob;

    2015-01-01

    AIM: To assess the degree and progression of cardiac involvement in patients with limb-girdle type 2 (LGMD2) and Becker muscular dystrophies (BMD). METHODS: A follow-up study of 100 LGMD2 (types A-L) and 30 BMD patients assessed by electrocardiogram (ECG) and echocardiography, supplemented by...

  10. Exercise-induced arterial hypertension - an independent factor for hypertrophy and a ticking clock for cardiac fatigue or atrial fibrillation in athletes? [v1; ref status: indexed, http://f1000r.es/3b4

    Directory of Open Access Journals (Sweden)

    Roman Leischik

    2014-05-01

    Full Text Available Background: Exercise-induced arterial hypertension (EIAH leads to myocardial hypertrophy and is associated with a poor prognosis. EIAH might be related to the “cardiac fatigue” caused by endurance training. The goal of this study was to examine whether there is any relationship between EIAH and left ventricular hypertrophy in Ironman-triathletes. Methods: We used echocardiography and spiroergometry to determine the left ventricular mass (LVM, the aerobic/anaerobic thresholds and the steady-state blood pressure of 51 healthy male triathletes. The main inclusion criterion was the participation in at least one middle or long distance triathlon. Results: When comparing triathletes with LVM 220g there was a significant difference between blood pressure values (BP at the anaerobic threshold (185.2± 21.5 mmHg vs. 198.8 ±22.3 mmHg, p=0.037. The spiroergometric results were: maximum oxygen uptake (relative VO2max 57.3 ±7.5ml/min/kg vs. 59.8±9.5ml/min/kg (p=ns. Cut-point analysis for the relationship of BP >170 mmHg at the aerobic threshold and the probability of LVM >220g showed a sensitivity of 95.8%, a specificity of 33.3%, with a positive predictive value of 56.8 %, a good negative predictive value of 90%. The probability of LVM >220g increased with higher BP during exercise (OR: 1.027, 95% CI 1.002-1.052, p= 0.034 or with higher training volume (OR: 1.23, 95% CI 1.04 -1.47, p = 0.019. Echocardiography showed predominantly concentric remodelling, followed by concentric hypertrophy. Conclusion: Significant left ventricular hypertrophy with LVM >220g is associated with higher arterial blood pressure at the aerobic or anaerobic threshold. The endurance athletes with EIAH may require a therapeutic intervention to at least prevent extensive stiffening of the heart muscle and exercise-induced cardiac fatigue.

  11. Fatal secondary pulmonary hypertension due to cardiac involvement in AIDS-associated Burkitt′s lymphoma

    Directory of Open Access Journals (Sweden)

    Singh Ashutosh

    2006-09-01

    Full Text Available Primary cardiac lymphomas are rare lesions in children with acquired immunodeficiency syndrome (AIDS. Most of them are high-grade Burkitt′s or Burkitt-like lymphomas. They usually present with congestive cardiac failure, pericardial effusion or tamponade, arrhythmias, with predominant systemic ′B′ symptoms and often with widespread extranodal involvement. The clinical profile and operative and pathological findings of a 4-year-old boy with AIDS-associated Burkitt′s lymphoma of the heart presenting with acute right heart failure and fatal secondary pulmonary hypertension is reported.

  12. [Experimental Approach to Analysis of the Relationship between Food Environments and Lifestyle-Related Diseases, Including Cardiac Hypertrophy, Fatty Liver, and Fatigue Symptoms].

    Science.gov (United States)

    Horiuchi, Masahisa; Nakakuma, Miwa; Arimura, Emi; Ushikai, Miharu; Yoshida, Goichiro

    2015-01-01

    The food habit is involved in the onset and development of lifestyle-related diseases. In this review I would like to describe a historical case of vitamin B1 deficiency, as well as our case study of fatty acid metabolism abnormality due to carnitine deficiency. In history, the army and navy personnel in Japan at the end of the 19th century received food rations based on a high-carbohydrate diet including white rice, resulting in the onset of beriberi. An epidemiological study by Kenkan Takaki revealed the relationship between the onset of beriberi and rice intake. Then, Takaki was successful in preventing the onset of beriberi by changing the diet. However, the primary cause had yet to be elucidated. Finally, Christian Eijkman established an animal model of beriberi (chickens) showing peripheral neuropathy, and he identified the existence of an anti-beriberi substance, vitamin B1. This is an example of the successful control of a disease by integrating the results of epidemiological and experimental studies. In our study using a murine model of fatty acid metabolism abnormality caused by carnitine deficiency, cardiac abnormality and fatty liver developed depending on the amount of dietary fat. In addition, the mice showed disturbance of orexin neuron activity related to the sleep-arousal system, which is involved in fatigue symptoms under fasting condition, one of the states showing enhanced fatty acid metabolism. These findings suggest that fatty acid toxicity is enhanced when the mice are more dependent on fatty acid metabolism. Almost simultaneously, a human epidemiological study showed that narcolepsy, which is caused by orexin system abnormality, is associated with the polymorphism of the gene coding for carnitine palmitoyltransferase 1B, which is involved in carnitine metabolism. To understand the pathological mechanism of fatty acid toxicity, not only an experimental approach using animal models, but also an epidemiological approach is necessary. The

  13. Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy

    OpenAIRE

    Putinski, Charis; ABDUL-GHANI, MOHAMMAD; Stiles, Rebecca; Brunette, Steve; Dick, Sarah A.; Fernando, Pasan; Lynn A. Megeney

    2013-01-01

    Cardiac hypertrophy is a pathologic enlargement of the heart, an alteration that leads to contractile dysfunction and eventual organ failure. The hypertrophy phenotype originates from concentric growth of heart muscle cells and shares many biochemical features with programmed cell death, implying a common molecular origin. Here, we show cell-autonomous activation of a mitochondrial cell death pathway during initial stages of muscle cell hypertrophy, a signal that is essential and sufficient t...

  14. Cyclin-dependent Kinase Inhibitor, p21WAF1/CIP1, Is Involved in Adipocyte Differentiation and Hypertrophy, Linking to Obesity, and Insulin Resistance*S⃞

    OpenAIRE

    Inoue, Noriyuki; Yahagi, Naoya; Yamamoto, Takashi; Ishikawa, Mayumi; Watanabe, Kazuhisa; Matsuzaka, Takashi; Nakagawa, Yoshimi; Takeuchi, Yoshinori; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki; Hasty, Alyssa H.; Toyoshima, Hideo; Yamada, Nobuhiro; Shimano, Hitoshi

    2008-01-01

    Both adipocyte hyperplasia and hypertrophy are determinant factors for adipocyte differentiation during the development of obesity. p21WAF1/CIP1, a cyclin-dependent kinase inhibitor, is induced during adipocyte differentiation; however, its precise contribution to this process is unknown. Using both in vitro and in vivo systems, we show that p21 is crucial for maintaining adipocyte hypertrophy and obesity-induced insulin resistance. The absence of p21 in 3T3-L1 fibroblasts ...

  15. Alteration of Na,K-ATPase subunit mRNA and protein levels in hypertrophied rat heart.

    Science.gov (United States)

    Charlemagne, D; Orlowski, J; Oliviero, P; Rannou, F; Sainte Beuve, C; Swynghedauw, B; Lane, L K

    1994-01-14

    To determine if an altered expression of the Na,K-ATPase alpha isoform genes is responsible for an observed increase in cardiac glycoside sensitivity in compensatory hypertrophy, we performed Northern and slot blot analyses of RNA and specific immunological detection of Na,K-ATPase isoforms in rat hearts from normal and pressure overload-treated animals induced by abdominal aortic constriction. During the early phase of hypertrophy, the only alteration is a decrease in the alpha 2 mRNA isoform. In the compensated hypertrophied heart, the levels of the predominant alpha 1 isoform (mRNA and protein) and the beta 1 subunit mRNA are unchanged. In contrast, the alpha 2 isoform (mRNA and protein) is decreased by 35% and up to 61-64% in mild ( 55%) hypertrophy, respectively. The alpha 3 isoform (mRNA and protein), which is extremely low in adult heart, is increased up to 2-fold during hypertrophy but accounts for only approximately equal to 5% of the total alpha isoform mRNA. These findings demonstrate that, in cardiac hypertrophy, the three alpha isoforms of the Na,K-ATPase are independently regulated and that regulation occurs at a pretranslational level. The pattern of expression in hypertrophied adult heart is similar to that of the neonatal heart where the inverse regulation between the alpha 2 and alpha 3 ouabain high affinity isoforms has been reported. This suggests that distinct regulatory mechanisms controlling Na,K-ATPase isoform expression may, at least in part, be involved in the sensitivity to cardiac glycosides. PMID:8288620

  16. Temporal patterns of electrical remodeling in canine ventricular hypertrophy: Focus on I-Ks downregulation and blunted beta-adrenergic activation

    NARCIS (Netherlands)

    M. Stengl; C. Ramakers; D.W. Donker; A. Nabar; A.V. Rybin; R.L.H.M.G. Spatjens; T. van der Nagel; W.K.W.H. Wodzig; K.R. Sipido; G. Antoons; A.F.M. Moorman; M.A. Vos; P.G.A. Volders

    2006-01-01

    Objectives: Electrical remodeling in cardiac hypertrophy often involves the downregulation of K+ currents, including beta-adrenergic (beta-A)-sensitive I-Ks. Temporal patterns of ion-channel downregulation are poorly resolved. In dogs with complete atrioventricular block (AVB), we examined (1) the t

  17. Multimodality assessment of cardiac involvement in Churg-Strauss syndrome patients in clinical remission

    International Nuclear Information System (INIS)

    Cardiac involvement in Churg-Strauss syndrome (CSS) is not uncommon, but its frequency varies widely and may depend on the activity of the disease. Therefore, the cardiac involvement in CSS patients in clinical remission was assessed in the present study. In 20 CSS patients in remission and 20 sex- and age-matched healthy controls, an electrocardiogram (ECG) stress test, echocardiography, and 24-h ECG Holter monitoring were performed, together with cardiac magnetic resonance imaging (cMRI). Cardiac involvement was present in 90% (18/20) of CSS patients. Left ventricular ejection fraction (LVEF) was on average lower in the CSS group than in controls (P<0.05), with 7 patients showing systolic heart failure (LVEF <50%). cMRI changes included late gadolinium enhancement lesions in the LV in 89% of patients (17/19), present in all layers of the myocardium. Signs of ongoing inflammation (early gadolinium enhancement) and edema (T2-weighted imaging) were present in 6/19 patients. Holter monitoring revealed both supraventricular and ventricular arrhythmias more frequently in CSS patients when compared with controls (P<0.05). Absolute eosinophil count before the initiation of treatment was higher in rhythm disturbances (P<0.05), and inversely correlated with LV systolic function (rho -0.65). Heart involvement in CSS patients who are in clinical remission is very common. It is characterized not only by fibrosis, but also by an active inflammatory process. The latter finding might influence therapeutic decisions in CSS patients in full clinical remission. (author)

  18. FGF21 and cardiac physiopathology

    Directory of Open Access Journals (Sweden)

    Anna ePlanavila

    2015-08-01

    Full Text Available The heart is not traditionally considered either a target or a site of fibroblast growth factor-21 (FGF21 production. However, recent findings indicate that FGF21 can act as a cardiomyokine; that is, it is produced by cardiac cells at significant levels and acts in an autocrine manner on the heart itself. The heart is sensitive to the effects of FGF21, both systemic and locally generated, owing to the expression in cardiomyocytes of β-Klotho, the key co-receptor known to confer specific responsiveness to FGF21 action. FGF21 has been demonstrated to protect against cardiac hypertrophy, cardiac inflammation, and oxidative stress. FGF21 expression in the heart is induced in response to cardiac insults, such as experimental cardiac hypertrophy and myocardial infarction in rodents, as well as in failing human hearts. Intracellular mechanisms involving PPARα and Sirt1 mediate transcriptional regulation of the FGF21 gene in response to exogenous stimuli. In humans, circulating FGF21 levels are elevated in coronary heart disease and atherosclerosis, and are associated with a higher risk of cardiovascular events in patients with type 2 diabetes. These findings provide new insights into the role of FGF21 in the heart and may offer potential therapeutic strategies for cardiac disease.

  19. Cardiac involvement in Erdheim- Chester disease: MRI findings and literature revision

    International Nuclear Information System (INIS)

    Erdheim-Chester disease (ECD) is a rare form of non-Langerhans cell histiocytosis, characterized by the involvement of several organs. The lesions may be skeletal or extra-skeletal: in particular, long bones, skin, lungs, and the cardiovascular and the central nervous systems can be affected. In this report, we describe a case of a 34-year-old man, who came to our observation with symptomatic ECD, for a correct assessment of the degree of cardiac involvement through magnetic resonance imaging (MRI)

  20. Aldosterone inhibits the fetal program and increases hypertrophy in the heart of hypertensive mice.

    Directory of Open Access Journals (Sweden)

    Feriel Azibani

    Full Text Available BACKGROUND: Arterial hypertension (AH induces cardiac hypertrophy and reactivation of "fetal" gene expression. In rodent heart, alpha-Myosin Heavy Chain (MyHC and its micro-RNA miR-208a regulate the expression of beta-MyHC and of its intronic miR-208b. However, the role of aldosterone in these processes remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: RT-PCR and western-blot were used to investigate the genes modulated by arterial hypertension and cardiac hyperaldosteronism. We developed a model of double-transgenic mice (AS-Ren with cardiac hyperaldosteronism (AS mice and systemic hypertension (Ren. AS-Ren mice had increased (x2 angiotensin II in plasma and increased (x2 aldosterone in heart. Ren and AS-Ren mice had a robust and similar hypertension (+70% versus their controls. Anatomical data and echocardiography showed a worsening of cardiac hypertrophy (+41% in AS-Ren mice (P<0.05 vs Ren. The increase of ANP (x 2.5; P<0.01 mRNA observed in Ren mice was blunted in AS-Ren mice. This non-induction of antitrophic natriuretic peptides may be involved in the higher trophic cardiac response in AS-Ren mice, as indicated by the markedly reduced cardiac hypertrophy in ANP-infused AS-Ren mice for one month. Besides, the AH-induced increase of ßMyHC and its intronic miRNA-208b was prevented in AS-Ren. The inhibition of miR 208a (-75%, p<0.001 in AS-Ren mice compared to AS was associated with increased Sox 6 mRNA (x 1.34; p<0.05, an inhibitor of ßMyHC transcription. Eplerenone prevented all aldosterone-dependent effects. CONCLUSIONS/SIGNIFICANCE: Our results indicate that increased aldosterone in heart inhibits the induction of atrial natriuretic peptide expression, via the mineralocorticoid receptor. This worsens cardiac hypertrophy without changing blood pressure. Moreover, this work reveals an original aldosterone-dependent inhibition of miR-208a in hypertension, resulting in the inhibition of β-myosin heavy chain expression through the induction

  1. Cardiac involvement in lymphomas. Review of literature and case report of the clinical course of B-large-cell lymphoma

    Directory of Open Access Journals (Sweden)

    I. Yu. Gadaev

    2015-12-01

    Full Text Available Clinical case of successful chemotherapy of patient with cardiac involvement in lymphoma, one of manifestations of which was the heart rhythm and conduction disorder, is presented as illustration. The data on the epidemiology of cardiac involvement in hematologic diseases, particularly in lymphomas and their clinical manifestations, modern diagnostic and treatment are presented. Clinical case of successful chemotherapy of patient with cardiac involvement in lymphoma, one of manifestations of which was the heart rhythm and conduction disorder, is presented as illustration.

  2. Hemodynamic versus adrenergic control of cat right ventricular hypertrophy.

    OpenAIRE

    Cooper, G.; Kent, R.L.; Uboh, C.E.; Thompson, E W; Marino, T A

    1985-01-01

    The purpose of this study was to determine whether cardiac hypertrophy in response to hemodynamic overloading is a primary result of the increased load or is instead a secondary result of such other factors as concurrent sympathetic activation. To make this distinction, four experiments were done; the major experimental result, cardiac hypertrophy, was assessed in terms of ventricular mass and cardiocyte cross-sectional area. In the first experiment, the cat right ventricle was loaded differe...

  3. Hypertrophy signaling pathways in experimental chronic aortic regurgitation

    DEFF Research Database (Denmark)

    Olsen, Niels Thue; Dimaano, Veronica L; Fritz-Hansen, Thomas;

    2013-01-01

    The development of left ventricular hypertrophy and dysfunction in aortic regurgitation (AR) has only been sparsely studied experimentally. In a new model of chronic AR in rats, we examined activation of molecular pathways involved in myocardial hypertrophy. Chronic AR was produced by damaging on...... of activation of intracellular pathways different from that seen with pathological hypertrophy in pressure overload, and more similar to that associated with benign physiological hypertrophy....

  4. Mechanistic investigation of imatinib-induced cardiac toxicity and the involvement of c-Abl kinase.

    Science.gov (United States)

    Hu, Wenyue; Lu, Shuyan; McAlpine, Indrawan; Jamieson, Joseph D; Lee, Dong U; Marroquin, Lisa D; Heyen, Jonathan R; Jessen, Bart A

    2012-09-01

    The Bcr-abl tyrosine kinase inhibitor imatinib mesylate is the frontline therapy for chronic myeloid leukemia. Imatinib has been reported to cause congestive heart failure and left ventricular contractile dysfunction in patients and cardiomyopathy in rodents, findings proposed to be associated with its pharmacological activity. To investigate the specific role of Abelson oncogene 1 (c-Abl) in imatinib-induced cardiac toxicity, we performed targeted gene inhibition of c-Abl by RNA interference in neonatal cardiomyocytes (NCMs). Suppression of c-Abl did not lead to cytotoxicity or induction of endoplasmic reticulum (ER) stress. To further dis associate c-Abl from imatinib-induced cardiac toxicity, we designed imatinib structural analogs that do not have appreciable c-Abl inhibition in NCMs. The c-Abl inactive analogs induced cytotoxicity and ER stress, at similar or greater potencies and magnitudes as imatinib. Furthermore, combining c-Abl gene silencing with imatinib and analogs treatment did not significantly shift the cytotoxicity dose response curves. Imatinib and analogs were shown to accumulate in lysosomes, likely due to their physicochemical properties, and disrupt autophagy. The toxicity induced by imatinib and analogs can be rescued by bafilomycin A pretreatment, demonstrating the involvement of lysosomal accumulation in cardiac toxicity. The results from our studies strongly suggest that imatinib induces cardiomyocyte dysfunction through disruption of autophagy and induction of ER stress, independent of c-Abl inhibition. PMID:22641616

  5. A mouse model of physiological cardiac hypertrophy induced by exercise-training on treadmill%跑步训练诱导小鼠生理性心脏肥厚模型

    Institute of Scientific and Technical Information of China (English)

    王晓建; 王继征; 王长鑫; 刘继斌; 董伟; 张连峰; 惠汝太

    2011-01-01

    目的 用长期跑步训练诱导小鼠的生理性心脏肥厚模型,与主动脉缩窄手术诱导的病理性心脏肥厚模型进行比较.方法 8周龄野生型雄性C57 BL/6小鼠分为跑步运动组,正常对照组,手术刺激组和假手术组.运动组跑步训练40d,手术刺激组行主动脉缩窄手术2周,从组织形态学、超声心动图、分子标志物表达等方面对模型进行全面评估.结果 运动训练组小鼠心脏体重比与正常对照组相比增加27.2%(P<0.05),左心室体重比增加25.8% (P<0.01),心脏显著肥厚.超声心动图显示,与各自的对照组相比,运动组和手术组小鼠模型的左心室后壁厚度均显著增加(P<0.05),但运动组小鼠的相对室壁厚度无明显变化,而手术组小鼠相对室壁厚度显著增加50%(P<0.05),提示两种不同的心脏肥厚导致在心脏结构改变上差别显著.心脏肥厚分子标志物心房利钠肽和脑钠肽在手术组表达显著上调9.5倍和4.5倍,而在运动组下调为对照组的0.48倍和0.58倍,提示两种不同肥厚的分子机制差别迥异.结论 长期跑步运动可以成功的诱导小鼠生理性心脏肥厚模型,其表型和分子机制与手术刺激的病理性肥厚差别显著.%Objective To investigate whether exercise-training on a treadmill can induce physiological cardiac hypertrophy in mice, and to determine the difference between the physiological and pathological cardiac hypertrophy. Methods Forty wild-type male C57BL/6 mice were randomly divided into four groups (10 mice in each group) : normal control, training group, sham control, and transverse aortic constriction ( TAC) surgery group. After treadmill training for 40 days and at 2 weeks after TAC surgery, the heart function and structure were evaluated by echocardiography and the molecular hypertrophic-markers were measured by real-time PCR. Results Compared with the untrained littermates, the heart weight/body weight ratio and left

  6. Progenitor Cell Therapy in a Porcine Acute Myocardial Infarction Model Induces Cardiac Hypertrophy, Mediated by Paracrine Secretion of Cardiotrophic Factors Including TGFβ1

    OpenAIRE

    Doyle, Brendan; Sorajja, Paul; Hynes, Brian; Kumar, Arun H. S.; Araoz, Phillip A.; Stalboerger, Paul G.; Miller, Dylan; Reed, Cynthia; Schmeckpeper, Jeffrey; Wang, Shaohua; Liu, Chunsheng; Terzic, Andre; Kruger, David; Riederer, Stephen; Caplice, Noel M.

    2008-01-01

    Administration of endothelial progenitor cells (EPC) is a promising therapy for post-infarction cardiac repair. However, the mechanisms that underlie apparent beneficial effects on myocardial remodeling are unclear. In a porcine model of acute myocardial infarction, we investigated the therapeutic effects of a mixed population of culture modified peripheral blood mononuclear cells (termed hereafter porcine EPC). Porcine EPC were isolated using methods identical to those previously adopted for...

  7. Left ventricular hypertrophy index based on a combination of frontal and transverse planes in the ECG and VCG: Diagnostic utility of cardiac vectors

    Science.gov (United States)

    Bonomini, Maria Paula; Juan Ingallina, Fernando; Barone, Valeria; Antonucci, Ricardo; Valentinuzzi, Max; Arini, Pedro David

    2016-04-01

    The changes that left ventricular hypertrophy (LVH) induces in depolarization and repolarization vectors are well known. We analyzed the performance of the electrocardiographic and vectorcardiographic transverse planes (TP in the ECG and XZ in the VCG) and frontal planes (FP in the ECG and XY in the VCG) to discriminate LVH patients from control subjects. In an age-balanced set of 58 patients, the directions and amplitudes of QRS-complexes and T-wave vectors were studied. The repolarization vector significantly decreased in modulus from controls to LVH in the transverse plane (TP: 0.45±0.17mV vs. 0.24±0.13mV, pECG and VCG spaces. A subset of all those indexes with AUC values greater than 0.7 was further studied. This subset comprised four indexes, with three of them belonging to the ECG space. Two out of the four indexes presented the best ROC curves (AUC values: 0.78 and 0.75, respectively). One index belonged to the ECG space and the other one to the VCG space. Both indexes showed a sensitivity of 86% and a specificity of 70%. In conclusion, the proposed indexes can favorably complement LVH diagnosis

  8. The role of protein kinase C in the transition from cardiac hypertrophy to failure induced by ascending aortic banding in rats

    International Nuclear Information System (INIS)

    Objective: To evaluate protein kinase C (PKC) activity and its contribution in the transition from pressure overload hypertrophy (POH) to congestive heart failure (CHF). Methods: Rat model of pressure overload heart failure was induced by ascending aorta banding of young Wistar rats. PKC activity was determined by measuring the incorporation of 32P from γ-32P-ATP into protamine. Results: Compared with sham-operated groups, in the CHF group, 12 weeks after operation, heart weight (HW) and HW/body weight (BW) increased 71.3% and 69.5%, respectively, with normal +- dp/dtmax (P>0.05); 20 weeks later, HW and HW/BW were 80% and 94% higher, respectively (Pmat (P0.05), but the M/C increased (P<0.01). Conclusions: The activity of PKC was constantly activated in these two pathological stages. PKC was activated in an escalating manner in POH. These data indicate that PKC might play a key regulatory role in the development of pressure overload heart failure

  9. 异叶青兰总黄酮对高血压大鼠心肌肥厚的影响%Effects of Dracocephalum heterophyllum Benth flavonoid on cardiac hypertrophy of hypertension rats

    Institute of Scientific and Technical Information of China (English)

    何雯; 邬利娅·伊明; 司丽君; 苗娜; 阿吉艾克拜尔·艾萨; 帕尔哈提·克热木

    2013-01-01

    目的 观察异叶青兰总黄酮对肾性高血压大鼠心肌肥厚的影响.方法 左肾动脉狭窄(2K1C)法建立高血压大鼠模型,术后第6周随机分为5组:假手术组(Sham);模型组(Model);异叶青兰总黄酮高剂量组(DHBFH)、低剂量组(DHBFL);卡托普利组(Captopril).灌胃给药6周后进行超声心动图、心肌病理学检测,白介素-1β(IL-1β)、肿瘤坏死因子-α(TNF-α)、基质金属蛋白酶-9(MMP-9)和基质金属蛋白酶抑制剂-1(TIMP-1)mRNA的测定.结果 给药6周后,模型组大鼠左心室室壁厚度、心肌细胞大小及左心室心肌间质纤维化程度较假手术组明显升高,IL-1β、TNF-α明显升高(P<0.01),MMP-9、TIMP-1 mRNA的相对表达量明显升高(P<0.01),给予DHBFH后,左心室肥厚及心肌纤维化较模型组明显降低,IL-1β、TNF-α明显降低,MMP-9、TIMP-1 mRNA的相对表达量明显降低(P<0.01).结论 异叶青兰总黄酮能改善高血压大鼠心肌肥厚及心肌纤维化程度,可能与其能够降低血压,降低IL-1β、TNF-α水平,调节MMP-9/TIMP-1的表达有关.%Aim To study the effect of Dracocephalum heterophyllum Benth flavonoid ( DHBF ) on cardiac hypertrophy of hypertension rats. Methods Hypertension rats model was established by renal artery stenosis surgery ( two kidneys one clip ). Six weeks after the surgery, the rats were randomly divided into 5 groups Sham group; Model group; DHBF high dose group ( DHBFH ); DHBF low dose group( DHBFL ) and Cap-topril group. After treated for 6 weeks, the echocardio-graphy, histological examination of the heart were performed. The levels of IL-1 β , TNF-α, the relative expression of MMP-9 mRNA and TIMP-1 mRNA were detected by real-time PCR . Results After 6 weeks treatment, the wall thickness of left ventricle, myocar-dial cell size and interstitial fibrosis of the myocardial cells in the left ventricl in Model group were significantly increased compared with those in sham group( P <0. 01 ). Treatment with

  10. Tropomyosin flexural rigidity and single ca(2+) regulatory unit dynamics: implications for cooperative regulation of cardiac muscle contraction and cardiomyocyte hypertrophy.

    Science.gov (United States)

    Loong, Campion K P; Badr, Myriam A; Chase, P Bryant

    2012-01-01

    Striated muscle contraction is regulated by dynamic and cooperative interactions among Ca(2+), troponin, and tropomyosin on the thin filament. While Ca(2+) regulation has been extensively studied, little is known about the dynamics of individual regulatory units and structural changes of individual tropomyosin molecules in relation to their mechanical properties, and how these factors are altered by cardiomyopathy mutations in the Ca(2+) regulatory proteins. In this hypothesis paper, we explore how various experimental and analytical approaches could broaden our understanding of the cooperative regulation of cardiac contraction in health and disease. PMID:22493584

  11. Tropomyosin flexural rigidity and single Ca2+ regulatory unit dynamics: implications for cooperative regulation of cardiac muscle contraction and cardiomyocyte hypertrophy

    Directory of Open Access Journals (Sweden)

    P.BryantChase

    2012-04-01

    Full Text Available Striated muscle contraction is regulated by dynamic and cooperative interactions among Ca2+, troponin and tropomyosin on the thin filament. While Ca2+ regulation has been extensively studied, little is known about the dynamics of individual regulatory units and structural changes of individual tropomyosin molecules in relation to their mechanical properties, and how these factors are altered by cardiomyopathy mutations in the Ca2+ regulatory proteins. In this hypothesis paper, we explore how novel experimental and analytical approaches would improve our understanding of regulation of cardiac contraction in health and disease.

  12. Transgenic Knockdown of Cardiac Sodium/Glucose Cotransporter 1 (SGLT1) Attenuates PRKAG2 Cardiomyopathy, Whereas Transgenic Overexpression of Cardiac SGLT1 Causes Pathologic Hypertrophy and Dysfunction in Mice

    OpenAIRE

    Ramratnam, Mohun; Sharma, Ravi K.; D'Auria, Stephen; Lee, So Jung; Wang, David; Huang, Xue Yin N.; Ahmad, Ferhaan

    2014-01-01

    Background The expression of a novel cardiac glucose transporter, SGLT1, is increased in glycogen storage cardiomyopathy secondary to mutations in PRKAG2. We sought to determine the role of SGLT1 in the pathogenesis of PRKAG2 cardiomyopathy and its role in cardiac structure and function. Methods and Results Transgenic mice with cardiomyocyte‐specific overexpression of human T400N mutant PRKAG2 cDNA (TGT400N) and transgenic mice with cardiomyocyte‐specific RNA interference knockdown of SGLT1 (...

  13. Gender and post-ischemic recovery of hypertrophied rat hearts

    Directory of Open Access Journals (Sweden)

    Popov Kirill M

    2006-03-01

    Full Text Available Abstract Background Gender influences the cardiac response to prolonged increases in workload, with differences at structural, functional, and molecular levels. However, it is unknown if post-ischemic function or metabolism of female hypertrophied hearts differ from male hypertrophied hearts. Thus, we tested the hypothesis that gender influences post-ischemic function of pressure-overload hypertrophied hearts and determined if the effect of gender on post-ischemic outcome could be explained by differences in metabolism, especially the catabolic fate of glucose. Methods Function and metabolism of isolated working hearts from sham-operated and aortic-constricted male and female Sprague-Dawley rats before and after 20 min of no-flow ischemia (N = 17 to 27 per group were compared. Parallel series of hearts were perfused with Krebs-Henseleit solution containing 5.5 mM [5-3H/U-14C]-glucose, 1.2 mM [1-14C]-palmitate, 0.5 mM [U-14C]-lactate, and 100 mU/L insulin to measure glycolysis and glucose oxidation in one series and oxidation of palmitate and lactate in the second. Statistical analysis was performed using two-way analysis of variance. The sequential rejective Bonferroni procedure was used to correct for multiple comparisons and tests. Results Female gender negatively influenced post-ischemic function of non-hypertrophied hearts, but did not significantly influence function of hypertrophied hearts after ischemia such that mass-corrected hypertrophied heart function did not differ between genders. Before ischemia, glycolysis was accelerated in hypertrophied hearts, but to a greater extent in males, and did not differ between male and female non-hypertrophied hearts. Glycolysis fell in all groups after ischemia, except in non-hypertrophied female hearts, with the reduction in glycolysis after ischemia being greatest in males. Post-ischemic glycolytic rates were, therefore, similarly accelerated in hypertrophied male and female hearts and higher in

  14. Cardiac effects of vasopressin.

    Science.gov (United States)

    Pelletier, Jean-Sébastien; Dicken, Bryan; Bigam, David; Cheung, Po-Yin

    2014-07-01

    Vasopressin is an essential hormone involved in the maintenance of cardiovascular homeostasis. It has been in use therapeutically for many decades, with an emphasis on its vasoconstrictive and antidiuretic properties. However, this hormone has a ubiquitous influence and has specific effects on the heart. Although difficult to separate from its powerful vascular effects in the clinical setting, a better understanding of vasopressin's direct cardiac effects could lead to its more effective clinical use for a variety of shock states by maximizing its therapeutic benefit. The cardiac-specific effects of vasopressin are complex and require further elucidation. Complicating our understanding include the various receptors and secondary messengers involved in vasopressin's effects, which may lead to various results based on differing doses and varying environmental conditions. Thus, there have been contradictory reports on vasopressin's action on the coronary vasculature and on its effect on inotropy. However, beneficial results have been found and warrant further study to expand the potential therapeutic role of vasopressin. This review outlines the effect of vasopressin on the coronary vasculature, cardiac contractility, and on hypertrophy and cardioprotection. These cardiac-specific effects of vasopressin represent an interesting area for further study for potentially important therapeutic benefits. PMID:24621650

  15. Reactive oxygen species in paraventricular nucleus involved in cardiac sympathetic afferent reflex in rats

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Yang Yu; Ying Zhang; Yingchun Li; Luqing Zhang; Lingling Fan; Yingya Gao; Guoqing Zhu

    2005-01-01

    Objective: The present study was designed to determine if reactive oxygen species (ROS) in the paraventricularnucleus (PVN) were involved in modulating cardiac sympathetic afferent reflex (CSAR) in anesthetized rats. Methods: Malondialdehyde(MDA), the end product of lipid peroxidation, in the PVN, was determined by thiobarbituric acid (TBA) spectrometric method. Renalsympathetic nerve activity (RSNA) and arterial pressure were recorded in sinoaortic-denervated and cervical-vagotomized rats. The CSARwas evaluated by the response of the RSNA evoked by epicardial application of bradykinin (BK, 0.4 μg). Results: The MDA in the PVNwas significantly increased after epicardial application of BK compared with control (2.0 + 0.3 vs 0.8 + 0.1 nmol/mg protein, P < 0.01 ).Microinjectionof a superoxide anion scavenger, tiron (20 nmol) into the PVN significantly inhibited the CSAR evoked by BK (12.3 ± 1.9vs 4.2+ 1.2%, P < 0.01) and decreased MDA level (1.9±0.3 vs 0.6+0.1 nmol/mg protein, P <0.01) compared with control.Conclusion: The ROS in the PVN is involved in modulating the CSAR in rats.

  16. Protective effect of relaxin in cardiac anaphylaxis: involvement of the nitric oxide pathway

    Science.gov (United States)

    Masini, E; Zagli, G; Ndisang, J F; Solazzo, M; Mannaioni, P F; Bani, D

    2002-01-01

    Relaxin (RLX) is a multifunctional hormone best known for its role in pregnancy and parturition, that has been also shown to influence coronary perfusion and mast cell activation through the generation of endogenous nitric oxide (NO). In this study we report on the effects of RLX on the biochemical and mechanical changes of ex vivo perfused hearts isolated from ovalbumin-sensitized guinea-pigs induced by challenge with the specific antigen. The possible involvement of NO in the RLX action has been also investigated. A 30-min perfusion with RLX (30 ng ml−1) before ovalbumin challenge fully abated the positive chronotropic and inotropic effects evoked by anaphylactic reaction to the antigen. RLX also blunted the short-term coronary constriction following to antigen challenge. Conversely, perfusion with chemically inactivated RLX had no effect. The release of histamine in the perfusate and the accumulation of calcium in heart tissue induced by antigen challenge were significantly decreased by RLX, while the amounts of nitrites in the perfusate were significantly increased, as were NO synthase activity and expression and cGMP levels in heart tissue. These findings indicate that RLX has a protective effect in cardiac anaphylaxis which involves an up-regulation of the NO biosynthetic pathway. PMID:12237253

  17. DEFECTIVE REGULATION OF THE RYANODINE RECEPTOR INDUCES HYPERTROPHY IN CARDIOMYOCYTES

    OpenAIRE

    Hamada, Tomoyo; Gangopadhyay, Jaya P.; Mandl, Adel; Erhardt, Peter; Ikemoto, Noriaki

    2009-01-01

    Recent studies on cardiac hypertrophy animal model suggest that inter-domain interactions within the ryanodine receptor (RyR2) become defective concomitant with the development of hypertrophy (e.g. destabilization of the interaction between N-terminal and central domains of RyR2; Circulation 111, 3400–3410, 2005). To determine if destabilization of the inter-domain interaction in fact causes hypertrophy, we introduced DPc10 (a peptide corresponding to the G2460-P2495 region of RyR2, which is ...

  18. Pregnancy as a cardiac stress model

    OpenAIRE

    Chung, Eunhee; Leinwand, Leslie A.

    2014-01-01

    Cardiac hypertrophy occurs during pregnancy as a consequence of both volume overload and hormonal changes. Both pregnancy- and exercise-induced cardiac hypertrophy are generally thought to be similar and physiological. Despite the fact that there are shared transcriptional responses in both forms of cardiac adaptation, pregnancy results in a distinct signature of gene expression in the heart. In some cases, however, pregnancy can induce adverse cardiac events in previously healthy women witho...

  19. Evidence for angiotensin II type 2 receptor–mediated cardiac myocyte enlargement during in vivo pressure overload

    OpenAIRE

    Senbonmatsu, Takaaki; Ichihara, Sahoko; Price, Edward; Gaffney, F.Andrew; Inagami, Tadashi

    2000-01-01

    The pathophysiological roles of the angiotensin II type 2 receptor (AT2) in cardiac hypertrophy remain unclear. By the targeted deletion of mouse AT2 we were able to prevent the left ventricular hypertrophy resulting from pressure overload, while cardiac contractile functions remained normal. This implies that AT2 is a mediator of cardiac hypertrophy in response to increased blood pressure. The effects of AT2 deletion were independent of activation of embryonic genes for cardiac hypertrophy. ...

