WorldWideScience

Sample records for cardiac cellular electrophysiology

  1. Myokit: A simple interface to cardiac cellular electrophysiology.

    Science.gov (United States)

    Clerx, Michael; Collins, Pieter; de Lange, Enno; Volders, Paul G A

    2016-01-01

    Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Electrophysiological Monitoring of Brain Injury and Recovery after Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Ruoxian Deng

    2015-10-01

    Full Text Available Reliable prognostic methods for cerebral functional outcome of post cardiac-arrest (CA patients are necessary, especially since therapeutic hypothermia (TH as a standard treatment. Traditional neurophysiological prognostic indicators, such as clinical examination and chemical biomarkers, may result in indecisive outcome predictions and do not directly reflect neuronal activity, though they have remained the mainstay of clinical prognosis. The most recent advances in electrophysiological methods—electroencephalography (EEG pattern, evoked potential (EP and cellular electrophysiological measurement—were developed to complement these deficiencies, and will be examined in this review article. EEG pattern (reactivity and continuity provides real-time and accurate information for early-stage (particularly in the first 24 h hypoxic-ischemic (HI brain injury patients with high sensitivity. However, the signal is easily affected by external stimuli, thus the measurements of EP should be combined with EEG background to validate the predicted neurologic functional result. Cellular electrophysiology, such as multi-unit activity (MUA and local field potentials (LFP, has strong potential for improving prognostication and therapy by offering additional neurophysiologic information to understand the underlying mechanisms of therapeutic methods. Electrophysiology provides reliable and precise prognostication on both global and cellular levels secondary to cerebral injury in cardiac arrest patients treated with TH.

  3. Electrophysiologic and cellular characteristics of cardiomyocytes after X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Frieß, Johannes L., E-mail: johannes.friess@h-ab.de [University for Applied Sciences Aschaffenburg, biomems lab, Würzburger Straße 45, 63743 Aschaffenburg (Germany); Heselich, Anja [Technische Universität Darmstadt, Developmental Biology and Neurogenetics, Schnittspahnstraße 13, 64287 Darmstadt (Germany); Ritter, Sylvia [Helmholtz Institute for Heavy Ion Research (GSI), Biophysics Department, Planckstraße 1, 64291 Darmstadt (Germany); Haber, Angelina; Kaiser, Nicole; Layer, Paul G. [Technische Universität Darmstadt, Developmental Biology and Neurogenetics, Schnittspahnstraße 13, 64287 Darmstadt (Germany); Thielemann, Christiane [University for Applied Sciences Aschaffenburg, biomems lab, Würzburger Straße 45, 63743 Aschaffenburg (Germany)

    2015-07-15

    Highlights: • Electrophysiologic and cellular effects of X-rays on primary cardiac cell cultures. • X-ray doses between 0.5 and 7 Gy. • Higher beat rate at reduced field action potential durations 7 days after exposure. • More increased cell cycle checkpoint arrest in G2/M than in G1/S phase. • Induced DSBs were mostly repaired within 24 h after irradiation. - Abstract: The aim of this study was to investigate possible effects of ionizing irradiation on the electrophysiological functionality of cardiac myocytes in vitro. Primary chicken cardiomyocytes with spontaneous beating activity were irradiated with X-rays (dose range of 0.5–7 Gy). Functional alterations of cardiac cell cultures were evaluated up to 7 days after irradiation using microelectrode arrays. As examined endpoints, cell proliferation, apoptosis, reactive oxygen species (ROS) and DNA damage were evaluated. The beat rate of the cardiac networks increased in a dose-dependent manner over one week. The duration of single action potentials was slightly shortened. Additionally, we observed lower numbers of mitotic and S-phase cells at certain time points after irradiation. Also, the number of cells with γH2AX foci increased as a function of the dose. No significant changes in the level of ROS were detected. Induction of apoptosis was generally negligibly low. This is the first report to directly show alterations in cardiac electrophysiology caused by ionizing radiation, which were detectable up to one week after irradiation.

  4. Electrophysiologic and cellular characteristics of cardiomyocytes after X-ray irradiation

    International Nuclear Information System (INIS)

    Frieß, Johannes L.; Heselich, Anja; Ritter, Sylvia; Haber, Angelina; Kaiser, Nicole; Layer, Paul G.; Thielemann, Christiane

    2015-01-01

    Highlights: • Electrophysiologic and cellular effects of X-rays on primary cardiac cell cultures. • X-ray doses between 0.5 and 7 Gy. • Higher beat rate at reduced field action potential durations 7 days after exposure. • More increased cell cycle checkpoint arrest in G2/M than in G1/S phase. • Induced DSBs were mostly repaired within 24 h after irradiation. - Abstract: The aim of this study was to investigate possible effects of ionizing irradiation on the electrophysiological functionality of cardiac myocytes in vitro. Primary chicken cardiomyocytes with spontaneous beating activity were irradiated with X-rays (dose range of 0.5–7 Gy). Functional alterations of cardiac cell cultures were evaluated up to 7 days after irradiation using microelectrode arrays. As examined endpoints, cell proliferation, apoptosis, reactive oxygen species (ROS) and DNA damage were evaluated. The beat rate of the cardiac networks increased in a dose-dependent manner over one week. The duration of single action potentials was slightly shortened. Additionally, we observed lower numbers of mitotic and S-phase cells at certain time points after irradiation. Also, the number of cells with γH2AX foci increased as a function of the dose. No significant changes in the level of ROS were detected. Induction of apoptosis was generally negligibly low. This is the first report to directly show alterations in cardiac electrophysiology caused by ionizing radiation, which were detectable up to one week after irradiation

  5. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, market were due to cardiac toxicity, where unintended interactions with ion channels disrupt the heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  6. On the identification of multiple space dependent ionic parameters in cardiac electrophysiology modelling

    Science.gov (United States)

    Abidi, Yassine; Bellassoued, Mourad; Mahjoub, Moncef; Zemzemi, Nejib

    2018-03-01

    In this paper, we consider the inverse problem of space dependent multiple ionic parameters identification in cardiac electrophysiology modelling from a set of observations. We use the monodomain system known as a state-of-the-art model in cardiac electrophysiology and we consider a general Hodgkin-Huxley formalism to describe the ionic exchanges at the microscopic level. This formalism covers many physiological transmembrane potential models including those in cardiac electrophysiology. Our main result is the proof of the uniqueness and a Lipschitz stability estimate of ion channels conductance parameters based on some observations on an arbitrary subdomain. The key idea is a Carleman estimate for a parabolic operator with multiple coefficients and an ordinary differential equation system.

  7. Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): standardised reporting for model reproducibility, interoperability, and data sharing

    NARCIS (Netherlands)

    Quinn, T. A.; Granite, S.; Allessie, M. A.; Antzelevitch, C.; Bollensdorff, C.; Bub, G.; Burton, R. A. B.; Cerbai, E.; Chen, P. S.; Delmar, M.; DiFrancesco, D.; Earm, Y. E.; Efimov, I. R.; Egger, M.; Entcheva, E.; Fink, M.; Fischmeister, R.; Franz, M. R.; Garny, A.; Giles, W. R.; Hannes, T.; Harding, S. E.; Hunter, P. J.; Iribe, G.; Jalife, J.; Johnson, C. R.; Kass, R. S.; Kodama, I.; Koren, G.; Lord, P.; Markhasin, V. S.; Matsuoka, S.; McCulloch, A. D.; Mirams, G. R.; Morley, G. E.; Nattel, S.; Noble, D.; Olesen, S. P.; Panfilov, A. V.; Trayanova, N. A.; Ravens, U.; Richard, S.; Rosenbaum, D. S.; Rudy, Y.; Sachs, F.; Sachse, F. B.; Saint, D. A.; Schotten, U.; Solovyova, O.; Taggart, P.; Tung, L.; Varró, A.; Volders, P. G.; Wang, K.; Weiss, J. N.; Wettwer, E.; White, E.; Wilders, R.; Winslow, R. L.; Kohl, P.

    2011-01-01

    Cardiac experimental electrophysiology is in need of a well-defined Minimum Information Standard for recording, annotating, and reporting experimental data. As a step towards establishing this, we present a draft standard, called Minimum Information about a Cardiac Electrophysiology Experiment

  8. LBM-EP: Lattice-Boltzmann method for fast cardiac electrophysiology simulation from 3D images.

    Science.gov (United States)

    Rapaka, S; Mansi, T; Georgescu, B; Pop, M; Wright, G A; Kamen, A; Comaniciu, Dorin

    2012-01-01

    Current treatments of heart rhythm troubles require careful planning and guidance for optimal outcomes. Computational models of cardiac electrophysiology are being proposed for therapy planning but current approaches are either too simplified or too computationally intensive for patient-specific simulations in clinical practice. This paper presents a novel approach, LBM-EP, to solve any type of mono-domain cardiac electrophysiology models at near real-time that is especially tailored for patient-specific simulations. The domain is discretized on a Cartesian grid with a level-set representation of patient's heart geometry, previously estimated from images automatically. The cell model is calculated node-wise, while the transmembrane potential is diffused using Lattice-Boltzmann method within the domain defined by the level-set. Experiments on synthetic cases, on a data set from CESC'10 and on one patient with myocardium scar showed that LBM-EP provides results comparable to an FEM implementation, while being 10 - 45 times faster. Fast, accurate, scalable and requiring no specific meshing, LBM-EP paves the way to efficient and detailed models of cardiac electrophysiology for therapy planning.

  9. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    Directory of Open Access Journals (Sweden)

    Clemens eMoeller

    2011-11-01

    Full Text Available The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and Torsades de Pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the gold-standard for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.

  10. Alternans promotion in cardiac electrophysiology models by delay differential equations.

    Science.gov (United States)

    Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  11. Alternans promotion in cardiac electrophysiology models by delay differential equations

    Science.gov (United States)

    Gomes, Johnny M.; dos Santos, Rodrigo Weber; Cherry, Elizabeth M.

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  12. Impact of KChIP2 on Cardiac Electrophysiology and the Progression of Heart Failure

    DEFF Research Database (Denmark)

    Grubb, Søren; Callø, Kirstine; Thomsen, Morten B

    2012-01-01

    Electrophysiological remodeling of cardiac potassium ion channels is important in the progression of heart failure. A reduction of the transient outward potassium current (I(to)) in mammalian heart failure is consistent with a reduced expression of potassium channel interacting protein 2 (KChIP2...

  13. Electrophysiology Catheter-Facilitated coronary sinus cannulation and implantation of cardiac resynchronization therapy systems

    Directory of Open Access Journals (Sweden)

    Antonis S. Manolis, MD, FESC, FACC, FHRS

    2018-01-01

    Full Text Available Background: Cardiac resynchronization therapy (CRT device implantation is hampered by difficult placement of the left ventricular (LV lead. We have routinely used a steerable electrophysiology catheter to guide coronary sinus (CS cannulation and facilitate LV lead positioning. The aim of this prospective study is to present our results with this approach in 138 consecutive patients receiving a CRT device over 10 years. Methods: The study included 120 men and 18 women, aged 64.8±11.4 years, with coronary disease (n=63, cardiomyopathy (n=72, or other disease (n=3, and mean ejection fraction of 24.5±4.5%. Devices were implanted for refractory heart failure and dyssynchrony, all but 2 in the presence of left bundle branch block. Implanted devices included biventricular pacemakers (CRT-P (n=33 and cardioverter defibrillators (CRT-D (n=105. Results: Using the electrophysiology catheter, the CS could be engaged in 134 (97.1% patients. In 4 patients failing CS cannulation, a dual-chamber device was implanted in 2, and bifocal right ventricular pacing was effected in 2. Bifocal (n=2 or conventional (n=1 systems were implanted in another 3 patients, in whom the LV lead got dislodged (n=2 or removed because of local dissection (n=1. Thus, finally, a CRT system was successfully established in 131 (94.9% patients. There were 3 patients with CS dissection, of whom 1 was complicated by cardiac tamponade managed with pericardiocentesis. There were no perioperative deaths. During follow-up (31.0±21.2 months, clinical improvement was reported by 108 (82.4% patients. Conclusion: Routine use of an electrophysiology catheter greatly facilitated CS cannulation and successful LV lead placement in ∼95% of patients undergoing CRT system implantation. Keywords: heart failure, cardiac resynchronization therapy, implantable cardioverter defibrillator, coronary sinus, left ventricular lead

  14. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach

    KAUST Repository

    Bueno-Orovio, Alfonso

    2013-05-15

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies. © 2013 Springer-Verlag Berlin Heidelberg.

  15. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach.

    Science.gov (United States)

    Bueno-Orovio, Alfonso; Sánchez, Carlos; Pueyo, Esther; Rodriguez, Blanca

    2014-02-01

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies.

  16. Effects of radiographic contrast media on cellular electrophysiology in the beating heart

    Energy Technology Data Exchange (ETDEWEB)

    Wolpers, H.G.; Baller, D.; Ensink, F.B.M.; Hoeft, A.; Korb, H.; Hellige, G.

    1982-01-01

    Electrophysiological effects of intracoronarily administered contrast media have been documented in 12 thoracotomized dogs at the cellular level by use of a modified microelectrode technique. Injections (n = 63) of 4 different contrast media uniformly led to a temporary cellular hyperpolarisation of the resting potential and prolongation of the action potential. Additional experiments with intracoronary injections of several electrolyte concentrations, mainly by a local deficiency of potassium ions and an excess of sodium ions. The significance of the findings for mechanisms underlying ECG-changes and ventricular arrhythmia by radiographic contrasts media will be discussed.

  17. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  18. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Directory of Open Access Journals (Sweden)

    Shankarjee Krishnamoorthi

    Full Text Available We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  19. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Science.gov (United States)

    Krishnamoorthi, Shankarjee; Perotti, Luigi E; Borgstrom, Nils P; Ajijola, Olujimi A; Frid, Anna; Ponnaluri, Aditya V; Weiss, James N; Qu, Zhilin; Klug, William S; Ennis, Daniel B; Garfinkel, Alan

    2014-01-01

    We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  20. Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology

    Directory of Open Access Journals (Sweden)

    Christopher Joel Roome

    2014-11-01

    Full Text Available Chronic cranial windows have been instrumental in advancing optical studies in vivo, permitting long-term, high-resolution imaging in various brain regions. However, once a window is attached it is difficult to regain access to the brain under the window for cellular manipulations. Here we describe a simple device that combines long term in vivo optical imaging with direct brain access via glass or quartz pipettes and metal, glass, or quartz electrodes for cellular manipulations like dye or drug injections and electrophysiological stimulations or recordings while keeping the craniotomy sterile. Our device comprises a regular cranial window glass coverslip with a drilled access hole later sealed with biocompatible silicone. This chronic cranial window with access port is cheap, easy to manufacture, can be mounted just as the regular chronic cranial window, and is self-sealing after retraction of the pipette or electrode. We demonstrate that multiple injections can be performed through the silicone port by repetitively bolus loading calcium sensitive dye into mouse barrel cortex and recording spontaneous cellular activity over a period of weeks. As an example to the extent of its utility for electrophysiological recording, we describe how simple removal of the silicone seal can permit patch pipette access for whole-cell patch clamp recordings in vivo. During these chronic experiments we do not observe any infections under the window or impairment of animal health.

  1. Hybrid automata models of cardiac ventricular electrophysiology for real-time computational applications.

    Science.gov (United States)

    Andalam, Sidharta; Ramanna, Harshavardhan; Malik, Avinash; Roop, Parthasarathi; Patel, Nitish; Trew, Mark L

    2016-08-01

    Virtual heart models have been proposed for closed loop validation of safety-critical embedded medical devices, such as pacemakers. These models must react in real-time to off-the-shelf medical devices. Real-time performance can be obtained by implementing models in computer hardware, and methods of compiling classes of Hybrid Automata (HA) onto FPGA have been developed. Models of ventricular cardiac cell electrophysiology have been described using HA which capture the complex nonlinear behavior of biological systems. However, many models that have been used for closed-loop validation of pacemakers are highly abstract and do not capture important characteristics of the dynamic rate response. We developed a new HA model of cardiac cells which captures dynamic behavior and we implemented the model in hardware. This potentially enables modeling the heart with over 1 million dynamic cells, making the approach ideal for closed loop testing of medical devices.

