WorldWideScience

Sample records for cardiac glycosides induce

  1. Peruvoside, a Cardiac Glycoside, Induces Primitive Myeloid Leukemia Cell Death.

    Science.gov (United States)

    Feng, Qian; Leong, Wa Seng; Liu, Liang; Chan, Wai-In

    2016-01-01

    Despite the available chemotherapy and treatment, leukemia remains a difficult disease to cure due to frequent relapses after treatment. Among the heterogeneous leukemic cells, a rare population referred as the leukemic stem cell (LSC), is thought to be responsible for relapses and drug resistance. Cardiac glycosides (CGs) have been used in treating heart failure despite its toxicity. Recently, increasing evidence has demonstrated its new usage as a potential anti-cancer drug. Ouabain, one of the CGs, specifically targeted CD34⁺CD38(-) leukemic stem-like cells, but not the more mature CD34⁺CD38⁺ leukemic cells, making this type of compounds a potential treatment for leukemia. In search of other potential anti-leukemia CGs, we found that Peruvoside, a less studied CG, is more effective than Ouabain and Digitoxin at inducing cell death in primitive myeloid leukemia cells without obvious cytotoxicity on normal blood cells. Similar to Ouabain and Digitoxin, Peruvoside also caused cell cycle arrest at G₂/M stage. It up-regulates CDKN1A expression and activated the cleavage of Caspase 3, 8 and PARP, resulting in apoptosis. Thus, Peruvoside showed potent anti-leukemia effect, which may serve as a new anti-leukemia agent in the future. PMID:27110755

  2. Cardiac glycosides induce resistance to tubulin-dependent anticancer drugs in androgen-independent human prostate cancer.

    Science.gov (United States)

    Huang, Dong-Ming; Guh, Jih-Hwa; Huang, Yao-Ting; Chueh, Shih-Chieh; Wang, Hui-Po; Teng, Che-Ming

    2002-01-01

    Due to high prevalence and mortality and the lack of effective therapies, prostate cancer is one of the most crucial health problems in men. Drug resistance aggravates the situation, not only in human prostate cancer but also in other cancers. In this study, we report for the first time that cardiac glycosides (e.g. ouabain and digitoxin) induced resistance of human prostate cancer cells (PC-3) in vitro to tubulin-binding anticancer drugs, such as paclitaxel, colchicine, vincristine and vinblastine. Cardiac glycosides exhibited amazing ability to reverse the G2/M arrest of the cell cycle and cell apoptosis induced by tubulin-binding agents. However, neither ionomycin (a Ca(2+) ionophore) nor veratridine (a Na(+) ionophore) mimicked the preventive action of cardiac glycosides, indicating that elevation of the intracellular Ca(2+) concentration and Na(+) accumulation were not involved in the cardiac glycoside action. Furthermore, cardiac glycosides showed little influence on the effects induced by actinomycin D, anisomycin and doxorubicin, suggesting selectivity for microtubule-targeted anticancer drugs. Using in situ immunofluorescent detection of mitotic spindles, our data showed that cardiac glycosides diminished paclitaxel-induced accumulation of microtubule spindles; however, in a non-cell assay system, cardiac glycosides had little influence on colchicine- and paclitaxel-induced microtubule dynamics. Using an isotope-labeled assay method, we found that ouabain modestly but significantly inhibited the transport of [(14)C]paclitaxel from the cytosol into the nucleus. It is suggested that cardiac glycosides inhibit the G2/M arrest induced by tubulin-binding anticancer drugs via an indirect blockade on microtubule function. The decline in transport of these drugs into the nucleus may partly explain the action of cardiac glycosides. PMID:12218360

  3. Evaluating the Cancer Therapeutic Potential of Cardiac Glycosides

    OpenAIRE

    José Manuel Calderón-Montaño; Estefanía Burgos-Morón; Manuel Luis Orta; Dolores Maldonado-Navas; Irene García-Domínguez; Miguel López-Lázaro

    2014-01-01

    Cardiac glycosides, also known as cardiotonic steroids, are a group of natural products that share a steroid-like structure with an unsaturated lactone ring and the ability to induce cardiotonic effects mediated by a selective inhibition of the Na+/K+-ATPase. Cardiac glycosides have been used for many years in the treatment of cardiac congestion and some types of cardiac arrhythmias. Recent data suggest that cardiac glycosides may also be useful in the treatment of cancer. These compounds typ...

  4. Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: Implication of different regulation in cancer cell lines.

    Science.gov (United States)

    Özdemir, Aysun; Şimay, Yaprak Dilber; İbişoğlu, Burçin; Yaren, Biljana; Bülbül, Döne; Ark, Mustafa

    2016-05-01

    Previously, we demonstrated that the Rho/ROCK pathway is involved in ouabain-induced apoptosis in HUVEC. In the current work, we investigated whether the Rho/ROCK pathway is functional during cardiac glycosides-induced cytotoxic effects in cancer cell lines, as well as in non-tumor cells. For that purpose, we evaluated the role of ROCK activation in bleb formation and cell migration over upstream and downstream effectors in addition to ROCK cleavage after cardiac glycosides treatment. All three cardiac glycosides (ouabain, digoxin and bufalin) induced cell death in HeLa and HepG2 cells and increased the formation of blebbing in HeLa cells. In contrast to our previous study, ROCK inhibitor Y27632 did not prevent bleb formation. Observation of ROCK II cleavage after ouabain, digoxin and oxaliplatin treatments in HeLa and/or HepG2 cells suggested that cleavage is independent of cell type and cell death induction. While inhibiting cleavage of ROCK II by the caspase inhibitors z-VAD-fmk, z-VDVAD-fmk and z-DEVD-fmk, evaluation of caspase 2 siRNA ineffectiveness on this truncation indicated that caspase-dependent ROCK II cleavage is differentially regulated in cancer cell lines. In HeLa cells, ouabain induced the activation of ROCK, although it did not induce phosphorylation of ERM, an upstream effector. While Y27632 inhibited the migration of HeLa cells, 10nM ouabain had no effect on cell migration. In conclusion, these findings indicate that the Rho/ROCK pathway is regulated differently in cancer cell lines compared to normal cells during cardiac glycosides-induced cell death.

  5. Evaluating the Cancer Therapeutic Potential of Cardiac Glycosides

    Directory of Open Access Journals (Sweden)

    José Manuel Calderón-Montaño

    2014-01-01

    Full Text Available Cardiac glycosides, also known as cardiotonic steroids, are a group of natural products that share a steroid-like structure with an unsaturated lactone ring and the ability to induce cardiotonic effects mediated by a selective inhibition of the Na+/K+-ATPase. Cardiac glycosides have been used for many years in the treatment of cardiac congestion and some types of cardiac arrhythmias. Recent data suggest that cardiac glycosides may also be useful in the treatment of cancer. These compounds typically inhibit cancer cell proliferation at nanomolar concentrations, and recent high-throughput screenings of drug libraries have therefore identified cardiac glycosides as potent inhibitors of cancer cell growth. Cardiac glycosides can also block tumor growth in rodent models, which further supports the idea that they have potential for cancer therapy. Evidence also suggests, however, that cardiac glycosides may not inhibit cancer cell proliferation selectively and the potent inhibition of tumor growth induced by cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact caused by their ability to selectively kill human cells versus rodent cells. This paper reviews such evidence and discusses experimental approaches that could be used to reveal the cancer therapeutic potential of cardiac glycosides in preclinical studies.

  6. The role of fluorescence polarization immuno-assay in the diagnosis of plant-induced cardiac glycoside poisoning livestock in South Africa

    Directory of Open Access Journals (Sweden)

    R.A. Schultz

    2005-09-01

    Full Text Available Poisoning with cardiac glycoside-containing plants is collectively the most important plant-associated poisoning of livestock in southern Africa. As a diagnosis of this significant poisoning is currently based on circumstantial evidence, a practical chemical procedure indicating the presence of cardiac glycosides in plants and animal specimens would be of considerable benefit. The fluorescence polarization immunoassay (FPIA method, used to determine digoxin plasma levels in humans and dogs, was adapted to estimate cardiac glycoside levels in known cardiac-glycoside- containing plants as well as in the rumen and organs of dosed sheep. Positive FPIA values were obtained with bufadienolide-containing plants, while negative results were obtained with plants not known to contain cardiac glycosides. The FPIA has aided in the diagnosis of cardiac glycoside poisoning in livestock and game in 30 outbreaks examined at the Division of Toxicology, Onderstepoort Veterinary Institute. Each outbreak is briefly described. As a result of this assay, a better understanding of cardiac glycoside poisoning has been reached.

  7. Medicinal Plants, Containing Cardiac Glycosides and Their Distribution

    Directory of Open Access Journals (Sweden)

    A.I. Ahmetzhanova

    2012-08-01

    Full Text Available In this paper the authors consider bioecological peculiarities of some species of medicinal plants, containing cardiac glycosides and their distribution. The paper presents the tables, which contain data of the quantitative content of the amount of cardiac glycosides in the aerial and underground parts of some species of the Cruciferous, Buttercups, etc. in different ecological conditions. The article also introduces the specie of foxglove from the family of figwort, which defines the quantitative content of cardiac glycosides, as the leaves of these plants are a source of raw materials, producing cardiac glycosides.

  8. Cardiac glycosides induced toxicity in human cells expressing α1-, α2-, or α3-isoforms of Na-K-ATPase.

    Science.gov (United States)

    Cherniavsky Lev, Marina; Karlish, Steven J D; Garty, Haim

    2015-07-15

    The Na+-K+-ATPase is specifically inhibited by cardiac glycosides, some of which may also function as endogenous mammalian hormones. Previous studies using Xenopus oocytes, yeast cells, or purified isoforms demonstrated that affinities of various cardiac glycosides for three isoforms of the Na+-K+-ATPase (α1-α3β1) may differ, a finding with potential clinical implication. The present study investigates isoform selectivity and effects of cardiac glycosides on cultured mammalian cells under more physiological conditions. H1299 cells (non-small cell lung carcinoma) were engineered to express only one α-isoform (α1, α2, or α3) by combining stable transfection of isoforms and silencing endogenous α1. Cardiac glycoside binding was measured by displacement of bound 3H-ouabain. The experiments confirm moderate α1/α3:α2 selectivity of ouabain, moderate α2:α1 selectivity of digoxin, and enhanced α2:α1 selectivity of synthetic derivatives (Katz A, Tal DM, Heller D, Haviv H, Rabah B, Barkana Y, Marcovich AL, Karlish SJD. J Biol Chem 289: 21153-21162, 2014). Relative α2:α1 selectivity of digoxin vs. ouabain was also manifested by enhanced internalization of α2 in response to digoxin. Cellular proliferation assays of H1299 cells confirmed the patterns of α2:α1 selectivity for ouabain, digoxin, and a synthetic derivative and reveal a crucial role of surface pump density on sensitivity to cardiac glycosides. Because cardiac glycosides are being considered as drugs for treatment of cancer, effects of ouabain on proliferation of 12 cancer and noncancer cell lines, with variable plasma membrane expression of α1, have been tested. These demonstrated that sensitivity to ouabain indeed depends linearly on the plasma membrane surface density of Na+-K+-ATPase irrespective of status, malignant or nonmalignant. PMID:25994790

  9. Pharmacological treatment of cardiac glycoside poisoning.

    Science.gov (United States)

    Roberts, Darren M; Gallapatthy, Gamini; Dunuwille, Asunga; Chan, Betty S

    2016-03-01

    Cardiac glycosides are an important cause of poisoning, reflecting their widespread clinical usage and presence in natural sources. Poisoning can manifest as varying degrees of toxicity. Predominant clinical features include gastrointestinal signs, bradycardia and heart block. Death occurs from ventricular fibrillation or tachycardia. A wide range of treatments have been used, the more common including activated charcoal, atropine, β-adrenoceptor agonists, temporary pacing, anti-digoxin Fab and magnesium, and more novel agents include fructose-1,6-diphosphate (clinical trial in progress) and anticalin. However, even in the case of those treatments that have been in use for decades, there is debate regarding their efficacy, the indications and dosage that optimizes outcomes. This contributes to variability in use across the world. Another factor influencing usage is access. Barriers to access include the requirement for transfer to a specialized centre (for example, to receive temporary pacing) or financial resources (for example, anti-digoxin Fab in resource poor countries). Recent data suggest that existing methods for calculating the dose of anti-digoxin Fab in digoxin poisoning overstate the dose required, and that its efficacy may be minimal in patients with chronic digoxin poisoning. Cheaper and effective medicines are required, in particular for the treatment of yellow oleander poisoning which is problematic in resource poor countries. PMID:26505271

  10. Cardiac Glycosides Inhibit LPS-induced Activation of Pro-inflammatory Cytokines in Whole Blood through an NF-kappa-B-dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Shah VO*

    2011-03-01

    Full Text Available Summary: The process of hemodialysis (HD produces a pro-inflammatory state that can lead to an increased risk for cardiovascular disease. In part, this is the result of activation of the pro-inflammatory transcription factor NF-B in response to uremia as well as in response to HD itself, which not only involves exposure of blood leukocytes to abnormal surfaces but also potentially to any bacterial contamination associated with HD. Previously, we used lipopolysaccharide (LPS to activate isolated peripheral blood mononuclear cells (PBMC, as a model of HD-induced stress, and demonstrated that specific natural products that are known to inhibit the activation of NF-B exhibited a broad anti-inflammatory activity. These natural products, however, were not effective when whole blood was used. In the present study, a natural product library (TimTec NPL480 was screened, using whole blood, for the abilities of these natural products to protect against LPS-induced expression and secretion of the pro-inflammatory cytokines TNF, IL-1 and IL-6. We report here that the cardiac glycosides strophanthidin, ouabain, proscillaridin A, digoxin, digitoxin and lanatoside C are effective natural products that limit the development of a pro-inflammatory state by preventing the activation of these pro-inflammatory signals. These active natural products also inhibited the stress-induced activation of NF-B in a reporter assay, suggesting that inhibition of NF-kappa-B is at least partly the mechanism by which these natural products protect whole blood leukocytes from activation by LPS. Industrial relevance: Media for hemodialysis is used millions of times annually for patients with end stage renal disease, each use representing a potential pro-inflammatory insult. It would be useful to have a drug that could be added to the media which would protect blood leukocytes from any pro-inflammatory activation that may accompany the dialysis procedure. A natural

  11. Zebrafish chemical screening reveals the impairment of dopaminergic neuronal survival by cardiac glycosides.

    Directory of Open Access Journals (Sweden)

    Yaping Sun

    Full Text Available Parkinson's disease is a neurodegenerative disorder characterized by the prominent degeneration of dopaminergic (DA neurons among other cell types. Here we report a first chemical screen of over 5,000 compounds in zebrafish, aimed at identifying small molecule modulators of DA neuron development or survival. We find that Neriifolin, a member of the cardiac glycoside family of compounds, impairs survival but not differentiation of both zebrafish and mammalian DA neurons. Cardiac glycosides are inhibitors of Na(+/K(+ ATPase activity and widely used for treating heart disorders. Our data suggest that Neriifolin impairs DA neuronal survival by targeting the neuronal enriched Na(+/K(+ ATPase α3 subunit (ATP1A3. Modulation of ionic homeostasis, knockdown of p53, or treatment with antioxidants protects DA neurons from Neriifolin-induced death. These results reveal a previously unknown effect of cardiac glycosides on DA neuronal survival and suggest that it is mediated through ATP1A3 inhibition, oxidative stress, and p53. They also elucidate potential approaches for counteracting the neurotoxicity of this valuable class of medications.

  12. Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America.

    Science.gov (United States)

    Brower, L P; McEvoy, P B; Williamson, K L; Flannery, M A

    1972-08-01

    A new spectrophotometric assay has been used to determine the gross concentration of cardiac glycoside in individual monarch butterflies. Adults sampled during the fall migration in four areas of eastern North America exhibited a wide variation in cardiac glycoside concentration. The correlation between spectrophotometrically measured concentrations and emetic dose determinations supports the existence of a broad palatability spectrum in wild monarch butterflies. The cardiac gylcoside concentration is greater in females than in males and is independent of the dry weight of the butterflies; contrary to prediction, both the concentration mean and variance decrease southward. The defensive advantage of incorporating cardiac glycosides may be balanced by detrimental effects on individual viability. PMID:5043141

  13. Inhibition of epidermal growth factor signaling by the cardiac glycoside ouabain in medulloblastoma.

    Science.gov (United States)

    Wolle, Daniel; Lee, Seung Joon; Li, Zhiqin; Litan, Alisa; Barwe, Sonali P; Langhans, Sigrid A

    2014-10-01

    Epidermal growth factor (EGF) signaling regulates cell growth, proliferation, and differentiation. Upon receptor binding, EGF triggers cascades of downstream signaling, including the MAPK and phosphoinositide-3-kinase (PI3K)/Akt signaling pathways. Aberrant expression/activation of EGFR is found in multiple human cancers, including medulloblastoma, the most prevalent pediatric brain cancer, and often has been associated with metastasis, poor prognosis, and resistance to chemotherapy. Na,K-ATPase is an ion pump well known for its role in intracellular ion homeostasis. Recent studies showed that Na,K-ATPase also functions as a signaling platform and revealed a role in EGFR, MAPK, and PI3K signaling. While both EGFR and Na,K-ATPase seem to modulate similar signaling pathways, cardiac glycosides that are steroid-like inhibitors of Na,K-ATPase, exhibit antiproliferative and proapoptotic properties in cancer cells. Thus, we sought to better understand the relationship between EGF and cardiac glycoside signaling. Here, we show that in medulloblastoma cells, both EGF and ouabain activate Erk1/2 and PI3K/Akt signaling. Nevertheless, in medulloblastoma cells ouabain did not transactivate EGFR as has been reported in various other cell lines. Indeed, ouabain inhibited EGF-induced Erk1/2 and Akt activation and, moreover, prevented EGF-induced formation of actin stress fibers and cell motility, probably by activating a stress signaling response. Na,K-ATPase has been proposed to act as a signaling scaffold and our studies suggest that in medulloblastoma cells Na,K-ATPase might act as a check point to integrate EGF-associated signaling pathways. Thus, Na,K-ATPase might serve as a valid target to develop novel therapeutic approaches in tumors with aberrant activation of the EGFR signaling cascades. PMID:25052069

  14. Preparation and evaluation of technetium-99m labeled cardiac glycoside derivatives as potential myocardial imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Mridula; Sarkar, H.S.; Chatterjee, Mita; Banerjee, Somenath

    1988-01-01

    Three cardiac glycosides, two natural, cymarin and convallotoxin and one synthetic, strophanthidin-..beta..-D-glucoside were converted to their thiosemicarbazone and subsequently radiolabeled with sup(99m)Tc by chelation. The resulting radioactive chelate complexes were evaluated in animals to determine the suitability of this class of compounds for myocardial imaging. It was observed from the animal biodistribution data of the three radioactive compounds that there was a considerable variation in the heart to non-target organ uptake ratio. A possible explanation of this variation was offered in the light of their lipophilic character, protein binding ability and affinity towards non-target receptors. It is anticipated that this study may help to develop a sup(99m)Tc-cardiac glycoside complex with better distribution characteristics, and such a compound may offer a suitable alternative to /sup 201/Tl, which is at present used for myocardial imaging.

  15. Determination of cardiac glycosides and total phenols in different generations of Securigera securidaca suspension culture

    Directory of Open Access Journals (Sweden)

    Z. Tofighi

    2016-04-01

    Full Text Available Background and objectives: The seeds of Securigera securidaca (L. Deg. & Dorf. (Fabaceae are used as anti-diabetic remedy in Iranian folk medicine. The aim of the present study was to establish the callus and suspension culture of S. securidaca seeds for the first time and to determine the major secondary metabolites including cardiac glycosides and total phenols. Methods: The culture of S. securidaca from seeds was initiated in hormone-supplemented MS medium containing 1 and 0.1 ppm 2, 4-D solution for solid and suspension cultures, respectively, sucrose and vitamins (B1, B2, B6, Folic acid, Biotin, Nicotinamide and Ca pantothenate at 25 °C and 12 h photoperiods. The cardiac glycosides were determined based on the calibration curve of securidaside which was isolated from the seeds extract of S. securidaca. Total phenolic compounds of different generations of suspension culture were determined using Folin Ciocalteu reagent. Results: Callus culture of S. securidaca was grown light cream to pale yellow in color and soft in texture while the cells of suspension culture grew cream to yellow with isolated cells and small aggregates. The production of cardiac glycosides in the 7th generation were more than the seeds extract (p

  16. Determination of cardiac glycosides and total phenols in different generations of Securigera securidaca suspension culture

    OpenAIRE

    Z. Tofighi; Ghazi saeidi; A. Hadjiakhoondi; Yassa, N.

    2016-01-01

    Background and objectives: The seeds of Securigera securidaca (L.) Deg. & Dorf. (Fabaceae) are used as anti-diabetic remedy in Iranian folk medicine. The aim of the present study was to establish the callus and suspension culture of S. securidaca seeds for the first time and to determine the major secondary metabolites including cardiac glycosides and total phenols. Methods: The culture of S. securidaca from seeds was initiated in hormone-supplemented MS medium containing 1 and 0.1 ppm 2, 4-D...

  17. Ouabain, a cardiac glycoside, inhibits the Fanconi anemia/BRCA pathway activated by DNA interstrand cross-linking agents.

    Directory of Open Access Journals (Sweden)

    Dong Wha Jun

    Full Text Available Modulation of the DNA repair pathway is an emerging target for the development of anticancer drugs. DNA interstrand cross-links (ICLs, one of the most severe forms of DNA damage caused by anticancer drugs such as cisplatin and mitomycin C (MMC, activates the Fanconi anemia (FA/BRCA DNA repair pathway. Inhibition of the FA/BRCA pathway can enhance the cytotoxic effects of ICL-inducing anticancer drugs and can reduce anticancer drug resistance. To find FA/BRCA pathway inhibitory small molecules, we established a cell-based high-content screening method for quantitating the activation of the FA/BRCA pathway by measuring FANCD2 foci on DNA lesions and then applied our method to chemical screening. Using commercial LOPAC1280 chemical library screening, ouabain was identified as a competent FA/BRCA pathway inhibitory compound. Ouabain, a member of the cardiac glycoside family, binds to and inhibits Na(+/K(+-ATPase and has been used to treat heart disease for many years. We observed that ouabain, as well as other cardiac glycoside family members--digitoxin and digoxin--down-regulated FANCD2 and FANCI mRNA levels, reduced monoubiquitination of FANCD2, inhibited FANCD2 foci formation on DNA lesions, and abrogated cell cycle arrest induced by MMC treatment. These inhibitory activities of ouabain required p38 MAPK and were independent of cellular Ca(2+ ion increase or the drug uptake-inhibition effect of ouabain. Furthermore, we found that ouabain potentiated the cytotoxic effects of MMC in tumor cells. Taken together, we identified an additional effect of ouabain as a FA/BRCA pathway-inhibiting chemosensitization compound. The results of this study suggest that ouabain may serve as a chemosensitizer to ICL-inducing anticancer drugs.

  18. Metabolic fate of cardiac glycosides and flavonoids upon fermentation of aqueous sea squill (Drimia maritima L.) extracts.

    Science.gov (United States)

    Knittel, Diana N; Stintzing, Florian C; Kammerer, Dietmar R

    2015-06-10

    Sea squill (Drimia maritima L.) extracts have been used for centuries for the medical treatment of heart diseases. A procedure for the preparation of Drimia extracts applied for such purposes comprising a fermentation step is described in the German Homoeopathic Pharmacopoeia (GHP). However, little is known about the secondary metabolite profile of such extracts and the fate of these components upon processing and storage. Thus, in the present study sea squill extracts were monitored during fermentation and storage by HPLC-DAD-MS(n) and GC-MS to characterise and quantitate individual cardiac glycosides and phenolic compounds. For this purpose, a previously established HPLC method for the separation and quantitation of pharmacologically relevant cardiac glycosides (bufadienolides) was validated. Within 12 months of storage, total bufadienolide contents decreased by about 50%, which was attributed to microbial and plant enzyme activities. The metabolisation and degradation rates of individual bufadienolide glycosides significantly differed, which was attributed to differing structures of the aglycones. Further degradation of bufadienolide aglycones was also observed. Besides reactions well known from human metabolism studies, dehydration of individual compounds was monitored. Quantitatively predominating flavonoids were also metabolised throughout the fermentation process. The present study provides valuable information about the profile and stability of individual cardiac glycosides and phenolic compounds in fermented Drimia extracts prepared for medical applications, and expands the knowledge of cardiac glycoside conversion upon microbial fermentation. PMID:25841205

  19. Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera

    Science.gov (United States)

    Pandey, Akansha; Swarnkar, Vishakha; Pandey, Tushar; Srivastava, Piush; Kanojiya, Sanjeev; Mishra, Dipak Kumar; Tripathi, Vineeta

    2016-01-01

    Calotropis procera is a medicinal plant of immense importance due to its pharmaceutical active components, especially cardiac glycosides (CG). As genomic resources for this plant are limited, the genes involved in CG biosynthetic pathway remain largely unknown till date. Our study on stage and tissue specific metabolite accumulation showed that CG’s were maximally accumulated in stems of 3 month old seedlings. De novo transcriptome sequencing of same was done using high throughput Illumina HiSeq platform generating 44074 unigenes with average mean length of 1785 base pair. Around 66.6% of unigenes were annotated by using various public databases and 5324 unigenes showed significant match in the KEGG database involved in 133 different pathways of plant metabolism. Further KEGG analysis resulted in identification of 336 unigenes involved in cardenolide biosynthesis. Tissue specific expression analysis of 30 putative transcripts involved in terpenoid, steroid and cardenolide pathways showed a positive correlation between metabolite and transcript accumulation. Wound stress elevated CG levels as well the levels of the putative transcripts involved in its biosynthetic pathways. This result further validated the involvement of identified transcripts in CGs biosynthesis. The identified transcripts will lay a substantial foundation for further research on metabolic engineering and regulation of cardiac glycosides biosynthesis pathway genes. PMID:27703261

  20. Extraction of Cs-137 by alcohol-water solvents from plants containing cardiac glycosides

    CERN Document Server

    Dzyubak, S N; Dzyubak, O P; Sorokin, P V; Popov, V F; Orlov, A A; Krasnov, V P; Gubin, Yu.I.

    2001-01-01

    As a result of nuclear power plant accidents, large areas receive radioactive inputs of Cs-137. This cesium accumulates in herbs growing in such territories. The problem is whether the herbs contaminated by radiocesium may be used as a raw material for medicine. The answer depends on the amount of Cs-137 transfered from the contaminated raw material to the medicine. We have presented new results of the transfer of Cs-137 from contaminated Digitalis grandiflora Mill. and Convallaria majalis L. to medicine. We found that the extraction of Cs-137 depends strongly on the hydrophilicity of the solvent. For example 96.5%(vol.) ethyl alcohol extracts less Cs-137 (11.6%) than 40%(vol.) ethyl alcohol or pure water (66.2%). The solubility of the cardiac glycosides is inverse to the solubility of cesium, which may be of use in the technological processes for manufacturing ecologically pure herbal medicine.

  1. Molecular pharmacology of cell receptors for cardiac glycosides, opiates, ACTH and ion channel modulators

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowich, M.R.

    1986-01-01

    The influence of light and oxygen on molecular interactions between the artificial food dye, erythrosine (ERY), and (/sup 3/H)ouabain ((/sup 3/H)OUA) binding sites on (Na/sup +/ + K/sup +/)-ATPase in rat brain and guinea pig heart was investigated. Putative endogenous digitalis-like factors (DLF's) were studied in four in vitro assays for cardiac glycosides. (/sup 3/H)Etorphine binding was characterized in rat brain homogenates, depleted of opioids, from animals acutely and chronically treated with morphine and naloxone, and either unstressed or cold-restraint-stressed. Binding sites for the ion channel modulators (/sup 3/H)verapamil ((/sup 3/H)VER) and (/sup 3/H) phencyclidine ((/sup 3/H)PCP) were characterized in rat brain.

  2. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore

    2011-11-01

    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  3. [Problems in the use of cardiac glycosides in ischemic heart disease].

    Science.gov (United States)

    Modersohn, D; Urbaszek, W

    1975-08-01

    With the help of instances from literature and own experimental and clinical experiences is described that a schematic digitalisation in ischaemic heart diseases is not worth being advocated scientifically. Heart glycosides are indicated especially then, when a heart insufficiency stands in the foreground. In the acute phase of infarction, without manifest heart insufficiency, however, in individual cases they can deteriorate the myocardial oxygen balance and thus the clinical course. In myocardial infarction with severe heart insufficiency up to the cardiogenic shock all therapeutic possibilities should be utilized; to this belongs also the application of glycosides. As a rule in cardiogenic shock after myocardial infarction glycosides have no sufficient measurable influence on haemodynamics. Heart glycosides together with an individually adapted kinetotherapy are of importance for the metaphylaxis in patients with infarction. PMID:1189495

  4. Glycoside vs. Aglycon: The Role of Glycosidic Residue in Biological Activity

    Science.gov (United States)

    Křen, Vladimír

    A large number of biologically active compounds are glycosides. Sometimes the glycosidic residue is crucial for their activity, in other cases glycosylation only improves pharmacokinetic parameters. Recent developments in molecular glycobiology brought better understanding of aglycon vs. glycoside activities, and made possible the development of new, more active or more effective glycodrugs based on these findings - a very illustrative recent example is vancomycin. The new enzymatic methodology "glycorandomization" enabled preparation of glycoside libraries and opened up paths to the preparation of optimized or entirely novel glycoside antibiotics. This chapter deals with an array of glycosidic compounds currently used in medicine but also covers the biological activity of some glycosidic metabolites of known drugs. The chapter discusses glycosides of vitamins, polyphenolic glycosides (flavonoids), alkaloid glycosides, glycosides of antibiotics, glycopeptides, cardiac glycosides, steroid and terpenoid glycosides etc. The physiological role of the glycosyl moiety and structure-activity relations (SAR) in the glycosidic moiety (-ies) are also discussed.

  5. Protective effects of geniposide against Tripterygium glycosides (TG)-induced liver injury and its mechanisms.

    Science.gov (United States)

    Wang, Junming; Miao, Mingsan; Qu, Lingbo; Cui, Ying; Zhang, Yueyue

    2016-02-01

    Tripterygium glycosides (TG) are commonly used for basic medicine in curing rheumatoid arthritis but with a high incidence of liver injury. Geniposide (GP) has broad and diverse bioactivities, but until now it is still unknown whether GP can protect against TG-induced liver injury. This study, for the first time, observed the possible protection of GP against TG-induced liver injury in mice and its mechanisms underlying. Oral administration of TG (270 mg/kg) induced significant elevation in the levels of serum alanine / aspartate transaminase (ALT/AST), hepatic malondialdehyde (MDA) and pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) (all P tissue repair and regeneration cytokines, was enhanced by GP. Taken together, the current research suggests that GP protects against TG-induced liver injury in mice probably involved during attenuating oxidative stress and inflammation, and promoting tissue repair and regeneration. PMID:26763404

  6. Cyanogenic glycosides

    DEFF Research Database (Denmark)

    Bak, Søren; Paquette, Susanne Michelle; Morant, Marc;

    2006-01-01

    Cyanogenic glycosides are ancient biomolecules found in more than 2,650 higher plant species as well as in a few arthropod species. Cyanogenic glycosides are amino acid-derived β-glycosides of α-hydroxynitriles. In analogy to cyanogenic plants, cyanogenic arthropods may use cyanogenic glycosides ...

  7. Evaluation of the Antihyperglycemic Effect of Minor Steviol Glycosides in Normoglycemic and Induced-Diabetic Wistar Rats.

    Science.gov (United States)

    Aranda-González, Irma; Moguel-Ordóñez, Yolanda; Chel-Guerrero, Luis; Segura-Campos, Maira; Betancur-Ancona, David

    2016-09-01

    Steviol glycosides are a family of compounds found in Stevia rebaudiana Bertoni that are responsible for sweetness capacity. The antihyperglycemic effect of the two major steviol glycosides, Rebaudioside A and Stevioside, has been studied and it has been found that despite having the same common structure, only Stevioside exerts an antihyperglycemic effect. Although other steviol derivatives are found in smaller amounts (minor steviol glycosides) in S. rebaudiana, whether or not they possess antihyperglycemic activity has not been evaluated. The aim of this study was to evaluate the antihyperglycemic effect of minor steviol glycosides in normoglycemic and diabetic (streptozotocin/nicotinamide) Wistar rats. Rats were subjected to an intraperitoneal glucose tolerance test (IPGTT) both before and after chronic treatment (28 days). After 6 h of fasting, IPGTT was conducted in pentobarbital-anesthetized rats using 1 g/kg of glucose plus 20 mg/kg of the minor glycoside (Dulcoside A, Rebaudioside B, C, D, or Steviolbioside) or control treatment (distilled water, glibenclamide, or metformin); the blood of the tip of the tail was collected at time 0, 15, 30, 60, and 120 min.; and blood glucose was measured, and its net area under the curve (AUCnet) was calculated. After 28-day chronic oral administration, IPGTT was again performed. Differences were considered significant at P < .05 by one-way ANOVA. Acute intraperitoneal or chronic oral administration of 20 mg/kg of minor steviol glycosides had no antihyperglycemic effect in normoglycemic or induced-diabetic Wistar rats. Considering the dose tested, it is unlikely that these glycosides have an effect on glucose in diabetic or normoglycemic humans. PMID:27513814

  8. The stereoisomers quinine and quinidine exhibit a marked stereoselectivity in the inhibition of hepatobiliary transport of cardiac glycosides

    NARCIS (Netherlands)

    Hedman, A; Meijer, DKF

    1998-01-01

    Background / Aims: Certain basic (cationic) drugs are known to interact with the hepatic transport, and renal and/or biliary clearance of cardia glycosides. The mechanisms behind these interactions are not fully understood, In the present study our was to investigate the effects of the two diastereo

  9. Human breast tumor cells are more resistant to cardiac glycoside toxicity than non-tumorigenic breast cells.

    Directory of Open Access Journals (Sweden)

    Rebecca J Clifford

    Full Text Available Cardiotonic steroids (CTS, specific inhibitors of Na,K-ATPase activity, have been widely used for treating cardiac insufficiency. Recent studies suggest that low levels of endogenous CTS do not inhibit Na,K-ATPase activity but play a role in regulating blood pressure, inducing cellular kinase activity, and promoting cell viability. Higher CTS concentrations inhibit Na,K-ATPase activity and can induce reactive oxygen species, growth arrest, and cell death. CTS are being considered as potential novel therapies in cancer treatment, as they have been shown to limit tumor cell growth. However, there is a lack of information on the relative toxicity of tumor cells and comparable non-tumor cells. We have investigated the effects of CTS compounds, ouabain, digitoxin, and bufalin, on cell growth and survival in cell lines exhibiting the full spectrum of non-cancerous to malignant phenotypes. We show that CTS inhibit membrane Na,K-ATPase activity equally well in all cell lines tested regardless of metastatic potential. In contrast, the cellular responses to the drugs are different in non-tumor and tumor cells. Ouabain causes greater inhibition of proliferation and more extensive apoptosis in non-tumor breast cells compared to malignant or oncogene-transfected cells. In tumor cells, the effects of ouabain are accompanied by activation of anti-apoptotic ERK1/2. However, ERK1/2 or Src inhibition does not sensitize tumor cells to CTS cytotoxicity, suggesting that other mechanisms provide protection to the tumor cells. Reduced CTS-sensitivity in breast tumor cells compared to non-tumor cells indicates that CTS are not good candidates as cancer therapies.

  10. Stilbene glycosides are natural product inhibitors of FGF-2-induced angiogenesis

    Directory of Open Access Journals (Sweden)

    Naz Humera

    2009-04-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with pathological processes, in particular tumour development, and is a target for the development of new therapies. We have investigated the anti-angiogenic potential of two naturally occurring stilbene glycosides (compounds 1 and 2 isolated from the medicinal plant Boswellia papyriferai using large and smallvessel-derived endothelial cells. Compound 1 (trans-4',5'-dihydroxy-3-methoxystilbene-5-O-{α-L-rhamnopyranosyl-(1→2-[α-L-rhamnopyranosyl-(1→6}-β-D-glucopyranoside was the more hydrophilic and inhibited FGF-2-induced proliferation, wound healing, invasion in Matrigel, tube formation and angiogenesis in large and small vessel-derived endothelial cells and also in the chick chorioallantoic membrane assay. Using a binding assay we were able to show compound 1 reduced binding of FGF-2 to fibroblast growth factor receptors-1 and -2. In all cases the concentration of compound 1 which caused 50% inhibition (IC50 was determined. The effect of compound 1 on EGF and VEGF-induced proliferation was also investigated. Results Compound 1 inhibited all stages of FGF-2 induced angiogenesis with IC50 values in the range 5.8 ± 0.18 – 48.90 ± 0.40 μM but did not inhibit EGF or VEGF-induced angiogenesis. It also inhibited FGF-2 binding to FGF receptor-1 and -2 with IC50 values of 5.37 ± 1.04 and 9.32 ± 0.082 μM respectively and with concommotant down-regulation of phosphorylated-ERK-1/-2 expression. Compound 2 was an ineffective inhibitor of angiogenesis despite its structural homology to compound 1. Conclusion Compound 1 inhibited FGF-2 induced angiogenesis by binding to its cognate receptors and is an addition to the small number of natural product inhibitors of angiogenesis

  11. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  12. Cytotoxic and Apoptosis-Inducing Activity of Triterpene Glycosides from Holothuria scabra and Cucumaria frondosa against HepG2 Cells

    OpenAIRE

    Juanjuan Wang; Hua Han; Xiangfeng Chen; Yanghua Yi; Hongxiang Sun

    2014-01-01

    The cytotoxic effects of thirteen triterpene glycosides from Holothuria scabra Jaeger and Cucumaria frondosa Gunnerus (Holothuroidea) against four human cell lines were detected and their cytotoxicity-structure relationships were established. The apoptosis-inducing activity of a more potent glycoside echinoside A (1) in HepG2 cells was further investigated by determining its effect on the morphology, mitochondrial transmembrane potential (Δψ m ) and mRNA expression levels of the apoptosis-rel...

  13. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure

    Directory of Open Access Journals (Sweden)

    McIver Lauren J

    2009-12-01

    Full Text Available Abstract Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level.

  14. Ouabain induces cardiac remodeling in rats independent of blood pressure

    Institute of Scientific and Technical Information of China (English)

    Xing JIANG; Yan-ping REN; Zhuo-ren L(U)

    2007-01-01

    Aim: To investigate the ouabain's effects on cardiac remodeling in rats. Methods:Male Sprague-Dawley rats were treated with ouabain. Systolic blood pressure(SBP) was recorded weekly. After 4 and 6 weeks, echocardiography were performed,hemodynamic parameters were measured by invasive cardiac catheterization,changes in cardiac ultrastructure were analyzed using transmission electron microscopy, the collagen fraction of the left ventricle was assessed with Picrosirius red stain, and RT-PCR was applied to evaluate the mRNA level of myosin heavy chain-α and-β in the left ventricle. Results: Having been treated with ouabain for 4 weeks, there was no significant difference in the mean SBP of the two groups.However, left ventricular hypertrophy, myocardial ultrastructure deterioration,and extracellular matrix remodeling were induced by ouabain treatment; meanwhile,cardiac systolic and diastolic performance were both worsened. Moreover, the cardiac MHC-β mRNA was upregulated by ouabain treatment, whereas MHC-αmRNA was downregulated. After 4 weeks, the mean SBP in the ouabain group began to increase and was significantly higher than that in control group after 6 weeks (P<0.01); the rats' cardiac structure and function were worsened.Conclusion: These results suggested that ouabain induces alterations in cardiac structure and function, and the effects happened before the increase of blood pressure. The results indicated that ouabain induced cardiac remodeling in rats independent of blood pressure.

  15. High-performance liquid chromatography-ionspray mass spectrometry for the specific determination of digoxin and some related cardiac glycosides in human plasma.

    Science.gov (United States)

    Tracqui, A; Kintz, P; Ludes, B; Mangin, P

    1997-04-25

    An original method based upon high-performance liquid chromatography coupled to ionspray mass spectrometry (HPLC-ISP-MS) has been developed for the identification and quantification in plasma of several cardiac glycosides, namely digoxin, digitoxin, lanatoside C and acetyldigitoxin. After single-step liquid-liquid extraction by chloroform-2-propanol (95:5, v/v) at pH 9.5 using oleandrin as an internal standard, solutes are separated on a 4 microm NovaPak C18 (Waters) column (150x2.0 mm, I.D.), using a gradient of acetonitrile-2 mM NH4COOH, pH 3 buffer (flow-rate 200 microl/min, post-column split 1:3). Detection is done by a Perkin-Elmer Sciex API-100 mass analyzer equipped with an ISP interface. In most instances the major ion observed is not [M+H]+ as expected, but [M+NH4]+. The mean retention times (min) are: lanatoside C, 5.74; digoxin, 6.00; digitoxin, 8.08, oleandrin, 8.30, acetyldigitoxin, 8.66 and 9.01 (isomers alpha and beta, respectively). The lower limits of detection in single ion monitoring mode range from 0.15 ng/ml (alpha- and beta-acetyldigitoxin) to 0.60 ng/ml (lanatoside C), making the method less sensitive than radioimmunoassay, whereas it is much more specific.

  16. Effect of tripterygium glycosides on Wnt/Frizzled signaling pathway in imiquimod-induced psoriasis-like mice

    Institute of Scientific and Technical Information of China (English)

    Xiu-Qing Liu; Zhuo-Cheng Li; Wen-Zhong Wu

    2016-01-01

    ABSTRACT Objective:To study the effect of tripterygium glycosides on Wnt/Frizzled signaling pathway in imiquimod-induced psoriasis-like mice.Methods:BALB/c female mice were selected as research objects and randomly divided into control group, model group and intervention group, model group and intervention group established the models of imiquimod-induced psoriasis-like mice, and intervention group received intragastric administration of tripterygium glycosides after establishment of models. Psoriasis lesion tissue was collected to detect the contents of Wnt/Frizzled signal molecules and downstream related molecules.Results:Wnt5a, Frizzled2, Frizzled3, Frizzled5, Frizzled6, NFAT, COX-2, VEGF, MIF, IFN-γ, IL-6, IL-17, IL-21, IL-23, JAK1, STAT3, Rsa, Raf, MEK, ERK1 and EKR2 contents in skin lesion tissue of model group were significantly higher than those of control group, cGMP and PKG contents were significantly lower than those of control group, and Frizzled4 content was not different from that of control group; Wnt5a, Frizzled2, Frizzled3, Frizzled5, Frizzled6, NFAT, COX-2, VEGF, MIF, IFN-γ, IL-6, IL-17, IL-21, IL-23, JAK1, STAT3, Rsa, Raf, MEK, ERK1 and EKR2 contents in skin lesion tissue of intervention group were significantly lower than those of model group, cGMP and PKG contents were significantly higher than those of model group, and Frizzled4 content was not different from that of model group.Conclusions:Tripterygium glycosides have inhibitory effect on the signaling pathway mediated by Wnt5a-Frizzled2/Frizzled3/Frizzled5/Frizzled6 in skin lesions of imiquimod-induced psoriasis-like mice.

  17. Exercise-induced cardiac fatigue in low handicap polo horses

    Directory of Open Access Journals (Sweden)

    CAO Bello

    2014-01-01

    Full Text Available Physical exercise leads to several changes in the cardiovascular system of horses and may induce abnormalities that are not observed at rest. Little is known about the cardiac effects of intense physical exercise performed by horses in polo competitions. This study aimed at identifying if exercise-induced cardiac fatigue is observed in healthy polo ponies. We examined 25 equine athletes before and after a training match. The results demonstrated post-exercise electrocardiographic alteration such as cardiac arrhythmia, QTc prolongation, abnormal T waves and ST-segment elevation. The post-exercise echocardiogram showed interventricular septum and left ventricle free wall thickness reduction, systolic volume decreased and ejection fraction decreased. These results suggest that polo causes exercise-induced cardiac fatigue. It was not possible to establish accurately the etiology of this abnormality, nor its long-term consequences.

  18. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  19. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats

    Directory of Open Access Journals (Sweden)

    A. Medeiros

    2004-12-01

    Full Text Available The effect of swimming training (ST on vagal and sympathetic cardiac effects was investigated in sedentary (S, N = 12 and trained (T, N = 12 male Wistar rats (200-220 g. ST consisted of 60-min swimming sessions 5 days/week for 8 weeks, with a 5% body weight load attached to the tail. The effect of the autonomic nervous system in generating training-induced resting bradycardia (RB was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. Cardiac hypertrophy was evaluated by cardiac weight and myocyte morphometry. Plasma catecholamine concentrations and citrate synthase activity in soleus muscle were also determined in both groups. Resting heart rate was significantly reduced in T rats (355 ± 16 vs 330 ± 20 bpm. RB was associated with a significantly increased cardiac vagal effect in T rats (103 ± 25 vs 158 ± 40 bpm, since the sympathetic cardiac effect and intrinsic heart rate were similar for the two groups. Likewise, no significant difference was observed for plasma catecholamine concentrations between S and T rats. In T rats, left ventricle weight (13% and myocyte dimension (21% were significantly increased, suggesting cardiac hypertrophy. Skeletal muscle citrate synthase activity was significantly increased by 52% in T rats, indicating endurance conditioning. These data suggest that RB induced by ST is mainly mediated parasympathetically and differs from other training modes, like running, that seems to mainly decrease intrinsic heart rate in rats. The increased cardiac vagal activity associated with ST is of clinical relevance, since both are related to increased life expectancy and prevention of cardiac events.

  20. New monoterpene glycosides from sunflower seeds and their protective effects against H2O2-induced myocardial cell injury.

    Science.gov (United States)

    Fei, Yonghe; Zhao, Jianping; Liu, Yanli; Li, Xiaoran; Xu, Qiongming; Wang, Taoyun; Khan, Ikhlas A; Yang, Shilin

    2015-11-15

    Three new monoterpene glycosides (1-3) and eleven known compounds (4-14) were isolated from seeds of Helianthus annuus L. (sunflower). Their structures were determined by spectroscopic and chemical methods. All the compounds were isolated from sunflower seeds for the first time. Protective effects of compounds 1-14 against H2O2-induced H9c2 cardiomyocyte injury were evaluated, and compounds 1 and 2 showed some cell-protective effects. No significant DPPH radical scavenging activity was observed for compounds 1-14. PMID:25977041

  1. Hepatoprotective effect of flavonol glycosides rich fraction from Egyptian Vicia calcarata Desf. against CCl4-induced liver damage in rats.

    Science.gov (United States)

    Singab, Abdel Nasser B; Youssef, Diaa T A; Noaman, Eman; Kotb, Saeed

    2005-07-01

    The hepatoprotective activity of flavonol glycosides rich fraction (F-2), prepared from 70% alcohol extract of the aerial parts of V. calcarata Desf., was evaluated in a rat model with a liver injury induced by daily oral administration of CCl4 (100 mg/kg, b.w) for four weeks. Treatment of the animals with F-2 using a dose of (25 mg/kg, b.w) during the induction of hepatic damage by CCl4 significantly reduced the indices of liver injuries. The hepatoprotective effects of F-2 significantly reduced the elevated levels of the following serum enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). The antioxidant activity of F-2 markedly ameliorated the antioxidant parameters including glutathione (GSH) content, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), plasma catalase (CAT) and packed erythrocytes glucose-6-phosphate dehydrogenase (G6PDH) to be comparable with normal control levels. In addition, it normalized liver malondialdehyde (MDA) levels and creatinine concentration. Chromatographic purification of F-2 resulted in the isolation of two flavonol glycosides that rarely occur in the plant kingdom, identified as quercetin-3, 5-di-O-beta-D-diglucoside (5) and kaempferol-3, 5-di-O-beta-D-diglucoside (4) in addition to the three known compounds identified as quercetin-3-O-alpha-L-rhamnosyl- (1-->6)-beta-D-glucoside [rutin, 3], quercetin-3-O-beta-D-glucoside [isoquercitrin, 2] and kaempferol-3-O-beta-D-glucoside [astragalin, 1]. These compounds were identified based on interpretation of their physical, chemical, and spectral data. Moreover, the spectrophotometric estimation of the flavonoids content revealed that the aerial parts of the plant contain an appreciable amount of flavonoids (0.89%) calculated as rutin. The data obtained from this study revealed that the flavonol glycosides of F-2 protect the rat liver from hepatic damage induced by CCl4 through inhibition of

  2. Biological determinants of aldosterone-induced cardiac fibrosis in rats.

    Science.gov (United States)

    Robert, V; Silvestre, J S; Charlemagne, D; Sabri, A; Trouvé, P; Wassef, M; Swynghedauw, B; Delcayre, C

    1995-12-01

    To determine the events leading to cardiac fibrosis in aldosterone-salt hypertensive rats, we studied protein and mRNA accumulation of procollagens I and III for 60 days. After 3 and 7 days of treatment systolic pressure was normal, and no histological or biochemical changes were seen in rat hearts. At day 15 arterial pressure was raised (+40%) and left ventricular hypertrophy was +15%. Cardiac examination after hemalun-eosin staining and immunolabeling with anticollagen I and III antibodies showed no structural alterations, but an 83% increase in right ventricular type III procollagen mRNA levels was found. At 30 and 60 days we found progressive cardiac fibrosis, with inflammatory cells, myocyte necrosis, and elevation of both types I and III procollagen mRNA levels in both ventricles. To determine whether aldosterone had effects on Na,K-ATPase that might lead to ionic disturbances and induce myocyte necrosis, we studied the major cardiac Na,K-ATPase isoform genes. Although Na,K-ATPase alpha 1- and beta 1-subunit mRNA levels were elevated in kidney at day 1, neither of these cardiac transcripts nor the specific alpha 2 isoform was altered between 1 and 15 days. These results show that accumulation of procollagen mRNAs occurs before collagen deposition. Cardiac alterations are late and not preceded by changes in Na,K-ATPase cardiac gene expression, precluding a direct modulation of cardiac collagen synthesis and Na,K-ATPase by aldosterone. PMID:7490157

  3. Telmisartan attenuates isoproterenol-induced cardiac remodeling in rats via regulation of cardiac adiponectin expression

    Institute of Scientific and Technical Information of China (English)

    Bing-yan GUO; Yong-jun LI; Rui HAN; Shao-1ing YANG; Ying-hui SHI; De-rong HAN; Hong ZHOU; Mei WANG

    2011-01-01

    Aim:To investigate whether telmisartan(Telm)pretreatment attenuates isoproterenol(Iso)-induced postinfarction remodeling(PIR)in rats, and whether the effect of Telm is associated with cardiac expression of adiponectin.Methods:PIR was induced in male Wistar rats with two consecutive injections of Iso(80 mg/kg,sc)at an interval of 24 h.Primary Culture of ventricular myocytes from neonatal rats was prepared.Iso-induced cardiomyocyte injury was assessed based on cell growth and lactate dehydrogenase(LDH)activity.Cardiac adiponectin expression was measured using qRT-PCR and immunoblot analysis.Results:In the rats with PIR.Telm(10 mg·kg-1·d-1,po for 65 d)suppressed lso-induced increases in gravimetric parameters.cardiomyocyte diameter and collagen volume fraction,but had no effect on Iso-induced myocardial hypertrophy and interstitial fibrosis.The protective effect of Telm was associated with enhanced protein expression of cardiac adiponectin.In cultured cardiomyocytes,Telm (5-20 μmol/L)inhibited the celI death and LDH release induced by lSO(10 μmol/L).and reversed Iso-induced reduction in adiponectinprotein expression.In cardiomyocytes exposed to Iso(20 μmol/L).GW9662(30 μmol/L),a selective antagonist of PPAR-v,blocked the effects of Telm Dretreatment on adiponectin protein expression,as well as the protective effects of Telm on Iso-induced celI injUry.Conclusion:Telm attenuates Iso-induced cardiac remodeling and cell injury,which is associated with induction of cardiac adiponectin expression.

  4. Incretin attenuates diabetes-induced damage in rat cardiac tissue.

    Science.gov (United States)

    AbdElmonem Elbassuoni, Eman

    2014-09-01

    Glucagon-like peptide-1 (GLP-1), as a member of the incretin family, has a role in glucose homeostasis, its receptors distributed throughout the body, including the heart. The aim was to investigate cardiac lesions following diabetes induction, and the potential effect of GLP-1 on this type of lesions and the molecular mechanism driving this activity. Adult male rats were classified into: normal, diabetic, 4-week high-dose exenatide-treated diabetic rats, 4-week low-dose exenatide-treated diabetic rats, and 1-week exenatide-treated diabetic rats. The following parameters were measured: in blood: glucose, insulin, lactate dehydrogenase (LDH), total creatine kinase (CK), creatine kinase MB isoenzyme (CK-MB), and CK-MB relative index; in cardiac tissue: lipid peroxide (LPO) and some antioxidant enzymes. The untreated diabetic group displayed significant increases in blood level of glucose, LDH, and CK-MB, and cardiac tissue LPO, and a significant decrease in cardiac tissue antioxidant enzymes. GLP-1 supplementation in diabetic rats definitely decreased the hyperglycemia and abolished the detrimental effects of diabetes on the cardiac tissue. The effect of GLP-1 on blood glucose and on the heart also appeared after a short supplementation period (1 week). It can be concluded that GLP-1 has beneficial effects on diabetes-induced oxidative cardiac tissue damage, most probably via its antioxidant effect directly acting on cardiac tissue and independent of its hypoglycemic effect. PMID:25011640

  5. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    Directory of Open Access Journals (Sweden)

    Marcos Minicucci

    2016-01-01

    Full Text Available Abstract Background: Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. Objective: The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Methods: Wistar rats were distributed in four groups: Control (C, Pentoxifylline (PX, Tobacco Smoke (TS, and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. Results: TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt, and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA and citrate synthase (CS. PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. Conclusion: TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.

  6. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond

    Science.gov (United States)

    Rožman, Marko

    2016-01-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.

  7. Cardiomyocyte differentiation induced in cardiac progenitor cells by cardiac fibroblast-conditioned medium.

    Science.gov (United States)

    Zhang, Xi; Shen, Man-Ru; Xu, Zhen-Dong; Hu, Zhe; Chen, Chao; Chi, Ya-Li; Kong, Zhen-Dong; Li, Zi-Fu; Li, Xiao-Tong; Guo, Shi-Lei; Xiong, Shao-Hu; Zhang, Chuan-Sen

    2014-05-01

    Our previous study showed that after being treated with 5-azacytidine, Nkx2.5(+) human cardiac progenitor cells (CPCs) derived from embryonic heart tubes could differentiate into cardiomyocytes. Although 5-azacytidine is a classical agent that induces myogenic differentiation in various types of cells, the drug is toxic and unspecific for myogenic differentiation. To investigate the possibility of inducing CPCs to differentiate into cardiomyocytes by a specific and non-toxic method, CPCs of passage 15 and mesenchymal stem cells (MSCs) were treated with cardiac ventricular fibroblast-conditioned medium (CVF-conditioned medium). Following this treatment, the Nkx2.5(+) CPCs underwent cardiomyogenic differentiation. Phase-contrast microscopy showed that the morphology of the treated CPCs gradually changed. Ultrastructural observation confirmed that the cells contained typical sarcomeres. The expression of cardiomyocyte-associated genes, such as alpha-cardiac actin, cardiac troponin T, and beta-myosin heavy chain (MHC), was increased in the CPCs that had undergone cardiomyogenic differentiation compared with untreated cells. In contrast, the MSCs did not exhibit changes in morphology or molecular expression after being treated with CVF-conditioned medium. The results indicated that Nkx2.5(+) CPCs treated with CVF-conditioned medium were capable of differentiating into a cardiac phenotype, whereas treated MSCs did not appear to undergo cardiomyogenic differentiation. Subsequently, following the addition of Dkk1 and the blocking of Wnt signaling pathway, CVF-conditioned medium-induced morphological changes and expression of cardiomyocyte-associated genes of Nkx2.5(+) CPCs were inhibited, which indicates that CVF-conditioned medium-induced cardiomyogenic differentiation of Nkx2.5(+) CPCs is associated with Wnt signaling pathway. In addition, we also found that the activation of Wnt signaling pathway was accompanied by higher expression of GATA-4 and the blocking of the

  8. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity.

    Science.gov (United States)

    Rodríguez-Rodríguez, César; Torres, Nimbe; Gutiérrez-Uribe, Janet A; Noriega, Lilia G; Torre-Villalvazo, Iván; Leal-Díaz, Ana M; Antunes-Ricardo, Marilena; Márquez-Mota, Claudia; Ordaz, Guillermo; Chavez-Santoscoy, Rocío A; Serna-Saldivar, Sergio O; Tovar, Armando R

    2015-03-01

    A diet rich in polyphenols can ameliorate some metabolic alterations associated with obesity and type 2 diabetes. Opuntia ficus-indica (OFI) is a plant rich in isorhamnetin glycosides and is highly consumed in Mexico. The purpose of this research was to determine the metabolic effect of an OFI extract on a mouse model of diet-induced obesity and in isolated pancreatic islets. OFI extract was added to a high fat (HF) diet at a low (0.3%) or high (0.6%) dose and administered to C57BL/6 mice for 12 weeks. Mice fed the HF diet supplemented with the OFI extract gained less body weight and exhibited significantly lower circulating total cholesterol, LDL cholesterol and HDL cholesterol compared to those fed the HF diet alone. The HF-OFI diet fed mice presented lower glucose and insulin concentration than the HF diet fed mice. However, the HF-OFI diet fed mice tended to have higher insulin concentration than control mice. The OFI extract stimulated insulin secretion in vitro, associated with increased glucose transporter 2 (GLUT2) and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA content. Furthermore, the OFI extract improved glucose tolerance, and additionally increased energy expenditure. These metabolic improvements were associated with reduced adipocyte size, increased hepatic IRS1 tyr-608 and S6 K thr-389 phosphorylation. OFI isorhamnetin glycosides also diminished the hepatic lipid content associated with reduced mRNA expression of the endoplasmic reticulum stress markers and lipogenic enzymes and increased mRNA expression of genes related to fatty acid oxidation. Overall, the OFI extract prevented the development of metabolic abnormalities associated with diet-induced obesity. PMID:25588195

  9. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity.

    Science.gov (United States)

    Rodríguez-Rodríguez, César; Torres, Nimbe; Gutiérrez-Uribe, Janet A; Noriega, Lilia G; Torre-Villalvazo, Iván; Leal-Díaz, Ana M; Antunes-Ricardo, Marilena; Márquez-Mota, Claudia; Ordaz, Guillermo; Chavez-Santoscoy, Rocío A; Serna-Saldivar, Sergio O; Tovar, Armando R

    2015-03-01

    A diet rich in polyphenols can ameliorate some metabolic alterations associated with obesity and type 2 diabetes. Opuntia ficus-indica (OFI) is a plant rich in isorhamnetin glycosides and is highly consumed in Mexico. The purpose of this research was to determine the metabolic effect of an OFI extract on a mouse model of diet-induced obesity and in isolated pancreatic islets. OFI extract was added to a high fat (HF) diet at a low (0.3%) or high (0.6%) dose and administered to C57BL/6 mice for 12 weeks. Mice fed the HF diet supplemented with the OFI extract gained less body weight and exhibited significantly lower circulating total cholesterol, LDL cholesterol and HDL cholesterol compared to those fed the HF diet alone. The HF-OFI diet fed mice presented lower glucose and insulin concentration than the HF diet fed mice. However, the HF-OFI diet fed mice tended to have higher insulin concentration than control mice. The OFI extract stimulated insulin secretion in vitro, associated with increased glucose transporter 2 (GLUT2) and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA content. Furthermore, the OFI extract improved glucose tolerance, and additionally increased energy expenditure. These metabolic improvements were associated with reduced adipocyte size, increased hepatic IRS1 tyr-608 and S6 K thr-389 phosphorylation. OFI isorhamnetin glycosides also diminished the hepatic lipid content associated with reduced mRNA expression of the endoplasmic reticulum stress markers and lipogenic enzymes and increased mRNA expression of genes related to fatty acid oxidation. Overall, the OFI extract prevented the development of metabolic abnormalities associated with diet-induced obesity.

  10. Supra-physiological dose of testosterone induces pathological cardiac hypertrophy.

    Science.gov (United States)

    Pirompol, Prapawadee; Teekabut, Vassana; Weerachatyanukul, Wattana; Bupha-Intr, Tepmanas; Wattanapermpool, Jonggonnee

    2016-04-01

    Testosterone and androgenic anabolic steroids have been misused for enhancement of physical performance despite many reports on cardiac sudden death. Although physiological level of testosterone provided many regulatory benefits to human health, including the cardiovascular function, supra-physiological levels of the hormone induce hypertrophy of the heart with unclear contractile activation. In this study, dose- and time-dependent effects of high-testosterone treatment on cardiac structure and function were evaluated. Adult male rats were divided into four groups of testosterone treatment for 0, 5, 10, and 20 mg/kg BW for 4, 8, or 12 weeks. Increases in both percentage heart:body weight ratio and cardiomyocyte cross-sectional area in representing hypertrophy of the heart were significantly shown in all testosterone-treated groups to the same degree. In 4-week-treated rats, physiological cardiac hypertrophy was apparent with an upregulation of α-MHC without any change in myofilament contractile activation. In contrast, pathological cardiac hypertrophy was observed in 8- and 12-week testosterone-treated groups, as indicated by suppression of myofilament activation and myocardial collagen deposition without transition of MHC isoforms. Only in 12-week testosterone-treated group, eccentric cardiac hypertrophy was demonstrated with unaltered myocardial stiffness, but significant reductions in the phosphorylation signals of ERK1/2 and mTOR. Results of our study suggest that the outcome of testosterone-induced cardiac hypertrophy is not dose dependent but is rather relied on the factor of exposure to duration in inducing maladaptive responses of the heart. PMID:26850730

  11. Contraction Bands Are Induced by Cardiac Massage Itself.

    Science.gov (United States)

    Morita, Satomu; Furukawa, Satoshi; Nishi, Katsuji; Hitosugi, Masahito

    2016-09-01

    Pathological contraction bands (CB) are recognized as a type of necrosis pattern found in the myocardium. It is well known that CB are induced by cardiopulmonary resuscitation (CPR) with cardiac massage. However, it is not known whether the reperfusion or massage itself causes the formation of CB. We studied 10 cardiac tissues taken from forensic autopsy cases that had not received CPR. We excluded the cases where the cause of death was a cardiac event. After making sections for forensic research, we massaged the left ventricles for 10 minutes. We found CB in all cases with massage performed within 12 hours after death, which is the time frame for supravital reactions. We did not find CB in any cases where more than 24 hours had elapsed since the time of death. Contraction bands were not observed in any sections that were taken before massage. We suggested here that CB induced by CPR were caused by the cardiac massage itself, and that most CPR-induced CB are not contraction band necrosis but rather artifactual CB. PMID:27323278

  12. Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction.

    Science.gov (United States)

    Wang, Jiaxing; Lu, Songhe; Zheng, Qijun; Hu, Nan; Yu, Wenjun; Li, Na; Liu, Min; Gao, Beilei; Zhang, Guoyong; Zhang, Yingmei; Wang, Haichang

    2016-07-01

    Paraquat (1,1'-dim ethyl-4-4'-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage. PMID:26089164

  13. Major rapid weight loss induces changes in cardiac repolarization

    DEFF Research Database (Denmark)

    Vedel-Larsen, Esben; Iepsen, Eva Winning; Lundgren, Julie;

    2016-01-01

    INTRODUCTION: Obesity is associated with increased all-cause mortality, but weight loss may not decrease cardiovascular events. In fact, very low calorie diets have been linked to arrhythmias and sudden death. The QT interval is the standard marker for cardiac repolarization, but T-wave morphology...... analysis has been suggested as a more sensitive method to identify changes in cardiac repolarization. We examined the effect of a major and rapid weight loss on T-wave morphology. METHODS AND RESULTS: Twenty-six individuals had electrocardiograms (ECG) taken before and after eight weeks of weight loss......A1c (pweight loss induces changes in cardiac repolarization. Monitoring of MCS during calorie restriction makes it possible to detect repolarization changes with higher discriminative power than the QT-interval during major rapid weight...

  14. Insulin Cannot Induce Adipogenic Differentiation in Primary Cardiac Cultures.

    Science.gov (United States)

    Parameswaran, Sreejit; Sharma, Rajendra K

    2016-09-01

    Cardiac tissue contains a heterogeneous population of cardiomyocytes and nonmyocyte population especially fibroblasts. Fibroblast differentiation into adipogenic lineage is important for fat accumulation around the heart which is important in cardiac pathology. The differentiation in fibroblast has been observed both spontaneously and due to increased insulin stimulation. The present study aims to observe the effect of insulin in adipogenic differentiation of cardiac cells present in primary murine cardiomyocyte cultures. Oil Red O (ORO) staining has been used for observing the lipid accumulations formed due to adipogenic differentiation in murine cardiomyocyte cultures. The accumulated lipids were quantified by ORO assay and normalized using protein estimation. The lipid accumulation in cardiac cultures did not increase in presence of insulin. However, addition of other growth factors like insulin-like growth factor 1 and epidermal growth factor promoted adipogenic differentiation even in the presence of insulin and other inhibitory molecules such as vitamins. Lipid accumulation also increased in cells grown in media without insulin after an initial exposure to insulin-containing growth media. The current study adds to the existing knowledge that the insulin by itself cannot induce adipogenic induction in the cardiac cultures. The data have significance in the understanding of cardiovascular health especially in diabetic patients. PMID:27574386

  15. The Quinovic Acid Glycosides Purified Fraction from Uncaria tomentosa Protects against Hemorrhagic Cystitis Induced by Cyclophosphamide in Mice.

    Directory of Open Access Journals (Sweden)

    Fabrícia Dietrich

    Full Text Available Uncaria tomentosa is widely used in folk medicine for the treatment of numerous diseases, such as urinary tract disease. Hemorrhagic cystitis (HE is an inflammatory condition of the bladder associated with the use of anticancer drugs such as cyclophosphamide (CYP. Sodium 2-mercaptoethanesulfonate (Mesna has been used to prevent the occurrence of HE, although this compound is not effective in established lesions. It has been demonstrated that the purinergic system is involved in several pathophysiological events. Among purinergic receptors, P2X7 deserves attention because it is involved in HE induced by CYP and, therefore, can be considered a therapeutic target. The objective of this study was to investigate the potential therapeutic effect of the quinovic acid glycosides purified fraction (QAPF from U. tomentosa in the mouse model of CYP-induced HE. Pretreatment with QAPF not only had a protective effect on HE-induced urothelial damage (edema, hemorrhage and bladder wet weight but was also able to control visceral pain, decrease IL-1β levels and down-regulates P2X7 receptors, most likely by inhibit the neutrophils migration to the bladder. This research clearly demonstrates the promising anti-inflammatory properties of QAPF, supporting its use as complementary therapy. QAPF represents a promising therapeutic option for this pathological condition.

  16. The Quinovic Acid Glycosides Purified Fraction from Uncaria tomentosa Protects against Hemorrhagic Cystitis Induced by Cyclophosphamide in Mice

    Science.gov (United States)

    Dietrich, Fabrícia; Pietrobon Martins, Jerônimo; Kaiser, Samuel; Madeira Silva, Rodrigo Braccini; Rockenbach, Liliana; Albano Edelweiss, Maria Isabel; Ortega, George González; Morrone, Fernanda Bueno; Campos, Maria Martha; Battastini, Ana Maria Oliveira

    2015-01-01

    Uncaria tomentosa is widely used in folk medicine for the treatment of numerous diseases, such as urinary tract disease. Hemorrhagic cystitis (HE) is an inflammatory condition of the bladder associated with the use of anticancer drugs such as cyclophosphamide (CYP). Sodium 2-mercaptoethanesulfonate (Mesna) has been used to prevent the occurrence of HE, although this compound is not effective in established lesions. It has been demonstrated that the purinergic system is involved in several pathophysiological events. Among purinergic receptors, P2X7 deserves attention because it is involved in HE induced by CYP and, therefore, can be considered a therapeutic target. The objective of this study was to investigate the potential therapeutic effect of the quinovic acid glycosides purified fraction (QAPF) from U. tomentosa in the mouse model of CYP-induced HE. Pretreatment with QAPF not only had a protective effect on HE-induced urothelial damage (edema, hemorrhage and bladder wet weight) but was also able to control visceral pain, decrease IL-1β levels and down-regulates P2X7 receptors, most likely by inhibit the neutrophils migration to the bladder. This research clearly demonstrates the promising anti-inflammatory properties of QAPF, supporting its use as complementary therapy. QAPF represents a promising therapeutic option for this pathological condition. PMID:26154141

  17. The Quinovic Acid Glycosides Purified Fraction from Uncaria tomentosa Protects against Hemorrhagic Cystitis Induced by Cyclophosphamide in Mice.

    Science.gov (United States)

    Dietrich, Fabrícia; Pietrobon Martins, Jerônimo; Kaiser, Samuel; Madeira Silva, Rodrigo Braccini; Rockenbach, Liliana; Albano Edelweiss, Maria Isabel; Ortega, George González; Morrone, Fernanda Bueno; Campos, Maria Martha; Battastini, Ana Maria Oliveira

    2015-01-01

    Uncaria tomentosa is widely used in folk medicine for the treatment of numerous diseases, such as urinary tract disease. Hemorrhagic cystitis (HE) is an inflammatory condition of the bladder associated with the use of anticancer drugs such as cyclophosphamide (CYP). Sodium 2-mercaptoethanesulfonate (Mesna) has been used to prevent the occurrence of HE, although this compound is not effective in established lesions. It has been demonstrated that the purinergic system is involved in several pathophysiological events. Among purinergic receptors, P2X7 deserves attention because it is involved in HE induced by CYP and, therefore, can be considered a therapeutic target. The objective of this study was to investigate the potential therapeutic effect of the quinovic acid glycosides purified fraction (QAPF) from U. tomentosa in the mouse model of CYP-induced HE. Pretreatment with QAPF not only had a protective effect on HE-induced urothelial damage (edema, hemorrhage and bladder wet weight) but was also able to control visceral pain, decrease IL-1β levels and down-regulates P2X7 receptors, most likely by inhibit the neutrophils migration to the bladder. This research clearly demonstrates the promising anti-inflammatory properties of QAPF, supporting its use as complementary therapy. QAPF represents a promising therapeutic option for this pathological condition.