  20. Churg-Strauss syndrome cardiac involvement evaluated by cardiac magnetic resonance imaging and positron-emission tomography: a prospective study on 20 patients

    International Nuclear Information System (INIS)

    Churg-Strauss syndrome (CSS) cardiac involvement is associated with a poor prognosis. Recently cardiac MRI (CMRI) has emerged as a promising technique to detect early CSS cardiac involvement. However, CMRI-detected myocardial delayed enhancement (MDE) could correspond to fibrosis or inflammation. Fluoro-2-deoxyglucose PET (FDG-PET) was previously used in other systemic diseases to distinguish between them. To determine whether the CMRI-MDE detected in CSS patients reflected fibrosis or myocardial inflammation, patients in CSS remission underwent FDG-PET. Twenty consecutive CSS patients in remission (BVAS = 0) were recruited. Fourteen patients [eight men, six women; mean (S.D.) age 49 (9) years; mean disease duration 3.5 (2.9) years] with CMRI-detected MDE, and six patients [four men, two women; mean (S.D.) age 44 (15) years; mean disease duration 3.5 (5.3) years] with normal CMRI underwent FDG-PET. Segments with MDE on CMRI were analysed on FDG-PET images, with myocardial FDG hypo-fixation defining fibrosis and hyper-fixation corresponding inflammation. Among the 14 patients with MDE on CMRI, FDG-PET showed 10 had hypo-fixation, 2 had hyper-fixation and 2 had normal scans. CSS duration at the time of CMRI was shorter for patients with myocardial inflammation than in those with fibrosis. The six patients with normal CMRI had normal FDG-PET images. For CSS patients in remission, CMRI detected subclinical active myocardial lesions and could be recommended to assess cardiac involvement. However, because CMRI-detected MDE can reflect fibrosis or inflammation, FDG-PET might help to distinguish between the two. (authors)

  1. Left Ventricular Hypertrophy in Rhesus Macaques (Macaca mulatta) at the California National Primate Research Center (1992-2014).

    Science.gov (United States)

    Reader, J Rachel; Canfield, Don R; Lane, Jennifer F; Kanthaswamy, Sreetharan; Ardeshir, Amir; Allen, A Mark; Tarara, Ross P

    2016-01-01

    Necropsy records and associated clinical histories from the rhesus macaque colony at the California National Primate Research Center were reviewed to identify mortality related to cardiac abnormalities involving left ventricular hypertrophy (LVH). Over a 21-y period, 162 cases (female, 90; male, 72) of idiopathic LVH were identified. Macaques presented to necropsy with prominent concentric hypertrophy of the left ventricle associated with striking reduction of the ventricular lumen. Among all LVH cases, 74 macaques (female, 39; male, 35), mostly young adults, presented for spontaneous (sudden) death; more than 50% of these 74 cases were associated with a recent history of sedation or intraspecific aggression. The risk of sudden death in the 6- to 9-y-old age group was significantly higher in male macaques. Subtle histologic cardiac lesions included karyomegaly and increased cardiac myocyte diameter. Pedigree analyses based on rhesus macaque LVH probands suggested a strong genetic predisposition for the condition. In humans, hypertrophic cardiomyopathy (HCM) is defined by the presence of unexplained left ventricular hypertrophy, associated with diverse clinical outcomes ranging from asymptomatic disease to sudden death. Although the overall risk of disease complications such as sudden death, end-stage heart failure, and stroke is low (1% to 2%) in patients with HCM, the absolute risk can vary dramatically. Prima facie comparison of HCM and LVH suggest that further study may allow the development of spontaneously occurring LVH in rhesus macaques as a useful model of HCM, to better understand the pathogenesis of this remarkably heterogeneous disease. PMID:27053572

  2. Myocardial hypertrophy in the recipient with twin-to-twin transfusion syndrome

    DEFF Research Database (Denmark)

    Jeppesen, D.L.; Jorgensen, F.S.; Pryds, O.A.;

    2008-01-01

    In a set of monochorionic-diamniotic twins with twin-to-twin transfusion syndrome, systemic hypertension and biventricular myocardial hypertrophy were found in the recipient. The infant developed mild respiratory distress. A partial exchange transfusion was performed because of polycytaemia. Blood...... pressure measurements revealed persistent systemic hypertension. Biventricular hypertrophy was demonstrated by echocardiography. Blood pressure normalised after treatment with Nifedipine and the cardiac hypertrophy subsided over the following weeks. A potential contributing mechanism is intrauterine...

  3. Involvement of neuroleptic drugs in selenium deficiency and sudden death of cardiac origin: study and human post-mortem examination.

    Science.gov (United States)

    Hamdan, Lamia; Bost, Muriel; Chazot, Guy; Bui-Xuan, Bernard; Vaillant, Fanny; Dehina, Leila; Descotes, Jacques; Tabib, Alain; Mamou, Zahida; Timour, Quadiri

    2012-06-01

    The involvement of psychotropic drugs in sudden deaths has been highlighted. The objective of this work was to establish a link between selenium levels in heart tissue, psychotropic treatment and sudden death. Selenium levels were measured by electrothermal atomic absorption spectroscopy post-mortem in heart, brain and liver. Histological examination evidenced dilated cardiomyopathy in 45% of cases, left ventricular hypertrophy in 36%, and ischemic coronaropathy in 18%. A significant reduction of myocardial selenium levels compared to controls was seen in patients treated with neuroleptic drugs or meprobamate. No changes in brain or liver selenium levels were seen. These results suggest that selenium deficiency can facilitate sudden death in patients on psychotropic drugs. The reduced activity of glutathione peroxidase due to selenium deficiency can result in augmented oxidative stress in myocardial cells and myocardiopathy leading to sudden death. PMID:22664334

  4. Troponin T in patients with traumatic chest injuries with and without cardiac involvement: Insights from an observational study

    Directory of Open Access Journals (Sweden)

    Ismail Mahmood

    2016-01-01

    Full Text Available Background: Serum troponin T (TnT is a common marker of myocardial injury. However, its implication in the absence of clinical evidence of cardiac reason is not well established. Aims: The aim of this study was to identify the implications of positive TnT in traumatic chest injury (TCI patients regardless of the cardiac involvement. Materials and Methods: We conducted a retrospective analysis of all TCI patients admitted to level 1 trauma center between 2008 and 2011. Patients who underwent TnT testing were divided into two groups: Group 1 (positive TnT and Group 2 (negative TnT. The two groups were analyzed and compared, and multivariate regression analyses were performed to identify predictors of TnT positivity and mortality. Results: Out of 993 blunt TCI patients, 19.3% had positive TnT (Group 1. On comparison to Group 2, patients in Group 1 were 5 years younger and more likely to have head, cardiac, hepatic, splenic, and pelvic injuries, in addition to lung contusion. Positive TnT was associated with higher Injury Severity Score (ISS (P = 0.001, higher chest Abbreviated Injury Score (AIS (P = 0.001, and longer hospital stay (P = 0.03. In addition, Group 1 patients were more likely to undergo chest tube insertion, exploratory laparotomy, mechanical ventilation, and tracheostomy. Twenty patients had cardiac involvement, and of them 14 had positive TnT. Among 973 patients who showed no evidence of cardiac involvement, 178 had positive TnT (18.3%. There were 104 deaths (60% in Group 1. On multivariate regression analysis, the predictors of hospital mortality were positive TnT, head injury, and high ISS, whereas, the predictors of TnT positivity were cardiac, hepatic, and pelvic injuries; higher ISS; and age. Conclusions: Positive TnT in blunt TCI patients is a common challenge, particularly in polytrauma cases. Patients with positive TnT tend to have the worst outcome even in the absence of clinical evidence of acute cardiac involvement

  5. Cardiac involvement in patients with Becker muscular dystrophy: new diagnostic and pathophysiological insights by a CMR approach

    Directory of Open Access Journals (Sweden)

    Thiene Gaetano

    2008-11-01

    Full Text Available Abstract Background Becker-Kiener muscular dystrophy (BMD represents an X-linked genetic disease associated with myocardial involvement potentially resulting in dilated cardiomyopathy (DCM. Early diagnosis of cardiac involvement may permit earlier institution of heart failure treatment and extend life span in these patients. Both echocardiography and nuclear imaging methods are capable of detecting later stages of cardiac involvement characterised by wall motion abnormalities. Cardiovascular magnetic resonance (CMR has the potential to detect cardiac involvement by depicting early scar formation that may appear before onset of wall motion abnormalities. Methods In a prospective two-center-study, 15 male patients with BMD (median age 37 years; range 11 years to 56 years underwent comprehensive neurological and cardiac evaluations including physical examination, echocardiography and CMR. A 16-segment model was applied for evaluation of regional wall motion abnormalities (rWMA. The CMR study included late gadolinium enhancement (LGE imaging with quantification of myocardial damage. Results Abnormal echocardiographic results were found in eight of 15 (53.3% patients with all of them demonstrating reduced left ventricular ejection fraction (LVEF and rWMA. CMR revealed abnormal findings in 12 of 15 (80.0% patients (p = 0.04 with 10 (66.6% having reduced LVEF (p = 0.16 and 9 (64.3% demonstrating rWMA (p = 0.38. Myocardial damage as assessed by LGE-imaging was detected in 11 of 15 (73.3% patients with a median myocardial damage extent of 13.0% (range 0 to 38.0%, an age-related increase and a typical subepicardial distribution pattern in the inferolateral wall. Ten patients (66.7% were in need of medical heart failure therapy based on CMR results. However, only 4 patients (26.7% were already taking medication based on clinical criteria (p = 0.009. Conclusion Cardiac involvement in patients with BMD is underdiagnosed by echocardiographic methods resulting

  6. Emerging acute Chagas Disease in Amazonian Brazil: case reports with serious cardiac involvement

    OpenAIRE

    Ana Yecê das Neves Pinto; Sebastião Aldo da Silva Valente; Vera da Costa Valente

    2004-01-01

    Four cases of serious cardiac attacks by autochthonous Trypanosoma cruzi infection from the Brazilian Amazon are reported; three of them occurred in micro-epidemic episodes. The manifestations included sudden fever, myalgia, dyspnea and signs of heart failure. Diagnosis was confirmed by specific exams, especially QBC (Quantitative Buffy Coat) and natural xenodiagnosis. Despite treatment with benznidazol, three patients died with serious myocarditis, renal failure and cardiac tamponade. The au...

  7. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    Directory of Open Access Journals (Sweden)

    Ana Baptista

    2015-01-01

    Full Text Available Abstract Background: Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. Objective: To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. Methods: The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m2 for women or ≥ 116 g/m2 for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. Results: A total of 47 patients with a mean left ventricular mass index of 141.1 g/m2 (± 28.5; 99.2 to 228.5 g/m2] were included. Most of the patients were females (51.1%. Nine (19.1% showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5, a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. Conclusion: In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5.

  8. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    International Nuclear Information System (INIS)

    Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m2 for women or ≥ 116 g/m2 for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. A total of 47 patients with a mean left ventricular mass index of 141.1 g/m2 (± 28.5; 99.2 to 228.5 g/m2] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5)

  9. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Ana, E-mail: baptista-ana@hotmail.com; Magalhães, Pedro; Leão, Sílvia; Carvalho, Sofia; Mateus, Pedro; Moreira, Ilídio [Centro Hospitalar de Trás-os-Montes e Alto Douro, Unidade de Vila Real (Portugal)

    2015-08-15

    Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m{sup 2} for women or ≥ 116 g/m{sup 2} for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. A total of 47 patients with a mean left ventricular mass index of 141.1 g/m{sup 2} (± 28.5; 99.2 to 228.5 g/m{sup 2}] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5)

  10. Pyrophosphate scintigraphy and other non-invasive methods in the detection of cardiac involvement in some systemic connective tissue diseases

    International Nuclear Information System (INIS)

    Thirteen patients with systemic lupus erythematosus, 8 patients with polymyositis, and 6 patients with spondylitis ankylopoetica (Bechterew's disease) underwent clinical cardiologic examination and scintigraphy of the myocardium (99mTc-pyrophosphate), ECG, echocardiography, polygraphy, and their blood pressure was taken. The aim of the study was to ascertain how such a combination of non-invasive examinations can help in recognizing a cardiac involvement. In systemic lupus erythematosus cases one or more positive findings were revealed in 9 patients (69%), in 4 patients all examinations were negative (31%). Four patients (50%) with polymyosits had positive findings. In patients with spondylitis ankylopoetica positive findings occurred in 2 cases (33%). The study has shown that a combination of non-invasive cardiologic methods increases the probability of detecting cardiac involvement in systemic connective tissue diseases. (orig.)

  11. Left ventricular diastolic function in workers occupationally exposed to mercury vapour without clinical presentation of cardiac involvement

    International Nuclear Information System (INIS)

    The aim of the study was to evaluate left ventricular diastolic function in workers occupationally exposed to mercury vapour without clinical presentation of cardiac involvement. The studies included 115 workers (92 men and 23 women) occupationally exposed to mercury vapour without clinical presentation of cardiac involvement (mean age: 47.83 ± 8.29). Blood samples were taken to determine blood lipid profile, urine was collected to estimate mercury concentration (Hg-U) and echocardiographic examination was performed to evaluate diastolic function of the left ventricle. In the entire group of workers occupationally exposed to mercury vapour without clinical presentation of cardiac involvement, Spearman correlations analysis demonstrated the following significant linear relationships: between body mass index (BMI) and ratio of maximal early diastolic mitral flow velocity/early diastolic mitral annular velocity (E/E') (r = 0.32, p Hg-U = 1.071, ORBMI = 1.200, ORHDL = 0.896, p < 0.05). Summing up, occupational exposure to mercury vapour may be linked to impaired left ventricular diastolic function in workers without clinical presentation of cardiac involvement. -- Highlights: ► Study aimed at evaluation of LVDD in workers occupationally exposed to Hg. ► There was significant linear relationships between Hg-U and E/E'. ► Independent risk factor of LVDD in study group included higher Hg-U. ► Independent risk factor of LVDD in study group included higher BMI and lower HDL. ► Occupational exposure to Hg may be linked to LVDD.

  12. Exercise-induced ventricular arrhythmias and vagal dysfunction in Chagas disease patients with no apparent cardiac involvement

    Directory of Open Access Journals (Sweden)

    Henrique Silveira Costa

    2015-04-01

    Full Text Available INTRODUCTION : Exercise-induced ventricular arrhythmia (EIVA and autonomic imbalance are considered as early markers of heart disease in Chagas disease (ChD patients. The objective of the present study was to verify the differences in the occurrence of EIVA and autonomic maneuver indexes between healthy individuals and ChD patients with no apparent cardiac involvement. METHODS : A total of 75 ChD patients with no apparent cardiac involvement, aged 44.7 (8.5 years, and 38 healthy individuals, aged 44.0 (9.2 years, were evaluated using echocardiography, symptom-limited treadmill exercise testing and autonomic function tests. RESULTS : The occurrence of EIVA was higher in the chagasic group (48% than in the control group (23.7% during both the effort and the recovery phases. Frequent ventricular contractions occurred only in the patient group. Additionally, the respiratory sinus arrhythmia index was significantly lower in the chagasic individuals compared with the control group. CONCLUSIONS : ChD patients with no apparent cardiac involvement had a higher frequency of EIVA as well as more vagal dysfunction by respiratory sinus arrhythmia. These results suggest that even when asymptomatic, ChD patients possess important arrhythmogenic substrates and subclinical disease.

  13. The FOXO3a Transcription Factor Regulates Cardiac Myocyte Size Downstream of AKT Signaling*

    OpenAIRE

    Skurk, Carsten; Izumiya, Yasuhiro; Maatz, Henrike; Razeghi, Peter; Shiojima, Ichiro; Sandri, Marco; Sato, Kaori; Zeng, Ling; Schiekofer, Stephan; Pimentel, David; Lecker, Stewart; Taegtmeyer, Heinrich; Goldberg, Alfred L.; Walsh, Kenneth

    2005-01-01

    Although signaling mechanisms inducing cardiac hypertrophy have been extensively studied, little is known about the mechanisms that reverse cardiac hypertrophy. Here, we describe the existence of a similar Akt/forkhead signaling axis in cardiac myocytes in vitro and in vivo, which is regulated by insulin, insulin-like growth factor (IGF), stretch, pressure overload, and angiotensin II stimulation. FOXO3a gene transfer prevented both IGF and stretch-induced hypertrophy in rat neonatal cardiac ...

  14. Aggressive Cardiac Involvement in Systemic Lupus Erythematosus: A Case Report and a Comprehensive Literature Review

    Directory of Open Access Journals (Sweden)

    Reza Ashrafi

    2011-01-01

    Full Text Available Background. We present the case of a 35-year-old gentleman who presented with an aggressive cardiomyopathy with normal coronary arteries. He was later diagnosed with systemic lupus-related cardiomyopathy. Methods. We undertook an extensive review of the literature regarding cardiac manifestations of lupus and used over 100 journals to identify the key points in pathology, diagnosis, and treatment. Results. We have shown that cardiac lupus can be rapidly progressive and, unless treated early, can have severe consequences. The predominant pathologies are immune complex and accelerated atherosclerosis drive. Treatment comprised of high-level immunosuppression.

  15. Does Resistance Training Stimulate Cardiac Muscle Hypertrophy?

    Science.gov (United States)

    Bloomer, Richard J.

    2003-01-01

    Reviews the literature on the left ventricular structural adaptations induced by resistance/strength exercise, focusing on human work, particularly well-trained strength athletes engaged in regular, moderate- to high-intensity resistance training (RT). The article discusses both genders and examines the use of anabolic-androgenic steroids in…

  16. O bloqueio da síntese do óxido nítrico promove aumento da hipertrofia e da fibrose cardíaca em ratos submetidos a treinamento aeróbio Nitric oxide synthesis blockade increases hypertrophy and cardiac fibrosis in rats submitted to aerobic training

    Directory of Open Access Journals (Sweden)

    Hugo Celso Dutra de Souza

    2007-08-01

    induced hypertension but did not cause cardiac hypertrophy. In the trained animals, the inhibition of NO synthesis attenuated hypertension, induced cardiac hypertrophy and significantly increased myocardial fibrosis, indicating that NO plays an important role in cardiac tissue adaptations caused by aerobic exercise.

  17. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation.

    Science.gov (United States)

    Ohnuki, Yoshiki; Umeki, Daisuke; Mototani, Yasumasa; Jin, Huiling; Cai, Wenqian; Shiozawa, Kouichi; Suita, Kenji; Saeki, Yasutake; Fujita, Takayuki; Ishikawa, Yoshihiro; Okumura, Satoshi

    2014-12-15

    The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling. PMID:25344550

  18. Calcium Sensing Receptor Promotes Cardiac Fibroblast Proliferation and Extracellular Matrix Secretion

    Directory of Open Access Journals (Sweden)

    Xinying Zhang

    2014-02-01

    Full Text Available Aims: Calcium-sensing receptor (CaR acts as a G protein coupled receptor that mediates the increase of the intracellular Ca2+ concentration. The expression of CaR has been confirmed in various cell types, including cardiomyocytes, smooth muscle cells, neurons and vascular endothelial cells. However, whether CaR is expressed and functions in cardiac fibroblasts has remained unknown. The present study investigated whether CaR played a role in cardiac fibroblast proliferation and extracellular matrix (ECM secretion, both in cultured rat neonatal cardiac fibroblasts and in a model of cardiac hypertrophy induced by isoproterenol (ISO. Methods and Results: Immunofluorescence, immunohistochemistry and Western blot analysis revealed the presence of CaR in cardiac fibroblasts. Calcium and calindol, a specific activator of CaR, elevated the intracellular calcium concentration in cardiac fibroblasts. Pretreatment of cardiac fibroblasts with calhex231, a specific inhibitor of CaR, U73122 and 2-APB attenuated the calindol- and extracellular calcium-induced increase in intracellular calcium ([Ca2+]i. Cardiac fibroblast proliferation and migration were assessed by MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, cell count and the cell scratch assay. ECM production was detected by expression of matrix metalloproteinase-3 and -9 (MMP-3 and -9. Activation of CaR promoted cardiac fibroblast proliferation and migration and ECM secretion. More importantly, calhex231, suppressed cardiac fibroblast proliferation and migration and MMP-3 and -9 expression. To further investigate the effect of CaR on cardiac fibrosis, a model of ISO-induced cardiac hypertrophy was established. Pretreatment with calhex231 prevented cardiac fibrosis and decreased the expression of MMP-3 and -9 expression. Conclusions: Our results are the first report that CaR plays an important role in Ca2+ signaling involved in cardiac fibrosis through the phospholipase C- inositol 3

  19. Dipyridamole thallium imaging for detecting cardiac involvement in patients with systemic sclerosis (scleroderma)

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Yoshio; Matsubara, Noboru; Tani, Akihiro; Morozumi, Takakazu; Hori, Masatsugu; Kitabatake, Akira; Kamada, Takenobu; Kimura, Kazufumi; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)

    1990-02-01

    Dipyridamole thallium-201 imaging was carried out in 21 patients with progressive systemic sclerosis (PSS) to assess its value in detecting impaired myocardium and coronary microcirculation associated with PSS. Depending upon the degree of cardiac function, the patients were classified as having either ejection fraction of 50% or more (Group I, n=17) or less than 50% (Group II, n=4). In Group I, four patients had transient defect in which perfusion defects were seen on early images but not seen on delayed images; three had reverse redistribution in which defects were not seen on early images but seen on delayed images; and three had persistent defects which were seen on both early and delayed images. A decreased washout of thallium-201 was seen in 9 patients. In an analysis of both perfusion defects and washout rate, 13 patients (76%) in Group I were found to have abnormal findings. This suggests that disturbed coronary microcirculation or impaired myocardium may frequently develop even when EF is normal. All of the patients categorized as having a decreased cardiac function (Group II) had perfusion defect, suggesting the presence of myocardial fibrosis. In PSS, deterioration of cardiac function seemed to be associated with progression of myocardial fibrosis. Dipyridamole thallium imaging may be a sensitive method for detecting cardiac lesions in PSS. It also has the potential for detecting decreased coronary flow reserve or slightly impaired myocardium even without decreased EF. (N.K.).

  20. Multifocal non-Hodgkin lymphoma in an infant with cardiac involvement: whole-body MR imaging

    International Nuclear Information System (INIS)

    Non-Hodgkin lymphoma (NHL) is rare in infancy, and we present a case of aggressive NHL of T-cell lineage in an infant with multifocal bone, cardiac, mediastinal nodal, paranasal sinus, calvarial, and soft-tissue deposits on presentation that were detected on whole-body MRI. (orig.)

  1. Intradialytic Hypotension and Cardiac Remodeling: A Vicious Cycle

    Directory of Open Access Journals (Sweden)

    Chia-Ter Chao

    2015-01-01

    Full Text Available Hemodynamic instability during hemodialysis is a common but often underestimated issue in the nephrologist practice. Intradialytic hypotension, namely, a decrease of systolic or mean blood pressure to a certain level, prohibits the safe and smooth achievement of ultrafiltration and solute removal goal in chronic dialysis patients. Studies have elucidated the potential mechanisms involved in the development of Intradialytic hypotension, including excessive ultrafiltration and loss of compensatory mechanisms for blood pressure maintenance. Cardiac remodeling could also be one important piece of the puzzle. In this review, we intend to discuss the role of cardiac remodeling, including left ventricular hypertrophy, in the development of Intradialytic hypotension. In addition, we will also provide evidence that a bidirectional relationship might exist between Intradialytic hypotension and left ventricular hypertrophy in chronic dialysis patients. A more complete understanding of the complex interactions in between could assist the readers in formulating potential solutions for the reduction of both phenomena.

  2. Hypertrophy and hyperplasia of smooth muscle cells of small intramyocardial arteries in spontaneously hypertensive rats.

    Science.gov (United States)

    Amann, K; Gharehbaghi, H; Stephen, S; Mall, G

    1995-01-01

    Hearts of stroke-prone spontaneously hypertensive rats (SHR) were investigated by means of stereology and were compared with those of normotensive. Wistar-Kyoto controls. At the age of 9 months, hypertensive rats showed cardiac hypertrophy, marked myocardial fibrosis, activation of nonvascular interstitium, focal myocytial degeneration, reduction of capillarization, and microarteriopathy of small intramyocardial arteries. Stereologically, a significant increase in the total left ventricular arterial wall volume (+180% versus controls) was found in SHR hearts. By using new stereological techniques, the orientator and the nucleator, we investigated whether this significant increase in total left ventricular arterial wall volume was due to hyperplasia of smooth muscle cells in addition to the process of vascular smooth muscle cell hypertrophy that is common in SHR. Additionally, the nuclear size and ratio of cell volume to nuclear volume were determined using another new stereological technique, the selector. The stereological data indicate a significant increase in mean cell and nuclear volumes as well as in the total number of left ventricular arterial smooth muscle cells of SHR. Additionally, the total length of intramyocardial arteries was also significantly increased in hypertensive rats. The volume and number of arterial smooth muscle cells per arterial length were significantly (P < .001 and P < .05, respectively) higher in SHR than in normotensive controls. Thus, we conclude that hypertrophy and hyperplasia of smooth muscle cells are involved in intramyocardial arterial growth processes in hypertensive heart remodeling.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7843743

  3. Lipomatous hypertrophy of the interatrial septum

    International Nuclear Information System (INIS)

    Four hundred consecutive CT scans were reviewed to determine the extent and patterns of fatty deposition in the interatrial septum. A small amount of fat is normally present in the interatrial sulcus at an early age. There is an age-specific but highly variable increase in the deposition of fat in the interatrial septum. The cardiac history of each patient was reviewed retrospectively in relation to the extent of fat in the interatrial septum. Several cases of lipomatous hypertrophy of the interatrial septum are presented and its radiologic appearance and clinical presentation is discussed

  4. Cardiac inflammation involving in PKCε or ERK1/2-activated NF-κB signalling pathway in mice following exposure to titanium dioxide nanoparticles.

    Science.gov (United States)

    Yu, Xiaohong; Hong, Fashui; Zhang, Yu-Qing

    2016-08-01

    The evaluation of toxicological effects of nanoparticles (NPs) is increasingly important due to their growing occupational use and presence as compounds in consumer products. Recent researches have demonstrated that long-term exposure to air particulate matter can induce cardiovascular events, but whether cardiovascular disease, such as cardiac damage, is induced by NP exposure and its toxic mechanisms is rarely evaluated. In the present study, when mice were continuously exposed to TiO2 NPs at 2.5, 5 or 10mg/kg BW by intragastric administration for 90days, obvious histopathological changes, and great alterations of NF-κB and its inhibitor I-κB, as well as TNF-α, IL-1β, IL-6 and IFN-α expression were induced. The NPs significantly decreased Ca(2+)-ATPase, Ca(2+)/Mg(2+)-ATPase and Na(+)/K(+)-ATPase activities and enhanced NCX-1 content. The NPs also considerably increased CAMK II and α1/β1-AR expression and up-regulated p-PKCε and p-ERK1/2 in a dose-dependent manner in the mouse heart. These data suggest that low-dose and long-term exposure to TiO2 NPs may cause cardiac damage such as cardiac fragmentation or disordered myocardial fibre arrangement, tissue necrosis, myocardial haemorrhage, swelling or cardiomyocyte hypertrophy, and the inflammatory response was potentially mediated by NF-κB activation via the PKCε or ERK1/2 signalling cascades in mice. PMID:27054666

  5. Localized nasal cavity, sinus, and massive bilateral orbital involvement by human T cell leukemia virus 1 adult T cell lymphoma, with epidermal hypertrophy due to mite infestation

    Directory of Open Access Journals (Sweden)

    Albert S. Braverman

    2010-12-01

    Full Text Available HTLV1 adult T cell lymphoma occurs tends to be widely disseminated and aggressive, with only brief responses to chemotherapy. Aside from cervical adenopathy, involvement of head and neck structures is uncommon and orbital involvement rare. We report a case of nasal cavity HTLV lymphoma with massive bilateral orbital involvement and proptosis, resulting in complete left and partial right eye amaurosis. No other sites of disease were found. Response to chemotherapy was rapid and complete, with almost complete restoration of vision and oculo-motor function; the patient has remained in remission for one year. An associated problem was striking bilateral hypertrophic, hyperkeratotic eyelid and breast lesions due to mite infestation. 

  6. Early detection of cardiac involvement in Miyoshi myopathy: 2D strain echocardiography and late gadolinium enhancement cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Kim Byoung

    2010-05-01

    Full Text Available Abstract Background Miyoshi myopathy (MM is an autosomal recessive distal myopathy characterized by early adult onset. Cardiomyopathy is a major clinical manifestation in other muscular dystrophies and an important prognostic factor. Although dysferlin is highly expressed in cardiac muscle, the effect of dysferlin deficiency in cardiac muscle has not been studied. We hypothesized that early myocardial dysfunction could be detected by 2D strain echocardiography and late gadolinium enhancement (LGE cardiovascular magnetic resonance (CMR. Method Five consecutive MM patients (3 male in whom we detected the DYSF gene mutation and age-matched healthy control subjects were included. None of the patients had history of cardiac disease or signs and symptoms of overt heart failure. Patients were studied using 2D strain echocardiography and CMR, with 2D strain being obtained using the Automated Function Imaging technique. Results All patients had preserved left ventricular systolic function. However, segmental Peak Systolic Longitudinal Strain (PSLS was decreased in 3 patients. Global PSLS was significantly lower in patients with MM than in control subjects (p = 0.005. Basal anterior septum, basal inferior septum, mid anterior, and mid inferior septum PSLS were significantly lower in patients with MM than in control subjects (P Conclusions Patients with MM showed subclinical involvement of the heart. 2D strain and LGE are sensitive methods for detecting myocardial dysfunction prior to the development of cardiovascular symptoms. The prognostic significance of these findings warrants further longitudinal follow-up.

  7. Nonthyroidal Illness Syndrome in Cardiac Illness Involves Elevated Concentrations of 3,5-Diiodothyronine and Correlates with Atrial Remodeling

    Science.gov (United States)

    Dietrich, Johannes W.; Müller, Patrick; Schiedat, Fabian; Schlömicher, Markus; Strauch, Justus; Chatzitomaris, Apostolos; Klein, Harald H.; Mügge, Andreas; Köhrle, Josef; Rijntjes, Eddy; Lehmphul, Ina

    2015-01-01

    Background Although hyperthyroidism predisposes to atrial fibrillation, previous trials have suggested decreased triiodothyronine (T3) concentrations to be associated with postoperative atrial fibrillation (POAF). Therapy with thyroid hormones (TH), however, did not reduce the risk of POAF. This study reevaluates the relation between thyroid hormone status, atrial electromechanical function and POAF. Methods Thirty-nine patients with sinus rhythm and no history of atrial fibrillation or thyroid disease undergoing cardiac surgery were prospectively enrolled. Serum concentrations of thyrotropin, free (F) and total (T) thyroxine (T4) and T3, reverse (r)T3, 3-iodothyronamine (3-T1AM) and 3,5-diiodothyronine (3,5-T2) were measured preoperatively, complemented by evaluation of echocardiographic and electrophysiological parameters of cardiac function. Holter-ECG and telemetry were used to screen for POAF for 10 days following cardiac surgery. Results Seven of 17 patients who developed POAF demonstrated nonthyroidal illness syndrome (NTIS; defined as low T3 and/or low T4 syndrome), compared to 2 of 22 (p < 0.05) patients who maintained sinus rhythm. In patients with POAF, serum FT3 concentrations were significantly decreased, but still within their reference ranges. 3,5-T2 concentrations directly correlated with rT3 concentrations and inversely correlated with FT3 concentrations. Furthermore, 3,5-T2 concentrations were significantly elevated in patients with NTIS and in subjects who eventually developed POAF. In multivariable logistic regression FT3, 3,5-T2, total atrial conduction time, left atrial volume index and Fas ligand were independent predictors of POAF. Conclusion This study confirms reduced FT3 concentrations in patients with POAF and is the first to report on elevated 3,5-T2 concentrations in cardiac NTIS. The pathogenesis of NTIS therefore seems to involve more differentiated allostatic mechanisms. PMID:26279999

  8. Model dependent behaviour of pressure hypertrophied myocardium.

    Science.gov (United States)

    Cooper, G; Tomanek, R J

    1987-05-01

    Two animal models with contrasting responses to pressure overloading were used to determine whether cardiac dysfunction is a general property of pressure hypertrophied myocardium or a specific property of a particular model. Chronic progressive cardiac pressure overload was compared in (a) the left ventricle of the adult and aged spontaneously hypertensive rat, in which pressure overloading begins in the pup, and (b) the right ventricle of the adult cat, in which pressure overloading was initiated surgically in the kitten. Nine hypertensive and nine control rats were studied at 1 year of age, when hypertension is stable in this model; five hypertensive and five control rats were then studied at 2 years of age, when both groups of rats are beginning to show appreciable senile mortality. Systolic blood pressure was similarly increased in both hypertensive groups; compared with the normotensive control groups, the ratio of left ventricular to body weight was 36% and 76% higher in the 1 and 2 year old hypertensive groups respectively. During isotonic contractions of left ventricular papillary muscles the extent and velocity of shortening in muscles from the control and hypertensive rats in each group were the same, but shortening and relaxation times were prolonged in muscles from the hypertensive rats in both age groups. During isometric contractions developed tension and the rate of tension rise were the same throughout, but the time integral of active tension was increased in muscles from the hypertensive rats in both age groups. The ratio of oxygen consumption to either external work or developed tension was decreased in muscles from the hypertensive rats. In contrast to these data, previous data from the hypertrophied cat model showed reductions in both the velocity and the extent of isotonic shortening as well as in the rate and amount of isometric tension development, and prolongation of contraction was not observed. A similar but smaller decrease in the oxygen

  9. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction).

    Science.gov (United States)

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-05-01

    Cardiac miRNAs (miR-1, miR133a, miR-208a/b, and miR-499) are abundantly expressed in the myocardium. They play a central role in cardiogenesis, heart function and pathology. While miR-1 and miR-133a predominantly control early stages of cardiogenesis supporting commitment of cardiac-specific muscle lineage from embryonic stem cells and mesodermal precursors, miR-208 and miR-499 are involved in the late cardiogenic stages mediating differentiation of cardioblasts to cardiomyocytes and fast/slow muscle fiber specification. In the heart, miR-1/133a control cardiac conductance and automaticity by regulating all phases of the cardiac action potential. miR-208/499 located in introns of the heavy chain myosin genes regulate expression of sarcomeric contractile proteins. In cardiac pathology including myocardial infarction (MI), expression of cardiac miRNAs is markedly altered that leads to deleterious effects associated with heart wounding, arrhythmia, increased apoptosis, fibrosis, hypertrophy, and tissue remodeling. In acute MI, circulating levels of cardiac miRNAs are significantly elevated making them to be a promising diagnostic marker for early diagnosis of acute MI. Great cardiospecific capacity of these miRNAs is very helpful for enhancing regenerative properties and survival of stem cell and cardiac progenitor transplants and for reprogramming of mature non-cardiac cells to cardiomyocytes. PMID:27056419

  10. Early assessment of sub-clinical cardiac involvement in systemic sclerosis (SSc) using delayed enhancement cardiac magnetic resonance (CE-MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Di Cesare, Ernesto, E-mail: ernesto.dicesare@cc.univaq.it [Department of Radiology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila (Italy); Battisti, Sara; Di Sibio, Alessandra [Department of Radiology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila (Italy); Cipriani, Paola; Giacomelli, Roberto; Liakouli, Vasiliky; Ruscitti, Piero [Rheumatology Clinic, Department of Internal Medicine and Public Health, University of L’Aquila, L’Aquila (Italy); Masciocchi, Carlo [Department of Radiology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila (Italy)

    2013-06-15

    Objectives: Systemic sclerosis heart involvement (SHI) is one of systemic sclerosis (SSc) most frequent complications, both in diffuse (dcSSc) and limited (lcSSc) cutaneous forms of disease. Nowadays, SHI is a major factor decreasing SSc survival rate because, when clinically evident, is associated with 70% of mortality at 5 years. SHI shows different forms, primary and/or secondary. Primary myocardial SHI is characterized by fibrosis. Aim of our study is to assess the presence and pattern of fibrosis as detected by cardiac magnetic resonance (CMR) in systemic sclerosis. Methods: In this study, we used CE-MRI (contrast enhanced-MRI) in 58 female SSc patients. Images were evaluated to obtain functional parameters and to see presence, location and pattern (nodular, linear or diffuse) of myocardial LE, sign of fibrosis. CE-MRI findings were correlated with patients clinical setting. Results: Myocardial fibrosis was detected in 25 of 58 patients (43%). The main finding observed in 16 of these 25 patients was a late enhancement showing a linear pattern, without coronary distribution and sparing the sub-endocardial myocardial layers. A patchy nodular enhancement pattern was observed in 9 patients (36%). Patients with linear pattern presented dcSSc, on the contrary patients with nodular LE displayed the lcSSc form. Conclusions: This study shows that CE-MRI is a reliable technique to detect SHI earlier than other methods. SHI increase passive myocardial stiffness, proportional to collagen deposition degree, leading to cardiac remodelling with possible development of heart failure, even with normal ejection fraction. An early treatment of SHI might improve SSc patients outcome.