  2. Radiation exposure of an anaesthesiologist in catheterisation and electrophysiological cardiac procedures

    International Nuclear Information System (INIS)

    Andreoli, Stefano; Moretti, Renzo; Lorini, Ferdinando Luca; Lagrotta, Mariavittoria

    2016-01-01

    Sometimes, cardiac catheterisation and electrophysiological procedures, diagnostic and interventional, require an anaesthesiological support. The anaesthesiologist receives radiation doses depending on various factors, such as type of procedure and exposure modality, anaesthesiological technique, individual protective devices and operator experience. The aim of this study was to investigate the dose per procedure, the exposure inhomogeneity and the effective dose, E, of a senior anaesthesiologist in the haemodynamic laboratory of Ospedali Riuniti, Bergamo. The dose monitoring was routinely performed with sets of several thermoluminescent dosemeters and an electronic personal dosemeter. The study covered 300 consecutive procedures over 1 y. The anaesthesiologist wore a protective apron, a thyroid collar and glasses (0.5 mm lead-equivalent). (authors)

  3. Using delay differential equations to induce alternans in a model of cardiac electrophysiology.

    Science.gov (United States)

    Eastman, Justin; Sass, Julian; Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2016-09-07

    Cardiac electrical alternans is a period-2 dynamical behavior with alternating long and short action potential durations (APD) that often precedes dangerous arrhythmias associated with cardiac arrest. Despite the importance of alternans, many current ordinary differential equations models of cardiac electrophysiology do not produce alternans, thereby limiting the use of these models for studying the mechanisms that underlie this condition. Because delay differential equations (DDEs) commonly induce complex dynamics in other biological systems, we investigate whether incorporating DDEs can lead to alternans development in cardiac models by studying the Fox et al. canine ventricular action potential model. After suppressing the alternans in the original model, we show that alternans can be obtained by introducing DDEs in the model gating variables, and we quantitatively compare the DDE-induced alternans with the alternans present in the original model. We analyze the behavior of the voltage, currents, and gating variables of the model to study the effects of the delays and to determine how alternans develops in that setting, and we discuss the mathematical and physiological implications of our findings. In future work, we aim to apply our approach to induce alternans in models that do not naturally exhibit such dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Functional Na(V)1.8 Channels in Intracardiac Neurons The Link Between SCN10A and Cardiac Electrophysiology

    NARCIS (Netherlands)

    Verkerk, Arie O.; Remme, Carol Ann; Schumacher, Cees A.; Scicluna, Brendon P.; Wolswinkel, Rianne; de Jonge, Berend; Bezzina, Connie R.; Veldkamp, Marieke W.

    2012-01-01

    Rationale: The SCN10A gene encodes the neuronal sodium channel isoform Na(V)1.8. Several recent genome-wide association studies have linked SCN10A to PR interval and QRS duration, strongly suggesting an as-yet unknown role for Na(V)1.8 in cardiac electrophysiology. Objective: To demonstrate the

  5. Right Atrial Dual-loop Reentry Tachycardia after Cardiac Surgery: Prevalence, Electrophysiologic Characteristics and Ablation Outcomes.

    Science.gov (United States)

    Yang, Jian-du; Sun, Qi; Guo, Xiao-Gang; Zhou, Gong-Bu; Liu, Xu; Luo, Bin; Wei, Hui-Qiang; Santangeli, Pasquale; Liang, Jackson J; Ma, Jian

    2018-04-03

    Right atrial dual-loop reentry tachycardia has been described in patients with open-heart surgery. However, the prevalence, electrophysiologic substrate and ablation outcomes have been poorly characterized. We aimed to investigate the prevalence, electrophysiologic substrate and ablation outcomes for RA dual-loop reentry tachycardia following cardiac surgery. We identified all patients with atrial tachycardia after cardiac surgery. We compared electrophysiologic findings and outcomes of those with RA dual-loop reentry tachycardia versus a control group of patients with RA macro-reentrant arrhythmias in the setting of linear RA free wall (FW) scar. Out of 127 patients with 152 post-surgical atrial tachycardias (ATs), 28 (18.4%) had diagnosis of RA dual-loop reentry and 24/28 (85.7%) had tricuspid annular (TA) reentry combined with FW incisional reentry. An incision length > 51.5mm along the FW predicted the substrate for a second loop. In 22/23 patients (95.7%) with initial ablation in the cavo-tricuspid isthmus, a change in the interval between Halo d to CS p could be recorded, while 15/23 patients (65.2%) had CS activation pattern change. Complete success was achieved in 25/28 (89.3%) and 64/69 (92.8%) in the dual-loop reentry and control groups, respectively. After mean follow-up of 33.9±24.2 months, 24/28 (85.7%) and 60/69 (86.95%) were free of arrhythmias after initial procedure in two groups. The prevalence of RA dual-loop reentry is 18.4% among ATs with prior atriotomy scar. A long incision should alert physician the possibility of the second loop at the FW. Halo and CS activation pattern are important clues for circuit transformation. Copyright © 2018. Published by Elsevier Inc.

  6. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function.

    Science.gov (United States)

    Herron, Todd J; Rocha, Andre Monteiro Da; Campbell, Katherine F; Ponce-Balbuena, Daniela; Willis, B Cicero; Guerrero-Serna, Guadalupe; Liu, Qinghua; Klos, Matt; Musa, Hassan; Zarzoso, Manuel; Bizy, Alexandra; Furness, Jamie; Anumonwo, Justus; Mironov, Sergey; Jalife, José

    2016-04-01

    Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers. © 2016 American Heart Association, Inc.

  7. Stability results for the parameter identification inverse problem in cardiac electrophysiology

    Science.gov (United States)

    Lassoued, Jamila; Mahjoub, Moncef; Zemzemi, Néjib

    2016-11-01

    In this paper we prove a stability estimate of the parameter identification problem in cardiac electrophysiology modeling. We use the monodomain model which is a reaction diffusion parabolic equation where the reaction term is obtained by solving an ordinary differential equation (ODE). We are interested in proving the stability of the identification of the parameter {τ }{in}, which is the parameter that multiplies the cubic term in the reaction term. The proof of the result is based on a new Carleman-type estimate for both partial differential equation (PDE) and ODE problems. As a consequence of the stability result we prove the uniqueness of the parameter {τ }{in} giving some observations of both state variables at a given time t 0 in the whole domain and in the PDE variable in a non empty open subset w 0 of the domain.

  8. The electrophysiological effects of nicotinic and electrical stimulation of intrinsic cardiac ganglia in the absence of extrinsic autonomic nerves in the rabbit heart.

    Science.gov (United States)

    Allen, Emily; Coote, John H; Grubb, Blair D; Batten, Trevor Fc; Pauza, Dainius H; Ng, G André; Brack, Kieran E

    2018-05-22

    The intrinsic cardiac nervous system (ICNS) is a rich network of cardiac nerves that converge to form distinct ganglia and extend across the heart and is capable of influencing cardiac function. To provide a picture of the neurotransmitter/neuromodulator profile of the rabbit ICNS and determine the action of spatially divergent ganglia on cardiac electrophysiology. Nicotinic or electrical stimulation was applied at discrete sites of the intrinsic cardiac nerve plexus in the Langendorff perfused rabbit heart. Functional effects on sinus rate and atrioventricular conduction were measured. Immunohistochemistry for choline acetyltransferase (ChAT), tyrosine hydroxylase (TH) and/or neuronal nitric oxide synthase (nNOS) was performed on whole-mount preparations. Stimulation within all ganglia produced either bradycardia, tachycardia or a biphasic brady-tachycardia. Electrical stimulation of the right atrial (RA) and right neuronal cluster (RNC) regions produced the greatest chronotropic responses. Significant prolongation of atrioventricular conduction (AVC) was predominant at the pulmonary vein-caudal vein region (PVCV). Neurons immunoreactive (IR) only for ChAT, or TH or nNOS were consistently located within the limits of the hilum and at the roots of the right cranial and right pulmonary veins. ChAT-IR neurons were most abundant (1946±668 neurons). Neurons IR solely for nNOS were distributed within ganglia. Stimulation of intrinsic ganglia, shown to be of phenotypic complexity but predominantly of cholinergic nature, indicates that clusters of neurons are capable of independent selective effects on cardiac electrophysiology, therefore providing a potential therapeutic target for the prevention and treatment of cardiac disease. Copyright © 2018. Published by Elsevier Inc.

  9. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights From Simultaneous Cardioneural Mapping.

    Science.gov (United States)

    Hamon, David; Rajendran, Pradeep S; Chui, Ray W; Ajijola, Olujimi A; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam

    2017-04-01

    Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system, a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on intrinsic cardiac nervous system function in generating cardiac neuronal and electric instability using a novel cardioneural mapping approach. In a porcine model (n=8), neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli ( P <0.001). Compared with fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response ( P <0.05 versus short CI), particularly on convergent neurons ( P <0.05), as well as neurons receiving sympathetic ( P <0.05) and parasympathetic input ( P <0.05). The greatest cardiac electric instability was also observed after variable (short) CI PVCs. Variable CI PVCs affect critical populations of intrinsic cardiac nervous system neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling, leading to cardiomyopathy. © 2017 American Heart Association, Inc.

  10. Cardiac autonomic modulation by estrogen in female mice undergoing ambulatory monitoring and in vivo electrophysiologic testing.

    Science.gov (United States)

    Saba, Samir; Shusterman, Vladimir; Usiene, Irmute; London, Barry

    2004-04-01

    Estrogen is an important modulator of cardiovascular risk, but its mechanism of action is not fully understood. We investigated the effect of ovariectomy and its timing on the cardiac electrophysiology in mice. Thirty female mice (age 18.8 +/- 3.1 weeks) underwent in vivo electrophysiologic testing before and after autonomic blockade. Fifteen mice were ovariectomized prepuberty (PRE) and ten postpuberty (POST), 2 weeks prior to electrophysiologic testing. Five age-matched sham-operated female mice (Control) served as controls. A subset of 13 mice (5 PRE, 3 POST, and 5 Controls) underwent 24-hour ambulatory monitoring. With ambulatory monitoring, the average (668 +/- 28 vs 769 +/- 52 b/min, P = 0.008) and minimum (485 +/- 47 vs 587 +/- 53 b/min, P = 0.02) heart rates were significantly slower in the ovariectomized mice (PRE and POST groups) compared to the Control group. At baseline electrophysiologic testing, there were no significant differences among the ovariectomized and intact mice in any of the measured parameters. With autonomic blockade, the Control group had a significantly larger change (delta) in the atrioventricular (AV) nodal Wenckebach (AVW) periodicity (deltaAVW = 11.3 +/- 2.9 vs 2.1 +/- 7.3 ms, P = 0.05) and functional refractory period (deltaFRP = 11.3 +/- 2.1 vs 1.25 +/- 6.8 ms, P = 0.02) compared to the ovariectomized mice. These results were not altered by the time of ovariectomy (PRE vs POST groups). Our results suggest that estrogen modulates the autonomic inputs into the murine sinus and AV nodes. These findings, if replicated in humans, might underlie the observed clustering of certain arrhythmias around menstruation and explain the higher incidence of arrhythmias in men and postmenopausal women.

  11. 2010 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Training Standards and Maintenance of Competency in Adult Clinical Cardiac Electrophysiology.

    Science.gov (United States)

    Green, Martin S; Guerra, Peter G; Krahn, Andrew D

    2011-01-01

    The last guidelines on training for adult cardiac electrophysiology (EP) were published by the Canadian Cardiovascular Society in 1996. Since then, substantial changes in the knowledge and practice of EP have mandated a review of the previous guidelines by the Canadian Heart Rhythm Society, an affiliate of the Canadian Cardiovascular Society. Novel tools and techniques also now allow electrophysiologists to map and ablate increasingly complex arrhythmias previously managed with pharmacologic or device therapy. Furthermore, no formal attempt had previously been made to standardize EP training across the country. The 2010 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Training Standards and Maintenance of Competency in Adult Clinical Cardiac Electrophysiology represent a consensus arrived at by panel members from both societies, as well as EP program directors across Canada and other select contributors. In describing program requirements, the technical and cognitive skills that must be acquired to meet training standards, as well as the minimum number of procedures needed in order to acquire these skills, the new guidelines provide EP program directors and committee members with a template to develop an appropriate curriculum for EP training for cardiology fellows here in Canada. Copyright © 2011 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  12. Simulation of electrochemical processes in cardiac tissue based on cellular automaton

    International Nuclear Information System (INIS)

    Avdeev, S A; Bogatov, N M

    2014-01-01

    A new class of cellular automata using special accumulative function for nonuniformity distribution is presented. Usage of this automata type for simulation of excitable media applied to electrochemical processes in human cardiac tissue is shown

  13. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    Science.gov (United States)

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle.

  14. Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model.

    Science.gov (United States)

    Krogh-Madsen, Trine; Christini, David J

    2017-09-01

    Accumulation of intracellular Na + is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na + concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na + concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na + ] i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na + ] i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na + ] i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na + ] i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na + ] i may play complex roles in cellular and tissue-level cardiac dynamics.

  15. Electrophysiological evaluation of phrenic nerve injury during cardiac surgery – a prospective, controlled, clinical study

    Directory of Open Access Journals (Sweden)

    Ege Turan

    2004-01-01

    Full Text Available Abstract Background According to some reports, left hemidiaphragmatic paralysis due to phrenic nerve injury may occur following cardiac surgery. The purpose of this study was to document the effects on phrenic nerve injury of whole body hypothermia, use of ice-slush around the heart and mammary artery harvesting. Methods Electrophysiology of phrenic nerves was studied bilaterally in 78 subjects before and three weeks after cardiac or peripheral vascular surgery. In 49 patients, coronary artery bypass grafting (CABG and heart valve replacement with moderate hypothermic (mean 28°C cardiopulmonary bypass (CPB were performed. In the other 29, CABG with beating heart was performed, or, in several cases, peripheral vascular surgery with normothermia. Results In all patients, measurements of bilateral phrenic nerve function were within normal limits before surgery. Three weeks after surgery, left phrenic nerve function was absent in five patients in the CPB and hypothermia group (3 in CABG and 2 in valve replacement. No phrenic nerve dysfunction was observed after surgery in the CABG with beating heart (no CPB or the peripheral vascular groups. Except in the five patients with left phrenic nerve paralysis, mean phrenic nerve conduction latency time (ms and amplitude (mV did not differ statistically before and after surgery in either group (p > 0.05. Conclusions Our results indicate that CPB with hypothermia and local ice-slush application around the heart play a role in phrenic nerve injury following cardiac surgery. Furthermore, phrenic nerve injury during cardiac surgery occurred in 10.2 % of our patients (CABG with CPB plus valve surgery.

  16. Electrophysiological safety of sertindole in dogs with normal and remodeled hearts

    DEFF Research Database (Denmark)

    Thomsen, Morten Bækgaard; Volders, Paul G A; Stengl, Milan

    2003-01-01

    Inhibition of the potassium current IKr and QT prolongation are associated with drug-induced torsades de pointes arrhythmias (TdP) and sudden cardiac death. We investigated the cardiac electrophysiological effects of sertindole, an antipsychotic drug reported to prolong the QT interval...

  17. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights from Simultaneous Cardio-Neural Mapping

    Science.gov (United States)

    Hamon, David; Rajendran, Pradeep S.; Chui, Ray W.; Ajijola, Olujimi A.; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S.; Armour, J. Andrew; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2017-01-01

    Background Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system (ICNS), a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on ICNS function in generating cardiac neuronal and electrical instability using a novel cardio-neural mapping approach. Methods and Results In a porcine model (n=8) neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli (P<0.001). Compared to fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response (P<0.05 versus short CI), particularly on convergent neurons (P<0.05), as well as neurons receiving sympathetic (P<0.05) and parasympathetic input (P<0.05). The greatest cardiac electrical instability was also observed following variable (short) CI PVCs. Conclusions Variable CI PVCs affect critical populations of ICNS neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling leading to cardiomyopathy. PMID:28408652

  18. Electrophysiological properties and calcium handling of embryonic stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jae Boum Youm

    2016-03-01

    Full Text Available Embryonic stem cell-derived cardiomyocytes (ESC-CMs hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes.

  19. Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 2D simulation study.

    Directory of Open Access Journals (Sweden)

    Juan F Gomez

    Full Text Available Heart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure.In this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiological and anatomical remodeling using computer simulations.The electrical activity of human transmural ventricular tissue (5 cm × 5 cm was simulated using the human ventricular action potential model Grandi et al. under control and heart failure conditions. The MacCannell et al. model was used to model fibroblast electrical activity, and their electrotonic interactions with myocytes. Selected degrees of diffuse fibrosis and variations in intercellular coupling were considered and the vulnerable window (VW for reentry was evaluated following cross-field stimulation.No reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the VW. However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In addition, biphasic behavior was observed, as very high fibrotic content or very low tissue conductivity hampered the development of reentry. Detailed phase analysis of reentry dynamics revealed an increase of phase singularities with progressive fibrotic components.Structural remodeling is a key factor in the genesis of vulnerability to reentry. A range of intermediate levels of fibrosis and intercellular uncoupling can combine to favor reentrant activity.

  20. Real-time 3D visualization of cellular rearrangements during cardiac valve formation.

    Science.gov (United States)

    Pestel, Jenny; Ramadass, Radhan; Gauvrit, Sebastien; Helker, Christian; Herzog, Wiebke; Stainier, Didier Y R

    2016-06-15

    During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/β-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process. © 2016. Published by The Company of Biologists Ltd.

  1. Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology.