  18. The Quinovic Acid Glycosides Purified Fraction from Uncaria tomentosa Protects against Hemorrhagic Cystitis Induced by Cyclophosphamide in Mice.

    Science.gov (United States)

    Dietrich, Fabrícia; Pietrobon Martins, Jerônimo; Kaiser, Samuel; Madeira Silva, Rodrigo Braccini; Rockenbach, Liliana; Albano Edelweiss, Maria Isabel; Ortega, George González; Morrone, Fernanda Bueno; Campos, Maria Martha; Battastini, Ana Maria Oliveira

    2015-01-01

    Uncaria tomentosa is widely used in folk medicine for the treatment of numerous diseases, such as urinary tract disease. Hemorrhagic cystitis (HE) is an inflammatory condition of the bladder associated with the use of anticancer drugs such as cyclophosphamide (CYP). Sodium 2-mercaptoethanesulfonate (Mesna) has been used to prevent the occurrence of HE, although this compound is not effective in established lesions. It has been demonstrated that the purinergic system is involved in several pathophysiological events. Among purinergic receptors, P2X7 deserves attention because it is involved in HE induced by CYP and, therefore, can be considered a therapeutic target. The objective of this study was to investigate the potential therapeutic effect of the quinovic acid glycosides purified fraction (QAPF) from U. tomentosa in the mouse model of CYP-induced HE. Pretreatment with QAPF not only had a protective effect on HE-induced urothelial damage (edema, hemorrhage and bladder wet weight) but was also able to control visceral pain, decrease IL-1β levels and down-regulates P2X7 receptors, most likely by inhibit the neutrophils migration to the bladder. This research clearly demonstrates the promising anti-inflammatory properties of QAPF, supporting its use as complementary therapy. QAPF represents a promising therapeutic option for this pathological condition. PMID:26154141

  19. Tlr4 Deficiency Protects against Cardiac Pressure Overload Induced Hyperinflammation

    Science.gov (United States)

    Boehm, Olaf; El Aissati, Sakina; Foltz, Fabian; Goelz, Lina; Goertz, David; Kebir, Sied; Weisheit, Christina; Wolf, Michael; Meyer, Rainer; Baumgarten, Georg

    2015-01-01

    Transverse aortic constriction provokes a pro-inflammatory reaction and results in cardiac hypertrophy. Endogenous ligands contribute to cardiac hypertrophy via toll-like receptor (TLR)-4 binding. A lack of TLR4 signaling diminishes hypertrophy and inflammation. Wild type mice undergoing aortic constriction respond to a lipopolysaccharide second-hit stimulus with hyperinflammation. The objective of this study was to assess whether other second-hit challenges utilizing TLR ligands provoke a comparable inflammatory reaction, and to find out whether this response is absent in TLR4 deficient mice. Assuming that cardiac stress alters the expression of pattern recognition receptors we analyzed the effects of transverse aortic constriction and second-hit virulence factor treatment on TLR expression, as well as cytokine regulation. Wild type and Tlr4-/- mice were subjected to three days of TAC and subsequently confronted with gram-positive TLR2 ligand lipoteichoic acid (LTA, 15mg/g bodyweight) or synthetic CpG-oligodesoxynucleotide 1668 thioate (20 nmol/kg bodyweight, 30 min after D-galactosamin desensitization) signaling via TLR9. Hemodynamic measurements and organ preservation were performed 6 h after stimulation. Indeed, the study revealed a robust enhancement of LTA induced pattern recognition receptor and cytokine mRNA expression and a LTA-dependent reduction of hemodynamic pressure in TAC wild type mice. Second-Hit treatment with CpG-ODNs led to similar results. However, second-hit effects were abolished in Tlr4-/- mice. In total, these data indicate for the first time that cardiac stress increases the inflammatory response towards both, gram-negative and gram-positive, TLR ligands as well as bacterial DNA. The decrease of the inflammatory response upon TLR2 and -9 ligand challenge in TAC Tlr4-/- mice demonstrates that a lack of TLR4 signaling does not only prevent left ventricular hypertrophy but also protects the mice from a cardiac stress induced hyperinflammatory

  20. Tlr4 Deficiency Protects against Cardiac Pressure Overload Induced Hyperinflammation.

    Directory of Open Access Journals (Sweden)

    Heidi Ehrentraut

    Full Text Available Transverse aortic constriction provokes a pro-inflammatory reaction and results in cardiac hypertrophy. Endogenous ligands contribute to cardiac hypertrophy via toll-like receptor (TLR-4 binding. A lack of TLR4 signaling diminishes hypertrophy and inflammation. Wild type mice undergoing aortic constriction respond to a lipopolysaccharide second-hit stimulus with hyperinflammation. The objective of this study was to assess whether other second-hit challenges utilizing TLR ligands provoke a comparable inflammatory reaction, and to find out whether this response is absent in TLR4 deficient mice. Assuming that cardiac stress alters the expression of pattern recognition receptors we analyzed the effects of transverse aortic constriction and second-hit virulence factor treatment on TLR expression, as well as cytokine regulation. Wild type and Tlr4-/- mice were subjected to three days of TAC and subsequently confronted with gram-positive TLR2 ligand lipoteichoic acid (LTA, 15 mg/g bodyweight or synthetic CpG-oligodesoxynucleotide 1668 thioate (20 nmol/kg bodyweight, 30 min after D-galactosamin desensitization signaling via TLR9. Hemodynamic measurements and organ preservation were performed 6 h after stimulation. Indeed, the study revealed a robust enhancement of LTA induced pattern recognition receptor and cytokine mRNA expression and a LTA-dependent reduction of hemodynamic pressure in TAC wild type mice. Second-Hit treatment with CpG-ODNs led to similar results. However, second-hit effects were abolished in Tlr4-/- mice. In total, these data indicate for the first time that cardiac stress increases the inflammatory response towards both, gram-negative and gram-positive, TLR ligands as well as bacterial DNA. The decrease of the inflammatory response upon TLR2 and -9 ligand challenge in TAC Tlr4-/- mice demonstrates that a lack of TLR4 signaling does not only prevent left ventricular hypertrophy but also protects the mice from a cardiac stress induced

  1. Adiponectin Ameliorates Endotoxin-Induced Acute Cardiac Injury

    Directory of Open Access Journals (Sweden)

    Yoshio Watanabe

    2014-01-01

    Full Text Available Background. Obesity is a risk factor for cardiovascular disease. Increasing evidence suggests that reduced levels of the adipocyte-derived plasma protein adiponectin are associated with an increased cardiovascular risk. Here, we examined the effects of adiponectin on lipopolysaccharide- (LPS- induced acute cardiac injury in vivo. Methods and Results. A single dose of LPS (10 mg/kg was intraperitoneally injected into wild-type (WT and adiponectin-knockout (APN-KO mice. Following LPS administration, APN-KO mice had exacerbation of left ventricular (LV systolic dysfunction compared with WT mice. Administration of LPS to WT and APN-KO mice led to an increased expression of inflammatory cytokines including TNF-α and IL-6 in the heart, but the magnitude of this induction was greater in APN-KO mice compared to WT mice. Systemic delivery of an adenoviral vector expressing adiponectin (Ad-APN improved LPS-induced LV dysfunction in APN-KO mice, and this effect was accompanied by the reduced expression of TNF-α and IL-6 in the heart. Administration of etanercept, a soluble TNF receptor abolished the reduced LV contractile function in response to LPS in APN-KO mice. Conclusion. These results suggest that adiponectin protects against LPS-induced acute cardiac injury by suppressing cardiac inflammatory responses, and could represent a potential therapeutic target in sepsis-associated myocardial dysfunction.

  2. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin) induced cardiac injury in mice

    OpenAIRE

    Yousif Nasser; Al-amran Fadhil G

    2011-01-01

    Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin) induced cardiac toxicity. Toll-like receptors (TLRs) are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p.)...

  3. Cytotoxic and apoptosis-inducing activity of triterpene glycosides from Holothuria scabra and Cucumaria frondosa against HepG2 cells.

    Science.gov (United States)

    Wang, Juanjuan; Han, Hua; Chen, Xiangfeng; Yi, Yanghua; Sun, Hongxiang

    2014-08-01

    The cytotoxic effects of thirteen triterpene glycosides from Holothuria scabra Jaeger and Cucumaria frondosa Gunnerus (Holothuroidea) against four human cell lines were detected and their cytotoxicity-structure relationships were established. The apoptosis-inducing activity of a more potent glycoside echinoside A (1) in HepG2 cells was further investigated by determining its effect on the morphology, mitochondrial transmembrane potential (Δψm) and mRNA expression levels of the apoptosis-related genes. The results showed that the number of glycosyl residues in sugar chains and the side chain of aglycone could affect their cytotoxicity towards tumor cells and selective cytotoxicity. 1 significantly inhibited cell viability and induced apoptosis in HepG2 cells. 1 also markedly decreased the Δψm and Bcl-2/Bax mRNA express ratio, and up-regulated the mRNA expression levels of Caspase-3, Caspase-8 and Caspase-9 in HepG2 cells. Therefore, 1 induced apoptosis in HepG2 cells through both intrinsic and extrinsic pathway. These findings could potentially promote the usage of these glycosides as leading compounds for developing new antitumor drugs. PMID:25062508

  4. Cytotoxic and Apoptosis-Inducing Activity of Triterpene Glycosides from Holothuria scabra and Cucumaria frondosa against HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Juanjuan Wang

    2014-07-01

    Full Text Available The cytotoxic effects of thirteen triterpene glycosides from Holothuria scabra Jaeger and Cucumaria frondosa Gunnerus (Holothuroidea against four human cell lines were detected and their cytotoxicity-structure relationships were established. The apoptosis-inducing activity of a more potent glycoside echinoside A (1 in HepG2 cells was further investigated by determining its effect on the morphology, mitochondrial transmembrane potential (Δψm and mRNA expression levels of the apoptosis-related genes. The results showed that the number of glycosyl residues in sugar chains and the side chain of aglycone could affect their cytotoxicity towards tumor cells and selective cytotoxicity. 1 significantly inhibited cell viability and induced apoptosis in HepG2 cells. 1 also markedly decreased the Δψm and Bcl-2/Bax mRNA express ratio, and up-regulated the mRNA expression levels of Caspase-3, Caspase-8 and Caspase-9 in HepG2 cells. Therefore, 1 induced apoptosis in HepG2 cells through both intrinsic and extrinsic pathway. These findings could potentially promote the usage of these glycosides as leading compounds for developing new antitumor drugs.

  5. Gene transcription and steviol glycoside accumulation in Stevia rebaudiana under polyethylene glycol-induced drought stress in greenhouse cultivation.

    Science.gov (United States)

    Hajihashemi, Shokoofeh; Geuns, Jan M C

    2016-09-01

    Stevia rebaudiana is a sweet herb of the Astraceae family, which is cultivated for the natural sweeteners it contains. The aim of this study was to assess the effect of drought, simulated by the application of polyethylene glycol (5%, 10%, and 15% w/v), on the content of steviol glycosides (SVglys) and transcription levels of six genes involved in the biosynthesis of these natural sweeteners. The transcription levels of ent-kaurene synthase, ent-kaurene oxidase, ent-kaurenoic acid hydroxylase, and three UDP-dependent glycosyltransferases, UGT85C2,UGT74G1 and UGT76G1 were downregulated under polyethylene glycol treatment. Polyethylene glycol treatment significantly decreased the amount of stevioside, rebaudioside A, B, C and F, steviolbioside, dulcoside A, rubusoside, and total SVglys. These results strongly suggest a close relationship of SVglys content with the transcription of genes involved in the SVglys biosynthesis pathway. Comparing the observations of the present study with other reports provided the knowledge that the Stevia response to drought stress can be influenced by different environmental and experimental factors, in addition to intensity of drought stress. In conclusion, these results strongly suggest that polyethylene glycol-induced drought stress has a negative effect on the content of SVglys and transcription of SVglys biosynthetic genes and that this should be investigated further. We recommend that sufficient irrigation of Stevia is required to obtain a high content of SVglys.

  6. Gene transcription and steviol glycoside accumulation in Stevia rebaudiana under polyethylene glycol-induced drought stress in greenhouse cultivation.

    Science.gov (United States)

    Hajihashemi, Shokoofeh; Geuns, Jan M C

    2016-09-01

    Stevia rebaudiana is a sweet herb of the Astraceae family, which is cultivated for the natural sweeteners it contains. The aim of this study was to assess the effect of drought, simulated by the application of polyethylene glycol (5%, 10%, and 15% w/v), on the content of steviol glycosides (SVglys) and transcription levels of six genes involved in the biosynthesis of these natural sweeteners. The transcription levels of ent-kaurene synthase, ent-kaurene oxidase, ent-kaurenoic acid hydroxylase, and three UDP-dependent glycosyltransferases, UGT85C2,UGT74G1 and UGT76G1 were downregulated under polyethylene glycol treatment. Polyethylene glycol treatment significantly decreased the amount of stevioside, rebaudioside A, B, C and F, steviolbioside, dulcoside A, rubusoside, and total SVglys. These results strongly suggest a close relationship of SVglys content with the transcription of genes involved in the SVglys biosynthesis pathway. Comparing the observations of the present study with other reports provided the knowledge that the Stevia response to drought stress can be influenced by different environmental and experimental factors, in addition to intensity of drought stress. In conclusion, these results strongly suggest that polyethylene glycol-induced drought stress has a negative effect on the content of SVglys and transcription of SVglys biosynthetic genes and that this should be investigated further. We recommend that sufficient irrigation of Stevia is required to obtain a high content of SVglys. PMID:27642557

  7. Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuations.

    Science.gov (United States)

    Bhattacharyya, Pallab K; Lowe, Mark J

    2004-01-01

    Recent studies have shown that in certain cases, cardiac and respiratory rate fluctuations in BOLD-weighted MRI time courses may be an artifact unique to rapid sampled acquisitions and may not be present in longer repetition-time acquisitions. The implication of this is that, in these cases, cardiac and respiratory rate fluctuations are not aliased into data that undersample these effects and do not affect the resulting time course measurements. In this study, we show that these cases are specific to regions of large cerebrospinal fluid content and are not generally true for gray matter regions of the brain. We demonstrate that in many brain regions of interest, these fluctuations are directly observed as BOLD fluctuations and thus will affect measurements that undersample these effects.

  8. Effects of Cardiac Glycosides from Nerium indicum on Juvenile Carassius auratus%夹竹桃(Nerium indicum)皂甙对鲫鱼(Carassius auratus)幼鱼的影响

    Institute of Scientific and Technical Information of China (English)

    王芳; 戴灵鹏; 郑祥河; 席启斐; 王倩

    2011-01-01

    To assess the potential toxicity of cardiac glycosides of N. Indicum on non-target organism, the effects of different concentration of cardiac glycosides(0, 5.89, 20.12 mg·L-1 and 80.76 mg·L-1) on mortality, specific growth rate, glycogen and protein content, SOD activity as well as micronucleus rate of juvenile C. Auratus were investigated during exposure for 14 d and its recovery response after 7 d by using semi-static test method. The results showed that fish did not die when the concentration of cardiac glycosides ≤20.12 mg·L-1 during 14 d exposure periods. However, with 80.76 mg·L-1, 100% of the fish died within 5 d. When cardiac glycosides concentration reach to 20.12 mg·L-1, the specific growth rate, glycogen and protein contents decreased gradually while the SOD activity increased first and then decreased during the whole experiment. After a recovery period of 7 d, the inhibition of specific growth rate and SOD activity were weakened gradually and the glycogen and protein content were no significant difference between control and treatment group. In addition, the result of micronucleus test showed that cardiac glycosides did not significantly affect the micronucleus rate of juvenile C. Auratus. These results suggested that cardiac glycosides was low toxicity and no genotoxicity found, which supports that the plant product is safe for use as a molluscicide for the control of harmful freshwater snails in the aquatic environment. However, higher concentration of cardiac glucosides seriously impaired the normal physiological metabolism, resulting in the growth inhibition of C. Auratus, even caused fish death in the end.%为了评价夹竹桃皂甙对非靶标生物的潜在危害,采用半静态法研究了不同浓度(0、5.89、20.12 mg·L-1和80.76 mg·L4)的夹竹桃皂甙对鲫鱼幼苗的死亡情况、特定生长率、糖原、蛋白质含量、SOD酶活性和微核率的影响.结果表明,当夹竹桃皂甙处理浓度≤20.12 mg·L-1时,处

  9. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.

    Science.gov (United States)

    Zhu, Zeng-Yan; Gao, Tian; Huang, Yan; Xue, Jie; Xie, Mei-Lin

    2016-04-20

    Apigenin is a natural flavonoid compound that can inhibit hypoxia-inducible factor (HIF)-1α expression in cultured tumor cells under hypoxic conditions. Hypertension-induced cardiac hypertrophy is always accompanied by abnormal myocardial glucolipid metabolism due to an increase of HIF-1α. However, whether or not apigenin may ameliorate the cardiac hypertrophy and abnormal myocardial glucolipid metabolism remains unknown. This study aimed to examine the effects of apigenin. Rats with cardiac hypertrophy induced by renovascular hypertension were treated with apigenin 50-100 mg kg(-1) (the doses can be achieved by pharmacological or dietary supplementation for an adult person) by gavage for 4 weeks. The results showed that after treatment with apigenin, the blood pressure, heart weight, heart weight index, cardiomyocyte cross-sectional area, serum angiotensin II, and serum and myocardial free fatty acids were reduced. It is important to note that apigenin decreased the expression level of myocardial HIF-1α protein. Moreover, apigenin simultaneously increased the expression levels of myocardial peroxisome proliferator-activated receptor (PPAR) α, carnitine palmitoyltransferase (CPT)-1, and pyruvate dehydrogenase kinase (PDK)-4 proteins and decreased the expression levels of myocardial PPARγ, glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter (GLUT)-4 proteins. These findings demonstrated that apigenin could improve hypertensive cardiac hypertrophy and abnormal myocardial glucolipid metabolism in rats, and its mechanisms might be associated with the down-regulation of myocardial HIF-1α expression and, subsequently increasing the expressions of myocardial PPARα and its target genes CPT-1 and PDK-4, and decreasing the expressions of myocardial PPARγ and its target genes GPAT and GLUT-4. PMID:26987380

  10. Immunomodulating Steroidal Glycosides from the Roots of Stephanotis Mucronata

    Institute of Scientific and Technical Information of China (English)

    YeYi-ping; LiXiao-yu; SunHong-Xiang; ChenFeng-yang; PanYuan-jian

    2005-01-01

    1 Introduction The plants beonging to the Asclepiadaceae family are reported to be rich in pregnane and cardiac glycosides.In recent years, the pregnanes and their glycosides hale been shown to possess antitumor, antiepilepsy, and antifertility activities. The dried roots of Stephanotis mncronata(BLANCO) Meer.

  11. Modulatory effect of semelil (ANGIPARS™) on isoproterenol induced cardiac injury.

    Science.gov (United States)

    Joukar, Siyavash; Najafipour, Hamid; Mirzaeipour, Fateme; Nasri, Hamidreza; Ahmadi, Mahboubeh Yeganeh Haj; Badinloo, Marziyeh

    2013-01-01

    Administration of semelil (ANGIPARS™) has been successful in the treatment of diabetic foot ulcer. Considering the improvement of blood flow and anti-inflammatory effect that are attributed to this drug, we investigated its effect on cardiovascular performance in rabbits with isoproterenol (ISO) induced myocardial injury. Animal groups included: control group; ISO group, received ISO 50 mg/kg s.c. for two consecutive days; S1+ISO, S5+ISO and S10+ISO groups, received semelil 1, 5, and 10 mg/kg/day i.p. respectively, 30 min before ISO. On the 3(rd) day, electrocardiogram (ECG) and hemodynamic parameters were recorded; blood samples were taken and hearts were removed for lab investigations. ISO induced heart injury, ECG disturbance, raise of cardiac troponin I and significant decrease in LVSP (p<0.05), +dp/dt max (p<0.01), -dp/dt max (p<0.05) along with increase of LVEDP (p<0.01). Semelil had no significant effects on ECG and plasma cardiac troponin I. Impairment of +dp/dt max and -dp/dt max was significantly improved in S5+ISO and S10+ISO groups (P<0.05 versus ISO). In addition, LVSP and LVEDP was somewhat recovered in these groups, although semelil (1 mg/kg/day) to some extent exacerbated the myocardial lesions induced by ISO (P<0.05). Therefore, in stressful conditions, semelil may improve myocardial contractility; however, it may aggravate the severity of injury. PMID:26417221

  12. Effect of Cornus officinalis glycoside on adjuvant-induced arthritis in rats

    Institute of Scientific and Technical Information of China (English)

    SHI PING ZHAO; JIAN MIN LI; GUI XIANG FU; YONG ZHOU

    2006-01-01

    The aim of this study was to explore the effect of Cornus officinalis glucosides (COG) on adjuvant-induced arthritis in rats and its mechanism. Seventy-two rats were divided into six groups of normal, model, Dexasone (0. 125 mg/kg), high-dose COG (240 mg/kg), mid-dose COG (120 mg/kg),and low-dose COG (60 mg/kg). Rat arthritis was induced by injection of Freund's complete adjuvant in the hind paws. All treatment started from the day the arthritis was induced. The edema degree of the adjuvant injection location was determined on days 1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 23 and the opposite side was observed on days 11, 13, 15, 17, 20, 23 after the injection of adjuvant. All rats were sacrificed on day 24 after the injection of adjuvant for microscopic examination of the ankle, and for the study of the immunological molecular mechanism. The results showed that the COG significantly suppressed both the primary and secondary edema, improved pathological injuries of adjuvant arthritis (AA)rat ankles, significantly suppressed the proliferation of T lymphocytes and DTH reaction. It significantly suppressed IL-1, IL-6 and TNF-α production from peritoneal macrophages and PGE2 in plasma. In conclusion, the Cornus officinalis glucosides (COG) is able to prevent and cure the rat adjuvant-induced arthritis, and can suppress the production of pro-inflammatory cytokine IL-1, IL-6, TNF-α and PGE2.

  13. Pathology and biology of radiation-induced cardiac disease

    Science.gov (United States)

    Tapio, Soile

    2016-01-01

    Heart disease is the leading global cause of death. The risk for this disease is significantly increased in populations exposed to ionizing radiation, but the mechanisms are not fully elucidated yet. This review aims to gather and discuss the latest data about pathological and biological consequences in the radiation-exposed heart in a comprehensive manner. A better understanding of the molecular and cellular mechanisms underlying radiation-induced damage in heart tissue and cardiac vasculature will provide novel targets for therapeutic interventions. These may be valuable for individuals clinically or occupationally exposed to varying doses of ionizing radiation. PMID:27422929

  14. Secoisolariciresinol Diglucoside Abrogates Oxidative Stress-Induced Damage in Cardiac Iron Overload Condition

    OpenAIRE

    Stephanie Puukila; Sean Bryan; Anna Laakso; Jessica Abdel-Malak; Carli Gurney; Adrian Agostino; Adriane Belló-Klein; Kailash Prasad; Neelam Khaper

    2015-01-01

    Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG), a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and ...

  15. Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies.

    Science.gov (United States)

    L'Ecuyer, T; Horenstein, M S; Thomas, R; Vander Heide, R

    2001-11-01

    Anthracyclines are effective antitumor agents whose chief limitation has been cardiotoxicity directly related to free radical production. Therefore, strategies designed to selectively overexpress antioxidant proteins in the heart could protect against drug-induced toxicity and allow higher doses of chemotherapy. However, to date an adequate cardiac model system that is susceptible to anthracycline injury and can express foreign genes in a controlled fashion has been lacking. Developing a cardiac model system would permit examination of the relationship between the expression level of a potentially protective foreign gene and the degree of protection from injury. In this study we have examined the potential of the H9C2 rat cardiac myocyte cell line in this regard. H9C2 cells differentiate in a reproducible fashion, as shown by progressive increases in muscle tropomyosin-expressing cells, the organization of this thin filament protein, and the percentage of muscle cells contained within myotubes. Exposure of this cell line to the anthracycline doxorubicin produces cell injury as indicated by release of the intracellular enzyme lactate dehydrogenase into the culture medium. This injury is preceded by generation of reactive oxygen species, indicated by fluorescence after loading with carboxy-dichlorodihydrofluorescein diacetate. Stable transfection of H9C2 cells with a plasmid producing a tetracycline transactivator protein allows foreign genes to be expressed at a level tightly controlled by the concentration of tetracycline in the culture medium. Since H9C2 cells differentiate, can be injured by anthracycline exposure, and can express foreign genes at controllable levels, this is a suitable system in which to design genetic approaches to prevent this important clinical problem. PMID:11708868

  16. Cardiac-specific knockout of ETA receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction

    Institute of Scientific and Technical Information of China (English)

    Yingmei Zhang; Linlin Li; Yinan Hua; Jennifer M. Nunn; Feng Dong; Masashi Yanagisawa; Jun Ren

    2012-01-01

    Cold exposure is associated with oxidative stress and cardiac dysfunction.The endothelin (ET) system,which plays a key role in myocardial homeostasis,may participate in cold exposure-induced cardiovascular dysfunction.This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses.Wild-type (WT) and ETA receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4℃) environment for 2 and 5 weeks prior to evaluation of cardiac geometry,contractile,and intracellular Ca2+ properties.Levels of the temperature sensor transient receptor potential vanlllold (TRPV1),mitochondrlal proteins for biogenesis and oxidative phosphorylatlon,Including UCP2,HSP90,and PGC1α were evaluated.Cold stress triggered cardiac hypertrophy,depressed myocardial contractile capacity,including fractional shortening,peak shortening,and maximal velocity of shortening/relengthening,reduced intracellular Ca2+ release,prolonged intracellular Ca2+ decay and relengthening duration,generation of ROS and superoxide,as well as apoptosls,the effects of which were blunted by ETAKO.Western blotting revealed downregulated TRPV1 and PGC1α as well as upregulated UCP2 and activation of GSK3β,GATA4,and CREB in cold-stressed WT mouse hearts,which were obliterated by ETAKO.Levels of HSP90,an essential regulator for thermotolerance,were unchanged.The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepino mimicked cold stress- or ET-1-induced cardiac anomalies.The GSK3β Inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation.These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrlal function.

  17. Low energy electron induced cytosine base release in 2′-deoxycytidine-3′-monophosphate via glycosidic bond cleavage: A time-dependent wavepacket study

    International Nuclear Information System (INIS)

    Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2′-deoxycytidine-3′-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3′ C–O bond cleavage from the lowest π* shape resonance in energy region * orbital of the base to the σ* orbital of the glycosidic N–C bond. In addition, the metastable state formed after impinging LEE (0–1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N–C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ∼35–55 fs. Comparison of salient features of the two dissociation events, i.e., 3′ C–O single strand break and glycosidic N–C bond cleavage in 3′-dCMPH molecule are also provided

  18. Angiotensin II Induced Cardiac Dysfunction on a Chip.

    Science.gov (United States)

    Horton, Renita E; Yadid, Moran; McCain, Megan L; Sheehy, Sean P; Pasqualini, Francesco S; Park, Sung-Jin; Cho, Alexander; Campbell, Patrick; Parker, Kevin Kit

    2016-01-01

    In vitro disease models offer the ability to study specific systemic features in isolation to better understand underlying mechanisms that lead to dysfunction. Here, we present a cardiac dysfunction model using angiotensin II (ANG II) to elicit pathological responses in a heart-on-a-chip platform that recapitulates native laminar cardiac tissue structure. Our platform, composed of arrays of muscular thin films (MTF), allows for functional comparisons of healthy and diseased tissues by tracking film deflections resulting from contracting tissues. To test our model, we measured gene expression profiles, morphological remodeling, calcium transients, and contractile stress generation in response to ANG II exposure and compared against previous experimental and clinical results. We found that ANG II induced pathological gene expression profiles including over-expression of natriuretic peptide B, Rho GTPase 1, and T-type calcium channels. ANG II exposure also increased proarrhythmic early after depolarization events and significantly reduced peak systolic stresses. Although ANG II has been shown to induce structural remodeling, we control tissue architecture via microcontact printing, and show pathological genetic profiles and functional impairment precede significant morphological changes. We assert that our in vitro model is a useful tool for evaluating tissue health and can serve as a platform for studying disease mechanisms and identifying novel therapeutics.

  19. Angiotensin II Induced Cardiac Dysfunction on a Chip.

    Directory of Open Access Journals (Sweden)

    Renita E Horton

    Full Text Available In vitro disease models offer the ability to study specific systemic features in isolation to better understand underlying mechanisms that lead to dysfunction. Here, we present a cardiac dysfunction model using angiotensin II (ANG II to elicit pathological responses in a heart-on-a-chip platform that recapitulates native laminar cardiac tissue structure. Our platform, composed of arrays of muscular thin films (MTF, allows for functional comparisons of healthy and diseased tissues by tracking film deflections resulting from contracting tissues. To test our model, we measured gene expression profiles, morphological remodeling, calcium transients, and contractile stress generation in response to ANG II exposure and compared against previous experimental and clinical results. We found that ANG II induced pathological gene expression profiles including over-expression of natriuretic peptide B, Rho GTPase 1, and T-type calcium channels. ANG II exposure also increased proarrhythmic early after depolarization events and significantly reduced peak systolic stresses. Although ANG II has been shown to induce structural remodeling, we control tissue architecture via microcontact printing, and show pathological genetic profiles and functional impairment precede significant morphological changes. We assert that our in vitro model is a useful tool for evaluating tissue health and can serve as a platform for studying disease mechanisms and identifying novel therapeutics.

  20. Protective effect of oleanolic acid on oxidative injury and cellular abnormalities in doxorubicin induced cardiac toxicity in rats.

    Science.gov (United States)

    Goyal, Sameer N; Mahajan, Umesh B; Chandrayan, Govind; Kumawat, Vivek S; Kamble, Sarika; Patil, Pradip; Agrawal, Yogeeta O; Patil, Chandragouda R; Ojha, Shreesh

    2016-01-01

    The prevention of doxorubicin (Dox) induced cardiotoxicity may be co-operative to recover future Dox treatment. The aim of this study was to explore the cardioprotective effects of oleanolic acid (OA), an antioxidant agent, on Dox induced cardiotoxicity. OA is a triterpenoid compound, which exist widely in plant kingdom in free acid form or as a glycosidic triterpenoids saponins. Cardiotoxicity was induced in Wistar rats with single intravenous injection of doxorubicin at dose of 67.75 mg/kg i.v for 48 hrs. At 12 hrs of interval following Dox administration the cardioprotective effect of OA (1.5 mg/kg, i.v.) and Amifostine (AMF) (90 mg/kg i.v., single dose prior 30 min) were evaluated. Induction of cardiotoxicity was confirmed by increase in systolic, diastolic, mean arterial pressures, maximal positive rate of developed left ventricular pressure (+LVdP/dtmax, an indicator of myocardial contraction), maximal negative rate of developed left ventricular pressure (-LVdP/dtmax, a meter of myocardial relaxation) and an increase in left ventricular end-diastolic pressure (LVEDP, a marker of pre-load). Cardiac markers in such as CK-MB, LDH and alterations in ECG. Dox administration showed alteration in Biochemical parameters and endogenous antioxidants. Administration of OA Showed maximal protection against Dox induced cardiac toxicity as observed by reduction in blood pressure, prevention of left ventricular function and attenuation of biochemical and antioxidant parameters. Based on the findings, its concluded that OA can be used as an adjuvant with Dox therapy in treating cancers. PMID:27069540

  1. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Nan Cao; Bin Wei; Liu Wang; Ying Jin; Huang-Tian Yang; Zumei Liu; Zhongyan Chen; Jia Wang; Taotao Chen; Xiaoyang Zhao; Yu Ma; Lianju Qin; Jiuhong Kang

    2012-01-01

    Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases,drug screening and potential autologous cardiac regeneration.However,their application is hampered by inefficient cardiac differentiation,high interline variability,and poor maturation of iPSC-derived cardiomyoeytes (iPS-CMs).To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms,we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential.We then optimized the treatment conditions and demonstrated that differentiation day 2-6,a period for the specification of cardiac progenitor cells (CPCs),was a critical time for AA to take effect.This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers.Noteworthily,AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs.Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by promoting collagen synthesis.In addition,AA-induced cardiomyocytes showed better sareomerie organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations.These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply,universally,and efficiently.These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells.

  2. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin

    OpenAIRE

    Zhang, Shujuan; Feng ZHANG; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-01-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sym...

  3. INHALATION OF OZONE AND DIESEL EXHAUST PARTICLES (DEP) INDUCES ACUTE AND REVERSIBLE CARDIAC GENE EXPRESSION CHANGES

    Science.gov (United States)

    We have recently shown that episodic but not acute exposure to ozone or DEP induces vascular effects that are associated with the loss of cardiac mitochondrial phospholipid fatty acids (DEP 2.0 mg/m3 > ozone, 0.4 ppm). In this study we determined ozone and DEP-induced cardiac gen...

  4. Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture

    Science.gov (United States)

    Borek, Bartłomiej; Shajahan, T. K.; Gabriels, James; Hodge, Alex; Glass, Leon; Shrier, Alvin

    2012-09-01

    Pacemaker interactions can lead to complex wave dynamics seen in certain types of cardiac arrhythmias. We use experimental and mathematical models of pacemakers in heterogeneous excitable media to investigate how pacemaker interactions can be a mechanism for wave break and reentrant wave dynamics. Embryonic chick ventricular cells are cultured invitro so as to create a dominant central pacemaker site that entrains other pacemakers in the medium. Exposure of those cultures to a potassium channel blocker, E-4031, leads to emergence of peripheral pacemakers that compete with each other and with the central pacemaker. Waves emitted by faster pacemakers break up over the slower pacemaker to form reentrant waves. Similar dynamics are observed in a modified FitzHugh-Nagumo model of heterogeneous excitable media with two distinct sites of pacemaking. These findings elucidate a mechanism of pacemaker-induced reentry in excitable media.

  5. Montelukast attenuates lipopolysaccharide-induced cardiac injury in rats.

    Science.gov (United States)

    Khodir, A E; Ghoneim, H A; Rahim, M A; Suddek, G M

    2016-04-01

    This study investigates the possible protective effects of montelukast (MNT) against lipopolysaccharide (LPS)-induced cardiac injury, in comparison to dexamethasone (DEX), a standard anti-inflammatory. Male Sprague Dawley rats (160-180 g) were assigned to five groups (n = 8/group): (1) control; (2) LPS (10 mg/kg, intraperitoneal (i.p.)); (3) LPS + MNT (10 mg/kg, per os (p.o.)); (4) LPS + MNT (20 mg/kg, p.o.); and (5) LPS + DEX (1 mg/kg, i.p.). Twenty-four hours after LPS injection, heart/body weight (BW) ratio and percent survival of rats were determined. Serum total protein, creatine kinase muscle/brain (CK-MB), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activities were measured. Heart samples were taken for histological assessment and for determination of malondialdehyde (MDA) and glutathione (GSH) contents. Cardiac tumor necrosis factor α (TNF-α) expression was evaluated immunohistochemically. LPS significantly increased heart/BW ratio, serum CK-MB, ALP, and LDH activities and decreased percent survival and serum total protein levels. MDA content increased in heart tissues with a concomitant reduction in GSH content. Immunohistochemical staining of heart specimens from LPS-treated rats revealed high expression of TNF-α. MNT significantly reduced percent mortality and suppressed the release of inflammatory and oxidative stress markers when compared with LPS group. Additionally, MNT effectively preserved tissue morphology as evidenced by histological evaluation. MNT (20 mg/kg) was more effective in alleviating LPS-induced heart injury when compared with both MNT (10 mg/kg) and DEX (1 mg/kg), as evidenced by decrease in positive staining by TNF-α immunohistochemically, decrease MDA, and increase GSH content in heart tissue. This study demonstrates that MNT might have cardioprotective effects against the inflammatory process during endotoxemia. This effect can be attributed to its antioxidant and/or anti-inflammatory properties. PMID:26089034

  6. Herbal Supplement Ameliorates Cardiac Hypertrophy in Rats with CCl4-Induced Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Ping-Chun Li

    2012-01-01

    Full Text Available We used the carbon tetrachloride (CCl4 induced liver cirrhosis model to test the molecular mechanism of action involved in cirrhosis-associated cardiac hypertrophy and the effectiveness of Ocimum gratissimum extract (OGE and silymarin against cardiac hypertrophy. We treated male wistar rats with CCl4 and either OGE (0.02 g/kg B.W. or 0.04 g/kg B.W. or silymarin (0.2 g/kg B.W.. Cardiac eccentric hypertrophy was induced by CCl4 along with cirrhosis and increased expression of cardiac hypertrophy related genes NFAT, TAGA4, and NBP, and the interleukin-6 (IL-6 signaling pathway related genes MEK5, ERK5, JAK, and STAT3. OGE or silymarin co-treatment attenuated CCl4-induced cardiac abnormalities, and lowered expression of genes which were elevated by this hepatotoxin. Our results suggest that the IL-6 signaling pathway may be related to CCl4-induced cardiac hypertrophy. OGE and silymarin were able to lower liver fibrosis, which reduces the chance of cardiac hypertrophy perhaps by lowering the expressions of IL-6 signaling pathway related genes. We conclude that treatment of cirrhosis using herbal supplements is a viable option for protecting cardiac tissues against cirrhosis-related cardiac hypertrophy.

  7. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    OpenAIRE

    Jessica Jen-Chu Wang; Christoph Rau; Rozeta Avetisyan; Shuxun Ren; Romay, Milagros C.; Gabriel Stolin; Ke Wei Gong; Yibin Wang; Lusis, Aldons J.

    2016-01-01

    We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with ...

  8. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells

    Science.gov (United States)

    Lee, Hyunjung; Park, Jinyoung; Kim, Eunice EunKyeong; Yoo, Young Sook; Song, Eun Joo

    2016-01-01

    The Ubiquitin proteasome system (UPS) plays roles in protein degradation, cell cycle control, and growth and inflammatory cell signaling. Dysfunction of UPS in cardiac diseases has been seen in many studies. Cholesterol acts as an inducer of cardiac hypertrophy. In this study, the effect of proteasome inhibitors on the cholesterol-induced hypertrophic growth in H9c2 cells is examined in order to observe whether UPS is involved in cardiac hypertrophy. The treatment of proteasome inhibitors MG132 and Bortezomib markedly reduced cellular surface area and mRNA expression of β-MHC in cholesterol-induced cardiac hypertrophy. In addition, activated AKT and ERK were significantly attenuated by MG132 and Bortezomib in cholesterol-induced cardiac hypertrophy. We demonstrated that cholesterol-induced cardiac hypertrophy was suppressed by proteasome inhibitors. Thus, regulatory mechanism of cholesterol-induced cardiac hypertrophy by proteasome inhibitors may provide a new therapeutic strategy to prevent the progression of heart failure. [BMB Reports 2016; 49(5): 270-275] PMID:26592933

  9. Steroidal and Nonsteroidal Mineralocorticoid Receptor Antagonists Cause Differential Cardiac Gene Expression in Pressure Overload-induced Cardiac Hypertrophy.

    Science.gov (United States)

    Grune, Jana; Benz, Verena; Brix, Sarah; Salatzki, Janek; Blumrich, Annelie; Höft, Beata; Klopfleisch, Robert; Foryst-Ludwig, Anna; Kolkhof, Peter; Kintscher, Ulrich

    2016-05-01

    Pharmacological blockade of mineralocorticoid receptors (MR) is known as an efficacious therapy in chronic heart failure. Therapy with steroidal MR antagonists such as spironolactone or eplerenone (EPL) is often limited because of side effects. Recently, a new highly selective and potent, nonsteroidal MR antagonist, finerenone (FIN), has been developed. To investigate the effects of FIN on pressure-induced cardiac hypertrophy, the transverse aortic constriction (TAC) model was used in C57BL/6 mice treated with FIN (10 mg·kg·d), EPL (200 mg·kg·d) or vehicle (VEH). First, we analyzed cardiac gene expression 4 weeks after TAC using a pathway-focused quantitative polymerase chain reaction array. FIN caused a distinct cardiac gene expression profile compared to VEH and EPL, including differential expression of BNP (brain natriuretic peptide) and Tnnt2 (troponin T type 2). FIN treatment led to a significant reduction of TAC-induced left ventricular (LV) wall thickening assessed by echocardiography. In accordance, FIN-treated mice showed a significant lower increase of calculated left ventricular mass compared with VEH- and EPL-treated mice (FIN: 28.4 ± 3.7 mg; EPL: 38.4 ± 4.3 mg; VEH: 39.3 ± 3.1 mg; P < 0.05). These data show beneficial effects of nonsteroidal MR antagonism by FIN on left ventricular mass development in pressure overload associated with a distinct cardiac gene expression profile. PMID:26859196

  10. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes.

    Science.gov (United States)

    Cuadrado, Irene; Castejon, Borja; Martin, Ana M; Saura, Marta; Reventun-Torralba, Paula; Zamorano, Jose Luis; Zaragoza, Carlos

    2016-01-01

    Inhibition of Extracellular Matrix degradation by nitric oxide (NO) induces cardiac protection against coronary ischemia/reperfusion (IR). Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) stimulates enzymatic activation of matrix metalloproteinases (MMPs) in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN) in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2) knockout (KO) mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO) in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9), in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF). NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6). The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5), or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR. PMID:27649573

  11. Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure

    NARCIS (Netherlands)

    Westenbrink, B. Daan; Ruifrok, Willem-Peter T.; Voors, Adriaan A.; Tilton, Ronald G.; van Veldhuisen, Dirk J.; Schoemaker, Regien G.; van Gilst, Wiek H.; de Boer, Rudolf A.

    2010-01-01

    We intended to delineate the mechanisms of erythropoietin (EPO)-induced cardiac vascular endothelial growth factor (VEGF) production and to establish if VEGF is crucial for EPO-induced improvement of cardiac performance. The effects of EPO on VEGF expression were studied in cultured cardiac cells an

  12. Drug-Induced Rhabdomyolysis with Elevated Cardiac Troponin T

    DEFF Research Database (Denmark)

    Egholm, Gro; Pareek, Manan

    2015-01-01

    myocardial injury. This case report describes a 48-year-old woman, who, two years after cardiac transplantation, presented with rhabdomyolysis. During the course of the disease, her troponin T level was elevated on repeated occasions, but other definitive evidence of myocardial injury was not found......The essential role of cardiac troponin in the diagnosis of acute myocardial infarction has led to the development of high-sensitivity assays, which are able to detect very small amounts of myocardial necrosis. The high-sensitivity cardiac troponin T assay, however, is not entirely specific for....... Asymptomatic cardiac troponin T elevations during rhabdomyolysis may be due to either cardiac involvement or false positive results stemming from skeletal muscle injury....

  13. Prevention of Pazopanib-Induced Prolonged Cardiac Repolarization and Proarrhythmic Effects

    OpenAIRE

    Tulay Akman; Oytun Erbas; Levent Akman; Yilmaz, Ahmet U.

    2014-01-01

    Background: Pazopanib (PZP) may induce prolonged cardiac repolarization and proarrhythmic effects, similarly to other tyrosine kinase inhibitors. Objectives: To demonstrate PZP-induced prolonged cardiac repolarization and proarrhythmic electrophysiological effects and to investigate possible preventive effects of metoprolol and diltiazem on ECG changes (prolonged QT) in an experimental rat model. Methods: Twenty-four Sprague-Dawley adult male rats were randomly assigned to 4 groups (n = 6...

  14. Apocynin attenuates oxidative stress and cardiac fibrosis in angiotensin Ⅱ-induced cardiac diastolic dysfunction in mice

    Institute of Scientific and Technical Information of China (English)

    Yu-qiong LI; Xiao-bo LI; Shu-jie GUO; Shao-li CHU; Ping-jin GAO; Ding-liang ZHU; Wen-quan NIU

    2013-01-01

    Aim:To investigate whether apocynin,a NADPH oxidase inhibitor,produced cardioproteictive effects in Ang Ⅱ-induced hypertensive mice,and to elucidate the underlying mechanisms.Methods:C57BL/6 mice were subcutaneously infused Ang Ⅱ for 4 weeks to mimic cardiac remodeling and fibrosis.Concomitantly the mice were administered apocynin (100 mg· kg-1·d-1) or/and the aldosterone receptor blocker eplerenone (200 mg·kg-1d-1) via gavage for 4 weeks.Systolic blood pressure (SBP) and heart rate were measured,and transthoracic echocardiography was performed.For in vitro study,cardiac fibroblasts were treated with Ang Ⅱ (10 7 mol/L) in the presence of apocynin (105 mol/L) or/and eplerenone (105 mol/L).Immunohistochemistry and Western blotting were used to quantify the expression levels of NADPH oxidase and osteopontin (OPN) proteins in the cells.Results:Both apocynin and eplerenone significantly decreased SBP,and markedly improved diastolic dysfunction in Ang Ⅱ-induced hypertensive mice,accompanied with ameliorated oxidative stress and cardiac fibrosis.In the Ang Ⅱ-treated cardiac fibroblasts,the expression levels of NOX4 and OPN proteins were markedly upregulated.Both Apocynin and eplerenone significantly suppressed the increased expression levels of NOX4 and OPN proteins in the Ang Ⅱ-treated cells.In all the experiments,apocynin and eplerenone produced comparable effects.Co-administration of the two agents did not produce synergic effects.Conclusion:Apocynin produces cardioproteictive effects comparable to those of eplerenone.The beneficial effects of apocynin on myocardial oxidative stress and cardiac fibrosis might be mediated partly through a pathway involving NADPH oxidase and OPN.

  15. Sinoatrial node dysfunction induces cardiac arrhythmias in diabetic mice

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Speerschneider, Tobias; Winther, Sine V;

    2014-01-01

    recovery time was prolonged in diabetic mice. Adrenoreceptor stimulation increased heart rate in all mice and elicited cardiac arrhythmias in db/db mice only. The arrhythmias emanated from the SAN and were characterized by large RR fluctuations. Moreover, nerve density was reduced in the SAN region.......ConclusionsEnhanced systolic function and reduced diastolic function indicates early ventricular remodeling in obese and diabetic mice. They have SAN dysfunction, and adrenoreceptor stimulation triggers cardiac arrhythmia originating in the SAN. Thus, dysfunction of the intrinsic cardiac pacemaker and remodeling...

  16. Anthracycline-induced cardiomyopathy: favourable effects of cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Ahlehoff, Ole; Galløe, Anders M; Hansen, Peter R

    2010-01-01

    We report a case of severe refractory congestive heart failure after anthracycline chemotherapy in a patient with a narrow QRS interval on the electrocardiogram and echocardiographic evidence of left ventricular dyssynchrony, where cardiac resynchronization therapy resulted in normalization of le...

  17. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana.

    Science.gov (United States)

    Yang, Yongheng; Huang, Suzhen; Han, Yulin; Yuan, Haiyan; Gu, Chunsun; Wang, Zhongwei

    2015-01-01

    Plant growth and secondary metabolism are commonly regulated by external cues such as light, temperature and water availability. In this study, the influences of low and high temperatures, dehydration, photoperiods, and different growing stages on the changes of steviol glycosides (SGs) contents and transcription levels of fifteen genes involved in SGs biosynthesis of Stevia rebaudiana Bertoni were examined using HPLC and RT-PCR. The observations showed that the transcript levels of all the fifteen genes were maximum under 25 °C treatment, and the transcription of SrDXS, SrDXR, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI, SrGGDPS, SrCPPS1, SrUGT85C2 and SrUGT76G1 were restrained both in low temperature (15 °C) and high temperature (35 °C). Most genes in SGs biosynthesis pathway exhibited down-regulation in dehydration. To elucidate the effect of photoperiods, the plants were treated by different simulated photoperiods (8 L/16 D, 1 0L/14 D, 14 L/10 D and 16 L/8 D), but no significant transcription changes were observed. In the study of growing stages, there were evident changes of SGs contents, and the transcript levels of all the fifteen genes were minimal in fast growing period, and exhibited evident increase both in flower-bud appearing stage and flowering stage. The obtained results strongly suggest that the effect of environmental cues on steviol glycosides contents and transcription of corresponding biosynthetic genes in S. rebaudiana is significant. It is worth to study deeply. PMID:25500454

  18. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana.

    Science.gov (United States)

    Yang, Yongheng; Huang, Suzhen; Han, Yulin; Yuan, Haiyan; Gu, Chunsun; Wang, Zhongwei

    2015-01-01

    Plant growth and secondary metabolism are commonly regulated by external cues such as light, temperature and water availability. In this study, the influences of low and high temperatures, dehydration, photoperiods, and different growing stages on the changes of steviol glycosides (SGs) contents and transcription levels of fifteen genes involved in SGs biosynthesis of Stevia rebaudiana Bertoni were examined using HPLC and RT-PCR. The observations showed that the transcript levels of all the fifteen genes were maximum under 25 °C treatment, and the transcription of SrDXS, SrDXR, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI, SrGGDPS, SrCPPS1, SrUGT85C2 and SrUGT76G1 were restrained both in low temperature (15 °C) and high temperature (35 °C). Most genes in SGs biosynthesis pathway exhibited down-regulation in dehydration. To elucidate the effect of photoperiods, the plants were treated by different simulated photoperiods (8 L/16 D, 1 0L/14 D, 14 L/10 D and 16 L/8 D), but no significant transcription changes were observed. In the study of growing stages, there were evident changes of SGs contents, and the transcript levels of all the fifteen genes were minimal in fast growing period, and exhibited evident increase both in flower-bud appearing stage and flowering stage. The obtained results strongly suggest that the effect of environmental cues on steviol glycosides contents and transcription of corresponding biosynthetic genes in S. rebaudiana is significant. It is worth to study deeply.

  19. Identification of genes regulated during mechanical load-induced cardiac hypertrophy

    Science.gov (United States)

    Johnatty, S. E.; Dyck, J. R.; Michael, L. H.; Olson, E. N.; Abdellatif, M.; Schneider, M. (Principal Investigator)

    2000-01-01

    Cardiac hypertrophy is associated with both adaptive and adverse changes in gene expression. To identify genes regulated by pressure overload, we performed suppressive subtractive hybridization between cDNA from the hearts of aortic-banded (7-day) and sham-operated mice. In parallel, we performed a subtraction between an adult and a neonatal heart, for the purpose of comparing different forms of cardiac hypertrophy. Sequencing more than 100 clones led to the identification of an array of functionally known (70%) and unknown genes (30%) that are upregulated during cardiac growth. At least nine of those genes were preferentially expressed in both the neonatal and pressure over-load hearts alike. Using Northern blot analysis to investigate whether some of the identified genes were upregulated in the load-independent calcineurin-induced cardiac hypertrophy mouse model, revealed its incomplete similarity with the former models of cardiac growth. Copyright 2000 Academic Press.

  20. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin.

    Science.gov (United States)

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-11-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  1. Expression profiling reveals differences in metabolic gene expression between exercise-induced cardiac effects and maladaptive cardiac hypertrophy

    DEFF Research Database (Denmark)

    Strøm, Claes C; Aplin, Mark; Ploug, Thorkil;

    2005-01-01

    by quantitative PCR. The exercise program resulted in cardiac hypertrophy without impaired cardiac function. Principal component analysis identified an exercise-induced change in gene expression that was distinct from the program observed in maladaptive hypertrophy. Statistical analysis identified 267 upregulated...... genes and 62 downregulated genes in response to exercise. Expression changes in genes encoding extracellular matrix proteins, cytoskeletal elements, signalling factors and ribosomal proteins mimicked changes previously described in maladaptive hypertrophy. Our most striking observation...... was that expression changes of genes involved in beta-oxidation of fatty acids and glucose metabolism differentiate adaptive from maladaptive hypertrophy. Direct comparison to maladaptive hypertrophy was enabled by quantitative PCR of key metabolic enzymes including uncoupling protein 2 (UCP2) and fatty acid...

  2. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation

    Institute of Scientific and Technical Information of China (English)

    Yong-nan FU; Han XIAO; Xiao-wei MA; Sheng-yang JIANG; Ming XU; You-yi ZHANG

    2011-01-01

    Aim: To identify the role of metformin in cardiac hypertrophy and investigate the possible mechanism underlying this effect.Methods: Wild type and AMPKα2 knockout (AMPKα2-/-) littermates were subjected to left ventricular pressure overload caused by evaluated using echocardiography and anatomic and histological methods. The antihypertrophic mechanism of metformin was analyzed using Western blotting.Results: Metformin significantly attenuated cardiac hypertrophy induced by pressure overload in wild type mice, but the antihypertrophic actions of metformin were ablated in AMPKx2-/- mice. Furthermore, metformin suppressed the phosphorylation of Akt/protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in response to pressure overload in wild type mice, but not in AMPKα2-/-mice.Conclusion: Long-term administration of metformin may attenuate cardiac hypertrophy induced by pressure overload in nondiabetic mice, and this attenuation is highly dependent on AMPK activation. These findings may provide a potential therapy for patients at risk of developing pathological cardiac hypertrophy.

  3. Electrically Induced Calcium Handling in Cardiac Progenitor Cells

    Science.gov (United States)

    Wagner, Mary B.

    2016-01-01

    For nearly a century, the heart was viewed as a terminally differentiated organ until the discovery of a resident population of cardiac stem cells known as cardiac progenitor cells (CPCs). It has been shown that the regenerative capacity of CPCs can be enhanced by ex vivo modification. Preconditioning CPCs could provide drastic improvements in cardiac structure and function; however, a systematic approach to determining a mechanistic basis for these modifications founded on the physiology of CPCs is lacking. We have identified a novel property of CPCs to respond to electrical stimulation by initiating intracellular Ca2+ oscillations. We used confocal microscopy and intracellular calcium imaging to determine the spatiotemporal properties of the Ca2+ signal and the key proteins involved in this process using pharmacological inhibition and confocal Ca2+ imaging. Our results provide valuable insights into mechanisms to enhance the therapeutic potential in stem cells and further our understanding of human CPC physiology.

  4. Graphene induces spontaneous cardiac differentiation in embryoid bodies

    Science.gov (United States)

    Ahadian, Samad; Zhou, Yuanshu; Yamada, Shukuyo; Estili, Mehdi; Liang, Xiaobin; Nakajima, Ken; Shiku, Hitoshi; Matsue, Tomokazu

    2016-03-01

    Graphene was embedded into the structure of mouse embryoid bodies (EBs) using the hanging drop technique. The inclusion of 0.2 mg per mL graphene in the EBs did not affect the viability of the stem cells. However, the graphene decreased the stem cell proliferation, probably by accelerating cell differentiation. The graphene also enhanced the mechanical properties and electrical conductivity of the EBs. Interestingly, the cardiac differentiation of the EB-graphene was significantly greater than that of the EBs at day 5 of culture, as confirmed by high-throughput gene analysis. Electrical stimulation (voltage, 4 V; frequency, 1 Hz; and duration, 10 ms for 2 continuous days) further enhanced the cardiac differentiation of the EBs, as demonstrated by analyses of the cardiac protein and gene expression and the beating activity of the EBs. Taken together, the results demonstrated that graphene played a major role in directing the cardiac differentiation of EBs, which has potential cell therapy and tissue regeneration applications.Graphene was embedded into the structure of mouse embryoid bodies (EBs) using the hanging drop technique. The inclusion of 0.2 mg per mL graphene in the EBs did not affect the viability of the stem cells. However, the graphene decreased the stem cell proliferation, probably by accelerating cell differentiation. The graphene also enhanced the mechanical properties and electrical conductivity of the EBs. Interestingly, the cardiac differentiation of the EB-graphene was significantly greater than that of the EBs at day 5 of culture, as confirmed by high-throughput gene analysis. Electrical stimulation (voltage, 4 V; frequency, 1 Hz; and duration, 10 ms for 2 continuous days) further enhanced the cardiac differentiation of the EBs, as demonstrated by analyses of the cardiac protein and gene expression and the beating activity of the EBs. Taken together, the results demonstrated that graphene played a major role in directing the cardiac

  5. Ameliorative role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Randhir; Krishan, Pawan

    2015-04-01

    Fibrates are peroxisome proliferator-activated receptor-α agonists and are clinically used for treatment of dyslipidemia and hypertriglyceridemia. Fenofibrate is reported as a cardioprotective agent in various models of cardiac dysfunction; however, limited literature is available regarding the role of gemfibrozil as a possible cardioprotective agent, especially in a non-obese model of cardiac remodelling. The present study investigated the role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats. Cardiac hypertrophy was induced by partial abdominal aortic constriction in rats and they survived for 4 weeks. The cardiac hypertrophy was assessed by measuring left ventricular weight to body weight ratio, left ventricular wall thickness, and protein and collagen content. The oxidative stress in the cardiac tissues was assessed by measuring thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The haematoxylin-eosin and picrosirius red staining was used to observe cardiomyocyte diameter and collagen deposition, respectively. Moreover, serum levels of cholesterol, high-density lipoproteins, triglycerides, and glucose were also measured. Gemfibrozil (30 mg/kg, p.o.) was administered since the first day of partial abdominal aortic constriction and continued for 4 weeks. The partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy are indicated by significant change in various parameters used in the present study that were ameliorated with gemfibrozil treatment in rats. No significant change in serum parameters was observed between various groups used in the present study. It is concluded that gemfibrozil ameliorates partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy and in rats. PMID:24905340

  6. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    OpenAIRE

    Damián Hernández; Rodney Millard; Priyadharshini Sivakumaran; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Helena Liang; Hung, Sandy S. C.; Alice Pébay; Shepherd, Robert K.; Gregory J Dusting; Lim, Shiang Y

    2016-01-01

    Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell...

  7. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  8. Quinovic acid glycosides purified fraction from Uncaria tomentosa induces cell death by apoptosis in the T24 human bladder cancer cell line.

    Science.gov (United States)

    Dietrich, Fabrícia; Kaiser, Samuel; Rockenbach, Liliana; Figueiró, Fabrício; Bergamin, Letícia Scussel; da Cunha, Fernanda Monte; Morrone, Fernanda Bueno; Ortega, George González; Battastini, Ana Maria Oliveira

    2014-05-01

    Bladder cancer is the second most prevalent malignancy in the genitourinary tract and remains a therapeutic challenge. In the search for new treatments, researchers have attempted to find compounds with low toxicity. With this goal in mind, Uncaria tomentosa is noteworthy because the bark and root of this species are widely used in traditional medicine and in adjuvant therapy for the treatment of numerous diseases. The objective of this study was to investigate the antitumor effect of one purified bioactive fraction of U.tomentosa bark on cell proliferation in two human bladder cancer cell lines, T24 and RT4. Quinovic acid glycosides purified fraction (QAPF) of U.tomentosa decreased the growth and viability of both T24 and RT4 cell lines. In T24 cells, QAPF induced apoptosis by activating caspase-3 and NF-κB. Further study showed that this fraction does not induce cell cycle arrest and does not alter PTEN and ERK levels. In conclusion, we demonstrated that QAPF of U.tomentosa has a potent inhibitory effect on the growth of human bladder cancer cell lines by inducing apoptosis through modulation of NF-κB, and we suggest that QAPF may become a potential therapeutic agent for the prevention and/or treatment of this cancer.

  9. Quinovic acid glycosides purified fraction from Uncaria tomentosa induces cell death by apoptosis in the T24 human bladder cancer cell line.

    Science.gov (United States)

    Dietrich, Fabrícia; Kaiser, Samuel; Rockenbach, Liliana; Figueiró, Fabrício; Bergamin, Letícia Scussel; da Cunha, Fernanda Monte; Morrone, Fernanda Bueno; Ortega, George González; Battastini, Ana Maria Oliveira

    2014-05-01

    Bladder cancer is the second most prevalent malignancy in the genitourinary tract and remains a therapeutic challenge. In the search for new treatments, researchers have attempted to find compounds with low toxicity. With this goal in mind, Uncaria tomentosa is noteworthy because the bark and root of this species are widely used in traditional medicine and in adjuvant therapy for the treatment of numerous diseases. The objective of this study was to investigate the antitumor effect of one purified bioactive fraction of U.tomentosa bark on cell proliferation in two human bladder cancer cell lines, T24 and RT4. Quinovic acid glycosides purified fraction (QAPF) of U.tomentosa decreased the growth and viability of both T24 and RT4 cell lines. In T24 cells, QAPF induced apoptosis by activating caspase-3 and NF-κB. Further study showed that this fraction does not induce cell cycle arrest and does not alter PTEN and ERK levels. In conclusion, we demonstrated that QAPF of U.tomentosa has a potent inhibitory effect on the growth of human bladder cancer cell lines by inducing apoptosis through modulation of NF-κB, and we suggest that QAPF may become a potential therapeutic agent for the prevention and/or treatment of this cancer. PMID:24607820

  10. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos.

    Science.gov (United States)

    Duan, Junchao; Yu, Yang; Li, Yang; Li, Yanbo; Liu, Hongcui; Jing, Li; Yang, Man; Wang, Ji; Li, Chunqi; Sun, Zhiwei

    2016-06-01

    The toxicity mechanism of nanoparticles on vertebrate cardiovascular system is still unclear, especially on the low-level exposure. This study was to explore the toxic effect and mechanisms of low-dose exposure of silica nanoparticles (SiNPs) on cardiac function in zebrafish embryos via the intravenous microinjection. The dosage of SiNPs was based on the no observed adverse effect level (NOAEL) of malformation assessment in zebrafish embryos. The mainly cardiac toxicity phenotypes induced by SiNPs were pericardial edema and bradycardia but had no effect on atrioventricular block. Using o-Dianisidine for erythrocyte staining, the cardiac output of zebrafish embryos was decreased in a dose-dependent manner. Microarray analysis and bioinformatics analysis were performed to screen the differential expression genes and possible pathway involved in cardiac function. SiNPs induced whole-embryo oxidative stress and neutrophil-mediated cardiac inflammation in Tg(mpo:GFP) zebrafish. Inflammatory cells were observed in atrium of SiNPs-treated zebrafish heart by histopathological examination. In addition, the expression of TNNT2 protein, a cardiac contraction marker in heart tissue had been down-regulated compared to control group using immunohistochemistry. Confirmed by qRT-PCR and western blot assays, results showed that SiNPs inhibited the calcium signaling pathway and cardiac muscle contraction via the down-regulated of related genes, such as ATPase-related genes (atp2a1l, atp1b2b, atp1a3b), calcium channel-related genes (cacna1ab, cacna1da) and the regulatory gene tnnc1a for cardiac troponin C. Moreover, the protein level of TNNT2 was decreased in a dose-dependent manner. For the first time, our results demonstrated that SiNPs induced cardiac dysfunction via the neutrophil-mediated cardiac inflammation and cardiac contraction in zebrafish embryos. PMID:26551753

  11. Diuretics Prevent Thiazolidinedione-Induced Cardiac Hypertrophy without Compromising Insulin-Sensitizing Effects in Mice

    Science.gov (United States)

    Chang, Cherng-Shyang; Tsai, Pei-Jane; Sung, Junne-Ming; Chen, Ju-Yi; Ho, Li-Chun; Pandya, Kumar; Maeda, Nobuyo; Tsai, Yau-Sheng

    2015-01-01

    Much concern has arisen regarding critical adverse effects of thiazolidinediones (TZDs), including rosiglitazone and pioglitazone, on cardiac tissue. Although TZD-induced cardiac hypertrophy (CH) has been attributed to an increase in plasma volume or a change in cardiac nutrient preference, causative roles have not been established. To test the hypothesis that volume expansion directly mediates rosiglitazone-induced CH, mice were fed a high-fat diet with rosiglitazone, and cardiac and metabolic consequences were examined. Rosiglitazone treatment induced volume expansion and CH in wild-type and PPARγ heterozygous knockout (Pparg+/−) mice, but not in mice defective for ligand binding (PpargP465L/+). Cotreatment with the diuretic furosemide in wild-type mice attenuated rosiglitazone-induced CH, hypertrophic gene reprogramming, cardiomyocyte apoptosis, hypertrophy-related signal activation, and left ventricular dysfunction. Similar changes were observed in mice treated with pioglitazone. The diuretics spironolactone and trichlormethiazide, but not amiloride, attenuated rosiglitazone effects on volume expansion and CH. Interestingly, expression of glucose and lipid metabolism genes in the heart was altered by rosiglitazone, but these changes were not attenuated by furosemide cotreatment. Importantly, rosiglitazone-mediated whole-body metabolic improvements were not affected by furosemide cotreatment. We conclude that releasing plasma volume reduces adverse effects of TZD-induced volume expansion and cardiac events without compromising TZD actions in metabolic switch in the heart and whole-body insulin sensitivity. PMID:24287404

  12. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    Science.gov (United States)

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis. PMID:26873969

  13. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy

    Directory of Open Access Journals (Sweden)

    Kandadi Machender R

    2012-11-01

    Full Text Available Abstract Background Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Methods Wild type (WT and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.. Cardiomyocyte contractile and intracellular Ca2+ properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. Results Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca2+ handling, the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. Conclusions Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca2+ anomalies, possibly through regulation of autophagy and mitochondrial function.

  14. Changes in cardiac glycoside receptor sites 86 rubidium uptake and intracellular sodium concentrations in the erythrocytes of patients receiving digoxin during the early phases of treatment of cardiac failure in regular rhythm and of atrial fibrillation

    International Nuclear Information System (INIS)

    Measurements of the binding of 12-α-[3H]-digoxin to the membranes of intact erythrocytes, erythrocytic 86Rb uptake and intraerythrocytic sodium concentrations have been made in the red cells of patients receiving digoxin in the short-term for atrial fibrillation or cardiac failure in regular rhythm. During the first few days of treatment [3H]-digoxin binding and 86Rb uptake fall and intraerythrocytic sodium concentrations rise. Subsequently parallel fluctuations occur in [3H]-digoxin binding and 86Rb uptake but not in intraerythrocytic sodium concentrations and the significance of the fluctuations is discussed. The values of all three measurements correlate significantly with the response of the heart in sinus rhythm as measured by QS2I. Plasma digoxin concentrations do not correlate with QS2I. (author)

  15. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin induced cardiac injury in mice

    Directory of Open Access Journals (Sweden)

    Yousif Nasser

    2011-10-01

    Full Text Available Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin induced cardiac toxicity. Toll-like receptors (TLRs are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p., left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+ and HeJ mutant (TLR4-/- treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α, Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN, in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p -/-; p -/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1, so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  16. Cardiac contraction induces discordant alternans and localized block

    Science.gov (United States)

    Radszuweit, M.; Alvarez-Lacalle, E.; Bär, M.; Echebarria, B.

    2015-02-01

    In this paper we use a simplified model of cardiac excitation-contraction coupling to study the effect of tissue deformation on the dynamics of alternans, i.e., alternations in the duration of the cardiac action potential, that occur at fast pacing rates and are known to be proarrhythmic. We show that small stretch-activated currents can produce large effects and cause a transition from in-phase to off-phase alternations (i.e., from concordant to discordant alternans) and to conduction blocks. We demonstrate numerically and analytically that this effect is the result of a generic change in the slope of the conduction velocity restitution curve due to electromechanical coupling. Thus, excitation-contraction coupling can potentially play a relevant role in the transition to reentry and fibrillation.

  17. Bcl10 mediates angiotensin II-induced cardiac damage and electrical remodeling.

    Science.gov (United States)

    Markó, Lajos; Henke, Norbert; Park, Joon-Keun; Spallek, Bastian; Qadri, Fatimunnisa; Balogh, András; Apel, Ingrid J; Oravecz-Wilson, Katherine I; Choi, Mira; Przybyl, Lukasz; Binger, Katrina J; Haase, Nadine; Wilck, Nicola; Heuser, Arnd; Fokuhl, Verena; Ruland, Jürgen; Lucas, Peter C; McAllister-Lucas, Linda M; Luft, Friedrich C; Dechend, Ralf; Müller, Dominik N

    2014-11-01

    Angiotensin (Ang) II is a potent mediator of both hypertension and cardiac damage; however, the mechanisms by which this occur remain unclear. B-cell lymphoma/leukemia 10 (Bcl10) is a member of the CBM signalosome, which links Ang II and nuclear factor-κB signaling. We hypothesized that Bcl10 is pivotal in the pathogenesis of Ang II-induced cardiac damage. Ang II infusion in mice lacking Bcl10 resulted in reduced cardiac fibrosis, less cellular infiltration, and improved arrhythmogenic electric remodeling, despite a similar degree of hypertension or cardiac hypertrophy. Adoptive transfer of bone marrow (BM), whereby Bcl10 knockout or wildtype BM was transferred to their opposite genotype recipients, revealed the dual importance of Bcl10 within both cardiac and immune cells. Loss of Bcl10 in cardiac cells resulted in reduced expression of genes important for the adhesion and recruitment of immune cells. In vitro experiments demonstrated that adhesion of monocytes to Ang II-treated endothelial cells also required Bcl10. Additionally, Bcl10 deficiency in macrophages reduced their intrinsic migratory ability. To address the role of BM-derived fibroblasts in the formation of cardiac fibrosis, we explored whether Bcl10 is also important for the infiltration of BM-derived (myo)fibroblasts into the heart. The transfer of green fluorescent protein positive wildtype BM into Bcl10 knockout recipient mice revealed a reduced number of noncardiac (myo)fibroblasts compared with those wildtype recipients. Our results demonstrate the significant role of Bcl10 in multiple cell types important for the generation of Ang II-induced cardiac damage and electric remodeling and may provide a new avenue for therapeutic intervention.