  11. Early assessment of sub-clinical cardiac involvement in systemic sclerosis (SSc) using delayed enhancement cardiac magnetic resonance (CE-MRI)

    International Nuclear Information System (INIS)

    Objectives: Systemic sclerosis heart involvement (SHI) is one of systemic sclerosis (SSc) most frequent complications, both in diffuse (dcSSc) and limited (lcSSc) cutaneous forms of disease. Nowadays, SHI is a major factor decreasing SSc survival rate because, when clinically evident, is associated with 70% of mortality at 5 years. SHI shows different forms, primary and/or secondary. Primary myocardial SHI is characterized by fibrosis. Aim of our study is to assess the presence and pattern of fibrosis as detected by cardiac magnetic resonance (CMR) in systemic sclerosis. Methods: In this study, we used CE-MRI (contrast enhanced-MRI) in 58 female SSc patients. Images were evaluated to obtain functional parameters and to see presence, location and pattern (nodular, linear or diffuse) of myocardial LE, sign of fibrosis. CE-MRI findings were correlated with patients clinical setting. Results: Myocardial fibrosis was detected in 25 of 58 patients (43%). The main finding observed in 16 of these 25 patients was a late enhancement showing a linear pattern, without coronary distribution and sparing the sub-endocardial myocardial layers. A patchy nodular enhancement pattern was observed in 9 patients (36%). Patients with linear pattern presented dcSSc, on the contrary patients with nodular LE displayed the lcSSc form. Conclusions: This study shows that CE-MRI is a reliable technique to detect SHI earlier than other methods. SHI increase passive myocardial stiffness, proportional to collagen deposition degree, leading to cardiac remodelling with possible development of heart failure, even with normal ejection fraction. An early treatment of SHI might improve SSc patients outcome

  12. Protection of Astragaloside Derivate on Oxidative Stress and Hypertrophy in Cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    HAO Chun-hua; WANG Wei-ting; ZHAO Zhuan-you; TANG Li-da

    2011-01-01

    Objective The astragaloside Ⅳ(ASI)has been proved to play an important role in protecting against cell death on cardiovascular diseases.This study aims to investigate the effect of the astragaloside derivate.(ASId)on confronting oxidative stress and hypertrophy in myocardial cells.Methods Following exposure embryonic rat cardiac H9c2 cells to hydrogen peroxide(H2O2)and angiotensin Ⅱ for developing oxidative stress and hypertrophy,ASId at final concentrations(0.1,1,and 10 μmol/L)was added to study its role in protecting cardiomyocytes by biochemical detection and cell size measurement In addition,the mitochondrial permeability transition pore(mPTP)opener atractyloside(20 μmol/L)and inhibitor cyclosporin A(CSA)(1 μmol/L)were employed to investigate the possible mechanisms for anti-oxidation.Results ASId at 1 and 10 μmol/L in cultures suppressed oxidative stress at different degrees,which induced the decrease in LDH activity and MDA content,and also the increase in SOD activity in comparable with the model group; The mPTP opener atractyloside and inhibitor CSA weakened and strengthened the role of ASId,respectively.ASId at 10 μmol/L inhibited cell hypertrophy,and the cell diameter,surface area,and protein content were all decreased in comparable of those cells in model group.Conclusion ASId is involved in the cytoprotective effects on oxidative stress through a pathway mediated by mPTP,and also has a protective effect against hypertrophy.

  13. Myomegalin is a novel A-kinase anchoring protein involved in the phosphorylation of cardiac myosin binding protein C

    Directory of Open Access Journals (Sweden)

    Riedemann Johann

    2011-05-01

    Full Text Available Abstract Background Cardiac contractility is regulated by dynamic phosphorylation of sarcomeric proteins by kinases such as cAMP-activated protein kinase A (PKA. Efficient phosphorylation requires that PKA be anchored close to its targets by A-kinase anchoring proteins (AKAPs. Cardiac Myosin Binding Protein-C (cMyBPC and cardiac troponin I (cTNI are hypertrophic cardiomyopathy (HCM-causing sarcomeric proteins which regulate contractility in response to PKA phosphorylation. Results During a yeast 2-hybrid (Y2H library screen using a trisphosphorylation mimic of the C1-C2 region of cMyBPC, we identified isoform 4 of myomegalin (MMGL as an interactor of this N-terminal cMyBPC region. As MMGL has previously been shown to interact with phosphodiesterase 4D, we speculated that it may be a PKA-anchoring protein (AKAP. To investigate this possibility, we assessed the ability of MMGL isoform 4 to interact with PKA regulatory subunits R1A and R2A using Y2H-based direct protein-protein interaction assays. Additionally, to further elucidate the function of MMGL, we used it as bait to screen a cardiac cDNA library. Other PKA targets, viz. CARP, COMMD4, ENO1, ENO3 and cTNI were identified as putative interactors, with cTNI being the most frequent interactor. We further assessed and confirmed these interactions by fluorescent 3D-co-localization in differentiated H9C2 cells as well as by in vivo co-immunoprecipitation. We also showed that quantitatively more interaction occurs between MMGL and cTNI under β-adrenergic stress. Moreover, siRNA-mediated knockdown of MMGL leads to reduction of cMyBPC levels under conditions of adrenergic stress, indicating that MMGL-assisted phosphorylation is requisite for protection of cMyBPC against proteolytic cleavage. Conclusions This study ascribes a novel function to MMGL isoform 4: it meets all criteria for classification as an AKAP, and we show that is involved in the phosphorylation of cMyBPC as well as cTNI, hence MMGL

  14. Is endothelial-nitric-oxide-synthase-derived nitric oxide involved in cardiac hypoxia/reoxygenation-related damage?

    Indian Academy of Sciences (India)

    A Rus; Ma Peinado; S Blanco; Ml Del Moral

    2011-03-01

    Nitric oxide (NO) has been reported to act both as a destructive and a protective agent in the pathogenesis of the injuries that occur during hypoxia/reoxygenation (H/R). It has been suggested that this dual role of NO depends directly on the isoform of NO synthase (NOS) involved. In this work, we investigate the role that NO derived from endothelial NOS (eNOS) plays in cardiac H/R-induced injury.Wistar rats were submitted to H/R (hypoxia for 30 min; reoxygenation of 0 h, 12 h and 5 days), with or without prior treatment using the selective eNOS inhibitor L-NIO (20 mg/kg). Lipid peroxidation, apoptosis and protein nitration, as well as NO production (NOx), were analysed. The results showed that L-NIO administration lowered NOx levels in all the experimental groups. However, no change was found in the lipid peroxidation level, the percentage of apoptotic cells or nitrated protein expression, implying that eNOS-derived NO may not be involved in the injuries occurring during H/R in the heart. We conclude that L-NIO would not be useful in alleviating the adverse effects of cardiac H/R.

  15. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake

    Directory of Open Access Journals (Sweden)

    JanGlatz

    2012-09-01

    Full Text Available Aim: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/ long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-λ knockout mice the roles of atypical PKCs (PKC-ζ and PKC-λ in regulating cardiac glucose and fatty acid uptake. Results: Neither insulin-stimulated nor AMPK-mediated glucose and fatty acid uptake were inhibited upon genetic PKC-λ ablation in cardiomyocytes. In contrast, myristoylated PKC-ζ pseudosubstrate inhibited both insulin-stimulated and AMPK-mediated glucose and fatty acid uptake by >80% in both wild-type and PKC-λ-knockout cardiomyocytes. In PKC-λ knockout cardiomyocytes, PKC-ζ is the sole remaining atypical PKC isoform, and its expression level is not different from wild-type cardiomyocytes, in which it contributes to 29% and 17% of total atypical PKC expression and phosphorylation, respectively. Conclusion: Taken together, atypical PKCs are necessary for insulin-stimulated and AMPK-mediated glucose uptake into the heart, as well as for insulin-stimulated and AMPK-mediated fatty acid uptake. However, the residual PKC-ζ activity in PKC-λ-knockout cardiomyocytes is sufficient to allow optimal stimulation of glucose and fatty acid uptake, indicating that atypical PKCs are necessary but not rate-limiting in the regulation of cardiac substrate uptake and that PKC-λ and PKC-ζ have interchangeable functions in these processes.

  16. Familial amyloidotic polyneuropathy with muscle, vitreous, leptomeningeal, and cardiac involvement: Phenotypic, pathological, and MRI description

    OpenAIRE

    Prashantha D; Taly Arun; Sinha Sanjib; Yasha T; Gayathri Narayanappa; Kovur J. M. E; Vijayan Joy

    2010-01-01

    Familial amyloidotic polyneuropathy (FAN type 1) is a rare systemic disease that causes severe and disabling peripheral neuropathy. We describe the phenotypic, radiological, and pathological characteristics of a patient with familial amyloid polyneuropathy type 1 who had evidence of motor-sensory-autonomic neuropathy, ocular vitreous deposits, diffuse leptomeningeal involvement, and hypertrophic cardiomyopathy. Muscle involvement, an infrequently reported feature, was also observed. Early rec...

  17. Gender Differences in Adiponectin Modulation of Cardiac Remodeling in Mice Deficient in Endothelial Nitric Oxide Synthase

    OpenAIRE

    Durand, Jorge L.; Nawrocki, Andrea R.; Scherer, Philipp E.; Jelicks, Linda A.

    2012-01-01

    Left ventricular hypertrophy (LVH) is a risk factor for cardiovascular disease, a leading cause of death. Alterations in endothelial nitric oxide synthase (eNOS), an enzyme involved in regulating vascular tone, and in adiponectin, an adipocyte-derived secretory factor, are associated with cardiac remodeling. Deficiency of eNOS is associated with hypertension and LVH. Adiponectin exhibits vaso-protective, anti-inflammatory, and anti-atherogenic properties. We hypothesized that increased levels...

  18. 多发性骨髓瘤的心脏损害%Cardiac Involvement in Multiple Myeloma

    Institute of Scientific and Technical Information of China (English)

    喻研

    2012-01-01

    多发性骨髓瘤常累及心脏,主要表现为充血性心力衰竭、心绞痛、急性心肌梗死、心律失常和心包积液.心电图、超声心动图、放射性核素扫描、核磁共振显像能帮助诊断.诊断的金标准是心肌活检.多发性骨髓瘤合并心脏受累者的预后很差,但一些新的治疗方法为患者带来了曙光.%Multiple myeloma commonly has cardiac involvement which presents as congestive heart failure, angina pectoris, acute my-ocardial infarction, arrhythmia and pericardial effusion. The use of the electrocardiogram, echocardiogram, radionuclide scan, or magnetic resonance image can help to diagnose the disease. The gold standard for diagnosis is a myocardial biopsy. The prognosis for patients with cardiac impairment is very poor, but some novel treatments are giving hope.

  19. Familial amyloidotic polyneuropathy with muscle, vitreous, leptomeningeal, and cardiac involvement: Phenotypic, pathological, and MRI description

    Directory of Open Access Journals (Sweden)

    Prashantha D

    2010-01-01

    Full Text Available Familial amyloidotic polyneuropathy (FAN type 1 is a rare systemic disease that causes severe and disabling peripheral neuropathy. We describe the phenotypic, radiological, and pathological characteristics of a patient with familial amyloid polyneuropathy type 1 who had evidence of motor-sensory-autonomic neuropathy, ocular vitreous deposits, diffuse leptomeningeal involvement, and hypertrophic cardiomyopathy. Muscle involvement, an infrequently reported feature, was also observed. Early recognition of the disease has significant therapeutic implications.

  20. The Effect of Diazepam on the Function of Hypertrophied Rats’ Hearts in Ischemia-Reperfusion Conditions

    OpenAIRE

    Dareuosh Shackebaei; Farid Feizollahi; Mahvash Hesari; Gholamreza Bahrami

    2016-01-01

    Background: Hypertrophied hearts are susceptible to ischemic injury. Besides, cardiac vulnerability could be changed in the presence of diazepam. Objectives: The current study aimed to investigate the effect of diazepam on hypertrophied rats’ hearts in ischemia-reperfusion conditions. Materials and Methods: Male Wistar rats (body weight 210 - 270 gr) were administered with isoproterenol (4 mg/kg body weight, intraperitoneally for 7 days) alone or along with diazepam (1 and 5 mg/kg bod...

  1. Beneficial effect of isradipine on the development of left ventricular hypertrophy in mild hypertension

    DEFF Research Database (Denmark)

    Mehlsen, J; Fornitz, Gitte Gleerup; Haedersdal, C;

    1993-01-01

    The objective of this study was to analyze the long-term hemodynamic effects of the calcium antagonist isradipine in mild hypertension compared with those of the beta 1-selective adrenoceptor antagonist atenolol, focusing in particular on the development of cardiac hypertrophy. Ten male patients...... isradipine (254 +/- 55 g). The results indicate that antihypertensive treatment with isradipine as monotherapy may prevent the development of left ventricular hypertrophy whereas treatment with atenolol as monotherapy does not appear to offer this possibility....

  2. Cardiac‐specific Hexokinase 2 Overexpression Attenuates Hypertrophy by Increasing Pentose Phosphate Pathway Flux

    OpenAIRE

    McCommis, Kyle S.; Douglas, Diana L.; Krenz, Maike; Baines, Christopher P.

    2013-01-01

    Background The enzyme hexokinase‐2 (HK2) phosphorylates glucose, which is the initiating step in virtually all glucose utilization pathways. Cardiac hypertrophy is associated with a switch towards increased glucose metabolism and decreased fatty acid metabolism. Recent evidence suggests that the increased glucose utilization is compensatory to the down‐regulated fatty acid metabolism during hypertrophy and is, in fact, beneficial. Therefore, we hypothesized that increasing glucose utilization...

  3. HLA-B27 positive juvenile arthritis with cardiac involvement preceding sacroiliac joint changes

    OpenAIRE

    Lee, S; Im H, Y; Schueller, W

    2001-01-01

    While cardiovascular disease develops in up to 50% of adult patients with ankylosing spondylitis, it is very uncommon in its juvenile counterpart. Regarding the early stage of the disease, before onset of sacroiliac joint changes, only two cases with aortic incompetence have been published while reports of mitral valve involvement are not available. A 13 year old boy is described with an HLA-B27 positive asymmetric oligoarthritis and enthesitis, without back pain or radiographic evidence of s...

  4. Markers of collagen synthesis is related to blood pressure and vascular hypertrophy: a LIFE substudy

    DEFF Research Database (Denmark)

    Olsen, M H; Christensen, M K; Wachtell, K; Tuxen, Christian; Fossum, E; Bang, L E; Wiinberg, N; Devereux, R B; Kjeldsen, S E; Hildebrandt, Per; Dige-Petersen, H; Rokkedal, J; Ibsen, H

    2005-01-01

    Cardiac fibrosis and high levels of circulating collagen markers has been associated with left ventricular (LV) hypertrophy. However, the relationship to vascular hypertrophy and blood pressure (BP) load is unclear. In 204 patients with essential hypertension and electrocardiographic LV hypertrophy...... losartan- or an atenolol-based regimen. Furthermore, we measured intima-media thickness of the common carotid arteries (IMT), minimal forearm vascular resistance (MFVR) by plethysmography and ambulatory 24-h BP in around half of the patients. At baseline, PICP/ICTP was positively related to IMT (r=0.24, P...

  5. MiR-139-3p is related to left ventricular hypertrophy and cardiomyocyte apoptosis in two-kidney one-clip hypertensive rats

    Directory of Open Access Journals (Sweden)

    Yang Xiaomin

    2015-01-01

    Full Text Available MicroRNAs (miRNAs are important post-transcriptional regulators of gene expression in many physiological and pathological processes. Previous studies have reported the role of miR-139-3p in cancer. However, its specific roles and functions in the heart undergoing hypertrophy have yet to be fully elucidated. In the present study, a significant upregulation of miR-139-3p expression was demonstrated in the left ventricular myocardium of two-kidney one-clip (2K1C hypertensive rats using microarray and quantitative real-time PCR (qRT-PCR. Based on computational analysis, we observed that miR-139-3p can control the expression of mitogen-activated protein kinase 1 (MAPK1 as a target gene, which is essential for the induction of cardiac hypertrophy and cardiomyocyte apoptosis. This study provides first information that the highly expressed miR-139-3p might be closely involved in MAPK1-mediated cardiac hypertrophy and cardiomyocyte apoptotic processes in 2K1C rat.

  6. C-Myc regulates substrate oxidation patterns during early pressure-overload hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ledee, Dolena R. [Seattle Children' s Research Inst., Seattle, WA (United States); Smith, Lincoln [Seattle Children' s Hospital, Seattle, WA (United States); Kajimoto, Masaki [Seattle Children' s Research Inst., Seattle, WA (United States); Bruce, Margaret [Seattle Children' s Research Inst., Seattle, WA (United States); Isern, Nancy G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Xu, Chun [Seattle Children' s Research Inst., Seattle, WA (United States); Portman, Michael A. [Seattle Children' s Research Inst., Seattle, WA (United States); Olson, Aaron [Seattle Children' s Research Inst., Seattle, WA (United States)

    2013-11-26

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of glycolytic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected FVB mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketones and unlabeled glucose and insulin. Western blots were used to evaluate metabolic enzymes. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (presumably glucose) contribution. Myc inactivation (MycKO-TAC) inhibited these metabolic changes. Hypertrophy in general increased protein levels of PKM2; however this change was not linked to Myc status. Protein post-translation modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. In conclusion, Myc regulates substrate utilization during early pressure overload hypertrophy. Our results show that the metabolic switch during hypertrophy is not necessary to maintain cardiac function, but it may be important mechanism to promote cardiomyocyte growth. Myc also regulates protein O-GlcNAcylation during hypertrophy.

  7. The Effects of Singal Protein SMADs on Rat Cardiocyte Hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Huang Jun; Wang Menghong; Xiao Jing; Peng Jingtian; Zheng Zeqi; Peng Xiaoping

    2005-01-01

    Objectives To investigate the role of signal protein SMADs in rat cardiac hypertrophy.Methods The rat models of cardiac hypertrophy were produced by constriction of the abdominal aorta. The left vertricular mass index (LVMI) was investigated.The expression of transforming growth factor-β1 mRNA (TGF-β1) and Smad 2,3,7 mRNA were assessed by RT-PCR. Reslutes The LVMI and the expression of TGF-β1 and Smad 2,3,7mRNA in hypertrophic left ventricule were increased on day 3 after the operation and continued to 4th weeks. The peak expression of TGF-β1 and Smad 2,3 mRNA were in 2 weeks after operation. The expression of Smad 7 was increased in 3day after operation, but the peak was in 1 week after operation, then decreased. Conclusions The TGF-31and signal protein Smad 2,3,7 were included in the progress of rat cardiac hypertrophy produced by constriction of abdominal aorta.

  8. Prenatal programming: adverse cardiac programming by gestational testosterone excess.

    Science.gov (United States)

    Vyas, Arpita K; Hoang, Vanessa; Padmanabhan, Vasantha; Gilbreath, Ebony; Mietelka, Kristy A

    2016-01-01

    Adverse events during the prenatal and early postnatal period of life are associated with development of cardiovascular disease in adulthood. Prenatal exposure to excess testosterone (T) in sheep induces adverse reproductive and metabolic programming leading to polycystic ovarian syndrome, insulin resistance and hypertension in the female offspring. We hypothesized that prenatal T excess disrupts insulin signaling in the cardiac left ventricle leading to adverse cardiac programming. Left ventricular tissues were obtained from 2-year-old female sheep treated prenatally with T or oil (control) from days 30-90 of gestation. Molecular markers of insulin signaling and cardiac hypertrophy were analyzed. Prenatal T excess increased the gene expression of molecular markers involved in insulin signaling and those associated with cardiac hypertrophy and stress including insulin receptor substrate-1 (IRS-1), phosphatidyl inositol-3 kinase (PI3K), Mammalian target of rapamycin complex 1 (mTORC1), nuclear factor of activated T cells -c3 (NFATc3), and brain natriuretic peptide (BNP) compared to controls. Furthermore, prenatal T excess increased the phosphorylation of PI3K, AKT and mTOR. Myocardial disarray (multifocal) and increase in cardiomyocyte diameter was evident on histological investigation in T-treated females. These findings support adverse left ventricular remodeling by prenatal T excess. PMID:27328820

  9. Ion channelopathy and hyperphosphorylation contributing to cardiac arrhythmias

    Institute of Scientific and Technical Information of China (English)

    De-zai DAI; Feng YU

    2005-01-01

    The occurrence of cardiac arrhythmias is related to the abnormality of ion channels not only in sarcolemma but also in the sarcoplasmic reticulum, which regulates the process of calcium release and up-take intracellularly. Patterns of ion channelopathy in the sarcolemma can be divided into single channel disorder from gene mutations and multiple channels disorder in a diseased hypertrophied heart. Abnormal RyR2, FKBP12.6, SERCA2a, and PLB are also involved in the initiation of cardiac arrhythmias. Maladjustment by hyperphosphorylation on the ion channels in the sarcolemma and RyR2-FKBP12.6 and SERCA2a-PLB is discussed. Hyperphosphorylation, which is the main abnormality upstream to ion channels, can be targeted for suppressing the deterioration of ion channelopathy in terms of new drug discovery in the treatment and prevention of malignant cardiac arrhythmias.

  10. Male and female hypertrophic rat cardiac myocyte functional responses to ischemic stress and β-adrenergic challenge are different

    OpenAIRE

    Bell, James R.; Curl, Claire L.; Harding, Tristan W.; Vila Petroff, Martin; Harrap, Stephen B.; Delbridge, Lea M D

    2016-01-01

    Background Cardiac hypertrophy is the most potent cardiovascular risk factor after age, and relative mortality risk linked with cardiac hypertrophy is greater in women. Ischemic heart disease is the most common form of cardiovascular pathology for both men and women, yet significant differences in incidence and outcomes exist between the sexes. Cardiac hypertrophy and ischemia are frequently occurring dual pathologies. Whether the cellular (cardiomyocyte) mechanisms underlying myocardial dama...

  11. Roles and post-translational regulation of cardiac class IIa histone deacetylase isoforms.

    Science.gov (United States)

    Weeks, Kate L; Avkiran, Metin

    2015-04-15

    Cardiomyocyte hypertrophy is an integral component of pathological cardiac remodelling in response to mechanical and chemical stresses in settings such as chronic hypertension or myocardial infarction. For hypertrophy to ensue, the pertinent mechanical and chemical signals need to be transmitted from membrane sensors (such as receptors for neurohormonal mediators) to the cardiomyocyte nucleus, leading to altered transcription of the genes that regulate cell growth. In recent years, nuclear histone deacetylases (HDACs) have attracted considerable attention as signal-responsive, distal regulators of the transcriptional reprogramming that in turn precipitates cardiomyocyte hypertrophy, with particular focus on the role of members of the class IIa family, such as HDAC4 and HDAC5. These histone deacetylase isoforms appear to repress cardiomyocyte hypertrophy through mechanisms that involve protein interactions in the cardiomyocyte nucleus, particularly with pro-hypertrophic transcription factors, rather than via histone deacetylation. In contrast, evidence indicates that class I HDACs promote cardiomyocyte hypertrophy through mechanisms that are dependent on their enzymatic activity and thus sensitive to pharmacological HDAC inhibitors. Although considerable progress has been made in understanding the roles of post-translational modifications (PTMs) such as phosphorylation, oxidation and proteolytic cleavage in regulating class IIa HDAC localisation and function, more work is required to explore the contributions of other PTMs, such as ubiquitination and sumoylation, as well as potential cross-regulatory interactions between distinct PTMs and between class IIa and class I HDAC isoforms. PMID:25362149

  12. The potential role of Kv4.3 K+ channel in heart hypertrophy

    OpenAIRE

    Huo, Rong; Sheng, Yue; Guo, Wen-ting; Dong, De-li

    2014-01-01

    Transient outward K+ current (Ito) plays a crucial role in the early phase of cardiac action potential repolarization. Kv4.3 K+ channel is an important component of Ito. The function and expression of Kv4.3 K+ channel decrease in variety of heart diseases, especially in heart hypertrophy/heart failure. In this review, we summarized the changes of cardiac Kv4.3 K+ channel in heart diseases and discussed the potential role of Kv4.3 K+ channel in heart hypertrophy/heart failure. In heart hypertr...

  13. Kshara application for turbinate hypertrophy

    OpenAIRE

    Kotrannavar, Vijay Kumar S.; Angadi, Savita S.

    2013-01-01

    Nasapratinaha (nasal obstruction) is a commonly encountered disease in clinical practice. It is one of the nasal disorders, explained in Ayurveda, having nasal obstruction leading to difficulty in breathing as the main cardinal feature. In contemporary science, this condition can be correlated with various diseases such as turbinate hypertrophy, deviated nasal septum, nasal mass, mucosal congestion, allergic rhinitis, and others; among which turbinate hypertrophy is a common cause. Turbinate ...

  14. Role of microtubules in the contractile dysfunction of hypertrophied myocardium

    Science.gov (United States)

    Zile, M. R.; Koide, M.; Sato, H.; Ishiguro, Y.; Conrad, C. H.; Buckley, J. M.; Morgan, J. P.; Cooper, G. 4th

    1999-01-01

    OBJECTIVES: We sought to determine whether the ameliorative effects of microtubule depolymerization on cellular contractile dysfunction in pressure overload cardiac hypertrophy apply at the tissue level. BACKGROUND: A selective and persistent increase in microtubule density causes decreased contractile function of cardiocytes from cats with hypertrophy produced by chronic right ventricular (RV) pressure overloading. Microtubule depolymerization by colchicine normalizes contractility in these isolated cardiocytes. However, whether these changes in cellular function might contribute to changes in function at the more highly integrated and complex cardiac tissue level was unknown. METHODS: Accordingly, RV papillary muscles were isolated from 25 cats with RV pressure overload hypertrophy induced by pulmonary artery banding (PAB) for 4 weeks and 25 control cats. Contractile state was measured using physiologically sequenced contractions before and 90 min after treatment with 10(-5) mol/liter colchicine. RESULTS: The PAB significantly increased RV systolic pressure and the RV weight/body weight ratio in PAB; it significantly decreased developed tension from 59+/-3 mN/mm2 in control to 25+/-4 mN/mm2 in PAB, shortening extent from 0.21+/-0.01 muscle lengths (ML) in control to 0.12+/-0.01 ML in PAB, and shortening rate from 1.12+/-0.07 ML/s in control to 0.55+/-0.03 ML/s in PAB. Indirect immunofluorescence confocal microscopy showed that PAB muscles had a selective increase in microtubule density and that colchicine caused complete microtubule depolymerization in both control and PAB papillary muscles. Microtubule depolymerization normalized myocardial contractility in papillary muscles of PAB cats but did not alter contractility in control muscles. CONCLUSIONS: Excess microtubule density, therefore, is equally important to both cellular and to myocardial contractile dysfunction caused by chronic, severe pressure-overload cardiac hypertrophy.

  15. Kshara application for turbinate hypertrophy.

    Science.gov (United States)

    Kotrannavar, Vijay Kumar S; Angadi, Savita S

    2013-10-01

    Nasapratinaha (nasal obstruction) is a commonly encountered disease in clinical practice. It is one of the nasal disorders, explained in Ayurveda, having nasal obstruction leading to difficulty in breathing as the main cardinal feature. In contemporary science, this condition can be correlated with various diseases such as turbinate hypertrophy, deviated nasal septum, nasal mass, mucosal congestion, allergic rhinitis, and others; among which turbinate hypertrophy is a common cause. Turbinate hypertrophy can be treated with surgical and medical methods. The medical treatment has limitation for prolonged use because of health purpose, surgical approaches too have failed to achieve desired results in turbinate hypertrophy due to complications and high recurrence rate. The medical and surgical managements have their own limitations, merits, and demerits like synechiae formation, rhinitis sicca, severe bleeding, or osteonecrosis of the turbinate bone A parasurgical treatment explained in Ayurveda, known as kshara pratisarana, which is a minimal invasive and precise procedure for this ailment, tried to overcome this problem. 'Kshara Karma' is a popular treatment modality in Ayurveda, which has been advocated in disorders of nose like arbuda (tumor) and adhimamsa (muscular growth). Clinical observation has shown its effectiveness in the management of turbinate hypertrophy. A case report of 45-year-old male who presented with complaints of frequent nasal obstruction, nasal discharge, discomfort in nose, and headache; and diagnosed as turbinate hypertrophy has been presented here. The patient was treated with one application of Kshara over the turbinates. The treatment was effective and no recurrence was noticed in the follow up. PMID:24459392

  16. Rare Copy Number Variants Identified Suggest the Regulating Pathways in Hypertension-Related Left Ventricular Hypertrophy

    Science.gov (United States)

    Marshall, Christian R.; Majid, Fadhlina; Danuri, Norlaila; Basir, Fashieha; Thiruvahindrapuram, Bhooma; Scherer, Stephen W.; Yusoff, Khalid

    2016-01-01

    Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular morbidity and mortality, and a powerful predictor of adverse cardiovascular outcomes in the hypertensive patients. It has complex multifactorial and polygenic basis for its pathogenesis. We hypothesized that rare copy number variants (CNVs) contribute to the LVH pathogenesis in hypertensive patients. Copy number variants (CNV) were identified in 258 hypertensive patients, 95 of whom had LVH, after genotyping with a high resolution SNP array. Following stringent filtering criteria, we identified 208 rare, or private CNVs that were only present in our patients with hypertension related LVH. Preliminary findings from Gene Ontology and pathway analysis of this study confirmed the involvement of the genes known to be functionally involved in cardiac development and phenotypes, in line with previously reported transcriptomic studies. Network enrichment analyses suggested that the gene-set was, directly or indirectly, involved in the transcription factors regulating the “foetal cardiac gene programme” which triggered the hypertrophic cascade, confirming previous reports. These findings suggest that multiple, individually rare copy number variants altering genes may contribute to the pathogenesis of hypertension-related LVH. In summary, we have provided further supporting evidence that rare CNV could potentially impact this common and complex disease susceptibility with lower heritability. PMID:26930585

  17. First experience of simultaneous PET/MRI for the early detection of cardiac involvement in patients with Anderson-Fabry disease

    Energy Technology Data Exchange (ETDEWEB)

    Nappi, Carmela; Altiero, Michele; Imbriaco, Massimo; Giudice, Caterina Anna; Spinelli, Letizia; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Nicolai, Emanuele; Aiello, Marco; Diomiaiuti, Claudio Tommaso [IRCCS SDN, Naples (Italy); Pisani, Antonio [University Federico II, Department of Public Health, Naples (Italy)

    2015-03-26

    Anderson-Fabry disease (AFD) is an X-linked lysosomal storage disorder associated with severe multiorgan dysfunction and premature death. Early diagnosis and treatment strategies play a key role in patient outcome. We investigated the potential role of hybrid PET/MR imaging in the assessment of early cardiac involvement in AFD patients. Thirteen AFD patients without cardiac symptoms and with normal left ventricular function underwent simultaneous cardiac PET/MR imaging after administration of {sup 18}F-FDG. Cardiac FDG uptake was quantified by measuring the standardized uptake value in 17 myocardial segments in each subject. The coefficient of variation (COV, i.e. the standard deviation divided by the average) of the uptake of the 17 segments was calculated as an index of heterogeneity in the heart. Six patients exhibited focal late gadolinium enhancement (LGE) indicating intramyocardial fibrosis, and four of these also had positive short inversion time inversion recovery (STIR) sequences. All patients with LGE and positive STIR MR images showed focal FDG uptake in the corresponding myocardial segments indicating inflammation. Of the seven patients with negative LGE and STIR images, five showed homogeneous FDG cardiac uptake and two showed heterogeneous FDG uptake. The COV was significantly greater in patients with focal FDG uptake (0.25 ± 0.02) than in those without (0.14 ± 0.07, p < 0.01). PET/MR imaging is clinically feasible for the early detection of cardiac involvement in patients with AFD. Further studies evaluating the role of hybrid PET/MR imaging in management of the disease in larger patient populations are warranted. (orig.)

  18. First experience of simultaneous PET/MRI for the early detection of cardiac involvement in patients with Anderson-Fabry disease

    International Nuclear Information System (INIS)

    Anderson-Fabry disease (AFD) is an X-linked lysosomal storage disorder associated with severe multiorgan dysfunction and premature death. Early diagnosis and treatment strategies play a key role in patient outcome. We investigated the potential role of hybrid PET/MR imaging in the assessment of early cardiac involvement in AFD patients. Thirteen AFD patients without cardiac symptoms and with normal left ventricular function underwent simultaneous cardiac PET/MR imaging after administration of 18F-FDG. Cardiac FDG uptake was quantified by measuring the standardized uptake value in 17 myocardial segments in each subject. The coefficient of variation (COV, i.e. the standard deviation divided by the average) of the uptake of the 17 segments was calculated as an index of heterogeneity in the heart. Six patients exhibited focal late gadolinium enhancement (LGE) indicating intramyocardial fibrosis, and four of these also had positive short inversion time inversion recovery (STIR) sequences. All patients with LGE and positive STIR MR images showed focal FDG uptake in the corresponding myocardial segments indicating inflammation. Of the seven patients with negative LGE and STIR images, five showed homogeneous FDG cardiac uptake and two showed heterogeneous FDG uptake. The COV was significantly greater in patients with focal FDG uptake (0.25 ± 0.02) than in those without (0.14 ± 0.07, p < 0.01). PET/MR imaging is clinically feasible for the early detection of cardiac involvement in patients with AFD. Further studies evaluating the role of hybrid PET/MR imaging in management of the disease in larger patient populations are warranted. (orig.)

  19. Subaortic and midventricular obstructive hypertrophic cardiomyopathy with extreme segmental hypertrophy

    Science.gov (United States)

    Efthimiadis, Georgios K; Giannakoulas, Georgios; Parcharidou, Despina G; Ziakas, Antonios G; Papadopoulos, Christodoulos E; Karoulas, Takis; Pliakos, Christodoulos; Parcharidis, Georgios

    2007-01-01

    Background Subaortic and midventricular hypertrophic cardiomyopathy in a patient with extreme segmental hypertrophy exceeding the usual maximum wall thickness reported in the literature is a rare phenomenon. Case Presentation A 19-year-old man with recently diagnosed hypertrophic cardiomyopathy (HCM) was referred for sudden death risk assessment. The patient had mild exertional dyspnea (New York Heart Association functional class II), but without syncope or chest pain. There was no family history of HCM or sudden death. A two dimensional echocardiogram revealed an asymmetric type of LV hypertrophy; anterior ventricular septum = 49 mm; posterior ventricular septum = 20 mm; anterolateral free wall = 12 mm; and posterior free wall = 6 mm. The patient had 2 types of obstruction; a LV outflow obstruction due to systolic anterior motion of both mitral leaflets (Doppler-estimated 38 mm Hg gradient at rest); and a midventricular obstruction (Doppler-estimated 43 mm Hg gradient), but without apical aneurysm or dyskinesia. The patient had a normal blood pressure response on exercise test and no episodes of non-sustained ventricular tachycardia in 24-h ECG recording. Cardiac MRI showed a gross late enhancement at the hypertrophied septum. Based on the extreme degree of LV hypertrophy and the myocardial hyperenhancement, an implantation of a cardioverter-defibrillator was recommended prophylactically for primary prevention of sudden death. Conclusion Midventricular HCM is an infrequent phenotype, but may be associated with an apical aneurysm and progression to systolic dysfunction (end-stage HCM). PMID:17349063

  20. Subaortic and midventricular obstructive hypertrophic cardiomyopathy with extreme segmental hypertrophy

    Directory of Open Access Journals (Sweden)

    Karoulas Takis

    2007-03-01

    Full Text Available Abstract Background Subaortic and midventricular hypertrophic cardiomyopathy in a patient with extreme segmental hypertrophy exceeding the usual maximum wall thickness reported in the literature is a rare phenomenon. Case Presentation A 19-year-old man with recently diagnosed hypertrophic cardiomyopathy (HCM was referred for sudden death risk assessment. The patient had mild exertional dyspnea (New York Heart Association functional class II, but without syncope or chest pain. There was no family history of HCM or sudden death. A two dimensional echocardiogram revealed an asymmetric type of LV hypertrophy; anterior ventricular septum = 49 mm; posterior ventricular septum = 20 mm; anterolateral free wall = 12 mm; and posterior free wall = 6 mm. The patient had 2 types of obstruction; a LV outflow obstruction due to systolic anterior motion of both mitral leaflets (Doppler-estimated 38 mm Hg gradient at rest; and a midventricular obstruction (Doppler-estimated 43 mm Hg gradient, but without apical aneurysm or dyskinesia. The patient had a normal blood pressure response on exercise test and no episodes of non-sustained ventricular tachycardia in 24-h ECG recording. Cardiac MRI showed a gross late enhancement at the hypertrophied septum. Based on the extreme degree of LV hypertrophy and the myocardial hyperenhancement, an implantation of a cardioverter-defibrillator was recommended prophylactically for primary prevention of sudden death. Conclusion Midventricular HCM is an infrequent phenotype, but may be associated with an apical aneurysm and progression to systolic dysfunction (end-stage HCM.

  1. Effect of PPAR γ activators on hypertrophic cardiac myocytes in vitro

    International Nuclear Information System (INIS)

    Objective: To investigate the effects of peroxisome proliferator-activated receptor γ (PPAR γ) activators pioglitazone and 15-deoxy-Δ12,14 prostaglandin J2(15d-PGJ2) on hypertrophic cardiac myocytes (MC) of neonatal rats in vitro. Methods; With the stimulation of angiotensin II(Ang II), a model of hypertrophy of MC was established. With the method of reverse transcription-polymerase chain reaction (RT-PCR), mRNA expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was amplified; with the aid of NIH Image J software the surface area of MC was analyzed and with 3H-leucine incorporation, the synthesizing rate of protein in MC was measured. Results: Increases in surface area of MC, mRNA expression of ANP and BNP and 3H-leucine incorporation in MC were observed in the model of cardiac hypertrophy. Pioglitazone and 15d-PGJ2, two kinds of PPAR γ activators, inhibited the above changes in a dose-dependent manner. Conclusion: It is suggested that PPAR γ activators inhibit hypertrophy of cardiac myocytes and PPAR γ-dependent pathway be involved in the inhibitory course

  2. Impact of cardiac involvement on the risk of mortality among patients with systemic sclerosis: a 5-year follow-up of a single-center cohort.