    Science.gov (United States)

    Martínez-Iniesta, Miguel; Ródenas, Juan; Alcaraz, Raúl; Rieta, José J

    2017-08-01

    Atrial fibrillation (AF) is the most common arrhythmia in clinical practice with an increasing prevalence of about 15% in the elderly. Despite other alternatives, catheter ablation is currently considered as the first-line therapy for the treatment of AF. This strategy relies on cardiac electrophysiology systems, which use intracardiac electrograms (EGM) as the basis to determine the cardiac structures contributing to sustain the arrhythmia. However, the noise-free acquisition of these recordings is impossible and they are often contaminated by different perturbations. Although suppression of nuisance signals without affecting the original EGM pattern is essential for any other later analysis, not much attention has been paid to this issue, being frequently considered as trivial. The present work introduces the first thorough study on the significant fallout that regular filtering, aimed at reducing acquisition noise, provokes on EGM pattern morphology. This approach has been compared with more refined denoising strategies. Performance has been assessed both in time and frequency by well established parameters for EGM characterization. The study comprised synthesized and real EGMs with unipolar and bipolar recordings. Results reported that regular filtering altered substantially atrial waveform morphology and was unable to remove moderate amounts of noise, thus turning time and spectral characterization of the EGM notably inaccurate. Methods based on Wavelet transform provided the highest ability to preserve EGM morphology with improvements between 20 and beyond 40%, to minimize dominant atrial frequency estimation error with up to 25% reduction, as well as to reduce huge levels of noise with up to 10 dB better reduction. Consequently, these algorithms are recommended as a replacement of regular filtering to avoid significant alterations in the EGMs. This could lead to more accurate and truthful analyses of atrial activity dynamics aimed at understanding and

  2. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach

    KAUST Repository

    Bueno-Orovio, Alfonso; Sá nchez, Carlos; Pueyo, Esther; Rodriguez, Blanca

    2013-01-01

    gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology

  3. Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations

    OpenAIRE

    Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot

    2013-01-01

    Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or ...

  4. Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy

    Science.gov (United States)

    Hurtado, Daniel E.; Rojas, Guillermo

    2018-04-01

    Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.

  5. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad; Prakosa, Adityo; Vadakkumpadan, Fijoy [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Rajchl, Martin [Department of Computing, Imperial College London, London SW7 2AZ (United Kingdom); White, James [Stephenson Cardiovascular MR Centre, University of Calgary, Calgary, Alberta T2N 2T9 (Canada); Herzka, Daniel A.; McVeigh, Elliot [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lardo, Albert C. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Division of Cardiology, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21224 (United States); Trayanova, Natalia A. [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21205 (United States)

    2015-08-15

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D

  6. Cellular basis for accumulation of 111In-labeled leukocytes and platelets in rejecting cardiac allografts: concise communication

    International Nuclear Information System (INIS)

    Wang, T.S.; Oluwole, S.; Fawwaz, R.A.; Wolff, M.; Kuromoto, N.; Satake, K.; Hardy, M.A.; Alderson, P.O.

    1982-01-01

    Biodistribution and imaging studies in rats showed that 111 In-labeled leukocytes and platelets accumulate progressively with time after transplantation in cardiac allografts undergoing rejection, but do not accumulate in normal syngeneic heart grafts. Maximum heart allograft-to-blood ratios of 9:1 were obtained, and allograft-to-native heart ratios of 17:1. Microscopic studies of the rejecting cardiac allografts showed that histologic findings paralleled the cellular changes predicted by the radionuclide studies. Intravenously administered 67 Ga citrate and /sup 99m/Tc sulfur colloid failed to show significant accumulation in rejecting grafts. The findings suggest that cellular rejection, rather than nonspecific inflammatory changes, is the primary basis for accumulation of 111 In leukocytes and platelets in rejecting cardiac allografts

  7. Cellular basis for accumulation of In-111-labeled leukocytes and platelets in rejecting cardiac allografts: concise communication

    International Nuclear Information System (INIS)

    Wang, T.S.T.; Oluwole, S.; Fawwaz, R.A.; Wolff, M.; Kuromoto, N.; Satake, K.; Hardy, M.A.; Alderson, P.O.

    1982-01-01

    Biodistribution and imaging studies in rats showed that In-111-labeled leukocytes and platelets accumulate progressively with time after transplantation in cardiac allografts undergoing rejection, but do not accumulate in normal syngeneic heart grafts. Maximum heart allograft-to-blood ratios of 9:1 were obtained, and allograft-to-native heart ratios of 17:1. Microscopic studies of the rejecting cardiac allografts showed that histologic findings paralleled the cellular changes predicted by the radionuclide studies. Intravenously administered Ga-67 citrate and Tc-99m sulfur colloid failed to show significant accumulation in rejecting grafts. The findings suggest that cellular rejection, rather than nonspecific inflammatory changes, is the primary basis for accumulation of In-111 leukocytes and platelets in rejecting cardiac allografts

  8. Cardiac Ca2+ signalling in zebrafish: Translation of findings to man.

    Science.gov (United States)

    van Opbergen, Chantal J M; van der Voorn, Stephanie M; Vos, Marc A; de Boer, Teun P; van Veen, Toon A B

    2018-05-07

    Sudden cardiac death is a leading cause of death worldwide, mainly caused by highly disturbed electrical activation patterns in the heart. Currently, murine models are the most popular model to study underlying molecular mechanisms of inherited or acquired cardiac electrical abnormalities, although the numerous electrophysiological discrepancies between mouse and human raise the question whether mice are the optimal model to study cardiac rhythm disorders. Recently it has been uncovered that the zebrafish cardiac electrophysiology seems surprisingly similar to the human heart, mainly because the zebrafish AP contains a clear plateau phase and ECG characteristics show alignment with the human ECG. Although, before using zebrafish as a model to study cardiac arrhythmogenesis, however, it is very important to gain a better insight into the electrophysiological characteristics of the zebrafish heart. In this review we outline the electrophysiological machinery of the zebrafish cardiomyocytes, with a special focus on the intracellular Ca 2+ dynamics and excitation-contraction coupling. We debate the potential of zebrafish as a model to study human cardiovascular diseases and postulate steps to employ zebrafish into a more 'humanized' model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Relationships between cardiac innervation/perfusion imbalance and ventricular arrhythmias: impact on invasive electrophysiological parameters and ablation procedures

    International Nuclear Information System (INIS)

    Gimelli, Alessia; Menichetti, Francesca; Soldati, Ezio; Liga, Riccardo; Vannozzi, Andrea; Bongiorni, Maria Grazia; Marzullo, Paolo

    2016-01-01

    To assess the relationship between regional myocardial perfusion and sympathetic innervation parameters at myocardial scintigraphy and intra-cavitary electrophysiological data in patients with ventricular arrhythmias (VA) submitted to invasive electrophysiological study and ablation procedure. Sixteen subjects underwent invasive electrophysiological study with electroanatomical mapping (EAM) followed by trans-catheter ablations of VA. Before ablation all patients were studied with a combined evaluation of regional myocardial perfusion and sympathetic innervation by means of tomographic "9"9"mTc-tetrofosmin and "1"2"3I- metaiodobenzylguanidine cadmium-zinc-telluride (CZT) scintigraphies, respectively. Off-line spatial co-registration of CZT perfusion and innervation data with the three-dimensional EAM reconstruction was performed in every patient. CZT revealed the presence of myocardial scar in 55 (20 %) segments. Of the viable myocardial segments, 131 (60 %) presented a preserved adrenergic innervation, while 86 (40 %) showed a significantly depressed innervation (i.e. innervation/perfusion mismatch). On EAM, the invasively measured intra-cavitary voltage was significantly lower in scarred segments than in viable ones (1.7 ± 1.5 mV vs. 4.0 ± 2.2 mV, P < 0.001). Interestingly, among the viable segments, those showing an innervation/perfusion mismatch presented a significantly lower intra-cavitary voltage than those with preserved innervation (1.9 ± 2.5 mV vs. 4.7 ± 2.3 mV, P < 0.001). Intra-cardiac ablation was performed in 63 (23 %) segments. On multivariate analysis, after correction for scar burden, the segments showing an innervation/perfusion mismatch remained the most frequent ablation targets (OR 5.6, 95 % CI 1.5-20.8; P = 0.009). In patients with VA, intra-cavitary electrical abnormalities frequently originate at the level of viable myocardial segments with depressed sympathetic innervation that frequently represents the ultimate ablation target. (orig.)

  10. Relationships between cardiac innervation/perfusion imbalance and ventricular arrhythmias: impact on invasive electrophysiological parameters and ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Menichetti, Francesca; Soldati, Ezio; Liga, Riccardo; Vannozzi, Andrea; Bongiorni, Maria Grazia [University Hospital of Pisa, Cardio-Thoracic and Vascular Department, Pisa (Italy); Marzullo, Paolo [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); CNR, Institute of Clinical Physiology, Pisa (Italy)

    2016-12-15

    To assess the relationship between regional myocardial perfusion and sympathetic innervation parameters at myocardial scintigraphy and intra-cavitary electrophysiological data in patients with ventricular arrhythmias (VA) submitted to invasive electrophysiological study and ablation procedure. Sixteen subjects underwent invasive electrophysiological study with electroanatomical mapping (EAM) followed by trans-catheter ablations of VA. Before ablation all patients were studied with a combined evaluation of regional myocardial perfusion and sympathetic innervation by means of tomographic {sup 99m}Tc-tetrofosmin and {sup 123}I- metaiodobenzylguanidine cadmium-zinc-telluride (CZT) scintigraphies, respectively. Off-line spatial co-registration of CZT perfusion and innervation data with the three-dimensional EAM reconstruction was performed in every patient. CZT revealed the presence of myocardial scar in 55 (20 %) segments. Of the viable myocardial segments, 131 (60 %) presented a preserved adrenergic innervation, while 86 (40 %) showed a significantly depressed innervation (i.e. innervation/perfusion mismatch). On EAM, the invasively measured intra-cavitary voltage was significantly lower in scarred segments than in viable ones (1.7 ± 1.5 mV vs. 4.0 ± 2.2 mV, P < 0.001). Interestingly, among the viable segments, those showing an innervation/perfusion mismatch presented a significantly lower intra-cavitary voltage than those with preserved innervation (1.9 ± 2.5 mV vs. 4.7 ± 2.3 mV, P < 0.001). Intra-cardiac ablation was performed in 63 (23 %) segments. On multivariate analysis, after correction for scar burden, the segments showing an innervation/perfusion mismatch remained the most frequent ablation targets (OR 5.6, 95 % CI 1.5-20.8; P = 0.009). In patients with VA, intra-cavitary electrical abnormalities frequently originate at the level of viable myocardial segments with depressed sympathetic innervation that frequently represents the ultimate ablation target

  11. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts

    Science.gov (United States)

    Markes, Alexander R.; Okundaye, Amenawon O.; Qu, Zhilin; Mende, Ulrike; Choi, Bum-Rak

    2018-01-01

    Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs) and/or cardiac fibroblasts (CFs) and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair. PMID:29715271

  12. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Tae Yun Kim

    Full Text Available Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs and/or cardiac fibroblasts (CFs and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair.

  13. NEWBORNS OF HIGH RISK GROUPS AND ELECTROPHYSIOLOGICAL CARDIAC ACTIVITY DURING THE PERIOD OF EARLY ADAPTATION

    Directory of Open Access Journals (Sweden)

    T. S. Tumaeva

    2014-01-01

    Full Text Available Aim: to study characteristics of electrophysiological cardiac activity in children of risk groups and to assess possibilities of Holter-electrocardiography (H-ECG in revealing of cardiac dysfunction during the period of early adaptation. Patients and methods: 250 newborns were examined. The main group consisted of 200 children with cerebral ischemia (CI. This group was divided into 2 subgroups: 100 full-term and 100 premature (at various gestation age infants. Control group contained 50 children born at 38–40th weeks of gestation with physiological course of pregnancy and delivery, APGAR score of 8–9 points. Complex examination included H-ECG according the standard technic with evaluation of the hearth rate (HR during sleep and wakefulness; HRmin, HRmax; arrhythmias, conductivity disorders, duration of the intervals; rhythm variability. Results: according to the ECG children with CI, especially premature ones, and children delivered via Cesarean section more often had ST-T disturbances, arrhythmias (sinus tachycardia, less often — sinus bradycardia and conductivity disorders, Q-Tc prolongation. H-EGC revealed decrease of sleep HR, HRmin and HRmax in children with CI especially in delivered via Cesarean section. The most common arrhythmia was supraventricular extrasystole.  Pauses in rhythms and variability were the highest in premature children delivered via Cesarean section. Conclusions: hypoxia/ischemia is a trigger for development of cardiovascular dysfuncion in newborns. Premature and children delivered via Cesarean section form a group of high risk. H-ECG widens possibilities of revealing of symptoms of cardiac dysfunction (disturbances at the basal level of functioning, of adaptation resources of the sinus node, electric instability of the myocardium and heart rate variability in children of risk group for development of cardiovascular disorders. 

  14. Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model

    International Nuclear Information System (INIS)

    Barbosa, Carlos R Hall

    2003-01-01

    We present a detailed description of a cellular automata model for the propagation of action potential in a planar cardiac tissue, which is very fast and easy to use. The model incorporates anisotropy in the electrical conductivity and a spatial variation of the refractory time. The transmembrane potential distribution is directly derived from the cell states, and the intracellular and extracellular potential distributions are calculated for the particular case of a plane wavefront. Once the potential distributions are known, the associated current densities are calculated by Ohm's law, and the magnetic field is determined at a plane parallel to the cardiac tissue by applying the law of Biot and Savart. The results obtained for propagation speed and for magnetic field amplitude with the cellular automata model are compared with values predicted by the bidomain formulation, for various angles between wavefront propagation and fibre direction, characterizing excellent agreement between the models

  15. Mechano-electric feedback effects in a three-dimensional (3D model of the contracting cardiac ventricle.

    Directory of Open Access Journals (Sweden)

    Ani Amar

    Full Text Available Mechano-electric feedback affects the electrophysiological and mechanical function of the heart and the cellular, tissue, and organ properties. To determine the main factors that contribute to this effect, this study investigated the changes in the action potential characteristics of the ventricle during contraction. A model of stretch-activated channels was incorporated into a three-dimensional multiscale model of the contracting ventricle to assess the effect of different preload lengths on the electrophysiological behavior. The model describes the initiation and propagation of the electrical impulse, as well as the passive (stretch and active (contraction changes in the cardiac mechanics. Simulations were performed to quantify the relationship between the cellular activation and recovery patterns as well as the action potential durations at different preload lengths in normal and heart failure pathological conditions. The simulation results showed that heart failure significantly affected the excitation propagation parameters compared to normal condition. The results showed that the mechano-electrical feedback effects appear to be most important in failing hearts with low ejection fraction.

  16. Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hongran Wang

    2016-03-01

    Full Text Available Induced pluripotent stem (iPS cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc, without antibiotic selection or MEF feeders. After the formation of embryoid bodies (EBs, iPS cells spontaneously differentiated into Flk1-positive cardiac progenitors and cardiomyocytes expressing cardiac-specific markers such as alpha sarcomeric actinin (α-actinin, cardiac alpha myosin heavy chain (α-MHC, cardiac troponin T (cTnT, and connexin 43 (CX43, as well as cardiac transcription factors Nk2 homebox 5 (Nkx2.5 and gata binding protein 4 (gata4. The electrophysiological activity of iPS cell-derived cardiomyocytes (iPS-CMs was detected in beating cell clusters with optical mapping and RH237 a voltage-sensitive dye, and in single contracting cells with patch-clamp technology. Incompletely differentiated iPS cells formed teratomas when transplanted into a severe combined immunodeficiency (SCID mouse model of myocardial infarction. Our results show that somatic cells can be reprogrammed into pluripotent stem cells, which in turn spontaneously differentiate into electrophysiologically functional mature cardiomyocytes expressing cardiac-specific makers, and that these cells can potentially be used to repair myocardial infarction (MI in the future.

  17. Role of TGF-β on cardiac structural and electrical remodeling

    Directory of Open Access Journals (Sweden)

    Roberto Ramos-Mondragón

    2008-12-01

    Full Text Available Roberto Ramos-Mondragón, Carlos A Galindo, Guillermo AvilaDepartamento de Bioquímica, Cinvestav-IPN, MéxicoAbstract: The type β transforming growth factors (TGF-βs are involved in a number of human diseases, including heart failure and myocardial arrhythmias. In fact, during the last 20 years numerous studies have demonstrated that TGF-β affects the architecture of the heart under both normal and pathological conditions. Moreover, TGF-β signaling is currently under investigation, with the aim of discovering potential therapeutic roles in human disease. In contrast, only few studies have investigated whether TGF-β affects electrophysiological properties of the heart. This fact is surprising since electrical remodeling represents an important substrate for cardiac disease. This review discusses the potential role of TGF-β on cardiac excitation-contraction (EC coupling, action potentials, and ion channels. We also discuss the effects of TGF-β on cardiac development and disease from structural and electrophysiological points of view.Keywords: transforming growth factor, ion channel, cardiac electrophysiology

  18. Precise Estimation of Cellular Radio Electromagnetic Field in Elevators and EMI Impact on Implantable Cardiac Pacemakers

    Science.gov (United States)

    Harris, Louis-Ray; Hikage, Takashi; Nojima, Toshio

    The purpose of this paper is to investigate the possible impact of cellular phones' signals on implantable cardiac pacemakers in elevators. This is achieved by carrying out precise numerical simulations based on the Finite-Difference-Time-Domain method to examine the electromagnetic fields in elevator models. In order to examine the realistic and complicated situations where humans are present in the elevator, we apply the realistic homogeneous human phantom and cellular radios operating in the frequency bands 800MHz, 1.5GHz and 2GHz. These computed results of field strength inside the elevator are compared with a certain reference level determined from the experimentally obtained maximum interference distance of implantable cardiac pacemakers. This enables us to carry out a quantitative evaluation of the EMI risk to pacemakers by cellular radio transmission. The results show that for the case when up to 5 mobile radio users are present in the elevator model used, there is no likelihood of pacemaker malfunction for the frequency bands 800MHz, 1.5GHz and 2GHz.