  18. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice

    Institute of Scientific and Technical Information of China (English)

    Jian Wang; Dawei Zhan; Lagabaiyila Zha; Yang Cao; Zhenhua Li; Xuan Cheng; Youyi Zhang; XiaoYang; Yao Song; Yan Zhang; Han Xiao; Qiang Sun; Ning Hou; Shuilong Guo; Youliang Wang; Kaiji Fan

    2012-01-01

    Recent studies have begun to reveal critical roles of microRNAs(miRNAs)in the pathogenesis of cardiac hypertrophy and dysfunction.In this study,we tested whether a transforming growth factor-β(TGF-β)-regulated miRNA played a pivotal role in the development of cardiac hypertrophy and heart failure(HF).We observed that miR-27b was upregulated in hearts of cardiomyocyte-specific Smad4 knockout mice,which developed cardiac hypertrophy.In vitro experiments showed that the miR-27b expression could be inhibited by TGF-β1 and that its overexpression promoted hypertrophic cell growth,while the miR-27b suppression led to inhibition of the hypertrophic cell growth caused by phenylephrine(PE)treatment.Furthermore,the analysis of transgenic mice with cardiomyocyte-specific overexpression of miR-27b revealed that miR-27b overexpression was sufficient to induce cardiac hypertrophy and dysfunction.We validated the peroxisome proliferator-activated receptor-γ(PPAR-γ)as a direct target of miR-27b in cardiomyocyte.Consistently,the miR-27b transgenic mice displayed significantly lower levels of PPAR-γ than the control mice.Furthermore,in vivo silencing of miR-27b using a specific antagomir in a pressure-overload-induced mouse model of HF increased cardiac PPAR-γ expression,attenuated cardiac hypertrophy and dysfunction.The results of our study demonstrate that TGF-β1-regulated miR-27b is involved in the regulation of cardiac hypertrophy,and validate miR-27b as an efficient therapeutic target for cardiac diseases.

  19. Attenuated muscle metaboreflex-induced increases in cardiac function in hypertension.

    Science.gov (United States)

    Sala-Mercado, Javier A; Spranger, Marty D; Abu-Hamdah, Rania; Kaur, Jasdeep; Coutsos, Matthew; Stayer, Douglas; Augustyniak, Robert A; O'Leary, Donal S

    2013-11-15

    Sympathoactivation may be excessive during exercise in subjects with hypertension, leading to increased susceptibility to adverse cardiovascular events, including arrhythmias, infarction, stroke, and sudden cardiac death. The muscle metaboreflex is a powerful cardiovascular reflex capable of eliciting marked increases in sympathetic activity during exercise. We used conscious, chronically instrumented dogs trained to run on a motor-driven treadmill to investigate the effects of hypertension on the mechanisms of the muscle metaboreflex. Experiments were performed before and 30.9 ± 4.2 days after induction of hypertension, which was induced via partial, unilateral renal artery occlusion. After induction of hypertension, resting mean arterial pressure was significantly elevated from 98.2 ± 2.6 to 141.9 ± 7.4 mmHg. The hypertension was caused by elevated total peripheral resistance. Although cardiac output was not significantly different at rest or during exercise after induction of hypertension, the rise in cardiac output with muscle metaboreflex activation was significantly reduced in hypertension. Metaboreflex-induced increases in left ventricular function were also depressed. These attenuated cardiac responses caused a smaller metaboreflex-induced rise in mean arterial pressure. We conclude that the ability of the muscle metaboreflex to elicit increases in cardiac function is impaired in hypertension, which may contribute to exercise intolerance.

  20. The effect of Allium sativum on ischemic preconditioning and ischemia reperfusion induced cardiac injury

    Directory of Open Access Journals (Sweden)

    Bhatti Rajbir

    2008-01-01

    Full Text Available In the present study, the effect of garlic (Allium sativum extract on ischemic preconditioning and ischemia-reperfusion induced cardiac injury has been studied. Hearts from adult albino rats of Wistar strain were isolated and immediately mounted on Langendorff′s apparatus for retrograde perfusion. After 15 minutes of stabilization, the hearts were subjected to four episodes of 5 min ischemia, interspersed with 5 min reperfusion (to complete the protocol of ischemic preconditioning, 30 min global ischemia, followed by 120 min of reperfusion. In the control and treated groups, respective interventions were given instead of ischemic preconditioning. The magnitude of cardiac injury was quantified by measuring Lactate Dehydrogenase and creatine kinase concentration in the coronary effluent and myocardial infarct size by macroscopic volume method. Our study demonstrates that garlic extract exaggerates the cardio protection offered by ischemic preconditioning and per se treatment with garlic extract also protects the myocardium against ischemia reperfusion induced cardiac injury.

  1. Protective Role of Ternatin Anthocyanins and Quercetin Glycosides from Butterfly Pea (Clitoria ternatea Leguminosae) Blue Flower Petals against Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells.

    Science.gov (United States)

    Nair, Vimal; Bang, Woo Young; Schreckinger, Elisa; Andarwulan, Nuri; Cisneros-Zevallos, Luis

    2015-07-22

    Twelve phenolic metabolites (nine ternatin anthocyanins and three glycosylated quercetins) were identified from the blue flowers of Clitoria ternatea by high-performance liquid chromatography diode array detection and electrospray ionization/mass spectrometry (HPLC-DAD-ESI/MS(n)). Three anthocyanins not reported in this species before show fragmentation pattern of the ternatin class. Extracts were fractionated in fractions containing flavonols (F3) and ternatin anthocyanins (F4). In general, C. ternatea polyphenols showed anti-inflammatory properties in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells with distinct molecular targets. Flavonols (F3) showed strong inhibition of COX-2 activity and partial ROS suppression. On the other hand, the ternatin anthocyanins (F4) inhibited nuclear NF-κB translocation, iNOS protein expression, and NO production through a non-ROS suppression mechanism. Accordingly, quercetin glycosides and ternatin anthocyanins from the blue flower petals of C. ternatea may be useful in developing drugs or nutraceuticals for protection against chronic inflammatory diseases by suppressing the excessive production of pro-inflammatory mediators from macrophage cells. PMID:26120869

  2. Sudden cardiac arrest in a patient with epilepsy induced by chronic inflammation on the cerebral surface

    Institute of Scientific and Technical Information of China (English)

    Yuxi Liu; Weicheng Hao; Xiaoming Yang; Yimin Wang; Yu Su

    2012-01-01

    The present study analyzed a patient with epilepsy due to chronic inflammation on the cerebral surface underwent sudden cardiac arrest. Paradoxical brain discharge, which occurred prior to epileptic seizures, induced a sudden cardiac arrest. However, when the focal brain pressure was relieved, cardiac arrest disappeared. A 27-year-old male patient underwent pre-surgical video-electroencephalogram monitoring for 160 hours. During monitoring, secondary tonic-clonic seizures occurred five times. A burst of paradoxical brain discharges occurred at 2-19 seconds (mean 8 seconds) prior to epileptic seizures. After 2-3 seconds, sudden cardiac arrest occurred and lasted for 12-22 seconds (average 16 seconds). The heart rate subsequently returned to a normal rate. Results revealed arachnoid pachymenia and adhesions, as well as mucus on the focal cerebral surface, combined with poor circulation and increased pressure. Intracranial electrodes were placed using surgical methods. Following removal of the arachnoid adhesions and mucus on the local cerebral surface, paradoxical brain discharge and epileptic seizures occurred three times, but sudden cardiac arrest was not recorded during 150-hour monitoring. Post-surgical histological examination indicated meningitis. Experimental findings suggested that paradoxical brain discharge led to cardiac arrest instead of epileptic seizures; the insult was associated with chronic inflammation on the cerebral surface, which subsequently led to hypertension and poor blood circulation in focal cerebral areas.

  3. Possible Protective Role of Carnosine against gamma-Radiation-Induced Cardiac Dysfunction in Mice

    International Nuclear Information System (INIS)

    Oxidative Stress with subsequent production of reactive oxygen species (ROS) has been postulated as one of the mechanisms of cardiac toxicity. Carnosine (β-alanyl-L-histidine) a biological antioxidant, is a relatively non-toxic dipeptide which possesses many functions (antiglycator, scavenger of ions of zinc and copper, toxic aldehydes and protein carbonyls) that are likely to suppress oxidative stress. The aim of the present work is to investigate the possible protective effects of carnosine on gamma-radiation-induced cardiac damage in mice. Carnosine was supplemented daily to mice (50 mg/ Kg body wt), by gavage, 10 days before whole body gamma-irradiation at a dose of 5 Gy (applied as a shot dose). The results obtained showed that whole body gamma-irradiation of mice produced biochemical alteration in levels of serum glucose and lipid profile fractions. Furthermore, some markers of cardiac injury enzymes as serum lactate dehydrogenase (LDH), creatin phosphokinase (CPK) and aspartate transaminase (AST) activities showed significant increases associated with alteration in the antioxidant status of cardiac tissues. Significant increases of lipid peroxidation end product malonaldehyde (MDA) and protein carbonyl levels, xanthine oxidase (XO) activity along with reduction in the activity of cardiac antioxidant enzymes; glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were observed. Carnosine-treatment prior irradiation has attenuated the cardiotoxic effects of radiation obvious by reduction in the levels of MDA and protein carbonyl and XO activity, rescued the depletion of endogenous antioxidant enzymes and diminished the increases of cardiac injury markers. It could be postulated that carnosine as a multi-functional dietary supplement could exert a modulator role in the radiation-induced cardiac damage and serum biochemical changes through its antioxidant properties

  4. Carbamazepine alone and in combination with doxycycline attenuates isoproterenol-induced cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Harold Ray Garner

    2010-02-01

    Full Text Available β-adrenergic signaling is involved in the development of cardiac hypertrophy (CH, justifying the use of β-blockers as a therapy to minimize and postpone the consequences of this disease. Evidence suggests that adenylate cyclase, a downstream effector of the β-adrenergic pathway, might be a therapeutic target. We examined the effects of the anti-epileptic drug carbamazepine (CBZ, an inhibitor of adenylate cyclase. In a murine cardiac hypertrophy model, carbamazepine significantly attenuates isoproteronol (ISO-induced cardiac hypertrophy. Carbamazepine also has an effect in transverse aortic banding induced cardiac hypertrophy (TAB (P=0.07. When carbamazepine was given in combination with the antibiotic doxycycline (DOX, which inhibits matrix metalloproteinases (MMPs, therapeutic outcome measured by heart weight-to-body weight and heart weight-to-tibia length ratios was improved compared to either drug alone. Additionally, the combination therapy resulted in an increase in the survival rate over a 56-day period compared to that of untreated mice with cardiac hypertrophy or either drug used alone. Moreover, in support of a role for carbamaze­pine as a β-adrenergic antagonist via cAMP inhibition, a lower heart rate and a lower level of the activated phosphorylated form of the cAMP Response Element-Binding (CREB were observed in heart extracts from mice treated with carbamazepine. Gene expression analysis identified 19 genes whose expression is significantly altered in treated animals and might be responsible for the added benefit provided by the combination therapy. These results suggest that carbamazepine acts as a β-adrenergic antagonist. Carbamazepine and doxycycline are approved by the US Food and Drug Administration (FDA as drugs that might complement medications for cardiac hypertrophy or serve as an alternative therapy to traditional β-blockers. Furthermore, these agents reproducibly impact the expression of genes that may serve as

  5. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  6. IGF-1 protects cardiac myocytes from hyperosmotic stress-induced apoptosis via CREB

    International Nuclear Information System (INIS)

    Hyperosmotic stress stimulates a rapid and pronounced apoptosis in cardiac myocytes which is attenuated by insulin-like growth factor-1 (IGF-1). Because in these cells IGF-1 induces intracellular Ca2+ increase, we assessed whether the cyclic AMP response element-binding protein (CREB) is activated by IGF-1 through Ca2+-dependent signalling pathways. In cultured cardiac myocytes, IGF-1 induced phosphorylation (6.5 ± 1.0-fold at 5 min), nuclear translocation (30 min post-stimulus) and DNA binding activity of CREB. IGF-1-induced CREB phosphorylation was mediated by MEK1/ERK, PI3-K, p38-MAPK, as well as Ca2+/calmodulin kinase and calcineurin. Exposure of cardiac myocytes to hyperosmotic stress (sorbitol 600 mOsm) decreased IGF-1-induced CREB activation Moreover, overexpression of a dominant negative CREB abolished the anti-apoptotic effects of IGF-1. Our results suggest that IGF-1 activates CREB through a complex signalling pathway, and this transcription factor plays an important role in the anti-apoptotic action of IGF-1 in cultured cardiac myocytes

  7. ROLE OF CALCINEURIN IN ANGIOTENSIN II INDUCED CARDIAC MYOCYTE HYPERTROPHY OF RATS

    Institute of Scientific and Technical Information of China (English)

    符民桂; 张继峰; 许松; 庞永政; 刘乃奎; 唐朝枢

    2001-01-01

    Objective. The present study investigated the role of calcineurin in angiotensin II(AngII) induced cardiac myocyte hypertrophy of rats. Method. The primary cardiac myocytes were cultured under the standard conditions. The calcineurin activity in AngII treated cardiomyocytes was tested by using PNPP;protein synethsis rate was assessed by 3H leucine incorporation; atrial natriuretic factor(ANF) Mrna level was determined by Northern blot analysis. Cell viability was estimated by lactate dehydrogenase(LDH) levels in cultured medium and by dyed cell numbers. Result. After stimulation of 10,100 and 1 000nmol/L of AngII, calcineurin activities in the cardiomyocytes were increased by 13% ,57% (P< 0.05) and 228% (P< 0.01) respectively, compared with control group. Cyclosporin A(CsA), a specific inhibitor of calcineurin, markedly inhibited the calcineurin activity and decreased the 3H leucine incorporation in AngII treated cardiomyocytes in a dose dependent manner. It was also found that CsA slightly reduced the Mrna level of ANF gene in AngII stimulated cardiomyocytes. Conclusion. During AngII induced cardiac myocyte hypertrophy, calcineurin signal pathway is activated, and inhibition of the pathway can attenuate AngII induced cardiac myocyte hypertrophy, which suggests that the calcineurin signal pathway may play an important role in AngII induced myocardial hypertrophy of rats.

  8. Postnatal ablation of Foxm1 from cardiomyocytes causes late onset cardiac hypertrophy and fibrosis without exacerbating pressure overload-induced cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Craig Bolte

    Full Text Available Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2 plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.

  9. Postnatal ablation of Foxm1 from cardiomyocytes causes late onset cardiac hypertrophy and fibrosis without exacerbating pressure overload-induced cardiac remodeling.

    Science.gov (United States)

    Bolte, Craig; Zhang, Yufang; York, Allen; Kalin, Tanya V; Schultz, Jo El J; Molkentin, Jeffery D; Kalinichenko, Vladimir V

    2012-01-01

    Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2) plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl) mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl) mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.

  10. Exercise Ameliorates High Fat Diet Induced Cardiac Dysfunction by Increasing Interleukin 10

    Directory of Open Access Journals (Sweden)

    Varun eKesherwani

    2015-04-01

    Full Text Available Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α and attenuation of anti-inflammatory cytokine such as interleukin10 (IL-10 contributes to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, eight week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1hr/day for 5 days/week for eight weeks. The four treatment groups: normal diet (ND, HFD, HFD + exercise (HFD + Ex and ND + Ex were analyzed for mean body weight, blood glucose level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by echocardiography. Mean body weights were increased in HFD but comparatively less in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated by exercise in the HFD + Ex group. The percentage ejection fraction and fractional shortening were decreased in HFD but comparatively increased in HFD + Ex. There was no difference between ND and ND + Ex for the above parameters except an increase in IL-10 level following exercise. Based on these results, we conclude that exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10, and reducing TNF-α in mice.

  11. Lignan Glycosides from Gentianella Acuta (Michx. Hulten. and Their Protective Effects Against H 2O 2-Induced Apoptosis in H9c2 Cardiomyoblasts

    Directory of Open Access Journals (Sweden)

    Ying Yu

    2014-05-01

    Full Text Available T wo new lignan glycosides named acutosides A (1 and B (2 have been isolated from the whole plant of Gentianella acute (Michx Hulten. and t heir structures were determined as (--(7 R ,8S,7'E-4-hydroxy-3, 3 '-dimethoxy-7,4'-epoxy-8, 5 '-neolign-7'-ene-9,9'-diol 9'-ethyl ether -4-O-β-D- glucopyranosid e and (--(7 R ,8S,7'E-4-hydroxy-3, 3 '-dimethoxy-7,4'-epoxy-8, 5 '-neolign-7'-ene-9,9'-diol 9-ethyl ether -9 ' -O-β-D- glucopyranosid e by means of 1D-, 2D-NMR , HR -ESI -MS , CD techniques and chemical reactions. Along with the above two new compounds we got six known ones: (7R,8S-dehydrodiconiferyl alcohol-4,9 ' -di-O-β-D- glucopyranosid e (3 , alaschanisoside A (4 , citrusin A (5 , 8,4',9'-trihydroxy-3,3'-dimethoxy-9,7'-epoxylignan 4-O- β -D- glucopyranosid e (6 , l eptolepisol D (7 and acanthoside D (8 . The cardioprotective effects of compounds 1-8 were evaluated by measuring the viability of the compounds 1-8 pretreated H9c2 cardiomyoblasts after exposure to H 2O 2-induced apoptosis, the results showed that compounds 1,3,6,8 which could increase cell viability >15% at 200 μM had remarkably protective influence against H 2O 2-induced apoptosis. All the compounds were tested for cytotoxicity against two human tumor cell lines: gastric cancer SGC-7901 and breast cancer MCF-7. But they were inactive (IC 50>40 μM.

  12. Desmodium gangeticum root extract attenuates isoproterenol-induced cardiac hypertrophic growth in rats.

    OpenAIRE

    Divya Hitler; Parthasarathy Arumugam; Mathivanan Narayanasamy; Elangovan Vellaichamy

    2014-01-01

    Context: Desmodium gangeticum (L) DC (Fabaceae; DG), a medicinal plant that grows in tropical habitats, is widely used to treat various ailments including digestive and inflammatory disorders. Aims: To investigate the possible cardioprotective activity of a DG root extract against isoproterenol (ISO)-induced left ventricular cardiac hypertrophy (LVH) in adult Wistar rats. Methods: Daily intraperitoneal administration of ISO (10 mg/kg body weight, single injection) for 7 days induced LVH...

  13. Cyanohydrin glycosides of Passiflora

    DEFF Research Database (Denmark)

    Jaroszewski, Jerzy W; Olafsdottir, Elin S; Wellendorph, Petrine;

    2002-01-01

    Nineteen species of Passiflora (Passifloraceae) were examined for the presence of cyanogenic glycosides. Passibiflorin, a bisglycoside containing the 6-deoxy-beta-D-gulopyranosyl residue, was isolated from P. apetala, P. biflora, P. cuneata, P. indecora, P. murucuja and P. perfoliata. In some cas...

  14. Using delay differential equations to induce alternans in a model of cardiac electrophysiology.

    Science.gov (United States)

    Eastman, Justin; Sass, Julian; Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2016-09-01

    Cardiac electrical alternans is a period-2 dynamical behavior with alternating long and short action potential durations (APD) that often precedes dangerous arrhythmias associated with cardiac arrest. Despite the importance of alternans, many current ordinary differential equations models of cardiac electrophysiology do not produce alternans, thereby limiting the use of these models for studying the mechanisms that underlie this condition. Because delay differential equations (DDEs) commonly induce complex dynamics in other biological systems, we investigate whether incorporating DDEs can lead to alternans development in cardiac models by studying the Fox et al. canine ventricular action potential model. After suppressing the alternans in the original model, we show that alternans can be obtained by introducing DDEs in the model gating variables, and we quantitatively compare the DDE-induced alternans with the alternans present in the original model. We analyze the behavior of the voltage, currents, and gating variables of the model to study the effects of the delays and to determine how alternans develops in that setting, and we discuss the mathematical and physiological implications of our findings. In future work, we aim to apply our approach to induce alternans in models that do not naturally exhibit such dynamics. PMID:27302910

  15. Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon.

    Directory of Open Access Journals (Sweden)

    Vicente Castro

    Full Text Available Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control, 0.65 (medium intensity and 1.31 (high intensity body lengths s(-1. Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first

  16. Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; Braunstein, Thomas Hartig;

    2015-01-01

    a significant increase in cardiac triglyceride content (1.93 ± 0.19 (n = 12) vs. 0.77 ± 0.13 nmol/mg (n = 12), p cause electrophysiological changes, which leads to QRS prolongation, decreased conduction velocity and increased arrhythmogenesis during......BACKGROUND: Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. METHODS....... Conduction velocity was examined in isolated tissue strips. Ion channel and gap junction conductances were analyzed by patch-clamp studies in isolated cardiomyocytes. Fibrosis was examined by Masson's Trichrome staining and thin-layer chromatography was used to analyze cardiac lipid content. Connexin43 (Cx43...

  17. Acidosis-induced p38 MAPK activation and its implication in regulation of cardiac contractility

    Institute of Scientific and Technical Information of China (English)

    Ming ZHENG; Rong HOU; Rui-ping XIAO

    2004-01-01

    AIM: To determine the possible role of pH in mediating activation of p38 mitogen-activated protein kinase (MAPK) and the consequent function of activated p38 MAPK in regulating cardiac contractility. METHODS: Adult rat cardiomyocytes were isolated and cultured. Low pH media was used to induce intracellular acidosis and contraction of single cardiomyocyte was measured. RESULTS: Phosphorylation of p38 MAPK was increased during ischemia, and pHi was decreased. Intracellular acidosis activated p38 MAPK to a similar level as ischemia. Inhibition of p38 MAPK activation by SB203580, a specific inhibitor of p38 MAPK, reversed acidosis-mediated reduction of myocyte contractility. CONCLUSION: In adult rat cardiomyocytes, intracellular acidification activated p38 MAPK and decreased cardiac contractility. Pretreatment of cardiomyocytes with SB203580 completely blocked p38 MAPK activation and partially reversed acidosis-mediated decline of cardiac contractility.

  18. Effect of antioxidant supplementation on exercise-induced cardiac troponin release in cyclists: a randomized trial.

    Directory of Open Access Journals (Sweden)

    Lieke J J Klinkenberg

    Full Text Available BACKGROUND: Cardiac troponin is the biochemical gold standard to diagnose acute myocardial infarction. Interestingly however, elevated cardiac troponin concentrations are also frequently observed during and after endurance-type exercise. Oxidative stress associated with prolonged exercise has been proposed to contribute to cardiac troponin release. Therefore, the aim of this study was to assess the effect of 4 week astaxanthin supplementation (a potent cartenoid antioxidant on antioxidant capacity and exercise-induced cardiac troponin release in cyclists. METHODS: Thirty-two well-trained male cyclists (age 25±5, weight 73±7 kg, maximum O2 uptake 60±5 mL·kg(-1·min(-1, Wmax 5.4±0.5 W·kg(-1; mean ± SD were repeatedly subjected to a laboratory based standardized exercise protocol before and after 4 weeks of astaxanthin (20 mg/day, or placebo supplementation in a double-blind randomized manner. Blood samples were obtained at baseline, at 60 min of cycling and immediately post-exercise (≈ 120 min. RESULTS: The pre-supplementation cycling trial induced a significant rise of median cardiac troponin T concentrations from 3.2 (IQR 3.0-4.2 to 4.7 ng/L (IQR 3.7-6.7, immediately post-exercise (p<0.001. Four weeks of astaxanthin supplementation significantly increased mean basal plasma astaxanthin concentrations from non-detectable values to 175±86 µg·kg(-1. However, daily astaxanthin supplementation had no effect on exercise-induced cardiac troponin T release (p = 0.24, as measured by the incremental area under the curve. Furthermore, the elevation in basal plasma astaxanthin concentrations was not reflected in changes in antioxidant capacity markers (trolox equivalent antioxidant capacity, uric acid, and malondialdehyde. Markers of inflammation (high-sensitivity C-reactive protein and exercise-induced skeletal muscle damage (creatine kinase were equally unaffected by astaxanthin supplementation. CONCLUSION: Despite substantial increases in

  19. Simvastatin prevents isoproterenol-induced cardiac hypertrophy through modulation of the JAK/STAT pathway

    Directory of Open Access Journals (Sweden)

    Al-Rasheed NM

    2015-06-01

    Full Text Available Nouf M Al-Rasheed,1 Maha M Al-Oteibi,1 Reem Z Al-Manee,1 Sarah A Al-Shareef,1 Nawal M Al-Rasheed,1 Iman H Hasan,1 Raeesa A Mohamad,2 Ayman M Mahmoud3 1Department of Pharmacology, Faculty of Pharmacy, 2Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; 3Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt Abstract: Simvastatin (SIM is a lipid-soluble inhibitor of hydroxy-3-methylglutaryl coenzyme A reductase with multiple reported therapeutic benefits. The present study was designed to investigate the effect of pretreatment with SIM on isoproterenol (ISO-induced cardiac hypertrophy in rats. Twenty-four male albino Wistar rats weighing 180–200 g were divided into four groups. Groups I and III received normal saline while groups II and IV received SIM (10 mg/kg body weight for 30 days per gavage. In the last 7 days, rats of groups III and IV were administered ISO (5 mg/kg intraperitoneally to induce cardiac hypertrophy. Administration of ISO induced an increase in heart-to-body weight (HW/BW ratio, an increase in serum interleukin-6, and elevated systolic and diastolic blood pressure. Serum levels of lipids, cardiovascular risk indices, and cardiac troponin I and creatine phosphokinase-MB showed significant increase in ISO-induced hypertrophic rats. Histopathological examination of heart tissue revealed focal areas of subendocardium degeneration, mononuclear cellular infiltrations, fibrous tissue deposition, and increased thickness of the myocardium of left ventricle. In addition, ISO-administered rats exhibited significant upregulation of cardiac Janus kinase, phosphorylated signal transducer and activator of transcription, and nuclear factor-kappa B. Pretreatment with SIM significantly prevented ISO-induced cardiac hypertrophy, alleviated the altered biochemical parameters, and improved the heart architecture. In conclusion, our study provides evidence that SIM

  20. Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure.

    Science.gov (United States)

    Kimura, Kensuke; Kanazawa, Hideaki; Ieda, Masaki; Kawaguchi-Manabe, Haruko; Miyake, Yoshiko; Yagi, Takashi; Arai, Takahide; Sano, Motoaki; Fukuda, Keiichi

    2010-08-25

    In severe congestive heart failure (CHF), sympathetic overactivity correlates with the exacerbation of cardiac performance. To test the hypothesis that the cardiac sympathetic nerve density dramatically changes with the acceleration of circulating norepinephrine (NE) concentration, we investigated the temporal association of nerve growth factor (NGF) expression in the heart and cardiac sympathetic nerve density during the development of CHF in the continuous NE-infused rats. The animals were analyzed at 0-, 1-, 3-, 7-, 14-, and 28-day after implantation of osmotic pump at a rate of 0.05 mg/kg/hr. The cardiac performance was temporally facilitated in NE-exposed rats at 3-day in accordance with the sympathetic hyper-innervation induced by the augmentation of NGF mRNA expression in the heart. In NE-treated rats, left ventricular end-diastolic pressure was significantly increased after 7-day and marked left ventricular hypertrophy and systemic fluid retention were observed at 28-day. CHF-induced sympathetic overactivity further increased plasma NE concentration in NE-treated rats and finally reached to 16.1+/-5.6 ng/ml at 28-day (control level was 0.39+/-0.1 ng/ml, pcardiac performance. The cardiac sympathetic fiber loss was also confirmed in NE-exposed DBH (dopamine beta-hydroxylase)-Cre/Floxed-EGFP (enhanced green fluorescent protein) mice with severe CHF, in which sympathetic nerve could be traced by EGFP. Our results suggest that the cardiac sympathetic nerve density is strictly regulated by the NGF expression in the heart and long-exposure of high plasma NE concentration caused myocardial NGF reduction, following sympathetic fiber loss in severe CHF animals.

  1. Urotensin Ⅱ accelerates cardiac fibrosis and hypertrophy of rats induced by isoproterenol

    Institute of Scientific and Technical Information of China (English)

    Yong-gang ZHANG; Yu-guang LI; Bao-guo LIU; Rui-hong WEI; Dong-ming WANG; Xue-rui TAN; Ding-fang BU; Yong-zheng PANG; Chao-shu TANG

    2007-01-01

    Aim: To study whether urotensin Ⅱ (UⅡ), a potent vasoconstrictive peptide, is involved in the development of cardiac hypertrophy and fibrogenesis of rats induced by isoproterenol (ISO). Methods: Thirty male Wistar rats were randomly divided into 3 groups. Group 1 was the healthy control group, group 2 was the ISO group, and group 3 was the ISO+UⅡ group. In groups 2 and 3, ISO (5 mg-kg-1.d-1) was given (sc) once daily for 7 d. Group 3 was also given UⅡ in the first day [3 nmol/kg (5 μg/kg), iv], followed by sc (1.5 μg/kg) twice daily. Group 1 received 0.9% saline. UⅡ receptor (UT) mRNA expression was determined by RT-PCR. The contents of UⅡ and angiotensin Ⅱ (Ang Ⅱ) were determined by radioimmunoassay. In vitro, the effects of UⅡ on DNA/collagen synthesis of cardiac fibroblasts were deter-mined by [3H]thymidine/[3H]proline incorporation. Results: The ratio of heart weight/body weight, plasma lactate dehydrogenase activity, myocardial malondialdehyde and hydroxyproline concentration increased significantly in the ISO group, as well as UT mRNA expression, plasma and cardiac UⅡ and ventricu-lar Ang Ⅱ, compared with the control group (P<0.01). ISO induced significant myocardial fibrogenesis. Moreover, UⅡ+ISO co-treatment significantly increased the changes of biochemical markers of injury and the degree of cardiac hypertro-phy and fibrosis. In vitro, 5x10-9-5x 10-7 mol/L UⅡ stimulated [3]thymidine/[3H] proline incorporation into cardiac fibroblasts in a dose-dependent manner (P<0.01).Conclusion: These results suggest that UⅡ was involved in the development of cardiac fibrosis and hypertrophy by synergistic effects with ISO.

  2. Main Complications of Mild Induced Hypothermia after Cardiac Arrest: A Review Article

    Directory of Open Access Journals (Sweden)

    Hassan Soleimanpour

    2014-03-01

    Full Text Available The aim of the present study is to assess the complications of mild induced hypothermia (MIH in patients with cardiac arrest. Presently, based on the guidelines of the American heart Association, MIH following successful cardiopulmonary resuscitation (CPR in unconscious adult patients due to ventricular fibrillation (VF with out-of-hospital cardiac arrest (OOHCA is essential and required. However, MIH could be associated with complications in Patients with cardiac arrest. Studies conducted on the precautions and care following cardiac arrest and MIH were included. Valid scientific data bases were used for data collection. The obtained results from different studies revealed that mild MIH could be associated with numerous complications and the knowledge and awareness of the medical staff from the complications is required to guarantee successful therapeutic approaches in MIH following cardiac arrest which is a novel medical facility with different styles and complications. Overall, further future studies are required to improve the quality of MIH, to increase survival and to decrease complications rates.

  3. Induced apnea enhances image quality and visualization of cardiopulmonary anatomic during contrastenhanced cardiac computerized tomographic angiography in children

    OpenAIRE

    Murali Chakravarthy; Gubbihalli Sunilkumar; Sumant Pargaonkar; Rajathadri Hosur; Chidananda Harivelam; Deepak Kavaraganahalli; Pradeep Srinivasan

    2015-01-01

    Objective: The purpose of our study was to determine the effect of induced apnea on quality of cardiopulmonary structures during computerized tomographic (CT) angiography images in children with congenital heart diseases. Methods: Pediatric patients with congenital heart defects undergoing cardiac CT angiography at our facility in the past 3 years participated in this study. The earlier patients underwent cardiac CT angiography without induced apnea and while, later, apnea was induced in pati...

  4. N-Acetyl Cysteine Inhibits Endothelin-1-Induced ROS Dependent Cardiac Hypertrophy through Superoxide Dismutase Regulation

    Directory of Open Access Journals (Sweden)

    Sobia Mushtaq

    2015-07-01

    Full Text Available Objective: Oxidative stress down regulates antioxidant enzymes including superoxide dismutase (SOD and contributes to the development of cardiac hypertrophy. N-Acetyl cysteine (NAC can enhance the SOD activity, so the aim of this study is to highlight the inhibitory role of NAC against endothelin-1 (ET-1-induced cardiac hypertrophy. Materials and Methods: In this experimental study at QAU from January, 2013 to March, 2013. ET-1 (50 μg/kg and NAC (50 mg/kg were given intraperitoneally to 6-day old neonatal rats in combination or alone. All rats were sacrificed 15 days after the final injection. Histological analysis was carried out to observe the effects caused by both drugs. Reactive oxygen species (ROS analysis and SOD assay were also carried out. Expression level of hypertrophic marker, brain natriuretic peptide (BNP, was detected by western blotting. Results: Our findings showed that ET-1-induced cardiac hypertrophy leading towards heart failure was due to the imbalance of different parameters including free radical-induced oxidative stress and antioxidative enzymes such as SOD. Furthermore NAC acted as an antioxidant and played inhibitory role against ROS-dependent hypertrophy via regulatory role of SOD as a result of oxidative response associated with hypertrophy. Conclusion: ET-1-induced hypertrophic response is associated with increased ROS production and decreased SOD level, while NAC plays a role against free radicals-induced oxidative stress via SOD regulation.

  5. Nematicidal isochromane glycoside from Kigelia pinnata leaves

    Directory of Open Access Journals (Sweden)

    Olubunmi ATOLANI

    2015-11-01

    Full Text Available Synthetic nematicides such as oxamyl and carbofuran play significant roles in the management of plant-parasitic nematodes. However, their negative environmental impacts have it imperative to search for safer alternatives. As part of our contribution in the search for bio-nematicides, compounds from plant extract were screened for possible potent nematicidal agent. A new isochromane carboxylic acid glycoside, isolated from the leaves of Kigelia pinnata (Lam. Benth (Bignoniaceae was evaluated for its nematicidal activity. The structure of the proposed compound was characterized by various spectroscopic methods, which included UV, FTIR, 1D-, and 2D-NMR, FAB-MS, TOF-ESI-MS and TOF-ESI-MS/MS (TANDEM. The in vitro experiment conducted on the glycoside against Meloidogyne incognita juveniles and eggs indicated an induced mortality. Its activity can be compared favourably with oxamyl, when tested at 0.1 mg/mL concentration. At four hours of observation, no significant difference (P < 0.05 between oxamyl and the glycoside was observed. The present data sustains that natural glycoside is a promising oxamyl alternate for controlling nematode-induced plant root knots and may contribute to integrated pest management.

  6. Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection.

    Science.gov (United States)

    Alhamdi, Yasir; Neill, Daniel R; Abrams, Simon T; Malak, Hesham A; Yahya, Reham; Barrett-Jolley, Richard; Wang, Guozheng; Kadioglu, Aras; Toh, Cheng-Hock

    2015-05-01

    Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac

  7. Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection.

    Directory of Open Access Journals (Sweden)

    Yasir Alhamdi

    2015-05-01

    Full Text Available Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY. Using a mouse model of invasive pneumococcal disease (IPD, we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns, well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001 and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB, induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with

  8. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin

    DEFF Research Database (Denmark)

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia;

    2014-01-01

    In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy and inc...

  9. Endothelial to mesenchymal transition contributes to arsenic-trioxide-induced cardiac fibrosis

    Science.gov (United States)

    Zhang, Yong; Wu, Xianxian; Li, Yang; Zhang, Haiying; Li, Zhange; Zhang, Ying; Zhang, Longyin; Ju, Jiaming; Liu, Xin; Chen, Xiaohui; Glybochko, Peter V.; Nikolenko, Vladimir; Kopylov, Philipp; Xu, Chaoqian; Yang, Baofeng

    2016-01-01

    Emerging evidence has suggested the critical role of endothelial to mesenchymal transition (EndMT) in fibrotic diseases. The present study was designed to examine whether EndMT is involved in arsenic trioxide (As2O3)-induced cardiac fibrosis and to explore the underlying mechanisms. Cardiac dysfunction was observed in rats after exposure to As2O3 for 15 days using echocardiography, and the deposition of collagen was detected by Masson’s trichrome staining and electron microscope. EndMT was indicated by the loss of endothelial cell markers (VE-cadherin and CD31) and the acquisition of mesenchymal cell markers (α-SMA and FSP1) determined by RT-PCR at the mRNA level and Western blot and immunofluorescence analysis at the protein level. In the in-vitro experiments, endothelial cells acquired a spindle-shaped morphology accompanying downregulation of the endothelial cell markers and upregulation of the mesenchymal cell markers when exposed to As2O3. As2O3 activated the AKT/GSK-3β/Snail signaling pathway, and blocking this pathway with PI3K inhibitor (LY294002) abolished EndMT in As2O3-treated endothelial cells. Our results highlight that As2O3 is an EndMT-promoting factor during cardiac fibrosis, suggesting that targeting EndMT is beneficial for preventing As2O3-induced cardiac toxicity. PMID:27671604

  10. Protective Effect of Momordica charantia Fruit Extract on Hyperglycaemia-Induced Cardiac Fibrosis

    Directory of Open Access Journals (Sweden)

    Razif Abas

    2014-01-01

    Full Text Available In diabetes mellitus, cardiac fibrosis is characterized by increase in the deposition of collagen fibers. The present study aimed to observe the effect of Momordica charantia (MC fruit extract on hyperglycaemia-induced cardiac fibrosis. Diabetes was induced in the male Sprague-Dawley rats with a single intravenous injection of streptozotocin (STZ. Following 4 weeks of STZ induction, the rats were subdivided (n = 6 into control group (Ctrl, control group treated with MC (Ctrl-MC, diabetic untreated group (DM-Ctrl, diabetic group treated with MC (DM-MC, and diabetic group treated with 150 mg/kg of metformin (DM-Met. Administration of MC fruit extract (1.5 g/kg body weight in diabetic rats for 28 days showed significant increase in the body weight and decrease in the fasting blood glucose level. Significant increase in cardiac tissues superoxide dismutase (SOD, glutathione contents (GSH, and catalase (CAT was observed following MC treatment. Hydroxyproline content was significantly reduced and associated morphological damages reverted to normal. The decreased expression of type III and type IV collagens was observed under immunohistochemical staining. It is concluded that MC fruit extract possesses antihyperglycemic, antioxidative, and cardioprotective properties which may be beneficial in the treatment of diabetic cardiac fibrosis.

  11. Downregulation of β-Adrenoceptors in Isoproterenol-Induced Cardiac Remodeling through HuR.

    Directory of Open Access Journals (Sweden)

    Qian Yin

    Full Text Available β-adrenergic receptors (β-ARs play an important role in cardiac remodeling, which is the key pathological process in various heart diseases and leads to heart failure. However, the regulation of β-AR expression in remodeling hearts is still unclear. This study aims to clarify the possible mechanisms underlying the regulation of β1- and β2-AR expression in cardiac remodeling. The rat model of cardiac remodeling was established by subcutaneous injection of isoproterenol(ISO at the dose of 0.25 mg·kg(-1·d(-1 for 7 days. We found that the expression of β1- and β2-ARs decreased in the remodeling heart. The mechanisms may include the inhibition of DNA transcription and the increase of mRNA degradation. cAMP-response element binding protein(CREB is a well-known transcription factor of β-AR. However, the expression and activation of CREB was not changed in the remodeling heart. Further, human Antigen-R (HuR, a RNA binding protein, which binds to the 3'-untranslated region of the β-AR mRNA and promotes RNA degradation, was increased in the remodeling model. And in vitro, HuR deficiency reversed the reduction of β-AR mRNA induced by ISO. Therefore, the present findings indicate that HuR, but not CREB, is responsible for the reduction of β-AR expression in ISO induced cardiac remodeling.

  12. Chronic cardiac pressure overload induces adrenal medulla hypertrophy and increased catecholamine synthesis.

    Science.gov (United States)

    Schneider, Johanna; Lother, Achim; Hein, Lutz; Gilsbach, Ralf

    2011-06-01

    Increased activity of the sympathetic system is an important feature contributing to the pathogenesis and progression of chronic heart failure. While the mechanisms and consequences of enhanced norepinephrine release from sympathetic nerves have been intensely studied, the role of the adrenal gland in the development of cardiac hypertrophy and progression of heart failure is less well known. Thus, the aim of the present study was to determine the effect of chronic cardiac pressure overload in mice on adrenal medulla structure and function. Cardiac hypertrophy was induced in wild-type mice by transverse aortic constriction (TAC) for 8 weeks. After TAC, the degree of cardiac hypertrophy correlated significantly with adrenal weight and adrenal catecholamine storage. In the medulla, TAC caused an increase in chromaffin cell size but did not result in chromaffin cell proliferation. Ablation of chromaffin α(2C)-adrenoceptors did not affect adrenal weight or epinephrine synthesis. However, unilateral denervation of the adrenal gland completely prevented adrenal hypertrophy and increased catecholamine synthesis. Transcriptome analysis of microdissected adrenal medulla identified 483 up- and 231 downregulated, well-annotated genes after TAC. Among these genes, G protein-coupled receptor kinases 2 (Grk2) and 6 and phenylethanolamine N-methyltransferase (Pnmt) were significantly upregulated by TAC. In vitro, acetylcholine-induced Pnmt and Grk2 expression as well as enhanced epinephrine content was prevented by inhibition of nicotinic acetylcholine receptors and Ca(2+)/calmodulin-dependent signaling. Thus, activation of preganglionic sympathetic nerves innervating the adrenal medulla plays an essential role in inducing adrenal hypertrophy, enhanced catecholamine synthesis and induction of Grk2 expression after cardiac pressure overload.

  13. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Maaike eHoekstra

    2012-08-01

    Full Text Available Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models haven been generated, but these also have significant shortcomings, primarily related to species differences.The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human cardiomyocytes can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially characterized.Human iPSC (hiPSC models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia. In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these

  14. Cardiac differentiation potential of human induced pluripotent stem cells in a 3D self-assembling peptide scaffold.

    Science.gov (United States)

    Puig-Sanvicens, Veronica A C; Semino, Carlos E; Zur Nieden, Nicole I

    2015-01-01

    In the past decade, various strategies for cardiac reparative medicine involving stem cells from multiple sources have been investigated. However, the intra-cardiac implantation of cells with contractile ability may seriously disrupt the cardiac syncytium and de-synchronize cardiac rhythm. For this reason, bioactive cardiac implants, consisting of stem cells embedded in biomaterials that act like band aids, have been exploited to repair the cardiac wall after myocardial infarction. For such bioactive implants to function properly after transplantation, the choice of biomaterial is equally important as the selection of the stem cell source. While adult stem cells have shown promising results, they have various disadvantages including low proliferative potential in vitro, which make their successful usage in human transplants difficult. As a first step towards the development of a bioactive cardiac patch, we investigate here the cardiac differentiation properties of human induced pluripotent stem cells (hiPSCs) when cultured with and without ascorbic acid (AA) and when embedded in RAD16-I, a biomaterial commonly used to develop cardiac implants. In adherent cultures and in the absence of RAD16-I, AA promotes the cardiac differentiation of hiPSCs by enhancing the expression of specific cardiac genes and proteins and by increasing the number of contracting clusters. In turn, embedding in peptide hydrogel based on RAD16-I interferes with the normal cardiac differentiation progression. Embedded hiPSCs up-regulate genes associated with early cardiogenesis by up to 105 times independently of the presence of AA. However, neither connexin 43 nor troponin I proteins, which are related with mature cardiomyocytes, were detected and no contraction was noted in the constructs. Future experiments will need to focus on characterizing the mature cardiac phenotype of these cells when implanted into infarcted myocardia and assess their regenerative potential in vivo. PMID:26707885

  15. Burn-Induced Organ Dysfunction: Vagus Nerve Stimulation Improves Cardiac Function

    OpenAIRE

    Niederbichler, Andreas D; Papst, Stephan; Claassen, Leif; Jokuszies, Andreas; Ipaktchi, Kyros; Reimers, Kerstin; Hirsch, Tobias; Steinstraesser, Lars; Kraft, Theresia; Vogt, Peter M.

    2010-01-01

    Introduction: Many studies have demonstrated the existence of an anti-inflammatory, parasympathetic pathway, termed as the inflammatory reflex. Burn-induced heart failure has been investigated in many previous studies. Proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6, have been shown to play a key pathogenetic role and vagus nerve stimulation attenuates proinflammatory cytokine production. This study was designed to evaluate postburn alterations of cardiac functional parameters after...

  16. Usefulness of Danaparoid sodium in patients with Heparin-induced thrombocytopenia after cardiac surgery

    OpenAIRE

    Foroughinia, Farzaneh; Farsad, Fariborz; Gholami, Kheirollah; Ahmadi, Somayeh

    2015-01-01

    Objective: Thrombocytopenia is a common problem in cardiovascular surgery patients. However, heparin-induced thrombocytopenia (HIT) is a rare but life-threatening complication of prophylaxis or treatment with heparin. Prompt management of HIT with an alternative anticoagulant is necessary due to the extreme risk of thrombotic complications. Therefore, we evaluated the effects of danaparoid in the treatment of HIT in patients with cardiac surgery who are at moderate to high risk of HIT. Method...

  17. Flavone Glycoside Antagonizes Psilocybin-Induced Toxicity by Reducing Oxidative Stress in Rats Model%黄酮苷对赛洛西宾过氧化作用的拮抗效应

    Institute of Scientific and Technical Information of China (English)

    黄红焰; 黄喆; 李玉白

    2012-01-01

    目的 研究黄酮苷对赛洛西宾的过氧化作用的的拮抗效应.方法 将SD大鼠分为5个实验组:赛洛西宾低剂量组、赛洛西宾高剂量组、赛洛西宾低剂量+黄酮苷组、赛洛西宾高剂量+黄酮苷组、对照组.检测各组大鼠血清中的ALT、AST、BUN、MDA、SOD.结果 与空白对照组比较,赛洛西宾高剂量组超氧化物歧化酶(SOD)活力明显降低,丙二醛(MDA)含量明显增加,动物肝脏脏器系数明显增大,肝脏功能指标丙氨酸转氨酶(ALT)、心肌损伤特异性标志物天冬氨酸转氨酶(AST)和肾功能指标BUN活力水平增加;给予黄酮苷可减轻指标改变的程度.结论 赛洛西宾可引起多脏器氧化损伤,而黄酮苷可减轻这种损害程度.%Objective To explore the effects of flavone glycoside on psilocybin-induced oxidative damage in rats. Methods Five group Sprague-Dawley rats (10 for each group) were received vehicle (Con),low do6e of psilocybin (I.p.,0.5 m/kg body weight) (ID),high dose of psilocybin (I.p.,1.5 μg/kg body weight) (HD),low dose of psilocybin (I.p.) plus flavone glycoside (I.p. 100 mg/kg body weight) (LDR),and high dose of psilocybin (I.p.) plus flavone glycoside (I.p.) (HDR),respectively. Ratio of organ weight to body weight of each group was measured. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum of each group was evaluated with automated biochemistry analyzer. Oxidative stress-associated biochemical profile such as superoxide dismutase (SOD) and malondialdehyde (MDA) was assessed using kite. Liver histology of each group was observed using immunohistochemistiy method. Results Compared with control group,AST and ALT in HD group were significantly increased,suggested that high dose of psilocybin induced toxic damage. After high dose treatment with psilocybins, MDA and SOD of liver homogenesis were elevated but this enhancement was reduced in HDR group,indicated that flavone glycoside alleviated psilocybin-induced

  18. Numerically simulated cardiac exposure to electric current densities induced by TASER X-26 pulses in adult men

    Science.gov (United States)

    Leitgeb, N.; Niedermayr, F.; Neubauer, R.; Loos, G.

    2010-10-01

    There is still an ongoing debate whether or not electronic stun devices (ESDs) induce cardiac fibrillation. To assess the ventricular fibrillation risk of law enforcing electronic control devices, quantitative estimates of cardiac electric current densities induced by delivered electric pulses are essential. Numerical simulations were performed with the finite integration technique and the anatomical model of a standardized European man (NORMAN) segmented into 2 mm voxels and 35 different tissues. The load-dependent delivery of TASER X-26 pulses has been taken into account. Cardiac exposure to electric current densities of vertically and horizontally aligned dart electrodes was quantified and different hit scenarios compared. Since fibrillation thresholds critically depend on exposed volume, the provided quantitative data are essential for risk assessment. The maximum cardiac rms current densities amounted to 7730 A m-2. Such high current densities and exposed cardiac volumes do not exclude ventricular fibrillation.

  19. Numerically simulated cardiac exposure to electric current densities induced by TASER X-26 pulses in adult men

    International Nuclear Information System (INIS)

    There is still an ongoing debate whether or not electronic stun devices (ESDs) induce cardiac fibrillation. To assess the ventricular fibrillation risk of law enforcing electronic control devices, quantitative estimates of cardiac electric current densities induced by delivered electric pulses are essential. Numerical simulations were performed with the finite integration technique and the anatomical model of a standardized European man (NORMAN) segmented into 2 mm voxels and 35 different tissues. The load-dependent delivery of TASER X-26 pulses has been taken into account. Cardiac exposure to electric current densities of vertically and horizontally aligned dart electrodes was quantified and different hit scenarios compared. Since fibrillation thresholds critically depend on exposed volume, the provided quantitative data are essential for risk assessment. The maximum cardiac rms current densities amounted to 7730 A m-2. Such high current densities and exposed cardiac volumes do not exclude ventricular fibrillation.

  20. Numerically simulated cardiac exposure to electric current densities induced by TASER X-26 pulses in adult men

    Energy Technology Data Exchange (ETDEWEB)

    Leitgeb, N; Niedermayr, F; Neubauer, R; Loos, G, E-mail: norbert.leitgeb@tugraz.a [Institute of Clinical Engineering with European Notified Body of Medical Devices, Graz University of Technology, Inffeldgasse 18, A-8010 Graz (Austria)

    2010-10-21

    There is still an ongoing debate whether or not electronic stun devices (ESDs) induce cardiac fibrillation. To assess the ventricular fibrillation risk of law enforcing electronic control devices, quantitative estimates of cardiac electric current densities induced by delivered electric pulses are essential. Numerical simulations were performed with the finite integration technique and the anatomical model of a standardized European man (NORMAN) segmented into 2 mm voxels and 35 different tissues. The load-dependent delivery of TASER X-26 pulses has been taken into account. Cardiac exposure to electric current densities of vertically and horizontally aligned dart electrodes was quantified and different hit scenarios compared. Since fibrillation thresholds critically depend on exposed volume, the provided quantitative data are essential for risk assessment. The maximum cardiac rms current densities amounted to 7730 A m{sup -2}. Such high current densities and exposed cardiac volumes do not exclude ventricular fibrillation.

  1. Use of cold intravenous fluid to induce hypothermia in a comatose child after cardiac arrest due to a lightning strike.

    Science.gov (United States)

    Kim, Young-Min; Jeong, Ju-Hwan; Kyong, Yeon-Young; Kim, Han-Joon; Kim, Ji-Hoon; Park, Jeong-Ho; Park, Kyu-Nam

    2008-11-01

    We report a case in which mild hypothermia was induced successfully using a cold intravenous fluid infusion in a 12-year-old boy who was comatose following 21 min of cardiac arrest caused by a lightning strike. PMID:18805616

  2. Inhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Ji

    2015-07-01

    Full Text Available Background: Uncoupling protein 2 (UCP2 is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. Methods: Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC, and then received genipin (a UCP2 selective inhibitor; 25 mg/kg/d, ip or vehicle for three weeks prior to histologic assessment of myocardial hypertrophy. ATP concentration, ROS level, and myocardial apoptosis were also examined. A parallel set of experiments was also conducted in UCP2-/- mice. Results: TAC induced left ventricular hypertrophy, as reflected by increased ventricular weight/thickness and increased size of myocardial cell (vs. sham controls. ATP concentration was decreased; ROS level was increased. Apoptosis and fibrosis markers were increased. TAC increased mitochondrial UCP2 expression in the myocardium at both mRNA and protein levels. Genipin treatment attenuated cardiac hypertrophy and the histologic/biochemical changes described above. Hypertrophy and associated changes induced by TAC in UCP2-/- mice were much less pronounced than in WT mice. Conclusions: Blocking UCP2 expression attenuates cardiac hypertrophy induced by pressure overload.

  3. Modulatory effect of semelil (ANGIPARS™) on isoproterenol induced cardiac injury

    OpenAIRE

    Ahmadi, Mahboubeh Yeganeh Haj; Badinloo, Marziyeh; Joukar, Siyavash; Mirzaeipour, Fateme; Najafipour, Hamid; Nasri, Hamidreza

    2013-01-01

    Administration of semelil (ANGIPARS™) has been successful in the treatment of diabetic foot ulcer. Considering the improvement of blood flow and anti-inflammatory effect that are attributed to this drug, we investigated its effect on cardiovascular performance in rabbits with isoproterenol (ISO) induced myocardial injury. Animal groups included: control group; ISO group, received ISO 50 mg/kg s.c. for two consecutive days; S1+ISO, S5+ISO and S10+ISO groups, received semelil 1, 5, and 10 mg...

  4. Cardiac-specific VLCAD deficiency induces dilated cardiomyopathy and cold intolerance

    Science.gov (United States)

    Xiong, Dingding; He, Huamei; James, Jeanne; Tokunaga, Chonan; Powers, Corey; Huang, Yan; Osinska, Hanna; Towbin, Jeffrey A.; Purevjav, Enkhsaikhan; Balschi, James A.; Javadov, Sabzali; McGowan, Francis X.; Strauss, Arnold W.

    2013-01-01

    The very long-chain acyl-CoA dehydrogenase (VLCAD) enzyme catalyzes the first step of mitochondrial β-oxidation. Patients with VLCAD deficiency present with hypoketotic hypoglycemia and cardiomyopathy, which can be exacerbated by fasting and/or cold stress. Global VLCAD knockout mice recapitulate these phenotypes: mice develop cardiomyopathy, and cold exposure leads to rapid hypothermia and death. However, the contribution of different tissues to development of these phenotypes has not been studied. We generated cardiac-specific VLCAD-deficient (cVLCAD−/−) mice by Cre-mediated ablation of the VLCAD in cardiomyocytes. By 6 mo of age, cVLCAD−/− mice demonstrated increased end-diastolic and end-systolic left ventricular dimensions and decreased fractional shortening. Surprisingly, selective VLCAD gene ablation in cardiomyocytes was sufficient to evoke severe cold intolerance in mice who rapidly developed severe hypothermia, bradycardia, and markedly depressed cardiac function in response to fasting and cold exposure (+5°C). We conclude that cardiac-specific VLCAD deficiency is sufficient to induce cold intolerance and cardiomyopathy and is associated with reduced ATP production. These results provide strong evidence that fatty acid oxidation in myocardium is essential for maintaining normal cardiac function under these stress conditions. PMID:24285112

  5. Characterization of troponin responses in isoproterenol-induced cardiac injury in the Hanover Wistar rat.

    Science.gov (United States)

    York, Malcolm; Scudamore, Cheryl; Brady, Sally; Chen, Christabelle; Wilson, Sharon; Curtis, Mark; Evans, Gareth; Griffiths, William; Whayman, Matthew; Williams, Thomas; Turton, John

    2007-06-01

    The investigations aimed to evaluate the usefulness of cardiac troponins as biomarkers of acute myocardial injury in the rat. Serum from female Hanover Wistar rats treated with a single intraperitoneal (IP) injection of isoproterenol (ISO) was assayed for cardiac troponin I (cTnI) (ACS: 180SE, Bayer), cTnI (Immulite 2000, Diagnostic Products Corporation) and cardiac troponin T (cTnT) (Elecsys 2010, Roche). In a time-course study (50.0 mg/kg ISO), serum cTnI (ACS:180SE) and cTnT increased above control levels at 1 hour postdosing, peaking at 2 hours (cTnI, 4.30 microg/L; cTnT, 1.79 microg/L), and declined to baseline by 48 hours, with histologic cardiac lesions first seen at 4 hours postdosing. The Immulite 2000 assay gave minimal cTnI signals, indicating poor immunoreactivity towards rat cTnI. In a dose-response study (0.25 to 20.0 mg/kg ISO), there was a trend for increasing cTnI (ACS:180SE) values with increasing ISO dose levels at 2 hours postdosing. By 24 hours, cTnI levels returned to baseline although chronic cardiac myodegeneration was present. We conclude that serum cTnI and cTnT levels are sensitive and specific biomarkers for detecting ISO induced myocardial injury in the rat. Serum troponin values reflect the development of histopathologic lesions; however peak troponin levels precede maximal lesion severity.

  6. Egr-1 Upregulates Siva-1 Expression and Induces Cardiac Fibroblast Apoptosis

    Directory of Open Access Journals (Sweden)

    Karin Zins

    2014-01-01

    Full Text Available The early growth response transcription factor Egr-1 controls cell specific responses to proliferation, differentiation and apoptosis. Expression of Egr-1 and downstream transcription is closely controlled and cell specific upregulation induced by processes such as hypoxia and ischemia has been previously linked to multiple aspects of cardiovascular injury. In this study, we showed constitutive expression of Egr-1 in cultured human ventricular cardiac fibroblasts, used adenoviral mediated gene transfer to study the effects of continuous Egr-1 overexpression and studied downstream transcription by Western blotting, immunohistochemistry and siRNA transfection. Apoptosis was assessed by fluorescence microscopy and flow cytometry in the presence of caspase inhibitors. Overexpression of Egr-1 directly induced apoptosis associated with caspase activation in human cardiac fibroblast cultures in vitro assessed by fluorescence microscopy and flow cytometry. Apoptotic induction was associated with a caspase activation associated loss of mitochondrial membrane potential and transient downstream transcriptional up-regulation of the pro-apoptotic gene product Siva-1. Suppression of Siva-1 induction by siRNA partially reversed Egr-1 mediated loss of cell viability. These findings suggest a previously unknown role for Egr-1 and transcriptional regulation of Siva-1 in the control of cardiac accessory cell death.

  7. Folate rescues lithium-, homocysteine- and Wnt3A-induced vertebrate cardiac anomalies

    Science.gov (United States)

    Han, Mingda; Serrano, Maria C.; Lastra-Vicente, Rosana; Brinez, Pilar; Acharya, Ganesh; Huhta, James C.; Chen, Ren; Linask, Kersti K.

    2009-01-01

    SUMMARY Elevated plasma homocysteine (HCy), which results from folate (folic acid, FA) deficiency, and the mood-stabilizing drug lithium (Li) are both linked to the induction of human congenital heart and neural tube defects. We demonstrated previously that acute administration of Li to pregnant mice on embryonic day (E)6.75 induced cardiac valve defects by potentiating Wnt–β-catenin signaling. We hypothesized that HCy may similarly induce cardiac defects during gastrulation by targeting the Wnt–β-catenin pathway. Because dietary FA supplementation protects from neural tube defects, we sought to determine whether FA also protects the embryonic heart from Li- or HCy-induced birth defects and whether the protection occurs by impacting Wnt signaling. Maternal elevation of HCy or Li on E6.75 induced defective heart and placental function on E15.5, as identified non-invasively using echocardiography. This functional analysis of HCy-exposed mouse hearts revealed defects in tricuspid and semilunar valves, together with altered myocardial thickness. A smaller embryo and placental size was observed in the treated groups. FA supplementation ameliorates the observed developmental errors in the Li- or HCy-exposed mouse embryos and normalized heart function. Molecular analysis of gene expression within the avian cardiogenic crescent determined that Li, HCy or Wnt3A suppress Wnt-modulated Hex (also known as Hhex) and Islet-1 (also known as Isl1) expression, and that FA protects from the gene misexpression that is induced by all three factors. Furthermore, myoinositol with FA synergistically enhances the protective effect. Although the specific molecular epigenetic control mechanisms remain to be defined, it appears that Li or HCy induction and FA protection of cardiac defects involve intimate control of the canonical Wnt pathway at a crucial time preceding, and during, early heart organogenesis. PMID:19638421

  8. Finding the rhythm of sudden cardiac death: new opportunities using induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Sallam, Karim; Li, Yingxin; Sager, Philip T; Houser, Steven R; Wu, Joseph C

    2015-06-01

    Sudden cardiac death is a common cause of death in patients with structural heart disease, genetic mutations, or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with sudden cardiac death. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology, including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single-ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell-derived cardiomyocytes resemble, but are not identical, adult human cardiomyocytes and provide a new platform for studying arrhythmic disorders leading to sudden cardiac death. A variety of platforms exist to phenotype cellular models, including conventional and automated patch clamp, multielectrode array, and computational modeling. Induced pluripotent stem cell-derived cardiomyocytes have been used to study long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy, and other hereditary cardiac disorders. Although induced pluripotent stem cell-derived cardiomyocytes are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of sudden cardiac death. PMID:26044252

  9. Pretreatment with the Total Flavone Glycosides of Flos Abelmoschus manihot and Hyperoside Prevents Glomerular Podocyte Apoptosis in Streptozotocin-Induced Diabetic Nephropathy

    OpenAIRE

    Lei ZHOU; An, Xiao-Fei; Teng, Shi-Chao; Liu, Jing-Shun; Shang, Wen-bin; Zhang, Ai-Hua; Yuan, Yang-Gang; Yu, Jiang-yi

    2012-01-01

    Diabetic nephropathy (DN) is an important diabetic complication, and podocyte apoptosis plays a critical role in the development of DN. In the present study, we examined the preventive effect of the total flavone glycosides of Flos Abelmoschus manihot (TFA) on urinary microalbumin and glomerular podocyte apoptosis in experimental DN rats. The preliminary oral administration of TFA (200 mg/kg/day) for 24 weeks significantly decreased the urinary microalbumin to creatinine ratio and 24-h urinar...

  10. Chronic expression of Ski induces apoptosis and represses autophagy in cardiac myofibroblasts.

    Science.gov (United States)

    Zeglinski, Matthew R; Davies, Jared J L; Ghavami, Saeid; Rattan, Sunil G; Halayko, Andrew J; Dixon, Ian M C

    2016-06-01

    Inappropriate cardiac interstitial remodeling is mediated by activated phenoconverted myofibroblasts. The synthesis of matrix proteins by these cells is triggered by both chemical and mechanical stimuli. Ski is a repressor of TGFβ1/Smad signaling and has been described as possessing anti-fibrotic properties within the myocardium. We hypothesized that overexpression of Ski in myofibroblasts will induce an apoptotic response, which may either be supported or opposed by autophagic flux. We used primary myofibroblasts (activated fibroblasts) which were sourced from whole heart preparations that were only passaged once. We found that overexpression of Ski results in distinct morphological and biochemical changes within primary cardiac myofibroblasts associated with apoptosis. Ski treatment was associated with the expression of pro-apoptotic factors such as Bax, caspase-7, and -9. Our results indicate that Ski triggers a pro-death mechanism in primary rat cardiac myofibroblasts that is mediated through the intrinsic apoptotic pathway. Myofibroblast survival is prolonged by an autophagic response, as the dataset indicate that apoptosis is hastened when autophagy is inhibited. We suggest that the apoptotic death response of myofibroblasts is working in parallel with the previously observed anti-fibrotic properties of Ski within this cell type. As myofibroblasts are the sole mediators of matrix expansion in heart failure, we suggest that Ski, or a putative Ski-mimetic, may induce graded apoptosis in myofibroblasts within the failing heart and may be a novel therapeutic approach towards controlling cardiac fibrosis. Future studies are needed to examine the potential effects of Ski overexpression on other cell types in the heart.

  11. Changes in cardiac heparan sulfate proteoglycan expression and streptozotocin-induced diastolic dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Cestari Ismar N

    2011-04-01

    Full Text Available Abstract Background Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ-induced diabetes. Methods Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the following groups: control (sham injection, after 24 hours, 10 days, or 30 days of STZ administration. Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day groups to correlate the observed mRNA changes to the protein expression. Results In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic dysfunction with alterations in the peak velocity of early (E diastolic filling and isovolumic relaxation time (IVRT indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower than that in the control group. The same results were obtained from immunohistochemistry analysis. Conclusion Our data suggest that membrane proteoglycans participate in the sequence of events triggered by diabetes and inflicted on cardiac and skeletal muscles.

  12. Endogenous resident c-Kit cardiac stem cells increase in mice with an exercise-induced, physiologically hypertrophied heart

    Directory of Open Access Journals (Sweden)

    Camila Ferreira Leite

    2015-07-01

    Full Text Available Physical activity evokes well-known adaptations in the cardiovascular system. Although exercise training induces cardiac remodeling, whether multipotent stem cells play a functional role in the hypertrophic process remains unknown. To evaluate this possibility, C57BL/6 mice were subjected to swimming training aimed at achieving cardiac hypertrophy, which was morphologically and electrocardiographically characterized. Subsequently, c-Kit+Lin− and Sca-1+Lin− cardiac stem cells (CSCs were quantified using flow cytometry while cardiac muscle-derived stromal cells (CMSCs, also known as cardiac-derived mesenchymal stem cells were assessed using in vitro colony-forming unit fibroblast assay (CFU-F. Only the number of c-Kit+Lin− cells increased in the hypertrophied heart. To investigate a possible extracardiac origin of these cells, a parabiotic eGFP transgenic/wild-type mouse model was used. The parabiotic pairs were subjected to swimming, and the wild-type heart in particular was tested for eGFP+ stem cells. The results revealed a negligible number of extracardiac stem cells in the heart, allowing us to infer a cardiac origin for the increased amount of detected c-Kit+ cells. In conclusion, the number of resident Sca-1+Lin− cells and CMSCs was not changed, whereas the number of c-Kit+Lin− cells was increased during physiological cardiac hypertrophy. These c-Kit+Lin− CSCs may contribute to the physiological cardiac remodeling that result from exercise training.

  13. Recurrent exposure to subclinical lipopolysaccharide increases mortality and induces cardiac fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Wilbur Y W Lew

    Full Text Available BACKGROUND: Circulating subclinical lipopolysaccharide (LPS occurs in health and disease. Ingesting high fatty meals increases LPS that cause metabolic endotoxemia. Subclinical LPS in periodontal disease may impair endothelial function. The heart may be targeted as cardiac cells express TLR4, the LPS receptor. It was hypothesized that recurrent exposure to subclinical LPS increases mortality and causes cardiac fibrosis. METHODS: C57Bl/6 mice were injected with intraperitoneal saline (control, low dose LPS (0.1 or 1 mg/kg, or moderate dose LPS (10 or 20 mg/kg, once a week for 3 months. Left ventricular (LV function (echocardiography, hemodynamics (tail cuff pressure and electrocardiograms (telemetry were measured. Cardiac fibrosis was assessed by picrosirius red staining and LV expression of fibrosis related genes (QRT-PCR. Adult cardiac fibroblasts were isolated and exposed to LPS. RESULTS: LPS injections transiently increased heart rate and blood pressure (<6 hours and mildly decreased LV function with full recovery by 24 hours. Mice tolerated weekly LPS for 2-3 months with no change in activity, appearance, appetite, weight, blood pressure, LV function, oximetry, or blood chemistries. Mortality increased after 60-90 days with moderate, but not low dose LPS. Arrhythmias occurred a few hours before death. LV collagen fraction area increased dose-dependently from 3.0±0.5% (SEM in the saline control group, to 5.6±0.5% with low dose LPS and 9.7±0.9% with moderate dose LPS (P<0.05 moderate vs low dose LPS, and each LPS dose vs control. LPS increased LV expression of collagen Iα1, collagen IIIα1, MMP2, MMP9, TIMP1, periostin and IL-6 (P<0.05 moderate vs low dose LPS and vs control. LPS increased α-SMA immunostaining of myofibroblasts. LPS dose-dependently increased IL-6 in isolated adult cardiac fibroblasts. CONCLUSIONS: Recurrent exposure to subclinical LPS increases mortality and induces cardiac fibrosis.

  14. Exogenous midkine administration prevents cardiac remodeling in pacing-induced congestive heart failure of rabbits.

    Science.gov (United States)

    Harada, Masahide; Hojo, Mayumi; Kamiya, Kaichiro; Kadomatsu, Kenji; Murohara, Toyoaki; Kodama, Itsuo; Horiba, Mitsuru

    2016-01-01

    Midkine (MK), a heparin-binding growth factor, has been shown to prevent cardiac remodeling after ischemic injury through its anti-apoptotic effect. Cell apoptosis is central to the pathophysiology of cardiac remodeling in congestive heart failure (CHF) of ischemic as well as non-ischemic origin. We hypothesized that MK exerts the anti-apoptotic cardioprotective effect in CHF of non-ischemic etiology. MK protein or vehicle (normal saline) was subcutaneously administered in tachycardia-induced CHF rabbits (right ventricular pacing, 350 beats/min, 4 weeks). The vehicle-treated rabbits (n = 19, control) demonstrated severe CHF and high mortality rate, whereas MK (n = 16) demonstrated a well-compensated state and a lower mortality rate. In echocardiography, left ventricular (LV) end-diastolic dimension decreased in MK versus control, whereas LV systolic function increased. In histological analysis (picrosirius red staining), MK decreased collagen deposition area compared with control. TUNEL staining showed that MK prevented cell apoptosis and minimized myocyte loss in the CHF rabbit ventricle, associated with activation of PI3-K/Akt signaling, producing a parallel decrease of Bax/Bcl-2 ratio. MK prevented progression of cardiac remodeling in the CHF rabbit, likely by activation of anti-apoptotic signaling. Exogenous MK application might be a novel therapeutic strategy for CHF due to non-ischemic origin.