    Science.gov (United States)

    Költő, Gyöngyvér; Faludi, Réka; Aradi, Dániel; Bartos, Barbara; Kumánovics, Gábor; Minier, Tünde; Czirják, László; Komócsi, András

    2014-02-01

    Cardiac involvement is among the leading causes of mortality in patients with systemic sclerosis (SSc). Previously, we demonstrated in a single-center, cross-sectional study the frequent coexistence of different forms of cardiac involvement in systemic sclerosis including pulmonary arterial hypertension (PAH), coronary artery disease (CAD), and microvascular dysfunction (MVD). The aim of the present study was to investigate the prognostic significance of cardiac involvement. One hundred twenty patients with SSc were enrolled. All cases underwent a non-invasive cardiovascular protocol. In 30 patients with suspected cardiac involvement, right heart catheterization and intra-coronary pressure-wire-supplemented coronary angiography were performed. Clinical follow-up was 5 years. Patients with CAD at the baseline showed a trend for higher cardiovascular mortality while in patients with MVD this difference was significant (26.7 % versus 9.5 %, p = 0.077 and 30 % versus 10.1 %, p < 0.05, respectively). Cardiovascular mortality of PAH cases was higher but, however, did not reach statistical significance 21.4 % versus 10.4 %, p = 0.261. Cardiovascular event-free survival was significantly lower among patients with combinations of two or three disorders (p < 0.05). Multivariate analysis of organ involvements and comorbidities showed that the diffuse cutaneous subset, the presence of kidney involvement, the velocity of the tricuspid regurgitation, as well as diabetes mellitus were independent predictors of overall mortality. MVD and CAD alone or in combination with PAH significantly affected the 5-year cardiovascular mortality. These findings highlight the prognostic importance of coronary disease in patients with SSc [ www.clinicaltrials.gov (Reg. Nr.: NCT00843102)]. PMID:23942767

  3. Cellular mechanisms of reduced sarcoplasmic reticulum Ca2+ content in L-thyroxin-induced rat ventricular hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Lai-jing SONG; Guan-lei WANG; Jie LIU; Qin-ying QIU; Jing-hua OU; Yong-yuan GUAN

    2008-01-01

    Aim:To examine how the sarcoplasmic reticulum (SR) Ca2+ content changes and the underlying mechanism in L-thyroxin-induced cardiac hypertrophy. Methods:Echocardiography was used to confirm the establishment of the cardiac hypertro-phy model. The confocal microscopy and fluorescent indicator Fluo-3 was ap-plied to examine the intracellular Ca2+ concentration ([Ca2+]I), the Ca2+ sparks, and the caffeine-induced Ca2+ transient in freshly isolated cardiac ventricular myocytes. The activity of sarcolemmal and SR Ca2+-ATPase 2a (SERCA2a) in the ventricular tissue was also measured, respectively. Results:L-thyroxin (1 mg/kg injection for 10 d) induces left ventricular cardiac hypertrophy with normal myocardial function. The decreased caffeine-induced Ca2+ transient in the Ca2+-free solution was detected. The spontaneous Ca2+ sparks in hypertrophied myocytes occurred more frequently than in normal cells, with similar duration and spatial spread, but smaller amplitude. Then the basal [Ca2+]I increase was observed in quiescent left ventricular myocytes from hyperthyroidism rats. The activity of sarcolemmal and SR Ca2+-ATPase was decreased in the hypertrophied ventricle tissue. Conclusion:The results suggested that the reduced SR Ca2+ content may be associated with an increased Ca2+ leak and reduced SERCA2a activity, contributing to abnormal intracellular Ca2+ handling during hypertrophy in hyperthyroidism rats.

  4. Disseminated cysticercosis with huge muscle hypertrophy

    Directory of Open Access Journals (Sweden)

    Bandyopadhyay Debabrata

    2009-01-01

    Full Text Available Cysticercosis is caused by cysticercus cellulose, which is the larva of Taenia solium , the pork tapeworm. The larvae are carried in the blood stream after penetrating the walls of the alimentary tract and they lodge in different tissues like the skin, skeletal muscles, brain, fundus and heart, to cause disseminated cysticercosis. Cases of disseminated cysticercosis have rarely been reported in the literature. They may inhabit the muscles and cause muscular hypertrophy, which, at times, may assume gross proportions. Morbidity is usually caused by the involvement of the central nervous system or the eyes.

  5. The Effect of Sorafenib, Tadalafil and Macitentan Treatments on Thyroxin-Induced Hemodynamic Changes and Cardiac Abnormalities

    Science.gov (United States)

    Saad, Nancy S.; Floyd, Kyle; Ahmed, Amany A. E.; Mohler, Peter J.

    2016-01-01

    Multikinase inhibitors (e.g. Sorafenib), phosphodiesterase-5 inhibitors (e.g. Tadalafil), and endothelin-1 receptor blockers (e.g. Macitentan) exert influential protection in a variety of animal models of cardiomyopathy; however, their effects on thyroxin-induced cardiomyopathy have never been investigated. The goal of the present study was to assess the functional impact of these drugs on thyroxin-induced hemodynamic changes, cardiac hypertrophy and associated altered responses of the contractile myocardium both in-vivo at the whole heart level and ex-vivo at the cardiac tissue level. Control and thyroxin (500 μg/kg/day)-treated mice with or without 2-week treatments of sorafenib (10 mg/kg/day; I.P), tadalafil (1 mg/kg/day; I.P or 4 mg/kg/day; oral), macitentan (30 and 100 mg/kg/day; oral), and their vehicles were studied. Blood pressure, echocardiography and electrocardiogram were non-invasively evaluated, followed by ex-vivo assessments of isolated multicellular cardiac preparations. Thyroxin increased blood pressure, resulted in cardiac hypertrophy and left ventricular dysfunction in-vivo. Also, it caused contractile abnormalities in right ventricular papillary muscles ex-vivo. None of the drug treatments were able to significantly attenuate theses hemodynamic changes or cardiac abnormalities in thyroxin-treated mice. We show here for the first time that multikinase (raf1/b, VEGFR, PDGFR), phosphodiesterase-5, and endothelin-1 pathways have no major role in thyroxin-induced hemodynamic changes and cardiac abnormalities. In particular, our data show that the involvement of endothelin-1 pathway in thyroxine-induced cardiac hypertrophy/dysfunction seems to be model-dependent and should be carefully interpreted. PMID:27082116

  6. Sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Aranđelović Aleksandra Č.

    2004-01-01

    Full Text Available Sudden cardiac death in an athlete is rare and tragic event. An athlete's death draws high public attention given that athletes are considered the healthiest category of society. The vast majority of sudden cardiac death in young athletes is due to congenital cardiac malformations such as hypertrophie cardiomyopathy and various coronary artery anomalies. In athletes over age 35, the usual cause of sudden cardiac death is coronary artery disease. With each tragic death of a young athlete, there is a question why this tragedy has not been prevented. The American College of Sports Medicine and the American Heart Association recommend that a pre-participation exam should include a complete cardiovascular history and physical examination.

  7. Kshara application for turbinate hypertrophy

    Directory of Open Access Journals (Sweden)

    Vijay Kumar S Kotrannavar

    2013-01-01

    Full Text Available Nasapratinaha (nasal obstruction is a commonly encountered disease in clinical practice. It is one of the nasal disorders, explained in Ayurveda, having nasal obstruction leading to difficulty in breathing as the main cardinal feature. In contemporary science, this condition can be correlated with various diseases such as turbinate hypertrophy, deviated nasal septum, nasal mass, mucosal congestion, allergic rhinitis, and others; among which turbinate hypertrophy is a common cause. Turbinate hypertrophy can be treated with surgical and medical methods. The medical treatment has limitation for prolonged use because of health purpose, surgical approaches too have failed to achieve desired results in turbinate hypertrophy due to complications and high recurrence rate. The medical and surgical managements have their own limitations, merits, and demerits like synechiae formation, rhinitis sicca, severe bleeding, or osteonecrosis of the turbinate bone A parasurgical treatment explained in Ayurveda, known as kshara pratisarana, which is a minimal invasive and precise procedure for this ailment, tried to overcome this problem. ′Kshara Karma′ is a popular treatment modality in Ayurveda, which has been advocated in disorders of nose like arbuda (tumor and adhimamsa (muscular growth. Clinical observation has shown its effectiveness in the management of turbinate hypertrophy. A case report of 45-year-old male who presented with complaints of frequent nasal obstruction, nasal discharge, discomfort in nose, and headache; and diagnosed as turbinate hypertrophy has been presented here. The patient was treated with one application of Kshara over the turbinates. The treatment was effective and no recurrence was noticed in the follow up.

  8. Cardiac manifestations of myotonic dystrophy type 1

    DEFF Research Database (Denmark)

    Petri, Helle; Vissing, John; Witting, Nanna; Bundgaard, Henning; Køber, Lars

    2012-01-01

    To estimate the degree of cardiac involvement regarding left ventricular ejection fraction, conduction abnormalities, arrhythmia, risk of sudden cardiac death (SCD) and the associations between cardiac involvement and cytosine-thymine-guanine (CTG)-repeat, neuromuscular involvement, age and gender...

  9. Liganded Peroxisome Proliferator-Activated Receptors (PPARs) Preserve Nuclear Histone Deacetylase 5 Levels in Endothelin-Treated Sprague-Dawley Rat Cardiac Myocytes

    OpenAIRE

    Zhang, Haining; Shao, Zongjun; Alibin, Caroline P.; Acosta, Crystal; Anderson, Hope D

    2014-01-01

    Ligand activation of peroxisome proliferator-activated receptors (PPARs) prevents cardiac myocyte hypertrophy, and we previously reported that diacylglycerol kinase zeta (DGKζ) is critically involved. DGKζ is an intracellular lipid kinase that catalyzes phosphorylation of diacylglycerol; by attenuating DAG signaling, DGKζ suppresses protein kinase C (PKC) and G-protein signaling. Here, we investigated how PPAR-DGKζ signaling blocks activation of the hypertrophic gene program. We focused on ex...

  10. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  11. Inhibition of Glycogen Synthase Kinase-3β Improves Tolerance to Ischemia in Hypertrophied Hearts

    Science.gov (United States)

    Barillas, Rodrigo; Friehs, Ingeborg; Cao-Danh, Hung; Martinez, Joseph F.; del Nido, Pedro J.

    2012-01-01

    Background Hypertrophied myocardium is more susceptible to ischemia/reperfusion injury, in part owing to impaired insulin-mediated glucose uptake. Glycogen synthase kinase-3β (GSK-3β) is a key regulatory enzyme in glucose metabolism that, when activated, phosphorylates/inactivates target enzymes of the insulin signaling pathway. Glycogen synthase kinase-3β is regulated upstream by Akt-1. We sought to determine whether GSK-3β is activated in ischemic hypertrophied myocardium owing to impaired Akt-1 function, and whether inhibition with lithium (Li) or indirubin-3′-monoxime,5-iodo- (IMI), a specific inhibitor, improves post-ischemic myocardial recovery by improving glucose metabolism. Methods Pressure-overload hypertrophy was achieved by aortic banding in neonatal rabbits. At 6 weeks, isolated hypertrophied hearts underwent 30 minutes of normothermic ischemia and reperfusion with or without GSK-3β inhibitor (0.1 mM Li; 1 µM IMI) as cardioplegic additives. Cardiac function was measured before and after ischemia. Expression, activity of Akt-1 and GSK-3β, and lactate were determined at end-ischemia. Results Contractile function after ischemia was better preserved in hypertrophied hearts treated with GSK-3β inhibitors. Activity of Akt-1 was significantly impaired in hypertrophied myocardium at end-ischemia. Glycogen synthase kinase-3β enzymatic activity at end-ischemia was increased in hypertrophied hearts and was blocked by Li or IMI concomitant with significantly increased lactate production, indicating increased glycolysis. Conclusions Regulatory inhibition of GSK-3β by Akt-1 in hypertrophied hearts is impaired, leading to activation during ischemia. Inhibition of GSK-3β by Li or IMI improves tolerance to ischemia/reperfusion injury in hypertrophied myocardium. The likely protective mechanism is an increase in insulin-mediated glucose uptake, resulting in greater substrate availability for glycolysis during ischemia and early reperfusion. PMID:17588398

  12. [EFFICACY OF STANDARD TWO-YEAR COMPREHENSIVE THERAPY TO ACHIEVE TARGET BLOOD PRESSURE AND REGRESSION DEGREES OF REMODELING OF THE LEFT VENTRICULAR HYPERTROPHY IN PATIENTS AFTER ACUTE MYOCARDIAL INFARCTION WITH COMORBID HYPERTENSION].

    Science.gov (United States)

    Denesiuk, E V

    2015-01-01

    The study involved 23 men after acute myocardial infarction (AMI) with comorbid arterial hypertension (AH). Mean age of patients was 56.7 years. Recurrent myocardial infarction was determined in 38.4%, cardiac failure I-III functional classes--100% of the cases. All patients underwent clinical examination, electrocardiography and echocardiography, blood lipid profile. Standard comprehensive treatment for two years included an perindopril 5-10 mg/day, beta-blocker bisoprolol--5-10 mg/day, antisclerotic drug atorvastatin--20 mg/day and aspirin--75 mg/day. The patients after treatment was determined by a gradual increase towards the target of AT at 3, 6 and 12 to 24 months. Concentric left ventricular hypertrophy (LVH) before treatment was determined in 47.8%, eccentric--in 52.2% of patients. In the study of degrees of LVH I (initial) the extent to treatment was determined by 4.3%, II (moderate)--26.1%, III (large)--at 69.6%, indicating the development of cardiac remodeling. After the treatment was determined by marked reduction III (large) degree and transfer it in the II (moderate) and I (small) degree of left ventricular hypertrophy due to more or less pronounced changes remodeling left ventricular. The obtained data allow a more detailed and adequately assess the structural and functional outcome variables and determine the regression of myocardial hypertrophy in the background to achieve target blood pressure, which is important in practical cardiology. PMID:27491146

  13. MicroRNA Expression Signature Is Altered in the Cardiac Remodeling Induced by High Fat Diets.

    Science.gov (United States)

    Guedes, Elaine Castilho; França, Gustavo Starvaggi; Lino, Caroline Antunes; Koyama, Fernanda Christtanini; Moreira, Luana do Nascimento; Alexandre, Juliana Gomes; Barreto-Chaves, Maria Luiza M; Galante, Pedro Alexandre Favoretto; Diniz, Gabriela Placoná

    2016-08-01

    Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3β and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc. PMID:26638879

  14. Protective effect of heat shock transcription factor(HSF1) in adaptive cardiac hypertrophy of mice%适应性心肌肥大机制中热休克蛋白及其转录因子1的正向调控作用

    Institute of Scientific and Technical Information of China (English)

    杨兵生; 刘强; 毛威; 黄兆铨

    2011-01-01

    Objective To investigate the effect of heat shock transcription factor 1 (HSF1) in cardiac hypertrophy of mice.Methods Forty eight male brood wild type mice aged 8 weeks were divided into two groups: 24 mice were transferred with human HSF1 gene and the remaining 24 were not.Each groups were randomized into 3 subgroups: sham operation group (control group), exercise group and hypertension group with 8 mice in each.The hypertension was induced by ligation of abdominal aorta, and mice in exercise group had 5 weeks of exercise.The mice were sacrificed 5 weeks after operation to examine hemodynamic parameters, body weight (BW), left ventricular weight (LVW) by echocardiography.The morphology of cardiomyocytes was examined by histology analysis, the expressions of Hsp70, Hsp27 and HSF1 were measured by Northern blot and Western blot.Results Cardiac hypertrophy in the hypertension and exercise group was more prominent than that in control group.Fractional shortening (FS) was also significantly decreased than that in control group.The cardiac fibrosis also more marked in the hypertension group.The histology analyses showed that the diameter of cardiomyocytes was larger in the two experimental groups.Expression of HSF1 and heat shock proteins was significantly upregulated in the heart by exercise but not by chronic pressure overload.There were significant differences in the thickness of ventricular wall, FS, the diameter of cardiomyocytes and expression of Hsp70 and HSF1 between wild type groups and HSF1 gene- transferred group.Conclusion HSF1 may have protective effect in progress of cardiac hypertrophy.%目的 探讨热休克蛋白(Hsp)及其转录因子1(HSF1)在运动性心脏肥大小鼠心肌中的表达及对心肌的保护作用.方法 取8周龄雄性同窝野生型小鼠48只,其中24只转入人HSF1基因.将转基因小鼠与野生型分别随机分为3组:假手术模型组(对照组)、运动诱导心肌肥大模型组(运动诱导组)、高血压诱

  15. 二尖瓣环位移对肥厚性重构患者左室收缩功能的评估作用%Evaluation of left ventricular systolic dysfunction by mitral annular displacement in patients with cardiac hypertrophy and remodeling

    Institute of Scientific and Technical Information of China (English)

    吴卫华; 黄艳; 陆静; 马兰; 魏松霞; 谢晓奕; 刘奇志; 王雷; 杨玲

    2011-01-01

    目的 应用超声二维斑点追踪显像技术测定二尖瓣环位移(MAD),探讨其在评估肥厚性重构所致的早期左室收缩功能减退方面的临床应用价值.方法 选择86例左室射血分数(LVEF)正常(>50%)的各类心肌肥厚(左室壁厚度≥12 mm)患者作为研究对象.采用Philips Sonos iE33超声仪进行检查,先通过M型超声计算出相对室壁厚度(RWT),然后取心尖四腔观分别采集二维和实时三维全容积(RT3D)图像.应用QLAB 6.2在机量化分析软件分别获取MAD相关参数(包括二尖瓣环中点位移和左室长轴缩短率)和经RT3D图像测得左室射血分数(RT3D-LVEF);计算三维心肌重构指标,包括左室舒末容积指数(LVEDVI)和左室质量指数(LVMI).将心肌肥厚患者中RWT<0.45且LVMI在正常范围内的患者归入肥厚正常几何构型组(HNG组),其余归入肥厚重构组(HR组);以46名年龄相匹配的健康志愿者作为正常对照组.结果 HNG组、HR组和正常对照组的RT3D-LVEF均在正常范围内,两两比较差异均无统计学意义(P>0.05).HR组的MAD各值和LVEDVI均显著低于HNG组和正常对照组,差异均有统计学意义(P<0.01或P<0.05);HNG组与正常对照组MAD相关参数值和LVEDVI比较差异均无统计学意义(P>0.05).Bland-Altman分析显示MAD各值的可重复性较高.结论 在心肌肥厚性重构患者中,与LVEF比较,MAD能更早地反映患者的左室收缩功能减退情况.%Objective To investigate the value of mitral annular displacement (MAD) by two-dimensional speckle tracking in evaluating left ventricular systolic dysfunction in patients with cardiac hypertrophy and remodeling.Methods Eightysix patients with cardiac hypertrophy ( left ventricular wall thickness ≥ 12 mm) and normal left ventricular ejection fraction (LVEF) ( > 50% ) were selected.Philips Sonos iE33 ultrasound device was used for examinations.Relative wall thickness (IRWT) was calculated by M mode ultrasound, and two

  16. [Pathophysiology of left ventricular hypertrophy in arterial hypertension].

    Science.gov (United States)

    Vallotton, M B; Braconi-Quintaje, S; Lang, U

    1997-02-11

    The role of left ventricular hypertrophy as an independent risk factor for subsequent cardio-vascular events is well established, therefore the authors, in this brief review, describe the endocrine function of the heart and the role played by various factors, including hormones, in the development of cardiac remodeling during the course of hypertension. They then outline the present state of our knowledge concerning transmembrane signaling in the cardiomyocyte in response to an activation of specific receptors for vasoactive hormones of the renin-angiotensin II-aldosterone system. PMID:9139339

  17. Anti-hypertensive drugs have different effects on ventricular hypertrophy regression

    Directory of Open Access Journals (Sweden)

    Celso Ferreira Filho

    2010-01-01

    Full Text Available OBJECTIVES: There is a direct relationship between the regression of left ventricular hypertrophy (LVH and a decreased risk of mortality. This investigation aimed to describe the effects of anti-hypertensive drugs on cardiac hypertrophy through a meta-analysis of the literature. METHODS: The Medline (via PubMed, Lilacs and Scielo databases were searched using the subject keywords cardiac hypertrophy, antihypertensive and mortality. We aimed to analyze the effect of anti-hypertensive drugs on ventricle hypertrophy. RESULTS: The main drugs we described were enalapril, verapamil, nifedipine, indapamina, losartan, angiotensin-converting enzyme inhibitors and atenolol. These drugs are usually used in follow up programs, however, the studies we investigated used different protocols. Enalapril (angiotensin-converting enzyme inhibitor and verapamil (Ca++ channel blocker caused hypertrophy to regress in LVH rats. The effects of enalapril and nifedipine (Ca++ channel blocker were similar. Indapamina (diuretic had a stronger effect than enalapril, and losartan (angiotensin II receptor type 1 (AT1 receptor antagonist produced better results than atenolol (selective β1 receptor antagonist with respect to LVH regression. CONCLUSION: The anti-hypertensive drugs induced various degrees of hypertrophic regression.

  18. Acute Post-Exercise Myofibrillar Protein Synthesis Is Not Correlated with Resistance Training-Induced Muscle Hypertrophy in Young Men

    OpenAIRE

    Mitchell, Cameron J.; Churchward-Venne, Tyler A.; Gianni Parise; Leeann Bellamy; Baker, Steven K.; Kenneth Smith; Philip J Atherton; Phillips, Stuart M.

    2014-01-01

    Muscle hypertrophy following resistance training (RT) involves activation of myofibrillar protein synthesis (MPS) to expand the myofibrillar protein pool. The degree of hypertrophy following RT is, however, highly variable and thus we sought to determine the relationship between the acute activation of MPS and RT-induced hypertrophy. We measured MPS and signalling protein activation after the first session of resistance exercise (RE) in untrained men (n = 23) and then examined the relation be...

  19. Myocardial phenotypic changes in Na+, K+ ATPase in left ventricular hypertrophy: pharmacological consequences.

    Science.gov (United States)

    Charlemagne, D; Swynghedauw, B

    1995-05-01

    Cardiac adaptation to permanent overload induces several phenotypic changes which finally result in a system which works more economically, together with a slower Vmax. The molecular target of digitalis is the NA+, K+ ATPase, which is a polymorphic molecule. We have recently demonstrated that during cardiac hypertrophy this target is modified and that a shift occurs in the alpha 1 subunit, from the normally present alpha 2 isosubunit to alpha 3, which is a fetal isoform with a lower affinity for sodium and a higher affinity for ouabain. Such a shift explains why, in rat cardiac hypertrophy ouabain is less toxic than normal and is released from its target more slowly. It may also explain at least in part the discrepancies observed in clinical trials on the efficacy of digitalis. PMID:7556267

  20. Perindopril affects the H2 S/CSE pathway in ISO-induced cardiac hypertrophy%培哚普利对异丙肾上腺素致大鼠心肌肥厚中H2S/CSE合成途径的影响

    Institute of Scientific and Technical Information of China (English)

    鲁艳; 王爱玲; 陈森; 郭增; 李丽; 王春苗; 郭晓琳

    2015-01-01

    Objective To investigate how perindopril affects myocardial hydrogen sulfide / cystathionine-γ-lyase ( H2 S / CSE) pathway in the model of isoprenaline (ISO)-induced cardiac hypertrophy rats. Methods 40 rats were randomly divided into a disease control group, a disease treated with perindopril group, a perindopril control group and a normal control group. Cardiac hypertrophy model was established by a subcutaneous injection of ISO. Heart mass index (HMI), left ventricular mass index (LVMI), the contents of H2 S, the activity of H2 S synthesizing en-zymes and the expression of CSE were calculated. Results Compared with the normal control group, HMI and LV-MI increased (P < 0. 01), myocardial tissue thickened obviously, the contents of H2 S and the activity of H2 S syn-thesizing enzymes decreased (P < 0. 01) and the expression of CSE also decreased (P < 0. 05) in the disease con-trol group. However, the contents of H2 S and the activity of H2 S synthesizing enzymes increased (P < 0. 01) and the expression of CSE increased (P < 0. 05) in the disease treated with perindopril group. Compared with the dis-ease control group, HMI and LVMI decreased (P < 0. 01), the contents of H2 S and the activity of H2 S synthesizing enzymes increased (P < 0. 01) and the expression of CSE also increased (P < 0. 05) in the disease treated with perindopril group. Compared with the perindorpril control group, HMI and LVMI increased (P < 0. 01), the con-tents of H2 S and the activity of H2 S synthesizing enzymes decreased (P < 0. 01) and the expression of CSE also de-creased (P < 0. 05) in the disease treated with perindopril group. Conclusion Perindopril can improve the con-tents of H2 S and the activity of H2 S synthesizing enzymes in myocardial tissue. It may be related to influence H2 S/ CSE pathway via enhancing the expression of CSE which affects more in ISO-induced cardiac hypertrophy rats.%目的:研究在异丙肾上腺素(ISO)致大鼠心肌肥厚模型中,培哚普利对大

  1. : AMPK and skeletal muscle hypertrophy

    OpenAIRE

    Mounier, Rémi; Lantier, Louise; Leclerc, Jocelyne; Sotiropoulos, Athanassia; Pende, Mario; Daegelen, Dominique; Sakamoto, Kei; Foretz, Marc; Viollet, Benoit

    2009-01-01

    10 pages; 6 figures; 49 références bibliographiques International audience Activation of AMP-activated protein kinase (AMPK) inhibits protein synthesis through the suppression of the mammalian target of rapamycin complex 1 (mTORC1), a critical regulator of muscle growth. The purpose of this investigation was to determine the role of the AMPKalpha1 catalytic subunit on muscle cell size control and adaptation to muscle hypertrophy. We found that AMPKalpha1(-/-) primary cultured myotubes a...

  2. Residues 248–252 and 300–304 of the cardiac Na+/Ca2+ exchanger are involved in its regulation by phospholemman

    OpenAIRE

    Zhang, Xue-Qian; Wang, JuFang; Song, Jianliang; Ji, Angi M.; Chan, Tung O.; Cheung, Joseph Y.

    2011-01-01

    Using split cardiac Na+/Ca2+ exchangers (NCX1), we previously demonstrated that phospholemman (PLM) regulates NCX1 by interacting with the proximal linker domain (residues 218–358) of the intracellular loop of NCX1. With the use of overlapping loop deletion mutants, interaction sites are localized to two regions spanning residues 238–270 and residues 300–328 of NCX1. In this study, we used alanine (Ala) linker scanning to pinpoint the residues in the proximal linker domain involved in regulat...

  3. Left Ventricular Hypertrophy in Chronic Kidney Disease Patients: From Pathophysiology to Treatment.

    Science.gov (United States)

    Di Lullo, Luca; Gorini, Antonio; Russo, Domenico; Santoboni, Alberto; Ronco, Claudio

    2015-10-01

    Cardiovascular diseases represent the main causes of morbidity and mortality in patients with chronic kidney disease (CKD). According to a well-established classification, cardiovascular involvement in CKD can be set in the context of cardiorenal syndrome type 4. Left ventricular hypertrophy (LVH) represents a key feature to provide an accurate picture of systolic-diastolic left heart involvement in CKD patients. Cardiovascular involvement is present in about 80% of prevalent hemodialysis patients, and it is evident in CKD patients since stage IIIb-IV renal disease (according to the K/DOQI CKD classification). According to the definition of cardiorenal syndrome type 4, kidney disease is detected before the development of heart failure, although timing of the diagnosis is not always possible. The evaluation of LVH is a bit heterogeneous, and few standard imaging methods can provide the accuracy of either CT- or MRI-derived left ventricular mass. Key principles in the treatment of LVH in CKD patients are mainly based on anemia and blood pressure control, together with the management of secondary hyperparathyroidism and sudden cardiac death prevention. This review is mainly focused on the clinical aspects of CKD-related LVH to provide practical guidelines both for cardiologists and nephrologists in the daily clinical approach to CKD patients. PMID:26648942

  4. Cardiac mast cells regulate myocyte ANP release via histamine H2 receptor in beating rabbit atria.

    Science.gov (United States)

    Li, Dan; Wen, Jin Fu; Jin, Jing Yu; Quan, He Xiu; Cho, Kyung Woo

    2009-06-01

    It has been shown that histamine inhibits atrial natriuretic peptide (ANP) release. Because cardiac mast cells are the principal source of histamine in the heart, we hypothesized that cardiac mast cells are involved in the regulation of atrial ANP release. To test the hypothesis, experiments were performed in perfused beating rabbit atria allowing atrial pacing and measurements of changes in atrial stroke volume, intraatrial pulse pressure and myocyte ANP release. Mast cell degranulation with Compound 48/80 decreased atrial myocyte ANP release, and the response was blocked by a selective histamine H(2) receptor blocker, cimetidine, indicating that histamine was responsible for the decrease in ANP release. Mast cell stabilization with cromolyn blocked the Compound 48/80-induced decrease in ANP release. These data suggest that mast cell-derived histamine is involved in the regulation of cardiac ANP release. Thus, the cardiac mast cell-cardiomyocyte communication via the histamine-ANP pathway may implicate in the cardiac disorder associated with mast cell degranulation such as in acute coronary syndrome or cardiac hypertrophy. PMID:19328828

  5. AMP-Dependent Kinase and Autophagic Flux are Involved in Aldehyde Dehydrogenase 2-Offered Protection against Cardiac Toxicity of Ethanol

    OpenAIRE

    Ge, Wei; GUO Rui; Ren, Jun

    2011-01-01

    Mitochondrial aldehyde dehydrogenase-2 (ALDH2) alleviates ethanol toxicity although the precise mechanism is unclear. This study was designed to evaluate the effect of ALDH2 on ethanol-induced myocardial damage with a focus on autophagy. Wild-type FVB and transgenic mice overexpressing ALDH2 were challenged with ethanol (3 g/kg/d, i.p.) for 3 days and cardiac mechanical function was assessed using the echocardiographic and IonOptix systems. Western blot analysis was used to evaluate essential...

  6. Role of mitogen- activated protein kinase in myocardial hypertrophy%丝裂原活化蛋白激酶信号途径在心肌肥厚中的作用进展

    Institute of Scientific and Technical Information of China (English)

    黄朝阳; 朱建华

    2005-01-01

    Myocardial hypertrophy is an independent risk factor for cardiac events. Mitogen-activated protein kinases(MAPK), including extracellular signal-regulated kinases, C-jun N-terminal kinases and P38-MAPK, are the common intracellular pathway of transducing hypertrophic signs. All three MAPK subfamilies play an important role in development of myocardial hypertrophy.

  7. Masseter and medial pterygoid muscle hypertrophy

    OpenAIRE

    R, Guruprasad; Rishi, Sudhirkumar; Nair, Preeti P; Thomas, Shaji

    2011-01-01

    Hypertrophy refers to an enlargement caused by an increase in the size but not in the number of cells. Generalised masticatory muscle hypertrophy may affect the temporalis muscle, masseters and medial pterygoids in a variety of combinations. Masseteric hypertrophy may present as either unilateral or bilateral painless swelling of unknown origin in the region of angle of mandible. It is a relatively rare condition and presents a diagnostic dilemma. While the history and clinical examination ar...

  8. Asymmetric septal hypertrophy and hypothyroidism in children.

    OpenAIRE

    Altman, D I; Murray, J.; Milner, S.; Dansky, R; Levin, S. E.

    1985-01-01

    Any echocardiographic study of two children with hypothyroidism demonstrated the presence of asymmetric septal hypertrophy. One child died aged 11 months, and pronounced thickening of the interventricular septum was confirmed at necropsy. There was also hypertrophy of the left ventricular free wall. Histological examination showed only slight muscle fibre disarray, but there was striking vacuolation and hypertrophy of muscle fibres. In the second case, a child aged five years, the asymmetric ...

  9. Phosphorylation of PTEN increase in pathological right ventricular hypertrophy in rats with chronic hypoxia induced pulmonary hypertension

    Institute of Scientific and Technical Information of China (English)

    Nie Xin; Shi Yiwei; Yu Wenyan; Xu Jianying; Hu Xiaoyun; Du Yongcheng

    2014-01-01

    Background Phosphatase and tensin homologue on chromosome ten (PTEN) acts as a convergent nodal signalling point for cardiomyocyte hypertrophy,growth and survival.However,the role of PTEN in cardiac conditions such as right ventricular hypertrophy caused by chronic hypoxic pulmonary,hypertension remains unclear.This study preliminarily discussed the role of PTEN in the cardiac response to increased pulmonary vascular resistance using the hypoxia-induced PH rats.Methods Male Sprague Dawley rats were exposed to 10% oxygen for 1,3,7,14 or 21 days to induce hypertension and right ventricular hypertrophy.Right ventricular systolic pressure was measured via catheterization.Hypertrophy index was calculated as the ratio of right ventricular mass to left ventricle plus septum mass.Tissue morphology and fibrosis were measured using hematoxylin,eosin and picrosirius red staining.The expression and phosphorylation levels of PTEN in ventricles were determined by real time PCR and Western blotting.Results Hypoxic exposure of rats resulted in pathological hypertrophy,interstitial fibrosis and remodelling of the right ventricle.The phosphorylation of PTEN increased significantly in the hypertrophic right ventricle compared to the normoxic control group.There were no changes in protein expression in either ventricle.Conclusion Hypoxia induced pulmonary hypertension developed pathological right ventricular hypertrophy and remodelling probablv related to an increased phosohorvlation of PTEN.

  10. Animal Models of Cardiac Disease and Stem Cell Therapy

    OpenAIRE

    Ou, Lailiang; Li, Wenzhong; Liu, Yi; Zhang, Yue(Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125, U.S.A.); Jie, Shen; Kong, Deling; Steinhoff, Gustav; Ma, Nan

    2010-01-01

    Animal models that mimic cardiovascular diseases are indispensable tools for understanding the mechanisms underlying the diseases at the cellular and molecular level. This review focuses on various methods in preclinical research to create small animal models of cardiac diseases, such as myocardial infarction, dilated cardiomyopathy, heart failure, myocarditis and cardiac hypertrophy, and the related stem cell treatment for these diseases.

  11. Cardiac sarcoidosis

    Science.gov (United States)

    Smedema, J.P.; Zondervan, P.E.; van Hagen, P.; ten Cate, F.J.; Bresser, P.; Doubell, A.F.; Pattynama, P.; Hoogsteden, H.C.; Balk, A.H.M.M.

    2002-01-01

    Sarcoidosis is a multi-system granulomatous disorder of unknown aetiology. Symptomatic cardiac involvement occurs in approximately 5% of patients. The prevalence of sarcoidosis in the Netherlands is unknown, but estimated to be approximately 20 per 100,000 population (3200 patients). We report on five patients who presented with different manifestations of cardiac sarcoidosis, and give a brief review on the current management of this condition. Magnetic Resonance Imaging (MRI) can be of great help in diagnosing this condition as well as in the follow-up of the response to therapy. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:25696121

  12. Longitudinal strain bull's eye plot patterns in patients with cardiomyopathy and concentric left ventricular hypertrophy.

    Science.gov (United States)

    Liu, Dan; Hu, Kai; Nordbeck, Peter; Ertl, Georg; Störk, Stefan; Weidemann, Frank

    2016-01-01

    Despite substantial advances in the imaging techniques and pathophysiological understanding over the last decades, identification of the underlying causes of left ventricular hypertrophy by means of echocardiographic examination remains a challenge in current clinical practice. The longitudinal strain bull's eye plot derived from 2D speckle tracking imaging offers an intuitive visual overview of the global and regional left ventricular myocardial function in a single diagram. The bull's eye mapping is clinically feasible and the plot patterns could provide clues to the etiology of cardiomyopathies. The present review summarizes the longitudinal strain, bull's eye plot features in patients with various cardiomyopathies and concentric left ventricular hypertrophy and the bull's eye plot features might serve as one of the cardiac workup steps on evaluating patients with left ventricular hypertrophy. PMID:27165726

  13. Progressive Left Ventricular Hypertrophy after Heart Transplantation: Insights and Mechanisms Suggested by Multimodal Images.

    Science.gov (United States)

    Ananthasubramaniam, Karthik; Garikapati, Kiran; Williams, Celeste T

    2016-02-01

    Immunosuppression is the typical measure to prevent rejection after heart transplantation. Although rejection is the usual cause of cardiac hypertrophy, numerous other factors warrant consideration. Calcineurin inhibitors rarely cause hypertrophic cardiomyopathy; the few relevant reports have described children after orthotopic kidney or liver transplantation. We present the case of a 73-year-old woman, an asymptomatic orthotopic heart transplantation patient, in whom chronic immunosuppression with prednisone and cyclosporine apparently caused a phenotype of hypertrophic cardiomyopathy. The natural course of her midapical hypertrophy was revealed by single-photon-emission computed tomography, positron-emission tomography, and 2-dimensional echocardiography. Clinicians and radiographers should be alert to progressive left ventricular hypertrophy and various perfusion patterns in heart transplantation patients even in the absence of underlying coronary artery disease. Toward this end, we recommend that advanced imaging methods be used to their fullest extent. PMID:27047289

  14. Sirtuin1-p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat

    Directory of Open Access Journals (Sweden)

    Kytö Ville

    2010-01-01

    Full Text Available Abstract Background Diabetes is associated with changes in myocardial stress-response pathways and is recognized as an independent risk factor for cardiac remodeling. Using spontaneously diabetic Goto Kakizaki rats as a model of type 2 DM we investigated whether post-translational modifications in the Akt - FOXO3a pathway, Sirt1 - p53 pathway and the mitogen activated protein kinase p38 regulator are involved in post-infarct cardiac remodeling Methods Experimental myocardial infarction (MI was induced by left anterior descending coronary artery ligation in spontaneously diabetic Goto-Kakizaki rats and non-diabetic Wistar controls. Cardiac function was studied by echocardiography. Myocardial hypertrophy, cardiomyocyte apoptosis and cardiac fibrosis were determined histologically 12 weeks post MI or Sham operation. Western blotting was used to study Caspase-3, Bax, Sirt1, acetylation of p53 and phosphorylation of p38, Akt and FOXO3a. Electrophoretic mobility shift assay was used to assess FOXO3a activity and its nuclear localization. Results Post-infarct heart failure in diabetic GK rats was associated with pronounced cardiomyocyte hypertrophy, increased interstitial fibrosis and sustained cardiomyocyte apoptosis as compared with their non-diabetic Wistar controls. In the GK rat myocardium, Akt- and FOXO3a-phosphorylation was decreased and nuclear localization of FOXO3a was increased concomitantly with increased PTEN protein expression. Furthermore, increased Sirt1 protein expression was associated with decreased p53 acetylation, and phosphorylation of p38 was increased in diabetic rats with MI. Conclusions Post-infarct heart failure in diabetic GK rats was associated with more pronounced cardiac hypertrophy, interstitial fibrosis and sustained cardiomyocyte apoptosis as compared to their non-diabetic controls. The present study suggests important roles for Akt-FOXO3a, Sirt1 - p53 and p38 MAPK in the regulation of post-infarct cardiac remodeling

  15. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  16. Genetics Home Reference: myostatin-related muscle hypertrophy

    Science.gov (United States)

    ... Conditions myostatin-related muscle hypertrophy myostatin-related muscle hypertrophy Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Myostatin-related muscle hypertrophy is a rare condition characterized by reduced body ...