  19. Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations.

    Science.gov (United States)

    Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot

    2013-10-01

    Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios.

  20. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    Science.gov (United States)

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic

  1. Coi-wiz: An interactive computer wizard for analyzing cardiac optical signals.

    Science.gov (United States)

    Yuan, Xiaojing; Uyanik, Ilyas; Situ, Ning; Xi, Yutao; Cheng, Jie

    2009-01-01

    A number of revolutionary techniques have been developed for cardiac electrophysiology research to better study the various arrhythmia mechanisms that can enhance ablating strategies for cardiac arrhythmias. Once the three-dimensional high resolution cardiac optical imaging data is acquired, it is time consuming to manually go through them and try to identify the patterns associated with various arrhythmia symptoms. In this paper, we present an interactive computer wizard that helps cardiac electrophysiology researchers to visualize and analyze the high resolution cardiac optical imaging data. The wizard provides a file interface that accommodates different file formats. A series of analysis algorithms output waveforms, activation and action potential maps after spatial and temporal filtering, velocity field and heterogeneity measure. The interactive GUI allows the researcher to identify the region of interest in both the spatial and temporal domain, thus enabling them to study different heart chamber at their choice.

  2. Deficiency of methionine sulfoxide reductase A causes cellular dysfunction and mitochondrial damage in cardiac myocytes under physical and oxidative stresses

    International Nuclear Information System (INIS)

    Nan, Changlong; Li, Yuejin; Jean-Charles, Pierre-Yves; Chen, Guozhen; Kreymerman, Alexander; Prentice, Howard; Weissbach, Herbert; Huang, Xupei

    2010-01-01

    Research highlights: → Deficiency of MsrA in the heart renders myocardial cells more sensitive to oxidative stress. → Mitochondrial damage happens in the heart lacking MsrA. → More protein oxidation in myocardial cells lacking MsrA. → MsrA protects the heart against oxidative stress. -- Abstract: Methionine sulfoxide reductase A (MsrA) is an enzyme that reverses oxidation of methionine in proteins. Using a MsrA gene knockout (MsrA -/- ) mouse model, we have investigated the role of MsrA in the heart. Our data indicate that cellular contractility and cardiac function are not significantly changed in MsrA -/- mice if the hearts are not stressed. However, the cellular contractility, when stressed using a higher stimulation frequency (2 Hz), is significantly reduced in MsrA -/- cardiac myocytes. MsrA -/- cardiac myocytes also show a significant decrease in contractility after oxidative stress using H 2 O 2 . Corresponding changes in Ca 2+ transients are observed in MsrA -/- cardiomyocytes treated with 2 Hz stimulation or with H 2 O 2 . Electron microscope analyses reveal a dramatic morphological change of mitochondria in MsrA -/- mouse hearts. Further biochemical measurements indicate that protein oxidation levels in MsrA -/- mouse hearts are significantly higher than those in wild type controls. Our study demonstrates that the lack of MsrA in cardiac myocytes reduces myocardial cell's capability against stress stimulations resulting in a cellular dysfunction in the heart.

  3. Electrophysiological effects of Chinese medicine Shen song Yang xin (SSYX) on Chinese miniature swine heart and isolated guinea pig ventricular myocytes.

    Science.gov (United States)

    Feng, Li; Gong, Jing; Jin, Zhen-yi; Li, Ning; Sun, Li-ping; Wu, Yi-ling; Pu, Jie-lin

    2009-07-05

    Shen song Yang xin (SSYX) is a compound of Chinese medicine with the effect of increasing heart rate (HR). This study aimed to evaluate its electrophysiological properties at heart and cellular levels. The Chinese miniature swines were randomly assigned to two groups, administered with SSYX or placebo for 4 weeks (n = 8 per group). Cardiac electrophysiological study (EPS) was performed before and after drug administration. The guinea pig ventricular myocytes were enzymatically isolated and whole cell voltage-clamp technique was used to evaluate the effect of SSYX on cardiac action potential (AP). SSYX treatment accelerated the HR from (141.8 +/- 36.0) beats per minute to (163.0 +/- 38.0) beats per minute (P = 0.013) without changing the other parameters in surface electrocardiogram. After blockage of the autonomic nervous system with metoprolol and atropin, SSYX had no effect on intrinsic HR (IHR), but decreased corrected sinus node recovery time (CSNRT) and sinus atrium conducting time (SACT). Intra cardiac EPS showed that SSYX significantly decreased the A-H and A-V intervals as well as shortened the atrial (A), atrioventricular node (AVN) and ventricular (V) effective refractory period (ERP). In isolated guinea pig ventricular myocytes, the most obvious effect of SSYX on action potential was a shortening of the action potential duration (APD) without change in shape of action potential. The shortening rates of APD(30), APD(50) and APD(90) were 19.5%, 17.8% and 15.3%, respectively. The resting potential (Em) and the interval between the end of APD(30) and APD(90) did not significantly change. The present study demonstrates that SSYX increases the HR and enhances the conducting capacity of the heart in the condition of the intact autonomic nervous system. SSYX homogenously decreases the ERP of the heart and shortens the APD of the myocytes, suggesting its antiarrhythmic effect without proarrhythmia.

  4. Obesity-associated cardiac pathogenesis in broiler breeder hens: Development of metabolic cardiomyopathy.

    Science.gov (United States)

    Chen, C Y; Huang, Y F; Ko, Y J; Liu, Y J; Chen, Y H; Walzem, R L; Chen, S E

    2017-07-01

    Feed intake is typically restricted (R) in broiler hens to avoid obesity and improve egg production and livability. To determine whether improved heart health contributes to improved livability, fully adult 45-week-old R hens were allowed to consume feed to appetite (ad libitum; AL) up to 10 wk (70 d). Mortality, contractile functions, and morphology at 70 d, and measurements of cardiac hypertrophic remodeling at 7 d and 21 d were made and compared between R and AL hens. Outcomes for cardiac electrophysiology and mortality, reported separately, found increased mortality in AL hens in association with cardiac pathological hypertrophy and contractile dysfunction. The present study aimed to delineate metabolic cardiomyopathies underlying the etiology of obesity-associated cardiac pathology. Metabolic measurements were made in hens continued on R rations or assigned to AL feeding after 7 d and 21 days. AL feeding increased plasma insulin, glucose, and non-esterified fatty acid (NEFA) concentrations by 21 d (P hens was confirmed by cardiac triacylglycerol (TG) and ceramide accumulation consistent with up-regulation of related enzyme gene expressions, and by increased indices of oxidation stress (P hens, cardiac pyruvate dehydrogenase (PDH) activity and glucose transporter (GLUT) gene expressions increased progressively while carnitine palmitoyltransferase-1 (CPT-1) transcript levels in AL hens declined from 7 d to 21 d (P hens was further indicated by increased leukocyte infiltrates, interleukin-1β (IL-1β) and IL-6 production, cellular apoptosis, interstitial fibrosis, and expression of the heart failure marker myosin heavy chain (MHC-β; cardiac muscle beta) (P hens. © 2017 Poultry Science Association Inc.

  5. Paroxysmal atrioventricular block: Electrophysiological mechanism of phase 4 conduction block in the His-Purkinje system: A comparison with phase 3 block.

    Science.gov (United States)

    Shenasa, Mohammad; Josephson, Mark E; Wit, Andrew L

    2017-11-01

    Paroxysmal atrioventricular (A-V) block is relatively rare, and due to its transient nature, it is often under recognized. It is often triggered by atrial, junctional, or ventricular premature beats, and occurs in the presence of a diseased His-Purkinje system (HPS). Here, we present a 45-year-old white male who was admitted for observation due to recurrent syncope and near-syncope, who had paroxysmal A-V block. The likely cellular electrophysiological mechanisms(s) of paroxysmal A-V block and its differential diagnosis and management are discussed. Continuous electrocardiographic monitoring was done while the patient was in the cardiac unit. Multiple episodes of paroxysmal A-V block were documented in this case. All episodes were initiated and terminated with atrial/junctional premature beats. The patient underwent permanent pacemaker implantation and has remained asymptomatic since then. Paroxysmal A-V block is rare and often causes syncope or near-syncope. Permanent pacemaker implantation is indicated according to the current guidelines. Paroxysmal A-V block occurs in the setting of diseased HPS and is bradycardia-dependent. The detailed electrophysiological mechanisms, which involve phase 4 diastolic depolarization, and differential diagnosis are discussed. © 2017 Wiley Periodicals, Inc.

  6. Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology.

    Science.gov (United States)

    Pathmanathan, Pras; Shotwell, Matthew S; Gavaghan, David J; Cordeiro, Jonathan M; Gray, Richard A

    2015-01-01

    Perhaps the most mature area of multi-scale systems biology is the modelling of the heart. Current models are grounded in over fifty years of research in the development of biophysically detailed models of the electrophysiology (EP) of cardiac cells, but one aspect which is inadequately addressed is the incorporation of uncertainty and physiological variability. Uncertainty quantification (UQ) is the identification and characterisation of the uncertainty in model parameters derived from experimental data, and the computation of the resultant uncertainty in model outputs. It is a necessary tool for establishing the credibility of computational models, and will likely be expected of EP models for future safety-critical clinical applications. The focus of this paper is formal UQ of one major sub-component of cardiac EP models, the steady-state inactivation of the fast sodium current, INa. To better capture average behaviour and quantify variability across cells, we have applied for the first time an 'individual-based' statistical methodology to assess voltage clamp data. Advantages of this approach over a more traditional 'population-averaged' approach are highlighted. The method was used to characterise variability amongst cells isolated from canine epi and endocardium, and this variability was then 'propagated forward' through a canine model to determine the resultant uncertainty in model predictions at different scales, such as of upstroke velocity and spiral wave dynamics. Statistically significant differences between epi and endocardial cells (greater half-inactivation and less steep slope of steady state inactivation curve for endo) was observed, and the forward propagation revealed a lack of robustness of the model to underlying variability, but also surprising robustness to variability at the tissue scale. Overall, the methodology can be used to: (i) better analyse voltage clamp data; (ii) characterise underlying population variability; (iii) investigate

  7. Cardiac troponin and tropomyosin: structural and cellular perspectives to unveil the Hypertrophic Cardiomyopathy phenotype

    Directory of Open Access Journals (Sweden)

    Mayra de A. Marques

    2016-09-01

    Full Text Available Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1,400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the disease of the sarcomere. The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53, seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We

  8. Statistics on the use of cardiac electronic devices and electrophysiological procedures in the European Society of Cardiology countries: 2014 report from the European Heart Rhythm Association.

    Science.gov (United States)

    Raatikainen, M J Pekka; Arnar, David O; Zeppenfeld, Katja; Merino, Jose Luis; Levya, Francisco; Hindriks, Gerhardt; Kuck, Karl-Heinz

    2015-01-01

    There has been large variations in the use of invasive electrophysiological therapies in the member countries of the European Society of Cardiology (ESC). The aim of this analysis was to provide comprehensive information on cardiac implantable electronic device (CIED) and catheter ablation therapy trends in the ESC countries over the last five years. The European Heart Rhythm Association (EHRA) has collected data on CIED and catheter ablation therapy since 2008. Last year 49 of the 56 ESC member countries provided data for the EHRA White Book. This analysis is based on the current and previous editions of the EHRA White Book. Data on procedure rates together with information on economic aspects, local reimbursement systems and training activities are presented for each ESC country and the five geographical ESC regions. In 2013, the electrophysiological procedure rates per million population were highest in Western Europe followed by the Southern and Northern European countries. The CIED implantation and catheter ablation rate was lowest in the Eastern European and in the non-European ESC countries, respectively. However, in some Eastern European countries with relative low gross domestic product procedure rates exceeded those of some wealthier Western countries, suggesting that economic resources are not the only driver for utilization of arrhythmia therapies. These statistics indicate that despite significant improvements, there still is considerable heterogeneity in the availability of arrhythmia therapies across the ESC area. Hopefully, these data will help identify areas for improvement and guide future activities in cardiac arrhythmia management. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  9. Electrophysiological Characteristics of Embryonic Stem Cell-Derived Cardiomyocytes are Cell Line-Dependent

    Directory of Open Access Journals (Sweden)

    Tobias Hannes

    2015-01-01

    Full Text Available Background: Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs of different murine ESC lines. Methods: Two wild-type (D3 and R1 and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7 were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC promoter. Action potentials (APs were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Results: Spontaneous AP frequency and AP duration (APD as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Conclusion: Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully.

  10. A second-generation computational modeling of cardiac electrophysiology: response of action potential to ionic concentration changes and metabolic inhibition.

    Science.gov (United States)

    Alaa, Nour Eddine; Lefraich, Hamid; El Malki, Imane

    2014-10-21

    Cardiac arrhythmias are becoming one of the major health care problem in the world, causing numerous serious disease conditions including stroke and sudden cardiac death. Furthermore, cardiac arrhythmias are intimately related to the signaling ability of cardiac cells, and are caused by signaling defects. Consequently, modeling the electrical activity of the heart, and the complex signaling models that subtend dangerous arrhythmias such as tachycardia and fibrillation, necessitates a quantitative model of action potential (AP) propagation. Yet, many electrophysiological models, which accurately reproduce dynamical characteristic of the action potential in cells, have been introduced. However, these models are very complex and are very time consuming computationally. Consequently, a large amount of research is consecrated to design models with less computational complexity. This paper is presenting a new model for analyzing the propagation of ionic concentrations and electrical potential in space and time. In this model, the transport of ions is governed by Nernst-Planck flux equation (NP), and the electrical interaction of the species is described by a new cable equation. These set of equations form a system of coupled partial nonlinear differential equations that is solved numerically. In the first we describe the mathematical model. To realize the numerical simulation of our model, we proceed by a finite element discretization and then we choose an appropriate resolution algorithm. We give numerical simulations obtained for different input scenarios in the case of suicide substrate reaction which were compared to those obtained in literature. These input scenarios have been chosen so as to provide an intuitive understanding of dynamics of the model. By accessing time and space domains, it is shown that interpreting the electrical potential of cell membrane at steady state is incorrect. This model is general and applies to ions of any charge in space and time

  11. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells.

    Science.gov (United States)

    Zhan, Yongkun; Sun, Xiaolei; Li, Bin; Cai, Huanhuan; Xu, Chen; Liang, Qianqian; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yin, Lianhua; Sheng, Wei; Huang, Guoying; Sun, Aijun; Ge, Junbo; Sun, Ning

    2018-04-01

    PRKAG2 cardiac syndrome is a distinct form of human cardiomyopathy characterized by cardiac hypertrophy, ventricular pre-excitation and progressive cardiac conduction disorder. However, it remains unclear how mutations in the PRKAG2 gene give rise to such a complicated disease. To investigate the underlying molecular mechanisms, we generated disease-specific hiPSC-derived cardiomyocytes from two brothers both carrying a heterozygous missense mutation c.905G>A (R302Q) in the PRKAG2 gene and further corrected the R302Q mutation with CRISPR-Cas9 mediated genome editing. Disease-specific hiPSC-cardiomyocytes recapitulated many phenotypes of PRKAG2 cardiac syndrome including cellular enlargement, electrophysiological irregularities and glycogen storage. In addition, we found that the PRKAG2-R302Q mutation led to increased AMPK activities, resulting in extensive glycogen deposition and cardiomyocyte hypertrophy. Finally we confirmed that disrupted phenotypes of PRKAG2 cardiac syndrome caused by the specific PRKAG2-R302Q mutation can be alleviated by small molecules inhibiting AMPK activity and be rescued with CRISPR-Cas9 mediated genome correction. Our results showed that disease-specific hiPSC-CMs and genetically-corrected hiPSC-cardiomyocytes would be a very useful platform for understanding the pathogenesis of, and testing autologous cell-based therapies for, PRKAG2 cardiac syndrome. Copyright © 2018. Published by Elsevier Ltd.

  12. Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations.