  15. Dasatinib Attenuates Pressure Overload Induced Cardiac Fibrosis in a Murine Transverse Aortic Constriction Model.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    Full Text Available Reactive cardiac fibrosis resulting from chronic pressure overload (PO compromises ventricular function and contributes to congestive heart failure. We explored whether nonreceptor tyrosine kinases (NTKs play a key role in fibrosis by activating cardiac fibroblasts (CFb, and could potentially serve as a target to reduce PO-induced cardiac fibrosis. Our studies were carried out in PO mouse myocardium induced by transverse aortic constriction (TAC. Administration of a tyrosine kinase inhibitor, dasatinib, via an intraperitoneally implanted mini-osmotic pump at 0.44 mg/kg/day reduced PO-induced accumulation of extracellular matrix (ECM proteins and improved left ventricular geometry and function. Furthermore, dasatinib treatment inhibited NTK activation (primarily Pyk2 and Fak and reduced the level of FSP1 positive cells in the PO myocardium. In vitro studies using cultured mouse CFb showed that dasatinib treatment at 50 nM reduced: (i extracellular accumulation of both collagen and fibronectin, (ii both basal and PDGF-stimulated activation of Pyk2, (iii nuclear accumulation of Ki67, SKP2 and histone-H2B and (iv PDGF-stimulated CFb proliferation and migration. However, dasatinib did not affect cardiomyocyte morphologies in either the ventricular tissue after in vivo administration or in isolated cells after in vitro treatment. Mass spectrometric quantification of dasatinib in cultured cells indicated that the uptake of dasatinib by CFb was greater that that taken up by cardiomyocytes. Dasatinib treatment primarily suppressed PDGF but not insulin-stimulated signaling (Erk versus Akt activation in both CFb and cardiomyocytes. These data indicate that dasatinib treatment at lower doses than that used in chemotherapy has the capacity to reduce hypertrophy-associated fibrosis and improve ventricular function.

  16. Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats

    OpenAIRE

    Oliveira, Paulo J; Seiça, Raquel; Coxito, Pedro M.; Rolo, Anabela P.; Palmeira, Carlos M.; Santos, Maria S.; Moreno, António J. M.

    2003-01-01

    Cardiac dysfunction is associated with diabetes. It was previously shown that heart mitochondria from diabetic rats have a reduced calcium accumulation capacity. The objective of this work was to determine whether the reduction in calcium accumulation by cardiac mitochondria from diabetic rats is related to an enhanced susceptibility to induction of the mitochondrial permeability transition. Streptozotocin-induced diabetic rats were used as a model to study the alterations caused by diabetes ...

  17. PARM-1 is an endoplasmic reticulum molecule involved in endoplasmic reticulum stress-induced apoptosis in rat cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Koji Isodono

    Full Text Available To identify novel transmembrane and secretory molecules expressed in cardiac myocytes, signal sequence trap screening was performed in rat neonatal cardiac myocytes. One of the molecules identified was a transmembrane protein, prostatic androgen repressed message-1 (PARM-1. While PARM-1 has been identified as a gene induced in prostate in response to castration, its function is largely unknown. Our expression analysis revealed that PARM-1 was specifically expressed in hearts and skeletal muscles, and in the heart, cardiac myocytes, but not non-myocytes expressed PARM-1. Immunofluorescent staining showed that PARM-1 was predominantly localized in endoplasmic reticulum (ER. In Dahl salt-sensitive rats, high-salt diet resulted in hypertension, cardiac hypertrophy and subsequent heart failure, and significantly stimulated PARM-1 expression in the hearts, with a concomitant increase in ER stress markers such as GRP78 and CHOP. In cultured cardiac myocytes, PARM-1 expression was stimulated by proinflammatory cytokines, but not by hypertrophic stimuli. A marked increase in PARM-1 expression was observed in response to ER stress inducers such as thapsigargin and tunicamycin, which also induced apoptotic cell death. Silencing PARM-1 expression by siRNAs enhanced apoptotic response in cardiac myocytes to ER stresses. PARM-1 silencing also repressed expression of PERK and ATF6, and augmented expression of CHOP without affecting IRE-1 expression and JNK and Caspase-12 activation. Thus, PARM-1 expression is induced by ER stress, which plays a protective role in cardiac myocytes through regulating PERK, ATF6 and CHOP expression. These results suggested that PARM-1 is a novel ER transmembrane molecule involved in cardiac remodeling in hypertensive heart disease.

  18. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  19. Duration-controlled swimming exercise training induces cardiac hypertrophy in mice

    OpenAIRE

    F.S. Evangelista; P.C. Brum; J.E. Krieger

    2003-01-01

    Exercise training associated with robust conditioning can be useful for the study of molecular mechanisms underlying exercise-induced cardiac hypertrophy. A swimming apparatus is described to control training regimens in terms of duration, load, and frequency of exercise. Mice were submitted to 60- vs 90-min session/day, once vs twice a day, with 2 or 4% of the weight of the mouse or no workload attached to the tail, for 4 vs 6 weeks of exercise training. Blood pressure was unchanged in all g...

  20. Hydrogen sulfide suppresses transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts.

    Science.gov (United States)

    Zhang, YouEn; Wang, JiaNing; Li, Hua; Yuan, LiangJun; Wang, Lei; Wu, Bing; Ge, JunBo

    2015-11-01

    In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and secrete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (H2S) suppresses TGF-β1-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were serum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL(-1)) for 24 h with or without sodium hydrosulfide (NaHS, 100 µmol L(-1), 30 min pretreatment) treatment. NaHS, an exogenous H2S donor, potently inhibited the proliferation and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NaHS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S suppresses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.

  1. MicroRNA-101a Inhibits Cardiac Fibrosis Induced by Hypoxia via Targeting TGFβRI on Cardiac Fibroblasts

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2015-01-01

    Full Text Available Background/Aims: Hypoxia is a basic pathological challenge that is associated with numerous cardiovascular disorders including aberrant cardiac remodeling. Transforming growth factor beta (TGF-β signaling pathway plays a pivotal role in mediating cardiac fibroblast (CF function and cardiac fibrosis. Recent data suggested that microRNA-101a (miR-101a exerted anti-fibrotic effects in post-infarct cardiac remodeling and improved cardiac function. This study aimed to investigate the potential relationship between hypoxia, miR-101a and TGF-β signaling pathway in CFs. Methods and Results: Two weeks following coronary artery occlusion in rats, the expression levels of both TGFβ1 and TGFβRI were increased, but the expression of miR-101a was decreased at the site of the infarct and along its border. Cultured rat neonatal CFs treated with hypoxia were characterized by the up-regulation of TGFβ1 and TGFβRI and the down-regulation of miR-101a. Delivery of miR-101a mimics significantly suppressed the expression of TGFβRI and p-Smad 3, CF differentiation and collagen content of CFs. These anti-fibrotic effects were abrogated by co-transfection with AMO-miR-101a, an antisense inhibitor of miR-101a. The repression of TGFβRI, a target of miR-101a, was validated by luciferase reporter assays targeting the 3'UTR of TGFβRI. Additionally, we found that overexpression of miR-101a reversed the improved migration ability of CFs and further reduced CF proliferation caused by hypoxia. Conclusion: Our study illustrates that miR-101a exerts anti-fibrotic effects by targeting TGFβRI, suggesting that miR-101a plays a multi-faceted role in modulating TGF-β signaling pathway and cardiac fibrosis.

  2. Combinational effect of resveratrol and atorvastatin on isoproterenol-induced cardiac hypertrophy in rats

    Directory of Open Access Journals (Sweden)

    Songjukta Chakraborty

    2015-01-01

    Full Text Available Introduction: Resveratrol is a natural polyphenol present mainly in grapes. It has been shown to offer strong cardio protection in animal models due to its ability to correct lipid peroxidation and maintain antioxidants level. Atorvastatin, a HMG-CoA reductase inhibitor, lowers cholesterol level and is commonly prescribed to heart patients. Our aim in this study was to see the combination effect of these two drugs against Isoproterenol-induced cardiac hypertrophy in rats. Materials and Methods: Wister Albino rats were treated with resveratrol (20 mg/kg/day, p.o, atorvastatin (20 mg/kg/day, p.o and in combination (resveratrol [10 mg/kg/day, p.o] + atorvastatin [10 mg/kg/day, p.o] for a period of 25 days and from 15 th till 25 th day Isoproterenol (5 mg/kg/day, s.c was co-administered to rats to induce cardiac hypertrophy. Results: A significant increase in creatine kinase, lactate dehydrogenase, aspartate transaminase and lipid peroxidation with the significant decrease in reduced glutathione, superoxide dismutase and catalase were observed in Isoproterenol treated rats. Resveratrol, atorvastatin and their combination significantly reversed the effect. The histopathological studies and myocardial infarct size evaluation also confirmed the protection. Conclusion: Comparing the data we came to this conclusion that atorvastatin although showed the protection along all the parameters, the extent of protection offered by resveratrol alone and in combination were more effective. Hence, it can be concluded that resveratrol, an herbal nutritional supplement, alone and in combination is better against cardiac hypertrophy.

  3. Anti-thymocyte globulin induces neoangiogenesis and preserves cardiac function after experimental myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Michael Lichtenauer

    Full Text Available RATIONALE: Acute myocardial infarction (AMI followed by ventricular remodeling is the major cause of congestive heart failure and death in western world countries. OBJECTIVE: Of relevance are reports showing that infusion of apoptotic leucocytes or anti-lymphocyte serum after AMI reduces myocardial necrosis and preserves cardiac function. In order to corroborate this therapeutic mechanism, the utilization of an immunosuppressive agent with a comparable mechanism, such as anti-thymocyte globulin (ATG was evaluated in this study. METHODS AND RESULTS: AMI was induced in rats by ligation of the left anterior descending artery. Initially after the onset of ischemia, rabbit ATG (10 mg/rat was injected intravenously. In vitro and in vivo experiments showed that ATG induced a pronounced release of pro-angiogenic and chemotactic factors. Moreover, paracrine factors released from ATG co-incubated cell cultures conferred a down-regulation of p53 in cardiac myocytes. Rats that were injected with ATG evidenced higher numbers of CD68+ macrophages in the ischemic myocardium. Animals injected with ATG evidenced less myocardial necrosis, showed a significant reduction of infarct dimension and an improvement of post-AMI remodeling after six weeks (infarct dimension 24.9% vs. 11.4%, p<0.01. Moreover, a higher vessel density in the peri-infarct region indicated a better collateralization in rats that were injected with ATG. CONCLUSIONS: These data indicate that ATG, a therapeutic agent successfully applied in clinical transplant immunology, triggered cardioprotective effects after AMI that salvaged ischemic myocardium by down-regulation of p53. This might have raised the resistance against apoptotic cell death during ischemia. The combination of these mechanisms seems to be causative for improved cardiac function and less ventricular remodeling after experimental AMI.

  4. Cardiac comorbidity is an independent risk factor for radiation-induced lung toxicity in lung cancer patients

    International Nuclear Information System (INIS)

    Purpose: To test the hypothesis that cardiac comorbidity before the start of radiotherapy (RT) is associated with an increased risk of radiation-induced lung toxicity (RILT) in lung cancer patients. Material and methods: A retrospective analysis was performed of a prospective cohort of 259 patients with locoregional lung cancer treated with definitive radio(chemo)therapy between 2007 and 2011 (ClinicalTrials.gov Identifiers: NCT00572325 and NCT00573040). We defined RILT as dyspnea CTCv.3.0 grade ⩾2 within 6 months after RT, and cardiac comorbidity as a recorded treatment of a cardiac pathology at a cardiology department. Univariate and multivariate analyses, as well as external validation, were performed. The model-performance measure was the area under the receiver operating characteristic curve (AUC). Results: Prior to RT, 75/259 (28.9%) patients had cardiac comorbidity, 44% of whom (33/75) developed RILT. The odds ratio of developing RILT for patients with cardiac comorbidity was 2.58 (p < 0.01). The cross-validated AUC of a model with cardiac comorbidity, tumor location, forced expiratory volume in 1 s, sequential chemotherapy and pretreatment dyspnea score was 0.72 (p < 0.001) on the training set, and 0.67 (p < 0.001) on the validation set. Conclusion: Cardiac comorbidity is an important risk factor for developing RILT after definite radio(chemo)therapy of lung cancer patients

  5. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    Directory of Open Access Journals (Sweden)

    J.G.P. Tavares

    2015-02-01

    Full Text Available The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12 and epilepsy (n=14. It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01. During the ischemia period, there was an increase in the QRS interval (P<0.05 and a reduction in the P wave and QT intervals (P<0.05 for both in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01 was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode.

  6. Reperfusion-induced translocation of deltaPKC to cardiac mitochondria prevents pyruvate dehydrogenase reactivation.

    Science.gov (United States)

    Churchill, Eric N; Murriel, Christopher L; Chen, Che-Hong; Mochly-Rosen, Daria; Szweda, Luke I

    2005-07-01

    Cardiac ischemia and reperfusion are associated with loss in the activity of the mitochondrial enzyme pyruvate dehydrogenase (PDH). Pharmacological stimulation of PDH activity improves recovery in contractile function during reperfusion. Signaling mechanisms that control inhibition and reactivation of PDH during reperfusion were therefore investigated. Using an isolated rat heart model, we observed ischemia-induced PDH inhibition with only partial recovery evident on reperfusion. Translocation of the redox-sensitive delta-isoform of protein kinase C (PKC) to the mitochondria occurred during reperfusion. Inhibition of this process resulted in full recovery of PDH activity. Infusion of the deltaPKC activator H2O2 during normoxic perfusion, to mimic one aspect of cardiac reperfusion, resulted in loss in PDH activity that was largely attributable to translocation of deltaPKC to the mitochondria. Evidence indicates that reperfusion-induced translocation of deltaPKC is associated with phosphorylation of the alphaE1 subunit of PDH. A potential mechanism is provided by in vitro data demonstrating that deltaPKC specifically interacts with and phosphorylates pyruvate dehydrogenase kinase (PDK)2. Importantly, this results in activation of PDK2, an enzyme capable of phosphorylating and inhibiting PDH. Thus, translocation of deltaPKC to the mitochondria during reperfusion likely results in activation of PDK2 and phosphorylation-dependent inhibition of PDH. PMID:15961716

  7. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, J.G.P. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Universidade Iguaçu, Campos V, Itaperuna, RJ (Brazil); Faculdade de Minas, Muriaé, MG (Brazil); Vasques, E.R. [Departamento de Gastroenterologia, LIM 37, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Arida, R.M. [Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cavalheiro, E.A. [Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cabral, F.R.; Torres, L.B. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Godoy, C.M.G. [Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP (Brazil); Gomes da Silva, S. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Núcleo de Pesquisas Tecnológicas, Programa Integrado em Engenharia Biomédica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP (Brazil)

    2015-01-13

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode.

  8. Two-photon induced collagen cross-linking in bioartificial cardiac tissue

    Science.gov (United States)

    Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

    2011-08-01

    Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

  9. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    International Nuclear Information System (INIS)

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode

  10. Duration-controlled swimming exercise training induces cardiac hypertrophy in mice

    Directory of Open Access Journals (Sweden)

    F.S. Evangelista

    2003-12-01

    Full Text Available Exercise training associated with robust conditioning can be useful for the study of molecular mechanisms underlying exercise-induced cardiac hypertrophy. A swimming apparatus is described to control training regimens in terms of duration, load, and frequency of exercise. Mice were submitted to 60- vs 90-min session/day, once vs twice a day, with 2 or 4% of the weight of the mouse or no workload attached to the tail, for 4 vs 6 weeks of exercise training. Blood pressure was unchanged in all groups while resting heart rate decreased in the trained groups (8-18%. Skeletal muscle citrate synthase activity, measured spectrophotometrically, increased (45-58% only as a result of duration and frequency-controlled exercise training, indicating that endurance conditioning was obtained. In groups which received duration and endurance conditioning, cardiac weight (14-25% and myocyte dimension (13-20% increased. The best conditioning protocol to promote physiological hypertrophy, our primary goal in the present study, was 90 min, twice a day, 5 days a week for 4 weeks with no overload attached to the body. Thus, duration- and frequency-controlled exercise training in mice induces a significant conditioning response qualitatively similar to that observed in humans.

  11. Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis.

    Science.gov (United States)

    Zhang, Xiaohui; Zhang, Xiaohua; Xiong, Yiqun; Xu, Chaoying; Liu, Xinliang; Lin, Jian; Mu, Guiping; Xu, Shaogang; Liu, Wenhe

    2016-09-01

    The sarcolemmal ATP-sensitive K+ (sarcKATP) channel plays a cardioprotective role during stress. However, the role of the sarcKATP channel in the apoptosis of cardiomyocytes and association with mitochondrial calcium remains unclear. For this purpose, we developed a model of LPS-induced sepsis in neonatal rat cardiomyocytes (NRCs). The TUNEL assay was performed in order to detect the apoptosis of cardiac myocytes and the MTT assay was performed to determine cellular viability. Exposure to LPS significantly decreased the viability of the NRCs as well as the expression of Bcl-2, whereas it enhanced the activity and expression of the apoptosis-related proteins caspase-3 and Bax, respectively. The sarcKATP channel blocker, HMR-1098, increased the apoptosis of NRCs, whereas the specific sarcKATP channel opener, P-1075, reduced the apoptosis of NRCs. The mitochondrial calcium uniporter inhibitor ruthenium red (RR) partially inhibited the pro-apoptotic effect of HMR-1098. In order to confirm the role of the sarcKATP channel, we constructed a recombinant adenovirus vector carrying the sarcKATP channel mutant subunit Kir6.2AAA to inhibit the channel activity. Kir6.2AAA adenovirus infection in NRCs significantly aggravated the apoptosis of myocytes induced by LPS. Elucidating the regulatory mechanisms of the sarcKATP channel in apoptosis may facilitate the development of novel therapeutic targets and strategies for the management of sepsis and cardiac dysfunction. PMID:27430376

  12. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story

    Directory of Open Access Journals (Sweden)

    Mohammad T. Elnakish

    2015-01-01

    Full Text Available Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models.

  13. Deficiency of Smad7 enhances cardiac remodeling induced by angiotensin II infusion in a mouse model of hypertension.

    Directory of Open Access Journals (Sweden)

    Li Hua Wei

    Full Text Available Smad7 has been shown to negatively regulate fibrosis and inflammation, but its role in angiotensin II (Ang II-induced hypertensive cardiac remodeling remains unknown. Therefore, the present study investigated the role of Smad7 in hypertensive cardiopathy induced by angiotensin II infusion. Hypertensive cardiac disease was induced in Smad7 gene knockout (KO and wild-type (WT mice by subcutaneous infusion of Ang II (1.46 mg/kg/day for 28 days. Although equal levels of high blood pressure were developed in both Smad7 KO and WT mice, Smad7 KO mice developed more severe cardiac injury as demonstrated by impairing cardiac function including a significant increase in left ventricular (LV mass (P<0.01,reduction of LV ejection fraction(P<0.001 and fractional shortening(P<0.001. Real-time PCR, Western blot and immunohistochemistry detected that deletion of Smad7 significantly enhanced Ang II-induced cardiac fibrosis and inflammation, including upregulation of collagen I, α-SMA, interleukin-1β, TNF-α, and infiltration of CD3(+ T cells and F4/80(+ macrophages. Further studies revealed that enhanced activation of the Sp1-TGFβ/Smad3-NF-κB pathways and downregulation of miR-29 were mechanisms though which deletion of Smad7 promoted Ang II-mediated cardiac remodeling. In conclusions, Smad7 plays a protective role in AngII-mediated cardiac remodeling via mechanisms involving the Sp1-TGF-β/Smad3-NF.κB-miR-29 regulatory network.

  14. Reevesioside A, a cardenolide glycoside, induces anticancer activity against human hormone-refractory prostate cancers through suppression of c-myc expression and induction of G1 arrest of the cell cycle.

    Directory of Open Access Journals (Sweden)

    Wohn-Jenn Leu

    Full Text Available In the past decade, there has been a profound increase in the number of studies revealing that cardenolide glycosides display inhibitory activity on the growth of human cancer cells. The use of potential cardenolide glycosides may be a worthwhile approach in anticancer research. Reevesioside A, a cardenolide glycoside isolated from the root of Reevesia formosana, displayed potent anti-proliferative activity against human hormone-refractory prostate cancers. A good correlation (r² = 0.98 between the expression of Na⁺/K⁺-ATPase α₃ subunit and anti-proliferative activity suggested the critical role of the α₃ subunit. Reevesioside A induced G1 arrest of the cell cycle and subsequent apoptosis in a thymidine block-mediated synchronization model. The data were supported by the down-regulation of several related cell cycle regulators, including cyclin D1, cyclin E and CDC25A. Reevesioside A also caused a profound decrease of RB phosphorylation, leading to an increased association between RB and E2F1 and the subsequent suppression of E2F1 activity. The protein and mRNA levels of c-myc, which can activate expression of many downstream cell cycle regulators, were dramatically inhibited by reevesioside A. Transient transfection of c-myc inhibited the down-regulation of both cyclin D1 and cyclin E protein expression to reevesioside A action, suggesting that c-myc functioned as an upstream regulator. Flow cytometric analysis of JC-1 staining demonstrated that reevesioside A also induced the significant loss of mitochondrial membrane potential. In summary, the data suggest that reevesioside A inhibits c-myc expression and down-regulates the expression of CDC25A, cyclin D1 and cyclin E, leading to a profound decrease of RB phosphorylation. G1 arrest is, therefore, induced through E2F1 suppression. Consequently, reevesioside A causes mitochondrial damage and an ultimate apoptosis in human hormone-refractory prostate cancer cells.

  15. EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats

    Institute of Scientific and Technical Information of China (English)

    Rui SHENG; Zhen-lun GU; Mei-lin XIE; Wen-xuan ZHOU; Ci-yi GUO

    2007-01-01

    Aim: To investigate the effects of epigallocatechin gallate (EGCG) on pressure overload and hydrogen peroxide (H2O2) induced cardiac myocyte apoptosis. Methods: Cardiac hypertrophy was established in rats by abdominal aortic constriction. EGCG 25, 50 and 100 mg/kg were administered intragastrically (ig). Cultured newborn rat cardiomyocytes were preincubated with EGCG, and oxidative stress injury was induced by H2O2. Results: In cardiac hypertrophy induced by AC in rats, relative to the model group, EGCG 25, 50 and 100 mg/kg ig for 6weeks dose-dependently reduced systolic blood pressure (SBP) and heart weight indices, decreased malondialdehyde (MDA) content, and increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, both in serum and in the myocardium. Also, treatment with EGCG 50 and 100 mg/kg markedly improved cardiac structure and inhibited fibrosis in HE and van Gieson (VG) stain, and reduced apoptotic myocytes in the hypertrophic myocardium detected by terminal transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Inthe Western blot analysis, EGCG significantly inhibited pressure overload-inducedp53 increase and bcl-2 decrease. In H2O2-induced cardiomyocyte injury, when preincubated with myocytes for 6-48 h, EGCG 12.5-200 mg/L increased cell viability determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay. EGCG also attenuated H2O2-induced lactate dehydrogenase (LDH) release and MDA formation. Meanwhile, EGCG 50 and 100 mg/L significantly inhibited the cardiomyocyte apoptotic rate in flow cytometry. Conclusion: EGCG inhibits cardiac myocyte apoptosis and oxidative stress in pressure overload in-duced cardiac hypertrophy. Also, EGCG prevented cardiomyocyte apoptosis from oxidative stress in vitro. The mechanism might be related to the inhibitory effects of EGCG on p53 induction and bcl-2 decrease.

  16. Fractal Dimension in Quantifying Experimental-Pulmonary-Hypertension-Induced Cardiac Dysfunction in Rats

    Science.gov (United States)

    Pacagnelli, Francis Lopes; Sabela, Ana Karênina Dias de Almeida; Mariano, Thaoan Bruno; Ozaki, Guilherme Akio Tamura; Castoldi, Robson Chacon; do Carmo, Edna Maria; Carvalho, Robson Francisco; Tomasi, Loreta Casquel; Okoshi, Katashi; Vanderlei, Luiz Carlos Marques

    2016-01-01

    Background Right-sided heart failure has high morbidity and mortality, and may be caused by pulmonary arterial hypertension. Fractal dimension is a differentiated and innovative method used in histological evaluations that allows the characterization of irregular and complex structures and the quantification of structural tissue changes. Objective To assess the use of fractal dimension in cardiomyocytes of rats with monocrotaline-induced pulmonary arterial hypertension, in addition to providing histological and functional analysis. Methods Male Wistar rats were divided into 2 groups: control (C; n = 8) and monocrotaline-induced pulmonary arterial hypertension (M; n = 8). Five weeks after pulmonary arterial hypertension induction with monocrotaline, echocardiography was performed and the animals were euthanized. The heart was dissected, the ventricles weighed to assess anatomical parameters, and histological slides were prepared and stained with hematoxylin/eosin for fractal dimension analysis, performed using box-counting method. Data normality was tested (Shapiro-Wilk test), and the groups were compared with non-paired Student t test or Mann Whitney test (p < 0.05). Results Higher fractal dimension values were observed in group M as compared to group C (1.39 ± 0.05 vs. 1.37 ± 0.04; p < 0.05). Echocardiography showed lower pulmonary artery flow velocity, pulmonary acceleration time and ejection time values in group M, suggesting function worsening in those animals. Conclusion The changes observed confirm pulmonary-arterial-hypertension-induced cardiac dysfunction, and point to fractal dimension as an effective method to evaluate cardiac morphological changes induced by ventricular dysfunction. PMID:27223643

  17. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    2001-05-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52{+-}15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m{sup 2} or higher were assigned to the high dose group and those given doses under 300 mg/m{sup 2} to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3{+-}218.2 mg/m{sup 2}. In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m{sup 2} appeared to be the borderline dose beyond

  18. 5-Azacytidine Induces Cardiac Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells by Activating Extracellular Regulated Kinase

    OpenAIRE

    Qian, Qian; QIAN, HUI; Zhang, Xu; Zhu, Wei; Yan, Yongmin; Ye, Shengqin; Peng, Xiujuan; Li, Wei; Xu, Zhe; Sun, Lingyun; Xu, Wenrong

    2011-01-01

    5-Azacytidine (5-Aza) induces differentiation of mesenchymal stem cells (MSCs) into cardiomyocytes. However, the underlying mechanisms are not well understood. Our previous work showed that 5-Aza induces human bone marrow-derived MSCs to differentiate into cardiomyocytes. Here, we demonstrated that 5-Aza induced cardiac differentiation of human umbilical cord-derived MSCs (hucMSCs) and explored the potential signaling pathway. Our results showed that hucMSCs had cardiomyocyte phenotypes after...

  19. Fenofibrate unexpectedly induces cardiac hypertrophy in mice lacking MuRF1.

    Science.gov (United States)

    Parry, Traci L; Desai, Gopal; Schisler, Jonathan C; Li, Luge; Quintana, Megan T; Stanley, Natalie; Lockyer, Pamela; Patterson, Cam; Willis, Monte S

    2016-01-01

    The muscle-specific ubiquitin ligase muscle ring finger-1 (MuRF1) is critical in regulating both pathological and physiological cardiac hypertrophy in vivo. Previous work from our group has identified MuRF1's ability to inhibit serum response factor and insulin-like growth factor-1 signaling pathways (via targeted inhibition of cJun as underlying mechanisms). More recently, we have identified that MuRF1 inhibits fatty acid metabolism by targeting peroxisome proliferator-activated receptor alpha (PPARα) for nuclear export via mono-ubiquitination. Since MuRF1-/- mice have an estimated fivefold increase in PPARα activity, we sought to determine how challenge with the PPARα agonist fenofibrate, a PPARα ligand, would affect the heart physiologically. In as little as 3 weeks, feeding with fenofibrate/chow (0.05% wt/wt) induced unexpected pathological cardiac hypertrophy not present in age-matched sibling wild-type (MuRF1+/+) mice, identified by echocardiography, cardiomyocyte cross-sectional area, and increased beta-myosin heavy chain, brain natriuretic peptide, and skeletal muscle α-actin mRNA. In addition to pathological hypertrophy, MuRF1-/- mice had an unexpected differential expression in genes associated with the pleiotropic effects of fenofibrate involved in the extracellular matrix, protease inhibition, hemostasis, and the sarcomere. At both 3 and 8 weeks of fenofibrate treatment, the differentially expressed MuRF1-/- genes most commonly had SREBP-1 and E2F1/E2F promoter regions by TRANSFAC analysis (54 and 50 genes, respectively, of the 111 of the genes >4 and bridges, for the first time, MuRF1's regulation of PPARα, cardiac hypertrophy, and hemostasis. PMID:26764147

  20. Prevention of Pazopanib-Induced Prolonged Cardiac Repolarization and Proarrhythmic Effects

    Directory of Open Access Journals (Sweden)

    Tulay Akman

    2014-11-01

    Full Text Available Background: Pazopanib (PZP may induce prolonged cardiac repolarization and proarrhythmic effects, similarly to other tyrosine kinase inhibitors. Objectives: To demonstrate PZP-induced prolonged cardiac repolarization and proarrhythmic electrophysiological effects and to investigate possible preventive effects of metoprolol and diltiazem on ECG changes (prolonged QT in an experimental rat model. Methods: Twenty-four Sprague-Dawley adult male rats were randomly assigned to 4 groups (n = 6. The first group (normal group received 4 mL of tap water and the other groups received 100 mg/kg of PZP (Votrient® tablet perorally, via orogastric tubes. After 3 hours, the following solutions were intraperitoneally administered to the animals: physiological saline solution (SP, to the normal group and to the second group (control-PZP+SP group; 1 mg/kg metoprolol (Beloc, Ampule, AstraZeneca, to the third group (PZP+metoprolol group; and 1mg/kg diltiazem (Diltiazem, Mustafa Nevzat, to the fourth group (PZP+diltiazem group. One hour after, and under anesthesia, QTc was calculated by recording ECG on lead I. Results: The mean QTc interval values were as follows: normal group, 99.93 ± 3.62 ms; control-PZP+SP group, 131.23 ± 12.21 ms; PZP+metoprolol group, 89.36 ± 3.61 ms; and PZP+diltiazem group, 88.86 ± 4.04 ms. Both PZP+metoprolol and PZP+diltiazem groups had significantly shorter QTc intervals compared to the control-PZP+SP group (p < 0.001. Conclusion: Both metoprolol and diltiazem prevented PZP-induced QT interval prolongation. These drugs may provide a promising prophylactic strategy for the prolonged QTc interval associated with tyrosine kinase inhibitor use.

  1. Senescence marker protein 30 has a cardio-protective role in doxorubicin-induced cardiac dysfunction.

    Directory of Open Access Journals (Sweden)

    Makiko Miyata

    Full Text Available BACKGROUND: Senescence marker protein 30 (SMP30, which was originally identified as an aging marker protein, is assumed to act as a novel anti-aging factor in the liver, lungs and brain. We hypothesized that SMP30 has cardio-protective function due to its anti-aging and anti-oxidant effects on doxorubicin (DOX-induced cardiac dysfunction. METHODS AND RESULTS: SMP30 knockout (SMP30 KO mice, SMP30 transgenic (SMP30 TG mice with cardiac-specific overexpression of SMP30 gene and wild-type (WT littermate mice at 12-14 weeks of age were given intra-peritoneal injection of DOX (20 mg/kg or saline. Five days after DOX injection, echocardiography revealed that left ventricular ejection fraction was more severely reduced in the DOX-treated SMP30 KO mice than in the DOX-treated WT mice, but was preserved in the DOX-treated SMP30 TG mice. Generation of reactive oxygen species and oxidative DNA damage in the myocardium were greater in the DOX-treated SMP30 KO mice than in the DOX-treated WT mice, but much less in the SMP30 TG mice. The numbers of deoxynucleotidyltransferase-mediated dUTP nick end-labeling positive nuclei in the myocardium, apoptotic signaling pathways such as caspase-3 activity, Bax/Bcl-2 ratio and phosphorylation activity of c-Jun N-terminal kinase were increased in SMP30 KO mice and decreased in SMP30 TG mice compared with WT mice after DOX injection. CONCLUSIONS: SMP30 has a cardio-protective role by anti-oxidative and anti-apoptotic effects in DOX-induced cardiotoxicity, and can be a new therapeutic target to prevent DOX-induced heart failure.

  2. Prevention of Pazopanib-Induced Prolonged Cardiac Repolarization and Proarrhythmic Effects.

    Science.gov (United States)

    Akman, Tulay; Erbas, Oytun; Akman, Levent; Yilmaz, Ahmet U

    2014-11-01

    Background: Pazopanib (PZP) may induce prolonged cardiac repolarization and proarrhythmic effects, similarly to other tyrosine kinase inhibitors. Objectives: To demonstrate PZP-induced prolonged cardiac repolarization and proarrhythmic electrophysiological effects and to investigate possible preventive effects of metoprolol and diltiazem on ECG changes (prolonged QT) in an experimental rat model. Methods: Twenty-four Sprague-Dawley adult male rats were randomly assigned to 4 groups (n = 6). The first group (normal group) received 4 mL of tap water and the other groups received 100 mg/kg of PZP (Votrient® tablet) perorally, via orogastric tubes. After 3 hours, the following solutions were intraperitoneally administered to the animals: physiological saline solution (SP), to the normal group and to the second group (control-PZP+SP group); 1 mg/kg metoprolol (Beloc, Ampule, AstraZeneca), to the third group (PZP+metoprolol group); and 1mg/kg diltiazem (Diltiazem, Mustafa Nevzat), to the fourth group (PZP+diltiazem group). One hour after, and under anesthesia, QTc was calculated by recording ECG on lead I. Results: The mean QTc interval values were as follows: normal group, 99.93 ± 3.62 ms; control-PZP+SP group, 131.23 ± 12.21 ms; PZP+metoprolol group, 89.36 ± 3.61 ms; and PZP+diltiazem group, 88.86 ± 4.04 ms. Both PZP+metoprolol and PZP+diltiazem groups had significantly shorter QTc intervals compared to the control-PZP+SP group (p PZP-induced QT interval prolongation. These drugs may provide a promising prophylactic strategy for the prolonged QTc interval associated with tyrosine kinase inhibitor use.

  3. Autoantibody against Cardiac β1-Adrenoceptor Induces Apoptosis in Cultured Neonatal Rat Cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yan GAO; Hui-Rong LIU; Rong-Rui ZHAO; Jian-Ming ZHI

    2006-01-01

    To clarify whether apoptosis is involved in the injury processes induced by autoantibody against cardiac β1-adrenoceptor, we investigated the biological and apoptotic effects of antibodies on cultured neonatal rat cardiomyocytes. Wistar rats were immunized with peptides corresponding to the second extracellular loop of the β1-adrenoceptor to induce the production of anti-β1-adrenoceptor antibodies in the sera.Immunoglobulin (Ig) G in the sera was detected using synthetic antigen enzyme-linked immunosorbent assay and purified using the diethylaminoethyl cellulose ion exchange technique. Apoptosis of cardiomyocytes was evaluated using agarose gel electrophoresis and flow cytometry. Our results showed that the positive serum IgG greatly increased the beating rates of cardiomyocytes and showed an "agonist-like" activity. Furthermore, positive serum IgG induced cardiomyocyte apoptosis after treatment with β1adrenoceptor overstimulation for 48 h. The effects of monoclonal antibody against β1-adrenoceptor were also found to be similar to those of positive serum IgG. It was suggested that the autoantibody could induce cardiomyocyte apoptosis by excessive stimulation of β1-adrenoceptor.

  4. Detecting drug-induced prolongation of the QRS complex: New insights for cardiac safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cros, C., E-mail: caroline.cros@hotmail.co.uk [Safety Pharmacology, Global Safety Assessment, Safety Assessment UK, AstraZeneca R and D, Alderley Park, Macclesfield, SK10 4TG (United Kingdom); Skinner, M., E-mail: Matthew.Skinner@astrazeneca.com [Safety Pharmacology, Global Safety Assessment, Safety Assessment UK, AstraZeneca R and D, Alderley Park, Macclesfield, SK10 4TG (United Kingdom); Moors, J. [Safety Pharmacology, Global Safety Assessment, Safety Assessment UK, AstraZeneca R and D, Alderley Park, Macclesfield, SK10 4TG (United Kingdom); Lainee, P. [Sanofi-Aventis R and D, 371, rue du Pr Joseph Blayac, 34184 Montpellier Cedex 04 (France); Valentin, J.P. [Safety Pharmacology, Global Safety Assessment, Safety Assessment UK, AstraZeneca R and D, Alderley Park, Macclesfield, SK10 4TG (United Kingdom)

    2012-12-01

    Background: Drugs slowing the conduction of the cardiac action potential and prolonging QRS complex duration by blocking the sodium current (I{sub Na}) may carry pro-arrhythmic risks. Due to the frequency-dependent block of I{sub Na}, this study assesses whether activity-related spontaneous increases in heart rate (HR) occurring during standard dog telemetry studies can be used to optimise the detection of class I antiarrhythmic-induced QRS prolongation. Methods: Telemetered dogs were orally dosed with quinidine (class Ia), mexiletine (class Ib) or flecainide (class Ic). QRS duration was determined standardly (5 beats averaged at rest) but also prior to and at the plateau of each acute increase in HR (3 beats averaged at steady state), and averaged over 1 h period from 1 h pre-dose to 5 h post-dose. Results: Compared to time-matched vehicle, at rest, only quinidine and flecainide induced increases in QRS duration (E{sub max} 13% and 20% respectively, P < 0.01–0.001) whereas mexiletine had no effect. Importantly, the increase in QRS duration was enhanced at peak HR with an additional effect of + 0.7 ± 0.5 ms (quinidine, NS), + 1.8 ± 0.8 ms (mexiletine, P < 0.05) and + 2.8 ± 0.8 ms (flecainide, P < 0.01) (calculated as QRS at basal HR-QRS at high HR). Conclusion: Electrocardiogram recordings during elevated HR, not considered during routine analysis optimised for detecting QT prolongation, can be used to sensitise the detection of QRS prolongation. This could prove useful when borderline QRS effects are detected. Analysing during acute increases in HR could also be useful for detecting drug-induced effects on other aspects of cardiac function. -- Highlights: ► We aimed to improve detection of drug-induced QRS prolongation in safety screening. ► We used telemetered dogs to test class I antiarrhythmics at low and high heart rate. ► At low heart rate only quinidine and flecainide induced an increase in QRS duration. ► At high heart rate the effects of two

  5. Examining the role of TRPA1 in air pollution-induced cardiac arrhythmias and autonomic imbalance

    Science.gov (United States)

    Here we describe how air pollution causes cardiac arrhythmogenesis through sensory irritation in the airways. Time-series studies show the risk of adverse cardiac events increases significantly in the hours to days after expos...

  6. Paracrine Effects of Adipose-Derived Stem Cells on Matrix Stiffness-Induced Cardiac Myofibroblast Differentiation via Angiotensin II Type 1 Receptor and Smad7

    Science.gov (United States)

    Yong, Kar Wey; Li, Yuhui; Liu, Fusheng; Bin Gao; Lu, Tian Jian; Wan Abas, Wan Abu Bakar; Wan Safwani, Wan Kamarul Zaman; Pingguan-Murphy, Belinda; Ma, Yufei; Xu, Feng; Huang, Guoyou

    2016-01-01

    Human mesenchymal stem cells (hMSCs) hold great promise in cardiac fibrosis therapy, due to their potential ability of inhibiting cardiac myofibroblast differentiation (a hallmark of cardiac fibrosis). However, the mechanism involved in their effects remains elusive. To explore this, it is necessary to develop an in vitro cardiac fibrosis model that incorporates pore size and native tissue-mimicking matrix stiffness, which may regulate cardiac myofibroblast differentiation. In the present study, collagen coated polyacrylamide hydrogel substrates were fabricated, in which the pore size was adjusted without altering the matrix stiffness. Stiffness is shown to regulate cardiac myofibroblast differentiation independently of pore size. Substrate at a stiffness of 30 kPa, which mimics the stiffness of native fibrotic cardiac tissue, was found to induce cardiac myofibroblast differentiation to create in vitro cardiac fibrosis model. Conditioned medium of hMSCs was applied to the model to determine its role and inhibitory mechanism on cardiac myofibroblast differentiation. It was found that hMSCs secrete hepatocyte growth factor (HGF) to inhibit cardiac myofibroblast differentiation via downregulation of angiotensin II type 1 receptor (AT1R) and upregulation of Smad7. These findings would aid in establishment of the therapeutic use of hMSCs in cardiac fibrosis therapy in future. PMID:27703175

  7. Recent Advances on Pathophysiology, Diagnostic and Therapeutic Insights in Cardiac Dysfunction Induced by Antineoplastic Drugs

    Directory of Open Access Journals (Sweden)

    Marilisa Molinaro

    2015-01-01

    Full Text Available Along with the improvement of survival after cancer, cardiotoxicity due to antineoplastic treatments has emerged as a clinically relevant problem. Potential cardiovascular toxicities due to anticancer agents include QT prolongation and arrhythmias, myocardial ischemia and infarction, hypertension and/or thromboembolism, left ventricular (LV dysfunction, and heart failure (HF. The latter is variable in severity, may be reversible or irreversible, and can occur soon after or as a delayed consequence of anticancer treatments. In the last decade recent advances have emerged in clinical and pathophysiological aspects of LV dysfunction induced by the most widely used anticancer drugs. In particular, early, sensitive markers of cardiac dysfunction that can predict this form of cardiomyopathy before ejection fraction (EF is reduced are becoming increasingly important, along with novel therapeutic and cardioprotective strategies, in the attempt of protecting cardiooncologic patients from the development of congestive heart failure.

  8. Inhibition of ref-1 stimulates the production of reactive oxygen species and induces differentiation in adult cardiac stem cells.

    Science.gov (United States)

    Gurusamy, Narasimman; Mukherjee, Subhendu; Lekli, Istvan; Bearzi, Claudia; Bardelli, Silvana; Das, Dipak K

    2009-03-01

    Redox effector protein-1 (Ref-1) plays an essential role in DNA repair and redox regulation of several transcription factors. In the present study, we examined the role of Ref-1 in maintaining the redox status and survivability of adult cardiac stem cells challenged with a subtoxic level of H2O2 under inhibition of Ref-1 by RNA interference. Treatment of cardiac stem cells with a low concentration of H2O2 induced Ref-1-mediated survival signaling through phosphorylation of Akt. However, Ref-1 inhibition followed by H2O2 treatment extensively induced the level of intracellular reactive oxygen species (ROS) through activation of the components of NADPH oxidase, like p22( phox ), p47( phox ), and Nox4. Cardiac differentiation markers (Nkx2.5, MEF2C, and GATA4), and cell death by apoptosis were significantly elevated in Ref-1 siRNA followed by H2O2-treated stem cells. Further, inhibition of Ref-1 increased the level of p53 but decreased the phosphorylation of Akt, a molecule involved in survival signaling. Treatment with ROS scavenger N-acetyl-L-cysteine attenuated Ref-1 siRNA-mediated activation of NADPH oxidase and cardiac differentiation. Taken together, these results indicate that Ref-1 plays an important role in maintaining the redox status of cardiac stem cells and protects them from oxidative injury-mediated cell death and differentiation.

  9. Inducible Conditional Vascular-Specific Overexpression of Peroxisome Proliferator-Activated Receptor Beta/Delta Leads to Rapid Cardiac Hypertrophy

    Science.gov (United States)

    Wagner, Kay-Dietrich; Vukolic, Ana; Baudouy, Delphine; Michiels, Jean-François

    2016-01-01

    Peroxisome proliferator-activated receptors are nuclear receptors which function as ligand-activated transcription factors. Among them, peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in the heart and thought to have cardioprotective functions due to its beneficial effects in metabolic syndrome. As we already showed that PPARβ/δ activation resulted in an enhanced cardiac angiogenesis and growth without impairment of heart function, we were interested to determine the effects of a specific activation of PPARβ/δ in the vasculature on cardiac performance under normal and in chronic ischemic heart disease conditions. We analyzed the effects of a specific PPARβ/δ overexpression in endothelial cells on the heart using an inducible conditional vascular-specific mouse model. We demonstrate that vessel-specific overexpression of PPARβ/δ induces rapid cardiac angiogenesis and growth with an increase in cardiomyocyte size. Upon myocardial infarction, vascular overexpression of PPARβ/δ, despite the enhanced cardiac vessel formation, does not protect against chronic ischemic injury. Our results suggest that the proper balance of PPARβ/δ activation in the different cardiac cell types is required to obtain beneficial effects on the outcome in chronic ischemic heart disease. PMID:27057154

  10. From teeth, skin, blood to heart : induced pluripotent stem cells as an in vitro model for cardiac disease

    NARCIS (Netherlands)

    Dambrot, Cheryl Susan

    2014-01-01

    Since the first reports of human induced pluripotent stem cells (hiPSC), the field of pluripotent stem cell (PSC) research has grown in leap and bounds, particularly in the area of (cardiac) disease modeling. This is in part because it is fairly easy to produce cardiomyocytes from hPSC and also ther

  11. Selenium in the Prevention of Anthracycline-Induced Cardiac Toxicity in Children with Cancer

    Directory of Open Access Journals (Sweden)

    Nurdan Tacyildiz

    2012-01-01

    Full Text Available High cumulative doses of anthracyclines (300–500 mg/m2 used in the treatment of children with cancer may result in cardiotoxicity, a major long-term adverse effect that limits clinical usefulness of this class of chemotherapeutic agents. We assessed anthracycline-induced cardiotoxicity by measuring Pro-BNP levels and echocardiographic (ECHO findings and investigated potential protective effect of selenium (Se supplementation in a group of pediatric cancer patients. Plasma level of Pro-BNP was measured, and ECHO was performed in 67 patients (45 boys, 22 girls; ages 2–18 years; median age 12 years after they completed anthracycline-containing chemotherapy. Serum Se level was measured in 37 patients. Eleven patients had high Pro-BNP levels and/or cardiac failure with Pro-BNP levels of 10–8,022 pg/mL (median 226.3 pg/mL; laboratory normal level is less than 120 pg/mL. Serum Se levels were low (20–129 mcg/L, median 62 mcg/L in ten of these eleven patients. Eight of 10 patients with low Se and high Pro-BNP levels were supplemented with Se 100 mcg/day for a period of 4–33 months (median 6 months which resulted in improvement in Pro-BNP and/or ECHO findings. These results suggest that Se supplementation may have a role in protection against anthracycline-induced cardiac toxicity.

  12. Effects of estrogen, an ERα agonist and raloxifene on pressure overload induced cardiac hypertrophy.

    Directory of Open Access Journals (Sweden)

    Christina Westphal

    Full Text Available The aim of this study was to investigate the effects of 17β-estradiol (E2, the selective ERα agonist 16α-LE2, and the selective estrogen receptor modulator (SERM raloxifene on remodeling processes during the development of myocardial hypertrophy (MH in a mouse model of pressure overload. Myocardial hypertrophy in ovariectomized female C57Bl/6J mice was induced by transverse aortic constriction (TAC. Two weeks after TAC, placebo treated mice developed left ventricular hypertrophy and mild systolic dysfunction. Estrogen treatment, but not 16α-LE2 or raloxifene reduced TAC induced MH compared to placebo. E2, 16α-LE2 and raloxifene supported maintenance of cardiac function in comparison with placebo. Nine weeks after induction of pressure overload, MH was present in all TAC groups, most pronounced in the raloxifene treated group. Ejection fraction (EF was decreased in all animals. However, 16α-LE2 treated animals showed a smaller reduction of EF than animals treated with placebo. E2 and 16α-LE2, but not raloxifene diminished the development of fibrosis and reduced the TGFβ and CTGF gene expression. Treatment with E2 or 16α-LE2 but not with raloxifene reduced survival rate after TAC significantly in comparison with placebo treatment. In conclusion, E2 and 16α-LE2 slowed down the progression of MH and reduced systolic dysfunction after nine weeks of pressure overload. Raloxifene did not reduce MH but improved cardiac function two weeks after TAC. However, raloxifene was not able to maintain EF in the long term period.

  13. Electrocardiographic changes during induced therapeutic hypothermia in comatose survivors after cardiac arrest

    Institute of Scientific and Technical Information of China (English)

    Pablo; Salinas; Esteban; Lopez-de-Sa; Laura; Pena-Conde; Ana; Viana-Tejedor; Juan; Ramon; Rey-Blas; Eduardo; Armada; Jose; Luis; Lopez-Sendon

    2015-01-01

    AIM: To assess the safety of therapeutic hypothermia(TH) concerning arrhythmias we analyzed serial electrocardiograms(ECG) during TH.METHODS: All patients recovered from a cardiac arrest with Glasgow < 9 at admission were treated with induced mild TH to 32-34℃. TH was obtained with cool fluid infusion or a specific intravascular device. Twelvelead ECG before,during,and after TH,as well as ECG telemetry data was recorded in all patients. From a total of 54 patients admitted with cardiac arrest during the study period,47 patients had the 3 ECG and telemetry data available. ECG analysis was blinded and performed with manual caliper by two independent cardiologists from blinded copies of original ECG,recorded at 25 mm/s and 10 mm/m V. Coronary care unit staff analyzed ECG telemetry for rhythm disturbances. Variables measured in ECG were rhythm,RR,PR,QT and corrected QT(QTc by Bazett formula,measured in lead v2) intervals,QRS duration,presence of Osborn’s J wave and U wave,as well as ST segment displacement and T wave amplitude in leads Ⅱ,v2 and v5.RESULTS: Heart rate went down an average of 19 bpm during hypothermia and increased again 16 bpm with rewarming(P < 0.0005,both). There was a nonsignificant prolongation of the PR interval during TH and a significant decrease with rewarming(P = 0.041). QRS duration significantly prolonged(P = 0.041) with TH and shortened back(P < 0.005) with rewarming. QTc interval presented a mean prolongation of 58 ms(P < 0.005) during TH and a significant shortening with rewarming of 22.2 ms(P = 0.017). Osborn or J wave was found in 21.3% of the patients. New arrhythmias occurred in 38.3% of the patients. Most frequent arrhythmia was non-sustained ventricular tachycardia(19.1%),followed by severe bradycardia or paced rhythm(10.6%),accelerated nodal rhythm(8.5%) and atrial fibrillation(6.4%). No life threatening arrhythmias(sustained ventricular tachycardia,polymorphic ventricular tachycardia or ventricular fibrillation) occurred

  14. A New Flavone C-Glycoside from Clematis rehderiana

    OpenAIRE

    Zhi-Zhi Du; Xian-Wen Yang; Hao Han; Xiang-Hai Cai; Xiao-Dong Luo

    2010-01-01

    A new flavone C-glycoside, isovitexin 6″-O-E-p-coumarate (1) and two known flavonoid glycosides—quercetin 3-O-β-D-glucuronopyranoside (2) and isoorientin (3)—were isolated from an ethanol extract of aerial parts of Clematis rehderiana. Their structures were determined by spectroscopic methods. The antioxidant effects of the two flavone C-glycosides were evaluated by both the MTT and DPPH assays. Compound 1 showed potent activities against H2O2-induced impairment in PC12 cells within the conce...

  15. Nebivolol Ameliorates Cardiac NLRP3 Inflammasome Activation in a Juvenile-Adolescent Animal Model of Diet-Induced Obesity

    Science.gov (United States)

    Xie, Qihai; Wei, Tong; Huang, Chenglin; Liu, Penghao; Sun, Mengwei; Shen, Weili; Gao, Pingjin

    2016-01-01

    NLRP3 is involved in obesity-induced cardiac remodeling and dysfunction. In this study, we evaluated whether the cardiac protective effects of nebivolol relied on attenuating NLRP3 activation in a juvenile-adolescent animal model of diet-induced obesity. Weaning male Sprague-Dawley rats were fed with either a standard chow diet (ND) or a high-fat diet (HFD) for 8 weeks. The obese rats were subsequently subdivided into three groups: 1) HFD control group; 2) HFD with low-dose nebivolol (5 mg/kg/d); 3) HFD with high-dose nebivolol (10 mg/kg/d). Treatment with nebivolol prevented HFD-induced obesity associated excess cardiac lipid accumulation as well as myocardial mitochondrial dysfunction. Nebivolol attenuated pro-inflammatory cytokines secretion and NLRP3 inflammasome activation in myocardium of obese rats. In parallel, nebivolol treatment of obese animals increased cardiac β3-AR expression, reversing the reduction of endothelial nitric oxide synthase (eNOS). In vitro, nebivolol treatment of palmitate-incubated H9C2 cells suppressed autophagy, restored mitochondrial biogenesis, leading to decreased mitochondrial reactive oxygen species (mtROS) generation, and suppressed NLRP3 inflammasome activation. Meanwhile the presence of shRNA against β3-AR or against eNOS deteriorated the protective effects of nebivolol. These data suggest the beneficial effect of nebivolol on myocardial lipotoxicity contributing to inhibiting NLRP3 inflammasome activation possibly via improved mitochondrial dysfunction. PMID:27686325

  16. Diterpene Glycosides from Stevia rebaudiana

    OpenAIRE

    Indra Prakash; Mani Upreti; Venkata Sai Prakash Chaturvedula

    2011-01-01

    Three novel diterpene glycosides were isolated for the first time from the commercial extract of the leaves of Stevia rebaudiana, along with several known steviol glycosides, namely stevioside, rebaudiosides A-F, rubusoside and dulcoside A. The new compounds were identified as 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-15-en-19-oic acid (1), 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy]-16β-hydroxy-ent-kauran-19-oic acid (2...

  17. Celastrol-Induced Suppression of the MiR-21/ERK Signalling Pathway Attenuates Cardiac Fibrosis and Dysfunction

    Directory of Open Access Journals (Sweden)

    Mian Cheng

    2016-05-01

    Full Text Available Backgroud: Myocardial fibrosis results in myocardial remodelling and dysfunction. Celastrol, a traditional oriental medicine, has been suggested to have cardioprotective effects. However, its underlying mechanism is unknown. This study investigated the ability of celastrol to prevent cardiac fibrosis and dysfunction and explored the underlying mechanisms. Methods: Animal and cell models of cardiac fibrosis were used in this study. Myocardial fibrosis was induced by transverse aortic constriction (TAC in mice. Cardiac hypertrophy and fibrosis were evaluated based on histological and biochemical measurements. Cardiac function was evaluated by echocardiography. The levels of transforming growth factor beta 1 (TGF-β1, extracellular signal regulated kinases 1/2 (ERK1/2 signalling were measured using Western blotting, while the expression of miR-21was analyzed by real-time qRT-PCR in vitro and in vivo. In vitro studies, cultured cardiac fibroblasts (CFs were treated with TGF-β1 and transfected with microRNA-21(miR21. Results: Celastrol treatment reduced the increased collagen deposition and down-regulated α-smooth muscle actin (α-SMA, atrial natriuretic peptide (ANP, brain natriuretic peptides (BNP, beta-myosin heavy chain (β-MHC, miR-21 and p-ERK/ERK. Cardiac dysfunction was significantly attenuated by celastrol treatment in the TAC mice model. Celastrol treatment reduced myocardial fibroblast viability and collagen content and down-regulated α-SMA in cultured CFs in vitro. Celastrol also inhibited the miR-21/ERK signalling pathway. Celastrol attenuated miR-21 up-regulation by TGF-β1 and decreased elevated p-ERK/ERK levels in CFs transfected with miR-21. Conclusion: MiR-21/ERK signalling could be a potential therapeutic pathway for the prevention of myocardial fibrosis. Celastrol ameliorates myocardial fibrosis and cardiac dysfunction, these probably related to miR-21/ERK signaling pathways in vitro and in vivo.

  18. Acylated flavone glycosides from Veronica

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Jensen, Søren Rosendal;

    2003-01-01

    A survey of the flavonoid glycosides of selected taxa in the genus Veronica yielded two new acylated 5,6,7,3',4'-pentahydroxyflavone (6-hydroxyluteolin) glycosides and two rare allose-containing acylated 5,7,8,4'-tetrahydroxyflavone (isoscutellarein) glycosides. The new compounds were isolated from...... Veronica (melittoside and globularifolin) were also isolated from V. intercedens....

  19. Cardiac disease modeling using induced pluripotent stemcell-derived human cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Patrizia Dell’Era; Patrizia Benzoni; Elisabetta Crescini; Matteo Valle; Er Xia; Antonella Consiglio; Maurizio Memo

    2015-01-01

    Causative mutations and variants associated with cardiacdiseases have been found in genes encoding cardiac ionchannels, accessory proteins, cytoskeletal components,junctional proteins, and signaling molecules. In mostcases the functional evaluation of the genetic alterationhas been carried out by expressing the mutated proteinsin in-vitro heterologous systems. While these studieshave provided a wealth of functional details that havegreatly enhanced the understanding of the pathologicalmechanisms, it has always been clear that heterologousexpression of the mutant protein bears the intrinsiclimitation of the lack of a proper intracellular environmentand the lack of pathological remodeling. The resultsobtained from the application of the next generationsequencing technique to patients suffering from cardiacdiseases have identified several loci, mostly in non-codingDNA regions, which still await functional analysis. Theisolation and culture of human embryonic stem cells hasinitially provided a constant source of cells from whichcardiomyocytes (CMs) can be obtained by differentiation.Furthermore, the possibility to reprogram cellular fateto a pluripotent state, has opened this process to thestudy of genetic diseases. Thus induced pluripotentstem cells (iPSCs) represent a completely new cellularmodel that overcomes the limitations of heterologousstudies. Importantly, due to the possibility to keepspontaneously beating CMs in culture for several months,during which they show a certain degree of maturation/aging, this approach will also provide a system in whichto address the effect of long-term expression of themutated proteins or any other DNA mutation, in termsof electrophysiological remodeling. Moreover, sinceiPSC preserve the entire patients' genetic context, thesystem will help the physicians in identifying the mostappropriate pharmacological intervention to correct thefunctional alteration. This article summarizes the currentknowledge of cardiac genetic

  20. Steviol glycoside safety: are highly purified steviol glycoside sweeteners food allergens?

    Science.gov (United States)

    Urban, Jonathan D; Carakostas, Michael C; Taylor, Steve L

    2015-01-01

    Steviol glycoside sweeteners are extracted from the plant Stevia rebaudiana (Bertoni), a member of the Asteraceae (Compositae) family. Many plants from this family can induce hypersensitivity reactions via multiple routes of exposure (e.g., ragweed, goldenrod, chrysanthemum, echinacea, chamomile, lettuce, sunflower and chicory). Based on this common taxonomy, some popular media reports and resources have issued food warnings alleging the potential for stevia allergy. To determine if such allergy warnings are warranted on stevia-based sweeteners, a comprehensive literature search was conducted to identify all available data related to allergic responses following the consumption of stevia extracts or highly purified steviol glycosides. Hypersensitivity reactions to stevia in any form are rare. The few cases documented in the peer-reviewed literature were reported prior to the introduction of high-purity products to the market in 2008 when many global regulatory authorities began to affirm the safety of steviol glycosides. Neither stevia manufacturers nor food allergy networks have reported significant numbers of any adverse events related to ingestion of stevia-based sweeteners, and there have been no reports of stevia-related allergy in the literature since 2008. Therefore, there is little substantiated scientific evidence to support warning statements to consumers about allergy to highly purified stevia extracts. PMID:25449199

  1. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    Science.gov (United States)

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-12-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis.

  2. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    International Nuclear Information System (INIS)

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [3H]glucose and 2-deoxy[14C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats

  3. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States); Martyn, J.A. Jeevendra, E-mail: jmartyn@partners.org [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States)

    2013-02-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.

  4. Ionizing radiation induces immediate protein acetylation changes in human cardiac microvascular endothelial cells

    International Nuclear Information System (INIS)

    Reversible lysine acetylation is a highly regulated post-translational protein modification that is known to regulate several signaling pathways. However, little is known about the radiation-induced changes in the acetylome. In this study, we analyzed the acute post-translational acetylation changes in primary human cardiac microvascular endothelial cells 4 h after a gamma radiation dose of 2 Gy. The acetylated peptides were enriched using anti-acetyl conjugated agarose beads. A total of 54 proteins were found to be altered in their acetylation status, 23 of which were deacetylated and 31 acetylated. Pathway analyses showed three protein categories particularly affected by radiation-induced changes in the acetylation status: the proteins involved in the translation process, the proteins of stress response, and mitochondrial proteins. The activation of the canonical and non-canonical Wnt signaling pathways affecting actin cytoskeleton signaling and cell cycle progression was predicted. The protein expression levels of two nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 1 and sirtuin 3, were significantly but transiently upregulated 4 but not 24 h after irradiation. The status of the p53 protein, a target of sirtuin 1, was found to be rapidly stabilized by acetylation after radiation exposure. These findings indicate that post-translational modification of proteins by acetylation and deacetylation is essentially affecting the radiation response of the endothelium. (author)

  5. MOMORDICA CHARANTIA PROTECTS AGAINST CARDIAC DAMAGE IN STREPTOZOTOCIN-INDUCED DIABETIC WISTAR RATS

    Directory of Open Access Journals (Sweden)

    O. A Komolafe

    2012-06-01

    Full Text Available Diabetes mellitus is one of the most important world health problems, especially in developing countries where prevalence and incidence rates are highest. Diabetic patients are particularly prone to cardiovascular diseases including hypertension, atherosclerosis, diabetic cardiomyopathy, congestive heart failure and cardiac autonomic neuropathy. The present study investigated the effects of Momordica charantia (M. charantia on histological changes of the left ventricle of the heart in streptozotocin-induced diabetic Wistar rats. Forty healthy adult Wistar rats of both sexes were randomly assigned into five groups A, B, C, D and E of eight rats each. Group A were the control (normal rats; B were the experimentally-induced diabetic rats; C were diabetic rats treated with methanolic extracts of M. charantia for two weeks (withdrawal group; D were diabetic rats treated with methanolic extracts of M. charantia for four weeks. E was diabetic rats treated with glimepiride for four weeks. Tissues were harvested, processed routinely in paraffin wax and stained with routine and special stains. Histological studies revealed disorganization of myofibril in the left ventricle of diabetic rats. Histochemical analysis also revealed abnormal deposition of glycogen in left ventricle of diabetic rats. M. charantia and glimperide attenuated the morphological alterations and reduced the glycogen deposits.

  6. Neolignan glycoside from Angelica dahurica

    Institute of Scientific and Technical Information of China (English)

    Xing Zeng Zhao; Xu Feng; Xiao Dong Jia; Yun Fa Dong; Ming Wang

    2007-01-01

    A new neolignan glycoside, 4-O-β-D-glucopyranosyl-9-O-β-D-glucopyranosyl-(7R, 8S)-dehydrodiconiferyl alcohol was isolated from the fresh roots of Angelica dahurica. The structure of the new compound was elucidated on the basis of spectral analysis.

  7. Endothelial ROS and Impaired Myocardial Oxygen Consumption in Sepsis-induced Cardiac Dysfunction

    OpenAIRE

    Potz, Brittany A; Sellke, Frank W.; Abid, M. Ruhul

    2016-01-01

    Sepsis is known as the presence of a Systemic Inflammatory Response Syndrome (SIRS) in response to an infection. In the USA alone, 750,000 cases of severe sepsis are diagnosed annually. More than 70% of sepsis-related deaths occur due to organ failure and more than 50% of septic patients demonstrate cardiac dysfunction. Patients with sepsis who develop cardiac dysfunction have significantly higher mortality, and thus cardiac dysfunction serves as a predictor of survival in sepsis.

  8. Critical temperature ranges of hypothermia-induced platelet activation: possible implications for cooling patients in cardiac surgery.

    Science.gov (United States)

    Straub, Andreas; Breuer, Melanie; Wendel, Hans P; Peter, Karlheinz; Dietz, Klaus; Ziemer, Gerhard

    2007-04-01

    Cooling of the patient is routinely applied in cardiac surgery to protect organs against ischemia. Hypothermia induces activation of platelets, but the effects of temperatures such as used during cardiac surgery are not well described. To investigate this in an in-vitro study heparinized whole blood was incubated at different temperatures (37 degrees C, 34.5 degrees C, 32 degrees C, 29.5 degrees C, 27 degrees C, 24.5 degrees C, 22 degrees C, 19.5 degrees C and 17 degrees C). The effect of these temperatures on aggregation, P-selectin expression, GP IIb/IIIa activation and platelet microparticle (PMP) formation of unstimulated and ADP-stimulated platelets of 36 subjects was evaluated in flow cytometry. A four-parametric logistic model was fitted to depict the temperature effect on platelet parameters. Lower temperatures increased aggregates, P-selectin expression, and GP IIb/IIIa activation. The number of PMPs decreases with hypothermia. Additional experiments revealed a slight influence of heparin on platelet P-selectin expression but excluded an effect of this anticoagulant on the other evaluated parameters. Threshold temperatures, which mark 5% changes of platelet parameters compared to values at 37 degrees C, were calculated. On ADP-stimulated platelets the thresholds for P-selectin expression and GP IIb/IIa activation are 34.0 degrees C and 36.4 degrees C, respectively, and lie in the temperature range routinely applied in cardiac surgery. Hypothermia-induced platelet activation may develop in most patients undergoing cardiac surgery, possibly resulting in thromboembolic events, coagulation defects, and proinflammatory leukocyte bridging by P-selectin bearing platelets and PMPs. These findings suggest that pharmacological protection of platelets against hypothermia-induced damage may be beneficial during cardiac surgery.

  9. Adiponectin is required for cardiac MEF2 activation during pressure overload induced hypertrophy.

    Science.gov (United States)

    Dadson, Keith; Turdi, Subat; Hashemi, Sarah; Zhao, Jianzhong; Polidovitch, Nazar; Beca, Sanja; Backx, Peter H; McDermott, John C; Sweeney, Gary

    2015-09-01

    Cardiomyocyte (CM) hypertrophy and increased heart mass in response to pressure overload are associated with hyper-activation of the myocyte enhancer factor-2 (MEF2) family of transcriptional regulators, and concomitant initiation of the fetal gene program. Adiponectin, an adipokine that is reduced in individuals with obesity and diabetes, has been characterized both as a negative regulator or permissive factor in cardiac hypertrophy. We therefore sought to analyze temporal regulation of MEF2 activity in response to pressure overload (PO) and changes in adiponectin status. To address this we crossed a well characterized transgenic MEF2 "sensor" mouse (MEF2-lacZ) with adiponectin null mice (Ad-KO) to create compound MEF2 lacZ/Ad-KO mice. Initially, we established that transverse aortic banding induced PO in wild-type (WT) mice increased heart mass and CM hypertrophy from 1 to 4weeks following surgery, indicated by increased CM diameter and heart weight/tibia length ratio. This was associated with cardiac dysfunction determined by echocardiography. Hypertrophic changes and dysfunction were observed in Ad-KO mice 4weeks following surgery. MEF2 lacZ activity and endogenous ANF mRNA levels, used as indicators of hypertrophic gene activation, were both robustly increased in WT mice after MTAB but attenuated in the Ad-KO background. Furthermore, activation of the pro-hypertrophic molecule p38 was increased following MTAB surgery in WT mice, but not in Ad-KO animals, and treatment of primary isolated CM with recombinant adiponectin induced p38 phosphorylation in a time dependent manner. Adiponectin also increased MEF2 activation in primary cardiomyocytes, an effect attenuated by p38 MAPK inhibition. In conclusion, our data indicate that robust hypertrophic MEF2 activation in the heart in vivo requires a background of adiponectin signaling and that adiponectin signaling in primary isolated CM directly enhances MEF2 activity through activation of p38 MAPK. We conclude that

  10. Desmodium gangeticum root extract attenuates isoproterenol-induced cardiac hypertrophic growth in rats.

    Directory of Open Access Journals (Sweden)

    Divya Hitler

    2014-10-01

    Full Text Available Context: Desmodium gangeticum (L DC (Fabaceae; DG, a medicinal plant that grows in tropical habitats, is widely used to treat various ailments including digestive and inflammatory disorders. Aims: To investigate the possible cardioprotective activity of a DG root extract against isoproterenol (ISO-induced left ventricular cardiac hypertrophy (LVH in adult Wistar rats. Methods: Daily intraperitoneal administration of ISO (10 mg/kg body weight, single injection for 7 days induced LVH in rats. The LVH rats were post-treated orally with DG (100 mg/kg body weight for a period of 30 days. Thereafter, changes in heart weight (HW and body weight (BW, HW/BW ratio, percent of hypertrophy, collagen accumulation, activities of matrix metalloproteinase (MMP -2 and -9, superoxide dismutase (SOD and catalase (CAT enzymes, and the level of an oxidative stress marker, lipid peroxide (LPO, were determined. Results: HW/BW ratio, an indicator of hypertrophic growth, was significantly reduced in DG root post-treated LVH rats as compared with that for the non-treated LVH rats. The altered levels of ventricular LPO, collagen, MMPs-2 and -9, and antioxidant enzymes in the ISO-treated animals reverted back to near normal upon DG treatment. Further, the anti-hypertrophic activity of DG was comparable to that of the standard drug losartan (10 mg/kg. Conclusions: The results of the present study suggest that the aqueous root extract of DG exhibited anti-hypertrophic activity in-vivo by inhibiting ISO-induced ROS generation and MMP activities.