  17. Receptor for Advanced Glycation End Products Regulates Adipocyte Hypertrophy and Insulin Sensitivity in Mice

    OpenAIRE

    Monden, Masayo; Koyama, Hidenori; Otsuka, Yoshiko; Morioka, Tomoaki; Mori, Katsuhito; Shoji, Takuhito; Mima, Yohei; Motoyama, Koka; Fukumoto, Shinya; Shioi, Atsushi; Emoto, Masanori; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Nishizawa, Yoshiki; Kurajoh, Masafumi

    2013-01-01

    Receptor for advanced glycation end products (RAGE) has been shown to be involved in adiposity as well as atherosclerosis even in nondiabetic conditions. In this study, we examined mechanisms underlying how RAGE regulates adiposity and insulin sensitivity. RAGE overexpression in 3T3-L1 preadipocytes using adenoviral gene transfer accelerated adipocyte hypertrophy, whereas inhibitions of RAGE by small interfering RNA significantly decrease adipocyte hypertrophy. Furthermore, double knockdown o...

  18. Involvement of peroxisome proliferator-activated receptors in cardiac and vascular remodeling in a novel minipig model of insulin resistance and atherosclerosis induced by consumption of a high-fat/cholesterol diet

    OpenAIRE

    Yongming, Pan; Zhaowei, Cai; Yichao, Ma; Keyan, Zhu; Liang, Chen; Fangming, Chen; Xiaoping, Xu; Quanxin, Ma; Minli, Chen

    2015-01-01

    Background A long-term high-fat/cholesterol (HFC) diet leads to insulin resistance (IR), which is associated with inflammation, atherosclerosis (AS), cardiac sympathovagal imbalance, and cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) and nuclear factor ĸB (NF-κB) are involved in the development of IR-AS. Thus, we elucidated the pathological molecular mechanism of IR-AS by feeding an HFC diet to Tibetan minipigs to induce IR and AS. Methods Male Tibetan minipigs were ...

  19. Cardiac Insulin Resistance and MicroRNA Modulators

    Directory of Open Access Journals (Sweden)

    Lakshmi Pulakat

    2012-01-01

    Full Text Available Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS, and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS and angiotensin II (Ang II activate mammalian target for rapamycin (mTOR/p70 S6 kinase (S6K1 signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2, it also renders cardioprotection via increased Ang II receptor 2 (AT2R upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.

  20. Mammary Hypertrophy in an Ovariohysterectomized Cat

    OpenAIRE

    Pukay, B.P.; Stevenson, D.A.

    1983-01-01

    A four year old ovariohysterectomized domestic short-haired cat under treatment for behavioral urine spraying and idiopathic alopecia developed mammary gland hypertrophy following treatment with megestrol acetate. Withdrawal of the progestin and treatment with androgen failed to cause regression of the hypertrophy. The affected mammary gland was surgically excised and recovery was uneventful.

  1. Close association of arterial plaques with left ventricular hypertrophy and ejection fraction in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Mowlaie Morteza

    2014-01-01

    Full Text Available Introduction: In renal failure patients, cardiovascular complications are a major clinical problem. Objectives: This study aimed to test, the possible association of left ventricular hypertrophy and ejection fraction with plaques of carotid and femoral artery hemodialysis. Patients and Methods: Sixty-one patients, who were on regular hemodialysis were selected. For all patients echocardiography and B-mode Ultrsonographic assessment of carotid-femoral arteries for plaque occurrence were conducted. Results: In this study there was a positive correlation between left ventricular hypertrophy with the duration of hemodialysis treatment (p<0.05. Significant positive association between left ventricular hypertrophy and plaque score and also a significant positive association between left ventricular hypertrophy with presence of chest pain was found (p<0.05. Association of diabetes mellitus with the presence of chest pain was positive. Positive correlation between hypertension with plaque score was demonstrated too (p<0.05. Also an inverse association of plaque score with left ventricular ejection fraction was detected too (p<0.05. Furthermore, the correlation of plaque score with the presence of diabetes mellitus was positive. Conclusion: The present investigations, documents parallel cardiac and vascular adaptation in hemodialysis patients and shows the potential contribution of structural and functional large artery alteration to the pathogenesis of left ventricular hypertrophy which needs more attention in patients on hemodialysis.

  2. Cardiac amyloidosis detection with pyrophosphate-99mTc scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, D.S.F.; Ichiki, W.A.; Coura Filho, G.B.; Izaki, M.; Giorgi, M.C.P.; Soares Junior, J; Meneghetti, J.C. [Universidade de Sao Paulo (FM/USP), SP (Brazil). Fac. de Medicina. Instituto do Coracao. Servico de Medicina Nuclear e Imagem Molecular

    2008-07-01

    Full text: Introduction: Amyloidosis is a rare disease, characterized by extracellular deposition of insoluble amyloid fibrils in organs and tissues. It may affect virtually any system, preferably heart, kidneys and liver. The cardiac involvement produces a spectrum of clinical features, usually with progressive dysfunction. Early diagnosis is important for institution of appropriate therapy. Case report: Male patient, 75 years old, with diagnosed congestive heart failure functional class III and Mobitz II second-degree atrial-ventricular block, was hospitalized for implantation of definitive cardiac pacemaker. Patient mentioned history of worsening effort dyspnoea over a one-month period, progressing to minimum effort, orthopnea, paroxysmal nocturnal dyspnoea and paroxysms of dry cough, and swelling of lower limbs. Echocardiography showed diffuse hypertrophy of left ventricle (LV), with systolic dysfunction due to diffuse hypokinesia and hyperrefringent aspect in the septum. It was questioned a cardiac infiltrating process. Cardiac amyloidosis was considered as a diagnostic hypothesis. The patient underwent a pyrophosphate-{sup 99m}Tc scintigraphy, which showed abnormal tracer uptake in the heart projection, with diffuse pattern on the left ventricle walls, compatible with the clinical suspicion cardiac amyloidosis, which was later confirmed by endomyocardial biopsy. Discussion: In this case report, the patient had clinical and other auxiliary examinations, such as electrocardiography and Doppler echocardiography, compatible with cardiac amyloidosis, which led to implementation with pyrophosphate-{sup 99m}Tc scintigraphy and later endomyocardial biopsy. Cardiac amyloidosis occurs in about half the cases of primary amyloidosis (AL) and is rare in secondary amyloidosis (AA). Its clinical presentation is polymorphic and it can be classified into four distinctive types: restrictive cardiomyopathy, systolic dysfunction, postural hypotension and conduction disorders

  3. Cardiac amyloidosis detection with pyrophosphate-99mTc scintigraphy

    International Nuclear Information System (INIS)

    Full text: Introduction: Amyloidosis is a rare disease, characterized by extracellular deposition of insoluble amyloid fibrils in organs and tissues. It may affect virtually any system, preferably heart, kidneys and liver. The cardiac involvement produces a spectrum of clinical features, usually with progressive dysfunction. Early diagnosis is important for institution of appropriate therapy. Case report: Male patient, 75 years old, with diagnosed congestive heart failure functional class III and Mobitz II second-degree atrial-ventricular block, was hospitalized for implantation of definitive cardiac pacemaker. Patient mentioned history of worsening effort dyspnoea over a one-month period, progressing to minimum effort, orthopnea, paroxysmal nocturnal dyspnoea and paroxysms of dry cough, and swelling of lower limbs. Echocardiography showed diffuse hypertrophy of left ventricle (LV), with systolic dysfunction due to diffuse hypokinesia and hyperrefringent aspect in the septum. It was questioned a cardiac infiltrating process. Cardiac amyloidosis was considered as a diagnostic hypothesis. The patient underwent a pyrophosphate-99mTc scintigraphy, which showed abnormal tracer uptake in the heart projection, with diffuse pattern on the left ventricle walls, compatible with the clinical suspicion cardiac amyloidosis, which was later confirmed by endomyocardial biopsy. Discussion: In this case report, the patient had clinical and other auxiliary examinations, such as electrocardiography and Doppler echocardiography, compatible with cardiac amyloidosis, which led to implementation with pyrophosphate-99mTc scintigraphy and later endomyocardial biopsy. Cardiac amyloidosis occurs in about half the cases of primary amyloidosis (AL) and is rare in secondary amyloidosis (AA). Its clinical presentation is polymorphic and it can be classified into four distinctive types: restrictive cardiomyopathy, systolic dysfunction, postural hypotension and conduction disorders. Cardiac

  4. EFFECT OF ELECTROACUPUNCTURE ON MYOCARDIAL ISCHEMIA INDUCED CHANGES OF CARDIAC SYMPATHETIC ACTIVITY AND INVOLVEMENT OF SPINIAL δ-OPIOID,NMDA-AND NON-NMDA RECEPTORS IN THE RABBIT

    Institute of Scientific and Technical Information of China (English)

    刘俊岭; 高永辉; 陈淑萍

    2003-01-01

    significantly (35.89±6.12%); while after pre-treatment with Nal trindole, this reaction threshold decreased considerably (84.88± 26.58 % ). Following intrathecal injection of DAP5 (n = 9) and CNQX (n = 9) , the reaction thresholds of the cardiac sympathetic activity to EA of PC-4 increased obviously ( 142.06 ± 60.27 % and 112.54 ± 28.58 % separately). It suggests that spinal δ.opioid receptor, NMDA and non-NMDA receptors are involved in EA induced changes of sympathetic activity. Conclusion: ① EA could regulate AMI induced changes of cardiac sympathetic activity; and ② spinal δ.opioid receptors, NMDA and non-NMDA receptors participate in the effect of EA on the cardiac sympathetic activity.

  5. Hypertensive cardiac hypertrophy—is genetic variance the missing link?

    OpenAIRE

    Nunez, Derek J. R.; PIERS CLIFFORD, C.; Al-Mahdawi, Sahar; DUTKA, DAVID

    1996-01-01

    1Hypertensive cardiac hypertrophy is a major independent predictor of adverse cardiovascular events. In man the cardiac response to increased afterload is very variable, even when ambulatory blood pressure monitoring is used. Analysis of breeding experiments using normotensive and hypertensive rat strains, human twin studies and other data indicate that genetic factors play a significant role in regulating cardiac mass; in other words, a large component of total variability is accounted for b...

  6. Visualization of hypertrophied papillary muscle mimicking left ventricular mass on gated blood pool and T1-201 myocardial perfusion imaging

    International Nuclear Information System (INIS)

    A sixty-year old man with acute myocardial infarction was incidentally found to have a hypertrophied anterolateral papillary muscle (ALPPM) of the left ventricle on gated blood pool (GBP) and T1-201 myocardial perfusion images. Hypertrophy of the ALPPM was visualized as a movable defect in the lateral basal area on GBP imaging throughout the cardiac cycle and on the TI-201 study as a radionuclide accumulating structure, consistent with the defect in the GBP. A combination of these findings may suggest the presence of a hypertrophied papillary muscle of the left ventricle

  7. Non-invasive Drosophila ECG recording by using eutectic gallium-indium alloy electrode: a feasible tool for future research on the molecular mechanisms involved in cardiac arrhythmia.

    Directory of Open Access Journals (Sweden)

    Po-Hung Kuo

    Full Text Available BACKGROUND: Drosophila heart tube is a feasible model for cardiac physiological research. However, obtaining Drosophila electrocardiograms (ECGs is difficult, due to the weak signals and limited contact area to apply electrodes. This paper presents a non-invasive Gallium-Indium (GaIn based recording system for Drosophila ECG measurement, providing the heart rate and heartbeat features to be observed. This novel, high-signal-quality system prolongs the recording time of insect ECGs, and provides a feasible platform for research on the molecular mechanisms involved in cardiovascular diseases. METHODS: In this study, two types of electrode, tungsten needle probes and GaIn electrodes, were used respectively to noiselessly conduct invasive and noninvasive ECG recordings of Drosophila. To further analyze electrode properties, circuit models were established and simulated. By using electromagnetic shielded heart signal acquiring system, consisted of analog amplification and digital filtering, the ECG signals of three phenotypes that have different heart functions were recorded without dissection. RESULTS AND DISCUSSION: The ECG waveforms of different phenotypes of Drosophila recorded invasively and repeatedly with n value (n>5 performed obvious difference in heart rate. In long period ECG recordings, non-invasive method implemented by GaIn electrodes acts relatively stable in both amplitude and period. To analyze GaIn electrode, the correctness of GaIn electrode model established by this paper was validated, presenting accuracy, stability, and reliability. CONCLUSIONS: Noninvasive ECG recording by GaIn electrodes was presented for recording Drosophila pupae ECG signals within a limited contact area and signal strength. Thus, the observation of ECG changes in normal and SERCA-depleted Drosophila over an extended period is feasible. This method prolongs insect survival time while conserving major ECG features, and provides a platform for

  8. MEF2C silencing attenuates load-induced left ventricular hypertrophy by modulating mTOR/S6K pathway in mice.

    Directory of Open Access Journals (Sweden)

    Ana Helena M Pereira

    Full Text Available BACKGROUND: The activation of the members of the myocyte enhancer factor-2 family (MEF2A, B, C and D of transcription factors promotes cardiac hypertrophy and failure. However, the role of its individual components in the pathogenesis of cardiac hypertrophy remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated whether MEF2C plays a role in mediating the left ventricular hypertrophy by pressure overload in mice. The knockdown of myocardial MEF2C induced by specific small interfering RNA (siRNA has been shown to attenuate hypertrophy, interstitial fibrosis and the rise of ANP levels in aortic banded mice. We detected that the depletion of MEF2C also results in lowered levels of both PGC-1alpha and mitochondrial DNA in the overloaded left ventricle, associated with enhanced AMP:ATP ratio. Additionally, MEF2C depletion was accompanied by defective activation of S6K in response to pressure overload. Treatment with the amino acid leucine stimulated S6K and suppressed the attenuation of left ventricular hypertrophy and fibrosis in the aforementioned aortic banded mice. CONCLUSION/SIGNIFICANCE: These findings represent new evidences that MEF2C depletion attenuates the hypertrophic responses to mechanical stress and highlight the potential of MEF2C to be a target for new therapies to cardiac hypertrophy and failure.

  9. Cardiac involvement of progressive muscular dystrophy (Becker type, Limb-girdle type and Fukuyama type) evaluated by radionuclide method

    International Nuclear Information System (INIS)

    Tl-201 SPECT and Tc-99m-Human serum albumin (HSA) multigated radionuclide ventriculography were performed on 11 patients with progressive muscular dystrophy (Becker type 2, Fukuyama type 2, Limb-girdle type 7) to evaluate myocardial involvement. Hypoperfusion was detected in 8 patients on Tl-201 SPECT. Decreases in both systolic function (left ventricular ejection fraction; LVEF) and diastolic function (peak filling rate; PFR) were also seen in these patients. A high incidence of myocardial involvement of these kinds of progressive muscular dystrophy was suggested. (author)

  10. Fibroblast Growth Factor–23 and Cardiac Structure and Function

    OpenAIRE

    Agarwal, Isha; Ide, Noriko; Ix, Joachim H.; Kestenbaum, Bryan; Lanske, Beate; Schiller, Nelson B.; Mary A Whooley; Mukamal, Kenneth J.

    2014-01-01

    Background: Fibroblast growth factor–23 (FGF‐23) is a phosphaturic factor previously associated with left ventricular hypertrophy and systolic dysfunction among individuals with chronic kidney disease. Whether FGF‐23 acts directly to induce left ventricular hypertrophy, potentially independent of its klotho coreceptor, remains uncertain. We investigated associations of FGF‐23 with cardiac structural abnormalities among individuals with a broad range of kidney function and explored potential b...

  11. The thickened left ventricle: etiology, differential diagnosis and implications for cardiovascular radiology; Der dicke linke Ventrikel. Ursachen und Differenzialdiagnose der linksventrikulaeren Hypertrophie und Implikationen fuer die kardiovaskulaere Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, P.; Barkhausen, J.; Hunold, P. [Universitaetsklinikum Schleswig-Holstein, Luebeck (Germany). Klinik fuer Radiologie und Nuklearmedizin; Radke, P.W. [Universitaetsklinikum Schleswig Holstein, Luebeck (Germany). Medizinische Klinik II

    2012-08-15

    Hypertrophy of the left ventricular myocardium is a common finding and can be reliably detected by echocardiography, CT and MRI. Common causes include diseases associated with increased cardiac afterload as well as primary and secondary cardiomyopathy. With the opportunity to determine functional parameters and myocardial mass precisely as well as to detect structural changes of the cardiac muscle simultaneously, cardiac MRI is the most precise imaging method for quantifying left ventricular hypertrophy as well as determining the cause and the exact characterization of the myocardial changes. It is mandatory, however, to create a flexible, individually adapted examination protocol. This review presents useful diagnostic algorithms in relation to different underlying pathologies in patients with left ventricular hypertrophy. (orig.)

  12. The role of secondary hyperparathyroidism in left ventricular hypertrophy of patients under chronic hemodialysis

    Directory of Open Access Journals (Sweden)

    Randon R.B.

    2005-01-01

    Full Text Available End-stage renal disease (ESRD patients frequently develop structural cardiac abnormalities, particularly left ventricular hypertrophy (LVH. The mechanisms involved in these processes are not completely understood. In the present study, we evaluated a possible association between parathyroid hormone (PTH levels and left ventricular mass (LVM in patients with ESRD. Stable uremic patients on intermittent hemodialysis treatment were evaluated by standard two-dimensional echocardiography and their sera were analyzed for intact PTH. Forty-one patients (mean age 45 years, range 18 to 61 years, 61% males, who had been on hemodialysis for 3 to 186 months, were evaluated. Patients were stratified into 3 groups according to serum PTH: low levels (280 pg/ml; group III = 21 patients. A positive statistically significant association between LVM index and PTH was identified (r = 0.34; P = 0.03, Pearson's correlation coefficient in the sample as a whole. In subgroup analyses, we did not observe significant associations in the low and intermediate PTH groups; nevertheless, PTH and LVM index were correlated in patients with high PTH levels (r = 0.62; P = 0.003. LVM index was also inversely associated with hemoglobin (r = -0.34; P = 0.03. In multivariate analysis, after adjustment for age, hemoglobin, body mass index, and blood pressure, the only independent predictor of LVM index was PTH level. Therefore, PTH is an independent predictor of LVH in patients undergoing chronic hemodialysis. Secondary hyperparathyroidism may contribute to the elevated cardiovascular morbidity associated with LVH in ESRD.

  13. Primary testicular lymphoma with cardiac involvement in an immunocompetent patient: case report and a concise review of literature

    Directory of Open Access Journals (Sweden)

    Richard Steingart

    2012-06-01

    Full Text Available Primary testicular lymphoma (PTL is a rare testicular tumor representing less than 9% of all testicular cancers. PTL usually tends to spread to or relapse at nodal structures or extra-nodal sites such as contralateral testes, central nervous system, skin, lung, pleura, waldeyer’s ring and soft tissues. We present a case of PTL with huge left atrial mass, an extremely unusual site of involvement. Early disease usually carries a good prognosis, whereas advanced stage carries an extremely poor prognosis. Herein, we report the complete remission to date in a patient with advanced stage PTL with huge left atrial mass, treated with systemic rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone and intrathecal methotrexate. A brief review of literature focusing on various aspects of management of primary testicular lymphoma and lymphomatous involvement of heart is also discussed.

  14. Cricopharyngeal muscle hypertrophy: radiologic-anatomic correlation.

    Science.gov (United States)

    Torres, W E; Clements, J L; Austin, G E; Knight, K

    1984-05-01

    There is a divergence of opinion concerning the cricopharyngeal muscle defect commonly seen in the pharyngoesophageal area on barium esophagram. Some observers believe this defect is the result of neuromuscular dysfunction with the demonstration of the unrelaxed muscle bundle; however, others believe it is the result of actual hypertrophy of the cricopharyngeal muscle. Radiologic and pathologic study of 24 unselected autopsy cases revealed cricopharyngeal hypertrophy in 13 cases by radiologic criteria. Histologic examination revealed that the cricopharyngeal muscle thickness was uniformly greater in these cases than in the radiographically normal cases. The cricopharyngeal muscle defect is associated with actual hypertrophy of the cricopharyngeal muscle in many cases. PMID:6609574

  15. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Kiso, Hironori [Department of Internal Medicine, Division of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine (Japan); Ohba, Takayoshi [Department of Cell Physiology, Akita University Graduate School of Medicine (Japan); Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka [Department of Internal Medicine, Division of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine (Japan); Murakami, Manabu [Department of Pharmacology, Hirosaki University Graduate School of Medicine (Japan); Ono, Kyoichi [Department of Cell Physiology, Akita University Graduate School of Medicine (Japan); Watanabe, Hiroyuki, E-mail: hirow@doc.med.akita-u.ac.jp [Department of Internal Medicine, Division of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine (Japan); Ito, Hiroshi [Department of Internal Medicine, Division of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine (Japan)

    2013-07-05

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression.

  16. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    International Nuclear Information System (INIS)

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression

  17. Papillary muscle hypertrophy as a structural abnormality in patients with asymmetric septal hypertrophy

    OpenAIRE

    Mehmet Kanadaţý; Esmeray Acartürk

    2003-01-01

    Introduction: Asymmetric septal hypertrophy (ASH) is the most classical abnormality in hypertrophic cardiomy-opathy (HCM). Segmental hypertrophy of the left ventricle is less frequently observed. Some cases with papillary muscle hypertrophy (PMH) particularly associated with apical HCM and also ASH has been reported. Aim of the study: The aim of this study was to determine the frequency of PMH in patients with ASH. Material and methods: Two-dimensional echocardiographic examinations were perf...

  18. Determination of the exact molecular requirements for type 1 angiotensin receptor epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy.

    Science.gov (United States)

    Smith, Nicola J; Chan, Hsiu-Wen; Qian, Hongwei; Bourne, Allison M; Hannan, Katherine M; Warner, Fiona J; Ritchie, Rebecca H; Pearson, Richard B; Hannan, Ross D; Thomas, Walter G

    2011-05-01

    Major interest surrounds how angiotensin II triggers cardiac hypertrophy via epidermal growth factor receptor transactivation. G protein-mediated transduction, angiotensin type 1 receptor phosphorylation at tyrosine 319, and β-arrestin-dependent scaffolding have been suggested, yet the mechanism remains controversial. We examined these pathways in the most reductionist model of cardiomyocyte growth, neonatal ventricular cardiomyocytes. Analysis with [(32)P]-labeled cardiomyocytes, wild-type and [Y319A] angiotensin type 1 receptor immunoprecipitation and phosphorimaging, phosphopeptide analysis, and antiphosphotyrosine blotting provided no evidence for tyrosine phosphorylation at Y319 or indeed of the receptor, and mutation of Y319 (to A/F) did not prevent either epidermal growth factor receptor transactivation in COS-7 cells or cardiomyocyte hypertrophy. Instead, we demonstrate that transactivation and cardiomyocyte hypertrophy are completely abrogated by loss of G-protein coupling, whereas a constitutively active angiotensin type 1 receptor mutant was sufficient to trigger transactivation and growth in the absence of ligand. These results were supported by the failure of the β-arrestin-biased ligand SII angiotensin II to transactivate epidermal growth factor receptor or promote hypertrophy, whereas a β-arrestin-uncoupled receptor retained these properties. We also found angiotensin II-mediated cardiomyocyte hypertrophy to be attenuated by a disintegrin and metalloprotease inhibition. Thus, G-protein coupling, and not Y319 phosphorylation or β-arrestin scaffolding, is required for epidermal growth factor receptor transactivation and cardiomyocyte hypertrophy via the angiotensin type 1 receptor. PMID:21383310

  19. Variants of tumor necrosis factor-induced protein 3 gene are associated with left ventricular hypertrophy in hypertensive patients

    Institute of Scientific and Technical Information of China (English)

    XUE Hao; WANG Shu-xia; WANG Xiao-jian; XIN Ying; WANG Hu; SONG Xiao-dong; SUN Kai; WANG Yi-bo; HUI Ru-tai

    2011-01-01

    Background Tumor necrosis factor-induced protein 3 (TNFAIP3) gene has been shown important in cardiac remodeling. The aim of the present study was to investigate whether the variants of TNFAIP3 gene are associated with left ventricular hypertrophy (LVH) in hypertensive patients.Methods Four representatives of all the other single nucleotide polymorphisms (SNPs) in TNFAIP3 gene were tested for association with hypertrophy in two independent hypertensive populations (n=2120 and n=324).Results We found that only the tag SNP (rs5029939) was consistently lower in the hypertensives with cardiac hypertrophy than in those without cardiac hypertrophy in the two study populations, indicating a protective effect on LVH (odds ratio (OR) (95% confidence interval (CI))0.58 (0.358-0.863), P=0.035; OR (95% CI)=0.477 (0.225-0.815), P<0.05,respectively). Multiple regression analyses confirmed that the patients with G allele of rs5029939 had less thickness in inter-ventricular septum, left ventricular posterior wall, relative wall thickness and left ventricular mass index than did those with CC allele in the hypertensive patients in both study populations (all P<0.01).Conclusion These findings indicate that the SNP (rs5029939) in the TNFAIP3 gene may serve as a novel protective genetic marker for the development of LVH in patients with hypertension.

  20. A Rare Case of Lipomatous Hypertrophy of the Interventricular Septum

    OpenAIRE

    Papadopoulos, Christodoulos E; Matsiras, Sotirios; Vassilikos, Vassilios

    2016-01-01

    Asymmetrical left ventricular hypertrophy secondary to interventricular septum hypertrophy is usually considered a typical phenotype of hypertrophic cardiomyopathy. In rare cases other conditions such as tumors or lipomatous hypertrophy of the interventricular septum may have a similar presentation. We present a case of a male patient who presented for routine cardiology work up and was diagnosed of having ventricular septal hypertrophy secondary to localized lipomatous hypertrophy.

  1. Fatores e mecanismos envolvidos na hipertrofia ventricular esquerda e o papel anti-hipertrófico do óxido nítrico Factors and mechanisms involved in left ventricular hypertrophy and the anti-hypertrophic role of nitric oxide

    Directory of Open Access Journals (Sweden)

    José Antonio Dias Garcia

    2008-06-01

    Full Text Available A hipertrofia ventricular esquerda (HVE ocorre em reposta à sobrecarga hemodinâmica relatada em várias condições fisiológicas e patológicas. Entretanto, ainda não está completamente elucidado se o estímulo primário para a hipertrofia é o estiramento mecânico do coração, fatores neuro-humorais, ou mesmo a interação de ambos. Esses fatores são traduzidos no interior da célula como alterações bioquímicas que levam à ativação de segundos (citosólicos e terceiros (nucleares mensageiros que irão agir no núcleo da célula, regulando a transcrição, e finalmente determinarão a expressão gênica que induza HVE. A HVE é caracterizada por alterações estruturais decorrentes do aumento das dimensões dos cardiomiócitos, da proliferação do tecido conjuntivo intersticial e da rarefação da microcirculação coronariana. Nos últimos anos, o óxido nítrico (•NO surgiu como um importante regulador do remodelamento cardíaco, especificamente reconhecido como um mediador anti-hipertrófico. Vários estudos têm demonstrado os alvos celulares, as vias de sinalização anti-hipertrófica e o papel funcional do •NO. Portanto, a HVE parece desenvolver-se em decorrência da perda do balanço entre as vias de sinalização pró e anti-hipertróficas. Esses novos conhecimentos sobre as vias de sinalização pró e anti-hipertróficas permitirão desenvolver novas estratégicas no tratamento das HVE patológicas.The left ventricular hypertrophy (LVH occurs in response to the hemodynamic overload in some physiological and pathological conditions. However, it has not been completely elucidated whether the primary stimulation for the hypertrophy is the mechanical stretching of the heart, neurohumoral factors, or even the interaction of both. These factors are translated inside the cell as biochemical alterations that lead to the activation of second (cytosolic and third (nuclear messengers that will act in the cell nucleus

  2. [Modelling of myocardial hypertrophy in vitro for solving problems of medicinal correction].

    Science.gov (United States)

    Moiseeva, O M; Semenova, E G; Polevaia, E V; Selivanova, G V; Vlasova, T D; Khirmanov, V N; Pinaev, G P

    1998-01-01

    The work has been done on primary heart culture from neonatal rat ventricle. Cardiomyocyte hypertrophy was modelled using noradrenaline (NA), angiotensin II (AII) and fetal serum, respectively. Cell hypertrophy of primary heart cultures was assessed by measuring the surface area, the scope of protein synthesis estimated by 3H-leucine autoradiography and the contents of nucleic acids in gallocyanin-chromalum stained cardiomyocytes. The structure of myofibrillar apparatus was studied by rhodamine-conjugated phalloidin and indirect immunofluorescence of muscle alpha-actinin. Treatment with 10(-6) M NA increased 3H-leucine incorporation in 9-day old heart culture by 42% without changing cell size. AII in a dose 1 microM stimulated protein synthesis activity by 1.3 fold and the surface area by 1.7 fold, both in 2- and 9-day old primary heart cultures. The maximum stimulation of cell hypertrophy was provided by the medium supplemented with fetal serum. RNA contents in the cytoplasm of cardiomyocytes increased by 7.8 fold and the myocardial cell size by 2.9 fold in serum-supplemented culture by 9 days of cultivation. In the medium with fetal serum, amounts of cardiomyocytes with tetraploid nuclei reached 33%, against 14% in control. Coculturing of myocardiocytes and fibroblasts rendered effects of fetal serum on the growth of myocardiocytes. Cultivation in the presence of 1 microM enalapril, an ACE inhibitor, suppressed the development of cardiac muscle cells hypertrophy. The effect of enalapril depended on the degree of cellular hypertrophy. Addition of 10 microM amiloride to the medium lowered the protein synthesis by 29% independently on the initial cellular hypertrophy. PMID:10188217

  3. Arterial baroreflex function and left ventricular hypertrophy

    Institute of Scientific and Technical Information of China (English)

    MIAO Chao-Yu; SU Ding-Feng

    2004-01-01

    It is well known that the arterial baroreflex(ABR)plays a key role in the regulation of heart rate and stabilization of blood pressure.Currently,it appears that ABR dysfunction is involved in the pathophysiology of cardiovascular disease states.Since the mid-1990s,a number of studies have been carried out in our laboratory to explore the pathological significance of ABR function in cardiovascular damage.This minireview summarizes our research work on the topic of ABR and left ventricular hypertrophy(LVH).On the basis of discussion concerning the importance of ABR dysfunction in hypertensive LVH and sinoaortic denervation-induced LVH,we advance a new strategy for reversal of LVH,that is,restoration of impaired ABR function.We tested this hypothesis in animal models with ABR deficiency.It was found that improvement of impaird ABR function with long-term treatment of ketanserin or candesartan was accompanied by reversal of LVH.The preliminary results indicate that it is feasible to target ABR for treatment of LVH.

  4. Nitroxyl (HNO stimulates soluble guanylyl cyclase to suppress cardiomyocyte hypertrophy and superoxide generation.

    Directory of Open Access Journals (Sweden)

    Eliane Q Lin

    Full Text Available BACKGROUND: New therapeutic targets for cardiac hypertrophy, an independent risk factor for heart failure and death, are essential. HNO is a novel redox sibling of NO• attracting considerable attention for the treatment of cardiovascular disorders, eliciting cGMP-dependent vasodilatation yet cGMP-independent positive inotropy. The impact of HNO on cardiac hypertrophy (which is negatively regulated by cGMP however has not been investigated. METHODS: Neonatal rat cardiomyocytes were incubated with angiotensin II (Ang II in the presence and absence of the HNO donor Angeli's salt (sodium trioxodinitrate or B-type natriuretic peptide, BNP (all 1 µmol/L. Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. RESULTS: We now demonstrate that Angeli's salt inhibits Ang II-induced hypertrophic responses in cardiomyocytes, including increases in cardiomyocyte size, de novo protein synthesis and β-myosin heavy chain expression. Angeli's salt also suppresses Ang II induction of key triggers of the cardiomyocyte hypertrophic response, including NADPH oxidase (on both Nox2 expression and superoxide generation, as well as p38 mitogen-activated protein kinase (p38MAPK. The antihypertrophic, superoxide-suppressing and cGMP-elevating effects of Angeli's salt were mimicked by BNP. We also demonstrate that the effects of Angeli's salt are specifically mediated by HNO (with no role for NO• or nitrite, with subsequent activation of cardiomyocyte soluble guanylyl cyclase (sGC and cGMP signaling (on both cGMP-dependent protein kinase, cGK-I and phosphorylation of vasodilator-stimulated phosphoprotein, VASP. CONCLUSIONS: Our results demonstrate that HNO prevents cardiomyocyte hypertrophy, and that cGMP-dependent NADPH oxidase suppression contributes to these antihypertrophic actions. HNO donors may thus represent innovative pharmacotherapy for cardiac hypertrophy.

  5. Mechanotransduction pathways in skeletal muscle hypertrophy.

    Science.gov (United States)

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process. PMID:22171534

  6. Distinct cardiac transcriptional profiles defining pregnancy and exercise.

    Directory of Open Access Journals (Sweden)

    Eunhee Chung

    Full Text Available BACKGROUND: Although the hypertrophic responses of the heart to pregnancy and exercise are both considered to be physiological processes, they occur in quite different hormonal and temporal settings. In this study, we have compared the global transcriptional profiles of left ventricular tissues at various time points during the progression of hypertrophy in exercise and pregnancy. METHODOLOGY/PRINCIPAL FINDINGS: The following groups of female mice were analyzed: non-pregnant diestrus cycle sedentary control, mid-pregnant, late-pregnant, and immediate-postpartum, and animals subjected to 7 and 21 days of voluntary wheel running. Hierarchical clustering analysis shows that while mid-pregnancy and both exercise groups share the closest relationship and similar gene ontology categories, late pregnancy and immediate post-partum are quite different with high representation of secreted/extracellular matrix-related genes. Moreover, pathway-oriented ontological analysis shows that metabolism regulated by cytochrome P450 and chemokine pathways are the most significant signaling pathways regulated in late pregnancy and immediate-postpartum, respectively. Finally, increases in expression of components of the proteasome observed in both mid-pregnancy and immediate-postpartum also result in enhanced proteasome activity. Interestingly, the gene expression profiles did not correlate with the degree of cardiac hypertrophy observed in the animal groups, suggesting that distinct pathways are employed to achieve similar amounts of cardiac hypertrophy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that cardiac adaptation to the later stages of pregnancy is quite distinct from both mid-pregnancy and exercise. Furthermore, it is very dynamic since, by 12 hours post-partum, the heart has already initiated regression of cardiac growth, and 50 genes have changed expression significantly in the immediate-postpartum compared to late-pregnancy. Thus, pregnancy

  7. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    Energy Technology Data Exchange (ETDEWEB)

    Borko, Ľubomír; Bauerová-Hlinková, Vladena, E-mail: vladena.bauerova@savba.sk; Hostinová, Eva; Gašperík, Juraj [Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava (Slovakia); Beck, Konrad [Cardiff University School of Dentistry, Heath Park, Cardiff CF14 4XY Wales (United Kingdom); Lai, F. Anthony [Cardiff University School of Medicine, Cardiff CF14 4XN Wales (United Kingdom); Zahradníková, Alexandra, E-mail: vladena.bauerova@savba.sk [Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava (Slovakia); Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava (Slovakia); Ševčík, Jozef, E-mail: vladena.bauerova@savba.sk [Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava (Slovakia)

    2014-11-01

    X-ray and solution structures of the human RyR2 N-terminal region were obtained under near-physiological conditions. The structure exhibits a unique network of interactions between its three domains, revealing an important stabilizing role of the central helix. Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminus is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C{sup α} atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine–isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.

  8. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    Full Text Available Fatty acid binding protein 4 (FABP4 is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG mice using α myosin-heavy chain (α-MHC promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  9. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Science.gov (United States)

    Zhang, Ji; Qiao, Congzhen; Chang, Lin; Guo, Yanhong; Fan, Yanbo; Villacorta, Luis; Chen, Y Eugene; Zhang, Jifeng

    2016-01-01

    Fatty acid binding protein 4 (FABP4) is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG) mice using α myosin-heavy chain (α-MHC) promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC) procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway. PMID:27294862

  10. ANG II is required for optimal overload-induced skeletal muscle hypertrophy

    Science.gov (United States)

    Gordon, S. E.; Davis, B. S.; Carlson, C. J.; Booth, F. W.

    2001-01-01

    ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.