    Directory of Open Access Journals (Sweden)

    Marie Demion

    Full Text Available RATIONALE: TRPM4 is a non-selective Ca2+-activated cation channel expressed in the heart, particularly in the atria or conduction tissue. Mutations in the Trpm4 gene were recently associated with several human conduction disorders such as Brugada syndrome. TRPM4 channel has also been implicated at the ventricular level, in inotropism or in arrhythmia genesis due to stresses such as ß-adrenergic stimulation, ischemia-reperfusion, and hypoxia re-oxygenation. However, the physiological role of the TRPM4 channel in the healthy heart remains unclear. OBJECTIVES: We aimed to investigate the role of the TRPM4 channel on whole cardiac function with a Trpm4 gene knock-out mouse (Trpm4-/- model. METHODS AND RESULTS: Morpho-functional analysis revealed left ventricular (LV eccentric hypertrophy in Trpm4-/- mice, with an increase in both wall thickness and chamber size in the adult mouse (aged 32 weeks when compared to Trpm4+/+ littermate controls. Immunofluorescence on frozen heart cryosections and qPCR analysis showed no fibrosis or cellular hypertrophy. Instead, cardiomyocytes in Trpm4-/- mice were smaller than Trpm4+/+with a higher density. Immunofluorescent labeling for phospho-histone H3, a mitosis marker, showed that the number of mitotic myocytes was increased 3-fold in the Trpm4-/-neonatal stage, suggesting hyperplasia. Adult Trpm4-/- mice presented multilevel conduction blocks, as attested by PR and QRS lengthening in surface ECGs and confirmed by intracardiac exploration. Trpm4-/-mice also exhibited Luciani-Wenckebach atrioventricular blocks, which were reduced following atropine infusion, suggesting paroxysmal parasympathetic overdrive. In addition, Trpm4-/- mice exhibited shorter action potentials in atrial cells. This shortening was unrelated to modifications of the voltage-gated Ca2+ or K+ currents involved in the repolarizing phase. CONCLUSIONS: TRPM4 has pleiotropic roles in the heart, including the regulation of conduction and cellular

  13. Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations

    International Nuclear Information System (INIS)

    Cohen, J.D.; Babiarz, J.E.; Abrams, R.M.; Guo, L.; Kameoka, S.; Chiao, E.; Taunton, J.; Kolaja, K.L.

    2011-01-01

    Sunitinib, an oral tyrosine kinase inhibitor approved to treat advanced renal cell carcinoma and gastrointestinal stroma tumor, is associated with clinical cardiac toxicity. Although the precise mechanism of sunitinib cardiotoxicity is not known, both the key metabolic energy regulator, AMP-activated protein kinase (AMPK), and ribosomal S 6 kinase (RSK) have been hypothesized as causative, albeit based on rodent models. To study the mechanism of sunitinib-mediated cardiotoxicity in a human model, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) having electrophysiological and contractile properties of native cardiac tissue were investigated. Sunitinib was cardiotoxic in a dose-dependent manner with an IC 50 in the low micromolar range, observed by a loss of cellular ATP, an increase in oxidized glutathione, and induction of apoptosis in iPSC-CMs. Pretreatment of iPSC-CMs with AMPK activators AICAR or metformin, increased the phosphorylation of pAMPK-T172 and pACC-S79, but only marginally attenuated sunitinib mediated cell death. Furthermore, additional inhibitors of AMPK were not directly cytotoxic to iPSC-CMs up to 250 μM concentrations. Inhibition of RSK with a highly specific, irreversible, small molecule inhibitor (RSK-FMK-MEA) did not induce cytotoxicity in iPSC-CMs below 250 μM. Extensive electrophysiological analysis of sunitinib and RSK-FMK-MEA mediated conduction effects were performed. Taken together, these findings suggest that inhibition of AMPK and RSK are not a major component of sunitinib-induced cardiotoxicity. Although the exact mechanism of cardiotoxicity of sunitinib is not known, it is likely due to inhibition of multiple kinases simultaneously. These data highlight the utility of human iPSC-CMs in investigating the potential molecular mechanisms underlying drug-induced cardiotoxicity. -- Highlights: ► Cytoxic effect of sunitinib on human stem cell derived cardiomyocytes ► Sunitinib causes ATP depletion, LDH release, GSH

  14. Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure-Prone Rats

    Science.gov (United States)

    Acute air pollutant inhalation is linked to adverse cardiac events and death, and hospitalizations for heart failure. Diesel exhaust (DE) is a major air pollutant suspected to exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic disturbance...

  15. Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction

    Directory of Open Access Journals (Sweden)

    Davy PMC

    2015-10-01

    Full Text Available Philip MC Davy,1 Kevin D Lye,2,3 Juanita Mathews,1 Jesse B Owens,1 Alice Y Chow,1 Livingston Wong,2 Stefan Moisyadi,1 Richard C Allsopp1 1Institute for Biogenesis Research, 2John A. Burns School of Medicine, University of Hawaii at Mānoa, 3Tissue Genesis, Inc., Honolulu, HI, USA Background: Adipose tissue is an abundant and potent source of adult stem cells for transplant therapy. In this study, we present our findings on the potential application of adipose-derived stem cells (ASCs as well as induced cardiac-like progenitors (iCPs derived from ASCs for the treatment of myocardial infarction. Methods and results: Human bone marrow (BM-derived stem cells, ASCs, and iCPs generated from ASCs using three defined cardiac lineage transcription factors were assessed in an immune-compromised mouse myocardial infarction model. Analysis of iCP prior to transplant confirmed changes in gene and protein expression consistent with a cardiac phenotype. Endpoint analysis was performed 1 month posttransplant. Significantly increased endpoint fractional shortening, as well as reduction in the infarct area at risk, was observed in recipients of iCPs as compared to the other recipient cohorts. Both recipients of iCPs and ASCs presented higher myocardial capillary densities than either recipients of BM-derived stem cells or the control cohort. Furthermore, mice receiving iCPs had a significantly higher cardiac retention of transplanted cells than all other groups. Conclusion: Overall, iCPs generated from ASCs outperform BM-derived stem cells and ASCs in facilitating recovery from induced myocardial infarction in mice. Keywords: adipose stem cells, myocardial infarction, cellular reprogramming, cellular therapy, piggyBac, induced cardiac-like progenitors

  16. Identification and functional characterization of cardiac pacemaker cells in zebrafish.

    Directory of Open Access Journals (Sweden)

    Federico Tessadori

    Full Text Available In the mammalian heart a conduction system of nodes and conducting cells generates and transduces the electrical signals evoking myocardial contractions. Specialized pacemaker cells initiating and controlling cardiac contraction rhythmicity are localized in an anatomically identifiable structure of myocardial origin, the sinus node. We previously showed that in mammalian embryos sinus node cells originate from cardiac progenitors expressing the transcription factors T-box transcription factor 3 (Tbx3 and Islet-1 (Isl1. Although cardiac development and function are strikingly conserved amongst animal classes, in lower vertebrates neither structural nor molecular distinguishable components of a conduction system have been identified, questioning its evolutionary origin. Here we show that zebrafish embryos lacking the LIM/homeodomain-containing transcription factor Isl1 display heart rate defects related to pacemaker dysfunction. Moreover, 3D reconstructions of gene expression patterns in the embryonic and adult zebrafish heart led us to uncover a previously unidentified, Isl1-positive and Tbx2b-positive region in the myocardium at the junction of the sinus venosus and atrium. Through their long interconnecting cellular protrusions the identified Isl1-positive cells form a ring-shaped structure. In vivo labeling of the Isl1-positive cells by transgenic technology allowed their isolation and electrophysiological characterization, revealing their unique pacemaker activity. In conclusion we demonstrate that Isl1-expressing cells, organized as a ring-shaped structure around the venous pole, hold the pacemaker function in the adult zebrafish heart. We have thereby identified an evolutionary conserved, structural and molecular distinguishable component of the cardiac conduction system in a lower vertebrate.

  17. Effect of clebopride, antidopaminergic gastrointestinal prokinetics, on cardiac repolarization.

    Science.gov (United States)

    Kim, Ki-Suk; Shin, Won-Ho; Park, Sang-joon; Kim, Eun-Joo

    2007-01-01

    The inhibition of the potassium current I(Kr) and QT prolongation has been known to be associated with drug-induced torsades de pointes arrhythmias (TdP) and sudden cardiac death. In this study, the authors investigated the cardiac electrophysiological effects of clebopride, a class of antidopaminergic gastrointestinal prokinetic, that has been reported to prolong the QT interval by using the conventional microelectrode recording techniques in isolated rabbit Purkinje fiber and whole-cell patch clamp techniques in human ether-à-go-go-related gene (hERG)-stably transfected Chinese hamster ovarian (CHO) cells. Clebopride at 10 microM significantly decreased the Vmax of phase 0 depolarization (p Clebopride was found to have no effect on sodium channel currents. When these results were compared with Cmax (1.02 nM) of clinical dosage (1 mg, [p.o.]), it can be suggested that clebopride is safe at the clinical dosage of 1 mg from the electrophysiological aspect. These findings indicate that clebopride, an antidopaminergic gastrointestinal prokinetic drug, may provide a sufficient "safety factor" in terms of the electrophysiological threshold concentration. But, in a supratherapeutic concentration that might possibly be encountered during overdose or impaired metabolism, clebopride may have torsadogenic potency.

  18. Lyme carditis. Electrophysiologic and histopathologic study

    International Nuclear Information System (INIS)

    Reznick, J.W.; Braunstein, D.B.; Walsh, R.L.; Smith, C.R.; Wolfson, P.M.; Gierke, L.W.; Gorelkin, L.; Chandler, F.W.

    1986-01-01

    To further define the nature of Lyme carditis, electrophysiologic study and endomyocardial biopsy were performed in a patient with Lyme disease, whose principal cardiac manifestation was high-degree atrioventricular block. Intracardiac recording demonstrated supra-Hisian block and complete absence of an escape mechanism. Gallium 67 scanning demonstrated myocardial uptake, and right ventricular endomyocardial biopsy revealed active lymphocytic myocarditis. A structure compatible with a spirochetal organism was demonstrated in one biopsy specimen. It is concluded that Lyme disease can produce active myocarditis, as suggested by gallium 67 imaging and confirmed by endomyocardial biopsy. Furthermore, the presence of high-grade atrioventricular block in this disease requires aggressive management with temporary pacemaker and corticosteroid therapy

  19. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Maaike eHoekstra

    2012-08-01

    Full Text Available Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models haven been generated, but these also have significant shortcomings, primarily related to species differences.The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human cardiomyocytes can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially characterized.Human iPSC (hiPSC models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia. In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these

  20. Role of Electrophysiological Study and Catheter Ablation for Recurrent Ventricular Tachycardia Complicating Myocarditis

    Directory of Open Access Journals (Sweden)

    Emanuele Cecchi

    2012-01-01

    Full Text Available Here we report the case of a 31-year-old man admitted to our hospital with echocardiografic and Cardiac Magnetic Resonance signs of myocarditis complicated by ventricular tachycardia, initially resolved with direct current shock. After the recurrence of ventricular tachycardia the patient was submitted to electrophysiological study revealing a re-entrant circuit at the level of the medium segment of interventricular septum, successfully treated with transcatheter ablation. This case highlights how the presence of recurrent ventricular arrhythmias at the onset of acute myocarditis, suspected or proven, could be associated with a pre-existing arrhythmogenic substrate, therefore these patients should be submitted to electrophysiological study in order to rule out the presence of arrhythmogenic focuses that can be treated with transcatheter ablation.

  1. Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yingliang; Housden, R. James; Razavi, Reza; Rhode, Kawal S. [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Gogin, Nicolas; Cathier, Pascal [Medisys Research Group, Philips Healthcare, Paris 92156 (France); Gijsbers, Geert [Interventional X-ray, Philips Healthcare, Best 5680 DA (Netherlands); Cooklin, Michael; O' Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo [Department of Cardiology, Guys and St. Thomas' Hospitals NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2013-07-15

    Purpose: X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric images can be used to add anatomical information. It is useful to know the position of the catheter electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso catheter can be used for road map motion correction.Methods: In this paper, the authors present a novel unified computational framework for image-based catheter detection and tracking without any user interaction. The proposed framework includes fast blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking methods were designed based on the customized catheter models input from the detection method. Three real-time detection and tracking methods are derived from the computational framework to detect or track the three most common types of catheters in EP procedures: the ablation catheter, the CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected and tracked simultaneously in real-time.Results: The catheter detection methods were tested on 105 different clinical fluoroscopy sequences taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 {+-} 0.29, 0.92 {+-} 0.61, and 0.63 {+-} 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, accuracies were increased to 0.45 {+-} 0.28, 0.64 {+-} 0.37, and 0.53 {+-} 0.38 mm and success rates increased to 100%, 99

  2. Ciprofloxacin, an antibiotic with cardiac actions on isolated rat hearts

    Directory of Open Access Journals (Sweden)

    Loipa Galán-Martínez

    2018-04-01

    Full Text Available Context: Ciprofloxacin is the most commonly used fluoroquinolone and is prescribed as the antibiotic of choice in the treatment of several microbial infections. Some clinical reports have suggested that ciprofloxacin may induce QT-interval prolongation and Torsades de Pointes arrhythmias. This drug is a weak inhibitor of a rapid component of the cardiac delayed rectifier potassium current IKr, but there are few electrophysiological data available to assess whether ciprofloxacin has the potency to provoke QT prolongation and subsequent Torsades de Pointes arrhythmias. Aims: To evaluate the effect of ciprofloxacin on the contractile and electrical activity of isolated rat hearts. Methods: The Langendorff technique was performed in rat hearts, and the effects of ciprofloxacin (0.001 – 100 μM were measured on the cardiac force of contraction and on the RR, QRS and QTc intervals. The arrhythmogenic potential and the ventricular fibrillation threshold were evaluated with ciprofloxacin. Results: Ciprofloxacin decreased the force of contraction of all hearts studied, in a concentration-dependent manner. The estimated IC50 for the inotropic negative effect was 0.15 ± 0.04 μM. Ciprofloxacin significantly prolonged the QRS complex, QTc and RR interval. Significant arrhythmic effects with ciprofloxacin were shown and the ventricular fibrillation threshold was decreased. Conclusions: These results suggest that ciprofloxacin exerted effects on cardiac Na+, K+ and Ca2+ channels. The actions of ciprofloxacin require further studies at the cellular level. These conclusions may account for clinical data that have been reported previously.

  3. Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; Braunstein, Thomas Hartig

    2015-01-01

    BACKGROUND: Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. METHODS...

  4. Effect of alectinib on cardiac electrophysiology: results from intensive electrocardiogram monitoring from the pivotal phase II NP28761 and NP28673 studies.

    Science.gov (United States)

    Morcos, Peter N; Bogman, Katrijn; Hubeaux, Stanislas; Sturm-Pellanda, Carolina; Ruf, Thorsten; Bordogna, Walter; Golding, Sophie; Zeaiter, Ali; Abt, Markus; Balas, Bogdana

    2017-03-01

    Alectinib, a central nervous system (CNS)-active ALK inhibitor, has demonstrated efficacy and safety in ALK+ non-small-cell lung cancer that has progressed following crizotinib treatment. Other ALK inhibitors have shown concentration-dependent QTc prolongation and treatment-related bradycardia. Therefore, this analysis evaluated alectinib safety in terms of electrophysiologic parameters. Intensive triplicate centrally read electrocardiogram (ECG) and matched pharmacokinetic data were collected across two alectinib single-arm trials. Analysis of QTcF included central tendency analysis [mean changes from baseline with one-sided upper 95% confidence intervals (CIs)], categorical analyses, and relationship between change in QTcF and alectinib plasma concentrations. Alectinib effects on other ECG parameters (heart rate, PR interval and QRS duration) were also evaluated. Alectinib did not cause a clinically relevant change in QTcF. The maximum mean QTcF change from baseline was 5.3 ms observed pre-dose at week 2. The upper one-sided 95% CI was exposure-dependent decrease in mean heart rate of ~11 to 13 beats per minute at week 2. No clinically relevant effects were seen on other ECG parameters. Approximately 5% of patients reported cardiac adverse events of bradycardia or sinus bradycardia; however, these were all grade 1-2. Alectinib does not prolong the QTc interval or cause changes in cardiac function to a clinically relevant extent, with the exception of a decrease in heart rate which was generally asymptomatic.

  5. Stimfit: quantifying electrophysiological data with Python

    Directory of Open Access Journals (Sweden)

    Segundo Jose Guzman

    2014-02-01

    Full Text Available Intracellular electrophysiological recordings provide crucial insights into elementary neuronal signals such as action potentials and synaptic currents. Analyzing and interpreting these signals is essential for a quantitative understanding of neuronal information processing, and requires both fast data visualization and ready access to complex analysis routines. To achieve this goal, we have developed Stimfit, a free software package for cellular neurophysiology with a Python scripting interface and a built-in Python shell. The program supports most standard file formats for cellular neurophysiology and other biomedical signals through the Biosig library. To quantify and interpret the activity of single neurons and communication between neurons, the program includes algorithms to characterize the kinetics of presynaptic action potentials and postsynaptic currents, estimate latencies between pre- and postsynaptic events, and detect spontaneously occurring events. We validate and benchmark these algorithms, give estimation errors, and provide sample use cases, showing that Stimfit represents an efficient, accessible and extensible way to accurately analyze and interpret neuronal signals.