  11. 5-Azacytidine Induces Cardiac Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells by Activating Extracellular Regulated Kinase

    Science.gov (United States)

    Qian, Qian; Qian, Hui; Zhang, Xu; Zhu, Wei; Yan, Yongmin; Ye, Shengqin; Peng, Xiujuan; Li, Wei; Xu, Zhe; Sun, Lingyun

    2012-01-01

    5-Azacytidine (5-Aza) induces differentiation of mesenchymal stem cells (MSCs) into cardiomyocytes. However, the underlying mechanisms are not well understood. Our previous work showed that 5-Aza induces human bone marrow-derived MSCs to differentiate into cardiomyocytes. Here, we demonstrated that 5-Aza induced cardiac differentiation of human umbilical cord-derived MSCs (hucMSCs) and explored the potential signaling pathway. Our results showed that hucMSCs had cardiomyocyte phenotypes after 5-Aza treatment. In addition, myogenic cells differentiated from hucMSCs were positive for mRNA and protein of desmin, β-myosin heavy chain, cardiac troponin T, A-type natriuretic peptide, and Nkx2.5. Human diploid lung fibroblasts treated with 5-Aza expressed no cardiac-specific genes. 5-Aza did not induce hucMSCs to differentiate into osteoblasts. Further study revealed that 5-Aza treatment activated extracellular signal related kinases (ERK) in hucMSCs, but protein kinase C showed no response to 5-Aza administration. U0126, a specific inhibitor of ERK, could inhibit 5-Aza-induced expression of cardiac-specific genes and proteins in hucMSCs. Increased phosphorylation of signal transducers and activators of transcription 3, and up-regulation of myocyte enhancer-binding factor-2c and myogenic differentiation antigen in 5-Aza-treated hucMSCs were also suppressed by U0126. Taken together, these results suggested that sustained activation of ERK by 5-Aza contributed to the induction of the differentiation of hucMSCs into cardiomyocytes in vitro. PMID:21476855

  12. Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Intermittent hypoxia has been shown to provide myocardial protection against ishemia/reperfusion-induced injury.Cardiac myocyte loss through apoptosis has been reported in ischemia/reperfusion injury. Our aim was to investigate whether intermittent hypoxia could attenuate ischemia/reperfusion-induced apoptosis in cardiac myocytes and its potential mechanisms. Adult male Sprague-Dawley rats were exposed to hypoxia simulated 5000 m in a hypobaric chamber for 6 h/day, lasting 42 days. Normoxia group rats were kept under normoxic conditions. Isolated perfused hearts from both groups were subjected to 30 min of global ischemia followed by 60 min reperfusion.Incidence of apoptosis in cardiac myocytes was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and DNA agarose gel electrophoresis. Expressions of apoptosis related proteins,Bax and Bcl-2, in cytosolic and membrane fraction were detected by Western Blotting. After ischemia/reperfusion,enhanced recovery of cardiac function was observed in intermittent hypoxia hearts compared with normoxia group.Ischemia/reperfusion-induced apoptosis, as evidenced by TUNEL-positive nuclei and DNA fragmentation, was significantly reduced in intermittent hypoxia group compared with normoxia group. After ischemia/reperfusion,expression of Bax in both cytosolic and membrane fractions was decreased in intermittent hypoxia hearts compared with normoxia group. Although ischemia/reperfusion did not induce changes in the level of Bcl-2 expression in cytosolic fraction between intermittent hypoxia and normoxia groups, the expression of Bcl-2 in membrane fraction was upregulated in intermittent hypoxia group compared with normoxia group. These results indicated that the cardioprotection of intermittent hypoxia against ischemia/reperfusion injury appears to be in part due to reduce myocardial apoptosis. Intermittent hypoxia attenuated ischemia/reperfusion-induced apoptosis via increasing the ratio of Bcl

  13. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N., E-mail: snkabir@iicb.res.in

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2–Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders. - Highlights: • α-DHC isolated from Pterocarpus marsupium has significant antioxidant potential. • α-DHC inhibits NO, IL-6, IL-1β, TNF-α production in LPS-stimulated RAW 264.7 cells. • α-DHC down-regulates of COX-2, iNOS expression in LPS

  14. Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, Kendra K.S., E-mail: knordgre@d.umn.edu; Wallace, Kendall B., E-mail: kwallace@d.umn.edu

    2014-01-01

    Doxorubicin (DOX) is a widely prescribed treatment for a broad scope of cancers, but clinical utility is limited by the cumulative, dose-dependent cardiomyopathy that occurs with repeated administration. DOX-induced cardiotoxicity is associated with the production of reactive oxygen species (ROS) and oxidation of lipids, DNA and proteins. A major cellular defense mechanism against such oxidative stress is activation of the Keap1/Nrf2-antioxidant response element (ARE) signaling pathway, which transcriptionally regulates expression of antioxidant genes such as Nqo1 and Gstp1. In the present study, we address the hypothesis that an initial event associated with DOX-induced oxidative stress is activation of the Keap1/Nrf2-dependent expression of antioxidant genes and that this is regulated through drug-induced changes in redox status of the Keap1 protein. Incubation of H9c2 rat cardiac myoblasts with DOX resulted in a time- and dose-dependent decrease in non-protein sulfhydryl groups. Associated with this was a near 2-fold increase in Nrf2 protein content and enhanced transcription of several of the Nrf2-regulated down-stream genes, including Gstp1, Ugt1a1, and Nqo1; the expression of Nfe2l2 (Nrf2) itself was unaltered. Furthermore, both the redox status and the total amount of Keap1 protein were significantly decreased by DOX, with the loss of Keap1 being due to both inhibited gene expression and increased autophagic, but not proteasomal, degradation. These findings identify the Keap1/Nrf2 pathway as a potentially important initial response to acute DOX-induced oxidative injury, with the primary regulatory events being the oxidation and autophagic degradation of the redox sensor Keap1 protein. - Highlights: • DOX caused a ∼2-fold increase in Nrf2 protein content. • DOX enhanced transcription of several Nrf2-regulated down-stream genes. • Redox status and total amount of Keap1 protein were significantly decreased by DOX. • Loss of Keap1 protein was due to

  15. Study of patient's injuries by stingrays, lethal activity determination and cardiac effects induced by Himantura gerrardi venom.

    Science.gov (United States)

    Dehghani, Hadi; Sajjadi, Mir Masoud; Rajaian, Hamid; Sajedianfard, Javad; Parto, Paria

    2009-11-01

    Stingrays are common inhabitants in the northern waters of the Persian Gulf and Oman Sea. In the present study, the clinical aspects of injuries induced in three patients bitten by stingrays in Hormozgan province waters were first examined. The LD(50) of crude venom extract obtained from the most common stingray in Hormozgan province (Himantura gerrardi) was then estimated by up-and-down dosing and double dose methods in mice. Third and finally, the cardiac symptoms induced by injection of the extract from the venomous spines were evaluated in rats. Intense pain was noticed in all human cases. Redness was observed in two cases, and spasm and seizure were each recorded in only one case. LD(50) of the venom extract in mice was about 100 mg kg(-1). The observed cardiac symptoms in rats included an increase in pulse rate and various changes in electrocardiogram (ECG) parameters such as T and Q values, and PR and RR intervals. PMID:19563821

  16. Induced apnea enhances image quality and visualization of cardiopulmonary anatomic during contrastenhanced cardiac computerized tomographic angiography in children

    Directory of Open Access Journals (Sweden)

    Murali Chakravarthy

    2015-01-01

    Full Text Available Objective: The purpose of our study was to determine the effect of induced apnea on quality of cardiopulmonary structures during computerized tomographic (CT angiography images in children with congenital heart diseases. Methods: Pediatric patients with congenital heart defects undergoing cardiac CT angiography at our facility in the past 3 years participated in this study. The earlier patients underwent cardiac CT angiography without induced apnea and while, later, apnea was induced in patients, which was followed by electrocardiogram gated cardiac CT angiography. General anesthesia was induced using sleep dose of intravenous propofol. After the initial check CT, on request by the radiologist, apnea was induced by the anesthesiologist by administering 1 mg/kg of intravenous suxamethonium. Soon after apnea ensued, the contrast was injected, and CT angiogram carried out. CT images in the "apnea group" were compared with those in "nonapnea group." After the completion of the procedure, the patients were mask ventilated with 100% oxygen till the spontaneous ventilation was restored. Results: We studied 46 patients, of whom 36 with apnea and yet another 10 without. The quality of the image, visualization of structures such as cardiac wall, outflow tracts, lung field, aortopulmonary shunts, and coronary arteries were analyzed and subjected to statistical analysis (Mann-Whitney U, Fischer′s exact test and Pearson′s Chi-square test. In the induced apnea group, overall image quality was considered excellent in 89% (n = 33 of the studies, while in the "no apnea group," only 30% of studies were excellent. Absent or minimal motion artifacts were seen in a majority of the studies in apnea group (94%. In the nonapnea group, the respiratory and body motion artifacts were severe in 50%, moderate in 30%, and minimal in 20%, but they were significantly lesser in the apnea group. All the studied parameters were statistically significant in the apnea group in

  17. Immunomodulatory action of monosulfated triterpene glycosides from the sea cucumber Cucumaria okhotensis: stimulation of activity of mouse peritoneal macrophages.

    Science.gov (United States)

    Aminin, Dmitry L; Silchenko, Alexandra S; Avilov, Sergey A; Stepanov, Vadim G; Kalinin, Vladimir I

    2010-12-01

    Six monosulfated triterpene glycosides, frondoside A1 (1), okhotoside B1 (2), okhotoside A1-1 (3), frondoside A (4), okhotoside A2-1 (5) and cucumarioside A2-5 (6), isolated from Cucumaria okhotensis Levin et Stepanov, stimulate spreading and lysosomal activity of mouse macrophages and ROS-formation in the macrophages. The highest macrophage spreading and stimulation of their lysosomal activity was induced by glycosides 1, 4 and 6. All glycosides similarly stimulate ROS formation in macrophages, but glycoside 2 caused minimal stimulation. PMID:21299111

  18. Cardiac fibrosis in mice expressing an inducible myocardial-specific Cre driver

    Directory of Open Access Journals (Sweden)

    Jonas Lexow

    2013-11-01

    Tamoxifen-inducible Cre-mediated manipulation of animal genomes has achieved wide acceptance over the last decade, with numerous important studies heavily relying on this technique. Recently, a number of groups have reported transient complications of using this protocol in the heart. In the present study we observed a previously unreported focal fibrosis and depressed left-ventricular function in tamoxifen-treated αMHC-MerCreMer-positive animals in a Tβ4shRNAflox × αMHC-MerCreMer cross at 6–7 weeks following standard tamoxifen treatment, regardless of the presence of the floxed transgene. The phenotype was reproduced by treating mice from the original αMHC-MerCreMer strain with tamoxifen. In the acute phase after tamoxifen treatment, cell infiltration into the myocardium was accompanied by increased expression of pro-inflammatory cytokines (IL-1β, IL-6, TNFα, IFNγ, Ccl2 and markers of hypertrophy (ANF, BNP, Col3a1. These observations highlight the requirement for including tamoxifen-treated MerCreMer littermate controls to avert misinterpretation of conditional mutant phenotypes. A survey of the field as well as the protocols presented here suggests that controlling the parameters of tamoxifen delivery is important in avoiding the chronic MerCreMer-mediated cardiac phenotype reported here.

  19. Aerobic Interval Exercise Training Induces Greater Reduction in Cardiac Workload in the Recovery Period in Rats

    International Nuclear Information System (INIS)

    Aerobic interval exercise training has greater benefits on cardiovascular function as compared with aerobic continuous exercise training. The present study aimed at analyzing the effects of both exercise modalities on acute and subacute hemodynamic responses of healthy rats. Thirty male rats were randomly assigned into three groups as follows: continuous exercise (CE, n = 10); interval exercise (IE, n = 10); and control (C, n = 10). Both IE and CE groups performed a 30-minute exercise session. The IE group session consisted of three successive 4-minute periods at 60% of maximal velocity (Max Vel), with 4-minute recovery intervals at 40% of Max Vel. The CE group ran continuously at 50% of Max Vel. Heart rate (HR), blood pressure(BP), and rate pressure product (RPP) were measured before, during and after the exercise session. The CE and IE groups showed an increase in systolic BP and RPP during exercise as compared with the baseline values. After the end of exercise, the CE group showed a lower response of systolic BP and RPP as compared with the baseline values, while the IE group showed lower systolic BP and mean BP values. However, only the IE group had a lower response of HR and RPP during recovery. In healthy rats, one interval exercise session, as compared with continuous exercise, induced similar hemodynamic responses during exercise. However, during recovery, the interval exercise caused greater reductions in cardiac workload than the continuous exercise

  20. Diesel Exhaust Particles Induce Impairment of Vascular and Cardiac Homeostasis in Mice: Ameliorative Effect of Emodin

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2015-07-01

    Full Text Available Background/Aim: There is strong epidemiological and clinical evidence that components of the cardiovascular system are adversely affected by particulate air pollutants through the generation of inflammation and oxidative stress. Emodin (1,3,8-trihydroxy-6-methylanthraquinone, which is commonly found in the roots of rhubarb plant, has strong antioxidant and anti-inflammatory effects. However, its possible protective effect on the cardiovascular effect of particulate air pollutants has never been reported before. Methods: We tested, in Tuck-Ordinary mice, the possible ameliorative effect of emodin on the acute (24h cardiovascular effects of diesel exhaust particles (DEP, 1 mg/kg or saline (control. Emodin (4 mg/kg was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty four h following DEP exposure, several cardiovascular endpoints were assessed. Results: Emodin significantly prevented the increase of leukocyte (n=8, Pin vivo prothrombotic effect of DEP in pial arterioles (n=6, Pin vitro in whole blood (n=4-5, PConclusion: We conclude that emodin treatment has consistently protected against DEP-induced impairment of vascular and cardiac homeostasis in mice. Our study provides experimental evidence that the use of functional food such as emodin, pending further studies, can be considered a useful agent and may have the potential to protect or mitigate the cardiovascular detrimental effects observed in people living in cities with high concentrations of particulate air pollution.

  1. Aerobic Interval Exercise Training Induces Greater Reduction in Cardiac Workload in the Recovery Period in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Juliana Pereira, E-mail: julipborges@gmail.com; Masson, Gustavo Santos; Tibiriçá, Eduardo; Lessa, Marcos Adriano [Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ (Brazil)

    2014-01-15

    Aerobic interval exercise training has greater benefits on cardiovascular function as compared with aerobic continuous exercise training. The present study aimed at analyzing the effects of both exercise modalities on acute and subacute hemodynamic responses of healthy rats. Thirty male rats were randomly assigned into three groups as follows: continuous exercise (CE, n = 10); interval exercise (IE, n = 10); and control (C, n = 10). Both IE and CE groups performed a 30-minute exercise session. The IE group session consisted of three successive 4-minute periods at 60% of maximal velocity (Max Vel), with 4-minute recovery intervals at 40% of Max Vel. The CE group ran continuously at 50% of Max Vel. Heart rate (HR), blood pressure(BP), and rate pressure product (RPP) were measured before, during and after the exercise session. The CE and IE groups showed an increase in systolic BP and RPP during exercise as compared with the baseline values. After the end of exercise, the CE group showed a lower response of systolic BP and RPP as compared with the baseline values, while the IE group showed lower systolic BP and mean BP values. However, only the IE group had a lower response of HR and RPP during recovery. In healthy rats, one interval exercise session, as compared with continuous exercise, induced similar hemodynamic responses during exercise. However, during recovery, the interval exercise caused greater reductions in cardiac workload than the continuous exercise.

  2. Simulation study of respiratory-induced errors in cardiac positron emission tomography/computed tomography

    International Nuclear Information System (INIS)

    Heart disease is a leading killer in Canada and positron emission tomography (PET) provides clinicians with in vivo metabolic information for diagnosing heart disease. Transmission data are usually acquired with 68Ge, although the advent of PET/CT scanners has made computed tomography (CT) an alternative option. The fast data acquisition of CT compared to PET may cause potential misregistration problems, leading to inaccurate attenuation correction (AC). Using Monte Carlo simulations and an anthropomorphic dynamic computer phantom, this study determines the magnitude and location of respiratory-induced errors in radioactivity uptake measured in cardiac PET/CT. A homogeneous tracer distribution in the heart was considered. The AC was based on (1) a time-averaged attenuation map (2) CT maps from a single phase of the respiratory cycle, and (3) CT maps phase matched to the emission data. Circumferential profiles of the heart uptake were compared and differences of up to 24% were found between the single-phase CT-AC method and the true phantom values. Simulation results were supported by a PET/CT canine study which showed differences of up to 10% in the heart uptake in the lung-heart boundary region when comparing 68Ge- to CT-based AC with the CT map acquired at end inhalation

  3. Squalene Modulates Radiation-Induced Structural, Ultrastructural And Biochemical Changes In Cardiac Muscles Of Male Albino Rats

    International Nuclear Information System (INIS)

    The failing heart represents an enormous clinical problem and is a major cause of death throughout the world. Hyperlipidemia and oxidative stress have been shown to contribute to heart failure. Squalene is a remarkable bioactive substance that belongs to a class of antioxidants called isoprenoids, which neutralize the harmful effect of excessive free radicals production in the body.The present study was designed to determine the possible protective effect of squalene against oxidative cardiac muscle damage induced by gamma irradiation.Rats were treated daily by gavage with 0.4 ml/kg squalene for 42 days before whole body gamma irradiation at a dose of 4 Gy and continued until animals were sacrificed 3 days post irradiation.Histological examination of cardiac muscles sections by using light and electron microscopes showed that exposure of rats to ionizing radiation has provoked a severe architecture damage such as necrotic nuclei, nuclei located at the periphery, alteration in chromatin distribution, ruptured cell and mitochondrial membranes, cristae of mitochondria disappeared, sticking mitochondria and ruptured myofibers. Structural and ultra-structural changes were associated with severe oxidative stress. Significant increase of lipid peroxidation products (malondialdehyde) (MDA) along with reduction in the activity of the antioxidant enzymes; superoxide dismutase (SOD) and catalse (CAT), and glutathione content (GSH), were recorded.Treatment of rats with squalene has significantly attenuated the radiation-induced oxidative damage and histopathological changes in cardiac muscle which was substantiated by a significant amelioration in the activity of plasma lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and aspartate transaminase (AST). Furthermore, administration of squalene to rats has adjusted the radiation-induced increase in plasma triglycerides (TG), total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). Based on these results, it

  4. The cannabinoid receptor type 2 promotes cardiac myocyte and fibroblast survival and protects against ischemia/reperfusion-induced cardiomyopathy.

    Science.gov (United States)

    Defer, Nicole; Wan, Jinghong; Souktani, Richard; Escoubet, Brigitte; Perier, Magali; Caramelle, Philippe; Manin, Sylvie; Deveaux, Vanessa; Bourin, Marie-Claude; Zimmer, Andreas; Lotersztajn, Sophie; Pecker, Françoise; Pavoine, Catherine

    2009-07-01

    Post-myocardial infarction (MI) heart failure is a major public health problem in Western countries and results from ischemia/reperfusion (IR)-induced cell death, remodeling, and contractile dysfunction. Ex vivo studies have demonstrated the cardioprotective anti-inflammatory effect of the cannabinoid type 2 (CB2) receptor agonists within hours after IR. Herein, we evaluated the in vivo effect of CB2 receptors on IR-induced cell death, fibrosis, and cardiac dysfunction and investigated the target role of cardiac myocytes and fibroblasts. The infarct size was increased 24 h after IR in CB2(-/-) vs. wild-type (WT) hearts and decreased when WT hearts were injected with the CB2 agonist JWH133 (3 mg/kg) at reperfusion. Compared with WT hearts, CB2(-/-) hearts showed widespread injury 3 d after IR, with enhanced apoptosis and remodeling affecting the remote myocardium. Finally, CB2(-/-) hearts exhibited exacerbated fibrosis, associated with left ventricular dysfunction 4 wk after IR, whereas their WT counterparts recovered normal function. Cardiac myocytes and fibroblasts isolated from CB2(-/-) hearts displayed a higher H(2)O(2)-induced death than WT cells, whereas 1 microM JWH133 triggered survival effects. Furthermore, H(2)O(2)-induced myofibroblast activation was increased in CB2(-/-) fibroblasts but decreased in 1 microM JWH133-treated WT fibroblasts, compared with that in WT cells. Therefore, CB2 receptor activation may protect against post-IR heart failure through direct inhibition of cardiac myocyte and fibroblast death and prevention of myofibroblast activation.

  5. Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Xu Dong LIAO; Xiao Hui WANG; Hai Jing JIN; Lan Ying CHEN; Quan CHEN

    2004-01-01

    Heart remodeling is associated with the loss of cardiomyocytes and increase of fibrous tissue owing to abnormal mechanical load in a number of heart disease conditions. In present study,a well-described in vitro sustained stretch model was employed to study mechanical stretch-induced responses in both neonatal cardiomyocytes and cardiac fibroblasts. Cardiomyocytes,but not cardiac fibroblasts,underwent mitochondria-dependent apoptosis as evidenced by cytochrome c (cyto c) and Smac/DIABLO release from mitochondria into cytosol accompanied by mitochondrial membrane potential (△ψm) reduction,indicative of mitochondrial permeability transition pore (PTP)opening. Cyclosporin A,an inhibitor of PTP,inhibited stretch-induced cyto c release,△ψm reduction and apoptosis,suggesting an important role of mitochondrial PTP in stretch-induced apoptosis. The stretch also resulted in increased expression of the pro-apoptotic Bcl-2 family proteins,including Bax and Bad,in cardiomyocytes,but not in fibroblasts. Bax was accumulated in mitochondria following stretch. Cell permeable Bid-BH3 peptide could induce and facilitate stretch-induced apoptosis and △ψm reduction in cardiomyocytes. These results suggest that Bcl-2 family proteins play an important role in coupling stretch signaling to mitochondrial death machinery,probably by targeting to PTP. Interestingly,the levels of p53 were increased at 12 h after stretch although we observed that Bax upregulation and apoptosis occurred as early as 1 h. Adenovirus delivered dominant negative p53 blocked Bax upregulation in cardiomyocytes but showed partial effect on preventing stretch-induced apoptosis,suggesting that p53 was only partially involved in mediating stretch-induced apoptosis. Furthermore,we showed that p21 was upregulated and cyclin B l was downregulated only in cardiac fibroblasts,which may be associated with G2/M accumulation in response to mechanical stretch.

  6. Transgenic overexpression of LARGE induces α-dystroglycan hyperglycosylation in skeletal and cardiac muscle.

    Directory of Open Access Journals (Sweden)

    Martin Brockington

    Full Text Available BACKGROUND: LARGE is one of seven putative or demonstrated glycosyltransferase enzymes defective in a common group of muscular dystrophies with reduced glycosylation of α-dystroglycan. Overexpression of LARGE induces hyperglycosylation of α-dystroglycan in both wild type and in cells from dystroglycanopathy patients, irrespective of their primary gene defect, restoring functional glycosylation. Viral delivery of LARGE to skeletal muscle in animal models of dystroglycanopathy has identical effects in vivo, suggesting that the restoration of functional glycosylation could have therapeutic applications in these disorders. Pharmacological strategies to upregulate Large expression are also being explored. METHODOLOGY/PRINCIPAL FINDINGS: In order to asses the safety and efficacy of long term LARGE over-expression in vivo, we have generated four mouse lines expressing a human LARGE transgene. On observation, LARGE transgenic mice were indistinguishable from the wild type littermates. Tissue analysis from young mice of all four lines showed a variable pattern of transgene expression: highest in skeletal and cardiac muscles, and lower in brain, kidney and liver. Transgene expression in striated muscles correlated with α-dystroglycan hyperglycosylation, as determined by immunoreactivity to antibody IIH6 and increased laminin binding on an overlay assay. Other components of the dystroglycan complex and extracellular matrix ligands were normally expressed, and general muscle histology was indistinguishable from wild type controls. Further detailed muscle physiological analysis demonstrated a loss of force in response to eccentric exercise in the older, but not in the younger mice, suggesting this deficit developed over time. However this remained a subclinical feature as no pathology was observed in older mice in any muscles including the diaphragm, which is sensitive to mechanical load-induced damage. CONCLUSIONS/SIGNIFICANCE: This work shows that

  7. Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo.

    Science.gov (United States)

    van Berlo, Jop H; Elrod, John W; Aronow, Bruce J; Pu, William T; Molkentin, Jeffery D

    2011-07-26

    Cardiac hypertrophy is an adaptive growth process that occurs in response to stress stimulation or injury wherein multiple signal transduction pathways are induced, culminating in transcription factor activation and the reprogramming of gene expression. GATA4 is a critical transcription factor in the heart that is known to induce/regulate the hypertrophic program, in part, by receiving signals from MAPKs. Here we generated knock-in mice in which a known MAPK phosphorylation site at serine 105 (S105) in Gata4 that augments activity was mutated to alanine. Homozygous Gata4-S105A mutant mice were viable as adults, although they showed a compromised stress response of the myocardium. For example, cardiac hypertrophy in response to phenylephrine agonist infusion for 2 wk was largely blunted in Gata4-S105A mice, as was the hypertrophic response to pressure overload at 1 and 2 wk of applied stimulation. Gata4-S105A mice were also more susceptible to heart failure and cardiac dilation after 2 wk of pressure overload. With respect to the upstream pathway, hearts from Gata4-S105A mice did not efficiently hypertrophy following direct ERK1/2 activation using an activated MEK1 transgene in vivo. Mechanistically, GATA4 mutant protein from these hearts failed to show enhanced DNA binding in response to hypertrophic stimulation. Moreover, hearts from Gata4-S105A mice had significant changes in the expression of hypertrophy-inducible, fetal, and remodeling-related genes.

  8. Effects of olive oil and its minor phenolic constituents on obesity-induced cardiac metabolic changes

    Directory of Open Access Journals (Sweden)

    Rocha Katiucha KHR

    2010-10-01

    Full Text Available Abstract Background Olive oil and its minor constituents have been recommended as important dietary therapeutic interventions in preventive medicine. However, a question remains to be addressed: what are the effects of olive oil and its phenolic compounds on obesity-induced cardiac metabolic changes? Methods Male Wistar rats were divided into two groups (n = 24/group: (C receiving standard-chow; (Ob receiving hypercaloric-chow. After 21 days C and Ob groups were divided into four subgroups (n = 6/group:(C standard-chow and saline; (C-Olivestandard-chow and olive-oil (3.0 g/kg.day; (C-Oleuropeinstandard-chow and oleuropein (0.023 mg/kg/day; (C-Cafeic standard-chow and cafeic-acid (2.66 mg/kg/day; (Obreceiving hypercaloric-chow and saline;(Ob-Olive hypercaloric-chow and olive-oil;(Ob-Oleuropein hypercaloric-chow and oleuropein;(Ob-Cafeic hypercaloric-chow and cafeic-acid. Treatments were given twice a week during 21 days. Results After 42 days, obesity was evidenced in Ob rats from enhanced body-weight, surface-area, and body-mass-index. Energy-expenditure, oxygen consumption(VO2 and fat-oxidation were lower in Ob-group than in C. Despite no morphometric changes, Ob-Olive, Ob-Oleuropein and Ob-Cafeic groups had higher VO2, fat-oxidation, myocardial beta-hydroxyacyl coenzyme-A dehydrogenase and lower respiratory-quotient than Ob. Citrate-synthase was highest in Ob-Olive group. Myocardial lipid-hydroperoxide(LH and antioxidant enzymes were unaffected by olive-oil and its compounds in obesity condition, whereas LH was lower and total-antioxidant-substances were higher in C-Olive and C-Oleuropein than in C. Conclusions The present study demonstrated for the first time that olive-oil, oleuropein and cafeic-acid enhanced fat-oxidation and optimized cardiac energy metabolism in obesity conditions. Olive oil and its phenolic compounds improved myocardial oxidative stress in standard-fed conditions.

  9. Growth and Photosynthetic Characteristics of Two Strawberry Cultivars in Response to Furostanol Glycosides Treatments

    Directory of Open Access Journals (Sweden)

    Raluca Petronela CĂULEŢ

    2013-05-01

    Full Text Available Furostanol glycosides represent a large group of steroid compounds of plant origin with a broad spectrum of biological activities (anabolic, antioxidant, anti-fungal and nematicidal. Most of the research exhibits this effect in stress induced response on different pathogen attacks and only a few studies show the effect of glycoside on plants growth and development. In order to investigate the effects of furostanol glycoside treatment on rooting, growth performance and photosynthetic system efficiency, young unrooted strawberry plants (cv. ‘Real’ and ‘Magic’ were immersed in different concentrations (0.03 mM, 0.3 mM, 3 mM of G1 solution (glycoside extracted from Lycopersicon sp. and G2 (extracted from Digitalis sp. and morphometric parameters were determined. The results showed that immersion in 0.3 mM glycoside solution improved the quality of strawberry planting material by increasing the number and length of roots, as well as by stimulating formation of new leaves. Moreover, the influence of foliar spraying with G1 and G2 on plants growth, assimilator pigments content and photosynthesis was determined. Foliar spraying with both glycosides solutions improved radicular growth and development, but dimensions of foliar apparatus increased only in G1 treated variants. Although both glycoside treatments induced an increase in assimilator pigments content, photosynthetic rate decreased as a consequence of stomatal limitations associated with better efficiency of water use and of internal CO2, which suggests that these chemicals may have an antitranspirant action.

  10. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity.

    Science.gov (United States)

    Patel, Vaibhav B; Mori, Jun; McLean, Brent A; Basu, Ratnadeep; Das, Subhash K; Ramprasath, Tharmarajan; Parajuli, Nirmal; Penninger, Josef M; Grant, Maria B; Lopaschuk, Gary D; Oudit, Gavin Y

    2016-01-01

    Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance.

  11. Diterpene Glycosides from Stevia rebaudiana

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2011-04-01

    Full Text Available Three novel diterpene glycosides were isolated for the first time from the commercial extract of the leaves of Stevia rebaudiana, along with several known steviol glycosides, namely stevioside, rebaudiosides A-F, rubusoside and dulcoside A. The new compounds were identified as 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyloxy] ent-kaur-15-en-19-oic acid (1, 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyloxy]-16β-hydroxy-ent-kauran-19-oic acid (2 and 13-methyl-16-oxo-17-nor-ent-kauran-19-oic acid-β-D-glucopyranosyl ester (3 on the basis of extensive 2D NMR and MS spectroscopic data as well as chemical studies.

  12. Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice.

    Science.gov (United States)

    Goto, Tsuyoshi; Teraminami, Aki; Lee, Joo-Young; Ohyama, Kana; Funakoshi, Kozue; Kim, Young-Il; Hirai, Shizuka; Uemura, Taku; Yu, Rina; Takahashi, Nobuyuki; Kawada, Teruo

    2012-07-01

    Tiliroside contained in several dietary plants, such as rose hips, strawberry and raspberry, is a glycosidic flavonoid and possesses anti-inflammatory, antioxidant, anticarcinogenic and hepatoprotective activities. Recently, it has been reported that the administration of tiliroside significantly inhibited body weight gain and visceral fat accumulation in normal mice. In this study, we evaluated the effects of tiliroside on obesity-induced metabolic disorders in obese-diabetic KK-A(y) mice. In KK-A(y) mice, the administration of tiliroside (100 mg/kg body weight/day) for 21 days failed to suppress body weight gain and visceral fat accumulation. Although tiliroside did not affect oxygen consumption, respiratory exchange ratio was significantly decreased in mice treated with tiliroside. In the analysis of metabolic characteristics, it was shown that plasma insulin, free fatty acid and triglyceride levels were decreased, and plasma adiponectin levels were increased in mice administered tiliroside. The messenger RNA expression levels of hepatic adiponectin receptor (AdipoR)-1 and AdipoR2 and skeletal muscular AdipoR1 were up-regulated by tiliroside treatment. Furthermore, it was indicated that tiliroside treatment activated AMP-activated protein kinase in both the liver and skeletal muscle and peroxisome proliferator-activated receptor α in the liver. Finally, tiliroside inhibited obesity-induced hepatic and muscular triglyceride accumulation. These findings suggest that tiliroside enhances fatty acid oxidation via the enhancement adiponectin signaling associated with the activation of both AMP-activated protein kinase and peroxisome proliferator-activated receptor α and ameliorates obesity-induced metabolic disorders, such as hyperinsulinemia and hyperlipidemia, although it does not suppress body weight gain and visceral fat accumulation in obese-diabetic model mice.

  13. Triterpenoid glycosides from Bacopa monnieri.

    Science.gov (United States)

    Sivaramakrishna, Chillara; Rao, Chirravuri V; Trimurtulu, Golakoti; Vanisree, Mulabagal; Subbaraju, Gottumukkala V

    2005-12-01

    Two triterpenoid glycosides have been isolated along with 10 known saponins from Bacopa monnieri. Structures of the compounds have been elucidated as 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl] jujubogenin (1) and 3-O-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl] pseudojujubogenin (2) by high resolution NMR spectral data and chemical correlations. Further, the chemical compositions of bacosides A and B have been delineated.

  14. Iridoid glycosides from Gmelina arborea.

    Science.gov (United States)

    Tiwari, Neerja; Yadav, Akhilesh K; Srivastava, Pooja; Shanker, Karuna; Verma, Ram K; Gupta, Madan M

    2008-09-01

    Three iridoid glycosides 6-O-(3''-O-benzoyl)-alpha-L-rhamnopyranosylcatalpol (1a), 6-O-(3''-O-trans-cinnamoyl)-alpha-L-rhamnopyranosylcatalpol (2a) and 6-O-(3''-O-cis-cinnamoyl)-alpha-L-rhamnopyranosylcatalpol (3a) were isolated from aerial parts of Gmelina arborea and structures were elucidated by spectral analysis. Additionally a known iridoid 6-O-(3'', 4''-O-dibenzoyl)-alpha-L-rhamnopyranosylcatalpol (4) was also isolated and identified. PMID:18684476

  15. GLYCOSIDES FROM LINARIA VULGARIS MILL

    Directory of Open Access Journals (Sweden)

    Natalia Mashcenko

    2008-12-01

    Full Text Available A new flavonol glycoside, 5,4′-dimethylkaempferol 3-O-β-D-(6′′-α-Lrhamnopyranosyl -glucopyranoside, together with three known compounds were isolated from the n-butanolic soluble fraction of underground and aerial parts of Linaria vulgaris Mill, collected on the territory of Moldova. The characterisation of these compounds was achieved by various chromatographic and spectroscopic methods (IR, UV, 13C-NMR, 1H-NMR and MS.

  16. Guide Wire Induced Cardiac Tamponade: The Soft J Tip Is Not So Benign

    Directory of Open Access Journals (Sweden)

    Sankalp Dwivedi

    2016-01-01

    Full Text Available Central venous catheter (CVC insertion rarely causes cardiac tamponade due to perforation. Although it is a rare complication, it can be lethal if not identified early. We report a case of cardiac tamponade caused by internal jugular (IJ central venous catheter (CVC insertion using a soft J-tipped guide wire which is considered safe and rarely implicated with cardiac tamponade. A bedside transthoracic echocardiogram (TTE revealed a pericardial effusion with tamponade. An emergent bedside pericardiocentesis was done revealing bloody fluid and resulted in clinical stabilization.

  17. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    Science.gov (United States)

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  18. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    Science.gov (United States)

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  19. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction

    Science.gov (United States)

    Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease and cardiac dysfunction ha...

  20. Activation of retinoid receptor-mediated signaling ameliorates diabetes-induced cardiac dysfunction in Zucker diabetic rats.

    Science.gov (United States)

    Guleria, Rakeshwar S; Singh, Amar B; Nizamutdinova, Irina T; Souslova, Tatiana; Mohammad, Amin A; Kendall, Jonathan A; Baker, Kenneth M; Pan, Jing

    2013-04-01

    Diabetic cardiomyopathy (DCM) is a significant contributor to the morbidity and mortality associated with diabetes and metabolic syndrome. Retinoids, through activation of retinoic acid receptor (RAR) and retinoid x receptor (RXR), have been linked to control glucose and lipid homeostasis, with effects on obesity and diabetes. However, the functional role of RAR and RXR in the development of DCM remains unclear. Zucker diabetic fatty (ZDF) and lean rats were treated with Am580 (RARα agonist) or LGD1069 (RXR agonist) for 16 weeks, and cardiac function and metabolic alterations were determined. Hyperglycemia, hyperlipidemia and insulin resistance were observed in ZDF rats. Diabetic cardiomyopathy was characterized in ZDF rats by increased oxidative stress, apoptosis, fibrosis, inflammation, activation of MAP kinases and NF-κB signaling and diminished Akt phosphorylation, along with decreased glucose transport and increased cardiac lipid accumulation, and ultimately diastolic dysfunction. Am580 and LGD1069 attenuated diabetes-induced cardiac dysfunction and the pathological alterations, by improving glucose tolerance and insulin resistance; facilitating Akt activation and glucose utilization, and attenuating oxidative stress and interrelated MAP kinase and NF-κB signaling pathways. Am580 inhibited body weight gain, attenuated the increased cardiac fatty acid uptake, β-oxidation and lipid accumulation in the hearts of ZDF rats. However, LGD1069 promoted body weight gain, hyperlipidemia and cardiac lipid accumulation. In conclusion, our data suggest that activation of RAR and RXR may have therapeutic potential in the treatment of diabetic cardiomyopathy. However, further studies are necessary to clarify the role of RAR and RXR in the regulation of lipid metabolism and homeostasis.

  1. Velvet antler peptide prevents pressure overload-induced cardiac fibrosis via transforming growth factor (TGF)-β1 pathway inhibition.

    Science.gov (United States)

    Zhao, Lihong; Mi, Yang; Guan, Hongya; Xu, Yan; Mei, Yingwu

    2016-07-15

    Velvet antlers (VAs) are commonly used in traditional Chinese medicine and invigorant and contain many functional components for health promotion. The velvet antler peptide sVAP32 is one of active components in VAs; based on structural study, the sVAP32 interacts with TGF-β1 receptors and disrupts the TGF-β1 pathway. We hypothesized that sVAP32 prevents cardiac fibrosis from pressure overload by blocking TGF-β1 signaling. Sprague-Dawley rats underwent transverse aortic constriction (TAC) or a sham operation. After one month, rats received either sVAP32 (15mg/kg/day) or vehicle for an additional one month. TAC surgery induced significant cardiac dysfunction, fibroblast activation and fibrosis; these effects were improved by treatment with sVAP32. In the heart tissue, TAC remarkably increased the expression of TGF-β1 and connective tissue growth factor (CTGF), reactive oxygen species levels, and the phosphorylation levels of Smad2/3 and extracellular signal-regulated kinases 1/2 (ERK1/2). SVAP32 inhibited the increases in reactive oxygen species levels, CTGF expression and the phosphorylation of Smad2/3 and ERK1/2, but not TGF-β1 expression. In cultured cardiac fibroblasts, angiotensin II (Ang II) had similar effects compared to TAC surgery, such as increases in α-SMA-positive cardiac fibroblasts and collagen synthesis. SVAP32 eliminated these effects by disrupting TGF-β1 binding to its receptors and blocking Ang II/TGF-β1 downstream signaling. These results demonstrated that sVAP32 has anti-fibrotic effects by blocking the TGF-β1 pathway in cardiac fibroblasts.

  2. Protective effects of piperine against copper-ascorbate induced toxic injury to goat cardiac mitochondria in vitro.

    Science.gov (United States)

    Dutta, Mousumi; Ghosh, Arnab Kumar; Mishra, Prachi; Jain, Garima; Rangari, Vinod; Chattopadhyay, Aindrila; Das, Tridib; Bhowmick, Debajit; Bandyopadhyay, Debasish

    2014-09-01

    Piperine, the main alkaloid of black pepper, Piper nigrum Linn., is an important Indian spice used in traditional food and medicine in India. In the present study, we investigated the antioxidant activities of piperine against copper-ascorbate induced toxic injury to mitochondria obtained from a goat heart, in vitro. Incubation of isolated cardiac mitochondria with copper-ascorbate resulted in elevated levels of lipid peroxidation and protein carbonylation of the mitochondrial membrane, a reduced level of mitochondrial GSH and altered status of antioxidant enzymes as well as decreased activities of pyruvate dehydrogenase and the Kreb's cycle enzymes, altered mitochondrial morphology, mitochondrial swelling, di-tyrosine level and mitochondrial DNA damage. All these changes were found to be ameliorated when the cardiac mitochondria were co-incubated with copper-ascorbate and piperine, in vitro. Piperine, in our in vitro experiments, was found to scavenge hydrogen peroxide, superoxide anion free radicals, hydroxyl radicals and DPPH radicals, in a chemically defined system, indicating that this compound may provide protection to cardiac mitochondria against copper-ascorbate induced toxic injury through its antioxidant activities. The results of this study suggest that piperine may be considered as a future therapeutic antioxidant and may be used singly or as a co-therapeutic in the treatment of diseases associated with mitochondrial oxidative stress.

  3. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pan

    Full Text Available Transforming growth factor-beta (TGF-β, a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGF-β induces collagen type I alpha 1 (COL1A1 expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF-β1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF-β1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF-β1 for 48 h. TGF-β1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF-β1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF-β1-induced COL1A1 gene expression.

  4. Cardiac responses to induced lactate oxidation: NMR analysis of metabolic equilibria.

    Science.gov (United States)

    Lewandowski, E D; Damico, L A; White, L T; Yu, X

    1995-07-01

    The role of lactate as a source of pyruvate oxidation in supporting cardiac work, energetics, and formation of oxidative metabolites was examined in normal myocardium. 13C- and 31P-nuclear magnetic resonance (NMR) spectra were acquired from isolated rabbit hearts supplied 2.5 mM [3-13C]lactate or [3-13C]pyruvate with or without stimulation of pyruvate dehydrogenase (PDH) by dichloroacetate (DCA). Similar workloads determined by rate-pressure products were noted with pyruvate (21,700 +/- 2,400; mean +/- SE) and lactate (18,970 +/- 1,510). Oxygen consumption was similar in all four groups with means between 19.0 and 22.2 mumol.min-1.g dry weight-1 (SE = 1.6-2.0) as was the ratio of phosphocreatine to ATP with means between 1.8 and 2.1 (SE = 0.1-0.6). Intracellular pH, determined from 31P-NMR spectra, was essentially the same with pyruvate (7.06 +/- 0.02) and lactate (7.05 +/- 0.04). 13C enrichment of glutamate was higher with lactate (92%) than with pyruvate (70%). Pyruvate plus DCA induced no change in glutamate content at 9-10 mumol/g, but 13C enrichment increased to 83%, while lactate plus DCA maintained enrichment at 90%. Levels of alpha-ketoglutarate were lower with lactate (1.81 mumol/g) than with pyruvate (2.36 mumol/g). Lactate plus DCA elevated glutamate by 60% with a proportional increase in alpha-ketoglutarate. Thus the balance between glutamate and alpha-ketoglutarate was affected by substrate supply only and not by PDH activation. The results suggest that the equilibrium between alpha-ketoglutarate and glutamate is sensitive to cytosolic redox state, an important consideration for 13C-NMR analyses that rely on glutamate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7631845

  5. Naringin Reduces Hyperglycemia-Induced Cardiac Fibrosis by Relieving Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Olubunmi A Adebiyi

    Full Text Available Hyperglycemia promotes myocardial fibrotic lesions through upregulation of PKC and p38 in response to redox changes. The effects of naringin on hyperglycemia-induced myocardial fibrotic changes and its putative effects on PKC-β and p38 protein expression in type 1 rat model of diabetes are hereby investigated.Male Sprague-Dawley rats were divided into six groups I-VI. Groups I and II, were orally treated with distilled water {3.0 ml/kg body weight (BW} and naringin (50 mg/kg BW, respectively. Groups III, IV, V and VI were rendered diabetic by a single intraperitoneal injection of streptozotocin (60 mg/kg, BW and were similarly treated with subcutaneous insulin (8.0 I.U/kg BW, twice daily, naringin (50 mg/kg BW, distilled water (3.0 ml/Kg BW and ramipril (3.0 mg/kg/BW, respectively. The animals were sacrificed after 56 days by halothane overdose; blood and heart samples removed for further analysis.The untreated diabetic rats exhibited significantly increased oxidative stress, NADPH oxidase activity, increased cardiac fibrosis, PKC-β and p38 mitogen activated protein kinase expression compared to controls. Naringin treatment significantly ameliorated these changes in diabetic rats compared to the untreated diabetic controls.Naringin's amelioration of myocardial fibrosis by modulating p38 and PKC-β protein expression possibly through its known antioxidant actions and may therefore be useful in retarding the progression of fibrosis in a diabetic heart.

  6. Development of glycoside-bound radiopharmaceuticals; Novel radioiodination method for digoxin

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Yasutaka; Dote, Nobuhito; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira (Kyoto Univ. (Japan). Faculty of Pharmaceutical Science); Fujibayashi, Yasuhisa; Konishi, Junji

    1994-01-01

    We combined 2-hydroxy-3-methylbenzoylhydrazide (HMBH) with glycosides as a novel method for the radioiodination of physiologically active glycosides. This method was tested using digoxin, which is one of the cardiac glycosides. A digoxin-HMBH conjugate was synthesized by periodate cleavage of the third sugar ring, and was readily radiolabelled with Na[[sup 125]I] by the chloramine-T method. [sup 125]I labelled digoxin-HMBH conjugate retained Na[sup +], K[sup +]-ATPase binding in vivo and in vitro, and also retained immunoreactivity to an anti-digoxin antibody. Thus, this [sup 125]I labelled digoxin-HMBH conjugate represents a potential radiopharmaceutical for Na[sup +], K[sup +]-ATPase imaging, as well as for the radioimmunoassay of digoxin. (author).

  7. Multi-glycoside of Tripterygium wilfordii Hook. f. ameliorates imiquimod-induced skin lesions through a STAT3-dependent mechanism involving the inhibition of Th17-mediated inflammatory responses

    Science.gov (United States)

    Zhao, Jingxia; Di, Tingting; Wang, Yan; Liu, Xin; Liang, Daiying; Zhang, Guangzhong; Li, Ping

    2016-01-01

    Multi-glycoside of Tripterygium wilfordii Hook. f. (GTW) possesses anti-inflammatory and immunosuppressive properties, and has been used as a traditional treatment for psoriasis for many years, although the underlying immunological mechanisms remain poorly understood. The T helper (Th)17 cell response is considered to play a major role in the pathogenesis of psoriasis. Th17 cells are implicated in the mechanism of pathogenesis of imiquimod (IMQ)-induced skin inflammation. Using a mouse model, we demonstrated that GTW protected mice from developing psoriasis-like lesions induced by topical IMQ administration. This protection was associated with significantly decreased mRNA levels of Th17 cytokines such as interleukin (IL)-17A, IL-17F and IL-22 in mouse skin samples as well as fewer IL-17-secreting splenic CD4+ lymphocytes in IMQ-exposed mice. There were no significant effects on the proportion of CD4+ interferon (IFN)-γ+ T cells, CD4+IL-4+ T cells and CD4+CD25+Foxp3+ Treg cells in the spleen cells. Taken together with the unchanged mRNA levels of Th1 cytokine IFN-γ, Th2 cytokine IL-4 and Treg cytokine IL-10 in IMQ-exposed mouse skin following GTW administration, our findings suggest that the immunosuppressive effect of GTW in psoriasis is exerted mainly on Th17 cells, rather than on Th1, Th2 or Treg cells. Furthermore, we showed that GTW suppressed Th17 function through the inhibition of STAT3 phosphorylation. These results have the potential to pave the way for the use of GTW as an agent for the treatment of psoriasis. PMID:27431437

  8. Multi-glycoside of Tripterygium wilfordii Hook. f. ameliorates imiquimod-induced skin lesions through a STAT3-dependent mechanism involving the inhibition of Th17-mediated inflammatory responses.

    Science.gov (United States)

    Zhao, Jingxia; Di, Tingting; Wang, Yan; Liu, Xin; Liang, Daiying; Zhang, Guangzhong; Li, Ping

    2016-09-01

    Multi-glycoside of Tripterygium wilfordii Hook. f.(GTW) possesses anti-inflammatory and immunosuppressive properties, and has been used as a traditional treatment for psoriasis for many years, although the underlying immunological mechanisms remain poorly understood. The T helper (Th)17 cell response is considered to play a major role in the pathogenesis of psoriasis. Th17 cells are implicated in the mechanism of pathogenesis of imiquimod (IMQ)‑induced skin inflammation. Using a mouse model, we demonstrated that GTW protected mice from developing psoriasis-like lesions induced by topical IMQ administration. This protection was associated with significantly decreased mRNA levels of Th17 cytokines such as interleukin (IL)-17A, IL-17F and IL-22 in mouse skin samples as well as fewer IL-17-secreting splenic CD4+ lymphocytes in IMQ-exposed mice. There were no significant effects on the proportion of CD4+ interferon (IFN)-γ+ T cells, CD4+IL-4+ T cells and CD4+CD25+Foxp3+ Treg cells in the spleen cells. Taken together with the unchanged mRNA levels of Th1 cytokine IFN-γ, Th2 cytokine IL-4 and Treg cytokine IL-10 in IMQ-exposed mouse skin following GTW administration, our findings suggest that the immunosuppressive effect of GTW in psoriasis is exerted mainly on Th17 cells, rather than on Th1, Th2 or Treg cells. Furthermore, we showed that GTW suppressed Th17 function through the inhibition of STAT3 phosphorylation. These results have the potential to pave the way for the use of GTW as an agent for the treatment of psoriasis. PMID:27431437

  9. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle.

    Science.gov (United States)

    Olson, Aaron K; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly Priddy, Colleen; Isern, Nancy; Portman, Michael A

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon ((13)C)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing (13)C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont. The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the

  10. A novel phenylpropanoid glycosides and a new derivation of phenolic glycoside from Paris Polyphylla var. yunnanensis

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Wen Yuan Gao; Tie Jun Zhang; Yuan Qiang Guo

    2007-01-01

    A novel phenylpropanoid glycosides 1, named parispolyside F, and a novel derivation of phenolic glycoside 2, named parispolyside G, as well as two known flavonoid glycosides were isolated from the rhizome of Paris polyphylla var. Yunnanensis.Their structures were elucidated by spectroscopic methods.

  11. The decreased oxygen uptake during progressive exercise in ischemia-induced heart failure is due to reduced cardiac output rate

    Directory of Open Access Journals (Sweden)

    N.P.L. Rolim

    2006-02-01

    Full Text Available We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2 in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 ± 0.4 vs 8 ± 0.8 mmHg, P = 0.0001. Resting cardiac index (CI tended to be lower in ischemic heart failure rats (P = 0.07. Resting heart rate (HR and stroke volume index (SVI did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 ± 7.37 vs 109.02 ± 27.87 mL min-1 kg-1, P = 0.005. The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.

  12. Simvastatin-induced cardiac autonomic control improvement in fructose-fed female rats

    Directory of Open Access Journals (Sweden)

    Renata Juliana da Silva

    2011-01-01

    Full Text Available OBJECTIVE: Because autonomic dysfunction has been found to lead to cardiometabolic disorders and because studies have reported that simvastatin treatment has neuroprotective effects, the objective of the present study was to investigate the effects of simvastatin treatment on cardiovascular and autonomic changes in fructose-fed female rats. METHODS: Female Wistar rats were divided into three groups: controls (n=8, fructose (n=8, and fructose+ simvastatin (n=8. Fructose overload was induced by supplementing the drinking water with fructose (100 mg/L, 18 wks. Simvastatin treatment (5 mg/kg/day for 2 wks was performed by gavage. The arterial pressure was recorded using a data acquisition system. Autonomic control was evaluated by pharmacological blockade. RESULTS: Fructose overload induced an increase in the fasting blood glucose and triglyceride levels and insulin resistance. The constant rate of glucose disappearance during the insulin intolerance test was reduced in the fructose group (3.4+ 0.32%/min relative to that in the control group (4.4+ 0.29%/min. Fructose+simvastatin rats exhibited increased insulin sensitivity (5.4+0.66%/min. The fructose and fructose+simvastatin groups demonstrated an increase in the mean arterial pressure compared with controls rats (fructose: 124+2 mmHg and fructose+simvastatin: 126 + 3 mmHg vs. controls: 112 + 2 mmHg. The sympathetic effect was enhanced in the fructose group (73 + 7 bpm compared with that in the control (48 + 7 bpm and fructose+simvastatin groups (31+8 bpm. The vagal effect was increased in fructose+simvastatin animals (84 + 7 bpm compared with that in control (49 + 9 bpm and fructose animals (46+5 bpm. CONCLUSION: Simvastatin treatment improved insulin sensitivity and cardiac autonomic control in an experimental model of metabolic syndrome in female rats. These effects were independent of the improvements in the classical plasma lipid profile and of reductions in arterial pressure. These results

  13. Compound Library Screening Identified Cardiac Glycoside Digitoxin as an Effective Growth Inhibitor of Gefitinib-Resistant Non-Small Cell Lung Cancer via Downregulation of α-Tubulin and Inhibition of Microtubule Formation

    Directory of Open Access Journals (Sweden)

    Yi-Ze Zhang

    2016-03-01

    Full Text Available Non-small-cell lung cancer (NSCLC dominates over 85% of all lung cancer cases. Epidermal growth factor receptor (EGFR activating mutation is a common situation in NSCLC. In the clinic, molecular-targeting with Gefitinib as a tyrosine kinase inhibitor (TKI for EGFR downstream signaling is initially effective. However, drug resistance frequently happens due to additional mutation on EGFR, such as substitution from threonine to methionine at amino acid position 790 (T790M. In this study, we screened a traditional Chinese medicine (TCM compound library consisting of 800 single compounds in TKI-resistance NSCLC H1975 cells, which contains substitutions from leucine to arginine at amino acid 858 (L858R and T790M mutation on EGFR. Attractively, among these compounds there are 24 compounds CC50 of which was less than 2.5 μM were identified. We have further investigated the mechanism of the most effective one, Digitoxin. It showed a significantly cytotoxic effect in H1975 cells by causing G2 phase arrest, also remarkably activated 5′ adenosine monophosphate-activated protein kinase (AMPK. Moreover, we first proved that Digitoxin suppressed microtubule formation through decreasing α-tubulin. Therefore, it confirmed that Digitoxin effectively depressed the growth of TKI-resistance NSCLC H1975 cells by inhibiting microtubule polymerization and inducing cell cycle arrest.

  14. STEROIDAL GLYCOSIDES FROM THE ROOTS OF SOLANUM MELONGENA L.

    Directory of Open Access Journals (Sweden)

    Stepan Shvets

    2009-12-01

    Full Text Available One new cholestane glycoside, six steroidal glycosides of spirostane series and one pregnane glycoside have been isolated from the roots of Solanum melongena L. for the first time. Their structures were determined by physico-chemical methods.

  15. Zearalenone-induced changes in biochemical parameters, oxidative stress and apoptosis in cardiac tissue: Protective role of crocin.

    Science.gov (United States)

    Salem, I Ben; Boussabbeh, M; Neffati, F; Najjar, M F; Abid-Essefi, S; Bacha, H

    2016-06-01

    Zearalenone (ZEN) is a mycotoxin from Fusarium species commonly found in food commodities and is known to cause reproductive disorders. Several in vivo studies have shown that ZEN is haematotoxic and hepatotoxic and causes several alterations of immunological parameters. Meantime, the available information on the cardiotoxic effects of ZEN is very much limited. In the present study, we investigated the toxic effects of ZEN in heart tissues of Balb/c mice. We demonstrated that ZEN (40 mg kg(-1) body weight (b.w.)) increased creatine phosphokinase, lactate dehydrogenase, aspartate transaminase, alanine transaminase, total cholesterol and triglyceride levels and induced oxidative stress as monitored by measuring the malondialdehyde level, the generation of protein carbonyls, the catalase and superoxide dismutase activity and the expression of the heat shock proteins (Hsp 70). We also demonstrated that acute administration of ZEN triggers apoptosis in cardiac tissue. Furthermore, we aimed to evaluate the safety and efficacy of crocin (CRO), a natural carotenoid, to prevent ZEN-induced cardiotoxicity in mice. In fact, combined treatment of ZEN with different doses of CRO (50, 100, and 250 mg kg(-1) b.w.) showed a significant reduction of ZEN-induced toxicity for all tested markers in a dose-dependent manner. It could be concluded that CRO was effective in the protection against ZEN-induced toxicity in cardiac tissue. PMID:26231423

  16. Exercise-induced ventricular arrhythmias and vagal dysfunction in Chagas disease patients with no apparent cardiac involvement

    Directory of Open Access Journals (Sweden)

    Henrique Silveira Costa

    2015-04-01

    Full Text Available INTRODUCTION : Exercise-induced ventricular arrhythmia (EIVA and autonomic imbalance are considered as early markers of heart disease in Chagas disease (ChD patients. The objective of the present study was to verify the differences in the occurrence of EIVA and autonomic maneuver indexes between healthy individuals and ChD patients with no apparent cardiac involvement. METHODS : A total of 75 ChD patients with no apparent cardiac involvement, aged 44.7 (8.5 years, and 38 healthy individuals, aged 44.0 (9.2 years, were evaluated using echocardiography, symptom-limited treadmill exercise testing and autonomic function tests. RESULTS : The occurrence of EIVA was higher in the chagasic group (48% than in the control group (23.7% during both the effort and the recovery phases. Frequent ventricular contractions occurred only in the patient group. Additionally, the respiratory sinus arrhythmia index was significantly lower in the chagasic individuals compared with the control group. CONCLUSIONS : ChD patients with no apparent cardiac involvement had a higher frequency of EIVA as well as more vagal dysfunction by respiratory sinus arrhythmia. These results suggest that even when asymptomatic, ChD patients possess important arrhythmogenic substrates and subclinical disease.

  17. Effects of rutin from leaves and flowers of buckwheat (Fagopyrum esculentum Moench.) on angiotensin II-induced hypertrophy of cardiac myocytes and proliferation of fibroblasts

    OpenAIRE

    Han, Shu-ying; Chu, Jin-Xiu; Li, Guang-min; Zhu, Li-Sha; Shi, Rui-Fang

    2010-01-01

    Rutin was isolated from dried leaves and flowers of buckwheat (Fagopyrum esculentum Moench.). The effects of rutin on angiotensin II-induced hypertrophy of cultured cardiac myocytes and proliferation of cardiac fibroblasts of neonatal rats were evaluated by analyzing the cell surface area, measuring the protein synthesis rate through 3H-leucine incorporation, and the MTT method. Rutin (0.8 to 8.0 mg/l) exhibited a strong inhibition on the hypertrophy and proliferation. The results...

  18. Two New Triterpene Glycosides from Centella asiatica

    Science.gov (United States)

    Phytochemical investigation of the leaves of Centella asiatica resulted in the isolation and characterization of one new ursane type triterpene glycoside; asiaticoside G along with nine known compounds, that were characterized as ursane type triterpenes and /or their glycoside; asiatic acid (2), mad...

  19. Pummelo Protects Doxorubicin-Induced Cardiac Cell Death by Reducing Oxidative Stress, Modifying Glutathione Transferase Expression, and Preventing Cellular Senescence

    Directory of Open Access Journals (Sweden)

    L. Chularojmontri

    2013-01-01

    Full Text Available Citrus flavonoids have been shown to reduce cardiovascular disease (CVD risks prominently due to their antioxidant effects. Here we investigated the protective effect of pummelo (Citrus maxima, CM fruit juice in rat cardiac H9c2 cells against doxorubicin (DOX- induced cytotoxicity. Four antioxidant compositions (ascorbic acid, hesperidin, naringin, and gallic acid were determined by HPLC. CM significantly increased cardiac cell survival from DOX toxicity as evaluated by MTT assay. Reduction of cellular oxidative stress was monitored by the formation of DCF fluorescent product and total glutathione (GSH levels. The changes in glutathione-S-transferase (GST activity and expression were determined by enzyme activity assay and Western blot analysis, respectively. Influence of CM on senescence-associated β-galactosidase activity (SA-β-gal was also determined. The mechanisms of cytoprotection involved reduction of intracellular oxidative stress, maintaining GSH availability, and enhanced GST enzyme activity and expression. DOX-induced cellular senescence was also attenuated by long-term CM treatment. Thus, CM fruit juice can be promoted as functional fruit to protect cells from oxidative cell death, enhance the phase II GSTP enzyme activity, and decrease senescence phenotype population induced by cardiotoxic agent such as DOX.

  20. PGC-1/Spargel Counteracts High-Fat-Diet-Induced Obesity and Cardiac Lipotoxicity Downstream of TOR and Brummer ATGL Lipase

    Directory of Open Access Journals (Sweden)

    Soda Balla Diop

    2015-03-01

    Full Text Available Obesity and metabolic syndrome are associated with an increased risk for lipotoxic cardiomyopathy, which is strongly correlated with excessive accumulation of lipids in the heart. Obesity- and type-2-diabetes-related disorders have been linked to altered expression of the transcriptional cofactor PGC-1α, which regulates the expression of genes involved in energy metabolism. Using Drosophila, we identify PGC-1/spargel (PGC-1/srl as a key antagonist of high-fat diet (HFD-induced lipotoxic cardiomyopathy. We find that HFD-induced lipid accumulation and cardiac dysfunction are mimicked by reduced PGC-1/srl function and reversed by PGC-1/srl overexpression. Moreover, HFD feeding lowers PGC-1/srl expression by elevating TOR signaling and inhibiting expression of the Drosophila adipocyte triglyceride lipase (ATGL (Brummer, both of which function as upstream modulators of PGC-1/srl. The lipogenic transcription factor SREBP also contributes to HFD-induced cardiac lipotoxicity, likely in parallel with PGC-1/srl. These results suggest a regulatory network of key metabolic genes that modulates lipotoxic heart dysfunction.

  1. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O' Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  2. Early upregulation of myocardial CXCR4 expression is critical for dimethyloxalylglycine-induced cardiac improvement in acute myocardial infarction.

    Science.gov (United States)

    Mayorga, Mari; Kiedrowski, Matthew; Shamhart, Patricia; Forudi, Farhad; Weber, Kristal; Chilian, William M; Penn, Marc S; Dong, Feng

    2016-01-01

    The stromal cell-derived factor-1 (SDF-1):CXCR4 is important in myocardial repair. In this study we tested the hypothesis that early upregulation of cardiomyocyte CXCR4 (CM-CXCR4) at a time of high myocardial SDF-1 expression could be a strategy to engage the SDF-1:CXCR4 axis and improve cardiac repair. The effects of the hypoxia inducible factor (HIF) hydroxylase inhibitor dimethyloxalylglycine (DMOG) on CXCR4 expression was tested on H9c2 cells. In mice a myocardial infarction (MI) was produced in CM-CXCR4 null and wild-type controls. Mice were randomized to receive injection of DMOG (DMOG group) or saline (Saline group) into the border zone after MI. Protein and mRNA expression of CM-CXCR4 were quantified. Echocardiography was used to assess cardiac function. During hypoxia, DMOG treatment increased CXCR4 expression of H9c2 cells by 29 and 42% at 15 and 24 h, respectively. In vivo DMOG treatment increased CM-CXCR4 expression at 15 h post-MI in control mice but not in CM-CXCR4 null mice. DMOG resulted in increased ejection fraction in control mice but not in CM-CXCR4 null mice 21 days after MI. Consistent with greater cardiomyocyte survival with DMOG treatment, we observed a significant increase in cardiac myosin-positive area within the infarct zone after DMOG treatment in control mice, but no increase in CM-CXCR4 null mice. Inhibition of cardiomyocyte death in MI through the stabilization of HIF-1α requires downstream CM-CXCR4 expression. These data suggest that engagement of the SDF-1:CXCR4 axis through the early upregulation of CM-CXCR4 is a strategy for improving cardiac repair after MI.

  3. Blockade of γc Signals in Combination with Donor-specific Transfusion Induces Cardiac Allograft Acceptance in Murine Models

    Institute of Scientific and Technical Information of China (English)

    昌盛; 汪理; 林星光; 向芙莉; 陈必成; 陈忠华

    2010-01-01

    The γc cytokines play an important role in proliferation and survival of T cells. Blocking the γc signals can cause the activated donor-reactive T cells losing the ability to proliferate, and getting into apoptosis pathway, which contributes to induction of the peripheral tolerance. In this study, we induced the transplant tolerance through blocking the γc in combination with donor-specific transfusion (DST) in the cardiac transplantation. Following DST, on the day 2, 4 and 6, C57BL/6 recipients received an...

  4. Butanolic fraction of Moringa oleifera Lam. (Moringaceae) attenuates isoprotrenol induced cardiac necrosis and oxidative stress in rats: an EPR study

    OpenAIRE

    Panda, Sunanda

    2015-01-01

    The preventive effect of Moringa oleifera polyphenolic fraction (MOPF) on cardiac damage was evaluated in isoproterenol (ISO) induced cardiotoxicity model of Wistar rats. Male rats in different groups were treated with MOPF orally at the dose of 50, 100 and 150 mg/kg/day for 28 days and were subsequently administered (s.c.) with ISO (85 mg/kg body weight) for the last two days. At the end of the experiment levels of serum troponin-T, creatine kinase-MB, lactate dehydrogenase, content of malon...

  5. Negundoside, an irridiod glycoside from leaves of Vitex negundo, protects human liver cells against calcium-mediated toxicity induced by carbon tetrachloride

    Institute of Scientific and Technical Information of China (English)

    Sheikh A Tasduq; Peerzada J Kaiser; Bishan D Gupta; Vijay K Gupta; Rakesh K Johri

    2008-01-01

    AIM: To evaluate the protective effect of 2'-p-hydroxy benzoylmussaenosidic acid [negundoside (NG), against carbon tetrachloride (CCl4)-induced toxicity in HUH-7 cells.METHODS: CCl4 is a well characterized hepatotoxin, and inducer of cytochrome P4502E1 (CYP2E1)-mediated oxidative stress. In addition, lipid peroxidation and accumulation of intracellular calcium are important steps in the pathway involved in CCl4 toxicity. Liver cells (HUH-7) were treated with CCl4, and the mechanism of the cytoprotective effect of NG was assessed. Silymarin, a known hepatoprotective drug, was used as control.RESULTS: NG protected HUH-7 cells against CCl4 toxicity and loss of viability without modulating CYP2E1 activity. Prevention of CCl4, toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species (ROS), a decrease in lipid peroxidation and accumulation of intracellular Ca2+ levels and maintenance of intracellular glutathione homeostasis. Decreased mitochondrial membrane potential (MMP), induction of caspases mediated DNA fragmentation and cell cycle arrest, as a result of CCl4 treatment, were also blocked by NG. The protection afforded by NG seemed to be mediated by activation of cyclic adenosine monophosphate (cAMP) synthesis and inhibition of phospholipases (cPLA2).CONCLUSION: NG exerts a protective effect on CYP2El-dependent CCl4 toxicity via inhibition of lipid peroxidation, followed by an improved intracellular calcium homeostasis and inhibition of Ca2+-dependent proteases.

  6. Phenolic glycosides from Kaempferia parviflora.

    Science.gov (United States)

    Azuma, Toshiaki; Tanaka, Yasuo; Kikuzaki, Hiroe

    2008-11-01

    Three phenolic glycosides were isolated together with two known flavonol glycosides from the H2O-soluble fraction of rhizomes of Kaempferia parviflora. Their structures were determined to be rel-(5aS,10bS)-5a,10b-dihydro-1,3,5a,9-tetrahydroxy-8-methoxy-6H-benz[b]indeno[1,2-d]furan-6-one 5a-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-d-glucopyranoside] (1), its rel-5aS,10bR isomer (2), and (2R,3S,4S)-3-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-d-glucopyranosyl]-3'-O-methyl-ent-epicatechin-(2alpha-->O-->3,4alpha-->4)-(5aS,10bS)-5a,10b-dihydro-1,3,5a,9-tetrahydroxy-8-methoxy-6H-benz[b]indeno[1,2-d]furan-6-one 5a-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside] (3). The structures were elucidated on the basis of analyses of chemical and spectroscopic evidence. PMID:18922550

  7. Phenylpropanoid glycosides from Orobanche caerulescens.

    Science.gov (United States)

    Lin, Lie-Chwen; Chiou, Wen-Fei; Chou, Cheng-Jen

    2004-01-01

    Two new phenylpropanoid glycosides, caerulescenoside ( 1), and 3'-methyl crenatoside ( 2), as well as five known phenylpropanoid glycosides [acteoside ( 3), isoacteoside ( 4), campneoside II ( 5), crenatoside ( 6), and desrhamnosyl acteoside ( 7)] were isolated from the whole plant of Orobanche caerulescens. The antioxidative effects of compounds 1 - 7 on human low-density lipoprotein were evaluated. All these compounds suppress concentration-dependently conjugated diene formation with IC (50) values of 1.25 +/- 0.06, 2.97 +/- 0.31, 0.31 +/- 0.01, 1.01 +/- 0.05, 1.15 +/- 0.04, 1.69 +/- 0.15, and 0.64 +/- 0.03 microM, respectively. Comparison of their antioxidative activities with that of resveratrol (IC (50) : 6.75 +/- 1.05 microM), a natural phenolic antioxidant isolated from grape, demonstrated that the prolonged effect on lag-time and the damping effect on oxidative rate by compounds 1 - 7 were all more potent. PMID:14765293

  8. Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection.

    OpenAIRE

    Yasir Alhamdi; Neill, Daniel R.; Abrams, Simon T.; Malak, Hesham A.; Reham Yahya; Richard Barrett-Jolley; Guozheng Wang; Aras Kadioglu; Cheng-Hock Toh

    2015-01-01

    Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using ...

  9. Cardiac amyloidosis induces up-regulation of Deleted in Malignant Brain Tumors 1 (DMBT1)

    DEFF Research Database (Denmark)

    Müller, Hanna; Renner, Marcus; Bergmann, Frank;

    2013-01-01

    Amyloidosis is a life-threatening protein misfolding disease and affects cardiac tissue, leading to heart failure, myocardial ischemia and arrhythmia. Amyloid deposits result in oxidative stress, inflammation and apoptosis. The purpose of this study was to examine the role of innate defense...

  10. Derivation of Human Induced Pluripotent Stem (iPS) Cells to Heritable Cardiac Arrhythmias

    Science.gov (United States)

    2016-03-14

    Inherited Cardiac Arrythmias; Long QT Syndrome (LQTS); Brugada Syndrome (BrS); Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT); Early Repolarization Syndrome (ERS); Arrhythmogenic Cardiomyopathy (AC, ARVD/C); Hypertrophic Cardiomyopathy (HCM); Dilated Cardiomyopathy (DCM); Muscular Dystrophies (Duchenne, Becker, Myotonic Dystrophy); Normal Control Subjects

  11. Tripterygium Glycoside induced Apoptosis of HL-60 Cells in SCID Mice%雷公藤多甙诱导SCID小鼠体内HL-60细胞凋亡的研究

    Institute of Scientific and Technical Information of China (English)

    唐加明; 梁国华; 陈晓昀; 朱玉峰

    2012-01-01

    cells in spleen was significantly reduced,the apoptotic rate of HL-60 cells in spleen increased to( 21. 6 ±2.4)% ( P<0.05 ) and the survival time to ( 52. 6 ±5.3 ) days(P<0. 05 ). Conclusion Tripterygium glycosides has the anti-leukemic effects on the HL-60 cell implant models of SCID mince by inducing apoptosis in HL-60 cells.