  11. 123I-MIBG myocardial imaging in hypertensive patients. Abnormality progresses with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Twenty-seven patients with essential hypertension were prospectively studied with 123I-labeled metaiodobenzyl-guanidine (123I-MIBG) to assess the presence and location of impaired sympathetic innervation in hypertrophied myocardium. Thirteen patients had left ventricular hypertrophy on echocardiography, and 14 had normal echocardiograms. The wash-out ratio of 123I-MIBG in these two groups did not differ significantly (35.3±6.1 and 35.4±5.1) but was higher than in control subjects (29.4±6.7). The delayed heart-to-mediastinum count ratio was lower in the patients with hypertrophy than in the patients without hypertrophy (1.93±0.28 and 2.22±0.21; p<0.05) and the control subjects (1.93±0.28 and 2.33±0.25; p<0.05). On SPECT imaging, abnormalities in segmental uptake were frequent at the posterior and postero-lateral wall in both groups, although the hypertrophic group had more significant impairment. Our results lead to the hypothesis that hypertension in more advanced stages may be associated not only with hypertrophic changes but also with more advanced regional impairment of cardiac sympathetic innervation. (author)

  12. Postural control in women with breast hypertrophy

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    2012-07-01

    Full Text Available OBJECTIVES: The consequences of breast hypertrophy have been described based on the alteration of body mass distribution, leading to an impact on psychological and physical aspects. The principles of motor control suggest that breast hypertrophy can lead to sensorimotor alterations and the impairment of body balance due to postural misalignment. The aim of this study is to evaluate the postural control of women with breast hypertrophy under different sensory information conditions. METHOD: This cross-sectional study included 14 women with breast hypertrophy and 14 without breast hypertrophy, and the mean ages of the groups were 39 ±15 years and 39±16 years, respectively. A force platform was used to assess the sensory systems that contribute to postural control: somatosensory, visual and vestibular. Four postural conditions were sequentially tested: eyes open and fixed platform, eyes closed and fixed platform, eyes open and mobile platform, and eyes closed and mobile platform. The data were processed, and variables related to the center of pressure were analyzed for each condition. The Kruskal-Wallis test was used to compare the conditions between the groups for the area of center of pressure displacement and the velocity of center of pressure displacement in the anterior-posterior and medial-lateral directions. The alpha level error was set at 0.05. RESULTS: Women with breast hypertrophy presented an area that was significantly higher for three out of four conditions and a higher velocity of center of pressure displacement in the anterior-posterior direction under two conditions: eyes open and mobile platform and eyes closed and mobile platform. CONCLUSIONS: Women with breast hypertrophy have altered postural control, which was demonstrated by the higher area and velocity of center of pressure displacement.

  13. Sudden Cardiac Arrest in a Patient With Apical Hypertrophic Cardiomyopathy: Case Report and a Brief Review of Literature.

    Science.gov (United States)

    Gupta, Tanush; Paul, Neha; Palaniswamy, Chandrasekar; Balasubramaniyam, Nivas; Aronow, Wilbert S; Kolte, Dhaval; Khera, Sahil; Shah, Amar B; Gass, Alan

    2016-01-01

    Apical hypertrophic cardiomyopathy (HCM) is a phenotypic variant of nonobstructive HCM, in which hypertrophy of the myocardium predominantly involves the left ventricular apex. It is common in Japanese and other Asian populations but is rare in the United States. Apical HCM has a relatively benign prognosis in terms of cardiovascular mortality; however, morbid events such as ventricular aneurysms, apical thrombi, diastolic dysfunction, atrial fibrillation, and myocardial infarction are not uncommon. We report a case of an 18-year-old white man who presented to our hospital after an out-of-hospital cardiac arrest. The patient had a witnessed collapse while playing basketball in the field. He was found to be pulseless and unresponsive by his coach, and cardiopulmonary resuscitation was immediately started. Upon arrival of emergency medical services, an automated external defibrillator advised shock and he was defibrillated thrice. Return of spontaneous circulation was achieved in 15 minutes. He was intubated for airway protection and was brought to the hospital. Therapeutic hypothermia was initiated. He demonstrated good neurological status after active rewarming. Subsequent cardiac magnetic resonance imaging was suggestive of apical HCM with right ventricular involvement. The patient underwent an implantable cardioverter defibrillator placement for secondary prevention and was subsequently discharged. In conclusion, apical HCM can rarely be associated with adverse cardiovascular events. The diagnosis may be missed on transthoracic 2-dimensional cardiac echocardiogram, and cardiac magnetic resonance imaging should be considered to exclude apical HCM in young patients who present after sudden cardiac arrest. PMID:25923227

  14. Histopathologic features of esophageal glands in the region of the gastroesophageal junction in Chinese patients with gastric cardiac cancer involving the esophagus

    Directory of Open Access Journals (Sweden)

    Qin Huang

    2010-05-01

    Full Text Available Qin Huang1,2,3, Lihua Zhang11Department of Pathology of the Nanjing Drum Tower Hospital, Nanjing, China; 2Department of Pathology and Laboratory Medicine, Veterans Affairs, Boston Healthcare System, West Roxbury, MA, USA; 3Harvard Medical School, Boston, MA, USAAbstract: Esophageal glands (EGs were implicated previously as a potential origin of carcinomas of the gastroesophageal junction (GEJ. The studies of histopathology on diseases in EGs, however, are scarce. In the present study, we systematically investigated EGs in 36 resection cases of gastric cardiac carcinomas involving the esophagus (GCE in Chinese patients. All cases showed chronic inflammation in EGs and 14 (39% with Helicobacter pylori infection. Hyperplasia, atrophy, and dysplasia were common in EGs and observed in 21 (58%, 14 (39%, and 28 (78% cases, respectively. These changes were associated with various types of metaplasia, including intestinal (6, 17%, oncocytic (26, 72%, pancreatic acinar (11, 30%, and squamoid metaplasia (8, 22%. Oncocytic metaplasia was patchy, frequently replaced the entire lobule with dysplastic features. Pancreatic acinar metaplasia was present in superficial EGs as small acinar patches. Squamoid metaplasia was limited to the EG drainage ductile epithelium without keratin pearls or intercellular bridges; however, cytoplasmic vesicles and secretory vacuoles were common, suggesting dual differentiation. Dysplastic EGs featured architectural disarray with fused acini, cribriforming, abortive growth, and nuclear hyperchromasia, enlargement, and overlapping. The results demonstrate a spectrum of histopathologic changes in EGs and ductile epithelium, which is similar to those observed in GCE in Chinese patients.Keywords: esophageal glands, esophagus, stomach, cancer, Chinese

  15. Myocardial hypertrophy and the maturation of fatty acid oxidation in the newborn human heart.

    Science.gov (United States)

    Yatscoff, Michael A; Jaswal, Jagdip S; Grant, Meghan R; Greenwood, Rachel; Lukat, Trish; Beker, Donna L; Rebeyka, Ivan M; Lopaschuk, Gary D

    2008-12-01

    After birth dramatic decreases in cardiac malonyl CoA levels result in the rapid maturation of fatty acid oxidation. We have previously demonstrated that the decrease in malonyl CoA is due to increased activity of malonyl CoA decarboxylase (MCD), and decreased activity of acetyl CoA carboxylase (ACC), enzymes which degrade and synthesize malonyl CoA, respectively. Decreased ACC activity corresponds to an increase in the activity of 5'-AMP activated protein kinase (AMPK), which phosphorylates and inhibits ACC. These alterations are delayed by myocardial hypertrophy. As rates of fatty acid oxidation can influence the ability of the heart to withstand an ischemic insult, we examined the expression of MCD, ACC, and AMPK in the newborn human heart. Ventricular biopsies were obtained from infants undergoing cardiac surgery. Immunoblot analysis showed a positive correlation between MCD expression and age. In contrast, a negative correlation in both ACC and AMPK expression and age was observed. All ventricular samples displayed some degree of hypertrophy, however, no differences in enzyme expression were found between moderate and severe hypertrophy. This indicates that increased expression of MCD, and the decreased expression of ACC and AMPK are important regulators of the maturation of fatty acid oxidation in the newborn human heart. PMID:18614968

  16. Simvastatin inhibits leptin-induced hypertrophy in cultured neonatal rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Tai-ping HU; Fang-ping XU; Yuan-jian LI; Jian-dong LUO

    2006-01-01

    Aim:To test the hypothesis that statins inhibit leptin-induced hypertrophy in cultured neonatal rat cardiomyocytes.Methods:Cultured neonatal rat cardiomyocytes were used to evaluate the effects of simvastatin on leptininduced hypertrophy.Intracellular reactive oxygen species (ROS) levels were determined by using 2',7'-dichlorofluorescein diacetate (DCF-DA) fluorescence.Total intracellular RNA and cell protein content,which serve as cell proliferative markers,were assayed by using propidium iodide (PI) fluorescence and the Bio-Rad DC protein assay.respectively.The cell surface area,an indicator of cell hypertrophy,was quantified by using Leica image analysis software.Results:After 72 h treatment,1eptin markedly increased RNA 1evels,cell surface area,and total cell protein levels in cardiomyocytes,which were significantly inhibited by simvastatin or catalase treatment.ROS levels were significantly elevated in cardiomyocytes treated with leptin for 4 h compared with those cells without leptin treatment.The increase in ROS levels in cardiomyocytes induced by leptin was reversed by treatment with simvastatin and catalase.Conclusion:Simvastatin inhibits leptin-induced ROS-mediated hyperophy in cultured neonatal rat cardiac myocytes.Statin therapy may provide an effective means of improving cardiac dysfunction in obese humans.

  17. Teres Minor Hypertrophy is a Common and Negative Predictor of Outcomes after Rotator Cuff Repair

    Science.gov (United States)

    Tokish, John M.; Thigpen, Charles A.; Kissenberth, Michael J.; Hunt, Quinn; Tolan, Stefan John; Swinehart, S. Dane; Shelley, Christina; Hawkins, Richard J.

    2016-01-01

    Objectives: The teres minor has received increased attention in its role as a rotator cuff muscle, particularly in the setting of large infraspinatus tears. Studies have shown that it plays an important beneficial role after total (TSA) and reverse (RSA) shoulder arthroplasty, as well as in maintenance of function in the setting of infraspinatus wasting in patients with large rotator cuff tears. No study, however, has investigated how often teres minor hypertrophy occurs in a population of rotator cuff tears, whether it occurs in the absence of infraspinatus tearing, or whether it is a positive or negative prognostic indicator on outcomes after rotator cuff repair. The purpose of this study was to determine the prevalence of teres minor hypertrophy in a cohort of patients undergoing rotator cuff repair, and to determine its prognostic effect, if any, on outcomes after surgical repair. Methods: Over a 3 year period, all rotator cuff repairs performed in a single practice by 3 American Shoulder and Elbow Society (ASES) member surgeons were collected. One hundered forty-four patients who had preoperative and postoperative (ASES) outcomes (minimum 2 year), and preoperative Magnetic Resonance Imaging (MRI) were included in the study. All MRIs were evaluated for rotator cuff tear tendon involvement, tear size, and Goutallier changes of each muscle. In addition, occupational ratios were determined for the supraspinatus, infraspinatus, and teres minor muscles. Patients were divided into 2 groups, based upon whether they had teres minor hypertrophy or not, based on a previously established definition. A 2 way univariate ANOVA was used to determine the effect of teres minor hypertrophy(tear size by hypertrophy) and Goutallier changes(tear size by fatty infiltration) on ASES change scores(α=0.05) Results: Teres minor hypertrophy was a relatively common finding in this cohort of rotator cuff patients, with 51% of all shoulders demonstrating hypertrophy. Interestingly, in

  18. AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload.

    Science.gov (United States)

    Riedl, Isabelle; Osler, Megan E; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A; Chibalin, Alexander V; Zierath, Juleen R

    2016-03-15

    Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5'-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3(225Q) and AMPKγ3-knockout (Prkag3(-/-)) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. PMID:26758685

  19. Structural and functional cardiac changes in myotonic dystrophy type 1: a cardiovascular magnetic resonance study

    Directory of Open Access Journals (Sweden)

    Hermans Mieke CE

    2012-07-01

    Full Text Available Abstract Background Myotonic dystrophy type 1 (MD1 is a neuromuscular disorder with potential involvement of the heart and increased risk of sudden death. Considering the importance of cardiomyopathy as a predictor of prognosis, we aimed to systematically evaluate and describe structural and functional cardiac alterations in patients with MD1. Methods Eighty MD1 patients underwent physical examination, electrocardiography (ECG, echocardiography and cardiovascular magnetic resonance (CMR. Blood samples were taken for determination of NT-proBNP plasma levels and CTG repeat length. Results Functional and structural abnormalities were detected in 35 patients (44%. Left ventricular systolic dysfunction was found in 20 cases, left ventricular dilatation in 7 patients, and left ventricular hypertrophy in 6 patients. Myocardial fibrosis was seen in 10 patients (12.5%. In general, patients had low left ventricular mass indexes. Right ventricular involvement was uncommon and only seen together with left ventricular abnormalities. Functional or structural cardiac involvement was associated with age (p = 0.04, male gender (p Conclusions CMR can be useful to detect early structural and functional myocardial abnormalities in patients with MD1. Myocardial involvement is strongly associated with conduction abnormalities, but a normal ECG does not exclude myocardial alterations. These findings lend support to the hypothesis that MD1 patients have a complex cardiac phenotype, including both myocardial and conduction system alteration.

  20. In vitro myotrophic effect of serum kappa chain immunoglobulins from a patient with kappa light chain myeloma and muscular hypertrophy.

    OpenAIRE

    Delaporte, C.; Varet, B; Fardeau, M.; Nochy, D; Ract, A

    1986-01-01

    Muscle hypertrophy due to enlarged muscle fibers was accompanied by kappa light chain myeloma in a 62-yr-old man. Immunofluorescence showed kappa light chain deposits around muscle fibers. We hypothesized that a circulating growth factor may be involved in the pathogeny of this muscular hypertrophy. Patient serum cultured with muscle cells showed that (a) the patient's serum exhibited a trophic effect on human muscle cells in culture, (b) this trophic effect increased the differentiation and ...

  1. Sparing of the Dystrophin-Deficient Cranial Sartorius Muscle Is Associated with Classical and Novel Hypertrophy Pathways in GRMD Dogs

    OpenAIRE

    Nghiem, Peter P.; Eric P Hoffman; Mittal, Priya; Kristy J Brown; Scott J Schatzberg; Ghimbovschi, Svetlana; Wang, Zuyi; Kornegay, Joe N

    2013-01-01

    Both Duchenne and golden retriever muscular dystrophy (GRMD) are caused by dystrophin deficiency. The Duchenne muscular dystrophy sartorius muscle and orthologous GRMD cranial sartorius (CS) are relatively spared/hypertrophied. We completed hierarchical clustering studies to define molecular mechanisms contributing to this differential involvement and their role in the GRMD phenotype. GRMD dogs with larger CS muscles had more severe deficits, suggesting that selective hypertrophy could be det...

  2. The p38 Mitogen-Activated Protein Kinase Pathway-A Potential Target for Intervention in Infarction, Hypertrophy and Heart Failure

    OpenAIRE

    Marber, Michael S; Rose, Beth; Wang, Yibin

    2010-01-01

    The p38 mitogen-activated protein kinases (p38s) are stress activated ser/thr kinases. Their activation has been associated with various pathological stressors in the heart. Activated p38 is implicated in a wide spectrum of cardiac pathologies, including hypertrophy, myocardial infarction, as well as systolic and diastolic heart failure. In this review, the specific contribution of different isoforms of p38 kinases to cardiac diseases as well as TAB-1 mediated non-canonical activation pathway...

  3. Effects of transforming growth factor-β1 and signal protein Smad3 on rat cardiomyocyte hypertrophy

    Institute of Scientific and Technical Information of China (English)

    黄俊; 覃国辉; 胡昌兴; 龚丽娅; 程芳舟; 马业新; 陆再英

    2004-01-01

    Background SMAD proteins have recently been identified as the first family of putative transforming growth factor-β1(TGF-β1) signal transducers. This study was to investigate the effects of TGF-β1 and signal protein Smad3 on rat cardiac hypertrophy.Methods The incorporation of [3H]-leucine was measured to determine the hypertrophy of cardiomyocyte incubated with different doses of TGF-β1 in cultured neonatal cardiomyocytes. The model of rat cardiac hypertrophy was produced with constriction of the abdominal aorta. At different times after the operation, rats were killed, and their left ventricular mass index (LVMI) determined. The mRNA expression of TGF-β1 and Smad3 of cultured cells and hypertrophic left ventricles were assessed by RT-PCR. The protein expression of Smad3 was assessed by Western blot.Results In cultured neonatal cardiomyocytes, TGF-β1 significantly promoted incorporation of [3H]-leucine. With the concentration of 3 pg/L, it increased the expression of Smad3 in mRNA and protein levels after 15 minutes, and continued for up to 8 hours of cultured cardiomyocytes. The LVMI and the expression of TGF-β1 (mRNA) and Smad3 (mRNA and protein) of hypertrophic left ventricle were increased by day 3 after the operation and continued to the 4th week. The peak expression of these was in the second week after operation.Conclusion TGF-β1 has positive effects on rat cardiomyocyte hypertrophy. Signal protein Smad3 could be related to the pathologic progression of rat cardiac hypertrophy.

  4. Carpal tunnel syndrome: an unusual presentation of brachial hypertrophy.

    OpenAIRE

    Shenoy, K T; Saha, P. K.; Ravindran, M

    1980-01-01

    A patient with carpal tunnel syndrome in association with congenital hypertrophy of right upper limb is described. The median nerve also showed hypertrophy. The symptoms were relieved by decompression of the carpal tunnel.

  5. Tanshinone IIA Prevents Leu27IGF-II-Induced Cardiomyocyte Hypertrophy Mediated by Estrogen Receptor and Subsequent Akt Activation.

    Science.gov (United States)

    Weng, Yueh-Shan; Wang, Hsueh-Fang; Pai, Pei-Ying; Jong, Gwo-Ping; Lai, Chao-Hung; Chung, Li-Chin; Hsieh, Dennis Jine-Yuan; HsuanDay, Cecilia; Kuo, Wei-Wen; Huang, Chih-Yang

    2015-01-01

    IGF-IIR plays important roles as a key regulator in myocardial pathological hypertrophy and apoptosis, which subsequently lead to heart failure. Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese medicinal herb used to treat cardiovascular diseases. Tanshinone IIA is an active compound in Danshen and is structurally similar to 17[Formula: see text]-estradiol (E[Formula: see text]. However, whether tanshinone IIA improves cardiomyocyte survival in pathological hypertrophy through estrogen receptor (ER) regulation remains unclear. This study investigates the role of ER signaling in mediating the protective effects of tanshinone IIA on IGF-IIR-induced myocardial hypertrophy. Leu27IGF-II (IGF-II analog) was shown in this study to specifically activate IGF-IIR expression and ICI 182,780 (ICI), an ER antagonist used to investigate tanshinone IIA estrogenic activity. We demonstrated that tanshinone IIA significantly enhanced Akt phosphorylation through ER activation to inhibit Leu27IGF-II-induced calcineurin expression and subsequent NFATc3 nuclear translocation to suppress myocardial hypertrophy. Tanshinone IIA reduced the cell size and suppressed ANP and BNP, inhibiting antihypertrophic effects induced by Leu27IGF-II. The cardioprotective properties of tanshinone IIA that inhibit Leu27IGF-II-induced cell hypertrophy and promote cell survival were reversed by ICI. Furthermore, ICI significantly reduced phospho-Akt, Ly294002 (PI3K inhibitor), and PI3K siRNA significantly reduced the tanshinone IIA-induced protective effect. The above results suggest that tanshinone IIA inhibited cardiomyocyte hypertrophy, which was mediated through ER, by activating the PI3K/Akt pathway and inhibiting Leu27IGF-II-induced calcineurin and NFATC3. Tanshinone IIA exerted strong estrogenic activity and therefore represented a novel selective ER modulator that inhibits IGF-IIR signaling to block cardiac hypertrophy. PMID:26621443

  6. Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of NG-nitro-L-arginine-methyl ester hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Paulis, L.; Pecháňová, Olga; Zicha, Josef; Krajčírovičová, K.; Barta, A.; Pelouch, V.; Adamcová, M.; Šimko, F.

    2009-01-01

    Roč. 27, Suppl.6 (2009), S11-S16. ISSN 0263-6352 R&D Projects: GA ČR(CZ) GA305/08/0139 Institutional research plan: CEZ:AV0Z50110509 Keywords : hypertension * cardiac hypertrophy * collagen Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.988, year: 2009

  7. Characterization of a complex rearrangement involving duplication and deletion of 9p in an infant with craniofacial dysmorphism and cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Di Bartolo Daniel L

    2012-07-01

    Full Text Available Abstract Partial duplication and partial deletion of the short arm of chromosome 9 have each been reported in the literature as clinically recognizable syndromes. We present clinical, cytogenetic, and molecular findings on a five-week-old female infant with concomitant duplication and terminal deletion of the short arm of chromosome 9. To our knowledge ten such cases have previously been reported. Conventional cytogenetic analysis identified additional material on chromosome 9 at band p23. FISH analysis aided in determining the additional material consisted of an inverted duplication with a terminal deletion of the short arm. Microarray analysis confirmed this interpretation and further characterized the abnormality as a duplication of about 32.7 Mb, from 9p23 to 9p11.2, and a terminal deletion of about 11.5 Mb, from 9p24.3 to 9p23. The infant displayed characteristic features of Duplication 9p Syndrome (hypotonia, bulbous nose, single transverse palmar crease, cranial anomalies, as well as features associated with Deletion 9p Syndrome (flat nasal bridge, long philtrum, cardiac anomalies despite the deletion being distal to the reported critical region for this syndrome. This case suggests that there are genes or regulatory elements that lie outside of the reported critical region responsible for certain phenotypic features associated with Deletion 9p Syndrome. It also underscores the importance of utilizing array technology to precisely define abnormalities involving the short arm of 9p in order to further refine genotype/phenotype associations and to identify additional cases of duplication/deletion.

  8. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1

    Science.gov (United States)

    Musaro, A.; McCullagh, K. J.; Naya, F. J.; Olson, E. N.; Rosenthal, N.

    1999-01-01

    Localized synthesis of insulin-like growth factors (IGFs) has been broadly implicated in skeletal muscle growth, hypertrophy and regeneration. Virally delivered IGF-1 genes induce local skeletal muscle hypertrophy and attenuate age-related skeletal muscle atrophy, restoring and improving muscle mass and strength in mice. Here we show that the molecular pathways underlying the hypertrophic action of IGF-1 in skeletal muscle are similar to those responsible for cardiac hypertrophy. Transfected IGF-1 gene expression in postmitotic skeletal myocytes activates calcineurin-mediated calcium signalling by inducing calcineurin transcripts and nuclear localization of calcineurin protein. Expression of activated calcineurin mimics the effects of IGF-1, whereas expression of a dominant-negative calcineurin mutant or addition of cyclosporin, a calcineurin inhibitor, represses myocyte differentiation and hypertrophy. Either IGF-1 or activated calcineurin induces expression of the transcription factor GATA-2, which accumulates in a subset of myocyte nuclei, where it associates with calcineurin and a specific dephosphorylated isoform of the transcription factor NF-ATc1. Thus, IGF-1 induces calcineurin-mediated signalling and activation of GATA-2, a marker of skeletal muscle hypertrophy, which cooperates with selected NF-ATc isoforms to activate gene expression programs.

  9. SIRT1 inhibits angiotensin Ⅱ-induced vascular smooth muscle cell hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Li Li; Chihchuan Liang; Peng Gao; Huina Zhang; Houzao Chen; Wei Zheng; Xiang Lv; Tingting Xu; Yusheng Wei; Depei Liu

    2011-01-01

    Angiotensin Ⅱ (Ang Ⅱ) stimulates vascular smooth muscle cell (VSMC) hypertrophy as a critical event in the development of vascular diseases such as atherosclerosis.Sirtuin (SIRT) 1, a nicotinamide adenine dinucleotide dependent deacetylase, has been demonstrated to exert protective effects in atherosclerosis by promoting endo-thelium-dependent vascular relaxation and reducing macrophage foam cell formation, but its role in VSMC hypertrophy remains unknown. In this study, we tried to investigate the effect of SIRTI on Ang Ⅱ-induced VSMC hypertrophy. Results showed that adenoviral-mediated over-expression of SIRT1 significantly inhibited Ang Ⅱ-induced VSMC hypertrophy, while knockdown of SIRT1 by RNAi resulted in an increased [3H]-leucine incorpor-ation of VSMC. Accordingly, nicotinamide adenine dinu-cleotide phosphate oxidase 1 (Nox1) expression induced by Ang Ⅱ was inhibited by SIRT1 in VSMCs. SIRT1 acti-vator resveratrol decreased, whereas endogenous SIRT1 inhibitor nicotinamide increased Nox1 expression in A7r5 VSMCs. Furthermore, transcription factor GATA-6 was involved in the down-regulation of Nox1 expression by SIRT1. These results provide new insight into SIRTI's anti-atherogenic properties by suppressing Ang Ⅱ-induced VSMC hypertrophy.

  10. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation.

    Science.gov (United States)

    Chung, Eunhee; Yeung, Fan; Leinwand, Leslie A

    2012-05-01

    Although the signaling pathways underlying exercise-induced cardiac adaptation have been extensively studied, little is known about the molecular mechanisms that result in the response of the heart to pregnancy. The objective of this study was to define the morphological, functional, and gene expression patterns that define the hearts of pregnant mice, and to identify the signaling pathways that mediate this response. Mice were divided into three groups: nonpregnant diestrus control, midpregnancy, and late pregnancy. Both time points of pregnancy were associated with significant cardiac hypertrophy. The prosurvival signaling cascades of Akt and ERK1/2 were activated in the hearts of pregnant mice, while the stress kinase, p38, was decreased. Given the activation of Akt in pregnancy and its known role in cardiac hypertrophy, the hypertrophic response to pregnancy was tested in mice expressing a cardiac-specific activated (myristoylated) form of Akt (myrAkt) or a cardiac-specific constitutively active (antipathologic hypertrophic) form of its downstream target, glycogen synthase kinase 3β (caGSK3β). The pregnancy-induced hypertrophic responses of hearts from these mice were significantly attenuated. Finally, we tested whether pregnancy-associated sex hormones could induce hypertrophy and alter signaling pathways in isolated neonatal rat ventricular myocytes (NRVMs). In fact, progesterone, but not estradiol treatment increased NRVM cell size via phosphorylation of ERK1/2. Inhibition of MEK1 effectively blocked progesterone-induced cellular hypertrophy. Taken together, our study demonstrates that pregnancy-induced cardiac hypertrophy is mediated by activation of Akt and ERK1/2 pathways. PMID:22345431

  11. Reduction of myocardial hypertrophy after aortic valve replacement

    Directory of Open Access Journals (Sweden)

    Kostić-Mirković Andrijana

    2007-01-01

    Full Text Available Background/Aim. Aortic valve disease - stenosis and regurgitation are the cause of increased homodynamic stress of the left ventricle (LV which then develops an adaptive mechanism of cardiac muscle hypertrophy. The aim of this study was to establish if aortic valve replacement procedure (AVR reduces myocardial hypertrophy and if it does in what period of time. Methods. Eighty-six patients who had been operated for AVR in the Clinical Center of Serbia were included in this investigation. In the every patient the aortic valve had been replaced with a mechanical valve prosthesis. Transthoracic echocardiography examination (TTE was performed in all of the patients before, and one week after the operation, while 22 patients were followed-up on a long term basis. The LV mass was determined with the formula according to the Pen convention. Results. In the tested group there was significantly more male than female individuals (n = 57-66.3%, 29-337%. Twelve patients (14% were operated for isolated aortic stenosis, 22 patients (25.6% for aortic regurgitation, 48 patients (55.8% for combined aortic valve disease, while 4 patients (4.7% for endocarditis. Student t test did not show any significant difference in diastolic septal thickness before and after the operation (p = 0.88, while it did show that the difference in the LV mass before and after the operation was highly significant (p = 0.000. This test also showed that, taking the mass of 240 g as the border value for hypertrophy of LV, the reduction of LV mass between preoperative and early postoperative finding was not significant (p = 0.5, while the reduction in LV mass between late and early postoperative examination was statistically significant (p = 0.000. In 19 of 22 patients who were followed-up postoperatively over a long period (84 months after the operation significant reduction of LV mass was registered. The mean time of the reduction was 27.5 months. Conclusion. This study showed the

  12. SPARC regulates collagen interaction with cardiac fibroblast cell surfaces

    OpenAIRE

    Harris, Brett S.; Zhang, Yuhua; Card, Lauren; Rivera, Lee B.; Brekken, Rolf A.; Bradshaw, Amy D.

    2011-01-01

    Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associa...

  13. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  14. Left ventricular hypertrophy in patients treated with regular hemodialyses

    OpenAIRE

    Petrović Dejan; Stojimirović Biljana

    2008-01-01

    Left ventricular hypertrophy is the main risk factor for development of cardiovascular morbidity and mortality in patients on hemodialysis. Left ventricular hypertrophy is found in 75% of the patients treated with hemodialysis. Risk factors for left ventricular hypertrophy in patients on hemodialysis include: blood flow through arterial-venous fistula, anemia, hypertension, increased extracellular fluid volume, oxidative stress, microinflammation, hyperhomocysteinemia, secondary hyperpara- th...

  15. Pathogenesis and Treatment of Neonatal Lupus Erythematosus with Cardiac Involvement%新生儿红斑狼疮心脏受累

    Institute of Scientific and Technical Information of China (English)

    李霞; 张丽丽; 赵岩

    2015-01-01

    Neonatal lupus erythematosus (NLE)is a passively acquired autoimmune disease associated with maternal anti-Ro/SSA,anti-SSB/La and anti U1RNP antibodies,of which fetal heart involvement is the most serious clinical manifestations.The molecular mechanisms are not fully understood, but several targets for the maternal autoantibodies in the fetal heart have been suggested.Recent studies also indicate that environmental factors and fetal susceptibility genes determine whether an autoantibody-exposed fetus will develop congenital heart block (CHB)or not.Prenatal application of fluorinatedcorticosteroids,hydroxychloroquine,intravenous immunoglobulin (IVIG),and plasmapheresis have been under investigation,but the results are controversial.In this article,we reviewed the advances in the pathogenesis and treatment of NLE with cardiac involvement in order to pursue early interventions.%新生儿红斑狼疮(neonatal lupus erythematosus,NLE)是一种被动获得性自身免疫性疾病,发生在血清具有抗SSA/Ro、抗 SSB/La 或抗 U1核糖核蛋白抗体孕妇的后代中,可呈多系统受累,其中心脏受累为最严重的表现。其发病机制研究包括自身抗体、心肌细胞凋亡、分子模拟、炎性纤维化通路及环境、遗传因素等。治疗方案包括含氟糖皮质激素、静脉注射人免疫球蛋、羟氯喹以及血浆置换等,但疗效均存争议。总结 NLE 心脏受累的临床表现、发病机制及治疗进展,有助于提高该病早期诊断率并获得及早干预,从而获得良好的妊娠结局。

  16. Left Ventricular Hypertrophy in Chronic Kidney Disease Patients: From Pathophysiology to Treatment

    OpenAIRE

    Di Lullo, Luca; Gorini, Antonio; Russo, Domenico; Santoboni, Alberto; Ronco, Claudio

    2015-01-01

    Cardiovascular diseases represent the main causes of morbidity and mortality in patients with chronic kidney disease (CKD). According to a well-established classification, cardiovascular involvement in CKD can be set in the context of cardiorenal syndrome type 4. Left ventricular hypertrophy (LVH) represents a key feature to provide an accurate picture of systolic-diastolic left heart involvement in CKD patients. Cardiovascular involvement is present in about 80% of prevalent hemodialysis pat...

  17. miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Alberto Izarra

    2014-12-01

    Full Text Available miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs, but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue.

  18. Retinol-Binding Protein 4 Induces Cardiomyocyte Hypertrophy by Activating TLR4/MyD88 Pathway.

    Science.gov (United States)

    Gao, Wei; Wang, Hao; Zhang, Lin; Cao, Yang; Bao, Ji-Zhang; Liu, Zheng-Xia; Wang, Lian-Sheng; Yang, Qin; Lu, Xiang

    2016-06-01

    Insulin resistance plays a major role in the development and progression of cardiac hypertrophy and heart failure. Heart failure in turn promotes insulin resistance and increases the risk for diabetes. The vicious cycle determines significant mortality in patients with heart failure and diabetes. However, the underlying mechanisms for the vicious cycle are not fully elucidated. Here we show that circulating levels and adipose expression of retinol-binding protein 4 (RBP4), an adipokine that contributes to systemic insulin resistance, were elevated in cardiac hypertrophy induced by transverse aortic constriction and angiotensin-II (Ang-II) infusion. Ang-II increased RBP4 expression in adipocytes, which was abolished by losartan, an Ang-II receptor blocker. The elevated RBP4 in cardiac hypertrophy may have pathophysiological consequences because RBP4 increased cell size, enhanced protein synthesis, and elevated the expression of hypertrophic markers including Anp, Bnp, and Myh7 in primary cardiomyocytes. Mechanistically, RBP4 induced the expression and activity of toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) in cardiomyocytes, resulting in enhanced inflammation and reactive oxygen species production. Inhibition or knockdown of the TLR4/MyD88 pathway attenuated inflammatory and hypertrophic responses to RBP4 stimulation. Importantly, RBP4 also reduced the expression of glucose transporter-4 and impaired insulin-stimulated glucose uptake in cardiomyocytes. This impairment was ameliorated in cardiomyocytes from TLR4 knockout mice. Therefore, RBP4 may be a critical modulator promoting the vicious cycle of insulin resistance and heart failure by activating TLR4/MyD88-mediated inflammatory pathways. Potentially, lowering RBP4 might break the vicious cycle and improve both insulin resistance and cardiac hypertrophy. PMID:27100622

  19. Treatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca2+-Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium

    OpenAIRE

    Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine; Stanley, William C.

    2010-01-01

    Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hyper...

  20. Association of Left Atrial Volume With Mortality Among ESRD Patients With Left Ventricular Hypertrophy Referred for Kidney Transplantation

    OpenAIRE

    Patel, Rajan K.; Jardine, Alan G.M.; Patrick B. Mark; Cunningham, Anthony F.; Steedman, Tracey; Powell, Joanna R.; McQuarrie, Emily P.; Stevens, Kathryn K; Dargie, Henry J; Jardine, Alan G

    2010-01-01

    Background Left ventricular hypertrophy (LVH) is common in patients with end-stage renal disease (ESRD) and an independent risk factor for premature cardiovascular death. Left atrial volume (LAV), measured using echocardiography, predicts death in patients with ESRD. Cardiovascular magnetic resonance (CMR) imaging is a volume-independent method of accurately assessing cardiac structure and function in patients with ESRD. Study Design Single-center prospective observational study to assess the...

  1. Left ventricular mass formulae and prevalence rates of echocardiographic left ventricular hypertrophy in Nigerians with essential hypertension

    OpenAIRE

    Ajayi Ebenezer Adekunle; Ajayi Iyiade Adeseye; Oyedeji Tolulope Adebayo; Adeoti Adekunle Olatayo; Omotoye Olusola Joseph; Adebayo Rasaaq Ayodele

    2013-01-01

    Background: Left ventricular hypertrophy (LVH) as a marker of cardiac damage in hypertension has important prognostic implications. With high prevalence of hypertension in Nigeria and the untoward effect of LVH, it is essential that the prevalence of LVH be determined. Aims: To determine prevalence of LVH and its severity in clinical practice among hypertensive patients referred for echocardiographic assessment in Nigeria. Materials and Methods: Devereux and Troy formulae were used to calcula...

  2. Genetic variation in angiotensin-converting enzyme 2 gene is associated with extent of left ventricular hypertrophy in hypertrophic cardiomyopathy

    OpenAIRE

    van der Merwe, Lize; Cloete, Ruben; Revera, Miriam; Heradien, Marshall; Goosen, Althea; Corfield, Valerie A.; Paul A Brink; Moolman-Smook, Johanna C

    2008-01-01

    Hypertrophic cardiomyopathy, a common, inherited cardiac muscle disease, is primarily caused by mutations in sarcomeric protein-encoding genes and is characterized by overgrowth of ventricular muscle that is highly variable in extent and location. This variability has been partially attributed to locus and allelic heterogeneity of the disease-causing gene, but other factors, including unknown genetic factors, also modulate the extent of hypertrophy that develops in response to the defective s...

  3. 31P NMR spectroscopy of hypertrophied rat heart: effect of graded global ischemia.

    Science.gov (United States)

    Clarke, K; Sunn, N; Willis, R J

    1989-12-01

    To investigate the cause for the greater susceptibility of hypertrophied hearts to ischemic injury, we determined the interrelations of total work output, contractile function and energy metabolism in isolated, perfused normal and hypertrophied rat hearts subjected to graded global ischemia. Cardiac hypertrophy was induced by giving rats seven daily injections of either triiodothyronine (0.2 mg/kg) or isoproterenol (5 mg/kg). All hearts were perfused at an aortic pressure of 100 mmHg in the isovolumic mode in an NMR spectrometer (7.05 Tesla). Heart rate, developed pressure, and coronary flow were monitored simultaneously with changes in pH, creatine phosphate, ATP and inorganic phosphate. During pre-ischemic perfusion, the total work output (rate-pressure product) of hyperthyroid hearts was 28% higher than that of control hearts, whereas hearts from isoproterenol-treated animals showed no difference. However, when related to unit muscle mass, work was normal in hyperthyroid hearts and 26% lower after isoproterenol. Contractile function per unit myocardium (developed pressure/g wet weight) was lower in the hypertrophied hearts. ATP content was the same in all groups. Creatine phosphate decreased 41% after triiodothyronine and 25% after isoproterenol. Inorganic phosphate levels and intracellular pH were similar in control and isoproterenol-treated rat hearts, but were higher in the hyperthyroid rat hearts. The phosphorylation potential and the free energy change of ATP hydrolysis were lowered by hypertrophy, the levels correlating with the depressed contractile function. At each ischemic flow rate, both work and contractile function per unit myocardium were the same for all hearts, but the relations between flow and phosphorylation potential were different for each type of heart. Thus, at low flow rates, hypertrophied hearts perform the same amount of work and have the same contractile function as control hearts, but with abnormal changes in energy metabolism

  4. Left ventricular hypertrophy : virtuous intentions, malign consequences

    NARCIS (Netherlands)

    Pokharel, S; Sharma, UC; Pinto, YM

    2003-01-01

    Left ventricular hypertrophy (LVH) is currently the focus of intense cardiovascular research, with the resultant rapid evolution of novel concepts relating to its exceedingly complex pathophysiology. In addition to the alterations in signal transduction and disturbances in Ca2+ homeostasis, there ar

  5. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    OpenAIRE

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss.