  6. Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions

    International Nuclear Information System (INIS)

    Ma Yingliang; Housden, R. James; Razavi, Reza; Rhode, Kawal S.; Gogin, Nicolas; Cathier, Pascal; Gijsbers, Geert; Cooklin, Michael; O'Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo

    2013-01-01

    Purpose: X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric images can be used to add anatomical information. It is useful to know the position of the catheter electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso catheter can be used for road map motion correction.Methods: In this paper, the authors present a novel unified computational framework for image-based catheter detection and tracking without any user interaction. The proposed framework includes fast blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking methods were designed based on the customized catheter models input from the detection method. Three real-time detection and tracking methods are derived from the computational framework to detect or track the three most common types of catheters in EP procedures: the ablation catheter, the CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected and tracked simultaneously in real-time.Results: The catheter detection methods were tested on 105 different clinical fluoroscopy sequences taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 ± 0.29, 0.92 ± 0.61, and 0.63 ± 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, accuracies were increased to 0.45 ± 0.28, 0.64 ± 0.37, and 0.53 ± 0.38 mm and success rates increased to 100%, 99.2%, and 96

  7. Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.D., E-mail: jennifer.cohen@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Babiarz, J.E., E-mail: joshua.babiarz@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Abrams, R.M., E-mail: rory.abrams@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Guo, L., E-mail: liang.guo@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Kameoka, S., E-mail: sei.kameoka@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Chiao, E., E-mail: eric.chiao@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Taunton, J., E-mail: taunton@cmp.ucsf.edu [Howard Hughes Medical Institute, Cellular and Molecular Pharmacology, University California San Francisco, San Francisco, CA 94158 (United States); Kolaja, K.L., E-mail: kyle.kolaja@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States)

    2011-11-15

    Sunitinib, an oral tyrosine kinase inhibitor approved to treat advanced renal cell carcinoma and gastrointestinal stroma tumor, is associated with clinical cardiac toxicity. Although the precise mechanism of sunitinib cardiotoxicity is not known, both the key metabolic energy regulator, AMP-activated protein kinase (AMPK), and ribosomal S 6 kinase (RSK) have been hypothesized as causative, albeit based on rodent models. To study the mechanism of sunitinib-mediated cardiotoxicity in a human model, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) having electrophysiological and contractile properties of native cardiac tissue were investigated. Sunitinib was cardiotoxic in a dose-dependent manner with an IC{sub 50} in the low micromolar range, observed by a loss of cellular ATP, an increase in oxidized glutathione, and induction of apoptosis in iPSC-CMs. Pretreatment of iPSC-CMs with AMPK activators AICAR or metformin, increased the phosphorylation of pAMPK-T172 and pACC-S79, but only marginally attenuated sunitinib mediated cell death. Furthermore, additional inhibitors of AMPK were not directly cytotoxic to iPSC-CMs up to 250 {mu}M concentrations. Inhibition of RSK with a highly specific, irreversible, small molecule inhibitor (RSK-FMK-MEA) did not induce cytotoxicity in iPSC-CMs below 250 {mu}M. Extensive electrophysiological analysis of sunitinib and RSK-FMK-MEA mediated conduction effects were performed. Taken together, these findings suggest that inhibition of AMPK and RSK are not a major component of sunitinib-induced cardiotoxicity. Although the exact mechanism of cardiotoxicity of sunitinib is not known, it is likely due to inhibition of multiple kinases simultaneously. These data highlight the utility of human iPSC-CMs in investigating the potential molecular mechanisms underlying drug-induced cardiotoxicity. -- Highlights: Black-Right-Pointing-Pointer Cytoxic effect of sunitinib on human stem cell derived cardiomyocytes Black

  8. Sudden Cardiac Death Risk Stratification Based on Phase Shift and XYt Graph Methods

    Czech Academy of Sciences Publication Activity Database

    Kára, T.; Jurák, Pavel; Novák, M.; Souček, M.; Nováková, Z.; Halámek, Josef; Šumbera, J.; Toman, J.; Štejfa, M.; Řiháček, I.

    1999-01-01

    Roč. 22, 6-Part II (1999), s. A20 ISSN 0147-8389. [CPES /11./ - Cardiac Pacing and Electrophysiology. 27.06.1999-30.06.1999, Berlin] Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  9. Mathematical Models of Cardiac Pacemaking Function

    Science.gov (United States)

    Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak

    2013-10-01

    Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  10. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    International Nuclear Information System (INIS)

    Morton, M.J.; Armstrong, D.; Abi Gerges, N.; Bridgland-Taylor, M.; Pollard, C.E.; Bowes, J.; Valentin, J.-P.

    2014-01-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility

  11. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  12. Cardiac magnetic resonance imaging after ventricular tachyarrhythmias increases diagnostic precision and reduces the need for family screening for inherited cardiac disease

    DEFF Research Database (Denmark)

    Marstrand, Peter; Axelsson, Anna; Thune, Jens Jakob

    2016-01-01

    -CAG) (81%), exercise stress test (47%), late potentials (54%), electrophysiological study (44%), pharmacological provocation (44%), and/or myocardial biopsy (16%). Family screening was indicated for 53 probands (67%) prior to CMR. After full workup, only 43 cases (54%) warranted evaluation of relatives (19......AIMS: Guidelines recommend evaluation of family members of sudden cardiac death victims. However, initiation of cascade screening in families with uncertain diagnoses is not cost-effective and may cause unnecessary concern. For these reasons, we set out to assess to what extent cardiac magnetic...... resonance imaging (CMR) would increase the diagnostic precision and thereby possibly change the indication for family screening in patients with ventricular tachyarrhythmias. METHODS AND RESULTS: We retrospectively collected data from 79 patients hospitalized with aborted cardiac arrest (resuscitated from...

  13. Visual electrophysiology in children

    Directory of Open Access Journals (Sweden)

    Jelka Brecelj

    2005-10-01

    Full Text Available Background: Electrophysiological assessment of vision in children helps to recognise abnormal development of the visual system when it is still susceptible to medication and eventual correction. Visual electrophysiology provides information about the function of the retina (retinal pigment epithelium, cone and rod receptors, bipolar, amacrine, and ganglion cells, optic nerve, chiasmal and postchiasmal visual pathway, and visual cortex.Methods: Electroretinograms (ERG and visual evoked potentials (VEP are recorded non-invasively; in infants are recorded simultaneously ERG with skin electrodes, while in older children separately ERG with HK loop electrode in accordance with ISCEV (International Society for Clinical Electrophysiology of Vision recommendations.Results: Clinical and electrophysiological changes in children with nystagmus, Leber’s congenital amaurosis, achromatopsia, congenital stationary night blindness, progressive retinal dystrophies, optic nerve hypoplasia, albinism, achiasmia, optic neuritis and visual pathway tumours are presented.Conclusions: Electrophysiological tests can help to indicate the nature and the location of dysfunction in unclear ophthalmological and/or neurological cases.

  14. Wearable Multi-Channel Microelectrode Membranes for Elucidating Electrophysiological Phenotypes of Injured Myocardium

    Science.gov (United States)

    Cao, Hung; Yu, Fei; Zhao, Yu; Zhang, Xiaoxiao; Tai, Joyce; Lee, Juhyun; Darehzereshki, Ali; Bersohn, Malcolm; Lien, Ching-Ling; Chi, Neil C.; Tai, Yu-Chong; Hsiai, Tzung K.

    2014-01-01

    Understanding the regenerative capacity of small vertebrate models has provided new insights into the plasticity of injured myocardium. Here, we demonstrated the application of flexible microelectrode arrays (MEAs) in elucidating electrophysiological phenotypes of zebrafish and neonatal mouse models of heart regeneration. The 4-electrode MEA membranes were designed to detect electrical signals in the aquatic environment. They were micro-fabricated to adhere to the non-planar body surface of zebrafish and neonatal mice. The acquired signals were processed to display electrocardiogram (ECG) with high signal-to-noise-ratios, and were validated via the use of conventional micro-needle electrodes. The 4-channel MEA provided signal stability and spatial resolution, revealing the site-specific electrical injury currents such as ST-depression in response to ventricular cryo-injury. Thus, our polymer-based and wearable MEA membranes provided electrophysiological insights in long-term conduction phenotypes for small vertebral models of heart injury and regeneration with a translational implication for monitoring cardiac patients. PMID:24945366

  15. Relationship between natriuretic peptides and inflammation: proteomic evidence obtained during acute cellular cardiac allograft rejection in humans.

    Science.gov (United States)

    Meirovich, Yael F; Veinot, John P; de Bold, Mercedes L Kuroski; Haddad, Haissam; Davies, Ross A; Masters, Roy G; Hendry, Paul J; de Bold, Adolfo J

    2008-01-01

    Cardiac natriuretic peptides (NPs) atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) are polypeptide hormones secreted by the heart. Previously, we found that BNP, but not ANF, plasma levels may increase during an acute cellular cardiac allograft rejection episode. In vitro, the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) produced a selective increase of BNP gene expression and secretion. Other pro-inflammatory cytokines had no such effects. We identified cytokines associated with the selective upregulation of BNP during cardiac allograft rejection using a proteomics approach to measure 120 cytokines and related substances in the plasma of 16 transplant patients before, during and after an acute rejection episode. The values obtained were correlated with BNP plasma levels. Cytokines identified as being significantly related to BNP plasma levels were tested in neonatal rat ventricular cardiocytes in culture for their ability to selectively promote BNP secretion. The signaling pathway related to this phenomenon was pharmacologically characterized. Regulated-on-activation, normal T-expressed and secreted (RANTES), neutrophil-activating protein-2 (NAP-2) and insulin growth factor binding protein-1 (IGFBP-1) had significant correlations with BNP plasma levels during Grade 3A (Grade 2 revised [2R]) or above rejection as diagnosed by endomyocardial biopsy score according to the International Society for Heart and Lung Transplantation (ISHLT) grading system. In rat neonatal ventricular cardiocyte cultures, IGFBP-1 and RANTES were capable of promoting BNP, but not ANF secretion, as observed in rejecting patients. The BNP-promoting secretion activity of the identified cytokines was abolished by SB203580, a specific p38 MAP kinase inhibitor. This work shows that cytokines other than pro-inflammatory cytokines correlate with BNP plasma levels observed during acute cardiac allograft rejection, and that

  16. A molecular switch driving inactivation in the cardiac K+ channel HERG.

    Directory of Open Access Journals (Sweden)

    David A Köpfer

    Full Text Available K(+ channels control transmembrane action potentials by gating open or closed in response to external stimuli. Inactivation gating, involving a conformational change at the K(+ selectivity filter, has recently been recognized as a major K(+ channel regulatory mechanism. In the K(+ channel hERG, inactivation controls the length of the human cardiac action potential. Mutations impairing hERG inactivation cause life-threatening cardiac arrhythmia, which also occur as undesired side effects of drugs. In this paper, we report atomistic molecular dynamics simulations, complemented by mutational and electrophysiological studies, which suggest that the selectivity filter adopts a collapsed conformation in the inactivated state of hERG. The selectivity filter is gated by an intricate hydrogen bond network around residues S620 and N629. Mutations of this hydrogen bond network are shown to cause inactivation deficiency in electrophysiological measurements. In addition, drug-related conformational changes around the central cavity and pore helix provide a functional mechanism for newly discovered hERG activators.

  17. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Susann Björk

    2017-11-01

    Full Text Available Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs, cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and

  18. Analyzing the electrophysiological effects of local epicardial temperature in experimental studies with isolated hearts

    International Nuclear Information System (INIS)

    Tormos, Alvaro; Millet, José; Guill, Antonio; Chorro, Francisco J; Cánoves, Joaquín; Mainar, Luis; Such, Luis; Alberola, Antonio; Trapero, Isabel; Such-Miquel, Luis

    2008-01-01

    As a result of their modulating effects upon myocardial electrophysiology, both hypo- and hyperthermia can be used to study the mechanisms that generate or sustain cardiac arrhythmias. The present study describes an original electrode developed with thick-film technology and capable of controlling regional temperature variations in the epicardium while simultaneously registering its electrical activity. In this way, it is possible to measure electrophysiological parameters of the heart at different temperatures. The results obtained with this device in a study with isolated and perfused rabbit hearts are reported. An exploration has been made of the effects of local temperature changes upon the electrophysiological parameters implicated in myocardial conduction. Likewise, an analysis has been made of the influence of local temperature upon ventricular fibrillation activation frequency. It is concluded that both regional hypo- and hyperthermia exert reversible and opposite effects upon myocardial refractoriness and conduction velocity in the altered zone. The ventricular activation wavelength determined during constant pacing at 250 ms cycles is not significantly modified, however. During ventricular fibrillation, the changes in the fibrillatory frequency do not seem to be transmitted to normal temperature zones

  19. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    Science.gov (United States)

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    Electrode technology for electrophysiology has a long history of innovation, with some decisive steps including the development of the voltage-clamp measurement technique by Hodgkin and Huxley in the 1940s and the invention of the patch clamp electrode by Neher and Sakmann in the 1970s. The high-precision intracellular recording enabled by the patch clamp electrode has since been a gold standard in studying the fundamental cellular processes underlying the electrical activities of neurons and other excitable cells. One logical next step would then be to parallelize these intracellular electrodes, since simultaneous intracellular recording from a large number of cells will benefit the study of complex neuronal networks and will increase the throughput of electrophysiological screening from basic neurobiology laboratories to the pharmaceutical industry. Patch clamp electrodes, however, are not built for parallelization; as for now, only ∼10 patch measurements in parallel are possible. It has long been envisioned that nanoscale electrodes may help meet this challenge. First, nanoscale electrodes were shown to enable intracellular access. Second, because their size scale is within the normal reach of the standard top-down fabrication, the nanoelectrodes can be scaled into a large array for parallelization. Third, such a nanoelectrode array can be monolithically integrated with complementary metal-oxide semiconductor (CMOS) electronics to facilitate the large array operation and the recording of the signals from a massive number of cells. These are some of the central ideas that have motivated the research activity into nanoelectrode electrophysiology, and these past years have seen fruitful developments. This Account aims to synthesize these findings so as to provide a useful reference. Summing up from the recent studies, we will first elucidate the morphology and associated electrical properties of the interface between a nanoelectrode and a cellular membrane

  20. Real Patient and its Virtual Twin: Application of Quantitative Systems Toxicology Modelling in the Cardiac Safety Assessment of Citalopram.

    Science.gov (United States)

    Patel, Nikunjkumar; Wiśniowska, Barbara; Jamei, Masoud; Polak, Sebastian

    2017-11-27

    A quantitative systems toxicology (QST) model for citalopram was established to simulate, in silico, a 'virtual twin' of a real patient to predict the occurrence of cardiotoxic events previously reported in patients under various clinical conditions. The QST model considers the effects of citalopram and its most notable electrophysiologically active primary (desmethylcitalopram) and secondary (didesmethylcitalopram) metabolites, on cardiac electrophysiology. The in vitro cardiac ion channel current inhibition data was coupled with the biophysically detailed model of human cardiac electrophysiology to investigate the impact of (i) the inhibition of multiple ion currents (I Kr , I Ks , I CaL ); (ii) the inclusion of metabolites in the QST model; and (iii) unbound or total plasma as the operating drug concentration, in predicting clinically observed QT prolongation. The inclusion of multiple ion channel current inhibition and metabolites in the simulation with unbound plasma citalopram concentration provided the lowest prediction error. The predictive performance of the model was verified with three additional therapeutic and supra-therapeutic drug exposure clinical cases. The results indicate that considering only the hERG ion channel inhibition of only the parent drug is potentially misleading, and the inclusion of active metabolite data and the influence of other ion channel currents should be considered to improve the prediction of potential cardiac toxicity. Mechanistic modelling can help bridge the gaps existing in the quantitative translation from preclinical cardiac safety assessment to clinical toxicology. Moreover, this study shows that the QST models, in combination with appropriate drug and systems parameters, can pave the way towards personalised safety assessment.

  1. Pancreatic cellular injury after cardiac surgery with cardiopulmonary bypass: frequency, time course and risk factors.

    Science.gov (United States)

    Nys, Monique; Venneman, Ingrid; Deby-Dupont, Ginette; Preiser, Jean-Charles; Vanbelle, Sophie; Albert, Adelin; Camus, Gérard; Damas, Pierre; Larbuisson, Robert; Lamy, Maurice

    2007-05-01

    Although often clinically silent, pancreatic cellular injury (PCI) is relatively frequent after cardiac surgery with cardiopulmonary bypass; and its etiology and time course are largely unknown. We defined PCI as the simultaneous presence of abnormal values of pancreatic isoamylase and immunoreactive trypsin (IRT). The frequency and time evolution of PCI were assessed in this condition using assays for specific exocrine pancreatic enzymes. Correlations with inflammatory markers were searched for preoperative risk factors. One hundred ninety-three patients submitted to cardiac surgery were enrolled prospectively. Blood IRT, amylase, pancreatic isoamylase, lipase, and markers of inflammation (alpha1-protease inhibitor, alpha2-macroglobulin, myeloperoxidase) were measured preoperatively and postoperatively until day 8. The postoperative increase in plasma levels of pancreatic enzymes and urinary IRT was biphasic in all patients: early after surgery and later (from day 4 to 8 after surgery). One hundred thirty-three patients (69%) experienced PCI, with mean IRT, isoamylase, and alpha1-protease inhibitor values higher for each sample than that in patients without PCI. By multiple regression analysis, we found preoperative values of plasma IRT >or=40 ng/mL, amylase >or=42 IU/mL, and pancreatic isoamylase >or=20 IU/L associated with a higher incidence of postsurgery PCI (P < 0.005). In the PCI patients, a significant correlation was found between the 4 pancreatic enzymes and urinary IRT, total calcium, myeloperoxidase, alpha1-protease inhibitor, and alpha2-macroglobulin. These data support a high prevalence of postoperative PCI after cardiac surgery with cardiopulmonary bypass, typically biphasic and clinically silent, especially when pancreatic enzymes were elevated preoperatively.