  12. A New Flavone C-Glycoside from Clematis rehderiana

    Directory of Open Access Journals (Sweden)

    Zhi-Zhi Du

    2010-01-01

    Full Text Available A new flavone C-glycoside, isovitexin 6″-O-E-p-coumarate (1 and two known flavonoid glycosides—quercetin 3-O-β-D-glucuronopyranoside (2 and isoorientin (3—were isolated from an ethanol extract of aerial parts of Clematis rehderiana. Their structures were determined by spectroscopic methods. The antioxidant effects of the two flavone C-glycosides were evaluated by both the MTT and DPPH assays. Compound 1 showed potent activities against H2O2-induced impairment in PC12 cells within the concentration range tested, whereas compound 3 scavenged DPPH radical strongly, with an IC50 value of 13.5 μM.

  13. Cardioprotective role of Syzygium cumini against glucose-induced oxidative stress in H9C2 cardiac myocytes.

    Science.gov (United States)

    Atale, Neha; Chakraborty, Mainak; Mohanty, Sujata; Bhattacharya, Susinjan; Nigam, Darshika; Sharma, Manish; Rani, Vibha

    2013-09-01

    Diabetic patients are known to have an independent risk of cardiomyopathy. Hyperglycemia leads to upregulation of reactive oxygen species (ROS) that may contribute to diabetic cardiomyopathy. Thus, agents that suppress glucose-induced intracellular ROS levels can have therapeutic potential against diabetic cardiomyopathy. Syzygium cumini is well known for its anti-diabetic potential, but its cardioprotective properties have not been evaluated yet. The aim of the present study is to analyze cardioprotective properties of methanolic seed extract (MSE) of S. cumini in diabetic in vitro conditions. ROS scavenging activity of MSE was studied in glucose-stressed H9C2 cardiac myoblasts after optimizing the safe dose of glucose and MSE by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide. 2',7'-dichlorfluorescein diacetate staining and Fluorescence-activated cell sorting analysis confirmed the suppression of ROS production by MSE in glucose-induced cells. The intracellular NO and H2O2 radical-scavenging activity of MSE was found to be significantly high in glucose-induced cells. Exposure of glucose-stressed H9C2 cells to MSE showed decline in the activity of catalase and superoxide dismutase enzymes and collagen content. 4',6-diamidino-2-phenylindole, propidium iodide and 10-N-nonyl-3,6-bis (dimethylamino) acridine staining revealed that MSE protects myocardial cells from glucose-induced stress. Taken together, our findings revealed that the well-known anti-diabetic S. cumini can also protect the cardiac cells from glucose-induced stress. PMID:23512199

  14. FAK-related nonkinase attenuates hypertrophy induced by angiotensin-Ⅱ in cultured neonatal rat cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    Jin QIN; Zheng-xiang LIU

    2006-01-01

    Aim: To examine the inhibitory effect of FAK-related nonkinase (FRNK) in cardiac hypertrophy in vitro and investigate the possible mechanisms. Methods: A functional fragment of FRNK cDNA was amplified by reverse transcription-polymerase chain reaction and cloned into the vector pcDNA3.1. Hypertrophy in neonatal rat cardiac myocytes was established with angiotensin-Ⅱ stimulation. The pcDNA3.1-FRNK or pcDNA3.1 was respectively transfected into cardiomyocytes by Lipofectamine 2000. The surface area and mRNA expression of atrial natriuretic peptide (ANP) of myocytes were employed to detect cardiac hypertrophy. NF-κB p65 protein in nuclear extracts, phosphorylation levels of ERK1/2 (p-ERK1/2) and AKT (p-AKT), as well as total ERK1/2, and AKT in variant treated cardiomyocytes were determined by Western blot. Results: Under the stimulation of angiotensin Ⅱ, the surface area of myocytes and levels of ANP mRNA were significantly increased. But transient transfection with pcDNA3.1-FRNK in advance may reduce the surface area and expression of ANP mRNA of hypertrophic myocytes. The protein levels of NF-κB p65 in nuclear extracts and p-ERK1/2, p-AKT in FRNK treated cardiomyocytes were significantly decreased compared with that in angiotensin-Ⅱ induced cardiomyocytes, while different treatments had little effect on total ERK1/2 and AKT. Conclusion: FRNK may inhibit angiotensin-Ⅱ-induced cardiomyocyte hypertrophy via decreasing phosphorylation levels at ERK1/2 and AKT, consequently downregulating nuclear translocation of NF-κB p65.

  15. Danhong injection attenuates cardiac injury induced by ischemic and reperfused neuronal cells through regulating arginine vasopressin expression and secretion.

    Science.gov (United States)

    Yang, Mingzhu; Orgah, John; Zhu, Jie; Fan, Guanwei; Han, Jihong; Wang, Xiaoying; Zhang, Boli; Zhu, Yan

    2016-07-01

    Ischemic stroke is associated with cardiac myocyte vulnerability through some unknown mechanisms. Arginine vasopressin (AVP) may exert considerable function in the relationship of brain damage and heart failure. Danhong injection (DHI) can protect both stroke and heart failure patients with good efficacy in clinics. The aim of this study is to investigate the mechanism of DHI in heart and brain co-protection effects to determine whether AVP plays key role in this course. In the present study, we found that both the supernatant from oxygen-glucose deprivation (OGD) and reperfused primary rat neuronal cells (PRNCs) and AVP treatment caused significant reduction in cell viability and mitochondrial activity in primary rat cardiac myocytes (RCMs). Besides, DHI had the same protective effects with conivaptan, a dual vasopressin V1A and V2 receptor antagonist, in reducing the RCM damage induced by overdose AVP. DHI significantly decreased the injury of both PRNCs and RCMs. Meanwhile, the AVP level was elevated dramatically in OGD and reperfusion PRNCs, and DHI was able to decrease the AVP expression in the injured PRNCs. Therefore, our present results suggested that OGD and reperfusion PRNCs might induce myocyte injury by elevating the AVP expression in PRNCs. The ability of DHI to reinstate AVP level may be one of the mechanisms of its brain and heart co-protection effects. PMID:27107944

  16. Danhong injection attenuates cardiac injury induced by ischemic and reperfused neuronal cells through regulating arginine vasopressin expression and secretion.

    Science.gov (United States)

    Yang, Mingzhu; Orgah, John; Zhu, Jie; Fan, Guanwei; Han, Jihong; Wang, Xiaoying; Zhang, Boli; Zhu, Yan

    2016-07-01

    Ischemic stroke is associated with cardiac myocyte vulnerability through some unknown mechanisms. Arginine vasopressin (AVP) may exert considerable function in the relationship of brain damage and heart failure. Danhong injection (DHI) can protect both stroke and heart failure patients with good efficacy in clinics. The aim of this study is to investigate the mechanism of DHI in heart and brain co-protection effects to determine whether AVP plays key role in this course. In the present study, we found that both the supernatant from oxygen-glucose deprivation (OGD) and reperfused primary rat neuronal cells (PRNCs) and AVP treatment caused significant reduction in cell viability and mitochondrial activity in primary rat cardiac myocytes (RCMs). Besides, DHI had the same protective effects with conivaptan, a dual vasopressin V1A and V2 receptor antagonist, in reducing the RCM damage induced by overdose AVP. DHI significantly decreased the injury of both PRNCs and RCMs. Meanwhile, the AVP level was elevated dramatically in OGD and reperfusion PRNCs, and DHI was able to decrease the AVP expression in the injured PRNCs. Therefore, our present results suggested that OGD and reperfusion PRNCs might induce myocyte injury by elevating the AVP expression in PRNCs. The ability of DHI to reinstate AVP level may be one of the mechanisms of its brain and heart co-protection effects.

  17. Cardiac autonomic responses induced by mental tasks and the influence of musical auditory stimulation.

    Science.gov (United States)

    Barbosa, Juliana Cristina; Guida, Heraldo L; Fontes, Anne M G; Antonio, Ana M S; de Abreu, Luiz Carlos; Barnabé, Viviani; Marcomini, Renata S; Vanderlei, Luiz Carlos M; da Silva, Meire L; Valenti, Vitor E

    2014-08-01

    We investigated the acute effects of musical auditory stimulation on cardiac autonomic responses to a mental task in 28 healthy men (18-22 years old). In the control protocol (no music), the volunteers remained at seated rest for 10 min and the test was applied for five minutes. After the end of test the subjects remained seated for five more minutes. In the music protocol, the volunteers remained at seated rest for 10 min, then were exposed to music for 10 min; the test was then applied over five minutes, and the subjects remained seated for five more minutes after the test. In the control and music protocols the time domain and frequency domain indices of heart rate variability remained unchanged before, during and after the test. We found that musical auditory stimulation with baroque music did not influence cardiac autonomic responses to the mental task. PMID:25129880

  18. Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling.

    Science.gov (United States)

    Wang, Shudong; Luo, Manyu; Zhang, Zhiguo; Gu, Junlian; Chen, Jing; Payne, Kristen McClung; Tan, Yi; Wang, Yuehui; Yin, Xia; Zhang, Xiang; Liu, Gilbert C; Wintergerst, Kupper; Liu, Quan; Zheng, Yang; Cai, Lu

    2016-09-01

    Childhood obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), in adulthood, due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors; however, its role in ORCH and underlying mechanism(s) remain unclear and were explored here in mice with obesity induced with high-fat diet (HFD). Four week old mice were fed on either HFD (60%kcal fat) or normal diet (ND, 10% kcal fat) for 3 or 6 months, respectively. Either diet contained one of three different zinc quantities: deficiency (ZD, 10mg zinc per 4057kcal), normal (ZN, 30mg zinc per 4057kcal) or supplement (ZS, 90mg zinc per 4057kcal). HFD induced a time-dependent obesity and ORCH, which was accompanied by increased cardiac inflammation and p38 MAPK activation. These effects were worsened by ZD in HFD/ZD mice and attenuated by ZS in HFD/ZS group, respectively. Also, administration of a p38 MAPK specific inhibitor in HFD mice for 3 months did not affect HFD-induced obesity, but completely abolished HFD-induced, and zinc deficiency-worsened, ORCH and cardiac inflammation. In vitro exposure of adult cardiomyocytes to palmitate induced cell hypertrophy accompanied by increased p38 MAPK activation, which was heightened by zinc depletion with its chelator TPEN. Inhibition of p38 MAPK with its specific siRNA also prevented the effects of palmitate on cardiomyocytes. These findings demonstrate that ZS alleviates but ZD heightens cardiac hypertrophy in HFD-induced obese mice through suppressing p38 MAPK-dependent cardiac inflammatory and hypertrophic pathways. PMID:27346292

  19. Titanium Dioxide Nanoparticles Induced Proinflammation of Primary Cultured Cardiac Myocytes of Rat

    OpenAIRE

    Wei Song; Jiangxue Wang; Meili Liu; Ping Li; Gang Zhou; Zhou Li; Yubo Fan

    2013-01-01

    Titanium dioxide (TiO2) nanoparticles are widely used in electronics, biology, and medicine owing to their special properties. However, during TiO2 nanoparticles exposure, nanoparticles may enter the blood circulation and translocate to the heart, and they may result in negative effects on the cardiovascular system. In this study, we demonstrated that the anatase and rutile TiO2 nanoparticles had potential toxicological effects on primary cultured cardiac myocytes of rat. After incubating wit...

  20. Adaptive changes of the cardiac opioid system due to volume induced heart failure

    OpenAIRE

    Dehe, Lukas

    2016-01-01

    Knowledge about changes in the cardiac opioid system in congestive heart failure (CHF) is scarce. As such, this project investigated the cellular localization of the opioid receptors δ (DOR) and κ (KOR) in left ventricular (LV) myocardium. Opioid receptor (OR) binding sites were detected by radioligand binding. In addition, DOR and KOR localization was determined by double immunofluorescence confocal analysis in the left ventricle of male Wistar rats. DOR and KOR were colocalized with L-type ...

  1. Multiscale characterization of cardiac remodeling induced by intrauterine growth restriction, at organ, cellular and subcellular level

    OpenAIRE

    González Tendero, Anna

    2014-01-01

    Tesi realitzada a l'Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) INTRODUCTION: Intrauterine growth restriction (IUGR) due to placental insufficiency affects up to 7-10% of pregnancies and is a major cause of perinatal mortality and long term morbidity. IUGR results in low birth weight, which is associated with increased risk of cardiovascular mortality in adulthood, and is thought to be mediated by fetal cardiovascular programming. IUGR fetuses show signs of cardiac s...

  2. MOMORDICA CHARANTIA PROTECTS AGAINST CARDIAC DAMAGE IN STREPTOZOTOCIN-INDUCED DIABETIC WISTAR RATS

    OpenAIRE

    O. A. Komolafe; D. A. Ofusori; O. S Adewole; A. O Ayoka; Abiodun, A A

    2012-01-01

    Diabetes mellitus is one of the most important world health problems, especially in developing countries where prevalence and incidence rates are highest. Diabetic patients are particularly prone to cardiovascular diseases including hypertension, atherosclerosis, diabetic cardiomyopathy, congestive heart failure and cardiac autonomic neuropathy. The present study investigated the effects of Momordica charantia (M. charantia) on histological changes of the left ventricle of the heart in strept...

  3. Delayed contrast enhancement cardiac magnetic resonance imaging in trastuzumab induced cardiomyopathy

    OpenAIRE

    Kirkpatrick Iain; Fang Tielan; Lytwyn Matthew; Fallah-Rad Nazanin; Jassal Davinder S

    2008-01-01

    Abstract Background Trastuzumab (Herceptin), an antagonist to the human epidermal growth factor 2 (HER2) receptor significantly decreases the rates of breast cancer recurrence and mortality by 50%. Despite therapeutic benefits, the risk of cardiotoxicity with trastuzumab ranges from 10–15% when administered sequentially following anthraycline chemotherapy. Little is known about the utility of cardiac magnetic resonance (CMR) in the assessment of trastuzumab mediated cardiomyopathy. Methods an...

  4. Hyperglycemia-Induced T-Wave Oversensing as a Cause of Cardiac Resynchronization Therapy (CRT Failure

    Directory of Open Access Journals (Sweden)

    Hassan Moladoust

    2012-03-01

    Full Text Available T-wave oversensing occurs when the counter starts giving dual beeps for every cardiac cycle instead of one. This usually happens when the monitoring lead displays a tall T wave, which is also sharp. R wave sensing algorithms of the devices do not sense T wave because the slow rate of the T wave is much less than that of the R wave. But the slow rate of T waves may change with time and also because of parameters like potassium levels and hyperglycemia. We present a 67-year-old female who underwent the implantation of cardiac resynchronization therapy (cardiac resynchronization and implantable cardioverter defibrilator [CRT-D] because of severe left ventricular systolic dysfunction and ventricular dyssynchrony experienced recurrent inappropriate implantable cardioverter-defibrillator (ICD shocks and CRT failure. Device analysis showed that the CRT failure was in consequence of T-wave oversensing due to hyperglycemia. Elimination of the T-wave oversensing after hyperglycemia control conferred good biventricular pacing and good response to CRT during a 6-month follow-up period.

  5. Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Jackson, Ayanna U; Tata, Alessandra; Wu, Chunping; Perry, Richard H; Haas, George; West, Leslie; Cooks, R Graham

    2009-05-01

    The analysis of Stevia leaves has been demonstrated without any sample preparation using desorption electrospray ionization (DESI) mass spectrometry. Direct rapid analysis was achieved using minimal amounts of sample ( approximately 0.15 cm x 0.15 cm leaf fragment). Characteristic constituents of the Stevia plant are observed in both the positive and negative ion modes including a series of diterpene 'sweet' glycosides. The presence of the glycosides was confirmed via tandem mass spectrometry analysis using collision-induced dissociation and further supported by exact mass measurements using an LTQ-Orbitrap. The analysis of both untreated and hexane-extracted dry leaves proved that DESI can be successfully used to analyze untreated leaf fragments as identical profiles were obtained from both types of samples. Characterization and semi-quantitative determination of the glycosides was achieved based on the glycoside profile within the full mass spectrum. In addition, the presence of characteristic glycosides in an all-natural commercial Stevia dietary supplement was confirmed. This study provides an example of the application of DESI to direct screening of plant materials, in this case diterpene glycosides. PMID:19381377

  6. Extraction, radiolabeling and in vivo biological evaluation of {sup 131}I labeled egonol glycosides extract

    Energy Technology Data Exchange (ETDEWEB)

    Akguel, Yurdanur; Pazar, Erdinc [Ege Univ., Izmir (Turkey). Chemistry Dept.; Yilmaz, Habibe; Sanlier, Senay Hamarat [Ege Univ., Izmir (Turkey). Biochemistry Dept.; Lambrecht, Fatma Yurt [Ege Univ., Izmir (Turkey). Dept. of Nuclear Applications; Yilmaz, Osman [Dokuz Eyluel Univ., Izmir (Turkey). Dept. of Lab. Animal Science

    2015-09-01

    Crude extract of S. officinalis L. was found to have suspending agent, hemolytic, antitumor, antioxidant and antimicrobial activities. Its major components benzofurans and benzofuran glycosides have antifungal, anticancer, antibacterial and anticomplement activities and display acetylcholinesterase-cyclooxygenase inhibitory and cytotoxic properties. Recently, it has been reported that egonolgentiobioside is a valuable target for structural modification and warrants further investigation for its potential as a novel pharmaceutical tool for the prevention of estrogen deficiency induced diseases. The aim of the current study is to perform in vivo biological evaluation of a glycosides extract, which was isolated from the fruits endocarp of Styrax officinalis L, identified as egonolgentiobioside and homoegonolgentiobioside and labeled with {sup 131}I. The radiolabeled glycosides extract was labeled with {sup 131}I with high yield. The labeled obtained radiolabeled compound was found to be quite stable and lipophilic. In order to determine its tissue distribution, an in vivo study was performed using healthy female Albino Wistar rats injected by {sup 131}I-glycosides. The biodistribution results showed that clearance of the radiolabeled compound is through the hepatobiliary pathway. The experimental study indicated that the radiolabeled glycosides extract accumulated in the large intestine. Therefore, the potential of {sup 131}I-glycosides might be evaluated in colon cancer cell lines and this might be a promising of tumor-imaging agent.

  7. A New Furostanol Glycoside from Tribulus terrestris

    Directory of Open Access Journals (Sweden)

    Tonghua Liu

    2010-01-01

    Full Text Available Besides two known glycosides, a new furostanol glycoside was isolated from the Fruits of Tribulus terrestris L. The structure of the new furostanol glycoside was established as 26-O-β-D-glucopyranosyl-(25S-5α-furostane-20(22-en-12-one-3β, 26-diol-3-O-α-L-rhamnopyranosyl-(1→2-[β-D-glucopyranosyl-(1→4]-β-D-galactopyranoside (1 on the basis of 1D and 2D-NMR techniques, including COSY, HMBC, and HMQC correlations.

  8. A New Furostanol Glycoside from Tribulus terrestris

    OpenAIRE

    Tonghua Liu; Yue Liu; Haiou Zhou; Shengxu Xie; Yunshan Si; Tunhai Xu; Yonghong Liu; Yajuan Xu; Dongming Xu

    2010-01-01

    Besides two known glycosides, a new furostanol glycoside was isolated from the Fruits of Tribulus terrestris L. The structure of the new furostanol glycoside was established as 26-O-β-D-glucopyranosyl-(25S)-5α-furostane-20(22)-en-12-one-3β, 26-diol-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-β-D-galactopyranoside (1) on the basis of 1D and 2D-NMR techniques, including COSY, HMBC, and HMQC correlations.

  9. Thermal Degradation of Flavonol Glycosides in Noni Leaves During Roasting

    Directory of Open Access Journals (Sweden)

    Shixin Deng

    2011-04-01

    Full Text Available Noni leaves have been used for a variety of health benefits for thousands of years. Noni leaf tea, a commercial product made by a roasting process, is attracting more attention due to its potential health benefits. Flavonoids appear to be some of the predominant constituents in noni leaves. As flavonoids exist mostly in the forms of glycosides or polymers, degradation to corresponding metabolites is usually needed for bio-absorption. This study investigates the effects of thermal treatment (non-aqueous roasting on flavonoids in noni leaves. Rutin and kaempferol glycoside contents decreased dramatically as roasting time and/or temperature increased, while quercetin and kaempferol aglycones were produced. A quantitative comparison demonstrated that quercetin and kaempferol concentrations were 3.74 and 6.28 times greater in noni leaf tea than in raw noni leaves, respectively. These findings indicate that the roasting process for the noni leaf tea could induce the degradation of flavonol glycosides, and produce their aglycone metabolites, which in turn, may lead to more beneficial bioactivities and bioavailability.

  10. Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2.

    Directory of Open Access Journals (Sweden)

    Qun S Zang

    Full Text Available Our previous research demonstrated that sepsis produces mitochondrial dysfunction with increased mitochondrial oxidative stress in the heart. The present study investigated the role of mitochondria-localized signaling molecules, tyrosine kinase Src and tyrosine phosphatase SHP2, in sepsis-induced cardiac mitochondrial dysfunction using a rat pneumonia-related sepsis model. SD rats were given an intratracheal injection of Streptococcus pneumoniae, 4×10(6 CFU per rat, (or vehicle for shams; heart tissues were then harvested and subcellular fractions were prepared. By Western blot, we detected a gradual and significant decrease in Src and an increase in SHP2 in cardiac mitochondria within 24 hours post-inoculation. Furthermore, at 24 hours post-inoculation, sepsis caused a near 70% reduction in tyrosine phosphorylation of all cardiac mitochondrial proteins. Decreased tyrosine phosphorylation of certain mitochondrial structural proteins (porin, cyclophilin D and cytochrome C and functional proteins (complex II subunit 30kD and complex I subunit NDUFB8 were evident in the hearts of septic rats. In vitro, pre-treatment of mitochondrial fractions with recombinant active Src kinase elevated OXPHOS complex I and II-III activity, whereas the effect of SHP2 phosphatase was opposite. Neither Src nor SHP2 affected complex IV and V activity under the same conditions. By immunoprecipitation, we showed that Src and SHP2 consistently interacted with complex I and III in the heart, suggesting that complex I and III contain putative substrates of Src and SHP2. In addition, in vitro treatment of mitochondrial fractions with active Src suppressed sepsis-associated mtROS production and protected aconitase activity, an indirect marker of mitochondrial oxidative stress. On the contrary, active SHP2 phosphatase overproduced mtROS and deactivated aconitase under the same in vitro conditions. In conclusion, our data suggest that changes in mitochondria

  11. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Timothy J Cashman

    Full Text Available Hypertrophic cardiomyopathy (HCM is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS, which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and

  12. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    Cashman, Timothy J; Josowitz, Rebecca; Johnson, Bryce V; Gelb, Bruce D; Costa, Kevin D

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  13. A caffeoyl phenylethanoid glycoside from Plantago myosuros

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Husum, Tommy Lykke; Jensen, Søren Rosendal

    1998-01-01

    From Plantago myosuros, the iridoid glucoside, aucubin was isolated, together with the caffeoyl phenylethanoid glycosides, plantalloside and verbascoside. Plantalloside is a new verbascoside analogue with a beta-allopyranosyl moiety. The structure was elucidated by NMR spectroscopy. (C) 1998...

  14. Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Xiao J

    2016-03-01

    Full Text Available Jie Xiao, Xi Sheng, Xinyu Zhang, Mengqi Guo, Xiaoping JiKey Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of ChinaAbstract: Curcumin, a polyphenolic compound derived from turmeric, protects against myocardial injury by alleviating oxidative stress, inflammation, apoptosis, and fibrosis. However, the role of curcumin and its mechanism of action on interstitial fibrosis after myocardial infarction (MI are poorly understood. To clarify, MI was induced by a permanent ligation of the left anterior descending coronary artery in adult mice, and the effects of curcumin were evaluated 4 weeks after the MI event. In vitro, we treated cardiac fibroblasts (CFs with Ang II, and investigated the anti-fibrotic mechanism of curcumin. Our results showed that curcumin significantly attenuated collagen deposition in vivo and inhibited CF proliferation and migration, and MMP expression. In addition, we found that the down-regulation of SIRT1 after MI was attenuated by curcumin pretreatment, which indicated that the activation of SIRT1 might be involved in the protective action of curcumin. This hypothesis was confirmed by genetic inhibition of SIRT1 (siRNA-SIRT1 in Ang II-treated CFs. Our results provide new insights into the mechanism underlying the anti-fibrotic effects of curcumin in the heart.Keywords: curcumin, myocardial infarction, angiotensin II, cardiac fibroblasts, fibrosis, SIRT1

  15. Therapeutic hypothermia protects against ischemia-induced impairment of synaptic plasticity following juvenile cardiac arrest in sex-dependent manner.

    Science.gov (United States)

    Dietz, R M; Deng, G; Orfila, J E; Hui, X; Traystman, R J; Herson, P S

    2016-06-14

    Pediatric cardiac arrest (CA) often leads to poor neurologic outcomes, including deficits in learning and memory. The only approved treatment for CA is therapeutic hypothermia, although its utility in the pediatric population remains unclear. This study analyzed the effect of mild therapeutic hypothermia after CA in juvenile mice on hippocampal neuronal injury and the cellular model of learning and memory, termed long-term potentiation (LTP). Juvenile mice were subjected to cardiac arrest and cardiopulmonary resuscitation (CA/CPR) followed by normothermia (37°C) and hypothermia (30°C, 32°C). Histological injury of hippocampal CA1 neurons was performed 3days after resuscitation using hematoxylin and eosin (H&E) staining. Field excitatory post-synaptic potentials (fEPSPs) were recorded from acute hippocampal slices 7days after CA/CPR to determine LTP. Synaptic function was impaired 7days after CA/CPR. Mice exposed to hypothermia showed equivalent neuroprotection, but exhibited sexually dimorphic protection against ischemia-induced impairment of LTP. Hypothermia (32°C) protects synaptic plasticity more effectively in females, with males requiring a deeper level of hypothermia (30°C) for equivalent protection. In conclusion, male and female juvenile mice exhibit equivalent neuronal injury following CA/CPR and hypothermia protects both males and females. We made the surprising finding that juvenile mice have a sexually dimorphic response to mild therapeutic hypothermia protection of synaptic function, where males may need a deeper level of hypothermia for equivalent synaptic protection. PMID:27033251

  16. A method to study the impact of chemically-induced ovarian failure on exercise capacity and cardiac adaptation in mice.

    Science.gov (United States)

    Chen, Hao; Perez, Jessica N; Constantopoulos, Eleni; McKee, Laurel; Regan, Jessica; Hoyer, Patricia B; Brooks, Heddwen L; Konhilas, John

    2014-04-07

    The risk of cardiovascular disease (CVD) increases in post-menopausal women, yet, the role of exercise, as a preventative measure for CVD risk in post-menopausal women has not been adequately studied. Accordingly, we investigated the impact of voluntary cage-wheel exercise and forced treadmill exercise on cardiac adaptation in menopausal mice. The most commonly used inducible model for mimicking menopause in women is the ovariectomized (OVX) rodent. However, the OVX model has a few dissimilarities from menopause in humans. In this study, we administered 4-vinylcyclohexene diepoxide (VCD) to female mice, which accelerates ovarian failure as an alternative menopause model to study the impact of exercise in menopausal mice. VCD selectively accelerates the loss of primary and primordial follicles resulting in an endocrine state that closely mimics the natural progression from pre- to peri- to post-menopause in humans. To determine the impact of exercise on exercise capacity and cardiac adaptation in VCD-treated female mice, two methods were used. First, we exposed a group of VCD-treated and untreated mice to a voluntary cage wheel. Second, we used forced treadmill exercise to determine exercise capacity in a separate group VCD-treated and untreated mice measured as a tolerance to exercise intensity and endurance.

  17. APACHE II score, rather than cardiac function, may predict poor prognosis in patients with stress-induced cardiomyopathy.

    Science.gov (United States)

    Joe, Byung-Hyun; Jo, Uk; Kim, Hyun-Soo; Park, Chang-Bum; Hwang, Hui-Jeong; Sohn, Il-Suk; Jin, Eun-Sun; Cho, Jin-Man; Park, Jeong-Hwan; Kim, Chong-Jin

    2012-01-01

    While the disease course of stress-induced cardiomyopathy (SIC) is usually benign, it can be fatal. The prognostic factors to predict poorer outcome are not well established, however. We analyzed the Acute Physiology And Chronic Health Evaluation (APACHE) II score to assess its value for predicting poor prognosis in patients with SIC. Thirty-seven consecutive patients with SIC were followed prospectively during their hospitalization. Clinical factors, including APACHE II score, coronary angiogram, echocardiography and cardiac enzymes at presentation were analyzed. Of the 37 patients, 27 patients (73%) were women. The mean age was 66.1 ± 15.6 yr, and the most common presentation was chest pain (38%). Initial echocardiographic left ventricular ejection fraction (EF) was 42.5% ± 9.3%, and the wall motion score index (WMSI) was 1.9 ± 0.3. Six patients (16%) expired during the follow-up period of hospitalization. Based on the analysis of characteristics and clinical factors, the only predictable variable in prognosis was APACHE II score. The patients with APACHE II score greater than 20 had tendency to expire than the others (P = 0.001). Based on present study, APACHE II score more than 20, rather than cardiac function, is associated with mortality in patients with SIC.

  18. Successful emergency splenectomy during cardiac arrest due to cytomegalovirus-induced atraumatic splenic rupture

    DEFF Research Database (Denmark)

    Glesner, Matilde Kanstrup; Madsen, Kristian Rørbæk; Nielsen, Jesper Meng Rahn;

    2015-01-01

    A 27-year-old woman was admitted to the emergency department with fever and a petechial rash on suspicion of meningitis. Shortly after arriving she developed cardiac arrest. Blood work up showed severe lactate acidosis, anaemia and thrombocytopenia. A focused assessment with sonography in trauma...... for 14 days with ganciclovir and meropenem and discharged on recovery. Atraumatic splenic rupture caused by viral infection is a rare condition although well described. In the case of our patient, thrombocytopenia added to the severity of the splenic rupture. A multidisciplinary team approach...

  19. Cardiac cell damage: a primary myocardial disease in streptozotocin-induced chronic diabetes.

    OpenAIRE

    Seager, M. J.; Singal, P. K.; Orchard, R.; Pierce, G. N.; Dhalla, N S

    1984-01-01

    Ultrastructural changes in heart muscle due to chronic diabetes subsequent to a single injection of streptozotocin (65 mg/kg body wt, i.v.) were studied in rats. Presence of diabetes was indicated by hyperglycaemia (plasma glucose, control, 120 +/- 7; diabetic, 448 +/- 21 mg/dl) as well as hypo-insulinaemia (plasma insulin, control, 25.6 +/- 5.2; diabetic, 11.2 +/- 0.5 microU/ml). After 8 weeks of diabetes, the hearts were processed for electron microscopic examination. Cardiac muscle cells i...

  20. Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice.

    Directory of Open Access Journals (Sweden)

    Tim Peters

    Full Text Available Long non-coding RNAs (lncRNAs are a class of RNA molecules with diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases and in particular heart failure is still in its infancy. The exceptionally well conserved nuclear lncRNA Metastasis associated in lung adenocarcinoma transcript 1 (Malat-1 is a regulator of mRNA splicing and highly expressed in the heart. Malat-1 modulates hypoxia-induced vessel growth, activates ERK/MAPK signaling, and scavenges the anti-hypertrophic microRNA-133. We therefore hypothesized that Malat-1 may act as regulator of cardiac hypertrophy and failure during cardiac pressure overload induced by thoracic aortic constriction (TAC in mice.Absence of Malat-1 did not affect cardiac hypertrophy upon pressure overload: Heart weight to tibia length ratio significantly increased in WT mice (sham: 5.78±0.55, TAC 9.79±1.82 g/mm; p<0.001 but to a similar extend also in Malat-1 knockout (KO mice (sham: 6.21±1.12, TAC 8.91±1.74 g/mm; p<0.01 with no significant difference between genotypes. As expected, TAC significantly reduced left ventricular fractional shortening in WT (sham: 38.81±6.53%, TAC: 23.14±11.99%; p<0.01 but to a comparable degree also in KO mice (sham: 37.01±4.19%, TAC: 25.98±9.75%; p<0.05. Histological hallmarks of myocardial remodeling, such as cardiomyocyte hypertrophy, increased interstitial fibrosis, reduced capillary density, and immune cell infiltration, did not differ significantly between WT and KO mice after TAC. In line, the absence of Malat-1 did not significantly affect angiotensin II-induced cardiac hypertrophy, dysfunction, and overall remodeling. Above that, pressure overload by TAC significantly induced mRNA levels of the hypertrophy marker genes Nppa, Nppb and Acta1, to a similar extend in both genotypes. Alternative splicing of Ndrg2 after TAC was apparent in WT (isoform ratio

  1. 15. Sensitivity in visualizing vegetations in cardiac lead-induced endocarditis: A comparative study between transesophageal vs. transthoracic echocardiography

    Directory of Open Access Journals (Sweden)

    A. AlFagih

    2016-07-01

    Full Text Available Despite advancement in sterile cardiac device implantation techniques, wound infections and/or bacteremia remain a significant problem. The presence of a vegetation in lead-induced endocarditis (LIE is a critical factor that determines the management. Transthoracic (TTE and Transesophageal (TEE Echocardiography are two different cardiac modalities that are used for the detection of lead vegetation. However, it is not yet clear which of the two has the highest diagnostic accuracy. We aim to identify which of the two has the highest sensitivity. In addition, we aim to correlate the existence of a vegetation with blood and wound culture results. We conducted a chart review in 113 patients whom underwent lead extraction at Prince Sultan Cardiac Center in Saudi Arabia during the period of Jan, 2002 to Jul, 2015. Six patients underwent lead extraction twice, increasing the number to be a total of 119 cases. Out of the study cohort, we include 38 patients who had both TTE and TEE done prior to lead extraction. Data regarding TTE, TEE, as well as blood and wound cultures were collected from echocardiography and microbiology lab reports using a well-structured case report form.Of the study population, 21 patients (55.3% had lead vegetations visualized either by TTE or TEE. Nineteen patients had vegetations detected by TEE, compared to 6 patients only when TTE was used. The sensitivity of TEE and TTE were 90.5% (CI: 69.6–98.8% and 28.5% (95% CI: 11.3–52.1%, respectively. Blood and wound culture results showed that in the presence of a vegetation, blood cultures were positive in 55% of the cases (P = 0.036 while only 44.4% of those with vegetations had a positive wound culture (P = 0.347. TEE has higher sensitivity in detecting vegetations compared to TTE in LIE. The presence of a vegetation is more likely to be associated with a positive blood culture than a positive wound culture. Further studies ought to measure the accuracy of different

  2. Systemic, genotype-specific induction of two herbivore-deterrent iridoid glycosides in Plantago lanceolata L. in response to fungal infection by Diaporthe adunca (Rob.) Niessel

    NARCIS (Netherlands)

    Marak, H.B.; Biere, A.; Van Damme, J.M.M.

    2002-01-01

    Iridoid glycosides are a group of terpenoid secondary plant compounds known to deter generalist insect herbivores. In ribwort plantain (Plantago lanceolata), the iridoid glycosides aucubin and catalpol can be induced following damage by insect herbivores. In this study, we investigated whether the s

  3. Collagen-induced arthritis increases inducible nitric oxide synthase not only in aorta but also in the cardiac and renal microcirculation of mice.

    Science.gov (United States)

    Palma Zochio Tozzato, G; Taipeiro, E F; Spadella, M A; Marabini Filho, P; de Assis, M R; Carlos, C P; Girol, A P; Chies, A B

    2016-03-01

    Rheumatoid arthritis (RA) may promote endothelial dysfunction. This phenomenon requires further investigation, especially in collagen-induced arthritis (CIA), as it is considered the experimental model most similar to RA. The objectives of this study were to identify CIA-induced changes in noradrenaline (NE) and acetylcholine (ACh) responses in mice aortas that may suggest endothelial dysfunction in these animals. Moreover, we characterize CIA-induced modifications in inducible nitric oxide synthase (iNOS) expression in the aortas and cardiac and renal tissues taken from these mice that may be related to possible endothelial dysfunction. Male DBA/1J mice were immunized with 100 μg of emulsified bovine collagen type II (CII) plus complete Freund's adjuvant. Twenty-one days later, these animals received a boost of an additional 100 μg plus incomplete Freund's adjuvant. Fifteen days after the onset of the disease, aortic rings from CIA and control mice were challenged with NE and ACh in an organ bath. In these animals, iNOS was detected through immunohistochemical analysis of aorta, heart and kidneys. Plasma nitrite concentration was determined using the Griess reaction. CIA did not change NE or ACh responses in mice aorta but apparently increased the iNOS expression not only in aorta, but also in cardiac and renal microcirculation. In parallel, CIA reduced nitrite plasma concentration. In mice, CIA appears to increase the presence of iNOS in aorta, as well as in heart and in kidney microcirculation. This iNOS increase occurs apparently in parallel to a reduction of the bioavailability of NO. This phenomenon does not appear to change NE or ACh responses in aorta. PMID:26456019

  4. Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure

    International Nuclear Information System (INIS)

    Background and purpose: Radiotherapy of thoracic and chest-wall tumours increases the long-term risk of radiation-induced heart disease. The aim of this study was to investigate the long-term effect of local heart irradiation on cardiac mitochondria. Methods: C57BL/6 and atherosclerosis-prone ApoE−/− mice received local heart irradiation with a single X-ray dose of 2 Gy. To investigate the low-dose effect, C57BL/6 mice also received a single heart dose of 0.2 Gy. Functional and proteomic alterations of cardiac mitochondria were evaluated after 40 weeks, compared to age-matched controls. Results: The respiratory capacity of irradiated C57BL/6 cardiac mitochondria was significantly reduced at 40 weeks. In parallel, protein carbonylation was increased, suggesting enhanced oxidative stress. Considerable alterations were found in the levels of proteins of mitochondria-associated cytoskeleton, respiratory chain, ion transport and lipid metabolism. Radiation induced similar but less pronounced effects in the mitochondrial proteome of ApoE−/− mice. In ApoE−/−, no significant change was observed in mitochondrial respiration or protein carbonylation. The dose of 0.2 Gy had no significant effects on cardiac mitochondria. Conclusion: This study suggests that ionising radiation causes non-transient alterations in cardiac mitochondria, resulting in oxidative stress that may ultimately lead to malfunctioning of the heart muscle

  5. High-dose stabilized chlorite matrix WF10 prolongs cardiac xenograft survival in the hamster-to-rat model without inducing ultrastructural or biochemical signs of cardiotoxicity

    DEFF Research Database (Denmark)

    Hansen, A; Kemp, K; Kemp, E;

    2001-01-01

    of high dose WF10 as a single drug regimen in the hamster-to-rat xenotransplantation model and searched for possible cardiotoxic side effects. WF10 prolonged cardiac xenograft survival, but did not induce tolerence or inhibit pathological signs of acute rejection. Hamsters from the donor population...

  6. Cardiac function improved by sarcoplasmic reticulum Ca2+-ATPase overexpression in a heart failure model induced by chronic myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Wei XIN

    2011-04-01

    Full Text Available Objective Chronic myocardial ischemia(CMI has become an important cause of heart failure(HF.The aim of present study was to examine the effects of Sarco-endoplasmic reticulum calcium ATPase(SERCA2a gene transfer in HF model in large animal induced by CMI.Methods HF was reproduced in minipigs by ligating the initial segment of proximal left anterior descending(LAD coronary artery with an ameroid constrictor to produce progressive vessel occlusion and ischemia.After confirmation of myocardial perfusion defect and cardiac function impairment by SPECT and echocardiography in the model,animals were divided into 4 groups: HF group;HF+enhanced green fluorescent protein(EGFP group;HF+SERCA2a group;and sham operation group as control.rAAV1-EGFP and rAAV1-SERCA2a(1×1012 vg for each animal were directly and intramyocardially injected to the animals of HF+EGFP and HF+SERCA2a groups.Sixty days after the gene transfer,the expression of SERCA2a at the protein level was examined by Western blotting and immunohistochemistry,the changes in cardiac function were determined by echocardiographic and hemodynamic analysis,and the changes in serum inflammatory and neuro-hormonal factors(including BNP,TNF-a,IL-6,ET-1 and Ang II were determined by radioimmunoassay.Results Sixty days after gene transfer,LVEF,Ev/Av and ±dp/dtmax increased significantly(P < 0.05,along with an increase of SERCA2a protein expression in the ischemic myocardium(PP < 0.05,accompanied by a significant decrease of inflammatory and neural-hormonal factors(PP < 0.05 in HF+SERCA2a group as compared with HF/HF+EGFP group.Conclusions Overexpression of SERCA2a may significantly improve the cardiac function of the ischemic myocardium of HF model induced by CMI and reverse the activation of neural-hormonal factors,implying that it has a potential therapeutic significance in CMI related heart failure.

  7. Triterpene glycosides from the Far Eastern sea cucumber Cucumaria conicospermium.

    Science.gov (United States)

    Avilov, Sergey A; Antonov, Alexandr S; Silchenko, Alexandra S; Kalinin, Vladimir I; Kalinovsky, Anatoly I; Dmitrenok, Pavel S; Stonik, Valentin A; Riguera, Ricardo; Jimenez, Carlos

    2003-07-01

    Four new triterpene glycosides, cucumariosides A(2)-5 (1), A(3)-2 (2), A(3)-3 (3), and isokoreoside A (4), along with the previously isolated koreoside A (5), have been found in the sea cucumber Cucumariaconicospermium. Glycoside 1 was isolated as a native substance, while glycosides 2-5 were identified through their desulfated derivatives. Their structures have been deduced by extensive spectral analysis (NMR and MS) and chemical evidence. All the glycosides contain the same branched pentasaccharide carbohydrate chain but differ in the number and positions of the sulfate groups. Glycoside 1 has one, glycosides 2 and 3 have two, and glycosides 4 and 5 have three sulfate groups. Glycosides 2-5 are non-holostane derivatives; their aglycons lack the 18(20)-lactone and are characterized by shortened side chains, which is a very rare feature among the sea cucumber glycosides. PMID:12880305

  8. Cardiac phosphocreatine deficiency induced by GPA during postnatal development in rat.

    Science.gov (United States)

    Pelouch, V; Kolár, F; Khuchua, Z A; Elizarova, G V; Milerová, M; Ost'ádal, B; Saks, V A

    1996-01-01

    The effect of chronic administration of beta-guanidinopropionic acid (GPA) on the protein profiling, energy metabolism and right ventricular (RV) function was studied in the rat heart during the weaning and adolescence period. GPA was given in tap water (1-1.5%) using pair drink controls. The feeding of animals with GPA solution for a six week period resulted in elevation of heart to body weight ratio due to body growth retardation. GPA accumulated in the myocardium up to 67.37 +/- 5.3 mumoles.g dry weight and the tissue content of total creatine, phosphocreatine and ATP was significantly decreased to 15%, 9% and 65% of control values respectively. Total activity of creatine kinase (CK) was not changed, but the proportion of mitochondrial (Mi) CK isoenzyme was decreased; the percentage of MB isoenzyme of CK was significantly higher. GPA treatment resulted in an elevation of the content of cardiac collagenous proteins and decrease of non-collagenous proteins in the heart; in parallel, a decrease of the collagen I to collagen III ratio was detected. The function of the RV was assessed using an isolated perfused heart with RV performing pressure-volume work. As compared to pair-drink controls, RV function was significantly impaired the GPA group: at any given right atrial filling pressure, the RV systolic pressure and the rate of pressure development were decreased by almost a factor of two. Elevation of the RV diastolic pressure with increasing pulmonary artery diastolic pressure was also significantly steeper in the GPA group which also showed decrease of cardiac output, especially at high outflow resistance. It may be assumed that chronic administration of GPA deeply influenced metabolic parameters, protein profiles and contractile function of the developing heart. On the other hand, concentrations of glucose, total lipids and triglycerides in blood plasma were not affected. All these data confirm the concept that the CK system is of central importance both for

  9. Histamine induces postprandian tachycardia through a direct effect on cardiac H2-receptors in pythons

    DEFF Research Database (Denmark)

    Jensen, Nini Skovgaard; Møller, Kate; Gesser, Hans;

    2009-01-01

    The intrinsic heart rate of most vertebrates studied, including humans, is elevated during digestion, suggesting that a non-adrenergic-non-cholinergic factor contributes to the postprandial tachycardia. The regulating factor, however, remains elusive and difficult to identify. Pythons can ingest...... very large meals and digestion is associated with a marked rise in metabolism that is sustained for several days. The metabolic rise causes more than a doubling of heart rate and a four-fold rise in cardiac output. This makes the python an interesting model to investigate the postprandial tachycardia....... We measured blood pressure and heart rate in fasting Python regius, and at 24 and 48h after ingestion of a meal amounting to 25% of body weight. Digestion caused heart rate to increase from 25 to 56 min-1 while blood pressure was unchanged. The postprandial rise in heart rate was partially due...

  10. Fructose-1, 6-diphosphate (FDP as a novel antidote for yellow oleander-induced cardiac toxicity: A randomized controlled double blind study

    Directory of Open Access Journals (Sweden)

    Dawson Andrew H

    2010-06-01

    Full Text Available Abstract Background Cardiac toxicity due to ingestion of oleander plant seeds in Sri Lanka and some other South Asian countries is very common. At present symptomatic oleander seed poisoning carries a mortality of 10% in Sri Lanka and treatment of yellow oleander poisoning is limited to gastric decontamination and atropine administration. The only proven effective antidote is digoxin antibodies but these are not available for routine use because of the high cost. The main objective of this study is to investigate the effectiveness of a new and inexpensive antidote for patients with life threatening arrhythmias due oleander poisoning. Method/design We set up a randomised double blind clinical trial to assess the effectiveness of Fructose 1, 6 diphosphate (FDP in acute yellow oleander poisoning patients admitted to the adult medical wards of a tertiary hospital in Sri Lanka. Patients will be initially resuscitated following the national guidelines and eligible patients will be randomised to receive either FDP or an equal amount of normal saline. The primary outcome measure for this study is the sustained reversion to sinus rhythm with a heart rate greater than 50/min within 2 hours of completion of FDP/placebo bolus. Secondary outcomes include death, reversal of hyperkalaemia on the 6, 12, 18 and 24 hour samples and maintenance of sinus rhythm on the holter monitor. Analysis will be on intention-to-treat. Discussion This trial will provide information on the effectiveness of FDP in yellow oleander poisoning. If FDP is effective in cardiac glycoside toxicity, it would provide substantial benefit to the patients in rural Asia. The drug is inexpensive and thus could be made available at primary care hospitals if proven to be effective. Trial Registration Current Controlled trial ISRCTN71018309

  11. Whole-thorax irradiation induces hypoxic respiratory failure, pleural effusions and cardiac remodeling

    International Nuclear Information System (INIS)

    To study the mechanisms of death following a single lethal dose of thoracic radiation, WAG/RijCmcr (Wistar) rats were treated with 15 Gy to the whole thorax and followed until they were morbid or sacrificed for invasive assays at 6 weeks. Lung function was assessed by breathing rate and arterial oxygen saturation. Lung structure was evaluated histologically. Cardiac structure and function were examined by echocardiography. The frequency and characteristics of pleural effusions were determined. Morbidity from 15 Gy radiation occurred in all rats 5 to 8 weeks after exposure, coincident with histological pneumonitis. Increases in breathing frequencies peaked at 6 weeks, when profound arterial hypoxia was also recorded. Echocardiography analysis at 6 weeks showed pulmonary hypertension and severe right ventricular enlargement with impaired left ventricular function and cardiac output. Histologic sections of the heart revealed only rare foci of lymphocytic infiltration. Total lung weight more than doubled. Pleural effusions were present in the majority of the irradiated rats and contained elevated protein, but low lactate dehydrogenase, when compared with serum from the same animal. Pleural effusions had a higher percentage of macrophages and large monocytes than neutrophils and contained mast cells that are rarely present in other pathological states. Lethal irradiation to rat lungs leads to hypoxia with infiltration of immune cells, edema and pleural effusion. These changes may contribute to pulmonary vascular and parenchymal injury that result in secondary changes in heart structure and function. We report that conditions resembling congestive heart failure contribute to death during radiation pneumonitis, which indicates new targets for therapy. (author)

  12. A New Iridoid Glycoside from the Roots of Dipsacus asper

    Directory of Open Access Journals (Sweden)

    Zhonglin Yang

    2012-02-01

    Full Text Available A new iridoid glycoside, named loganic acid ethyl ester (1, together with five known compounds: chlorogenic acid (2, caffeic acid (3, loganin (4, cantleyoside (5 and syringaresinol-4′,4′′-O-bis-β-D-glucoside (6 were isolated from the roots of Dipsacus asper. The structure of compound 1 was elucidated on the basis of detailed spectroscopic analyses. Lignan is isolated from Dipsacaceae species for the first time. Compounds 1, 4 and 5 had moderate neuroprotective effects against the Aβ25–35 induced cell death in PC12 cells.

  13. Diterpene glycosides from Stevia phlebophylla A. Gray.

    Science.gov (United States)

    Ceunen, Stijn; Wim, De Borggraeve; Compernolle, Frans; Mai, Anh Hung; Geuns, Jan M C

    2013-09-20

    The rare Mexican species Stevia phlebophylla A. Gray was long considered to be the only known Stevia species, beside the well-known S. rebaudiana, containing the highly sweet diterpenoid steviol glycosides. We report a re-evaluation of this claim after phytochemically screening leaves obtained from two herbarium specimens of S. phlebophylla for the presence of steviol glycosides. Despite extensive MS analyses, no steviol glycosides could be unambiguously verified. Instead, the main chromatographic peak eluting at retention times similar to those of steviol glycosides was identified as a new compound, namely 16β-hydroxy-17-acetoxy-ent-kauran-19-oic acid-(6-O-β-D-xylopyranosyl-β-D-glucopyranosyl) ester (1) on the basis of extensive NMR and MS data as well as the characterization of its acid hydrolysate. Seven more compounds were detected by ESIMS which are possibly structurally related to 1. It can therefore be concluded that S. phlebophylla is unlikely to contain significant amounts of steviol glycosides, if any.

  14. 运动性心脏疲劳研究进展%Research Progress on Exercise-induced Cardiac Fatigue

    Institute of Scientific and Technical Information of China (English)

    时庆德; 聂金雷

    2012-01-01

    运动性心脏疲劳,即耐力运动导致运动者心脏收缩及舒张功能降低的现象已被报道并日益受到运动医学界的重视。最近,随着脉冲多普勒超声心动诊断技术的发展,对此问题有了更深入认识。本文综述了近年来观察运动者在赛场及实验室条件下有关运动性心脏疲劳研究,尤其是利用新诊断技术的实验证据,并进一步讨论了运动性心脏疲劳的机制。%A reduction in cardiac systolic and diastolic function subsequent to prolonged exercise in healthy humans,often called exercise-induced cardiac fatigue(EICF),has been reported in the literature.It is important to understand the exact nature and magnitude of EICF in the field of sports medicine.Recently,the echocardiographic instrumentation and techniques have evolved significantly and their application in the assessment of prolonged exercise has developed in tandem.The primary objective of this article is to provide reflective insight into the phenomenon of EICF by evaluating available literature in different competitive field studies or lab-based settings.Furthermore,the proposed mechanisms of EICF are also explored.

  15. Transgenic mice with cardiac-specific expression of activating transcription factor 3, a stress-inducible gene, have conduction abnormalities and contractile dysfunction.

    Science.gov (United States)

    Okamoto, Y; Chaves, A; Chen, J; Kelley, R; Jones, K; Weed, H G; Gardner, K L; Gangi, L; Yamaguchi, M; Klomkleaw, W; Nakayama, T; Hamlin, R L; Carnes, C; Altschuld, R; Bauer, J; Hai, T

    2001-08-01

    Activating transcription factor 3 (ATF3) is a member of the CREB/ATF family of transcription factors. Previously, we demonstrated that the expression of the ATF3 gene is induced by many stress signals. In this report, we demonstrate that expression of ATF3 is induced by cardiac ischemia coupled with reperfusion (ischemia-reperfusion) in both cultured cells and an animal model. Transgenic mice expressing ATF3 under the control of the alpha-myosin heavy chain promoter have atrial enlargement, and atrial and ventricular hypertrophy. Microscopic examination showed myocyte degeneration and fibrosis. Functionally, the transgenic heart has reduced contractility and aberrant conduction. Interestingly, expression of sorcin, a gene whose product inhibits the release of calcium from sarcoplasmic reticulum, is increased in these transgenic hearts. Taken together, our results indicate that expression of ATF3, a stress-inducible gene, in the heart leads to altered gene expression and impaired cardiac function. PMID:11485922

  16. Biophysical adaptation of the theory of photo-induced phase transition: model of cooperative gating of cardiac ryanodine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, A S [Ural State University, Ekaterinburg, 620083 (Russian Federation); Philipiev, M P [Ural State University, Ekaterinburg, 620083 (Russian Federation); Solovyova, O E [Ural State University, Ekaterinburg, 620083 (Russian Federation); Markhasin, V S [Institute of Immunology and Physiology, Ekaterinburg, 620219 (Russian Federation)

    2005-01-01

    Theory of photo-induced phase transitions has been adapted to describe the cooperative dynamics of the lattice of ryanodine receptors/channels (RyR) in cardiac muscle which regulate the release of the intracellular activator calcium from calcium stores in the sarcoplasmic reticulum (SR) by a process of Ca{sup 2+}-induced Ca{sup 2+} release (CICR). We introduce two main degrees of freedom for RyR channel, fast electronic and slow conformational ones. The RyR lattice response to the L-type channel triggering evolves due to a nucleation process with a step-by-step domino-like opening of RyR channels. Typical mode of RyR lattice functioning in a CICR process implies the fractional release with a robust termination due to the depletion of SR with a respective change in effective conformational strain. The SR overload leads to an unconventional auto-oscillation regime with a spontaneous calcium release. The model is believed to consistently describe the main features of CICR, that is its gradedness, coupled gating, irreversibility, inactivation/adaptation, and spark termination.

  17. An Immersed Boundary Finite-Element Solver for Flow-Induced Deformation of Soft Structures with Application in Cardiac Flows

    Science.gov (United States)

    Bhardwaj, Rajneesh; Mittal, Rajat

    2011-11-01

    The modeling of complex biological phenomena such as cardiac mechanics is challenging. It involves complex three dimensional geometries, moving structure boundaries inside the fluid domain and large flow-induced deformations of the structure. We present a fluid-structure interaction solver (FSI) which couples a sharp-interface immersed boundary method for flow simulation with a powerful finite-element based structure dynamics solver. An implicit partitioned (or segregated) approach is implemented to ensure the stability of the solver. We validate the FSI solver with published benchmark for a configuration which involves a thin elastic plate attached to a rigid cylinder. The frequency and amplitude of the oscillations of the plate are in good agreement with published results and non-linear dynamics of the plate and its coupling with the flow field are discussed. The FSI solver is used to understand left-ventricular hemodynamics and flow-induced dynamics of mitral leaflets during early diastolic filling and results from this study are presented.

  18. Cardiac troponin I in isoproterenol-induced cardiac injury in the Hanover Wistar rat: studies on low dose levels and routes of administration.

    Science.gov (United States)

    Brady, Sally; York, Malcolm; Scudamore, Cheryl; Williams, Thomas; Griffiths, William; Turton, John

    2010-02-01

    The current studies demonstrate the effect of low-dose intraperitoneal (IP) administration of isoprotenerol (ISO) and subcutaneous (SC) versus IP routes of administration of ISO on serum cardiac troponin I (cTnI) levels in female Hanover Wistar rats, providing additional evidence to support acceptance of cTnI as a cardiac biomarker. At 2 hr postdosing with 0-500 microg/kg ISO, mean serum cTnI levels were increased in a dose-related fashion at > or =10 microg/kg with no evidence of cardiac pathology. At 24 h, cTnI concentrations were generally at control levels, but histologic cardiomyocyte injury was evident in a proportion of the animals given > or =10 microg/kg. In a second experiment, rats given SC ISO at 5,000 microg/kg and necropsied at 0, 1, 2, and 4 hr postdosing had higher levels of serum cTnI than animals given the same dose IP.

  19. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review.

    Science.gov (United States)

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-05-30

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field. PMID:27426082

  20. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review.

    Science.gov (United States)

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-05-30

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field.

  1. A Synoptical Introduction of The Clinical Application of Tripterygium Glycosides

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-juan; GONG Ning-bo; GU Tong-nan

    2005-01-01

    @@ Tripterygium glycosides (TG) refers to the total glycosides, mainly the epoxy diterpene lactones extracted from the root of Tripterygium Wilfordii Hook f (TW), a common vine-like toxic plant grown in the wide area of South China.

  2. Dietary ω-3 Fatty Acids Alter Cardiac Mitochondrial Phospholipid Composition and Delay Ca2+-Induced Permeability Transition

    OpenAIRE

    O’Shea, Karen M.; Khairallah, Ramzi J.; Sparagna, Genevieve C.; Xu, Wenhong; Hecker, Peter A; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Kristian, Tibor; Robert C. Murphy; Fiskum, Gary; Stanley, William C.

    2009-01-01

    Consumption of ω-3 fatty acids from fish oil, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), decreases risk for heart failure and attenuates pathologic cardiac remodeling in response to pressure overload. Dietary supplementation with EPA+DHA may also impact cardiac mitochondrial function and energetics through alteration of membrane phospholipids. We assessed the role of EPA+DHA supplementation on left ventricular (LV) function, cardiac mitochondrial membrane phospho...

  3. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  4. Symptomatic radiation-induced cardiac disease in long-term survivors of esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Iwahashi, Noriaki; Kosuge, Masami; Kimura, Kazuo [Division of Cardiology, Yokohama City University Medical Center, Yokohama (Japan); Sakamaki, Kentaro [Department of Biostatistics, Yokohama City University Medical Center, Yokohama (Japan); Kunisaki, Chikara [Department of Surgery, Gastroenterological Center, Yokohama City University Medical Center, Yokohama (Japan); Ogino, Ichiro; Watanabe, Shigenobu

    2016-06-15

    To evaluate clinical and dosimetric factors retrospectively affecting the risk of symptomatic cardiac disease (SCD) in esophageal cancer patients treated with radiotherapy. A total of 343 patients with newly diagnosed esophageal cancer were managed with concurrent chemoradiotherapy or radiotherapy alone. Of these, 58 patients were followed at our hospital for at least 4 years. Median clinical follow-up was 79 months. Cardiac toxicity was determined by Common Terminology Criteria for Adverse Events (CTCAE) v. 4.0. The maximum and mean doses to the heart and percentage of the volume were calculated from the dose-volume histograms. SCD manifested in 11 patients. The heart diseases included three pericardial effusions, one pericardial effusion with valvular disease and paroxysmal atrial tachycardia, three atrial fibrillations, one sinus tachycardia, one coronary artery disease, one chest pain with strongly suspected coronary artery disease, and one congestive heart failure. The actual incidence of SCD was 13.8 % at 5 years. Univariate and multivariate analyses of continuous variables revealed that the risk of developing an SCD depended on the volume of the heart receiving a dose greater than 45 Gy (V45), 50 Gy (V50), and 55 Gy (V55). No other clinical factors were found to influence the risk of SCD. For V45, V50, and V55, the lowest significant cutoff values were 15, 10, and 5 %, respectively. High-dose and large-volume irradiation of the heart increased the risk of SCD in long-term survivors. Using modern radiotherapy techniques, it is important to minimize the heart dose-volume parameters without reducing the tumor dose. (orig.) [German] Beurteilung von klinischen und dosimetrischen Faktoren, die mit Risiken eines retrospektiven Auftretens von symptomatischen Herzerkrankungen (SCD) bei Patienten zusammenhaengen, die aufgrund eines Oesophaguskarzinoms strahlentherapeutisch behandelt wurden. Insgesamt 343 Patienten mit neu diagnostiziertem Oesophaguskarzinom wurden mit

  5. A New Flavonoid Glycoside from Lysionotus pauciflorus.

    Science.gov (United States)

    Luo, Wei; Wen, Yaya; Tu, Yanbei; Du, Hongjian; Li, Qin; Zhu, Chao; Li, Yanfang

    2016-05-01

    Ten flavonoids (1-10), including a new glycoside (nevadensin-7-sambubioside, 7), together with a phenylpropanoid glycoside (11) were isolated from Lysionotus pauciflorus. Their structures were elucidated by a combination of spectroscopic methods and comparing with literature data. Five compounds (1, 3, 4, 8, and 9) were obtained from the family Gesneriaceae for the first time. The new compound was evaluated in vitro for anticholinesterase activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), but was found to be inactive. PMID:27319133

  6. Veronica: Acylated flavone glycosides as chemosystematic markers

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Grayer, Renée J.; Kite, Geoffrey C.;

    2005-01-01

    HPLC/DAD and LCeMS of an extract of Veronica spicata subgenus Pseudolysimachium, Plantaginaceae) revealed the presence of six 6-hydroxyluteolin glycosides acylated with phenolic acids, three of which are new compounds and which we called spicosides. A flavonoid survey of seven more species...... instead. Spicosides appeared to be common in subgenus Pseudolysimachium (detected in five out of eight species), but we did not find them in subgenus Pentasepalae. Previously, acetylated 8-hydroxyflavone glycosides have been isolated from or detected in eight species of V. subgenus Pentasepalae (in 13...

  7. A New Diterpene Glycoside from Stevia rebaudiana

    OpenAIRE

    Indra Prakash; Venkata Sai Prakash Chaturvedula

    2011-01-01

    From the commercial extract of the leaves of Stevia rebaudiana, a new diterpene glycoside was isolated besides the known steviol glycosides including stevioside, rebaudiosides A-F, rubusoside and dulcoside A. The new compound was identified as 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-(2-O-α-L-rhamnopyranosyl-β-D-glucopyranosyl) ester (1) on the basis of extensive spectroscopic (NMR and MS) and chemical studies.

  8. A New Diterpene Glycoside from Stevia rebaudiana

    Directory of Open Access Journals (Sweden)

    Indra Prakash

    2011-04-01

    Full Text Available From the commercial extract of the leaves of Stevia rebaudiana, a new diterpene glycoside was isolated besides the known steviol glycosides including stevioside, rebaudiosides A-F, rubusoside and dulcoside A. The new compound was identified as 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyloxy] ent-kaur-16-en-19-oic acid-(2-O-α-L-rhamnopyranosyl-β-D-glucopyranosyl ester (1 on the basis of extensive spectroscopic (NMR and MS and chemical studies.

  9. Five new phenolic glycosides from Hedyotis scandens.

    Science.gov (United States)

    Wang, Guo-Cai; Li, Tao; Deng, Fang-Ye; Li, Yao-Lan; Ye, Wen-Cai

    2013-03-01

    Five new phenolic glycosides, hedyotosides A-E (1-5), including a new cyanogenic glycoside (1), along with 10 known compounds (6-15) were isolated from the whole plants of Hedyotis scandens. The structures of compounds 1-5 were established by extensive spectroscopic analyses and acid hydrolysis. All the isolated compounds were evaluated for their in vitro antiviral activity against respiratory syncytial virus (RSV) with cytopathic effect (CPE) reduction assay. Compounds 6 and 15 showed anti-RSV effects with IC(50) values of 20 and 25 μg/mL, respectively. PMID:23333151

  10. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats

    International Nuclear Information System (INIS)

    Calorie restriction (CR), the purposeful reduction of energy intake with maintenance of adequate micronutrient intake, is well known to extend the lifespan of laboratory animals. Compounds like 2-deoxy-D-glucose (2DG) that can recapitulate the metabolic effects of CR are of great interest for their potential to extend lifespan. 2DG treatment has been shown to have potential therapeutic benefits for treating cancer and seizures. 2DG has also recapitulated some hallmarks of the CR phenotype including reduced body temperature and circulating insulin in short-term rodent trials, but one chronic feeding study in rats found toxic effects. The present studies were performed to further explore the long-term effects of 2DG in vivo. First we demonstrate that 2DG increases mortality of male Fischer-344 rats. Increased incidence of pheochromocytoma in the adrenal medulla was also noted in the 2DG treated rats. We reconfirm the cardiotoxicity of 2DG in a 6-week follow-up study evaluating male Brown Norway rats and a natural form of 2DG in addition to again examining effects in Fischer-344 rats and the original synthetic 2DG. High levels of both 2DG sources reduced weight gain secondary to reduced food intake in both strains. Histopathological analysis of the hearts revealed increasing vacuolarization of cardiac myocytes with dose, and tissue staining revealed the vacuoles were free of both glycogen and lipid. We did, however, observe higher expression of both cathepsin D and LC3 in the hearts of 2DG-treated rats which indicates an increase in autophagic flux. Although a remarkable CR-like phenotype can be reproduced with 2DG treatment, the ultimate toxicity of 2DG seriously challenges 2DG as a potential CR mimetic in mammals and also raises concerns about other therapeutic applications of the compound.

  11. Ubiquitous protective effects of cyclosporine A in preventing cardiac arrest-induced multiple organ failure.

    Science.gov (United States)

    Cour, Martin; Abrial, Maryline; Jahandiez, Vincent; Loufouat, Joseph; Belaïdi, Elise; Gharib, Abdallah; Varennes, Annie; Monneret, Guillaume; Thibault, Hélène; Ovize, Michel; Argaud, Laurent

    2014-10-15

    Opening of the mitochondrial permeability transition pore (mPTP) appears to be a pivotal event in myocardial ischemia-reperfusion (I/R) injury. Resuscitated cardiac arrest (CA) leads to the post-CA syndrome that encompasses, not only myocardial dysfunction, but also brain injury, failure of other organs (kidney, liver, or lung), and systemic response to I/R. We aimed to determine whether cyclosporine A (CsA) might prevent multiple organ failure following CA through a ubiquitous mPTP inhibition in each distant vital organ. Anesthetized New Zealand White rabbits were subjected to 15 min of CA and 120 min of reperfusion. At the onset of resuscitation, the rabbits received CsA, its non-immunosuppressive derivative NIM811, or vehicle (controls). Survival, hemodynamics, brain damage, organ injuries, and systemic I/R response were analyzed. Fresh mitochondria were isolated from the brain, heart, kidney, liver, and lung to assess both oxidative phosphorylation and permeability transition. CsA analogs significantly improved short-term survival and prevented multiple organ failure, including brain damage and myocardial dysfunction (P < 0.05 vs. controls). Susceptibility of mPTP opening was significantly increased in heart, brain, kidney, and liver mitochondria isolated from controls, while mitochondrial respiration was impaired (P < 0.05 vs. sham). CsA analogs prevented these mitochondrial dysfunctions (P < 0.05 vs. controls). These results suggest that CsA and NIM811 can prevent the post-CA syndrome through a ubiquitous mitochondrial protective effect at the level of each major distant organ. PMID:25213634

  12. Iron nanoparticles increase 7-ketocholesterol-induced cell death, inflammation, and oxidation on murine cardiac HL1-NB cells

    Directory of Open Access Journals (Sweden)

    Edmond Kahn

    2010-03-01

    Full Text Available Edmond Kahn1, Mauhamad Baarine2, Sophie Pelloux3, Jean-Marc Riedinger4, Frédérique Frouin1, Yves Tourneur3, Gérard Lizard21INSE RM U678/UMR – S UPMC, IFR 14, CH U Pitié-Salpêtrière, 75634 Paris Cedex 13, France; 2Centre de Recherche INSE RM U866, Equipe Biochimie Métabolique et Nutritionnelle – Université de Bourgogne, Faculté des Sciences Gabriel, 6 Bd Gabriel, 21000 Dijon, France; 3Centre Commun de Quantimétrie, Université Lyon 1; Université de Lyon, Lyon, France; 4Département de Biologie et de Pathologie des Tumeurs, Centre Georges François-Leclerc, 21000 Dijon, FranceObjective: To evaluate the cytotoxicity of iron nanoparticles on cardiac cells and to determine whether they can modulate the biological activity of 7-ketocholesterol (7KC involved in the development of cardiovascular diseases. Nanoparticles of iron labeled with Texas Red are introduced in cultures of nonbeating mouse cardiac cells (HL1-NB with or without 7-ketocholesterol 7KC, and their ability to induce cell death, pro-inflammatory and oxidative effects are analyzed simultaneously.Study design: Flow cytometry (FCM, confocal laser scanning microscopy (CLSM, and subsequent factor analysis image processing (FAMIS are used to characterize the action of iron nanoparticles and to define their cytotoxicity which is evaluated by enhanced permeability to SYTOX Green, and release of lactate deshydrogenase (LDH. Pro-inflammatory effects are estimated by ELISA in order to quantify IL-8 and MCP-1 secretions. Pro-oxidative effects are measured with hydroethydine (HE.Results: Iron Texas Red nanoparticles accumulate at the cytoplasmic membrane level. They induce a slight LDH release, and have no inflammatory or oxidative effects. However, they enhance the cytotoxic, pro-inflammatory and oxidative effects of 7KC. The accumulation dynamics of SYTOX Green in cells is measured by CLSM to characterize the toxicity of nanoparticles. The emission spectra of SYTOX Green and

  13. Neuregulin-1 Administration Protocols Sufficient for Stimulating Cardiac Regeneration in Young Mice Do Not Induce Somatic, Organ, or Neoplastic Growth.