  6. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice

    DEFF Research Database (Denmark)

    Patrick, David M; Montgomery, Rusty L; Qi, Xiaoxia;

    2010-01-01

    cardiac hypertrophy and fibrosis in rodents in response to pressure overload. In contrast, we have shown here that miR-21-null mice are normal and, in response to a variety of cardiac stresses, display cardiac hypertrophy, fibrosis, upregulation of stress-responsive cardiac genes, and loss of cardiac......MicroRNAs inhibit mRNA translation or promote mRNA degradation by binding complementary sequences in 3' untranslated regions of target mRNAs. MicroRNA-21 (miR-21) is upregulated in response to cardiac stress, and its inhibition by a cholesterol-modified antagomir has been reported to prevent...... contractility comparable to wild. type littermates. Similarly, inhibition of miR-21 through intravenous delivery of a locked nucleic acid-modified (LNA-modified) antimiR oligonucleotide also failed to block the remodeling response of the heart to stress. We therefore conclude that miR-21 is not essential for...

  7. The other side of cardiac Ca2+ signaling: transcriptional control

    Directory of Open Access Journals (Sweden)

    Alejandro eDomínguez-Rodríquez

    2012-11-01

    Full Text Available Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling, but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling. ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII and phosphatase calcineurin, both of which are activated by the complex Ca2+/ /Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n or cytoplasmic ([Ca2+]c, and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs in [Ca2+]c, needed to activate calcineurin.

  8. Hemodynamics, function and perfusion of the myocardium in arterial hypertensive with varying left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Seventy eight patients with arterial hypertension were examined by echo-, radiocardiography and scintigraphy of the myocardium, using 99mTc pyrophosphate and 201Tl. A relationship was found between the development of hypertrophy of the left ventricle and the impairment of it perfusion and function. At the same time there was a correlation benween the decrease in cardiac output and the deterioration of myocardial blood supply. It was demonstrated that 99mTc pyrophosphate or 201Tl myocardial scintigraphy yielded the coincident results when relative heart failure was evaluated in patients with arterial hypertension and left ventricular hypertropy

  9. Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: the role of mitochondria

    OpenAIRE

    Hernández, Jessica Soto; Barreto-Torres, Giselle; Kuznetsov, Andrey V.; Khuchua, Zaza; Javadov, Sabzali

    2014-01-01

    AMP-kinase (AMPK) activation reduces cardiac hypertrophy, although underlying molecular mechanisms remain unclear. In this study, we elucidated the anti-hypertrophic action of metformin, specifically, the role of the AMPK/eNOS/p53 pathway. H9c2 rat cardiomyocytes were treated with angiotensin II (AngII) for 24 hrs in the presence or absence of metformin (AMPK agonist), losartan [AngII type 1 receptor (AT1R) blocker], Nω-nitro-L-arginine methyl ester (L-NAME, pan-NOS inhibitor), splitomicin (S...

  10. Regional Cardiac Dysfunction and Dyssynchrony in a Murine Model of Afterload Stress

    OpenAIRE

    Bauer, Michael; Cheng, Susan; Unno, Kazumasa; Lin, Fen-Chiung; Liao, Ronglih

    2013-01-01

    Small animal models of afterload stress have contributed much to our present understanding of the progression from hypertension to heart failure. High-sensitivity methods for phenotyping cardiac function in vivo, particular in the setting of compensated cardiac hypertrophy, may add new information regarding alterations in cardiac performance that can occur even during the earliest stages of exposure to pressure overload. We have developed an echocardiographic analytical method, based on speck...

  11. Alpha-lipoic acid attenuates cardiac fibrosis in Otsuka Long-Evans Tokushima Fatty rats

    OpenAIRE

    Lee Jung Eun; Yi Chin-ok; Jeon Byeong Tak; Shin Hyun Joo; Kim Soo Kyoung; Jung Tae Sik; Choi Jun Young; Roh Gu Seob

    2012-01-01

    Abstract Background Hyperglycemia leads to cardiac oxidative stress and an imbalance in glucose homeostasis. Diabetic cardiomyopathy is characterised by cardiac hypertrophy and fibrosis. However, the underlying mechanisms of diabetic cardiomyopathy are not fully understood. This study aimed to investigate the effects of alpha-lipoic acid (ALA) on cardiac energy metabolism, antioxidant effect, and fibrosis in the hearts of Otsuka Long-Evans Tokushima fatty (OLETF) rats. Methods Animals were se...

  12. Ultrasonic evaluation of the relationship between left ventricular hypertrophy or left ventricular geometry and endothelial function in patients with essential hypertension

    Institute of Scientific and Technical Information of China (English)

    Jing Dong; Pingyang Zhang; Xuehong Feng; Chong Wang; Pei Wang

    2009-01-01

    Objective: To assess the relationship between left ventricular hypertrophy (LVH) or left ventricular geometry (LVG) and endothelial function in patients with essential hypertension (EH). Methods: Seventy-six patients and 30 normal subjects were first examined by echocardiography. Brachial artery dilatation induced by reactive hyperemia (DIRH) or nitroglycerin (DING) was detected using high-resolution ultrasonography. Results: DIRH was lower in patients with hypertension than in the controls, and the decrease in DIRH was greater in the patients with LVH than that in patients without LVH (4.36±2.54% vs 8.56+1.87 %; P 0.05). While there was no significant difference in DIRH between the patients with normal left ventricular geometry or cardiac remodeling, the patients showing either eccentric or concentric left ventricular hypertrophy had lower DIRH than the patients with normal left ventricular geometry or cardiac remodeling. The DIRH was the lowest in patients with concentric hypertrophy. Although bivariate analysis showed that the left ventricular mass index (LVMI) correlated well with the brachial artery dilatation induced by reactive hyperemia, diastolic blood pressure and mean blood pressure (r=-0.61, P < 0.0001; r=0.27, P < 0.05; r=0.31, P < 0.05, respectively), a multivariate stepwise regression demonstrated that LVMI correlated only with the brachial artery dilatation induced by reactive hyperemia. Conclusion: Left ventricular hypertrophy was related to endothelial dysfunction in essential hypertension. The endothelial dysfunction might be basic and important in the progression of left ventricular hypertrophy.

  13. Safety in cardiac surgery

    OpenAIRE

    Siregar, S.

    2013-01-01

    The monitoring of safety in cardiac surgery is a complex process, which involves many clinical, practical, methodological and statistical issues. The objective of this thesis was to measure and to compare safety in cardiac surgery in The Netherlands using the Netherlands Association for Cardio-Thoracic Surgery (NVT) database. The safety of care is usually measured using patient outcomes. If outcomes are not available, the process and structure of care may be used. Outcomes should be adjusted ...

  14. Klotho inhibits angiotensin II-induced cardiomyocyte hypertrophy through suppression of the AT1R/beta catenin pathway.

    Science.gov (United States)

    Yu, Liangzhu; Meng, Wei; Ding, Jieqiong; Cheng, Menglin

    2016-04-29

    Myocardial hypertrophy is an independent risk factor for cardiac morbidity and mortality. The antiaging protein klotho reportedly possesses a protective role in cardiac diseases. However, the precise mechanisms underlying the cardioprotective effects of klotho remain unknown. This study was aimed to determine the effects of klotho on angiotensin II (Ang II)-induced hypertrophy in neonatal rat cardiomyocytes and the possible mechanism of actions. We found that klotho significantly inhibited Ang II-induced hypertrophic growth of neonatal cardiomyocytes, as evidenced by decreased [(3)H]-Leucine incorporation, cardiomyocyte surface area and β-myosin heavy chain (β-MHC) mRNA expression. Meanwhile, klotho inhibited Ang II-stimulated activation of the Wnt/β-catenin pathway in cardiomyocytes, as evidenced by decreased protein expression of active β-catenin, downregulated protein and mRNA expression of the β-catenin target genes c-myc and cyclin D1, and increased β-catenin phosphorylation. Inhibition of the Wnt/β-catenin pathway by the specific inhibitor XAV939 markedly attenuated Ang II-induced cardiomyocyte hypertrophy. The further study revealed that klotho treatment significantly downregulated protein expression of Ang II receptor type I (AT1R) but not type II (AT2R). The AT1R antagonist losartan inhibited Ang II-stimulated activation of the Wnt/β-catenin pathway and cardiomyocyte hypertrophy. Our findings suggest that klotho inhibits Ang II-induced cardiomyocyte hypertrophy through suppression of the AT1R/β-catenin signaling pathway, which may provide new insights into the mechanism underlying the protective effects of klotho in heart diseases, and raise the possibility that klotho may act as an endogenous antihypertrophic factor by inhibiting the Ang II signaling pathway. PMID:26970306

  15. CAVEOLIN-3 IS UP-REGULATED IN THE PHYSIOLOGICAL LEFT VENTRICULAR HYPERTROPHY INDUCED BY VOLUNTARY EXERCISE TRAINING IN RATS

    Directory of Open Access Journals (Sweden)

    Ikuo Yokoyama

    2002-12-01

    Full Text Available Various substances have been introduced in relation with cardiac hypertrophy almost always with controversy in their roles in signal transduction. Those controversies may attribute to the diversity of cardiac hypertrophy. We previously showed that calcineurin was activated in physiological left ventricular hypertrophy (LVH induced by voluntary exercise training, but not in decompensated pressure-overload LVH. In the current study, we advanced our search for the differences between the voluntary exercise-induced LVH and the pressure-overload LVH into several other hypertrophy-related substances including caveolin. Wistar rats were assigned to one of the following three groups: 10 weeks of voluntary exercise (EX, sedentary regimen (SED, and 4 weeks of ascending aortic constriction (AC. The EX rats voluntarily ran 1.6±1.1 km/day in the specially manufactured cages resulting in LVH (24 % increase in left ventricular weight per body weight ratio. Myocardial tissue homogenate of the EX rats revealed different characteristics in signal transduction of hypertrophy from that of the AC. The EX rats had normal sarcoplasmic reticulum (SR Ca2+ATPase mRNA level and normal myosin heavy chain isozyme pattern assessed by RNA protection assay, while AC rats had decreased SR Ca2+ATPase mRNA level and increased beta myosin heavy chain mRNA level. Myocardial caveolin-3 protein levels assessed by Western blotting increased in the EX rats but decreased in the AC rats. The voluntary exercise-induced LVH differed in signal transduction from the decompensated pressure-overload LVH. Caveolin-3 was induced in the voluntary exercise-induced LVH, while it was decreased in the decompensated pressure-overload LVH

  16. Autophagy During Cardiac Stress: Joys and Frustrations of Autophagy

    Science.gov (United States)

    Gottlieb, Roberta A.; Mentzer, Robert M.

    2013-01-01

    The study of autophagy has been transformed by the cloning of most genes in the pathway and the introduction of GFP-LC3 as a reporter to allow visual assessment of autophagy. The field of cardiac biology is not alone in attempting to understand the implications of autophagy. The purpose of this review is to address some of the controversies and conundrums associated with the evolving studies of autophagy in the heart. Autophagy is a cellular process involving a complex orchestration of regulatory gene products as well as machinery for assembly, selective targeting, and degradation of autophagosomes and their contents. Our understanding of the role of autophagy in human disease is rapidly evolving as investigators examine the process in different tissues and different pathophysiological contexts. In the field of heart disease, autophagy has been examined in the settings of ischemia and reperfusion, preconditioning, cardiac hypertrophy, and heart failure. This review addresses the role of autophagy in cardioprotection, the balance of catabolism and anabolism, the concept of mitochondrial quality control, and the implications of impaired autophagic flux or frustrated autophagy. PMID:20148666

  17. Transcriptional regulation of cardiac genes balance pro- and anti-hypertrophic mechanisms in hypertrophic cardiomyopathy

    OpenAIRE

    Nina Gennebäck; Gerhard Wikström; Urban Hellman; Jane-Lise Samuel; Anders Waldenström; Stellan Mörner

    2012-01-01

    Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy. HCM is often hereditary, but our knowledge of the mechanisms leading from mutation to phenotype is incomplete. The transcriptional expression patterns in the myocar - dium of HCM patients may contribute to understanding the mechanisms that drive and stabilize the hypertrophy. Cardiac myectomies/biopsies from 8 patients with hypertrophic obstructive cardiomyopathy (HOCM) and 5 controls were studied ...

  18. Cartilage in facet joints of patients with ankylosing spondylitis (AS) shows signs of cartilage degeneration rather than chondrocyte hypertrophy: implications for joint remodeling in AS

    OpenAIRE

    Bleil, Janine; Sieper, Joachim; Maier, Rene; Schlichting, Uwe; Hempfing, Axel; Syrbe, Uta; Appel, Heiner

    2015-01-01

    Introduction In ankylosing spondylitis (AS), joint remodeling leading to joint ankylosis involves cartilage fusion. Here, we analyzed whether chondrocyte hypertrophy is involved in cartilage fusion and subsequent joint remodeling in AS. Methods We assessed the expression of chondrocyte hypertrophy markers runt-related transcription factor 2 (Runx2), type X collagen (COL10), matrix metalloproteinase 13 (MMP13), osteocalcin and beta-catenin and the expression of positive bone morphogenic protei...

  19. Acute Post-Exercise Myofibrillar Protein Synthesis Is Not Correlated with Resistance Training-Induced Muscle Hypertrophy in Young Men

    Science.gov (United States)

    Mitchell, Cameron J.; Churchward-Venne, Tyler A.; Parise, Gianni; Bellamy, Leeann; Baker, Steven K.; Smith, Kenneth; Atherton, Philip J.; Phillips, Stuart M.

    2014-01-01

    Muscle hypertrophy following resistance training (RT) involves activation of myofibrillar protein synthesis (MPS) to expand the myofibrillar protein pool. The degree of hypertrophy following RT is, however, highly variable and thus we sought to determine the relationship between the acute activation of MPS and RT-induced hypertrophy. We measured MPS and signalling protein activation after the first session of resistance exercise (RE) in untrained men (n = 23) and then examined the relation between MPS with magnetic resonance image determined hypertrophy. To measure MPS, young men (24±1 yr; body mass index  = 26.4±0.9 kg•m2) underwent a primed constant infusion of L-[ring-13C6] phenylalanine to measure MPS at rest, and acutely following their first bout of RE prior to 16 wk of RT. Rates of MPS were increased 235±38% (Pmuscle volume and acute rates of MPS measured over 1–3 h (r = 0.02), 3–6 h (r = 0.16) or the aggregate 1–6 h post-exercise period (r = 0.10). Hypertrophy after chronic RT was correlated (r = 0.42, P = 0.05) with phosphorylation of 4E-BP1Thr37/46 at 1 hour post RE. We conclude that acute measures of MPS following an initial exposure to RE in novices are not correlated with muscle hypertrophy following chronic RT. PMID:24586775

  20. Non-gated computed tomography of left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Non-ECG gated computed tomography (CT) of the heart was carried out in 19 cases with cardiovascular diseases; 4 with mitral stenosis, 3 with aortic valve disease, 2 with combined valve disease, 8 with hypertrophic cardiomyopathy and one myocardial infarction and one aortic aneurysm. All cardiac diseases were studied by echocardiography and 13 of them further investigated by intracadiac catheterization. The interventricular septum and the apical and posterolateral wall of the left ventricle were segmentally evaluated as to relative wall thickness of myocardium on CT. The wall thickness was directly measured on left ventricular cine angiograms in 13 cases. O-G vector calculated by CT was compatible with the palne of vectorcardiography in evaluating left ventricular hypertorphy. Conclusion were as follows: 1) The degree and site of myocardial hypertrophy were detected by CT with satisfaction. 2) The area of ventricular myocardium increased in aortic valve disease and hypertrophic cardiomyopathy. 3) The direction and magnitude of O-G vector calculated by CT were well correlated to the half area of QRS loop in horizontal plane of vectorcardiography. (author)

  1. Ribosome biogenesis during skeletal muscle hypertrophy

    OpenAIRE

    von Walden, Ferdinand

    2014-01-01

    Muscle adaptation to chronic resistance exercise (RE) is the result of a cumulative effect on gene expression and protein content. Following a bout of RE, muscle protein synthesis increases and, if followed by consecutive bouts (training), protein accretion and muscle hypertrophy develops. The protein synthetic capacity of the muscle is dictated by ribosome content. Therefore, the general aim of this thesis is to investigate the regulation of ribosome biogenesis during skeletal muscle hypertr...

  2. DISSEMINATED CYSTICERCOSIS WITH HUGE MUSCLE HYPERTROPHY

    OpenAIRE

    Bandyopadhyay Debabrata; Sen Sumit

    2009-01-01

    Cysticercosis is caused by cysticercus cellulose, which is the larva of Taenia solium , the pork tapeworm. The larvae are carried in the blood stream after penetrating the walls of the alimentary tract and they lodge in different tissues like the skin, skeletal muscles, brain, fundus and heart, to cause disseminated cysticercosis. Cases of disseminated cysticercosis have rarely been reported in the literature. They may inhabit the muscles and cause muscular hypertrophy, which, at times, may ...

  3. Heat stress inhibits skeletal muscle hypertrophy

    OpenAIRE

    Frier, Bruce C.; Locke, Marius

    2007-01-01

    Heat shock proteins (Hsps) are molecular chaperones that aid in protein synthesis and trafficking and have been shown to protect cells/tissues from various protein damaging stressors. To determine the extent to which a single heat stress and the concurrent accumulation of Hsps influences the early events of skeletal muscle hypertrophy, Sprague-Dawley rats were heat stressed (42°C, 15 minutes) 24 hours prior to overloading 1 plantaris muscle by surgical removal of the gastrocnemius muscle. The...

  4. Serotonin-promoted elevation of ROS levels may lead to cardiac pathologies in diabetic rat

    Directory of Open Access Journals (Sweden)

    Ali Tahir

    2015-01-01

    Full Text Available Patients with diabetes mellitus (DM develop tendencies toward heart disease. Hyperglycemia induces the release of serotonin from enterochromaffin cells (EC. Serotonin was observed to elevate reactive oxygen species (ROS and downregulate antioxidant enzymes. As a result, elevated levels of serotonin could contribute to diabetic complications, including cardiac hypertrophy. In the present study, diabetes mellitus was induced in rats by alloxan administration; this was followed by the administration of serotonin to experimental animals. ROS, catalase (CAT, superoxide dismutase (SOD, B-type natriuretic peptide (BNP expression, and histopathological assessments were performed. Elevated ROS concentrations and decreased antioxidant enzyme activities were detected. Further, we observed an increase in cell surface area and elevated BNP expression which suggests that events associated with cardiac hypertrophy were increased in serotonin-administered diabetic rats. We conclude that serotonin secretion in diabetes could contribute to diabetic complications, including cardiac hypertrophy, through enhanced ROS production.

  5. Assessment of hypertrophic cardiomyopathy by ECG gated cardiac computed tomography

    International Nuclear Information System (INIS)

    The applicability of ECG gated cardiac computed tomography (CT) in 12 patients with hypertrophic cardiomyopathy was examined. Six of the 12 patients had hypertrophic obstructive cardiomyopathy, including one patient with mid-ventricular obstruction. Three of the 12 patients had hypertrophic non-obstructive cardiomyopathy, and three had apical hypertrophic cardiomyopathy. The diagnosis of hypertrophic cardiomyopathy was confirmed by the angiocardiogram in all patients. Cardiac CT was performed after intravenous administration of contrast media usually given as a bolus injection. The gantry was set with positive 200 tilt angle. In all patients with hypertrophic obstructive cardiomyopathy except for mid-ventricular obstruction, the hypertrophied interventricular septum in the basal and mid portions was observed, and the left ventricular cavity was narrowed in systole. In a patient with mid-ventricular obstruction, the marked hypertrophied interventricular septum and antero-lateral papillary muscle were observed. In diastole, the left ventricular cavity was narrow and divided into two parts. The apical cavity was completely disappeared in systole. In all patients with hypertrophic non-obstructive cardiomyopathy, the diffuse hypertrophied interventricular septum was observed in diastole. In systole, the apical portion of the left ventricular cavity was markedly narrow and antero-lateral papillary muscle was hypertrophic. In all patients with apical hypertrophic cardiomyopathy, the marked apical hypertrophy of the left ventricular wall was observed in diastole. It is concluded that ECG gated cardiac CT could estimate myocardial wall motion and thickness and differentiate the types of hypertrophic cardiomyopathy each other. (author)

  6. Acetyl-lysine erasers and readers in the control of pulmonary hypertension and right ventricular hypertrophy

    Science.gov (United States)

    Stratton, Matthew S.; McKinsey, Timothy A.

    2016-01-01

    Acetylation of lysine residues within nucleosomal histone tails provides a crucial mechanism for epigenetic control of gene expression. Acetyl groups are coupled to lysine residues by histone acetyltransferases (HATs) and removed by histone deacetylases (HDACs), which are also commonly referred to as “writers” and “erasers”, respectively. In addition to altering the electrostatic properties of histones, lysine acetylation often creates docking sites for bromodomain-containing “reader” proteins. This review focuses on epigenetic control of pulmonary hypertension (PH) and associated right ventricular (RV) cardiac hypertrophy and failure. Effects of small molecule HDAC inhibitors in pre-clinical models of PH are highlighted. Furthermore, we describe the recently discovered role of bromodomain and extraterminal (BET) reader proteins in the control of cardiac hypertrophy, and provide evidence suggesting that one member of this family, BRD4, contributes to the pathogenesis of RV failure. Together, the data suggest intriguing potential for pharmacological epigenetic therapies for the treatment of PH and right-sided heart failure. PMID:25707943

  7. Cardiac Image Registration

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available Long procedure time and somewhat suboptimal results hinder the widespread use of catheter ablation of complex arrhythmias such as atrial fibrillation (AF. Due to lack of contrast differentiation between the area of interest and surrounding structures in a moving organ like heart, there is a lack of proper intraprocedural guidance using current imaging techniques for ablation. Cardiac image registration is currently under investigation and is in clinical use for AF ablation. Cardiac image registration, which involves integration of two images in the context of left atrium (LA, is intermodal, with the acquired image and the real-time reference image residing in different image spaces, and involves optimization, where one image space is transformed into the other. Unlike rigid body registration, cardiac image registration is unique and challenging due to cardiac motion during the cardiac cycle and due to respiration. This review addresses the basic principles of the emerging technique of registration and the inherent limitations as they relate to cardiac imaging and registration.

  8. Cardiac Image Registration

    Directory of Open Access Journals (Sweden)

    Jasbir Sra

    2008-09-01

    Full Text Available Long procedure time and somewhat suboptimal results hinder the widespread use of catheter ablation of complex arrhythmias such as atrial fibrillation (AF. Due to lack of contrast differentiation between the area of interest and surrounding structures in a moving organ like heart, there is a lack of proper intraprocedural guidance using current imaging techniques for ablation. Cardiac image registration is currently under investigation and is in clinical use for AF ablation. Cardiac image registration, which involves integration of two images in the context of the left atrium (LA, is intermodal, with the acquired image and the real-time reference image residing in different image spaces, and involves optimization, where one image space is transformed into the other. Unlike rigid body registration, cardiac image registration is unique and challenging due to cardiac motion during the cardiac cycle and due to respiration. This review addresses the basic principles of the emerging technique of registration and the inherent limitations as they relate to cardiac imaging and registration.

  9. Roles of Caveolin-1 in Angiotensin II-Induced Hypertrophy and Inward Remodeling of Cerebral Pial Arterioles.

    Science.gov (United States)

    Umesalma, Shaikamjad; Houwen, Frederick Keith; Baumbach, Gary L; Chan, Siu-Lung

    2016-03-01

    Angiotensin II (Ang II) is a major determinant of inward remodeling and hypertrophy in pial arterioles that may have an important role in stroke during chronic hypertension. Previously, we found that epidermal growth factor receptor is critical in Ang II-mediated hypertrophy that may involve caveolin-1 (Cav-1). In this study, we examined the effects of Cav-1 and matrix metalloproteinase-9 (MMP9) on Ang II-mediated structural changes in pial arterioles. Cav-1-deficient (Cav-1(-/-)), MMP9-deficient (MMP9(-/-)), and wild-type mice were infused with either Ang II (1000 ng/kg per minute) or saline via osmotic minipumps for 28 days (n=6-8 per group). Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of pial arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area of the wall was determined histologically in pressurized fixed pial arterioles. Expression of Cav-1, MMP9, phosphorylated epidermal growth factor receptor, and Akt was determined by Western blotting and immunohistochemistry. Deficiency of Cav-1 or MMP9 did not affect Ang II-induced hypertension. Ang II increased the expression of Cav-1, phosphorylated epidermal growth factor receptor, and Akt in wild-type mice, which was attenuated in Cav-1(-/-) mice. Ang II-induced hypertrophy, inward remodeling, and increased MMP9 expression in pial arterioles were prevented in Cav-1(-/-) mice. Ang II-mediated increases in MMP9 expression and inward remodeling, but not hypertrophy, were prevented in MMP9(-/-) mice. In conclusion, Cav-1 is essential in Ang II-mediated inward remodeling and hypertrophy in pial arterioles. Cav-1-induced MMP9 is exclusively involved in inward remodeling, not hypertrophy. Further studies are needed to determine the role of Akt in Ang II-mediated hypertrophy. PMID:26831194

  10. The cardiopulmonary reflexes of spontaneously hypertensive rats are normalized after regression of left ventricular hypertrophy and hypertension

    Directory of Open Access Journals (Sweden)

    T.A. Uggere

    2000-05-01

    Full Text Available Cardiopulmonary reflexes are activated via changes in cardiac filling pressure (volume-sensitive reflex and chemical stimulation (chemosensitive reflex. The sensitivity of the cardiopulmonary reflexes to these stimuli is impaired in the spontaneously hypertensive rat (SHR and other models of hypertension and is thought to be associated with cardiac hypertrophy. The present study investigated whether the sensitivity of the cardiopulmonary reflexes in SHR is restored when cardiac hypertrophy and hypertension are reduced by enalapril treatment. Untreated SHR and WKY rats were fed a normal diet. Another groups of rats were treated with enalapril (10 mg kg-1 day-1, mixed in the diet; SHRE or WKYE for one month. After treatment, the volume-sensitive reflex was evaluated in each group by determining the decrease in magnitude of the efferent renal sympathetic nerve activity (RSNA produced by acute isotonic saline volume expansion. Chemoreflex sensitivity was evaluated by examining the bradycardia response elicited by phenyldiguanide administration. Cardiac hypertrophy was determined from the left ventricular/body weight (LV/BW ratio. Volume expansion produced an attenuated renal sympathoinhibitory response in SHR as compared to WKY rats. As compared to the levels observed in normotensive WKY rats, however, enalapril treatment restored the volume expansion-induced decrease in RSNA in SHRE. SHR with established hypertension had a higher LV/BW ratio (45% as compared to normotensive WKY rats. With enalapril treatment, the LV/BW ratio was reduced to 19% in SHRE. Finally, the reflex-induced bradycardia response produced by phenyldiguanide was significantly attenuated in SHR compared to WKY rats. Unlike the effects on the volume reflex, the sensitivity of the cardiac chemosensitive reflex to phenyldiguanide was not restored by enalapril treatment in SHRE. Taken together, these results indicate that the impairment of the volume-sensitive, but not the

  11. Magnetic resonance imaging in familial hypertrophic cardiomyopathy associated with abnormal thallium perfusion and cardiac enzymes

    International Nuclear Information System (INIS)

    Gated magnetic resonance imaging (MRI) was performed in 6 patients with familial hypertrophic cardiomyopathy associated with abnormal thallium perfusion, and 12 patients with ordinary hypertrophic cardiomyopathy. The patients with ordinary hypertrophic cardiomyopathy and abnormal thickening of the septal wall and normal left ventricular dimensions, while the patients with familial hypertrophic cardiomyopathy had focal wall thinning (usually involving the apical-septal wall) and dilated left ventricle in addition to hypertrophied heart. The quantitative measurement for cardiac dimensions using MRI was similar to that found on echocardiography in all cases. In addition, inhomogeneous signal intensities at left ventricular wall were observed in 3 cases of familial hypertrophic cardiomyopathy, which may suggest the existence of myocardial fibrosis. Gated MRI should be performed for early detection and follow-up of hypertrophic cardiomyopathy, since some patients will progress from hypertrophic cardiomyopathy to dilated cardiomyopathy. (author)

  12. Magnetic resonance imaging in familial hypertrophic cardiomyopathy associated with abnormal thallium perfusion and cardiac enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tsunehiko; Nagata, Seiki; Sakakibara, Hiroshi

    1988-05-01

    Gated magnetic resonance imaging (MRI) was performed in 6 patients with familial hypertrophic cardiomyopathy associated with abnormal thallium perfusion, and 12 patients with ordinary hypertrophic cardiomyopathy. The patients with ordinary hypertrophic cardiomyopathy and abnormal thickening of the septal wall and normal left ventricular dimensions, while the patients with familial hypertrophic cardiomyopathy had focal wall thinning (usually involving the apical-septal wall) and dilated left ventricle in addition to hypertrophied heart. The quantitative measurement for cardiac dimensions using MRI was similar to that found on echocardiography in all cases. In addition, inhomogeneous signal intensities at left ventricular wall were observed in 3 cases of familial hypertrophic cardiomyopathy, which may suggest the existence of myocardial fibrosis. Gated MRI should be performed for early detection and follow-up of hypertrophic cardiomyopathy, since some patients will progress from hypertrophic cardiomyopathy to dilated cardiomyopathy.

  13. Resolution of enuresis after adenotsillectomy in children with adenotonsillar hypertrophy

    OpenAIRE

    Mohammad Naeimi; Mohammad ali Mohammadzadeh Rezaei; adeleh Hajizadeh

    2008-01-01

    Introduction: Most of the upper airway obstructions are caused by adenotonsillar hypertrophy. Prevalence of nocturnal enuresis in children accompanied with upper airway obstruction is reported in 8-47% of cases. Considering this fact that adenotonsillar hypertrophy is curable by adenotonsilletomy, in present study the effect of this operation in treatment of children with adenotonsillar hypertrophy has been investigated by comparing the rate of nocturnal enuresis pre and post operation. Mater...

  14. Transforming Growth Factor-β Induces Airway Smooth Muscle Hypertrophy

    OpenAIRE

    Goldsmith, Adam M.; Bentley, J. Kelley; Zhou, Limei; Jia, Yue; Bitar, Khalil N; Fingar, Diane C.; Hershenson, Marc B.

    2005-01-01

    Although smooth muscle hypertrophy is present in asthmatic airways, little is known about the biochemical pathways regulating airway smooth muscle protein synthesis, cell size, or accumulation of contractile apparatus proteins. We sought to develop a model of airway smooth muscle hypertrophy in primary cells using a physiologically relevant stimulus. We hypothesized that transforming growth factor (TGF)-β induces hypertrophy in primary bronchial smooth muscle cells. Primary human bronchial sm...

  15. Left ventricular hypertrophy in patients treated with regular hemodialyses

    Directory of Open Access Journals (Sweden)

    Petrović Dejan

    2008-01-01

    Full Text Available Left ventricular hypertrophy is the main risk factor for development of cardiovascular morbidity and mortality in patients on hemodialysis. Left ventricular hypertrophy is found in 75% of the patients treated with hemodialysis. Risk factors for left ventricular hypertrophy in patients on hemodialysis include: blood flow through arterial-venous fistula, anemia, hypertension, increased extracellular fluid volume, oxidative stress, microinflammation, hyperhomocysteinemia, secondary hyperpara- thyroidism, and disturbed calcium and phosphate homeostasis. Left ventricular pressure overload leads to parallel placement of new sarcomeres and development of concentric hypertrophy of left ventricle. Left ventricular hypertrophy advances in two stages. In the stage of adaptation, left ventricular hypertrophy occurs as a response to increased tension stress of the left ventricular wall and its action is protective. When volume and pressure overload the left ventricle chronically and without control, adaptive hypertrophy becomes maladaptive hypertrophy of the left ventricle, where myocytes are lost, systolic function is deranged and heart insufficiency is developed. Left ventricular mass index-LVMi greater than 131 g/m2 in men and greater than 100 g/m2 in women, and relative wall thickness of the left ventricle above 0.45 indicate concentric hypertrophy of the left ventricle. Eccentric hypertrophy of the left ventricle is defined echocardiographically as LVMi above 131 g/m2 in men and greater than 100 g/m2 in women, with RWT ?0.45. Identification of patients with increased risk for development of left ventricular hypertrophy and application of appropriate therapy to attain target values of risk factors lead to regression of left ventricular hypertrophy, reduced cardiovascular morbidity and mortality rates and improved quality of life in patients treated with regular hemodialyses.

  16. Involvement of adenosine and standardization of aqueous extract of garlic (Allium sativum Linn.) on cardioprotective and cardiodepressant properties in ischemic preconditioning and myocardial ischemia-reperfusion induced cardiac injury

    OpenAIRE

    Sharma, Ashish Kumar; Munajjam, Arshee; Vaishnav, Bhawna; Sharma, Richa; Sharma, Ashok; Kishore, Kunal; Sharma, Akash; Sharma, Divya; Kumari, Rita; Tiwari, Ashish; Singh, Santosh Kumar; Gaur, Samir; Jatav, Vijay Singh; Srinivasan, Barthu Parthi; Agarwal, Shyam Sunder

    2012-01-01

    The present study investigated the effect of garlic (Allium sativum Linn.) aqueous extracts on ischemic preconditioning and ischemia-reperfusion induced cardiac injury, as well as adenosine involvement in ischemic preconditioning and garlic extract induced cardioprotection. A model of ischemia-reperfusion injury was established using Langendorff apparatus. Aqueous extract of garlic dose was standardized (0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.07%, 0.05%, 0.03%, 0.01%), and the 0.05% dose was found t...

  17. Leptin as a mediator between obesity and cardiac dysfunction

    Directory of Open Access Journals (Sweden)

    Joanna Karbowska

    2012-05-01

    Full Text Available  Obesity is now recognised as one of the most important risk factors for heart disease. Obese individuals have high circulating levels of leptin, a hormone secreted by adipose tissue and in­volved in energy homeostasis. Growing evidence suggests that leptin may contribute to the development of cardiac dysfunction. In a large prospective study leptin has been shown to be an independent risk factor for coronary heart disease. An independent positive association has also been found between plasma leptin levels and heart rate in hypertensive patients and heart transplant recipients. In animal studies chronic leptin infusion increased heart rate and blood pressure. It has also been demonstrated that circulating leptin levels are elevated in patients with heart failure. The level of plasma leptin was associated with increased myocardial wall thickness and correlated with left ventricular mass, suggesting a role for this hormone in mediating left ventricular hypertrophy in humans. Moreover, leptin directly induced hypertrophy and hyperplasia in human and rodent cardiomyocytes, accompanied by cardiac extracellular matrix remodelling. Leptin may also influence energy substrate utilisation in cardiac tissue.These findings suggest that leptin acting directly or through the sympathetic nervous system may have adverse effects on cardiac structure and function, and that chronic hyperleptinaemia may greatly increase the risk of cardiac disorders. Additional studies are needed to define the role of leptin in cardiac physiology and pathophysiology, nevertheless the reduction in plasma leptin levels with caloric restriction and weight loss may prevent cardiac dysfunction in obese patients.

  18. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    OpenAIRE

    Kunihiro Sakuma; Akihiko Yamaguchi

    2010-01-01

    Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, e...

  19. Evaluation of skeletal muscle satellite cell activity in rodent models depicting muscle hypertrophy and atrophy

    OpenAIRE

    Sidique, Idris L.

    2013-01-01

    Satellite cells are muscle-specific progenitor cells involved in the routine maintenance of skeletal muscle homeostasis, growth and regeneration. They are activated by various stimuli (myotrauma, growth factors etc), undergo rounds of proliferation as skeletal muscle myoblasts, to differentiate and fuse with each other to generate new myotubes or onto existing myofibres to augment growth or repair damaged fibres. Satellite cells contribute to hypertrophy by facilitating nuclear addition, whic...

  20. The effect of protein timing on muscle strength and hypertrophy: a meta-analysis

    OpenAIRE

    Schoenfeld, Brad Jon; Aragon, Alan Albert; Krieger, James W

    2013-01-01

    Protein timing is a popular dietary strategy designed to optimize the adaptive response to exercise. The strategy involves consuming protein in and around a training session in an effort to facilitate muscular repair and remodeling, and thereby enhance post-exercise strength- and hypertrophy-related adaptations. Despite the apparent biological plausibility of the strategy, however, the effectiveness of protein timing in chronic training studies has been decidedly mixed. The purpose of this pa...