  2. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  3. Mathematical Models of Cardiac Pacemaking Function

    Directory of Open Access Journals (Sweden)

    Pan eLi

    2013-10-01

    Full Text Available Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  4. Dose-Escalation Study for Cardiac Radiosurgery in a Porcine Model

    Energy Technology Data Exchange (ETDEWEB)

    Blanck, Oliver, E-mail: oliver.blanck@uksh.de [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); CyberKnife Center Northern Germany, Guestrow (Germany); Bode, Frank [Medical Department II, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Gebhard, Maximilian [Institute of Pathology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Hunold, Peter [Department of Radiology and Nuclear Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Brandt, Sebastian [Department of Anaesthesiology and Intensive Care Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Bruder, Ralf [Institute for Robotics and Cognitive Systems, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Grossherr, Martin [Department of Anaesthesiology and Intensive Care Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Vonthein, Reinhard [Institute of Medical Biometry and Statistics, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Rades, Dirk [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Dunst, Juergen [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); University Copenhagen (Denmark)

    2014-07-01

    Purpose: To perform a proof-of-principle dose-escalation study to radiosurgically induce scarring in cardiac muscle tissue to block veno-atrial electrical connections at the pulmonary vein antrum, similar to catheter ablation. Methods and Materials: Nine mini-pigs underwent pretreatment magnetic resonance imaging (MRI) evaluation of heart function and electrophysiology assessment by catheter measurements in the right superior pulmonary vein (RSPV). Immediately after examination, radiosurgery with randomized single-fraction doses of 0 and 17.5-35 Gy in 2.5-Gy steps were delivered to the RSPV antrum (target volume 5-8 cm{sup 3}). MRI and electrophysiology were repeated 6 months after therapy, followed by histopathologic examination. Results: Transmural scarring of cardiac muscle tissue was noted with doses ≥32.5 Gy. However, complete circumferential scarring of the RSPV was not achieved. Logistic regressions showed that extent and intensity of fibrosis significantly increased with dose. The 50% effective dose for intense fibrosis was 31.3 Gy (odds ratio 2.47/Gy, P<.01). Heart function was not affected, as verified by MRI and electrocardiogram evaluation. Adjacent critical structures were not damaged, as verified by pathology, demonstrating the short-term safety of small-volume cardiac radiosurgery with doses up to 35 Gy. Conclusions: Radiosurgery with doses >32.5 Gy in the healthy pig heart can induce circumscribed scars at the RSPV antrum noninvasively, mimicking the effect of catheter ablation. In our study we established a significant dose-response relationship for cardiac radiosurgery. The long-term effects and toxicity of such high radiation doses need further investigation in the pursuit of cardiac radiosurgery for noninvasive treatment of atrial fibrillation.

  5. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Jordan S. Leyton-Mange

    2014-02-01

    Full Text Available In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity.

  6. DIGE proteome analysis reveals suitability of ischemic cardiac in vitro model for studying cellular response to acute ischemia and regeneration.

    Directory of Open Access Journals (Sweden)

    Sina Haas

    Full Text Available Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy.With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research.

  7. Novel experimental results in human cardiac electrophysiology: measurement of the Purkinje fibre action potential from the undiseased human heart.

    Science.gov (United States)

    Nagy, Norbert; Szél, Tamás; Jost, Norbert; Tóth, András; Gy Papp, Julius; Varró, András

    2015-09-01

    Data obtained from canine cardiac electrophysiology studies are often extrapolated to the human heart. However, it has been previously demonstrated that because of the lower density of its K(+) currents, the human ventricular action potential has a less extensive repolarization reserve. Since the relevance of canine data to the human heart has not yet been fully clarified, the aim of the present study was to determine for the first time the action potentials of undiseased human Purkinje fibres (PFs) and to compare them directly with those of dog PFs. All measurements were performed at 37 °C using the conventional microelectrode technique. At a stimulation rate of 1 Hz, the plateau potential of human PFs is more positive (8.0 ± 1.8 vs 8.6 ± 3.4 mV, n = 7), while the amplitude of the spike is less pronounced. The maximal rate of depolarization is significantly lower in human PKs than in canine PFs (406.7 ± 62 vs 643 ± 36 V/s, respectively, n = 7). We assume that the appreciable difference in the protein expression profiles of the 2 species may underlie these important disparities. Therefore, caution is advised when canine PF data are extrapolated to humans, and further experiments are required to investigate the characteristics of human PF repolarization and its possible role in arrhythmogenesis.

  8. Effects of local cardiac denervation on cardiac innervation and ventricular arrhythmia after chronic myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    Full Text Available Modulation of the autonomic nervous system (ANS has already been demonstrated to display antiarrhythmic effects in patients and animals with MI. In this study, we investigated whether local cardiac denervation has any beneficial effects on ventricular electrical stability and cardiac function in the chronic phase of MI.Twenty-one anesthetized dogs were randomly assigned into the sham-operated, MI and MI-ablation groups, respectively. Four weeks after local cardiac denervation, LSG stimulation was used to induce VPCs and VAs. The ventricular fibrillation threshold (VFT and the incidence of inducible VPCs were measured with electrophysiological protocol. Cardiac innervation was determined with immunohistochemical staining of growth associated protein-43 (GAP43 and tyrosine hydroxylase (TH. The global cardiac and regional ventricular function was evaluated with doppler echocardiography in this study.Four weeks after operation, the incidence of inducible VPC and VF in MI-ablation group were significantly reduced compared to the MI dogs (p<0.05. Moreover, local cardiac denervation significantly improved VFT in the infarcted border zone (p<0.05. The densities of GAP43 and TH-positive nerve fibers in the infarcted border zone in the MI-ablation group were lower than those in the MI group (p<0.05. However, the local cardiac denervation did not significantly improve cardiac function in the chronic phase of MI, determined by the left ventricle diameter (LV, left atrial diameter (LA, ejection fraction (EF.Summarily, in the chronic phase of MI, local cardiac denervation reduces the ventricular electrical instability, and attenuates spatial heterogeneity of sympathetic nerve reconstruction. Our study suggests that this methodology might decrease malignant ventricular arrhythmia in chronic MI, and has a great potential for clinical application.

  9. Electrophysiological changes in patients with liver cirrhosis in a tertiary care hospital in karachi, pakistan

    International Nuclear Information System (INIS)

    Parkash, O.; Mohyuddin, G.R.; Ayub, A.; Nazir, I.

    2017-01-01

    Electrophysiological changes in cirrhosis are well known but least investigated especially in our country hence we wanted to see electrophysiological changes especially QT interval in cirrhotic patients. Methods: A cross-sectional study was conducted at Aga Khan University Hospital Karachi (AKUH) in which medical records (duration 2008-2010) of cirrhotic patients were reviewed. Results: Three hundred and eighty cirrhotic patients' charts were studied, 227 (59.7 percent) were male and mean age of this cohort was 52.8+-12.6 years. The most common cause for CLD was Hepatitis C (CHC) in 260 (68.4 percent), NBNC in 56(14.7 percent) and HBV in 51 (13.4 percent). Only 225 had complete ECG workup, the mean corrected QT interval was 0.44+-0.067 sec. Among the electrophysiological abnormalities, 79 (35 percent) had a prolonged corrected QT interval, 7 (3.1 percent) had a prolonged PR interval (>0.22s) and prolonged QRS duration was seen in 23 (10.4 percent) patients. QT prolongation was seen in 1 of the 5 patients with Child Class A (20 percent), 22 of the 73 patients with Child Class B (30.1 percent), and 25 of the 61 patients with Child Class C (41 percent). However, this difference however was not statistically significant. (p value=.331). Conclusion: We conclude that QT prolongation is more frequent in patients with liver cirrhosis especially when the disease is more advanced like in Child C hence these patients are more prone to sudden cardiac death. Moreover, this study shows that the risk associated with QT prolongation is present through all classes of liver cirrhosis. We recommend that routine cardiac screening with ECG of all cirrhotic patients be performed. (author)

  10. Living cardiac patch: the elixir for cardiac regeneration.

    Science.gov (United States)

    Lakshmanan, Rajesh; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2012-12-01

    A thorough understanding of the cellular and muscle fiber orientation in left ventricular cardiac tissue is of paramount importance for the generation of artificial cardiac patches to treat the ischemic myocardium. The major challenge faced during cardiac patch engineering is to choose a perfect combination of three entities; cells, scaffolds and signaling molecules comprising the tissue engineering triad for repair and regeneration. This review provides an overview of various scaffold materials, their mechanical properties and fabrication methods utilized in cardiac patch engineering. Stem cell therapies in clinical trials and the commercially available cardiac patch materials were summarized in an attempt to provide a recent perspective in the treatment of heart failure. Various tissue engineering strategies employed thus far to construct viable thick cardiac patches is schematically illustrated. Though many strategies have been proposed for fabrication of various cardiac scaffold materials, the stage and severity of the disease condition demands the incorporation of additional cues in a suitable scaffold material. The scaffold may be nanofibrous patch, hydrogel or custom designed films. Integration of stem cells and biomolecular cues along with the scaffold may provide the right microenvironment for the repair of unhealthy left ventricular tissue as well as promote its regeneration.

  11. Cellular immune response in prognosis of Bell's palsy and its ...

    African Journals Online (AJOL)

    Objective: To determine the cellular immune response in Bell's palsy (BP) and its prognostic value in relation to clinical and electrophysiological findings. Methods: Twenty patients with BP were subjected to: Facial nerve paralysis assessment according to House–Brackmann (H&B) grading system, bilateral facial nerve ...

  12. Boosters and barriers for direct cardiac reprogramming.

    Science.gov (United States)

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Human cardiac telocytes: 3D imaging by FIB-SEM tomography.

    Science.gov (United States)

    Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M

    2014-11-01

    Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs' three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Characterization of Glutamatergic Neurons in the Rat Atrial Intrinsic Cardiac Ganglia that Project to the Cardiac Ventricular Wall

    Science.gov (United States)

    Wang, Ting; Miller, Kenneth E.

    2016-01-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside intrinsic cardiac ganglia. In the present study, rat intrinsic cardiac ganglia neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) intrinsic cardiac ganglia contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial intrinsic cardiac ganglia contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT. (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG

  15. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress

    Science.gov (United States)

    Navarro-Zaragoza, Javier; Ros-Simó, Clara; Milanés, María-Victoria; Valverde, Olga; Laorden, María-Luisa

    2015-01-01

    Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone. PMID:26509576

  16. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress.

    Directory of Open Access Journals (Sweden)

    Javier Navarro-Zaragoza

    Full Text Available Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA. The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27, after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA. Drinking in the dark (DID procedure was used as a model of binge. Noradrenaline (NA turnover, tyrosine hydroxylase (TH, TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN were determined by high-performance liquid chromatography (HPLC; TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone.

  17. Heart beats in the cloud: distributed analysis of electrophysiological 'Big Data' using cloud computing for epilepsy clinical research.

    Science.gov (United States)

    Sahoo, Satya S; Jayapandian, Catherine; Garg, Gaurav; Kaffashi, Farhad; Chung, Stephanie; Bozorgi, Alireza; Chen, Chien-Hun; Loparo, Kenneth; Lhatoo, Samden D; Zhang, Guo-Qiang

    2014-01-01

    The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorithms and informatics approaches using new cloud computing technologies as well as ontologies for collaborative multicenter studies. We present the Cloudwave platform, which (a) defines parallelized algorithms for computing cardiac measures using the MapReduce parallel programming framework, (b) supports real-time interaction with large volumes of electrophysiological signals, and (c) features signal visualization and querying functionalities using an ontology-driven web-based interface. Cloudwave is currently used in the multicenter National Institute of Neurological Diseases and Stroke (NINDS)-funded Prevention and Risk Identification of SUDEP (sudden unexplained death in epilepsy) Mortality (PRISM) project to identify risk factors for sudden death in epilepsy. Comparative evaluations of Cloudwave with traditional desktop approaches to compute cardiac measures (eg, QRS complexes, RR intervals, and instantaneous heart rate) on epilepsy patient data show one order of magnitude improvement for single-channel ECG data and 20 times improvement for four-channel ECG data. This enables Cloudwave to support real-time user interaction with signal data, which is semantically annotated with a novel epilepsy and seizure ontology. Data privacy is a critical issue in using cloud infrastructure, and cloud platforms, such as Amazon Web Services, offer features to support Health Insurance Portability and Accountability Act standards. The Cloudwave platform is a new approach to leverage of large-scale electrophysiological data for advancing multicenter clinical research.

  18. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... peptides has only been elucidated during the last decade. The cellular synthesis including amino acid modifications and proteolytic cleavages has proven considerably more complex than initially perceived. Consequently, the elimination phase of the peptide products in circulation is not yet well....... An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  19. Changes in the action potential and transient outward potassium current in cardiomyocytes during acute cardiac rejection in rats.

    Science.gov (United States)

    Luo, Wenqi; Jia, Yixin; Zheng, Shuai; Li, Yan; Han, Jie; Meng, Xu

    2017-01-01

    Acute cardiac rejection contributes to the changes in the electrophysiological properties of grafted hearts. However, the electrophysiological changes of cardiomyocytes during acute cardiac rejection are still unknown. An understanding of the electrophysiological mechanisms of cardiomyocytes could improve the diagnosis and treatment of acute cardiac rejection. So it is important to characterize the changes in the action potential ( AP ) and the transient outward potassium current ( I to ) in cardiomyocytes during acute cardiac rejection. Heterotopic heart transplantation was performed in allogeneic [Brown Norway (BN)-to-Lewis] and isogeneic (BN-to-BN) rats. Twenty models were established in each group. Ten recipients were sacrificed at the 2nd day and the other ten recipients were sacrificed at the 4 th day after the operation in each group. Histopathological examinations of the grafted hearts were performed in half of the recipients in each group randomly. The other half of the grafted hearts were excised rapidly and enzymatically dissociated to obtain single cardiomyocytes. The AP and I to current were recorded using the whole cell patch-clamp technique. Forty grafted hearts were successfully harvested and used in experiments. Histologic examination showed mild rejection at the 2 nd day and moderate rejection at the 4 th day in the allogeneic group after cardiac transplantation, while no evidence of histologic lesions of rejection were observed in the isogeneic group. Compared with the isogeneic group, the action potential duration ( APD ) of cardiomyocytes in the allogeneic group was significantly prolonged ( APD 90 was 49.28±5.621 mV in the isogeneic group and 88.08±6.445 mV in the allogeneic group at the 2 nd day, P=0.0016; APD 90 was 59.34±5.183 mV in the isogeneic group and 104.0±9.523 mV in the allogeneic group at the 4 th day, P=0.0064). The current density of I to was significantly decreased at the 4 th day after cardiac transplantation. The APD of

  20. Generation and customization of biosynthetic excitable tissues for electrophysiological studies and cell-based therapies.

    Science.gov (United States)

    Nguyen, Hung X; Kirkton, Robert D; Bursac, Nenad

    2018-05-01

    We describe a two-stage protocol to generate electrically excitable and actively conducting cell networks with stable and customizable electrophysiological phenotypes. Using this method, we have engineered monoclonally derived excitable tissues as a robust and reproducible platform to investigate how specific ion channels and mutations affect action potential (AP) shape and conduction. In the first stage of the protocol, we combine computational modeling, site-directed mutagenesis, and electrophysiological techniques to derive optimal sets of mammalian and/or prokaryotic ion channels that produce specific AP shape and conduction characteristics. In the second stage of the protocol, selected ion channels are stably expressed in unexcitable human cells by means of viral or nonviral delivery, followed by flow cytometry or antibiotic selection to purify the desired phenotype. This protocol can be used with traditional heterologous expression systems or primary excitable cells, and application of this method to primary fibroblasts may enable an alternative approach to cardiac cell therapy. Compared with existing methods, this protocol generates a well-defined, relatively homogeneous electrophysiological phenotype of excitable cells that facilitates experimental and computational studies of AP conduction and can decrease arrhythmogenic risk upon cell transplantation. Although basic cell culture and molecular biology techniques are sufficient to generate excitable tissues using the described protocol, experience with patch-clamp techniques is required to characterize and optimize derived cell populations.