    Directory of Open Access Journals (Sweden)

    Balakrishnan Ganapathy

    Full Text Available We previously developed and validated a strategy for stimulating heart regeneration by administration of recombinant neuregulin (rNRG1, a growth factor, in mice. rNRG1 stimulated proliferation of heart muscle cells, cardiomyocytes, and was most effective when administration began during the neonatal period. Our results suggested the use of rNRG1 to treat pediatric patients with heart failure. However, administration in this age group may stimulate growth outside of the heart.NRG1 and ErbB receptor expression was determined by RT-PCR. rNRG1 concentrations in serum were quantified by ELISA. Mice that received protocols of recombinant neuregulin1-β1 administration (rNRG1, 100 ng/g body weight, daily subcutaneous injection for the first month of life, previously shown to induce cardiac regeneration, were examined at pre-determined intervals. Somatic growth was quantified by weighing. Organ growth was quantified by MRI and by weighing. Neoplastic growth was examined by MRI, visual inspection, and histopathological analyses. Phospho-ERK1/2 and S6 kinase were analyzed with Western blot and ELISA, respectively.Lung, spleen, liver, kidney, brain, and breast gland exhibited variable expression of the NRG1 receptors ErbB2, ErbB3, ErbB4, and NRG1. Body weight and tibia length were not altered in mice receiving rNRG1. MRI showed that administration of rNRG1 did not alter the volume of the lungs, liver, kidneys, brain, or spinal cord. Administration of rNRG1 did not alter the weight of the lungs, spleen, liver, kidneys, or brain. MRI, visual inspection, and histopathological analyses showed no neoplastic growth. Follow-up for 6 months showed no alteration of somatic or organ growth. rNRG1 treatment increased the levels of phospho-ERK1/2, but not phospho-S6 kinase.Administration protocols of rNRG1 for stimulating cardiac regeneration in mice during the first month of life did not induce unwanted growth effects. Further studies may be required to determine

  14. Pressure overload-induced mild cardiac hypertrophy reduces leftventricular transmural differences in mitochondrial respiratory chainactivity and increases oxidative stress

    Directory of Open Access Journals (Sweden)

    Michel eKINDO

    2012-08-01

    Full Text Available Objective: Increased mechanical stress and contractility characterizes normal left ventricular subendocardium (Endo but whether Endo mitochondrial respiratory chain complex activities is reduced as compared to subepicardium (Epi and whether pressure overload-induced left ventricular hypertrophy (LVH might modulate transmural gradients through increased reactive oxygen species (ROS production is unknown. Methods: LVH was induced by 6 weeks abdominal aortic banding and cardiac structure and function were determined with echocardiography and catheterization in sham-operated and LVH rats (n=10 for each group. Mitochondrial respiration rates, coupling, content and ROS production were measured in LV Endo and Epi, using saponin-permeabilised fibres, Amplex Red fluorescence and citrate synthase activity.Results: In sham, a transmural respiratory gradient was observed with decreases in endo maximal oxidative capacity (-36.7%, P<0.01 and complex IV activity (-57.4%, P<0.05. Mitochondrial hydrogen peroxide (H2O2 production was similar in both LV layers.Aortic banding induced mild LVH (+31.7% LV mass, associated with normal LV fractional shortening and end diastolic pressure. LVH reduced maximal oxidative capacity (-23.6 and -33.3%, increased mitochondrial H2O2 production (+86.9 and +73.1%, free radical leak (+27.2% and +36.3% and citrate synthase activity (+27.2% and +36.3% in Endo and Epi, respectively.Transmural mitochondrial respiratory chain complex IV activity was reduced in LVH (-57.4 vs –12.2%; P=0.02. Conclusions: Endo mitochondrial respiratory chain complexes activities are reduced compared to LV Epi. Mild LVH impairs mitochondrial oxidative capacity, increases oxidative stress and reduces transmural complex IV activity. Further studies will be helpful to determine whether reduced LV transmural gradient in mitochondrial respiration might be a new marker of a transition from uncomplicated toward complicated LVH.

  15. High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a.

    Directory of Open Access Journals (Sweden)

    Chaoming Peng

    Full Text Available AIM: Cardiac microvascular endothelial cells (CMECs dysfunction contributes to cardiovascular complications in diabetes, whereas, the underlying mechanism is not fully clarified. FoxO transcription factors are involved in apoptosis and reactive oxygen species (ROS production. Therefore, the present study was designed to elucidate the potential role of FoxO3a on the CMECs injury induced by high glucose. MATERIALS AND METHODS: CMECs were isolated from hearts of adult rats and cultured in normal or high glucose medium for 6 h, 12 h and 24 h respectively. To down-regulate FoxO3a expression, CMECs were transfected with FoxO3a siRNA. ROS accumulation and apoptosis in CMECs were assessed by dihydroethidine (DHE staining and TUNEL assay respectively. Moreover, the expressions of Akt, FoxO3a, Bim and BclxL in CMECs were assessed by Western blotting assay. RESULTS: ROS accumulation in CMECs was significantly increased after high glucose incubation for 6 to 24 h. Meanwhile, high glucose also increased apoptosis in CMECs, correlated with decreased the phosphorylation expressions of Akt and FoxO3a. Moreover, high glucose incubation increased the expression of Bim, whereas increased anti-apoptotic protein BclxL. Furthermore, siRNA target FoxO3a silencing enhanced the ROS accumulation, whereas suppressed apoptosis in CMECs. FoxO3a silencing also abolished the disturbance of Bcl-2 proteins induced by high glucose in CMECs. CONCLUSION: Our data provide evidence that high glucose induced FoxO3a activation which suppressed ROS accumulation, and in parallel, resulted in apoptosis of CMECs.

  16. Down-regulation of microRNA-26b rescued hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes by regulating PTEN

    OpenAIRE

    Wang, Xiaoyu; Li, Chen; Dai, Qiaoqun

    2015-01-01

    Background: Cardiomyocyte hypoxia causes cardiac hypertrophy and other major myocardial injuries. We investigated the molecular mechanism of microRNA-26b (miR-26b) in regulating hypoxia-induced apoptosis in rat neonatal cardiomyocytes. Methods: Neonatal rat cardiomyocytes was prepared in vitro and hypoxia was induced. Apoptotic cardiomyocytes were examined by TUNEL staining and the expression of miR-26b were monitored by qRT-PCR. The effect of mir-26b downregulation on hypoxia-induced apoptos...

  17. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Suo, Yu-Ping [Department of Obstetrics and Gynecology, Shanxi Provincial People' s Hospital, Taiyuan 030012 (China); Yue, Li-Ying [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China)

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  18. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    International Nuclear Information System (INIS)

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  19. Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium.

    Science.gov (United States)

    Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D; Khairallah, Ramzi J; Sarkey, Jason; Govindan, Suresh; Chen, Xin; Ge, Ying; Rajan, Sudarsan; Wieczorek, David F; Irving, Thomas; Westfall, Margaret V; de Tombe, Pieter P; Sadayappan, Sakthivel

    2014-03-28

    Myocardial infarction (MI) is associated with depressed cardiac contractile function and progression to heart failure. Cardiac myosin-binding protein C, a cardiac-specific myofilament protein, is proteolyzed post-MI in humans, which results in an N-terminal fragment, C0-C1f. The presence of C0-C1f in cultured cardiomyocytes results in decreased Ca(2+) transients and cell shortening, abnormalities sufficient for the induction of heart failure in a mouse model. However, the underlying mechanisms remain unclear. Here, we investigate the association between C0-C1f and altered contractility in human cardiac myofilaments in vitro. To accomplish this, we generated recombinant human C0-C1f (hC0C1f) and incorporated it into permeabilized human left ventricular myocardium. Mechanical properties were studied at short (2 μm) and long (2.3 μm) sarcomere length (SL). Our data demonstrate that the presence of hC0C1f in the sarcomere had the greatest effect at short, but not long, SL, decreasing maximal force and myofilament Ca(2+) sensitivity. Moreover, hC0C1f led to increased cooperative activation, cross-bridge cycling kinetics, and tension cost, with greater effects at short SL. We further established that the effects of hC0C1f occur through direct interaction with actin and α-tropomyosin. Our data demonstrate that the presence of hC0C1f in the sarcomere is sufficient to induce depressed myofilament function and Ca(2+) sensitivity in otherwise healthy human donor myocardium. Decreased cardiac function post-MI may result, in part, from the ability of hC0C1f to bind actin and α-tropomyosin, suggesting that cleaved C0-C1f could act as a poison polypeptide and disrupt the interaction of native cardiac myosin-binding protein C with the thin filament.

  20. Inhibitory effect of antisense oligodeoxynucleotide to p44/p42 MAPK on angiotensin II-induced hypertrophic response in cultured neonatal rat cardiac myocyte

    Institute of Scientific and Technical Information of China (English)

    Shi-qinZHANG; BoDING; Zhao-guiGUO; Yun-xiaLI

    2004-01-01

    AIM: To explore the inhibitory effect of antisense oligonucleotide (ODN) to mitogen activated protein kinase(MAPK) on cardiomyocyte hypertrophy induced by angiotensin Ⅱ (Ang Ⅱ). METHODS: A 17-mer phosphorothioate-protected antisense ODN directed against the initiation of translation sites of the p42 and p44 MAPK isoforms byliposomal transfection was applied to inhibit the translation of p44/p42 MAPK mRNA. The sense and random ODNs to p44/p42MAPK were used as sequence controls. Neonatal cardiac myocytes were exposed to Ang Ⅱ (10nmol/L) for 5 min and then harvested in lysis buffer for the measurement of the activity and the phosphorylated protein content of p44/p42MAPK that were tested by P-81 phosphocellulose filter paper method and Western blotting, respectively. The rate of protein synthesis by [3H]leucine incorporation and the diameter of cell were measured after exposure to Ang Ⅱ for 24 h and 72 h, respectively. RESULTS: In cardiac myocyte Ang Ⅱ increased p44/p42MAPK activity and phosphorylated protein content by 140 % and 699 %, and also increased [3H]leucine incorporation and cell diameter by 40 % and 27 %. c-fos and c-myc mRNAs were induced significantly after exposure to Ang Ⅱ. Antisense ODN to p44/p42MAPK (0.2 μmol/L) reduced Ang Ⅱ-induced MAPK activity by 30 %,and phophorylated MAPK protein expression by 59 % in cardiac myocyte, and inhibited c-fos and c-myc mRNA expression induced by Ang Ⅱ by 44 % and 43 %, respectively. The diameter and the rate of protein synthesis of cardiac myocyte induced by Ang Ⅱ were decreased by 16 % and 22 % after pretreatment with antisense ODN to p44/p42MAPK. CONCLUSION: Antisense ODN to p44/p42 MAPK inhibited the increase of rate of protein synthesis,and the augmentation of cell diameter and expression of c-fos and c-myc mRNA induced by Ang Ⅱ in culturedcardiac myocytes, p44/p42 MAPK played a critical role in the hypertrophic response induced by Ang Ⅱ in cultured neonatal rat cardiac myocytes.

  1. Severe Hypoglycemia–Induced Lethal Cardiac Arrhythmias Are Mediated by Sympathoadrenal Activation

    OpenAIRE

    Reno, Candace M.; Daphna-Iken, Dorit; Chen, Y. Stefanie; VanderWeele, Jennifer; Jethi, Krishan; Fisher, Simon J.

    2013-01-01

    For people with insulin-treated diabetes, severe hypoglycemia can be lethal, though potential mechanisms involved are poorly understood. To investigate how severe hypoglycemia can be fatal, hyperinsulinemic, severe hypoglycemic (10–15 mg/dL) clamps were performed in Sprague-Dawley rats with simultaneous electrocardiogram monitoring. With goals of reducing hypoglycemia-induced mortality, the hypotheses tested were that: 1) antecedent glycemic control impacts mortality associated with severe hy...

  2. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    OpenAIRE

    Koenitzer, Jeffrey R; Gustavo Bonacci; Woodcock, Steven R.; Chen-Shan Chen; Nadiezhda Cantu-Medellin; Kelley, Eric E.; Schopfer, Francisco J.

    2016-01-01

    Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the s...

  3. Simvastatin-induced cardiac autonomic control improvement in fructose-fed female rats

    OpenAIRE

    Renata Juliana da Silva; Nathalia Bernardes; Janaina de O. Brito; Iris Callado Sanches; Maria Cláudia Irigoyen; Kátia de Angelis

    2011-01-01

    OBJECTIVE: Because autonomic dysfunction has been found to lead to cardiometabolic disorders and because studies have reported that simvastatin treatment has neuroprotective effects, the objective of the present study was to investigate the effects of simvastatin treatment on cardiovascular and autonomic changes in fructose-fed female rats. METHODS: Female Wistar rats were divided into three groups: controls (n=8), fructose (n=8), and fructose+ simvastatin (n=8). Fructose overload was induced...

  4. Cardiac arrest

    Science.gov (United States)

    ... Article.jsp. Accessed June 16, 2014. Myerburg RJ, Castellanos A. Approach to cardiac arrest and life-threatening ... PA: Elsevier Saunders; 2011:chap 63. Myerburg RJ, Castellanos A. Cardiac arrest and audden aardiac death. In: ...

  5. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    Directory of Open Access Journals (Sweden)

    Jeffrey R. Koenitzer

    2016-08-01

    Full Text Available Nitro-fatty acids (NO2-FA are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2 reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H+ and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval.

  6. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II.

    Science.gov (United States)

    Koenitzer, Jeffrey R; Bonacci, Gustavo; Woodcock, Steven R; Chen, Chen-Shan; Cantu-Medellin, Nadiezhda; Kelley, Eric E; Schopfer, Francisco J

    2016-08-01

    Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H(+) and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR) model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval. PMID:26722838

  7. Prediction of drug-related cardiac adverse effects in humans--B: use of QSAR programs for early detection of drug-induced cardiac toxicities.

    Science.gov (United States)

    Frid, Anna A; Matthews, Edwin J

    2010-04-01

    This report describes the use of three quantitative structure-activity relationship (QSAR) programs to predict drug-related cardiac adverse effects (AEs), BioEpisteme, MC4PC, and Leadscope Predictive Data Miner. QSAR models were constructed for 9 cardiac AE clusters affecting Purkinje nerve fibers (arrhythmia, bradycardia, conduction disorder, electrocardiogram, palpitations, QT prolongation, rate rhythm composite, tachycardia, and Torsades de pointes) and 5 clusters affecting the heart muscle (coronary artery disorders, heart failure, myocardial disorders, myocardial infarction, and valve disorders). The models were based on a database of post-marketing AEs linked to 1632 chemical structures, and identical training data sets were configured for three QSAR programs. Model performance was optimized and shown to be affected by the ratio of the number of active to inactive drugs. Results revealed that the three programs were complementary and predictive performances using any single positive, consensus two positives, or consensus three positives were as follows, respectively: 70.7%, 91.7%, and 98.0% specificity; 74.7%, 47.2%, and 21.0% sensitivity; and 138.2, 206.3, and 144.2 chi(2). In addition, a prospective study using AE data from the U.S. Food and Drug Administration's (FDA's) MedWatch Program showed 82.4% specificity and 94.3% sensitivity. Furthermore, an external validation study of 18 drugs with serious cardiotoxicity not considered in the models had 88.9% sensitivity. PMID:19941924

  8. The Power of Exercise-Induced T-wave Alternans to Predict Ventricular Arrhythmias in Patients with Implanted Cardiac Defibrillator

    Directory of Open Access Journals (Sweden)

    Laura Burattini

    2013-01-01

    Full Text Available The power of exercise-induced T-wave alternans (TWA to predict the occurrence of ventricular arrhythmias was evaluated in 67 patients with an implanted cardiac defibrillator (ICD. During the 4-year follow-up, electrocardiographic (ECG tracings were recorded in a bicycle ergometer test with increasing workload ranging from zero (NoWL to the patient's maximal capacity (MaxWL. After the follow-up, patients were classified as either ICD_Cases (n = 29, if developed ventricular tachycardia/fibrillation, or ICD_Controls (n = 38. TWA was quantified using our heart-rate adaptive match filter. Compared to NoWL, MaxWL was characterized by faster heart rates and higher TWA in both ICD_Cases (12-18 μ V vs. 20-39 μ V; P < 0.05 and ICD_Controls (9-15 μ V vs. 20-32 μ V; P < 0.05. Still, TWA was able to discriminate the two ICD groups during NoWL (sensitivity = 59-83%, specificity = 53-84% but not MaxWL (sensitivity = 55-69%, specificity = 39-74%. Thus, this retrospective observational case-control study suggests that TWA's predictive power for the occurrence of ventricular arrhythmias could increase at low heart rates.

  9. Two New Flavonoid Glycosides from Chrysanthemum morifolium

    Institute of Scientific and Technical Information of China (English)

    Jian ZHANG; An Wei DING; You Bin LI; Da Wei QIAN; Jin Ao DUAN; Zhi Qi YIN

    2006-01-01

    Two new flavonoid glycosides were isolated from the flowering heads of Chrysanthemum morifolium. Their structures were determined to be luteolin 4'-methoxy-7- O-(6"-O-acetyl)-β-D-glucopyranoside (1) and acacetin 7-O-(3"-O-acetyl)-β-D-glucopyranoside (2) by means of 1H and 13C NMR spectroscopic analysis, including 2D NMR technique.

  10. Anticancer Activity of Sea Cucumber Triterpene Glycosides

    Directory of Open Access Journals (Sweden)

    Dmitry L. Aminin

    2015-03-01

    Full Text Available Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata. They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-κB, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor, Akt (protein kinase B, ERK (extracellular signal-regulated kinases, FAK (focal adhesion kinase, MMP-9 (matrix metalloproteinase-9 and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics.

  11. A Steroidal Glycoside from Cynanchum versicolor Bunge

    Institute of Scientific and Technical Information of China (English)

    Zhao Guang ZHENG; Run Hui LIU; Ling Yi KONG; Wei Dong ZHANG

    2006-01-01

    A new C21 steroidal glycoside, named cynanversicoside F (1), was isolated from the root of Cynanchum versicolor Bunge. Its structure was established as glaucogenin-A 3-O-β-D-digitoxopyranosyl-(1→4)-β-D-cymaropyranoside by spectroscopic and chemical methods.

  12. Two New Steroidal Glycosides from Caryopteris terniflora

    Institute of Scientific and Technical Information of China (English)

    Yong Hong ZHANG; Qing Yi WEI; Zhong Li LIU; Li YANG; Dong Liang CHENG

    2004-01-01

    Two new steroidal glycosides were isolated from the Chinese medicinal plantCaryopteris terniflora. The spectroscopic and chemical evidences revealed that their structures tobe 6′-(β-sitosteroyl-3-O-β-glucopyranosidyl) hexacosanate 1 and 6′-(stigmasteroyl-3-O-β-glucopyranosidyl) linolenate 2, respectively.

  13. New Acetylated Flavonol Glycosides from Knoxia corymbosa

    Institute of Scientific and Technical Information of China (English)

    Yu Bo WANG; Jian Xin PU; Hai Ying, REN; Jing Feng ZHAO; Shuang Xi MEI; Zi Yan LI; Hong Bin ZHANG; Liang LI

    2003-01-01

    Two new diacetylated flavonol glycosides, kampferol-3-O-β-3〃, 6〃-diacetylglucopyrano- side and quercetin-3-O-β-3〃, 6〃-diacetylglucopyranoside were isolated from knoxia corymbosa. Their structures were elucidated by spectroscopic evidents.

  14. New xanthone glycosides from Securidaca inappendiculata.

    Science.gov (United States)

    Yang, Xue-Dong; An, Ning; Xu, Li-Zhen; Yang, Shi-Lin

    2002-06-01

    Three new xanthone glycosides, securixanside A (1), securixanside B (2), and securixanside C (3) were isolated from the stems of Securidaca inappendiculata. These compounds were characterized by spectrometric and chemical methods, including FABMS and one- and two-dimensional NMR experiments. PMID:12067160

  15. A new sterol glycoside from Securidaca inappendiculata.

    Science.gov (United States)

    Zhang, Li-Jie; Yang, Xue-Dong; Xu, Li-Zhen; Zou, Zhong-Mei; Yang, Shi-Lin

    2005-08-01

    From the roots of Securidaca inappendiculata, one new sterol glycoside securisteroside (1) has been isolated, along with two known sterols, spinasterol (2) and 3-O-beta-D-glucopyranosyl-spinasterol (3). The new sterol was characterized by chemical and spectrometric methods, including EIMS, FABMS and one- and two-dimensional NMR experiments. PMID:16087640

  16. A New Flavone Glycoside from Isodon enanderianus

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new flavone glycoside, 5,8-dihydroxy-4',6,7-trimethoxyflavone 8-O-b -D-glucopyranoside 1, together with three known flavonoids, pedalitin 2, cirsimartin 3 and genkwanin 4, were isolated from the aerial parts of Isodon enanderianus. Their structures were determined on the basis of spectral data.

  17. A new withanolide glycoside from physalis peruviana

    Science.gov (United States)

    Ahmad; Malik; Afza; Yasmin

    1999-03-01

    A new withanolide glycoside, 17beta-hydroxy-14, 20-epoxy-1-oxo-[22R]-3beta-[O-beta-D-glucopyranosyl]-witha-5, 24-dienolide (1), has been isolated from the whole plant of Physalis peruviana. Its identity was determined using a combination of spectroscopic data including 2D NMR techniques and chemical transformations. PMID:10096867

  18. Two New Xanthone Glycosides from Securidaca inappendiculata

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two new xanthone glycosides, securixanside B and C, were isolated from the stems of Securidaca inappendiculata. Their structures were determined as 3-O-(-D-glucopyranosyl- 1,7-dihydroxy-2-methoxyxanthone and 6-O-(-D-glucopyranosyl-1-hydroxy-4,7-dimethoxyxan-thone by spectroscopic methods.

  19. A New Diterpene Glycoside from Isodon forrestii

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new diterpene glycoside named 9(10?20)-abeo-7b,10b,11,15-tetrahydroxy-8,11,13- abietatrien-12-O-b-D-glucopyranoside was isolated from aerial parts of Isodon forrestii. Its structure was determined by means of spectroscopic studies.

  20. A Novel Pregnane Glycoside from Biondia chinensis

    Institute of Scientific and Technical Information of China (English)

    Xing Gen TAN; Shu Lin PENG; Xun LIAO; Jian LIANG; Li Sheng DING

    2003-01-01

    A novel pregnane glycoside, biondianoside E, was isolated from the roots of Biondiachinensis. By the spectroscopic and chemical methods, this structure was elucidated as 3β, 5β,14β, 20S, 21-pentahydroxypregnane 3- O-β-D-glucopyranosyl-(1→4)-β-D-cymaropyranoside.

  1. Effects of Fenugreek Seed Extract and Swimming Endurance Training on Plasma Glucose and Cardiac Antioxidant Enzymes Activity in Streptozotocin-induced Diabetic Rats

    OpenAIRE

    Arshadi, Sajad; BAKHTIYARI, Salar; Haghani, Karimeh; Valizadeh, Ahmad

    2015-01-01

    Objective Diabetes mellitus is a group of metabolic diseases characterized by chronic hyperglycemia condition resulting from defective insulin secretion or resistance insulin action, or both. The purpose of this study was to evaluate the effect of 6 weeks swimming training and Trigonella foenum-graecum seed (fenugreek) extract, alone and in combination, on plasma glucose and cardiac antioxidant enzyme activity of streptozotocin-induced diabetic rats. Methods Fifty male Wistar rats were divide...

  2. EGFR trans-activation by urotensin II receptor is mediated by β-arrestin recruitment and confers cardioprotection in pressure overload-induced cardiac hypertrophy.

    Science.gov (United States)

    Esposito, Giovanni; Perrino, Cinzia; Cannavo, Alessandro; Schiattarella, Gabriele G; Borgia, Francesco; Sannino, Anna; Pironti, Gianluigi; Gargiulo, Giuseppe; Di Serafino, Luigi; Franzone, Anna; Scudiero, Laura; Grieco, Paolo; Indolfi, Ciro; Chiariello, Massimo

    2011-06-01

    Urotensin II (UTII) and its seven trans-membrane receptor (UTR) are up-regulated in the heart under pathological conditions. Previous in vitro studies have shown that UTII trans-activates the epidermal growth factor receptor (EGFR), however, the role of such novel signalling pathway stimulated by UTII is currently unknown. In this study, we hypothesized that EGFR trans-activation by UTII might exert a protective effect in the overloaded heart. To test this hypothesis, we induced cardiac hypertrophy by transverse aortic constriction (TAC) in wild-type mice, and tested the effects of the UTII antagonist Urantide (UR) on cardiac function, structure, and EGFR trans-activation. After 7 days of pressure overload, UR treatment induced a rapid and significant impairment of cardiac function compared to vehicle. In UR-treated TAC mice, cardiac dysfunction was associated with reduced phosphorylation levels of the EGFR and extracellular-regulated kinase (ERK), increased apoptotic cell death and fibrosis. In vitro UTR stimulation induced membrane translocation of β-arrestin 1/2, EGFR phosphorylation/internalization, and ERK activation in HEK293 cells. Furthermore, UTII administration lowered apoptotic cell death induced by serum deprivation, as shown by reduced TUNEL/Annexin V staining and caspase 3 activation. Interestingly, UTII-mediated EGFR trans-activation could be prevented by UR treatment or knockdown of β-arrestin 1/2. Our data show, for the first time in vivo, a new UTR signalling pathway which is mediated by EGFR trans-activation, dependent by β-arrestin 1/2, promoting cell survival and cardioprotection.

  3. Changes in liraglutide-induced body composition are related to modifications in plasma cardiac natriuretic peptides levels in obese type 2 diabetic patients

    OpenAIRE

    Li, Chun-Jun; Yu, Qian; Yu, Pei; Yu, Tie-Lian; Zhang, Qiu-mei; Lu, Shan; Yu, De-Min

    2014-01-01

    Background and aims Liraglutide treatment can improve glycemic control with a concomitant weight loss, but the underlying mechanism on weight loss is not completely understood. Cardiac natriuretic peptides (NPs) can resist body fat accumulation through increasing adipocytes lypolysis. In this study, we tested the hypothesis that liraglutide-induced weight loss was associated with increased plasma NPs concentrations. Methods Thirty-one outpatients with type 2 diabetes (T2D) treated with metfor...

  4. Salt-induced changes in cardiac phosphoproteome in a rat model of chronic renal failure.

    Directory of Open Access Journals (Sweden)

    Zhengxiu Su

    Full Text Available Heart damage is widely present in patients with chronic kidney disease. Salt diet is the most important environmental factor affecting development of chronic renal failure and cardiovascular diseases. The proteins involved in chronic kidney disease -induced heart damage, especially their posttranslational modifications, remain largely unknown to date. Sprague-Dawley rats underwent 5/6 nephrectomy (chronic renal failure model or sham operation were treated for 2 weeks with a normal-(0.4% NaCl, or high-salt (4% NaCl diet. We employed TiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for phosphoproteomic profiling of left ventricular free walls in these animals. A total of 1724 unique phosphopeptides representing 2551 non-redundant phosphorylation sites corresponding to 763 phosphoproteins were identified. During normal salt feeding, 89 (54% phosphopeptides upregulated and 76 (46% phosphopeptides downregulated in chronic renal failure rats relative to sham rats. In chronic renal failure rats, high salt intake induced upregulation of 84 (49% phosphopeptides and downregulation of 88 (51% phosphopeptides. Database searches revealed that most of the identified phospholproteins were important signaling molecules such as protein kinases, receptors and phosphatases. These phospholproteins were involved in energy metabolism, cell communication, cell differentiation, cell death and other biological processes. The Search Tool for the Retrieval of Interacting Genes analysis revealed functional links among 15 significantly regulated phosphoproteins in chronic renal failure rats compared to sham group, and 23 altered phosphoproteins induced by high salt intake. The altered phosphorylation levels of two proteins involved in heart damage, lamin A and phospholamban were validated. Expression of the downstream genes of these two proteins, desmin and SERCA2a, were also analyzed.

  5. Macrophage populations and cardiac sympathetic denervation during L-NAME-induced hypertension in rats

    DEFF Research Database (Denmark)

    Neves, S R S; Machado, C R S; Pinto, A M T;

    2006-01-01

    ventricle, the hypertrophic cardiomyocytes were restricted to damaged areas. Significant reduction of the noradrenergic nerve terminals occurred from day 3 to 28. The area occupied by ED1+ (hematogenous) macrophages increased until day 7, and dropped to control levels by day 10. ED2+ (resident) macrophages...... and macrophage infiltration at day 7. No denervation was detectable at day 14 of double treatment, using subcutaneous AG. Our findings favor a role for ED1+ macrophages and iNOS in the hypertension-induced denervation process....

  6. Naringin Reduces Hyperglycemia-Induced Cardiac Fibrosis by Relieving Oxidative Stress

    OpenAIRE

    Olubunmi A. Adebiyi; Adebiyi, Oluwafeyisetan O.; Owira, Peter M. O.

    2016-01-01

    Introduction Hyperglycemia promotes myocardial fibrotic lesions through upregulation of PKC and p38 in response to redox changes. The effects of naringin on hyperglycemia-induced myocardial fibrotic changes and its putative effects on PKC-β and p38 protein expression in type 1 rat model of diabetes are hereby investigated. Methods Male Sprague-Dawley rats were divided into six groups I-VI. Groups I and II, were orally treated with distilled water {3.0 ml/kg body weight (BW)} and naringin (50 ...

  7. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    International Nuclear Information System (INIS)

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markers and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4 signaling

  8. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Joydeep; Vasan, Vandana; Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in

    2012-01-15

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markers and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4 signaling

  9. The Protective Effect of Fasudil on the Structure and Function of Cardiac Mitochondria from Rats with Type 2 Diabetes Induced by Streptozotocin with a High-Fat Diet Is Mediated by the Attenuation of Oxidative Stress

    OpenAIRE

    Guo, Rong; Liu, Baoxin; Zhou, Shunping; ZHANG, BUCHUN; XU, YAWEI

    2013-01-01

    Dysfunction of cardiac mitochondria appears to play a substantial role in cardiomyopathy or myocardial dysfunction and is a promising therapeutic target for many cardiovascular diseases. We investigated the effect of the Rho/Rho-associated protein kinase (ROCK) inhibitor fasudil on cardiac mitochondria from rats in which diabetes was induced by a combination of streptozotocin (STZ) and a sustained high-fat diet. Eight weeks after diabetes was induced by a single intraperitoneal injection of 5...

  10. Advance on the Flavonoid C-glycosides and Health Benefits.

    Science.gov (United States)

    Xiao, Jianbo; Capanoglu, Esra; Jassbi, Amir Reza; Miron, Anca

    2016-07-29

    The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. Almost all natural flavonoids exist as their O-glycoside or C-glycoside forms in plants. The dietary flavonoid C-glycosides have received less attention than their corresponding O-glycosides. This review summarizes current knowledge regarding flavonoid C-glycosides and their influence on human health. Among the flavonoid C-glycosides, flavone C-glycosides, especially vitexin, isoorientin, orientin, isovitexin and their multiglycosides are more frequently mentioned than others. Flavonoid C-monoglycosides are poorly absorbed in human beings with very few metabolites in urine and blood and are deglycosylated and degraded by human intestinal bacteria in colon. However, flavonoid C-multiglycosides are absorbed unchanged in the intestine and distributed to other tissues. Flavonoid C-glycosides showed significant antioxidant activity, anticancer and antitumor activity, hepatoprotective activity, anti-inflammatory activity, anti-diabetes activity, antiviral activity, antibacterial and antifungal activity, and other biological effects. It looks like that the C-glycosylflavonoids in most cases showed higher antioxidant and anti-diabetes potential than their corresponding O-glycosylflavonoids and aglycones. However, there is a lack of in vivo data on the biological benefits of flavonoid C-glycosides. It is necessary to investigate more on how flavonoid C-glycosides prevent and handle the diseases.

  11. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads.

    Science.gov (United States)

    Antunes-Ricardo, Marilena; Moreno-García, Beatriz E; Gutiérrez-Uribe, Janet A; Aráiz-Hernández, Diana; Alvarez, Mario M; Serna-Saldivar, Sergio O

    2014-12-01

    (OFI) contains health-promoting compounds like flavonoids, being the isorhamnetin glycosides the most abundant. We evaluated the effect of OFI extracts with different isorhamnetin glycosides against two different human colon cancer cells (HT-29 and Caco2). The extracts were obtained by alkaline hydrolysis with NaOH at 40 °C during 15, 30 or 60 min. Tri and diglycosides were the most abundant isorhamnetin glycosides, therefore these compounds were isolated to compare their cytotoxic effect with the obtained from the extracts. The OFI extracts and purified isorhamnetin glycosides were more cytotoxic against HT-29 cells than Caco2 cells. OFI-30 exhibited the lowest IC50 value against HT-29 (4.9 ± 0.5 μg/mL) and against Caco2 (8.2 ± 0.3 μg/mL). Isorhamnetin diglycosides IG5 and IG6 were more cytotoxic than pure isorhamnetin aglycone or triglycosides when they were tested in HT-29 cells. Bioluminescent analysis revealed increased activity of caspase 3/7 in OFI extracts-treated cells, particularly for the extract with the highest concentration of isorhamnetin triglycosides. Flow cytometry analysis confirmed that OFI extract and isorhamnetin glycosides induced a higher percentage of apoptosis in HT-29 than in Caco2, while isorhamnetin was more apoptotic in Caco2. This research demonstrated that glycosilation affected antiproliferative effect of pure isorhamnetin glycosides or when they are mixed with other phytochemicals in an extract obtained from OFI.

  12. Allosteric indicator displacement enzyme assay for a cyanogenic glycoside.

    Science.gov (United States)

    Jose, D Amilan; Elstner, Martin; Schiller, Alexander

    2013-10-18

    Indicator displacement assays (IDAs) represent an elegant approach in supramolecular analytical chemistry. Herein, we report a chemical biosensor for the selective detection of the cyanogenic glycoside amygdalin in aqueous solution. The hybrid sensor consists of the enzyme β-glucosidase and a boronic acid appended viologen together with a fluorescent reporter dye. β-Glucosidase degrades the cyanogenic glycoside amygdalin into hydrogen cyanide, glucose, and benzaldehyde. Only the released cyanide binds at the allosteric site of the receptor (boronic acid) thereby inducing changes in the affinity of a formerly bound fluorescent indicator dye at the other side of the receptor. Thus, the sensing probe performs as allosteric indicator displacement assay (AIDA) for cyanide in water. Interference studies with inorganic anions and glucose revealed that cyanide is solely responsible for the change in the fluorescent signal. DFT calculations on a model compound revealed a 1:1 binding ratio of the boronic acid and cyanide ion. The fluorescent enzyme assay for β-glucosidase uses amygdalin as natural substrate and allows measuring Michaelis-Menten kinetics in microtiter plates. The allosteric indicator displacement assay (AIDA) probe can also be used to detect cyanide traces in commercial amygdalin samples. PMID:24123550

  13. Unambiguous observation of blocked states reveals altered, blocker-induced, cardiac ryanodine receptor gating

    Science.gov (United States)

    Mukherjee, Saptarshi; Thomas, N. Lowri; Williams, Alan J.

    2016-01-01

    The flow of ions through membrane channels is precisely regulated by gates. The architecture and function of these elements have been studied extensively, shedding light on the mechanisms underlying gating. Recent investigations have focused on ion occupancy of the channel’s selectivity filter and its ability to alter gating, with most studies involving prokaryotic K+ channels. Some studies used large quaternary ammonium blocker molecules to examine the effects of altered ionic flux on gating. However, the absence of blocking events that are visibly distinct from closing events in K+ channels makes unambiguous interpretation of data from single channel recordings difficult. In this study, the large K+ conductance of the RyR2 channel permits direct observation of blocking events as distinct subconductance states and for the first time demonstrates the differential effects of blocker molecules on channel gating. This experimental platform provides valuable insights into mechanisms of blocker-induced modulation of ion channel gating. PMID:27703263

  14. Transgenic Mice with Cardiac-Specific Expression of Activating Transcription Factor 3, a Stress-Inducible Gene, Have Conduction Abnormalities and Contractile Dysfunction

    OpenAIRE

    Okamoto, Yoshichika; Chaves, Alysia; Chen, Jingchun; Kelley, Robert; Jones, Keith; Weed, Harrison G.; Gardner, Kevin L.; Gangi, Lisa; Yamaguchi, Mamoru; Klomkleaw, Wuthichai; Nakayama, Tomohiro; HAMLIN, Robert L.; Carnes, Cynthia; Altschuld, Ruth; Bauer, John

    2001-01-01

    Activating transcription factor 3 (ATF3) is a member of the CREB/ATF family of transcription factors. Previously, we demonstrated that the expression of the ATF3 gene is induced by many stress signals. In this report, we demonstrate that expression of ATF3 is induced by cardiac ischemia coupled with reperfusion (ischemia-reperfusion) in both cultured cells and an animal model. Transgenic mice expressing ATF3 under the control of the α-myosin heavy chain promoter have atrial enlargement, and a...

  15. Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation.

    OpenAIRE

    Viires, N; Sillye, G; Aubier, M.; Rassidakis, A; Roussos, C

    1983-01-01

    Respiratory muscle blood flow and organ blood flow was studied in two groups of dogs with radioactively labeled microspheres to assess the influence of the working respiratory muscles on the regional distribution of blood flow when arterial pressure and cardiac output were lowered by pericardial tamponade. In one group (n = 6), the dogs were paralyzed and mechanically ventilated (Mv), while in the other (n = 6), they were left to breathe spontaneously (Sb). Cardiac output fell to 30% of contr...

  16. The first description of cardiac magnetic resonance findings in a severe scorpion envenomation: Is it a stress-induced (Takotsubo) cardiomyopathy like?

    Science.gov (United States)

    Miranda, Carlos H; Braggion-Santos, Maria F; Schmidt, André; Pazin-Filho, Antônio; Cupo, Palmira

    2015-06-01

    There are more than 1 million cases of scorpion envenomation worldwide. Severe complications due to myocardial depression can happen in some patients, mainly children. A catecholamine-induced myocarditis probably causes this cardiac dysfunction. We describe a case of a 7-year-old boy with a severe scorpion envenomation complicated by pulmonary edema in which the cardiac magnetic resonance (CMR)was performed during the acute phase. The CMR showed an apical ballooning in the left ventricle associated with a left ventricle ejection fraction of 29% and a global edema of the midmyocardium and apical myocardiumin the T2-weighted triple inversion recovery images. The CMR was repeated after 7 months and showed complete recovery of the wall motion in the apical region and of the myocardial function (left ventricle ejection fraction, 60%) associated with normalization of the signal in the T2-weighted triple inversion recovery images. These clinical and laboratory findings, mainly the CMR images, are similar to those observed in stress-induced cardiomyopathy (Takotsubo) reinforcing the hypothesis that the catecholamine's excess has a pivotal function in the pathophysiology of the cardiac dysfunction in these 2 conditions. PMID:25601163

  17. All-trans retinoic acid inhibited angiotensin Ⅱ-induced increase in cell growth and collagen secretion of neonatal cardiac fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Yan HE; Ying HUANG; Li ZHOU; Li-min LU; Yi-chun ZHU; Tai YAO

    2006-01-01

    Aim:To determine whether all-trans retinoic acid (atRA) acts to modulate angiotensin Ⅱ (Ang Ⅱ) -induced cardiac fibroblast cell growth and collagen secretion.Methods:Cultured neonatal rat cardiac fibroblasts (CF) were used in the experiment.A 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide (MTT) assay was used to detect cell growth of the CF;and immunocytochemistry and Western blotting were used to measure the production and secretion of collagen and the expression of transforming growth factor-β1 (TGF-β1) by the CF.Results:atRA (1×10-7 to 1×10-5mol/L) inhibitedtheAngⅡ-induced increase in cell growth of CF (P<0.05).Ang Ⅱ stimulated the secretion of collagen types Ⅰ and Ⅲ by the CF. This eflfect was blocked by AT1 receptor antagonist losartan (1×10-6 mol/L) ,but notbyAT2 receptorantagonistPDl23319 (upto 1×10-6mol/L).Exposure of CF to atRA (1×10-5mol/L) attenuated the Ang Ⅱ-induced increase in the secretion of collagen types I and Ⅲ (P<0.05).atRA (1×10-5mol/L) also blocked the Ang Ⅱ-induced increase in the expression of TGF-β1.Conclusion:atRA inhibits the Ang Ⅱ-induced increase in cell growth and collagen secretion of neonatal rat CF.The effect of atRA is possibly mediated by lowering the TGF-β1 level.These observations support the notion that atRA is a potential candidate for the prevention and therapy of cardiac remodeling.

  18. ICOS-Ig combined with CsA induces long term survival of cardiac allografts in mouse

    Institute of Scientific and Technical Information of China (English)

    Zhang Peng; Wang Zhenmeng; Qin Qin; Tang Yi; Wang Quanxing; Shen Qian

    2009-01-01

    Objective: To study the synergistic effect of ICOS-Ig combined with cyclosporine (CsA) on mouse heart transplantation and explore its therapeutic potential. Methods: ICOS-Ig fusion protein was generated by fusing the extracellular portion of human ICOS and Fc portion of human IgG. To investigate the effect of ICOS-Ig on T-cell proliferation in vitro, ICOS-Ig or IgG was added to the primary MLR cultures (BALB/c spleen T cells as responder cells and irradiated C57BL/6 spleen cells as stimulator cells). The cells responsiveness rates were detected by 3H-TdR methods. Then the T cells of each group in primary MLR were cultured as responder cells for secondary MLR, and irradiated C57BL/6 (donor) or C3H (third party) spleen cells as stimulator cells. To study the effect of ICOS-Ig on T-cell proliferation in vivo, CFSE-labeled C57BL/6 spleen cells were transferred to irradiated BALB/c mice. Mice were then treated with IgG, ICOS-Ig or CsA. Seventy two hours after transfer, the spleen cells of the mice were harvested for the detection of CD4+CFSE+ and CD8+CFSE+ by FACS. C57BL/6 mouse underwent transplantation of the hearts of BALB/c mouse and were then randomly divided into five equal groups: no treatment group, control IgG treated group (250 μg i.p. d2, 4, 6), ICOS-Ig treated group (250 μg i.p. d2, 4, 6), CsA treated group (10 mg/kg i.p. d0-6), ICOS-Ig combined with CsA group. The cardiac allograft survival was monitored by daily palpation. Results: In primary MLR, ICOS-Ig inhibited T-cell proliferation, (inhibition ratio 58±8.2% in 50 μg/ml). In secondary MLR, ICOS-Ig specifically inhibited donor spleen cells, which suggested ICOS-Ig could induce donor-specific hyporesponsiveness. In the CFSE dye assay, CD4+CFSE+ and CD8+CFSE+ in ICOS-Ig and CsA group was stronger than those in control group, which showed ICOS-Ig and CsA could inhibit the proliferation of allo-reactive T cells in vivo. In mouse heart transplantation model, survival was significantly prolonged in

  19. CONTRAST INDUCED NEPHROPATHY - A STUDY OF 850 PATIENTS UNDERGOING CARDIAC CATHETERIZATION LABORATORY PROCEDURES

    Directory of Open Access Journals (Sweden)

    Priya SV

    2010-11-01

    Full Text Available Background: Contrast-induced nephropathy (CIN represents an increasing healthcare burden and challenge especially in the scenario of increasing frequency of diagnostic imaging and interventional procedures. Frequency of CIN varies widely depending on the population. There is paucity of data regarding CIN in our population. The risk of CIN is elevated and is of clinical importance in patients with estimated glomerular filtration rate (GFR 60 ml/mt and GFR 30 – 60 ml/mt. Patients who developed CIN were followed up with serum creatinine measurement on the 5th day post procedure. Results: Among 850 patients enrolled for the study, 15 patients were lost for follow-up. Of the rest 835 patients, 535(64% were having GFR > 60ml /mt and 300 (36% having GFR of 30-60 ml/mt. The procedure was coronary angiography in 795(95% patients and percutaneous coronary intervention (PCI in 40 (5% patients. CIN occurred in 5 patients (0.59 %. 3 of 300 patients in the group with GFR 30 – 60 ml/mt and 2 of 535 patients in the group with GFR > 60ml/mt had CIN (1% vs 0.4% (p value 0.260 NS. Among the 500 hypertensives in the study population, 3 (0.6% developed CIN. CIN was seen in 4 out of 635 diabetics (0.6%, where as it occurred in 1 out of 200 non diabetics (0.5% (p value 0.589 NS. 4 among 100 patients with LV dysfunction and 1 out of 735 patients with normal LV function developed CIN (4% vs 0.13% (p value 0.001 . Conclusions: Overall incidence of CIN is low in the study population. Even in the group with low GFR, incidence of CIN is low. Left ventricular dysfunction is the only risk factor predicting development of CIN.

  20. Effects of exercise training on myocardial fatty acid metabolism in rats with depressed cardiac function induced by transient ischemia

    International Nuclear Information System (INIS)

    The effects of exercise training on metabolic and functional recovery after myocardial transient ischemia were investigated in a rat model. Male Wistar Kyoto rats were subjected either to a 30-min left coronary artery occlusion followed by reperfusion or to a sham operation. At 4 weeks after operation, the rats were randomly assigned either to sedentary conditions or to exercise training for 6 weeks. In the ischemic rats, pinhole SPECT (single photon emission computed tomography) imaging with thallium-201 (201Tl) and 123I-(ρ-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) showed a reduction of both myocardial perfusion and fatty acid metabolism in the risk zone of the left ventricle (LV). The LV was dilated and the ejection fraction was decreased after ischemic injury. The severity score showed a significant decrease on both 201Tl and BMIPP (201Tl, from 19.9±2.7 to 17.0±2.2, p<0.05; BMIPP, from 21.5±2.4 to 18.6±1.9, p<0.05) after exercise training in the ischemic trained rats, but did not change significantly in their sedentary counterparts. Plasma levels of free fatty acids normalized in the ischemic trained rats, but elevated in the ischemic sedentary rats (0.53±0.05 vs 0.73±0.06 mmol/L, p<0.05). Furthermore, the trained rats had a significant increase in LV stroke volume (0.25±0.02 vs 0.21±0.01 ml/beat, p<0.05) and adaptive cardiac hypertrophy. These findings demonstrate that adaptive improvements in myocardial perfusion, fatty-acid metabolism and LV function were induced by exercise training after transient ischemia. (author)

  1. Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs Cultured on an Aligned-Nanofiber Cardiac Patch.

    Directory of Open Access Journals (Sweden)

    Mahmood Khan

    Full Text Available Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates.hiPSC-CMs were cultured on; 1 a highly aligned polylactide-co-glycolide (PLGA nanofiber scaffold (~50 microns thick and 2 on a standard flat culture plate. Scanning electron microscopy (SEM was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43 was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes.SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro.Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic

  2. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tongyi [Department of Cardiothoracic Surgery, No. 401 Hospital of PLA, Qingdao (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zhang, Ben [Centre of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Yang, Fan; Cai, Chengliang; Wang, Guokun [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Han, Qingqi, E-mail: handoctor@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zou, Liangjian, E-mail: zouliangjiansh@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2015-05-08

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction. Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression

  3. Hepatoprotective phenylethanoid glycosides from Cirsium setosum.

    Science.gov (United States)

    Ma, Qinge; Guo, Yongming; Luo, Baomin; Liu, Wenmin; Wei, Rongrui; Yang, Chunxia; Ding, Chenghua; Xu, Xuefeng; He, Minghui

    2016-08-01

    Two new phenylethanoid glycosides, namely β-D-glucopyranoside, 1″-O-(7S)-7-(3-methoxyl-4-hydroxyphenyl)-7-methoxyethyl-3″-α-L-rhamnopyranosyl-4″-[(8E)-7-(3-methoxyl-4-hydroxyphenyl)-8-propenoate] (1) and β-D-glucopyranoside, 1″-O-(7S)-7-(3-methoxyl-4-hydroxyphenyl)-7-methoxyethyl-3″-α-L-rhamnopyranosyl-4″-[(8E)-7-(4-hydroxyphenyl)-8-propenoate] (2), together with six phenylethanoid glycosides were isolated from Cirsium setosum. Their structures were elucidated by their spectroscopic data and references. Compounds 2, 4, 5, 7 and 8 (10 μM) exhibited moderate hepatoprotective activities. Compounds (3-8) were obtained from this plant for the first time.

  4. Phenylpropanoid Glycosides from Linum olympicum (Linaceae)

    OpenAIRE

    KONUKLUGİL, Belma; BAHADIR, Özlem

    2004-01-01

    The lignan content of Linum olympicum Boiss. was investigated by HPLC and GC-MS in comparison with standards, and 2 phenylpropanoid glycosides, syringin (1) and coniferin (2), were isolated from the aerial parts. Identification of the 2 compounds was achieved by comparison with standards using TLC and HPLC and the structures of the isolated compounds were established by UV and 1H-NMR analysis.

  5. Two New Cardenolide Glycosides from Biondia hemsleyana

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two new cardenolide glycosides, biondianosides A and B, were isolated from the roots of endemic plant of Biondia hemsleyana (Warb.) Tsiang. Their structures were elucidated as periplogenin-3-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl-(1→4)-β-D-cymaropyranoside (1) and 17βH-periplogenin-3-O-β-D-cymaropyranoside (2) by the spectroscopic and chemical methods.

  6. Two New Flavonol Glycosides from Knoxia corymbosa

    Institute of Scientific and Technical Information of China (English)

    Yu Bo WANG; Shuang Xi MEI; Yao Hua WANG; Jing Feng ZHAO; Hai Ying REN; Jie GUO; Hong Bin ZHANG; Liang LI

    2003-01-01

    Two new flavonol glycosides (1 and 2) together with two known flavonoides (3 and 4),were isolated from the whole plant of Knoxia corymbosa willd. The structures of 1 and 2 wereelucidated as kaempferol-7-O-α-L-arabinosyl-3-O-β-D-6"-acetylglucopyranoside and kaempferol-7-O-α-L-arabinosyl-3-O-β-D-3",6"-diacetylglucopyranoside respectively.

  7. A new phenylethanoid glycoside from Isodon sculponeatus

    Institute of Scientific and Technical Information of China (English)

    Li Mei Li; Jian Xin Pu; Wei Lie Xiao; Han Dong Sun

    2011-01-01

    A new phenylethanoid glycoside, sculponiside (1) was isolated from the aerial parts of Isodon sculponeatus (Vaniot) Kudo, along with six known compounds martynoside (2), verbascoside (3), (+)-hydroxypinoresinol-8-O-β-D-glucoside (4), cedrusin (5), 7-megastigmene-3S,5R,6R,7E,9S-tetrol (6) and 4-oxo-β-ionol-β-D-glucopyranoside (7). Their chemical structures were elucidated from physicochemical data and by acidic hydrolysis.

  8. A new coumarin glycoside from Daphne giraldii

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new coumarin glycoside was isolated from the ethanol extract of the barks of stem of Daphne giraldii Nitsche. Its structure was defined as daphnetin 8-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside on the basis of spectral evidences.(C) 2007 Wei Dong Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  9. Alkyl and phenolic glycosides from Saussurea stella.

    Science.gov (United States)

    Wang, Tian-Min; Wang, Ru-Feng; Chen, Hu-Biao; Shang, Ming-Ying; Cai, Shao-Qing

    2013-07-01

    One alkyl glycoside, saussurostelloside A (1), two phenolic glycosides, saussurostellosides B1 (2) and B2 (3), and 27 known compounds, including eleven flavonoids, seven phenolics, six lignans, one neolignan, one phenethyl glucoside and one fatty acid, were isolated from an ethanol extract of Saussurea stella (Asteraceae). Their structures were elucidated by NMR, MS, UV, and IR spectroscopic analysis. Of the known compounds, (+)-medioresinol-di-O-β-D-glucoside (7), picraquassioside C (10), and diosmetin-3'-O-β-D-glucoside (27) were isolated from the Asteraceae family for the first time, while (+)-pinoresinol-di-O-β-D-glucoside (6), di-O-methylcrenatin (11), protocatechuic acid (14), 1,5-di-O-caffeoylquinic acid (17), formononetin (28), and phenethyl glucoside (29) were isolated from the Saussurea genus for the first time. The anti-inflammatory activities of three new compounds (1-3), five lignans ((-)-arctiin (4), (+)-pinoresinol-4-O-β-D-glucoside (5), (+)-pinoresinol-di-O-β-D-glucoside (6), (+)-medioresinol-di-O-β-D-glucoside (7) and (+)-syringaresinol-4-O-β-D-glucoside (8)), one neolignan (picraquassioside C (10)), and one phenolic glycoside (di-O-methylcrenatin (11)) were evaluated by testing their inhibition of the release of β-glucuronidase from PAF-stimulated neutrophils. Only compound 5 showed moderate inhibition of the release of β-glucuronidase, with an inhibition ratio of 39.1%.

  10. Stearoyl-CoA desaturase-1 (SCD1 augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Hiroki Matsui

    Full Text Available Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1 is a rate-limiting enzyme that converts saturated fatty acids (SFAs to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis.

  11. Pre-Conditioning with CDP-Choline Attenuates Oxidative Stress-Induced Cardiac Myocyte Death in a Hypoxia/Reperfusion Model

    Directory of Open Access Journals (Sweden)

    Héctor González-Pacheco

    2014-01-01

    Full Text Available Background. CDP-choline is a key intermediate in the biosynthesis of phosphatidylcholine, which is an essential component of cellular membranes, and a cell signalling mediator. CDP-choline has been used for the treatment of cerebral ischaemia, showing beneficial effects. However, its potential benefit for the treatment of myocardial ischaemia has not been explored yet. Aim. In the present work, we aimed to evaluate the potential use of CDP-choline as a cardioprotector in an in vitro model of ischaemia/reperfusion injury. Methods. Neonatal rat cardiac myocytes were isolated and subjected to hypoxia/reperfusion using the coverslip hypoxia model. To evaluate the effect of CDP-choline on oxidative stress-induced reperfusion injury, the cells were incubated with H2O2 during reperfusion. The effect of CDP-choline pre- and postconditioning was evaluated using the cell viability MTT assay, and the proportion of apoptotic and necrotic cells was analyzed using the Annexin V determination by flow cytometry. Results. Pre- and postconditioning with 50 mg/mL of CDP-choline induced a significant reduction of cells undergoing apoptosis after hypoxia/reperfusion. Preconditioning with CDP-choline attenuated postreperfusion cell death induced by oxidative stress. Conclusion. CDP-choline administration reduces cell apoptosis induced by oxidative stress after hypoxia/reperfusion of cardiac myocytes. Thus, it has a potential as cardioprotector in ischaemia/reperfusion-injured cardiomyocytes.

  12. Hypotensive action of coumarin glycosides from Daucus carota.

    Science.gov (United States)

    Gilani, A H; Shaheen, E; Saeed, S A; Bibi, S; Irfanullah; Sadiq, M; Faizi, S

    2000-10-01

    Daucus carota (carrot) has been used in traditional medicine to treat hypertension. Activity-directed fractionation of aerial parts of D. carota resulted in the isolation of two cumarin glycosides coded as DC-2 and DC-3. Intravenous administration of these compounds caused a dose-dependent (1-10 mg/kg) fall in arterial blood pressure in normotensive anaesthetised rats. In the in vitro studies, both compounds caused a dose-dependent (10-200 microg/ml) inhibitory effect on spontaneously beating guinea pig atria as well as on the K+ -induced contractions of rabbit aorta at similar concentrations. These results indicate that DC-2 and DC-3 may be acting through blockade of calcium channels and this effect may be responsible for the blood pressure lowering effect of the compounds observed in the in vivo studies. PMID:11081994

  13. Synthesis of Indole Derivatives from 2-Keto Glycoside

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ 2-Oxo derivatives of glycosides, called 2-keto glycosides or glycoside 2-uloses, are biologically important in carbohydrate metabolism and are very useful in synthesis of branched-chain sugars and amino sugars. Very little is known of their chemistry because of the high susceptibility of these compounds to degradation in solution, and in particular their instability to base. Thus it is important to study the reactivities of 2-keto glycosides. In a previous paper, we reported the transformation of 2-keto glycosides in pyridine solution. During the transformation of 2-and 3-keto glycosides, a demethoxylation reaction of the enol intermediate was shown to take place simultaneously with elimination to give hex-1-enopyran-3-ulose.

  14. Synthesis of Indole Derivatives from 2-Keto Glycoside

    Institute of Scientific and Technical Information of China (English)

    LIU; HongMin

    2001-01-01

    2-Oxo derivatives of glycosides, called 2-keto glycosides or glycoside 2-uloses, are biologically important in carbohydrate metabolism and are very useful in synthesis of branched-chain sugars and amino sugars. Very little is known of their chemistry because of the high susceptibility of these compounds to degradation in solution, and in particular their instability to base. Thus it is important to study the reactivities of 2-keto glycosides. In a previous paper, we reported the transformation of 2-keto glycosides in pyridine solution. During the transformation of 2-and 3-keto glycosides, a demethoxylation reaction of the enol intermediate was shown to take place simultaneously with elimination to give hex-1-enopyran-3-ulose.……

  15. Microbial Degradation of Steviol derived from steviol glycosides

    OpenAIRE

    Jooken, Etienne; Amery, Ruis; Monballiu, Annick; Moons, Nico; De Borggraeve, Wim; Dehaen, Wim; Meesschaert, Boudewijn

    2013-01-01

    As well as from Paraguayan soil samples of a stevia plantation as from samples of Belgian soils that never had contact with stevia or steviol glycosides bacterial consortia were derived that hydrolysed steviol glycosides to steviol. This activity was not influenced by heating (20 min. 80 °C) or boiling (10 min. 100 °C) the soil samples. The type of steviol glycosides that were hydrolysed as well as the hydrolytic pathway of the hydrolysis was highly influenced by the conditions...

  16. A New Phenolic Glycoside from the Barks of Cinnamomum cassia

    OpenAIRE

    Junfen Zeng; Yongbo Xue; Yongji Lai; Guangmin Yao; Zengwei Luo; Yonghui Zhang; Jinwen Zhang

    2014-01-01

    A new phenolic glycoside (1), named methyl 2-phenylpropanoate-2-O-β-D-apiofuranosyl-(1→6)-O-β-D–glucopyranoside, was isolated from the barks of Cinnamomum cassia, along with three known phenolic glycosides and four known lignan glycosides. The structure of 1 was elucidated by extensive interpretation of spectroscopic data and chemical method. Selected compounds were evaluated for their immunosuppressive activities against murine lymphocytes. Compounds 1, 2, 6 and 8 exhibited differential inhi...

  17. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Science.gov (United States)

    Pilarczyk, Götz; Raulf, Alexandra; Gunkel, Manuel; Fleischmann, Bernd K.; Lemor, Robert; Hausmann, Michael

    2016-01-01

    The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds. PMID:26751484

  18. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  19. Cytokine-induced oxidative stress in cardiac inflammation and heart failure – how the ubiquitin proteasome system targets this vicious cycle

    Directory of Open Access Journals (Sweden)

    Antje eVoigt

    2013-03-01

    Full Text Available The ubiquitin proteasome system (UPS is critical for the regulation of many intracellular processes necessary for cell function and survival. The absolute requirement of the UPS for the maintenance of protein homeostasis and thereby for the regulation of protein quality control is reflected by the fact that deviation of proteasome function from the norm was reported in cardiovascular pathologies. Inflammation is a major factor contributing to cardiac pathology. Herein, cytokines induce protein translation and the production of free radicals, thereby challenging the cellular protein equilibrium. Here, we discuss current knowledge on the mechanisms of UPS-functional adaptation in response to oxidative stress in cardiac inflammation. The increasing pool of oxidant-damaged degradation-prone proteins in cardiac pathology accounts for the need for enhanced protein turnover by the UPS. This process is accomplished by an up-regulation of the ubiquitylation machinery and the induction of immunoproteasomes. Thereby, the inflamed heart muscle is cleared from accumulating misfolded proteins. Current advances on immunoproteasome-specific inhibitors in this field question the impact of the proteasome as a therapeutic target in heart failure.

  20. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes.

    Science.gov (United States)

    Pilarczyk, Götz; Raulf, Alexandra; Gunkel, Manuel; Fleischmann, Bernd K; Lemor, Robert; Hausmann, Michael

    2016-01-01

    The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds. PMID:26751484

  1. A New Phenylpropanoid Glycoside: Serratumoside A from Clerodendrum serratum

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new phenylpropanoid glycoside, serratumoside A, was isolated from the aerial parts of Clerodendrum serratum var. amplexifolium Moldenke. Its structure was determined by spectral and chemical methods.

  2. Bioactive Steroidal Glycosides from the Starfish Anasterias Minuta

    OpenAIRE

    Chludil, H.; M. S. Maier; A. M. Seldes

    2000-01-01

    Cytotoxic fractions obtained by purification of the ethanolic extract of Anasterias minuta contain sulfated hexasaccharide glycosides. These compounds show antifungal activity against Cladosporium cucumerinum.

  3. Bioactive Steroidal Glycosides from the Starfish Anasterias Minuta

    Directory of Open Access Journals (Sweden)

    H. Chludil

    2000-03-01

    Full Text Available Cytotoxic fractions obtained by purification of the ethanolic extract of Anasterias minuta contain sulfated hexasaccharide glycosides. These compounds show antifungal activity against Cladosporium cucumerinum.

  4. Bortezomib-Induced Complete Heart Block and Myocardial Scar: The Potential Role of Cardiac Biomarkers in Monitoring Cardiotoxicity

    Directory of Open Access Journals (Sweden)

    Sachin Diwadkar

    2016-01-01

    Full Text Available Bortezomib is a proteasome inhibitor used to treat multiple myeloma and mantle cell lymphoma. Traditionally, bortezomib was thought to have little cardiovascular toxicity; however, there is increasing evidence that bortezomib can lead to cardiac complications including left ventricular dysfunction and atrioventricular block. We present the case of a 66-year-old man with multiple myeloma and persistent asymptomatic elevations of cardiac biomarkers who developed complete heart block and evidence of myocardial scar after his eighth cycle of bortezomib, requiring permanent pacemaker placement. In addition to discussing the cardiovascular complications of bortezomib therapy, we propose a potential role for biomarkers in the prediction and monitoring of bortezomib cardiotoxicity.

  5. Pheochromocytoma-induced atrial tachycardia leading to cardiogenic shock and cardiac arrest: resolution with atrioventricular node ablation and pacemaker placement.

    Science.gov (United States)

    Shawa, Hassan; Bajaj, Mandeep; Cunningham, Glenn R

    2014-12-01

    Pheochromocytoma should be considered in young patients who have acute cardiac decompensation, even if they have no history of hypertension. Atrioventricular node ablation and pacemaker placement should be considered for stabilizing pheochromocytoma patients with cardiogenic shock due to atrial tachyarrhythmias. A 38-year-old black woman presented with cardiogenic shock (left ventricular ejection fraction, cardiogenic shock and cardiac arrest unresolved by the placement of 2 different ventricular assist devices, but that was completely reversed by radiofrequency ablation of the atrioventricular node and the placement of a temporary pacemaker. We present the patient's clinical, laboratory, and imaging findings, and we review the relevant literature.

  6. Involvement of peroxisome proliferator-activated receptors in cardiac and vascular remodeling in a novel minipig model of insulin resistance and atherosclerosis induced by consumption of a high-fat/cholesterol diet

    OpenAIRE

    Yongming, Pan; Zhaowei, Cai; Yichao, Ma; Keyan, Zhu; Liang, Chen; Fangming, Chen; Xiaoping, Xu; Quanxin, Ma; Minli, Chen

    2015-01-01

    Background A long-term high-fat/cholesterol (HFC) diet leads to insulin resistance (IR), which is associated with inflammation, atherosclerosis (AS), cardiac sympathovagal imbalance, and cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) and nuclear factor ĸB (NF-κB) are involved in the development of IR-AS. Thus, we elucidated the pathological molecular mechanism of IR-AS by feeding an HFC diet to Tibetan minipigs to induce IR and AS. Methods Male Tibetan minipigs were ...

  7. Cardiac Malpositions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Shi Joon; Im, Chung Gie; Yeon, Kyung Mo; Hasn, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    Cardiac Malposition refers to any position of the heart other than a left-sided heart in a situs solitus individual. Associated cardiac malformations are so complex that even angiocardiographic and autopsy studies may not afford an accurate information. Although the terms and classifications used to describe the internal cardiac anatomy and their arterial connections in cardiac malpositions differ and tend to be confusing, common agreement exists on the need for a segmental approach to diagnosis. Authors present 18 cases of cardiac malpositions in which cardiac catheterization and angiocardiography were done at the Department of Radiology, Seoul National University Hospital between 1971 and 1979. Authors analyzed the clinical, radiographic, operative and autopsy findings with the emphasis on the angiocardiographic findings. The results are as follows: 1. Among 18 cases with cardiac malpositions, 6 cases had dextrocardia with situs inversus, 9 cases had dextrocardia with situs solitus and 3 cases had levocardia with situs inversus. 2. There was no genuine exception to visceroatrial concordance rule. 3. Associated cardiac malpositions were variable and complex with a tendency of high association of transposition and double outlet varieties with dextrocardia in situs solitus and levocardia in situs inversus. Only one in 6 cases of dextrocardia with situs inversus had pure transposition. 4. In two cases associated pulmonary atresia was found at surgery which was not predicted by angiocardiography. 5. Because many of the associated complex lesions can be corrected surgically provided the diagnosis is accurate, the selective biplane angiocardiography with or without cineradiography is essential.

  8. Assessment of DNA double-strand breaks induced by intravascular iodinated contrast media following in vitro irradiation and in vivo, during paediatric cardiac catheterization.

    Science.gov (United States)

    Gould, Richard; McFadden, Sonyia L; Horn, Simon; Prise, Kevin M; Doyle, Philip; Hughes, Ciara M

    2016-01-01

    Paediatric cardiac catheterizations may result in the administration of substantial amounts of iodinated contrast media and ionizing radiation. The aim of this work was to investigate the effect of iodinated contrast media in combination with in vitro and in vivo X-ray radiation on lymphocyte DNA. Six concentrations of iodine (15, 17.5, 30, 35, 45, and 52.5 mg of iodine per mL blood) represented volumes of iodinated contrast media used in the clinical setting. Blood obtained from healthy volunteers was mixed with iodinated contrast media and exposed to radiation doses commonly used in paediatric cardiac catheterizations (0 mGy, 70 mGy, 140 mGy, 250 mGy and 450 mGy). Control samples contained no iodine. For in vivo experimentation, pre and post blood samples were collected from children undergoing cardiac catheterization, receiving iodine concentrations of up to 51 mg of iodine per mL blood and radiation doses of up to 400 mGy. Fluorescence microscopy was performed to assess γH2AX-foci induction, which corresponded to the number of DNA double-strand breaks. The presence of iodine in vitro resulted in significant increases of DNA double-strand breaks beyond that induced by radiation for ≥ 17.5 mg/mL iodine to blood. The in vivo effects of contrast media on children undergoing cardiac catheterization resulted in a 19% increase in DNA double-strand breaks in children receiving an average concentration of 19 mg/mL iodine to blood. A larger investigation is required to provide further information of the potential benefit of lowering the amount of iodinated contrast media received during X-ray radiation investigations. PMID:26549792

  9. Combined hERG channel inhibition and disruption of trafficking in drug-induced long QT syndrome by fluoxetine: a case-study in cardiac safety pharmacology

    OpenAIRE

    Hancox, J. C.; Mitcheson, J S

    2006-01-01

    Drug-induced prolongation of the rate-corrected QT interval (QTCI) on the electrocardiogram occurs as an unwanted effect of diverse clinical and investigational drugs and carries a risk of potentially fatal cardiac arrhythmias. hERG (human ether-à-go-go-related gene) is the gene encoding the α-subunit of channels mediating the rapid delayed rectifier K+ current, which plays a vital role in repolarising the ventricles of the heart. Most QTCI prolonging drugs can inhibit the function of recombi...

  10. EFFECT OF ELECTROACUPUNCTURE ON MYOCARDIAL ISCHEMIA INDUCED CHANGES OF CARDIAC SYMPATHETIC ACTIVITY AND INVOLVEMENT OF SPINIAL δ-OPIOID,NMDA-AND NON-NMDA RECEPTORS IN THE RABBIT

    Institute of Scientific and Technical Information of China (English)

    刘俊岭; 高永辉; 陈淑萍

    2003-01-01

    Aim: To observe the effect of electroacupuncture (EA) on acute myocardial ischemia (AMI) induced changes of cardiac sympathetic discharges and the effects of some related receptors in the spinal cord. Methods: A total of 53 rabbits anesthetized with mixture solution of 25% urethane (420 mg/kg) and 1.5% chloralose (50 mg/kg)were used in this study. AMI was induced by occlusion of the ventricular branch of the left coronary artery. Discharges of the left cardiac sympathetic nerve were recorded by using a bipolar platinum electrode. Bilateral "Ximen"(PC 40)and "Kongzhui"(LU 6) were stimulated electrically by using an EA therapeutic apparatus or an electrical stimulator.DPDPE δ-opiate receptor agonist, 20 nmol, 10 μL, n= 8), Naltrindole Hydrochloride (δ-opiate receptor antagonist, 20nmol, 10 μL, n=8), DAP5 (NMDA receptor antagonist, 5 nmol, 10 μL, n=9) and CNQX (non-NMDA receptor antagonist, 5 nmol, 10 μL, n=8) were respectively injected into the thoracic subarachnoid space of the spinal cord in different groups, followed by observing their effects on changes of sympathetic activity evoked by EA of the abovementioned acupoints. Results: ① After AMI, sympathetic discharges increased (200.56± 79.89%) in 10 cases and decreased (- 59.34 ±7.06% ) in other 9 cases in comparison with their individual basal values. After EA of "Ximen" (PC 4)and "Kongzhui" (Lu 6), AMI-induced increase and decrease changes of the sympathetic activity were suppressed significantly, but the effect of EA of LU-6 was weaker than that of EA of PC-4.②Following EA of PC-4 and LU-6, sympathetic discharges increased significantly in 2 and 4 cases, decreased apparently in 7 and 3 cases, and had no striking changes in 1 and 3 cases respectively. The mean reaction threshold of sympathetic activity after EA of PC-4 and LU-6were 2.1 ± 0.65 mA and 3.28± 1.13 mA separately.③ After pre-treatment with DPDPE, the reaction threshold of the cardiac sympathetic activity to EA of PC-4 elevated

  11. The hearts of competitive athletes: an up-to-date overview of exercise-induced cardiac adaptations.

    Science.gov (United States)

    Dores, Hélder; Freitas, António; Malhotra, Aneil; Mendes, Miguel; Sharma, Sanjay

    2015-01-01

    Intense and regular physical exercise is responsible for various cardiac changes (electrical, structural and functional) that represent physiological adaptation to exercise training. This remodeling, commonly referred to as 'athlete's heart', can overlap with several pathological entities, in which sudden cardiac death may be the first clinical presentation. Although pre-competitive screening can identify athletes with life-threatening cardiovascular abnormalities, there are no widely used standardized pre-participation programs and those currently implemented are controversial. Data from personal and family history, features of physical examination and changes in the 12-lead electrocardiogram can raise the suspicion of cardiac disease and lead to early detection of entities such as hypertrophic cardiomyopathy. However, interpreting the electrocardiogram is often challenging, because some changes are considered physiological in athletes. Thus, clinical decision-making in such cases can prove difficult: missing a condition associated with an increased risk of life-threatening events, or conversely, mislabeling an athlete with a disease that leads to unnecessary disqualification, are both situations to avoid. This paper provides an up-to-date review of the physiological cardiac effects of exercise training and highlights key points that should be taken into consideration in the assessment of young competitive athletes.