  1. Tlr4 Deficiency Protects against Cardiac Pressure Overload Induced Hyperinflammation.

    Directory of Open Access Journals (Sweden)

    Heidi Ehrentraut

    Full Text Available Transverse aortic constriction provokes a pro-inflammatory reaction and results in cardiac hypertrophy. Endogenous ligands contribute to cardiac hypertrophy via toll-like receptor (TLR-4 binding. A lack of TLR4 signaling diminishes hypertrophy and inflammation. Wild type mice undergoing aortic constriction respond to a lipopolysaccharide second-hit stimulus with hyperinflammation. The objective of this study was to assess whether other second-hit challenges utilizing TLR ligands provoke a comparable inflammatory reaction, and to find out whether this response is absent in TLR4 deficient mice. Assuming that cardiac stress alters the expression of pattern recognition receptors we analyzed the effects of transverse aortic constriction and second-hit virulence factor treatment on TLR expression, as well as cytokine regulation. Wild type and Tlr4-/- mice were subjected to three days of TAC and subsequently confronted with gram-positive TLR2 ligand lipoteichoic acid (LTA, 15 mg/g bodyweight or synthetic CpG-oligodesoxynucleotide 1668 thioate (20 nmol/kg bodyweight, 30 min after D-galactosamin desensitization signaling via TLR9. Hemodynamic measurements and organ preservation were performed 6 h after stimulation. Indeed, the study revealed a robust enhancement of LTA induced pattern recognition receptor and cytokine mRNA expression and a LTA-dependent reduction of hemodynamic pressure in TAC wild type mice. Second-Hit treatment with CpG-ODNs led to similar results. However, second-hit effects were abolished in Tlr4-/- mice. In total, these data indicate for the first time that cardiac stress increases the inflammatory response towards both, gram-negative and gram-positive, TLR ligands as well as bacterial DNA. The decrease of the inflammatory response upon TLR2 and -9 ligand challenge in TAC Tlr4-/- mice demonstrates that a lack of TLR4 signaling does not only prevent left ventricular hypertrophy but also protects the mice from a cardiac stress induced

  2. Tlr4 Deficiency Protects against Cardiac Pressure Overload Induced Hyperinflammation

    Science.gov (United States)

    Boehm, Olaf; El Aissati, Sakina; Foltz, Fabian; Goelz, Lina; Goertz, David; Kebir, Sied; Weisheit, Christina; Wolf, Michael; Meyer, Rainer; Baumgarten, Georg

    2015-01-01

    Transverse aortic constriction provokes a pro-inflammatory reaction and results in cardiac hypertrophy. Endogenous ligands contribute to cardiac hypertrophy via toll-like receptor (TLR)-4 binding. A lack of TLR4 signaling diminishes hypertrophy and inflammation. Wild type mice undergoing aortic constriction respond to a lipopolysaccharide second-hit stimulus with hyperinflammation. The objective of this study was to assess whether other second-hit challenges utilizing TLR ligands provoke a comparable inflammatory reaction, and to find out whether this response is absent in TLR4 deficient mice. Assuming that cardiac stress alters the expression of pattern recognition receptors we analyzed the effects of transverse aortic constriction and second-hit virulence factor treatment on TLR expression, as well as cytokine regulation. Wild type and Tlr4-/- mice were subjected to three days of TAC and subsequently confronted with gram-positive TLR2 ligand lipoteichoic acid (LTA, 15mg/g bodyweight) or synthetic CpG-oligodesoxynucleotide 1668 thioate (20 nmol/kg bodyweight, 30 min after D-galactosamin desensitization) signaling via TLR9. Hemodynamic measurements and organ preservation were performed 6 h after stimulation. Indeed, the study revealed a robust enhancement of LTA induced pattern recognition receptor and cytokine mRNA expression and a LTA-dependent reduction of hemodynamic pressure in TAC wild type mice. Second-Hit treatment with CpG-ODNs led to similar results. However, second-hit effects were abolished in Tlr4-/- mice. In total, these data indicate for the first time that cardiac stress increases the inflammatory response towards both, gram-negative and gram-positive, TLR ligands as well as bacterial DNA. The decrease of the inflammatory response upon TLR2 and -9 ligand challenge in TAC Tlr4-/- mice demonstrates that a lack of TLR4 signaling does not only prevent left ventricular hypertrophy but also protects the mice from a cardiac stress induced hyperinflammatory

  3. Mitogen-activated protein kinase (MAPK) in cardiac tissues.

    Science.gov (United States)

    Page, C; Doubell, A F

    Mitogen-activated protein kinase (MAPK) has recently emerged as a prominent role player in intracellular signalling in the ventricular myocyte with attention being focussed on its possible role in the development of ventricular hypertrophy. It is becoming clear that MAPK is also active in other cells of cardiac origin such as cardiac fibroblasts and possible functions of this signalling pathway in the heart have yet to be explored. In this report the mammalian MAPK pathway is briefly outlined, before reviewing current knowledge of the MAPK pathway in cardiac tissue (ventricular myocytes, vascular smooth muscle cells and cardiac fibroblasts). New data is also presented on the presence and activity of MAPK in two additional cardiac celltypes namely atrial myocytes and vascular endothelial cells from the coronary microcirculation. PMID:8739228

  4. Propranolol and verapamil inhibit mRNA expression of RyR2 and SERCA in L-thyroxin-induced rat ventricular hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Xiao-dong WU; De-zai DAI; Qiu-pin ZHANG; Feng GAO

    2004-01-01

    AIM: To study the alteration in the mRNA level of cardiac ryanodine receptor 2 (RyR2) and sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) in L-thyroxin-induced hypertrophy. METHODS: L-thyroxin (500 g/kg) daily was injected for 10 d. RT-PCR was used to determine mRNA expression. RESULTS: An increase in the relative amount of RyR2 (111%) and SERCA mRNA (65 %) expression was observed in the hypertrophied rats (RyR2:77± 11; SERCA: 87± 10, n=9) compared with the normal rats (RyR2: 36± 10; SERCA: 53± 10, n=9). Propranolol was effective to inhibit the increase in RyR2 (51±7) and SERCA (63±13) mRNA expression in hypertrophied rats,respectively. Verapamil also reduced RyR2 (62±5) and SERCA (75±8) mRNA expression. CONCLUSION: Both RyR2 and SERCA mRNA level in L-thyroxin-induced cardiac hypertrophy was over-expressed and propranolol or verapamil inhibited the alteration.

  5. Promyelocytic leukemia zinc finger protein activates GATA4 transcription and mediates cardiac hypertrophic signaling from angiotensin II receptor 2.

    Directory of Open Access Journals (Sweden)

    Ning Wang

    Full Text Available BACKGROUND: Pressure overload and prolonged angiotensin II (Ang II infusion elicit cardiac hypertrophy in Ang II receptor 1 (AT(1 null mouse, whereas Ang II receptor 2 (AT(2 gene deletion abolishes the hypertrophic response. The roles and signals of the cardiac AT(2 receptor still remain unsettled. Promyelocytic leukemia zinc finger protein (PLZF was shown to bind to the AT(2 receptor and transmit the hypertrophic signal. Using PLZF knockout mice we directed our studies on the function of PLZF concerning the cardiac specific transcription factor GATA4, and GATA4 targets. METHODOLOGY AND PRINCIPAL FINDINGS: PLZF knockout and age-matched wild-type (WT mice were treated with Ang II, infused at a rate of 4.2 ng·kg(-1·min(-1 for 3 weeks. Ang II elevated systolic blood pressure to comparable levels in PLZF knockout and WT mice (140 mmHg. WT mice developed prominent cardiac hypertrophy and fibrosis after Ang II infusion. In contrast, there was no obvious cardiac hypertrophy or fibrosis in PLZF knockout mice. An AT(2 receptor blocker given to Ang II-infused wild type mice prevented hypertrophy, verifying the role of AT(2 receptor for cardiac hypertrophy. Chromatin immunoprecipitation and electrophoretic mobility shift assay showed that PLZF bound to the GATA4 gene regulatory region. A Luciferase assay verified that PLZF up-regulated GATA4 gene expression and the absence of PLZF expression in vivo produced a corresponding repression of GATA4 protein. CONCLUSIONS: PLZF is an important AT(2 receptor binding protein in mediating Ang II induced cardiac hypertrophy through an AT(2 receptor-dependent signal pathway. The angiotensin II-AT(2-PLZF-GATA4 signal may further augment Ang II induced pathological effects on cardiomyocytes.

  6. Regulation of cardiac microRNAs by serum response factor

    Directory of Open Access Journals (Sweden)

    Wei Jeanne Y

    2011-02-01

    Full Text Available Abstract Serum response factor (SRF regulates certain microRNAs that play a role in cardiac and skeletal muscle development. However, the role of SRF in the regulation of microRNA expression and microRNA biogenesis in cardiac hypertrophy has not been well established. In this report, we employed two distinct transgenic mouse models to study the impact of SRF on cardiac microRNA expression and microRNA biogenesis. Cardiac-specific overexpression of SRF (SRF-Tg led to altered expression of a number of microRNAs. Interestingly, downregulation of miR-1, miR-133a and upregulation of miR-21 occurred by 7 days of age in these mice, long before the onset of cardiac hypertrophy, suggesting that SRF overexpression impacted the expression of microRNAs which contribute to cardiac hypertrophy. Reducing cardiac SRF level using the antisense-SRF transgenic approach (Anti-SRF-Tg resulted in the expression of miR-1, miR-133a and miR-21 in the opposite direction. Furthermore, we observed that SRF regulates microRNA biogenesis, specifically the transcription of pri-microRNA, thereby affecting the mature microRNA level. The mir-21 promoter sequence is conserved among mouse, rat and human; one SRF binding site was found to be in the mir-21 proximal promoter region of all three species. The mir-21 gene is regulated by SRF and its cofactors, including myocardin and p49/Strap. Our study demonstrates that the downregulation of miR-1, miR-133a, and upregulation of miR-21 can be reversed by one single upstream regulator, SRF. These results may help to develop novel therapeutic interventions targeting microRNA biogenesis.

  7. Mitoprotective antioxidant EUK-134 stimulates fatty acid oxidation and prevents hypertrophy in H9C2 cells.

    Science.gov (United States)

    Purushothaman, Sreeja; Nair, R Renuka

    2016-09-01

    Oxidative stress is an important contributory factor for the development of cardiovascular diseases like hypertension-induced hypertrophy. Mitochondrion is the major source of reactive oxygen species. Hence, protecting mitochondria from oxidative damage can be an effective therapeutic strategy for the prevention of hypertensive heart disease. Conventional antioxidants are not likely to be cardioprotective, as they cannot protect mitochondria from oxidative damage. EUK-134 is a salen-manganese complex with superoxide dismutase and catalase activity. The possible role of EUK-134, a mitoprotective antioxidant, in the prevention of hypertrophy of H9C2 cells was examined. The cells were stimulated with phenylephrine (50 μM), and hypertrophy was assessed based on cell volume and expression of brain natriuretic peptide and calcineurin. Enhanced myocardial lipid peroxidation and protein carbonyl content, accompanied by nuclear factor-kappa B gene expression, confirmed the presence of oxidative stress in hypertrophic cells. Metabolic shift was evident from reduction in the expression of medium-chain acyl-CoA dehydrogenase. Mitochondrial oxidative stress was confirmed by the reduced expression of mitochondria-specific antioxidant peroxiredoxin-3 and enhanced mitochondrial superoxide production. Compromised mitochondrial function was apparent from reduced mitochondrial membrane potential. Pretreatment with EUK-134 (10 μM) was effective in the prevention of hypertrophic changes in H9C2 cells, reduction of oxidative stress, and prevention of metabolic shift. EUK-134 treatment improved the oxidative status of mitochondria and reversed hypertrophy-induced reduction of mitochondrial membrane potential. Supplementation with EUK-134 is therefore identified as a novel approach to attenuate cardiac hypertrophy and lends scope for the development of EUK-134 as a therapeutic agent in the management of human cardiovascular disease. PMID:27514538

  8. Diastolic function alteration mechanisms in physiologic hypertrophy versus pathologic hypertrophy are elucidated by model-based Doppler E-wave analysis

    Directory of Open Access Journals (Sweden)

    Simeng Zhu

    2014-12-01

    Full Text Available Athletic training can result in increased left ventricular (LV wall thickness, termed physiologic hypertrophy (PhH. By contrast, pathologic hypertrophy (PaH can be due to hypertension, aortic stenosis, or genetic mutation causing hypertrophic cardiomyopathy (HCM. Because morphologic (LV dimension, wall thickness, mass, etc. and functional index similarities (LV ejection fraction, cardiac output, peak filling rate, etc. limit diagnostic specificity, ability to differentiate between PhH and PaH is important. Conventional echocardiographic diastolic function (DF indexes have limited ability to differentiate between PhH and PaH and cannot provide information on chamber property (stiffness and relaxation. We hypothesized that kinematic model-based DF assessment can differentiate between PhH and PaH and, by providing chamber properties, has even greater value compared with conventional metrics. For validation, we assessed DF in the following three age-matched groups: pathologic (HCM hypertrophy (PaH, n = 14, PhH (Olympic rowers, PhH, n = 21, and controls (n = 21. Magnetic resonance imaging confirmed presence of both types of hypertrophy and determined LV mass and chamber size. Model-based indexes, chamber stiffness (k, relaxation/viscoelasticity (c, and load (xo and conventional indexes, Epeak (peak of E-wave, ratio of Epeak to Apeak (E/A, E-wave acceleration time (AT, and E-wave deceleration time (DT were computed. We analyzed 1588 E waves distributed as follows: 328 (PaH, 672 (athletes, and 588 (controls. Among conventional indexes, Epeak and E-wave DT were similar between PaH and PhH, whereas E/A and E-wave AT were lower in PaH. Model-based analysis showed that PaH had significantly higher relaxation/viscoelasticity (c and chamber stiffness (k than PhH. The physiologic equation of motion for filling-based derivation of the model provides a mechanistic understanding of the differences between PhH and PaH.

  9. Role of β-adrenoceptors in thyroxine-induced hypertrophy

    International Nuclear Information System (INIS)

    The role of β-adrenoceptors in the development of thyroxine (T4)-induced hypertrophy was studied in New Zealand white rabbits. Radiolabelled microspheres were used to measure coronary blood flow, and (125I)-pindolol was used for Scatchard analysis of cardiac membranes to determine β-adrenoceptor density (B/sub max/) and affinity. After 16 d of T4, coronary blood flow (CBF) was elevated from 257 +/- 31 ml/min/100 g (mean +/- SD) to 530 +/- 152 and B/sub max/ increased from 24.0 +/- 6.2 fmol/mg membrane protein to 47.3 +/- 12.0. Heart weight (HW) was elevated 30%, and heart weight/body weight (HW/BW) increased 70% above control. T4 + propranolol (9 mg/kg/d) diminished CBF from levels seen with T4 alone, to 361 +/- 146 ml/min/100g. However B/sub max/ elevations were unchanged from values with T4. HW and HW/BW increases were insignificantly less than with T4 alone. CBF in T4 + pindolol (0.9 mg/kg/d) animals was similar to that with T4 alone, but B/sub max/ increases were prevented (32.0 +/- 11.0). HW and HW/BW were both lower than with T4 alone (153% of control). Thus, it appears that pindolol is more able to reverse some of the effects of T4 than is propranolol, possibly due to prevention of β-adrenoceptor upregulation as a result of its intrinsic sympathomimetic ability

  10. Gene expression in cardiac tissues from infants with idiopathic conotruncal defects

    Directory of Open Access Journals (Sweden)

    Lofland Gary K

    2011-01-01

    Full Text Available Abstract Background Tetralogy of Fallot (TOF is the most commonly observed conotruncal congenital heart defect. Treatment of these patients has evolved dramatically in the last few decades, yet a genetic explanation is lacking for the failure of cardiac development for the majority of children with TOF. Our goal was to perform genome wide analyses and characterize expression patterns in cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery obtained at the time of reconstructive surgery from 19 children with tetralogy of Fallot. Methods We employed genome wide gene expression microarrays to characterize cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery obtained at the time of reconstructive surgery from 19 children with TOF (16 idiopathic and three with 22q11.2 deletions and compared gene expression patterns to normally developing subjects. Results We detected a signal from approximately 26,000 probes reflecting expression from about half of all genes, ranging from 35% to 49% of array probes in the three tissues. More than 1,000 genes had a 2-fold change in expression in the right ventricle (RV of children with TOF as compared to the RV from matched control infants. Most of these genes were involved in compensatory functions (e.g., hypertrophy, cardiac fibrosis and cardiac dilation. However, two canonical pathways involved in spatial and temporal cell differentiation (WNT, p = 0.017 and Notch, p = 0.003 appeared to be generally suppressed. Conclusions The suppression of developmental networks may represent a remnant of a broad malfunction of regulatory pathways leading to inaccurate boundary formation and improper structural development in the embryonic heart. We suggest that small tissue specific genomic and/or epigenetic fluctuations could be cumulative, leading to regulatory network disruption and failure of proper cardiac development.

  11. Beetroot juice reduces infarct size and improves cardiac function following ischemia-reperfusion injury: Possible involvement of endogenous H2S.

    Science.gov (United States)

    Salloum, Fadi N; Sturz, Gregory R; Yin, Chang; Rehman, Shabina; Hoke, Nicholas N; Kukreja, Rakesh C; Xi, Lei

    2015-05-01

    Ingestion of high dietary nitrate in the form of beetroot juice (BRJ) has been shown to exert antihypertensive effects in humans through increasing cyclic guanosine monophosphate (cGMP) levels. Since enhanced cGMP protects against myocardial ischemia-reperfusion (I/R) injury through upregulation of hydrogen sulfide (H2S), we tested the hypothesis that BRJ protects against I/R injury via H2S. Adult male CD-1 mice received either regular drinking water or those dissolved with BRJ powder (10 g/L, containing ∼ 0.7 mM nitrate). Seven days later, the hearts were explanted for molecular analyses. Subsets of mice were subjected to I/R injury by occlusion of the left coronary artery for 30 min and reperfusion for 24 h. A specific inhibitor of H2S producing enzyme--cystathionine-γ-lyase (CSE), DL-propargylglycine (PAG, 50 mg/kg) was given i.p. 30 min before ischemia. Myocardial infarct size was significantly reduced in BRJ-fed mice (15.8 ± 3.2%) versus controls (46.5 ± 3.5%, mean ± standard error [SE], n = 6/group, P < .05). PAG completely blocked the infarct-limiting effect of BRJ. Moreover, BRJ significantly preserved ventricular function following I/R. Myocardial levels of H2S and its putative protein target--vascular endothelial growth factor receptor 2 (VEGFR2) were significantly increased by BRJ intake, whereas CSE mRNA and protein content did not change. Interestingly, the BRJ-induced cardioprotection was not associated with elevated blood nitrate-nitrite levels following I/R nor induction of cardiac peroxiredoxin 5, a mitochondrial antioxidant enzyme previously linked to nitrate-induced cardioprotection. We conclude that BRJ ingestion protects against post-I/R myocardial infarction and ventricular dysfunction possibly through CSE-mediated endogenous H2S generation. BRJ could be a promising natural and inexpensive nutraceutical supplement to reduce cardiac I/R injury in patients. PMID:25361774

  12. Pressure overload-induced hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes.

    Science.gov (United States)

    Yan, Xinhua; Schuldt, Adam J T; Price, Robert L; Amende, Ivo; Liu, Fen-Fen; Okoshi, Katashi; Ho, Kalon K L; Pope, Adèle J; Borg, Thomas K; Lorell, Beverly H; Morgan, James P

    2008-03-01

    The role of the angiotensin II type 2 (AT2) receptor in cardiac hypertrophy remains controversial. We studied the effects of AT2 receptors on chronic pressure overload-induced cardiac hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes. Left ventricular (LV) hypertrophy was induced by ascending aorta banding (AS). Transgenic mice overexpressing AT2 (AT2TG-AS) and nontransgenic mice (NTG-AS) were studied after 70 days of aortic banding. Nonbanded NTG mice were used as controls. LV function was determined by catheterization via LV puncture and cardiac magnetic resonance imaging. LV myocyte diameter and interstitial collagen were determined by confocal microscopy. Atrial natriuretic polypeptide (ANP) and brain natriuretic peptide (BNP) were analyzed by Northern blot. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2, inducible nitric oxide synthase (iNOS), endothelial NOS, ERK1/2, p70S6K, Src-homology 2 domain-containing protein tyrosine phosphatase-1, and protein serine/threonine phosphatase 2A were analyzed by Western blot. LV myocyte diameter and collagen were significantly reduced in AT2TG-AS compared with NTG-AS mice. LV anterior and posterior wall thickness were not different between AT2TG-AS and NTG-AS mice. LV systolic and diastolic dimensions were significantly higher in AT2TG-AS than in NTG-AS mice. LV systolic pressure and end-diastolic pressure were lower in AT2TG-AS than in NTG-AS mice. ANP, BNP, and SERCA2 were not different between AT2TG-AS and NTG-AS mice. Phospholamban (PLB) and the PLB-to-SERCA2 ratio were significantly higher in AT2TG-AS than in NTG-AS mice. iNOS was higher in AT2TG-AS than in NTG-AS mice but not significantly different. Our results indicate that AT2 receptor overexpression modified the pathological hypertrophic response to aortic banding in transgenic mice. PMID:18178728

  13. Role of inositol 1,4,5-trisphosphate receptors in α1-adrenergic receptor-induced cardiomyocyte hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Da-li LUO; Jian GAO; Xiao-mei LAN; Gang WANG; Sheng WEI; Rui-ping XIAO; Qi-de HAN

    2006-01-01

    Aim: Intracellular Ca2+ plays pivotal roles in diverse cellular functions, including gene transcription that underlies cardiac remodeling during stress responses. However, the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) in the mediation of cardiac intracellular Ca2+ and hypertrophic growth remains elusive. Prior work with neonatal rat ventricular myocytes suggests that activation of IP3Rs may be linked to α1 adrenergic receptor (α1AR) increased stereotyped Ca2+ spark occurrence and global Ca2+ oscillations. Thus, we hypothesized that Ca2+ release through IP3Rs was necessary for α1AR-stimulated cardiac hypertrophy. Methods: We used myoinositol 1,4,5-trisphosphate hexakis (butyryloxymethyl) ester (IP3BM), a membrane-permeant ester of IP3, to activate IP3Rs directly, and Fluo 4/AM to measure intracellular Ca2+ signaling. Results: IP3BM (10μmol·L-1) mimicked the effects of phenylephrine, a selective agonist of α1AR, in increments in local Ca2+ spark release (especially in the perinuclear area) and global Ca2+ transient frequencies. More importantly, IP3R inhibitors, 2-aminoethoxydiphenyl borate and Xestospongin C, abolished the IP3BM-induced Ca2+ responses, and significantly suppressed α1AR-induced cardiomyocyte hypertrophy assayed by cell size, [3H] leucine incorporation and atrial natriuretic factor gene expression, during sustained (48 h) phenylephrine stimulation. Conclusion: These results, therefore, provide cellular mechanisms that link IP3R signaling to α1AR-stimulated gene expression and cardiomyocyte hypertrophy.

  14. Cardiac rehabilitation

    Science.gov (United States)

    ... attack or other heart problem. You might consider cardiac rehab if you have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery Heart transplant Procedures such as angioplasty and stenting In some ...

  15. Cardiac Rehabilitation

    Science.gov (United States)

    Cardiac rehabilitation (rehab) is a medically supervised program to help people who have A heart attack Angioplasty or coronary artery bypass grafting for coronary heart disease A heart valve repair or replacement A ...

  16. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2010-01-01

    Full Text Available Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles.

  17. Cardiac sarcoidosis

    OpenAIRE

    Costello BT; Nadel J.; Taylor AJ

    2016-01-01

    Benedict T Costello,1,2 James Nadel,3 Andrew J Taylor,1,21Department of Cardiovascular Medicine, The Alfred Hospital, 2Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, 3School of Medicine, University of Notre Dame, Sydney, NSW, Australia Abstract: Cardiac sarcoidosis is a rare but life-threatening condition, requiring a high degree of clinical suspicion and low threshold for investigation to make the diagnosis. The cardiac manifestations include heart failure, conducting syst...

  18. Correlation Study of PtfV1 with Heart-Qi Deficiency Syndrome in Patients with Hypertensive Left Ventricular Hypertrophy

    Institute of Scientific and Technical Information of China (English)

    杨传华; 陆峰

    2002-01-01

    @@ It is generally believed that the change of p-wave terminal force in lead V1 (PtfV1) is associated with the inner diameter of left atrium, left ventricular compliance,and ventricular diastolic function. The increase of negative value of PtfV1 in essential hypertensive (EH) patients with left ventricular hypertrophy (LVH) indicates the cardiac function may be damaged. In order to explore the relationship between Heart-Qi Deficiency Syndrome (HQDS) of TCM and PtfV1 level in hypertensive LVH patients, correlation analysis of scores of Heart-Qi Deficiency Syndrome and negative value of PtfV1 was made by the authors.

  19. Altered carnitine transport in pressure-overload hypertrophied rat hearts

    International Nuclear Information System (INIS)

    The authors have previously observed reduced carnitine levels in hypertrophied hearts of rats subjected to aortic constriction. In an attempt to determine the mechanism for reduced myocardial carnitine content, carnitine transport was examined in isolated perfused hearts. Hearts were excised from sham-operated and aortic-constricted rats 3 weeks following surgery and perfused at 60 mm Hg aortic pressure with buffer containing various concentrations of L-14C-carnitine. Carnitine uptake by control and hypertrophied hearts was linear throughout 30 minutes of perfusion with 40 μM carnitine. Total carnitine uptake was significantly reduced by 25% in hypertrophied hearts at each time point examined. The reduction in uptake by hypertrophied hearts was also evident when hearts were perfused with 100 or 200 μM carnitine. When 0.05 mM mersalyl acid was included in the buffer to inhibit the carrier-mediated component of transport, no difference in carnitine uptake was observed indicating that the transport of carnitine by diffusion was unaltered in the hypertrophied myocardium. Carrier-mediated carnitine uptake (total uptake - uptake by diffusion) was significantly reduced by approximately 40% in hypertrophied hearts at all concentrations examined. Thus, the reduction in carnitine content in the pressure-overload hypertrophied rat heart appears to be due to a reduction in carrier-mediated carnitine uptake by the heart

  20. High Altitude Hearts: Genetic Basis of Cardiac Responses to Long-term Hypoxia Exposures in Drosophila

    OpenAIRE

    Zarndt, Rachel Margaret

    2016-01-01

    Cardiomyopathy is a feature of many hypoxia-induced diseases, and affects millions of people worldwide suffering conditions including pulmonary disease, inflammation, and high altitude. Interestingly, highlanders with beneficial genetic adaptations to high altitude have remarkably low incidence of cardiomyopathies. In contrast, pathological cardiac hypertrophy is the hallmark feature of disease in other, poorly adapted highland populations. Detailed mechanisms of these cardiac responses remain...

  1. Quercetin prevents left ventricular hypertrophy in the Apo E knockout mouse

    Directory of Open Access Journals (Sweden)

    Elena Ulasova

    2013-01-01

    Full Text Available Hypercholesterolemia is a risk factor for the development of hypertrophic cardiomyopathy. Nevertheless, there are few studies aimed at determining the effects of dietary compounds on early or mild cardiac hypertrophy associated with dyslipidemia. Here we describe left ventricular (LV hypertrophy in 12 week-old Apo E−/− hypercholesterolemic mice. The LV end diastolic posterior wall thickness and overall LV mass were significantly increased in Apo E−/− mice compared with wild type (WT controls. Fractional shortening, LV end diastolic diameter, and hemodynamic parameters were unchanged from WT mice. Oral low dose quercetin (QCN; 0.1 µmol QCN/kg body weight for 6 weeks significantly reduced total cholesterol and very low density lipoprotein in the plasma of Apo E−/− mice. QCN treatment also significantly decreased LV posterior wall thickness and LV mass in Apo E−/− mice. Myocardial geometry and function were unaffected in WT mice by QCN treatment. These data suggest that dietary polyphenolic compounds such as QCN may be effective modulators of plasma cholesterol and could prevent maladaptive myocardial remodeling.

  2. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men.

    Directory of Open Access Journals (Sweden)

    Cameron J Mitchell

    Full Text Available Muscle hypertrophy following resistance training (RT involves activation of myofibrillar protein synthesis (MPS to expand the myofibrillar protein pool. The degree of hypertrophy following RT is, however, highly variable and thus we sought to determine the relationship between the acute activation of MPS and RT-induced hypertrophy. We measured MPS and signalling protein activation after the first session of resistance exercise (RE in untrained men (n = 23 and then examined the relation between MPS with magnetic resonance image determined hypertrophy. To measure MPS, young men (24±1 yr; body mass index  = 26.4±0.9 kg•m² underwent a primed constant infusion of L-[ring-¹³C₆] phenylalanine to measure MPS at rest, and acutely following their first bout of RE prior to 16 wk of RT. Rates of MPS were increased 235±38% (P<0.001 above rest 60-180 min post-exercise and 184±28% (P = 0.037 180-360 min post exercise. Quadriceps volume increased 7.9±1.6% (-1.9-24.7% (P<0.001 after training. There was no correlation between changes in quadriceps muscle volume and acute rates of MPS measured over 1-3 h (r = 0.02, 3-6 h (r = 0.16 or the aggregate 1-6 h post-exercise period (r = 0.10. Hypertrophy after chronic RT was correlated (r = 0.42, P = 0.05 with phosphorylation of 4E-BP1(Thr37/46 at 1 hour post RE. We conclude that acute measures of MPS following an initial exposure to RE in novices are not correlated with muscle hypertrophy following chronic RT.

  3. Left ventricular diverticulum with marked hypertrophy of the left ventricular apex revealed by thallium-201 myocardial emission CT

    International Nuclear Information System (INIS)

    A case of left ventricular apical diverticulum with marked hypertrophy of the left ventricular apical wall revealed by thallium-201 myocardial emission CT is reported. A 23-year-old woman was admitted to our hospital for evaluation of chest oppression. She was known to have had a heart murmur soon after birth, but she grew uneventfully, partaking in normal exercise. At the age of 21, she began to feel chest oppression during exercise. As the attacks became frequent, she was admitted to our hospital. Physical examination revealed an ejection systolic murmur in the second left intercostal space. Electrocardiography showed ST depression and T inversion in leads III, a VF and V4-6. M-mode echocardiography was normal. Two-dimensional echocardiography showed a small diverticulum at the apex of the left ventricle, which was also recognized by left ventriculography. It was about 8 x 12 mm in size. Thallium-201 myocardial emission CT disclosed marked uptake in the apex of the left ventricle, suggesting apical hypertrophy. Stress thallium-201 myocardial emission CT was negative. Coronary angiography was normal. The cause of chest oppression in this patient is uncertain, but the small diverticulum and hypertrophy of the cardiac apex may play a role in its pathogenesis. (author)

  4. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  5. Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes.

    Science.gov (United States)

    He, Quan; Harris, Nicole; Ren, Jun; Han, Xianlin

    2014-01-01

    Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress. PMID:25247053

  6. The value of radiological examination in the management of adenoidal hypertrophy in a pediatric population

    International Nuclear Information System (INIS)

    The objective of this study is to evaluate the role of radiological examination in the management of adenoidal hypertrophy. A retrospective study was carried out in the North West Armed Forces Hospital, Tabuk, Kingdom of Saudi Arabia on pediatric patients who had x-ray of lateral nasopharynx to exclude adenoidal hypertrophy, January 2001 to December 2001. The study included ; the age of patient, sex and reason for radiology examination and management rendered. A total of two hundred and ninety- seven pediatric patients were involved. Two hundred and thirteen males (71.7%) and 84(28.3%) females, age ranged between 2 months and 12 years. The reason given for radiological examination was one or more of following symptoms snoring,mouth breathing recurrent tonsillitis, runny nose, deafness and obstructive sleep apnea.Small adenoids reported in 63 patients (21.2%)and were treated for their complaints by primary physician. Two hundred and thirty four patients (78.8%) with large adenoids were referred to the otolaryngology department of these 33 patients lost follow up. One hundred and nineteen referred(40.1%) patients were treated conservatively, while 82 patients (27.6%) who showed resistance to medical treatment under went adeniodectomy with or without other related surgical procedures. It was concluded that radiological examination in the management of adenoidal hypertrophy had a limited role, increased Radiological Department workload wastage of resources in addition to unnecessary radiation exposure. (author)

  7. Basic models modeling resistance training: an update for basic scientists interested in study skeletal muscle hypertrophy.

    Science.gov (United States)

    Cholewa, Jason; Guimarães-Ferreira, Lucas; da Silva Teixeira, Tamiris; Naimo, Marshall Alan; Zhi, Xia; de Sá, Rafaele Bis Dal Ponte; Lodetti, Alice; Cardozo, Mayara Quadros; Zanchi, Nelo Eidy

    2014-09-01

    Human muscle hypertrophy brought about by voluntary exercise in laboratorial conditions is the most common way to study resistance exercise training, especially because of its reliability, stimulus control and easy application to resistance training exercise sessions at fitness centers. However, because of the complexity of blood factors and organs involved, invasive data is difficult to obtain in human exercise training studies due to the integration of several organs, including adipose tissue, liver, brain and skeletal muscle. In contrast, studying skeletal muscle remodeling in animal models are easier to perform as the organs can be easily obtained after euthanasia; however, not all models of resistance training in animals displays a robust capacity to hypertrophy the desired muscle. Moreover, some models of resistance training rely on voluntary effort, which complicates the results observed when animal models are employed since voluntary capacity is something theoretically impossible to measure in rodents. With this information in mind, we will review the modalities used to simulate resistance training in animals in order to present to investigators the benefits and risks of different animal models capable to provoke skeletal muscle hypertrophy. Our second objective is to help investigators analyze and select the experimental resistance training model that best promotes the research question and desired endpoints. PMID:24375009

  8. Imidazoline receptors in the heart: a novel target and a novel mechanism of action that involves atrial natriuretic peptides

    Directory of Open Access Journals (Sweden)

    Mukaddam-Daher S.

    2004-01-01

    Full Text Available Chronic stimulation of sympathetic nervous activity contributes to the development and maintenance of hypertension, leading to left ventricular hypertrophy (LVH, arrhythmias and cardiac death. Moxonidine, an imidazoline antihypertensive compound that preferentially activates imidazoline receptors in brainstem rostroventrolateral medulla, suppresses sympathetic activation and reverses LVH. We have identified imidazoline receptors in the heart atria and ventricles, and shown that atrial I1-receptors are up-regulated in spontaneously hypertensive rats (SHR, and ventricular I1-receptors are up-regulated in hamster and human heart failure. Furthermore, cardiac I1-receptor binding decreased after chronic in vivo exposure to moxonidine. These studies implied that cardiac I1-receptors are involved in cardiovascular regulation. The presence of I1-receptors in the heart, the primary site of production of natriuretic peptides, atrial natriuretic peptide (ANP and brain natriuretic peptide (BNP, cardiac hormones implicated in blood pressure control and cardioprotection, led us to propose that ANP may be involved in the actions of moxonidine. In fact, acute iv administration of moxonidine (50 to 150 µg/rat dose-dependently decreased blood pressure, stimulated diuresis and natriuresis and increased plasma ANP and its second messenger, cGMP. Chronic SHR treatment with moxonidine (0, 60 and 120 µg kg-1 h-1, sc for 4 weeks dose-dependently decreased blood pressure, resulted in reversal of LVH and decreased ventricular interleukin 1ß concentration after 4 weeks of treatment. These effects were associated with a further increase in already elevated ANP and BNP synthesis and release (after 1 week, and normalization by 4 weeks. In conclusion, cardiac imidazoline receptors and natriuretic peptides may be involved in the acute and chronic effects of moxonidine.

  9. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  10. Role of miRNAs and alternative mRNA 3'-end cleavage and polyadenylation of their mRNA targets in cardiomyocyte hypertrophy.

    Science.gov (United States)

    Soetanto, R; Hynes, C J; Patel, H R; Humphreys, D T; Evers, M; Duan, G; Parker, B J; Archer, S K; Clancy, J L; Graham, R M; Beilharz, T H; Smith, N J; Preiss, T

    2016-05-01

    miRNAs play critical roles in heart disease. In addition to differential miRNA expression, miRNA-mediated control is also affected by variable miRNA processing or alternative 3'-end cleavage and polyadenylation (APA) of their mRNA targets. To what extent these phenomena play a role in the heart remains unclear. We sought to explore miRNA processing and mRNA APA in cardiomyocytes, and whether these change during cardiac hypertrophy. Thoracic aortic constriction (TAC) was performed to induce hypertrophy in C57BL/6J mice. RNA extracted from cardiomyocytes of sham-treated, pre-hypertrophic (2days post-TAC), and hypertrophic (7days post-TAC) mice was subjected to small RNA- and poly(A)-test sequencing (PAT-Seq). Differential expression analysis matched expectations; nevertheless we identified ~400 mRNAs and hundreds of noncoding RNA loci as altered with hypertrophy for the first time. Although multiple processing variants were observed for many miRNAs, there was little change in their relative proportions during hypertrophy. PAT-Seq mapped ~48,000 mRNA 3'-ends, identifying novel 3' untranslated regions (3'UTRs) for over 7000 genes. Importantly, hypertrophy was associated with marked changes in APA with a net shift from distal to more proximal mRNA 3'-ends, which is predicted to decrease overall miRNA repression strength. We independently validated several examples of 3'UTR proportion change and showed that alternative 3'UTRs associate with differences in mRNA translation. Our work suggests that APA contributes to altered gene expression with the development of cardiomyocyte hypertrophy and provides a rich resource for a systems-level understanding of miRNA-mediated regulation in physiological and pathological states of the heart. PMID:27032571

  11. Region specific patella tendon hypertrophy in humans following resistance training

    DEFF Research Database (Denmark)

    Kongsgaard, M.; Reitelseder, S; Pedersen, T.G.;

    2007-01-01

    AIM: To examine if cross-sectional area (CSA) differs along the length of the human patellar tendon (PT), and if there is PT hypertrophy in response to resistance training. METHODS: Twelve healthy young men underwent baseline and post-training assessments. Maximal isometric knee extension strength...... legs. CONCLUSIONS: To our knowledge, this study is the first to report tendon hypertrophy following resistance training. Further, the data show that the human PT CSA varies along the length of the tendon....

  12. Time course of gene expression during mouse skeletal muscle hypertrophy

    OpenAIRE

    Chaillou, Thomas; Lee, Jonah D.; England, Jonathan H.; Esser, Karyn A.; McCarthy, John J.

    2013-01-01

    The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50...

  13. Effective fiber