  12. Phenylethanoid glycosides and phenolic glycosides from stem bark of Magnolia officinalis.

    Science.gov (United States)

    Xue, Zhenzhen; Yan, Renyi; Yang, Bin

    2016-07-01

    An investigation of the hydrophilic constituents of the stem bark of Magnolia officinalis was performed and which led to isolation and identification of twenty-one previously unreported glycosides. These included eleven phenylethanoid glycosides, magnolosides F-P, and ten phenolic glycosides, magnolosides Q-Z, along with eight known compounds. Their structures were elucidated on the basis of extensive spectroscopic analyses and chemical hydrolysis methods, as well as by comparison with literature data. Most of the phenylethanoid glycosides contained an allopyranose moiety, which is rare in the plant kingdom. Magnolosides I and K as well as 2-(3,4-dihydroxyphenyl) ethanol 1-O-[4-O-caffeoyl-2-O-α-l-rhamnopyranosyl-3-O-α-l-rhamnopyranosyl-6-O-β-d-glucopyranosyl]-β-d-glucopyranoside showed more potent α-glucosidase inhibitory effects (IC50 values of 0.13, 0.27, and 0.29mM, respectively) than the positive control, acarbose (IC50 value of 1.09mM) in vitro. Magnolosides H, E and D also showed moderate cytotoxicity against MGC-803 and HepG2 cells with IC50 values of 13.59-17.16μM and 29.53-32.46μM, respectively. PMID:27086163

  13. Surgical optimization and characterization of a minimally invasive aortic banding procedure to induce cardiac hypertrophy in mice.

    Science.gov (United States)

    Martin, Tamara P; Robinson, Emma; Harvey, Adam P; MacDonald, Margaret; Grieve, David J; Paul, Andrew; Currie, Susan

    2012-07-01

    Left ventricular pressure overload in response to aortic banding is an invaluable model for studying progression of cardiac hypertrophy and transition to heart failure. Traditional aortic banding has recently been superceded by minimally invasive transverse aortic banding (MTAB), which does not require ventilation so is less technically challenging. Although the MTAB approach is superior, few laboratories have documented success, and minimal information on the model is available. The aim of this study was to optimize conditions for MTAB and to characterize the development and progression of cardiac hypertrophy. Isofluorane proved the most suitable anaesthetic for MTAB surgery in mice, and 1 week after surgery the MTAB animals showed significant increases in systolic blood pressure (MTAB 110 ± 6 mmHg versus sham 78 ± 3 mmHg, n = 7, P MTAB 6.2 ± 0.2 versus sham 5.1 ± 0.1, n = 12, P MTAB 31.7 ± 1% versus sham 36.6 ± 1.4%, P = 0.01) and diastolic dysfunction (e.g. left ventricular end-diastolic pressure, MTAB 12.7 ± 1.0 mmHg versus sham 6.7 ± 0.8 mmHg, P MTAB hearts, signifying an inflammatory response. More pronounced remodelling was observed 4 weeks postsurgery (heart weight to body weight ratio, MTAB 9.1 ± 0.6 versus sham 4.6 ± 0.04, n = 10, P MTAB 24.3 ± 2.5% versus sham 43.6 ± 1.7%, n = 10, P = 0.003), together with a significant increase in cardiac fibrosis and further cardiac inflammation. Our findings demonstrate that MTAB is a relevant experimental model for studying development and progression of cardiac hypertrophy, which will be highly valuable for future studies examining potential novel therapeutic interventions in this setting. PMID:22447975

  14. Two New Chromone Glycosides from Selaginella uncinata

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two new chromone glycosides, 5-hydroxy-2,6,8-trimethylchromon-7-O-β-D-gluco-pyranoside, named uncinoside A; 5-acetoxy-2,6,8-trimethylchromone-7-O-β-D-glucopyranoside, named uncinoside B, and a known chromone compound named 8-methyl eugenitol were isolated from Selaginella uncinata. Their structures were elucidated by spectra analysis of FAB-MS, 1D NMR and 2D NMR including 1H NMR, 13C NMR, HMQC, HMBC and single-crystal X-ray diffraction techniques.

  15. Syntheses of dopa glycosides using glucosidases.

    Science.gov (United States)

    Sivakumar, Ramaiah; Ponrasu, Thangavel; Divakar, Soundar

    2009-02-01

    Syntheses of L: -dopa 1a glucoside 10a,b and DL: -dopa 1b glycosides 10-18 with D: -glucose 2, D: -galactose 3, D: -mannose 4, D: -fructose 5, D: -arabinose 6, lactose 7, D: -sorbitol 8 and D: -mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, beta-glucosidase isolated from sweet almond and immobilized beta-glucosidase. Invariably, L: -dopa and DL: -dopa gave low to good yields of glycosides 10-18 at 12-49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth OH positions of L: -dopa 1a and DL: -dopa 1b. Amyloglucosidase showed selectivity with D: -mannose 4 to give 4-O-C1beta and D: -sorbitol 8 to give 4-O-C6-O-arylated product. beta-Glucosidase exhibited selectivity with D: -mannose 4 to give 4-O-C1beta and lactose 7 to give 4-O-C1beta product. Immobilized beta-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition (ACE) activities of the glycosides were evaluated glycosides, out of which L: -3-hydroxy-4-O-(beta-D: -galactopyranosyl-(1'-->4)beta-D: -glucopyranosyl) phenylalanine 16 at 0.9 +/- 0.05 mM and DL: -3-hydroxy-4-O-(beta-D: -glucopyranosyl) phenylalanine 11b,c at 0.98 +/- 0.05 mM showed the best IC(50) values for antioxidant activity and DL: -3-hydroxy-4-O-(6-D: -sorbitol)phenylalanine 17 at 0.56 +/- 0.03 mM, L: -dopa-D: -glucoside 10a,b at 1.1 +/- 0.06 mM and DL: -3-hydroxy-4-O-(D: -glucopyranosyl)phenylalanine 11a-d at 1.2 +/- 0.06 mM exhibited the best IC(50) values for ACE inhibition. PMID:18712474

  16. Flavononol Glycosides of Reseda arabica (Resedaceae

    Directory of Open Access Journals (Sweden)

    Djemaa Berrehal

    2012-07-01

    Full Text Available Five flavonol glycosides, kaempferol 3,7-di-O- α -L-rhamnopyranoside (1 , isorhamnetin 3,7-di-O- α -L-rhamnopyranoside (2 , kaempferol 3-O- β -D-glucopyranoside-7-O- α -L-rhamnopyranoside (3 , isorhamnetin 3-O- β -D-glucopyranoside-7-O- α -L-rhamnopyranoside (4, Kaempferol 3-O- β -xylopyranosyl-(1'''→2''-O- α -L-rhamnopyranoside-7-O- α -L-rhamnopyranoside (5, have been isolated from the aerial parts of Reseda arabica. Their structures were established on the basis of physical and spectroscopic analysis, and by comparison with the literature data.

  17. Two pentasaccharide resin glycosides from Argyreia acuta.

    Science.gov (United States)

    Yin, Yong-Qin; Pan, Jie-Tao; Yu, Bang-Wei; Cui, Hong-Hua; Yan, You-Shao; Chen, Yan-Fen

    2016-01-01

    Two new compounds of acutacosides 1 and 2, pentasaccharide resin glycosides were isolated from the aerial parts of Argyreia acuta. The core of the two compounds was operculinic acid A, and they were esterfied at the same position, just one substituent group was linked at C-2 of Rha. The absolute configuration of the aglycone in the two compounds was established by Mosher's method, which was (11S)-hydroxyhexadecanoic acid (jalapinolic acid). Their structures were established by a combination of spectroscopic and chemical methods.

  18. A new phenylpropanoid glycoside from Cirsium setosum.

    Science.gov (United States)

    Ke, Rui; Zhu, En-Yuan; Chou, Gui-xin

    2010-07-01

    To study the chemical constituents of Cirsium setosum (Willd.) MB., 70% ethanol extract of the aerial parts was subjected to column chromatography. One new phenylpropanoid glycoside, sinapyl alcohol 9-O-(E)-p-coumaroyl-4-O-beta-D-glucopyanoside (1) was isolated, along with three known compounds: lycoperodine-1 (2), apigenin-7-O-(6"-(E)-p-coumaroyl)-beta-D-galactopyranoside (3) and quercetin (4). The structures were elucidated on the basis of spectral and chemical evidence. Compound 2 was obtained from Cirsium genus for the first time, compounds 3 and 4 were obtained from this plant for the first time.

  19. One New Iridoid Glycoside from Hedyotis tenelliflora

    Institute of Scientific and Technical Information of China (English)

    YUAN Qing-mei; YANG Hong-wei; ZHAO Jing-feng; LI Liang

    2011-01-01

    Objective To study the chemical constituents of Hedyotis tenelliflora. Methods The compounds were isolated by chromatographic separation technology. The structures were identified on the basis of chemical and spectral data. Results Four iridoid glycosides were isolated from the whole plant of H. tenelliflora. On the basis of the chemical and spectral methods, their structures were elucidated as teneoside C (1), harpagoside (2), harpagide (3), and asperulosidic acid (4). Conclusion Compound 1 is a new compound, and compounds 2 and 3 are isolated from H. tenelliflora for the first time.

  20. Cardiac-specific over-expression of epidermal growth factor receptor 2 (ErbB2 induces pro-survival pathways and hypertrophic cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Polina Sysa-Shah

    Full Text Available BACKGROUND: Emerging evidence shows that ErbB2 signaling has a critical role in cardiomyocyte physiology, based mainly on findings that blocking ErbB2 for cancer therapy is toxic to cardiac cells. However, consequences of high levels of ErbB2 activity in the heart have not been previously explored. METHODOLOGY/PRINCIPAL FINDINGS: We investigated consequences of cardiac-restricted over-expression of ErbB2 in two novel lines of transgenic mice. Both lines develop striking concentric cardiac hypertrophy, without heart failure or decreased life span. ErbB2 transgenic mice display electrocardiographic characteristics similar to those found in patients with Hypertrophic Cardiomyopathy, with susceptibility to adrenergic-induced arrhythmias. The hypertrophic hearts, which are 2-3 times larger than those of control littermates, express increased atrial natriuretic peptide and β-myosin heavy chain mRNA, consistent with a hypertrophic phenotype. Cardiomyocytes in these hearts are significantly larger than wild type cardiomyocytes, with enlarged nuclei and distinctive myocardial disarray. Interestingly, the over-expression of ErbB2 induces a concurrent up-regulation of multiple proteins associated with this signaling pathway, including EGFR, ErbB3, ErbB4, PI3K subunits p110 and p85, bcl-2 and multiple protective heat shock proteins. Additionally, ErbB2 up-regulation leads to an anti-apoptotic shift in the ratio of bcl-xS/xL in the heart. Finally, ErbB2 over-expression results in increased activation of the translation machinery involving S6, 4E-BP1 and eIF4E. The dependence of this hypertrophic phenotype on ErbB family signaling is confirmed by reduction in heart mass and cardiomyocyte size, and inactivation of pro-hypertrophic signaling in transgenic animals treated with the ErbB1/2 inhibitor, lapatinib. CONCLUSIONS/SIGNIFICANCE: These studies are the first to demonstrate that increased ErbB2 over-expression in the heart can activate protective signaling

  1. Identification of Phenylethanoid Glycosides in Plant Extract of Plantago asiatica L. by Liquid Chromatography-Electrospray Ionization Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    LI,Li; LIU,Chunming; LIU,Zhiqiang; TSAO,Rong; LIU,Shuying

    2009-01-01

    The present work describes a liquid chromatography-electrospray ionization mass spectrometry(LC-ESI-MS)method for rapid identification of phenylethanoid glycosides in plant extract from Plnmgo asiatica L.By using a binary mobile phase system consisting of 0.2% acetic acid and acetonitrile under gradient conditions,a good sepa-ration was achieved on a reversed-phase C18 column.The[M-H] ions,the molecular weights,and the fragmentions of phenvlethanoid glycosides were obtained in the negative ion mode using LC-ESI-MS.The identification of the phenylethanoid glycosides(peaks 1-3) in the extract of P. asiatica L.was based on matching their retention time.the detection of molecular ions.and the fragment ions obtained by collision-induced dissociation(CID)ex-periments with those of the authentic standards and data reported in the literature.

  2. Chemical and enzymatic hydrolysis of anthraquinone glycosides from Madder roots

    NARCIS (Netherlands)

    Derksen, G.C.H.; Naayer, M.; Beek, T.A. van; Capelle, A.; Haaksman, I.K.; Doren, H.A. van; Groot, Æ. de

    2003-01-01

    For the production of a commercially useful dye extract from madder, the glycoside ruberythric acid has to be hydrolysed to the aglycone alizarin which is the main dye component. An intrinsic problem is the simultaneous hydrolysis of the glycoside lucidin pritneveroside to the unwanted mutagenic agl

  3. Chemical and enzymatic hydrolysis fo anthraquinone glycosides from madder roots

    NARCIS (Netherlands)

    Derksen, G.C.H.; Naayer, M.; Beek, van T.A.; Capelle, A.; Haaksman, I.K.; Doren, H.A.; Groot, de Æ.

    2003-01-01

    For the production of a commercially useful dye extract from madder, the glycoside ruberythric acid has to be hydrolysed to the aglycone alizarin which is the main dye component. An intrinsic problem is the simultaneous hydrolysis of the glycoside lucidin primeveroside to the unwanted mutagenic agly

  4. Cardiac-specific overexpression of catalase prevents diabetes-induced pathological changes by inhibiting NF-κB signaling activation in the heart.

    Science.gov (United States)

    Cong, Weitao; Ruan, Dandan; Xuan, Yuanhu; Niu, Chao; Tao, Youli; Wang, Yang; Zhan, Kungao; Cai, Lu; Jin, Litai; Tan, Yi

    2015-12-01

    Catalase is an antioxidant enzyme that specifically catabolizes hydrogen peroxide (H2O2). Overexpression of catalase via a heart-specific promoter (CAT-TG) was reported to reduce diabetes-induced accumulation of reactive oxygen species (ROS) and further prevent diabetes-induced pathological abnormalities, including cardiac structural derangement and left ventricular abnormity in mice. However, the mechanism by which catalase overexpression protects heart function remains unclear. This study found that activation of a ROS-dependent NF-κB signaling pathway was downregulated in hearts of diabetic mice overexpressing catalase. In addition, catalase overexpression inhibited the significant increase in nitration levels of key enzymes involved in energy metabolism, including α-oxoglutarate dehydrogenase E1 component (α-KGD) and ATP synthase α and β subunits (ATP-α and ATP-β). To assess the effects of the NF-κB pathway activation on heart function, Bay11-7082, an inhibitor of the NF-κB signaling pathway, was injected into diabetic mice, protecting mice against the development of cardiac damage and increased nitrative modifications of key enzymes involved in energy metabolism. In conclusion, these findings demonstrated that catalase protects mouse hearts against diabetic cardiomyopathy, partially by suppressing NF-κB-dependent inflammatory responses and associated protein nitration.

  5. Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial β-adrenergic system and does not compromise cardiac function.

    Science.gov (United States)

    Vileigas, Danielle F; de Deus, Adriana F; da Silva, Danielle C T; de Tomasi, Loreta C; de Campos, Dijon H S; Adorni, Caroline S; de Oliveira, Scarlet M; Sant'Ana, Paula G; Okoshi, Katashi; Padovani, Carlos R; Cicogna, Antonio C

    2016-09-01

    Obesity is a worldwide pandemic associated with high incidence of cardiovascular disease. The mechanisms by which the obesity leads cardiac dysfunction are not fully elucidated and few studies have evaluated the relationship between obesity and proteins involved in myocardial β-adrenergic (βA) system. The purpose of this study was to evaluate the cardiac function and βA pathway components in myocardium of obese rats. Male Wistar rats were distributed into two groups: control (n = 17; standard diet) and obese (n = 17; saturated high-fat diet) fed for 33 weeks. Nutritional profile and comorbidities were assessed. Cardiac structure and function was evaluated by macroscopic postmortem, echocardiographic and isolated papillary muscle analyzes. Myocardial protein expression of β1- and β2-adrenergic receptors, Gαs protein, adenylate cyclase (AC) and protein kinase A (PKA) was performed by Western blot. Cardiac cyclic adenosine monophosphate (cAMP) levels and PKA activity were assessed by ELISA Obese rats showed increased adiposity index (P < 0.001) and several comorbidities as hypertension, glucose intolerance, insulin resistance, and dyslipidemia compared with control rats. Echocardiographic assessment revealed increased left atrium diameter (C: 4.98 ± 0.38 vs. Ob: 5.47 ± 0.53, P = 0.024) and posterior wall shortening velocity (C: 37.1 ± 3.6 vs. Ob: 41.8 ± 3.8, P = 0.007) in obese group. Papillary muscle evaluation indicated that baseline data and myocardial responsiveness to isoproterenol stimulation were similar between the groups. Protein expression of myocardial AC was higher in obese group than in the control (C: 1.00 ± 0.21 vs. Ob: 1.25 ± 0.10, P = 0.025), whereas the other components were unchanged. These results suggest that saturated high-fat diet-induced obesity was not effective in triggering cardiac dysfunction and impair the beta-adrenergic signaling. PMID:27582064

  6. Triterpene Glycosides from Sea Cucumber Holothuria scabra with Cytotoxic Activity

    Institute of Scientific and Technical Information of China (English)

    HAN Hua; LI Ling; YI Yang-hua; WANG Xiao-hua; PAN Min-xiang

    2012-01-01

    Objective To study the new triterpene glycosides from sea cucumber Holothuria scabra with cytotoxic activity.Methods Triterpene glycosides from H.scabra were separated and purified by chromatography on DA-101,silica gel,and reversed-phase silica gel column,as well as RP-HPLC.Their structures were elucidated on the basis of spectral data and chemical evidence.Results Three triterpene glycosides were identified as scabraside D (1),fuscocineroside C (2),and 24-dehydroechinoside A (3).Their inhibition on P-388,A549,MKN-28,HCT116,and MCF-7 cells were significant.Conclusion Scabraside D (1) is a new triterpene glycoside,and compounds 2 and 3 are isolated from H.scabra for the first time.The glycosides 1-3 show the in vitro cytotoxicity against five human tumor cell lines in comparison to 10-hydroxycamptothecin.

  7. Cardiac rehabilitation

    Science.gov (United States)

    ... attack or other heart problem. You might consider cardiac rehab if you have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery Heart transplant Procedures such as angioplasty and stenting In some ...

  8. The Effect of Fabric Type of Common Iranian Working Clothes on the Induced Cardiac and Physiological Strain Under Heat Stress.

    Science.gov (United States)

    Parvari, Roh Allah; Aghaei, Habib Allah; Dehghan, Habibollah; Khademi, Abolfazl; Maracy, Mohammad Reza; Dehghan, Somayeh Farhang

    2015-01-01

    The present study compared the effect of fabric type of working clothes on heat strain responses in different levels of physical workload and under different kinds of weather conditions. Four kinds of working clothing fabric that are greatly popular in Iranian industry were assessed on 18 healthy male at 2 environments: hot and humid (dry temperature [DBt]: 35°C and relative humidity [RH]: 70%) and hot and dry (DBt: 40°C and RH: 40%). The physiological responses such as heart rate and core body temperature were reported. It was found that there were no significant differences between different types of clothing fabric on cardiac and physiological parameters. It can be recommended that 100% cotton clothing ensemble during low-workload activities and 30.2% cotton-69.8% polyester clothing ensemble during moderate-workload activities is used for Iranian workers to maintain the cardiac and physiological strains as low as possible.

  9. [PHYSICAL EXERCISE TRAINING CAN- CELS CONSTITUTIVE NOS UNCOUPLING AND INDUCED VIOLATIONS OF CARDIAC HEMODYNAMICS IN HYPERTENSION (PART III)].

    Science.gov (United States)

    Dorofeyeva, N A; Kotsuruba, A V; Kopjak, B S; Sagach, V F

    2015-01-01

    In the heart and heart mitochondria spontaneously hypertensive rats investigated the effect of physical exercise training (swimming in a moderate and excessive training mode) on the physiological indicators of cardiac hemodynamics and biochemical parameters that characterize the level of oxidative and nitrosative stress. The index of coupling Ca(2+)-dependent constitutive NO-synthases (cNOS = eNOS + nNOS) and biochemical index of dysfunction were calculated. It turned out that both modes of training is completely restored, and even exceed the reference values in untrained rats Wistar conjugate cNOS state and Ca(2+)-dependent synthesis of nitric oxide (NO). Intensity regime of exercise on the border of functionality have been ineffective for improving the functional state of the cardiovascular system and hypertension can provoke it further. Moderate physical training regime, on the contrary, improves the diastolic function of the heart due to an increase dP/dtmin, reducing end-diastolic pressure and a significant reduction in end-diastolic stiffness. Moderate exercise decreased peripheral resistance and cardiac afterload, as indicated by the decrease in end-systolic pressure and arterial stiffness, which contributed to more efficient and energy-saving of heart work. Improve physiological indicators of cardiac hemodynamics and functional state of the heart in moderate mode of training correlated with changes in both the calculated indices. Moderate mode of training is recommended as a simple physiological preconditioning method for the prevention of cardiac dysfunction, hypertension as a result of state uncoupling cNOS and the resulting excessive generation of superoxide and, conversely, inhibition of Ca(2+)-dependent synthesis of NO. PMID:26552300

  10. Effects of Chemically Induced Ovarian Failure on Voluntary Wheel-Running Exercise and Cardiac Adaptation in Mice

    OpenAIRE

    Perez, Jessica N.; Chen, Hao; Regan, Jessica A.; Emert, Ashlie; Constantopoulos, Eleni; Lynn, Melissa; Konhilas, John P.

    2013-01-01

    The role of exercise in decreasing the risk of cardiovascular disease in postmenopausal women has not been studied sufficiently. Accordingly, we investigated the effect of voluntary wheel-running and forced treadmill exercise on cardiac adaptation in mice treated with 4-vinylcyclohexine diepoxide (VCD), which selectively accelerates the loss of primary and primordial follicles and results in a state that closely mimics human menopause. Two-month-old female C57BL/6 mice injected with VCD (160 ...

  11. Effects of neutral sulfate berberine on LPS-induced cardiomyocyte TNF-αsecretion, abnormal calcium cycling, and cardiac dysfunction in rats

    Institute of Scientific and Technical Information of China (English)

    Jing YANG; Hua-dong WANG; Da-xiang LU; Yan-ping WANG; Ren-bin QI; Jing LI; Fei LI; Chu-jie LI

    2006-01-01

    Aim: To evaluate the effect of neutral sulfate berberine on cardiac function, tumornecrosis factor α (TNF-α) release, and intracellular calcium concentration ([Ca2+]i)in cardiomyocytes exposed to lipopolysaccharide (LPS). Methods: Primary cultured rat cardiomyocytes were prepared from ventricles of 3-4-day old SpragueDawley rats. TNF-α concentrations in cell-conditioned media were measured by using a Quantikine enzyme-linked immunosorbent assay kit, and cardiomyocyte [Ca2+]i was measured by using Fura-2/AM. The isolated rat hearts were perfused in the Langendorff mode. Results: LPS at doses of 1, 5, 10, and 20 μg/mL markedly stimulated TNF-α secretion from cardiomyocytes, and neutral sulfate berberine inhibited LPS-induced TNF-α production. Intracellular calcium concentration was significantly decreased after LPS stimulation for 1 h, and increased 2 h after LPS treatment. Pretreatment with neutral sulfate berberine reversed the LPS-induced [Ca2+]i alterations, although neutral sulfate berberine did not inhibit a rapid increase in cardiomyocyte [Ca2+]i induced by LPS. Perfusion of isolated hearts with LPS (100 μg/mL) for 20 min resulted in significantly impaired cardiac performance at 120 min after LPS challenge: the maximal rate of left ventricular pressure rise and fall (±dp/dtmax) decreased compared with the control. In contrast, ±dp/dtmax at 120min in hearts perfused with neutral sulfate berberine (1 μmol/L) for 10 min followed by 20 min LPS (100 μg/mL) was greater than the corresponding value in the LPS group. Conclusion: Neutral sulfate berberine inhibits LPS-stimulated myocardial TNF-α production, impairs calcium cycling, and improves LPS-induced contractile dysfunction in intact heart.

  12. Thiol addition to protected allyl glycosides: an improved method for the preparation of spacer-arm glycosides

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Seeventer, P.B. van; Dorst, J.A.L.M. van; Siemerink, J.F.; Kamerling, J.P.

    1997-01-01

    A useful method for the preparation of differently functionalized sulfide spacer-arm glycosides is presented. Several protected allyl glycosides were variously elongated via a radical addition reaction with pentanethiol, methyl 3-mercaptopropionate, or 2-mercaptoethanol. The hydroxyl function of pro

  13. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers

    Directory of Open Access Journals (Sweden)

    Joo-In ePark

    2014-09-01

    Full Text Available Many marine triterpene glycosides have in vitro and in vivo activities with very low toxicity, suggesting that they are suitable agents for the prevention and treatment of different diseases, particularly cancer. However, the molecular mechanisms of action of natural marine compounds in cancer, immune and other various cells are not fully known. This review focuses on the structural characteristics of marine triterpene glycosides and how these affect their biological activities and molecular mechanisms. In particular, the membranotropic and membranolytic activities of frondoside A and cucumariosides from sea cucumbers and their ability to induce cytotoxicity and apoptosis have been discussed, with a focus on structure-activity relationships. In addition, the structural characteristics and antitumor effects of stichoposide C and stichoposide D have been reviewed along with underlying their molecular mechanisms.

  14. Protective Effects of Labisia pumila var. alata on Biochemical and Histopathological Alterations of Cardiac Muscle Cells in Isoproterenol-Induced Myocardial Infarction Rats

    Directory of Open Access Journals (Sweden)

    Roza Dianita

    2015-03-01

    Full Text Available The study was designed to evaluate the cardioprotective effects of the standardized aqueous and 80% ethanol extracts of Labisia pumila var. alata (LPva in isoproterenol (ISO-induced myocardial infarction (MI in rats. The extracts were administered to Wistar rats orally for 28 days with three doses (100, 200 and 400 mg/kg of body weight prior to ISO (85 mg/kg-induced MI in two doses on day 29 and 30. The sera and hearts were collected for biochemical and histopathological analysis after the rats were sacrificed 48 h after the first induction. The main components of the extracts, gallic acid, alkylresorcinols and flavonoids were identified and quantitatively analyzed in the extracts by using a validated reversed phase HPLC method. The extracts showed significant protective effects as pretreated rats showed a significant dose-dependent decrease (p < 0.05 in cardiac enzyme activities, i.e., cardiac troponin I (cTnI, creatine kinase MB isoenzyme (CK-MB, lactate dehydrogenase (LDH, alanine transaminase (ALT and aspartate transaminase (AST, when compared with ISO-control rats. There were significant rises (p < 0.05 in the activity of oxidase enzymes, i.e., glutathione peroxide (GPx, catalase (CAT and superoxide dismutase (SOD of the pretreated rats, when compared with ISO-control group. Histopathological examination showed an improvement in membrane cell integrity in pre-treated rats compared to untreated rats. The major components of LPva extracts can be used as their biomarkers and contributed to the cardioprotective effects against ISO-induced MI rats.

  15. [Membranotropic effect of some triterpene glycosides possessing immunostimulating properties].

    Science.gov (United States)

    Lee, I A; Popov, A M; Kostetskiĭ, E Ia; Sanina, N M; Mazeĭka, A N; Boguslavskiĭ, V M

    2008-01-01

    The peculiarities of the interaction between cell membrane lipids and triterpene glycosides from holothurians Apostichopus japonicus S. and Cucumaria japonica (holotoxin A1 and cucumarioside A2-2, respectively) were studied in comparison with plant saponins from Quillaja saponaria, known as hemolytic, adjuvant, and structure-forming components of immunostimulating complexes. Similar to Quillaja saponins, the sea glycosides, holotoxin A1 and cucumarioside A2-2 were shown to possess a high hemolytic activity (2.6 and 3 microg/ml, respectively) and sterol-depending membranotropic effect mediated by the formation of nonbilayer sterol-lipid-glycoside complexes. At the same time, cucumarioside A2-2 bound exogenic cholesterol only in the presence of membrane lipids, such as phosphatidylcholine or monogalactosyldiacylglycerol, in contrast to Quillaja saponins and holotoxin A1, which bound cholesterol in the molar ratios 1:2 and 1:8, respectively. Moreover, in all cases, tree-component complexes containing cholesterol, lipid, and glycoside exhibited a lower hemolytic activity compared with two-component sterol-glycoside complexes. It was concluded that the hydrophobic medium of cell membranes performs a potentiative role in the effective interaction between triterpene glycosides and "sterol receptors". A method for decreasing the toxicity of membranotropic holothurian glycosides possessing the immunomodulating properties was suggested. PMID:18634319

  16. Determination of phenylethanoid glycosides and iridoid glycosides from therapeutically used Plantago species by CE-MEKC.

    Science.gov (United States)

    Gonda, Sándor; Nguyen, Nhat Minh; Batta, Gyula; Gyémánt, Gyöngyi; Máthé, Csaba; Vasas, Gábor

    2013-09-01

    CE methods are valuable tools for medicinal plant quality management, screening, and analysis. Therefore, the aim of the current study was to optimize and validate a CE-MEKC method for simultaneous quantification of four chief bioactive metabolites from Plantago species. The two most important secondary metabolite groups were aimed to be separated. Different electrolyte and surfactant types were tested. Surfactant concentration, BGE pH, electrolyte concentration, and buffering capacity were optimized. The final BGE consisted of 15 mM sodium tetraborate, 20 mM TAPS, and 250 mM DOC at pH 8.50. Acceptable precision, good stability, and accuracy were achieved, with high resolution for phenylethanoid glycosides. Analytes were separated within 20 min. The method was shown to be suitable for the quantification of the iridoid glycosides aucubin and catalpol, and the phenylethanoid glycosides acteoside (verbascoside) and plantamajoside from water extracts of different samples. The method was shown to be applicable to leaf extracts of Plantago lanceolata, Plantago major, and Plantago asiatica, the main species with therapeutic applications, and a biotechnological product, plant tissue cultures (calli) of P. lanceolata. Baseline separation of the main constituents from minor peaks was achieved, regardless of the matrix type. PMID:23784714

  17. Acceleration of Ca(2+) repletion in the junctional sarcoplasmic reticulum and alternation of the Ca(2+)-induced Ca(2+)-release mechanism in hypertensive rat (SHR) cardiac muscle.

    Science.gov (United States)

    Tanaka, Midori; Tameyasu, Tsukasa

    2008-04-01

    We estimated the time taken for a repletion of the junctional sarcoplasmic reticulum (JSR) Ca(2+) stores from a family of mechanical restitution curves after twitches of various magnitudes in the cardiac muscle of hypertensive rats (SHR), using a method described previously (Tameyasu et al. Jpn J Physiol. 2004;54:209-19), to evaluate abnormality in Ca(2+) handling by cardiac JSR in hypertension. We found no differences in contractility or in the time course of mechanical restitution between SHR and the controls (WKY) at 3 weeks of age. In comparison to WKY, 7- and 20-week-old SHR showed a greater rested state contraction (RST) and similar or smaller rapid cooling contracture, suggesting that their JSR contains a similar amount of Ca(2+) at saturation, but releases more Ca(2+) upon stimulation. The adult SHR and WKY showed similar mechanical restitution time courses, but the adults had longer pretwitch latencies. The function G(t) representing the time course of JSR Ca(2+) store repletion in adult SHR exceeded the WKY value at t JSR [Ca(2+)] change corresponding to the mechanical restitution after RST was smaller in the adult SHR at t JSR Ca(2+) store repletion and an alternation of the Ca(2+)-induced release of Ca(2+ )from the JSR in young adult SHR. PMID:18312741

  18. New steroidal glycosides from Tribulus terrestris L.

    Science.gov (United States)

    Chen, Gang; Liu, Tao; Lu, Xuan; Wang, Hai-Feng; Hua, Hui-Ming; Pei, Yue-Hu

    2012-01-01

    Two new steroidal glycosides were isolated from Tribulus terrestris L. Their structures were elucidated as 26-O-β-D-glucopyranosyl-5α-furostan-12-one-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (1) and 26-O-β-D-glucopyranosyl-5α-furostan-20(22)-ene-3β,23,26-triol-3-O-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-galactopyranoside (2) by spectroscopic methods including 1D and 2D NMR experiments. PMID:22694659

  19. A new phenolic glycoside from Juglans mandshurica.

    Science.gov (United States)

    Yao, Dalei; Jin, Mei; Zhang, Changhao; Luo, Jie; Li, Ren; Zheng, Mingshan; Cui, Jiongmo; Li, Gao

    2014-01-01

    A new phenolic glycoside, 6-O-(4'-hydroxy-3',5'-dimethoxybenzoyl)-d-glucopyranose (4), and nine known compounds (1-3 and 5-10) were isolated from Juglans mandshurica Maxim. Compound structures were elucidated by NMR, HR-ESI-MS and acid hydrolysis. Compounds 5 and 6 are reported from this genus for the first time. Among compounds 1-10, only 1 exhibited cytotoxicity against MGC-803, A549, K562, JAR, HeLa, CaSKi and SiHa cell lines (IC50: 2.0, 5.3, 2.3, 6.9, 4.0, 6.6 and 2.7 μM, respectively).

  20. Cardiac damage induced by 2-amino-3-methyl-imidazo[4,5-f]quinoline in nonhuman primates.

    OpenAIRE

    Thorgeirsson, U P; Farb, A; Virmani, R.; Adamson, R. H.

    1994-01-01

    The heterocyclic aromatic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is a potent hepatocarcinogen in cynomolgus and rhesus monkeys. The finding of high cardiac IQ-DNA adduct levels prompted a histopathological study of perfusion-fixed hearts from 10 tumor-bearing monkeys chronically dosed with IQ at 10 mg/kg or 20 mg/kg 5 days per week for 48-80 months. Two monkeys dosed only with the vehicle for IQ, hydroxypropylcellulose, served as controls. All the monkeys had normal heart weights,...

  1. Cardiac hypertrophy induced by exercise training:the function of AT1 receptor, autophagy and miRNAs%运动性心脏肥大:AT1受体、细胞自噬和 miRNAs 的调节

    Institute of Scientific and Technical Information of China (English)

    钱帅伟; 张瑞萍; 张安民

    2014-01-01

    As a mechanical and exogenous stimulus , exercise training induces cardiac physiological hypertro-phy, and the cardiac structure is changed slowly , steadily and coordinately.Simultaneously, energy metabolism and func-tion of the cardiac muscle are also improved .These are positive adaptations in the heart when experiencing endurance exer -cise training.Recently, angiotensinⅡtype 1 (AT1) receptor, autophagy and miRNAs are all considered as important reg-ulators to cardiac hypertrophy induced by exercise training at different molecular levels .Fully understanding the relations and the important role of AT1 receptor, autophagy and miRNAs in cardiac physiological hypertrophy will further enrich the signaling pathway of cardiac hypertrophy induced by exercise training .

  2. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads.

    Science.gov (United States)

    Antunes-Ricardo, Marilena; Moreno-García, Beatriz E; Gutiérrez-Uribe, Janet A; Aráiz-Hernández, Diana; Alvarez, Mario M; Serna-Saldivar, Sergio O

    2014-12-01

    (OFI) contains health-promoting compounds like flavonoids, being the isorhamnetin glycosides the most abundant. We evaluated the effect of OFI extracts with different isorhamnetin glycosides against two different human colon cancer cells (HT-29 and Caco2). The extracts were obtained by alkaline hydrolysis with NaOH at 40 °C during 15, 30 or 60 min. Tri and diglycosides were the most abundant isorhamnetin glycosides, therefore these compounds were isolated to compare their cytotoxic effect with the obtained from the extracts. The OFI extracts and purified isorhamnetin glycosides were more cytotoxic against HT-29 cells than Caco2 cells. OFI-30 exhibited the lowest IC50 value against HT-29 (4.9 ± 0.5 μg/mL) and against Caco2 (8.2 ± 0.3 μg/mL). Isorhamnetin diglycosides IG5 and IG6 were more cytotoxic than pure isorhamnetin aglycone or triglycosides when they were tested in HT-29 cells. Bioluminescent analysis revealed increased activity of caspase 3/7 in OFI extracts-treated cells, particularly for the extract with the highest concentration of isorhamnetin triglycosides. Flow cytometry analysis confirmed that OFI extract and isorhamnetin glycosides induced a higher percentage of apoptosis in HT-29 than in Caco2, while isorhamnetin was more apoptotic in Caco2. This research demonstrated that glycosilation affected antiproliferative effect of pure isorhamnetin glycosides or when they are mixed with other phytochemicals in an extract obtained from OFI. PMID:25186940

  3. Correlation between pulmonary gas exchange and basal and nitroglycerin (GTN)-induced exhaled nitric oxide (eNO) in patients undergoing cardiac surgery.

    Science.gov (United States)

    Kövesi, Tamás; Szabo, Anita; Royston, David; Marczin, Nándor

    2005-12-01

    The relationship between eNO and events in the alveolar-capillary unit in acute lung injury remains to be established. Since endogenous eNO largely originates from the airway epithelium, but nitroglycerin (GTN)-induced eNO is due to microvascular/alveolar metabolism, we have proposed to use basal and GTN-induced eNO as metabolic markers of the airway--and microvascular/alveolar function, respectively. The current work investigates the relationship between basal and GTN-induced eNO and oxygenation parameters (PaO(2)/FiO(2) ratio) in patients undergoing cardiac surgery utilising cardiopulmonary bypass (CPB). Breath by breath eNO measurements were made in 10 patients before, and 1 and 3 h after CPB either under basal conditions or following intravenous administration of GTN (1, 2 and 3 microg/kg). Basal eNO remained unchanged, whereas GTN-induced eNO was reduced following CPB. Also, there was a transient reduction in PaO(2)/FiO(2) ratio 1 h after CPB (32+/-4 vs. 44+/-3 kPa). A negative correlation was found between oxygenation and basal eNO by Pearson's correlation test and linear regression analysis suggesting that decreased oxygenation was associated with increased basal eNO. In contrast, a decrease in GTN-induced eNO positively correlated with reduced oxygenation index (R=0.533, p=0.002). These data suggest that differential relationships exist between basal and nitrovasodilator-induced eNO and oxygenation indices during subclinical lung injury in patients following CPB and that GTN-induced eNO evolution may reflect better microvascular events and injury.

  4. Effect of Yiqi Huoxue Recipe(益气活血方)on Cardiac Function and Ultrastructure in Regression of Pressure Overload-induced Myocardial Hypertrophy in Rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To investigate the effect of Yiqi Huoxue Recipe(YHR,益气活血方)on the cardiac function and ultrastructure during the regression of myocardial hypertrophy induced by pressure overload in rats.Methods:The model of myocardial hypertrophy was established by abdominal aortic banding.Eighty male Wistar rats were divided into six groups,the normal control group Ⅰ(n=20),the normal control group Ⅱ(n=12),the hypertension model group [(n=12),the hypertension model group Ⅱ(n=12),the YHR group(n=12)and the Captopril group(n=12).The observation was carried out in the normal control group Ⅰ and the hypertension model group Ⅰ after 4weeks of modeling,and the other four groups were observed after 16 weeks of modeling(12 weeks of administration).The cardiac function was measured with a multichannel biological signal analysis system,and the myocardium ultrastructure was observed by a transmission electron microscope.Results:(1)Compared with the normal control group Ⅰ,the systolic blood pressure and cardiac coefficient(left ventricular weight/body weight)in the model Ⅰ group was higher(P<0.05,P<0.01).(2)In the YHR group,cardiac coefficient and -dp/dtmax were lower,left ventricular systolic pressure and +dp/dtmin were higher when compared with the model group Ⅱ and the Captopril group(P<0.05or P<0.01).In the Captopril group,only cardiac coefficient was lower when compared with the mode group Ⅱ(P<0.05).(3)Compared with the normal control group Ⅱ,+dp/dtrmax was higher(P<0.01),-dp/dtnmax and isovolumetric contraction time(ICT)was lower(P<0.05,P<0.01)in both the YHR group and the Captopril group.(4)Results of the myocardium ultrastructure showed edema under myocardium plasmalemma,enlarged sarcoplasmic reticulum and T tube,and significantly enlarged intercalated disc of the cardiac muscle in the model groups.In the Captopril group,the extension of sarcoplasmic reticulum and T tube as well as the pathological changes of intercalated disc

  5. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  6. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  7. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides.

    Science.gov (United States)

    Dembitsky, Valery M

    2005-11-01

    This review article presents 209 alkaloid glycosides isolated and identified from plants, microorganisms, and marine invertebrates that demonstrate different biological activities. They are of great interest, especially for the medicinal and/or pharmaceutical industries. These biologically active glycosides have good potential for future chemical preparation of compounds useful as antioxidants, anticancer, antimicrobial, and antibacterial agents. These glycosidic compounds have been subdivided into several groups, including: acridone; aporphine; benzoxazinoid; ergot; indole; enediyne alkaloidal antibiotics; glycosidic lupine alkaloids; piperidine, pyridine, pyrrolidine, and pyrrolizidine alkaloid glycosides; glycosidic quinoline and isoquinoline alkaloids; steroidal glycoalkaloids; and miscellaneous alkaloid glycosides. PMID:16459921

  8. Results of plasma N-terminal pro B-type natriuretic peptide and cardiac troponin monitoring in GIST patients do not support the existence of imatinib-induced cardiotoxicity

    NARCIS (Netherlands)

    Perik, P. J.; Rikhof, B.; de Jong, F. A.; Verweij, J.; Gietema, J. A.; van der Graaf, W. T. A.

    2008-01-01

    Background: Recently, case reports of patients treated with imatinib (imatinib mesylate; Gleevec (R); Glvec (R)) indicated that this tyrosine kinase inhibitor may induce cardiomyopathy. Consequently, careful cardiac monitoring was advocated for clinical studies. The purpose of this study was to pros

  9. Results of plasma N-terminal pro B-type natriuretic peptide and cardiac troponin monitoring in GIST patients do not support the existence of imatinib-induced cardiotoxicity

    NARCIS (Netherlands)

    P.J. Perik; B. Rikhof; M.J.A. de Jonge (Maja); J. Verweij (Jaap); J.A. Gietema (Jourik); W.T.A. van der Graaf (Winette)

    2008-01-01

    textabstractBackground: Recently, case reports of patients treated with imatinib (imatinib mesylate; Gleevec®; Glivec®) indicated that this tyrosine kinase inhibitor may induce cardiomyopathy. Consequently, careful cardiac monitoring was advocated for clinical studies. The purpose of this study was

  10. Olmesartan, an AT1 Antagonist, Attenuates Oxidative Stress, Endoplasmic Reticulum Stress and Cardiac Inflammatory Mediators in Rats with Heart Failure Induced by Experimental Autoimmune Myocarditis

    Directory of Open Access Journals (Sweden)

    Vijayakumar Sukumaran, Kenichi Watanabe, Punniyakoti T. Veeraveedu, Narasimman Gurusamy, Meilei Ma, Rajarajan A. Thandavarayan, Arun Prasath Lakshmanan, Ken'ichi Yamaguchi, Kenji Suzuki, Makoto Kodama

    2011-01-01

    Full Text Available Studies have demonstrated that angiotensin II has been involved in immune and inflammatory responses which might contribute to the pathogenesis of immune-mediated diseases. Recent evidence suggests that oxidative stress may play a role in myocarditis. Here, we investigated whether olmesartan, an AT1R antagonist protects against experimental autoimmune myocarditis (EAM by suppression of oxidative stress, endoplasmic reticulum (ER stress and inflammatory cytokines. EAM was induced in Lewis rats by immunization with porcine cardiac myosin, were divided into two groups and treated with either olmesartan (10 mg/kg/day or vehicle for a period of 21 days. Myocardial functional parameters measured by hemodynamic and echocardiographic analyses were significantly improved by the treatment with olmesartan compared with those of vehicle-treated rats. Treatment with olmesartan attenuated the myocardial mRNA expressions of proinflammatory cytokines, [Interleukin (IL-1β, monocyte chemoattractant protein-1, tumor necrosis factor-α and interferon-γ] and the protein expression of tumor necrosis factor-α compared with that of vehicle-treated rats. Myocardial protein expressions of AT1R, NADPH oxidase subunits (p47phox, p67phox, gp91phox and the expression of markers of oxidative stress (3-nitrotyrosine and 4-hydroxy-2-nonenal, and the cardiac apoptosis were also significantly decreased by the treatment with olmesartan compared with those of vehicle-treated rats. Furthermore, olmesartan treatment down-regulated the myocardial expressions of glucose regulated protein-78, growth arrest and DNA damage-inducible gene, caspase-12, phospho-p38 mitogen-activated protein kinase (MAPK and phospho-JNK. These findings suggest that olmesartan protects against EAM in rats, at least in part via suppression of oxidative stress, ER stress and inflammatory cytokines.

  11. Growth factor-induced mobilization of cardiac progenitor cells reduces the risk of arrhythmias, in a rat model of chronic myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Leonardo Bocchi

    Full Text Available Heart repair by stem cell treatment may involve life-threatening arrhythmias. Cardiac progenitor cells (CPCs appear best suited for reconstituting lost myocardium without posing arrhythmic risks, being commissioned towards cardiac phenotype. In this study we tested the hypothesis that mobilization of CPCs through locally delivered Hepatocyte Growth Factor and Insulin-Like Growth Factor-1 to heal chronic myocardial infarction (MI, lowers the proneness to arrhythmias. We used 133 adult male Wistar rats either with one-month old MI and treated with growth factors (GFs, n = 60 or vehicle (V, n = 55, or sham operated (n = 18. In selected groups of animals, prior to and two weeks after GF/V delivery, we evaluated stress-induced ventricular arrhythmias by telemetry-ECG, cardiac mechanics by echocardiography, and ventricular excitability, conduction velocity and refractoriness by epicardial multiple-lead recording. Invasive hemodynamic measurements were performed before sacrifice and eventually the hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. When compared with untreated MI, GFs decreased stress-induced arrhythmias and concurrently prolonged the effective refractory period (ERP without affecting neither the duration of ventricular repolarization, as suggested by measurements of QTc interval and mRNA levels for K-channel α-subunits Kv4.2 and Kv4.3, nor the dispersion of refractoriness. Further, markers of cardiomyocyte reactive hypertrophy, including mRNA levels for K-channel α-subunit Kv1.4 and β-subunit KChIP2, interstitial fibrosis and negative structural remodeling were significantly reduced in peri-infarcted/remote ventricular myocardium. Finally, analyses of BrdU incorporation and distribution of connexin43 and N-cadherin indicated that cytokines generated new vessels and electromechanically-connected myocytes and abolished the correlation of infarct size with deterioration

  12. Exercise-induced intra-ventricular gradients as a frequent potential cause of myocardial ischemia in cardiac syndrome X patients

    Directory of Open Access Journals (Sweden)

    Almeida Ana G

    2008-01-01

    Full Text Available Abstract Background The development of intra-ventricular gradients (IVG during dobutamine or exercise stress is not infrequent, and can be associated to symptoms during stress. The purpose of this study was to assess the occurrence of IVG during exercise stress echocardiography in cardiac syndrome X patients. Methods We prospectively evaluated 91 patients (pts mean aged 51 ± 12 years (age ranged 20 to 75 years old, 44 of whom were women. All pts had angina, positive exercise ECG treadmill testing, normal rest echocardiogram and no coronary artery disease on coronary angiogram (cardiac X syndrome. After complete Doppler echocardiographic evaluation with determination of left ventricular outflow tract index (LVOTi, relative left ventricular wall thickness (RLVWT and left ventricular end-diastolic volume index (LVDVi, all patients underwent stress echocardiography with two-dimensional and Doppler echographic evaluation during and after treadmill exercise. Results For analysis purpose patients were divided in 2 groups, according to the development of IVG. Doppler evidence of IVG was found in 33 (36% of the patients (Group A, with mean age 47 ± 14 years old (age ranged 20 to 72 years and with a mean end-systolic peak gradient of 86 ± 34 mmHg (ranging from 30 to 165 mmHg. The IVG development was accompanied by SAM of the mitral valve in 23 pts. Three of these pts experienced symptomatic hypotension. Ten were women (30% pts. 58 pts in group B, 34 of whom were women (59% (p = 0,01 vs group A, mean aged 53,5 ± 10,9 years old (age ranged 34 to 75 years (p = 0,03 vs group A, did not develop IVG. LVOTi was 10,29 ± 0,9 mm/m2 in group A and 11,4 ± 1 mm/m2 in group B (p 2 in group A and 56 ± 11,6 ml/m2 in group B (p = 0,000. Conclusion 1. A significant number of patients with cardiac X syndrome developed IVG during upright exercise in treadmill. These pts (group A are mainly males and younger than those who did not develop IVG. 2. The development of IVG

  13. Cardiac-specific genetic inhibition of nuclear factor-κB prevents right ventricular hypertrophy induced by monocrotaline.

    Science.gov (United States)

    Kumar, Sandeep; Wei, Chuanyu; Thomas, Candice M; Kim, Il-Kwon; Seqqat, Rachid; Kumar, Rajesh; Baker, Kenneth M; Jones, W Keith; Gupta, Sudhiranjan

    2012-04-15

    Uncontrolled pulmonary arterial hypertension (PAH) results in right ventricular (RV) hypertrophy (RVH), progressive RV failure, and low cardiac output leading to increased morbidity and mortality (McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J. J Am Coll Cardiol 53: 1573-1619, 2009). Although the exact figures of its prevalence are difficult to obtain because of the diversity of identifiable causes, it is estimated that the incidence of pulmonary hypertension is seven to nine cases per million persons in the general population and is most prevalent in the age group of 20-40, occurring more commonly in women than in men (ratio: 1.7 to 1; Rubin LJ. N Engl J Med 336: 111-117, 1997). PAH is characterized by dyspnea, chest pain, and syncope. Unfortunately, there is no cure for this disease and medical regimens are limited (Simon MA. Curr Opin Crit Care 16: 237-243, 2010). PAH leads to adverse remodeling that results in RVH, progressive right heart failure, low cardiac output, and ultimately death if left untreated (Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M. J Am Coll Cardiol 43: 13S-24S, 2004; Humbert M, Sitbon O, Simonneau G. N Engl J Med 351: 1425-1436, 2004. LaRaia AV, Waxman AB. South Med J 100: 393-399, 2007). As there are no direct tools to assess the onset and progression of PAH and RVH, the disease is often detected in later stages marked by full-blown RVH, with the outcome predominantly determined by the level of increased afterload (D'Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, et al. Ann Intern Med 115: 343-349, 1991; Sandoval J, Bauerle O, Palomar A, Gomez A, Martinez-Guerra ML, Beltran M, Guerrero ML. Validation of a prognostic equation Circulation 89: 1733-1744, 1994). Various studies have been

  14. Amniotic fluid stem cells morph into a cardiovascular lineage: analysis of a chemically induced cardiac and vascular commitment

    Directory of Open Access Journals (Sweden)

    Maioli M

    2013-09-01

    Full Text Available Margherita Maioli,1–3 Giovanni Contini,1 Sara Santaniello,1,2 Pasquale Bandiera,1 Gianfranco Pigliaru,1,2 Raimonda Sanna,5 Salvatore Rinaldi,3 Alessandro P Delitala,1 Andrea Montella,1,5 Luigi Bagella,1,6 Carlo Ventura2–41Department of Biomedical Sciences, University of Sassari, Sassari, 2Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Bologna, 3Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, 4Cardiovascular Department, S Orsola-Malpighi Hospital, University of Bologna, Bologna, 5Facility of Genetic and Developmental Biology, AOU Sassari, Sassari, Italy; 6Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USAAbstract: Mouse embryonic stem cells were previously observed along with mesenchymal stem cells from different sources, after being treated with a mixed ester of hyaluronan with butyric and retinoic acids, to show a significant increase in the yield of cardiogenic and vascular differentiated elements. The aim of the present study was to determine if stem cells derived from primitive fetal cells present in human amniotic fluid (hAFSCs and cultured in the presence of a mixture of hyaluronic (HA, butyric (BU, and retinoic (RA acids show a higher yield of differentiation toward the cardiovascular phenotype as compared with untreated cells. During the differentiation process elicited by exposure to HA + BU + RA, genes controlling pluripotency and plasticity of stem cells, such as Sox2, Nanog, and Oct4, were significantly downregulated at the transcriptional level. At this point, a significant increase in expression of genes controlling the appearance of cardiogenic and vascular lineages in HA + BU + RA-treated cells was observed. The protein expression levels typical of cardiac and vascular phenotypes, evaluated by Western blotting

  15. Two New C - 21 Steroidal Glycosides from Cynanchum aurichulatum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two new C-21 steroidal glycosides, cynanauriculoside I and cynanauriculoside II, were isolated from the roots of Cynanchum aurichulatum. Their structures were established using spectroscopic methods including one and two-dimensional NMR.

  16. A New Pregnane Glycoside from Fermented Leaves of Agave americana

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new minor pregnane glycoside was isolated from the fermented leaves of Agave americana. Its structure was elucidated as (20S)-5α-pregnane-3β, 20-diol 20-O-β-D-glucopyrano- side (1) by spectral methods.

  17. Resin glycosides from the aerial parts of Operculina turpethum.

    Science.gov (United States)

    Ding, Wenbing; Jiang, Zi-Hua; Wu, Ping; Xu, Liangxiong; Wei, Xiaoyi

    2012-09-01

    Three glycosidic acids, turpethic acids A-C, and two intact resin glycosides, turpethosides A and B, all having a common pentasaccharide moiety and 12-hydroxy fatty acid aglycones of different chain lengths, were obtained from the aerial parts of Operculina turpethum. Their structures were elucidated by spectroscopic analyses and chemical correlations. The aglycones were characterized as 12-hydroxypentadecanoic acid in two compounds, 12-hydroxyhexadecanoic acid in two other components, and 12-hydroxyheptadecanoic acid in the fifth compound, which were all confirmed by synthesis. The absolute configurations of these aglycones were all established as S by Mosher's method. These compounds represent the first examples of resin glycosides with a monohydroxylated 12-hydroxy fatty acid as an aglycone, and one compound is the first described resin glycoside having a hydroxylated C(17) fatty acid as its aglycone.

  18. [Cardiac amyloidosis].

    Science.gov (United States)

    Hoyer, Caroline; Angermann, Christiane E; Knop, Stefan; Ertl, Georg; Störk, Stefan

    2008-03-15

    Amyloidoses are a heterogeneous group of multisystem disorders, which are characterized by an extracellular deposition of amyloid fibrils. Typically affected are the heart, liver, kidneys, and nervous system. More than half of the patients die due to cardiac involvement. Clinical signs of cardiac amyloidosis are edema of the lower limbs, hepatomegaly, ascites and elevated jugular vein pressure, frequently in combination with dyspnea. There can also be chest pain, probably due to microvessel disease. Dysfunction of the autonomous nervous system or arrhythmias may cause low blood pressure, dizziness, or recurrent syncope. The AL amyloidosis caused by the deposition of immunoglobulin light chains is the most common form. It can be performed by monoclonal gammopathy. The desirable treatment therapy consists of high-dose melphalan therapy twice followed by autologous stem cell transplantation. Due to the high peritransplantation mortality, selection of appropriate patients is mandatory. The ATTR amyloidosis is an autosomal dominant disorder caused by the amyloidogenic form of transthyretin, a plasmaprotein that is synthesized in the liver. Therefore, liver transplantation is the only curative therapy. The symptomatic treatment of cardiac amyloidosis is based on the current guidelines for chronic heart failure according to the patient's New York Heart Association (NYHA) state. Further types of amyloidosis with possible cardiac involvement comprise the senile systemic amyloidosis caused by the wild-type transthyretin, secondary amyloidosis after chronic systemic inflammation, and the beta(2)-microglobulin amyloidosis after long-term dialysis treatment. PMID:18344065

  19. Activation of extracellular signal-regulated kinase during silibinin-protected, isoproterenol-induced apoptosis in rat cardiac myocytes is tyrosine kinase pathway-mediated and protein kinase C-dependent

    Institute of Scientific and Technical Information of China (English)

    Bei ZHOU; Li-jun WU; Shin-ichi TASHIRO; Satoshi ONODERA; Fumiaki UCHIUMI; Takashi IKEJIMA

    2007-01-01

    Aim: To investigate the mechanism of silibinin-protected isoproterenol-induced apoptosis in rat cardiac myocytes.Methods: The viability of rat cardiac myocytes was measured by MTT method. The apoptotic ratio was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling. Protein kinase C (PKC) activity assay was carried out according to the instructions of the PepTag non-radioactive protein kinase C assay kit. Western blot analysis was used to evaluate the level of Ras, Raf-1 and mitogen-activated protein kinase (MAPK) expression.Results: The protective effects of silibinin were significantly sup-pressed by inhibitors, including genistein, manumycin A and GW5074 [inhibitors for protein tyrosine kinases (PTK), Ras and Raf- 1, respectively]. The exposure of rat cardiac myocytes to isoproterenol alone caused decreased PKC activity, which was prevented by pretreatment with silibinin dose-dependently. Simultaneously,the increased expression of Ras and Raf-1 activated by silibinin were blocked by the PKC inhibitor, stauroporine. In addition, the extracellularly responsive kinase (ERK) inhibitor, PD98059, suppressed silibinin-protected apoptosis, whereas the p38 MAPK inhibitor, SB203580, protected cardiac myocytes from isoproterenol-induced injury, and the c-Jun N-terminal kinase (JNK) inhibitor, SP600125 had no protective effects. Furthermore, Western blot analysis showed that the expres-sion of phosphorylated ERK was increased by silibinin, the expression of phos-phorylated p38 MAPK was decreased and total ERK, p38, JNK and phosphory-lated JNK MAPK did not change after treatment with both isoproterenol and silibinin. Furthermore, pretreatment of cardiac myocyte with PKC, Ras and Raf inhibitors significantly blocked ERK phosphorylation.Conclusion: Silibinin is suggested to protect isoproterenol-induced rat cardiac myocyte apoptosis by activating the tyrosine kinase pathway, PKC and MAPK pathways.

  20. Radiation-induced cardiac damage in early left breast cancer patients: Risk factors, biological mechanisms, radiobiology, and dosimetric constraints

    International Nuclear Information System (INIS)

    Today there is general awareness of the potential damage to the heart in left-sided (more than in right-sided) breast cancer radiotherapy (RT). Historical changes in tumor and heart doses are presented here along with the impact of different RT techniques and volumes. Individual and pharmacological risk factors are also examined with respect to radiation damage. The biological mechanisms of harm are only partially understood, such as the radiobiology of heart damage due to the presence of various radiosensitive structures and their topographic heterogeneity. Furthermore, individual variability may expose patients to higher or lower risks of late cardiac damage or death. Damage mechanisms and radiobiological characteristics in heart irradiation are presented in relation to dosimetric and biological parameters.

  1. Recurrent aborted sudden cardiac death with seizures and rhabdomyolysis due to bulimia-induced hypokalemia: report of one case.

    Science.gov (United States)

    Finsterer, Josef; Stöllberger, Claudia

    2014-06-01

    Recurrent vomiting due to bulimia associated with abuse of furosemide and laxatives causing severe hypokalemia may result in recurrent aborted sudden cardiac death (SCD) and seizures. We report a 25-year-old female with a history of bulimia associated with abuse of furosemide and laxatives since the age of 15 years, migraine since puberty, renal abscesses at age 20 y, and rhabdomyolysis of unknown cause at age 24 y. She experienced aborted SCD due to severe hypokalemia with symptomatic seizures at 21 and 25 years of age. Bulimia patients additionally taking laxatives or furosemide are at particular risk of SCD and rhabdomyolysis and require periodic determination of electrolytes, potassium substitution, and adequate psychiatric therapy and surveillance.

  2. Phenolic glycosides from sugar maple (Acer saccharum) bark.

    Science.gov (United States)

    Yuan, Tao; Wan, Chunpeng; González-Sarrías, Antonio; Kandhi, Vamsikrishna; Cech, Nadja B; Seeram, Navindra P

    2011-11-28

    Four new phenolic glycosides, saccharumosides A-D (1-4), along with eight known phenolic glycosides, were isolated from the bark of sugar maple (Acer saccharum). The structures of 1-4 were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for cytotoxicity effects against human colon tumorigenic (HCT-116 and Caco-2) and nontumorigenic (CCD-18Co) cell lines. PMID:22032697

  3. A new anthraquinone glycoside from seeds of Cassia obtusifolia

    Institute of Scientific and Technical Information of China (English)

    Li Ying Tang; Zhu Ju Wang; Mei Hong Fu; Yan He; Hong Wei Wu; Lu Qi Huang

    2008-01-01

    A new anthraquinone glycoside 1, along with a known anthraquinone glycoside aurantio-obtusin-6-O-β-D-glucopyranoside 2, were isolated from the seeds of Cassia obtusifolia. On the basis of spectral and chemical evidences, the structure of 1 was established as 1-demethylaurantio-obtusin-2-O-β-D-glucopyranoside. Moreover, the 13C NMR of 2 was assigned totally and correctly for the first time based on the two-dimensional NMR.

  4. Flavonol 3-O-Glycosides from Three Algerian Bupleurum Species

    OpenAIRE

    Reguia Bencheraiet; Ahmed Kabouche; Zahia Kabouche; Rachid Touzani; Maurice Jay

    2012-01-01

    Flavonoids distribution in three algerian Bupleureum (Apiaceae) species has been investigated. Quercetin (1), quercetin 3-rutinoside (2) and isorhamnetin 3-rutinoside (3) were found in the endemic species B. plantagineum Desf. Three kaempferol glycosides, kaempferol 3-glucoside (4), kaempferol 3-galactoside (5), kaempferol 3-rutinoside (6) and three quercetin glycosides, quercetin 3-rutinoside (2), quercetin 3-glucoside (7) and quercetin 3-galactoside (8), have been isolated from B. fruticosu...

  5. Neolignan, Flavonoid, Phenylethanoid and Iridoid Glycosides from Phlomis integrifolia

    OpenAIRE

    SARACOĞLU, İclal; VAREL, Mehtap; ÇALIŞ, İhsan

    2003-01-01

    From the aerial parts of Phlomis integrifolia Hub.-Mor. (Lamiaceae) were isolated a neolignan glucoside, dehyrodiconiferyl alcohol-4-O-b -D-glucopyranoside (1), an ester flavone glycoside, chrysoeriol 7-O-(3''-O-trans-p-coumaroyl)-b -D-glucopyranoside (2), four phenylethanoid glycosides, forsythoside B (3), verbascoside (=acteoside) (4), leucosceptoside A (5) and martynoside (6) along with an iridoid glucoside, lamiide (7). The structure elucidation of the isolated compound...

  6. Synthesis and Fluorescence Properties of Coumarin Glycosides and Triazoylglycosides

    Institute of Scientific and Technical Information of China (English)

    WU Zheng; FU Xin-ling; YANG Nan; WANG Qiu-an

    2013-01-01

    Four coumarin glycosides(1-4) and four coumarin triazoylglycosides(5-8) were synthesized by phase transfer catalytic glycosylation and copper-catalyzed azide-alkyne cycloaddition(CuAAC) respectively from 4-methyl-7-hydroxyl coumarin(4-methylumbelliferone).The structures were characterized by 1H NMR,MS or IR.The fluorescent properties of the coumarin glycosides and triazoylglycosides were studied in different solvents and compared to those of 4-methyl-7-hydroxyl coumarin.

  7. Stability of steviol glycosides in several food matrices.

    Science.gov (United States)

    Jooken, Etienne; Amery, Ruis; Struyf, Tom; Duquenne, Barbara; Geuns, Jan; Meesschaert, Boudewijn

    2012-10-24

    As steviol glycosides are now allowed as a food additive in the European market, it is important to assess the stability of these steviol glycosides after they have been added to different food matrices. We analyzed and tested the stability of steviol glycosides in semiskimmed milk, soy drink, fermented milk drink, ice cream, full-fat and skimmed set yogurt, dry biscuits, and jam. The fat was removed by centrifugation from the dairy and soy drink samples. Proteins were precipitated by the addition of acetonitrile and also removed by centrifugation. Samples of jam were extracted with water. Dry biscuits were extracted with ethanol. The resulting samples were concentrated with solid-phase extraction and analyzed by high-performance liquid chromatography on a C18 stationary phase and a gradient of acetonitrile/aqueous 25 mM phosphoric acid. The accuracy was checked using a standard addition on some samples. For assessing the stability of the steviol glycosides, samples were stored in conditions relevant to each food matrix and analyzed periodically. The results indicate that steviol glycosides can be analyzed with good precision and accuracy in these food categories. The recovery was between 96 and 103%. The method was also validated by standard addition, which showed excellent agreement with the external calibration curve. No sign of decomposition of steviol glycosides was found in any of the samples.

  8. Stability of steviol glycosides in several food matrices.

    Science.gov (United States)

    Jooken, Etienne; Amery, Ruis; Struyf, Tom; Duquenne, Barbara; Geuns, Jan; Meesschaert, Boudewijn

    2012-10-24

    As steviol glycosides are now allowed as a food additive in the European market, it is important to assess the stability of these steviol glycosides after they have been added to different food matrices. We analyzed and tested the stability of steviol glycosides in semiskimmed milk, soy drink, fermented milk drink, ice cream, full-fat and skimmed set yogurt, dry biscuits, and jam. The fat was removed by centrifugation from the dairy and soy drink samples. Proteins were precipitated by the addition of acetonitrile and also removed by centrifugation. Samples of jam were extracted with water. Dry biscuits were extracted with ethanol. The resulting samples were concentrated with solid-phase extraction and analyzed by high-performance liquid chromatography on a C18 stationary phase and a gradient of acetonitrile/aqueous 25 mM phosphoric acid. The accuracy was checked using a standard addition on some samples. For assessing the stability of the steviol glycosides, samples were stored in conditions relevant to each food matrix and analyzed periodically. The results indicate that steviol glycosides can be analyzed with good precision and accuracy in these food categories. The recovery was between 96 and 103%. The method was also validated by standard addition, which showed excellent agreement with the external calibration curve. No sign of decomposition of steviol glycosides was found in any of the samples. PMID:23020306

  9. Decomposition of α-Tocopheryl Glycosides in Rat Tissues

    Science.gov (United States)

    Knaś, Małgorzata; Wałejko, Piotr; Maj, Jadwiga; Hryniewicka, Agnieszka; Witkowski, Stanisław; Borzym-Kluczyk, Małgorzata; Dudzik, Danuta; Zwierz, Krzysztof

    2008-01-01

    Background The aim of our investigation was to estimate the stability of α-tocopheryl O-glycosides in relation to activity of exoglycosidases in selected rat tissues. Material and Methods Acetylated glycosides were obtained in glucosidation of α-tocopherol using the Helferich method. The activity of exoglycosidases was determined by the Zwierz et al. method. Protein concentrations were determined by the biuret method. The concentration of released α-tocopherol was determined with the HPLC method. Results The comparison of the amount of released α-tocopherol with the amount of released p-nitrophenol shows that glycoside bound in 2a–5a derivatives of α-tocopherol undergoes hydrolysis significantly harder than in appropriate 2b–5b p-nitrophenyl derivatives. Conclusion The results indicate that tocopheryl O-glycosides are more resistant to enzymatic hydrolysis than appropriate p-nitrophenol O-glycosides 2a–5a. Among examined tocopheryl O-glycosides, galactoside 4 is the only compound that caused the significant increase in tocopherol concentration, as compared to its endogenic content. PMID:19696909

  10. Systemic, genotype-specific induction of two herbivore-deterrent iridoid glycosides in Plantago lanceolata L. in response to fungal infection by Diaporthe adunca (Rob.) Niessel.

    Science.gov (United States)

    Marak, Hamida B; Biere, Arjen; Van Damme, Jos M M

    2002-12-01

    Iridoid glycosides are a group of terpenoid secondary plant compounds known to deter generalist insect herbivores. In ribwort plantain (Plantago lanceolata), the iridoid glycosides aucubin and catalpol can be induced following damage by insect herbivores. In this study, we investigated whether the same compounds can be induced following infection by the fungal pathogen Diaporthe adunca, the causal agent of a stalk disease in P. lanceolata. Significant induction of aucubin and catalpol was observed in two of the three plant genotypes used in this study following inoculation with the pathogen. In one of the genotypes, induction occurred within 6 hr after inoculation, and no decay was observed within 8 days. The highest level of induction was observed in reproductive tissues (spikes and stalks) where infection took place. In these tissues, iridoid glycoside levels in infected plants were, on average, 97% and 37% higher than the constitutive levels in the corresponding control plants, respectively. Significant induction was also observed in leaves (24%) and roots (17%). In addition to significant genotypic variation in the level of induction, we found genetic variation for the tissue-specific pattern of induction, further broadening the scope for evolutionary fine-tuning of induced responses. Recent studies have revealed a negative association between iridoid glycoside levels in P. lanceolata genotypes and the amount of growth and reproduction of D. adunca that these genotypes support. However, for the three genotypes used in the present study, differences in resistance were not related to their constitutive or induced levels of iridoid glycosides, suggesting that additional resistance mechanisms are important in this host-pathogen system. We conclude that iridoid glycosides in P. lanceolata can be induced both by arthropods and pathogenic micro-organisms. Pathogen infection could, therefore, potentially enhance resistance to generalist insect herbivores in this