  1. Current concepts in nuclear pore electrophysiology.

    Science.gov (United States)

    Bustamante, José Omar

    2006-01-01

    Over 4 decades ago, microelectrode studies of in situ nuclei showed that, under certain conditions, the nuclear envelope (NE) behaves as a barrier opposing the nucleocytoplasmic flow of physiological ions. As the nuclear pore complexes (NPCs) of the NE are the only pathways for direct nucleocytoplasmic flow, those experiments implied that the NPCs are capable of restricting ion flow. These early studies validated electrophysiology as a useful approach to quantify some of the mechanisms by which NPCs mediate gene activity and expression. Since electron microscopy (EM) and other non-electrophysiological investigations, showed that the NPC lumen is a nanochannel, the opinion prevailed that the NPC could not oppose the flow of ions and, therefore, that electrophysiological observations resulted from technical artifacts. Consequently, the initial enthusiasm with nuclear electrophysiology faded out in less than a decade. In 1990, nuclear electrophysiology was revisited with patch-clamp, the most powerful electrophysiological technique to date. Patch-clamp has consistently demonstrated that the NE has intrinsic ion channel activity. Direct demonstrations of the NPC on-off ion channel gating behavior were published for artificial conditions in 1995 and for intact living nuclei in 2002. This on-off switching/gating behavior can be interpreted in terms of a metastable energy barrier. In the hope of advancing nuclear electrophysiology, and to complement the other papers contained in this special issue of the journal, here I review some of the main technical, experimental, and theoretical issues of the field, with special focus on NPCs.

  2. Particles Alter Diesel Exhaust Gases-Induced Hypotension, Cardiac Arrhythmia,Conduction Disturbance, and Autonomic Imbalance in Heart Failure-Prone Rats

    Science.gov (United States)

    Epidemiologic studies indicate that acute exposures to vehicular traffic and particulate matter (PM) air pollution are key causes of fatal cardiac arrhythmia, especially in those with preexisting cardiovascular disease. Researchers point to electrophysiologic dysfunction and auto...

  3. Cellular and molecular studies of the effects of a selective COX-2 inhibitor celecoxib in the cardiac cell line H9c2 and their correlation with death mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, K.K. [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP (Brazil); Monteiro, C.J.; Silva, W.; Silva, A.R. [Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG (Brazil); Santos, P.M. [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP (Brazil); Lima, K.F. [Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG (Brazil); Moraes, K.C.M. [Instituto de Biociências, Departamento de Biologia, Universidade Estadual Paulista ‘‘Júlio de Mesquita Filho’’, Rio Claro, SP (Brazil)

    2013-11-29

    Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival.

  4. The importance of mechano-electrical feedback and inertia in cardiac electromechanics.

    Science.gov (United States)

    Costabal, Francisco Sahli; Concha, Felipe A; Hurtado, Daniel E; Kuhl, Ellen

    2017-06-15

    In the past years, a number cardiac electromechanics models have been developed to better understand the excitation-contraction behavior of the heart. However, there is no agreement on whether inertial forces play a role in this system. In this study, we assess the influence of mass in electromechanical simulations, using a fully coupled finite element model. We include the effect of mechano-electrical feedback via stretch activated currents. We compare five different models: electrophysiology, electromechanics, electromechanics with mechano-electrical feedback, electromechanics with mass, and electromechanics with mass and mechano-electrical feedback. We simulate normal conduction to study conduction velocity and spiral waves to study fibrillation. During normal conduction, mass in conjunction with mechano-electrical feedback increased the conduction velocity by 8.12% in comparison to the plain electrophysiology case. During the generation of a spiral wave, mass and mechano-electrical feedback generated secondary wavefronts, which were not present in any other model. These secondary wavefronts were initiated in tensile stretch regions that induced electrical currents. We expect that this study will help the research community to better understand the importance of mechanoelectrical feedback and inertia in cardiac electromechanics.

  5. Acute cardiac failure in neuroleptic malignant syndrome.

    LENUS (Irish Health Repository)

    Sparrow, Patrick

    2012-02-03

    We present a case of rapid onset acute cardiac failure developing as part of neuroleptic malignant syndrome in a 35-year-old woman following treatment with thioridazine and lithium. Post mortem histology of cardiac and skeletal muscle showed similar changes of focal cellular necrosis and vacuolation suggesting a common disease process.

  6. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    Science.gov (United States)

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to

  7. Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    KAUST Repository

    Fink, Martin; Niederer, Steven A.; Cherry, Elizabeth M.; Fenton, Flavio H.; Koivumä ki, Jussi T.; Seemann, Gunnar; Thul, Rü diger; Zhang, Henggui; Sachse, Frank B.; Beard, Dan; Crampin, Edmund J.; Smith, Nicolas P.

    2011-01-01

    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field. © 2010 Elsevier Ltd.

  8. FGF-23 dysregulates calcium homeostasis and electrophysiological properties in HL-1 atrial cells.

    Science.gov (United States)

    Kao, Yu-Hsun; Chen, Yao-Chang; Lin, Yung-Kuo; Shiu, Rong-Jie; Chao, Tze-Fan; Chen, Shih-Ann; Chen, Yi-Jen

    2014-08-01

    Fibroblast growth factor (FGF)-23 is a key regulator of phosphate homeostasis. Higher FGF-23 levels are correlated with poor outcomes in cardiovascular diseases. FGF-23 can produce cardiac hypertrophy and increase intracellular calcium, which can change cardiac electrical activity. However, it is not clear whether FGF-23 possesses arrhythmogenic potential through calcium dysregulation. Therefore, the purposes of this study were to evaluate the electrophysiological effects of FGF-23 and identify the underlying mechanisms. Patch clamp, confocal microscope with Fluo-4 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis and calcium regulatory proteins in HL-1 atrial myocytes with and without FGF-23 (10 and 25 ng/mL) incubation for 24 h. FGF-23 (25 ng/mL) increased L-type calcium currents, calcium transient and sarcoplasmic reticulum Ca(2+) contents in HL-1 cells. FGF-23 (25 ng/mL)-treated cells (n = 14) had greater incidences (57%, 17% and 15%, P calcium/calmodulin-dependent protein kinase IIδ and phospholamban (PLB) at threonine 17 but had similar phosphorylation extents of PLB at serine 16, total PLB and sarcoplasmic reticulum Ca(2+) -ATPase protein. Moreover, the FGF receptor inhibitor (PD173074, 10 nM), calmodulin inhibitor (W7, 5 μM) and phospholipase C inhibitor (U73122, 1 μM) attenuated the effects of FGF-23 on calcium/calmodulin-dependent protein kinase II phosphorylation. FGF-23 increases HL-1 cells arrhythmogenesis with calcium dysregulation through modulating calcium-handling proteins. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  9. Cardiac-Derived Extracellular Matrix Enhances Cardiogenic Properties of Human Cardiac Progenitor Cells

    NARCIS (Netherlands)

    Gaetani, Roberto; Yin, Christopher; Srikumar, Neha; Braden, Rebecca; Doevendans, Pieter A; Sluijter, Joost P G; Christman, Karen L

    2016-01-01

    The use of biomaterials has been demonstrated as a viable strategy to promote cell survival and cardiac repair. However, limitations on combinational cell-biomaterial therapies exist, as cellular behavior is influenced by the microenvironment and physical characteristics of the material. Among the

  10. Normal Values for Heart Electrophysiology Parameters of Healthy Swine Determined on Electrophysiology Study.

    Science.gov (United States)

    Noszczyk-Nowak, Agnieszka; Cepiel, Alicja; Janiszewski, Adrian; Pasławski, Robert; Gajek, Jacek; Pasławska, Urszula; Nicpoń, Józef

    2016-01-01

    Swine are a well-recognized animal model for human cardiovascular diseases. Despite the widespread use of porcine model in experimental electrophysiology, still no reference values for intracardiac electrical activity and conduction parameters determined during an invasive electrophysiology study (EPS) have been developed in this species thus far. The aim of the study was to develop a set of normal values for intracardiac electrical activity and conduction parameters determined during an invasive EPS of swine. The study included 36 healthy domestic swine (24-40 kg body weight). EPS was performed under a general anesthesia with midazolam, propofol and isoflurane. The reference values for intracardiac electrical activity and conduction parameters were calculated as arithmetic means ± 2 standard deviations. The reference values were determined for AH, HV and PA intervals, interatrial conduction time at its own and imposed rhythm, sinus node recovery time (SNRT), corrected sinus node recovery time (CSNRT), anterograde and retrograde Wenckebach points, atrial, atrioventricular node and ventricular refractory periods. No significant correlations were found between body weight and heart rate of the examined pigs and their electrophysiological parameters. The hereby presented reference values can be helpful in comparing the results of various studies, as well as in more accurately estimating the values of electrophysiological parameters that can be expected in a given experiment.

  11. Electrical Stimulation of Artificial Heart Muscle: a look into the electrophysiological and genetic implications

    Science.gov (United States)

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    2016-01-01

    Development of tissue-engineered hearts for treatment of myocardial infarction or biological pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. In order to further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histological observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHM. Improvements in electrophysiology within the AHM was noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHM. Genes expressing key electrophysiological and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHM capable of replacing damaged heart tissue in either a contractile or electrophysiological capacity. Optimized AHM can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis. PMID:28459744

  12. Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications.

    Science.gov (United States)

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    Development of tissue-engineered hearts for treatment of myocardial infarction or biologic pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. To further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histologic observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHMs. Improvements in electrophysiology within the AHM were noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHMs. Genes expressing key electrophysiologic and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHMs capable of replacing damaged heart tissue in either a contractile or electrophysiologic capacity. Optimized AHMs can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis.

  13. Toll-like receptor 9 mediated responses in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Ingrid Kristine Ohm

    Full Text Available Altered cardiac Toll-like receptor 9 (TLR9 signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β. Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088 or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.

  14. Applications of Dynamic Clamp to Cardiac Arrhythmia Research: Role in Drug Target Discovery and Safety Pharmacology Testing

    Directory of Open Access Journals (Sweden)

    Francis A. Ortega

    2018-01-01

    Full Text Available Dynamic clamp, a hybrid-computational-experimental technique that has been used to elucidate ionic mechanisms underlying cardiac electrophysiology, is emerging as a promising tool in the discovery of potential anti-arrhythmic targets and in pharmacological safety testing. Through the injection of computationally simulated conductances into isolated cardiomyocytes in a real-time continuous loop, dynamic clamp has greatly expanded the capabilities of patch clamp outside traditional static voltage and current protocols. Recent applications include fine manipulation of injected artificial conductances to identify promising drug targets in the prevention of arrhythmia and the direct testing of model-based hypotheses. Furthermore, dynamic clamp has been used to enhance existing experimental models by addressing their intrinsic limitations, which increased predictive power in identifying pro-arrhythmic pharmacological compounds. Here, we review the recent advances of the dynamic clamp technique in cardiac electrophysiology with a focus on its future role in the development of safety testing and discovery of anti-arrhythmic drugs.

  15. Comprehensive multilevel in vivo and in vitro analysis of heart rate fluctuations in mice by ECG telemetry and electrophysiology.

    Science.gov (United States)

    Fenske, Stefanie; Pröbstle, Rasmus; Auer, Franziska; Hassan, Sami; Marks, Vanessa; Pauza, Danius H; Biel, Martin; Wahl-Schott, Christian

    2016-01-01

    The normal heartbeat slightly fluctuates around a mean value; this phenomenon is called physiological heart rate variability (HRV). It is well known that altered HRV is a risk factor for sudden cardiac death. The availability of genetic mouse models makes it possible to experimentally dissect the mechanism of pathological changes in HRV and its relation to sudden cardiac death. Here we provide a protocol that allows for a comprehensive multilevel analysis of heart rate (HR) fluctuations. The protocol comprises a set of techniques that include in vivo telemetry and in vitro electrophysiology of intact sinoatrial network preparations or isolated single sinoatrial node (SAN) cells. In vitro preparations can be completed within a few hours, with data acquisition within 1 d. In vivo telemetric ECG requires 1 h for surgery and several weeks for data acquisition and analysis. This protocol is of interest to researchers investigating cardiovascular physiology and the pathophysiology of sudden cardiac death.

  16. Long-term cardiac memory in canine heart is associated with the evolution of a transmural repolarization gradient

    NARCIS (Netherlands)

    Coronel, Ruben; Opthof, Tobias; Plotnikov, Alexei N.; Wilms-Schopman, Francien J. G.; Shlapakova, Iryna N.; Danilo, Peter; Sosunov, Eugene A.; Anyukhovsky, Evgeny P.; Janse, Michiel J.; Rosen, Michael R.

    2007-01-01

    OBJECTIVE: The contribution of regional electrophysiologic heterogeneity to the T-wave changes of long-term cardiac memory (CM) is not known. We mapped activation and repolarization in dogs after induction of CM and in sham animals. METHODS AND RESULTS: CM was induced by three weeks of AV-sequential

  17. Mechanical perturbation control of cardiac alternans

    Science.gov (United States)

    Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan

    2018-05-01

    Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.

  18. The E-domain region of mechano-growth factor inhibits cellular apoptosis and preserves cardiac function during myocardial infarction.

    Science.gov (United States)

    Mavrommatis, Evangelos; Shioura, Krystyna M; Los, Tamara; Goldspink, Paul H

    2013-09-01

    Insulin-like growth factor-1 (IGF-1) isoforms are expressed via alternative splicing. Expression of the minor isoform IGF-1Eb [also known as mechano-growth factor (MGF)] is responsive to cell stress. Since IGF-1 isoforms differ in their E-domain regions, we are interested in determining the biological function of the MGF E-domain. To do so, a synthetic peptide analog was used to gain mechanistic insight into the actions of the E-domain. Treatment of H9c2 cells indicated a rapid cellular uptake mechanism that did not involve IGF-1 receptor activation but resulted in a nuclear localization. Peptide treatment inhibited the intrinsic apoptotic pathway in H9c2 cells subjected to cell stress with sorbitol by preventing the collapse of the mitochondrial membrane potential and inhibition of caspase-3 activation. Therefore, we administered the peptide at the time of myocardial infarction (MI) in mice. At 2 weeks post-MI cardiac function, gene expression and cell death were assayed. A significant decline in both systolic and diastolic function was evident in untreated mice based on PV loop analysis. Delivery of the E-peptide ameliorated the decline in function and resulted in significant preservation of cardiac contractility. Associated with these changes were an inhibition of pathologic hypertrophy and significantly fewer apoptotic nuclei in the viable myocardium of E-peptide-treated mice post-MI. We conclude that administration of the MGF E-domain peptide may provide a means of modulating local tissue IGF-1 autocrine/paracrine actions to preserve cardiac function, prevent cell death, and pathologic remodeling in the heart.

  19. Alcohol, cardiac arrhythmias and sudden death.

    Science.gov (United States)

    Kupari, M; Koskinen, P

    1998-01-01

    Studies in experimental animals have shown varying and apparently opposite effects of alcohol on cardiac rhythm and conduction. Given acutely to non-alcoholic animals, ethanol may even have anti-arrhythmic properties whereas chronic administration clearly increases the animals' susceptibility to cardiac arrhythmias. Chronic heavy alcohol use has been incriminated in the genesis of cardiac arrhythmias in humans. The evidence has come from clinical observations, retrospective case-control studies, controlled studies of consecutive admissions for arrhythmias, and prospective epidemiological investigations. Furthermore, electrophysiological studies have shown that acute alcohol administration facilitates the induction of tachyarrhythmias in selected heavy drinkers. The role of alcohol appears particularly conspicuous in idiopathic atrial fibrillation. Occasionally, ventricular tachyarrhythmias have also been provoked by alcohol intake. Several lines of evidence suggest that heavy drinking increases the risk of sudden cardiac death with fatal arrhythmia as the most likely mechanism. According to epidemiological studies this effect appears most prominent in middle-aged men and is only partly explained by confounding traits such as smoking and social class. The basic arrhythmogenic effects of alcohol are still insufficiently delineated. Subclinical heart muscle injury from chronic heavy use may be instrumental in producing patchy delays in conduction. The hyperadrenergic state of drinking and withdrawal may also contribute, as may electrolyte abnormalities, impaired vagal heart rate control, repolarization abnormalities with prolonged QT intervals and worsening of myocardial ischaemia or sleep apnoea. Most of what we know about alcohol and arrhythmias relates to heavy drinking. The effect of social drinking on clinical arrhythmias in non-alcoholic cardiac patients needs to be addressed further.

  20. Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators

    Science.gov (United States)

    Shin, Su Ryon; Jung, Sung Mi; Zalabany, Momen; Kim, Keekyoung; Zorlutuna, Pinar; Kim, Sang bok; Nikkhah, Mehdi; Khabiry, Masoud; Azize, Mohamed; Kong, Jing; Wan, Kai-tak; Palacios, Tomas; Dokmeci, Mehmet R.; Bae, Hojae; Tang, Xiaowu (Shirley); Khademhosseini, Ali

    2013-01-01

    We engineered functional cardiac patches by seeding neonatal rat cardiomyocytes onto carbon nanotube (CNT) incorporated photocrosslinkable gelatin methacrylate (GelMA) hydrogel. The resulting cardiac constructs showed excellent mechanical integrity and advanced electrophysiological functions. Specifically, myocardial tissues cultured on 50 μm thick CNT-GelMA showed 3 times higher spontaneous synchronous beating rates and 85% lower excitation threshold, compared to those cultured on pristine GelMA hydrogels. Our results indicate that the electrically conductive and nanofibrous networks formed by CNTs within a porous gelatin framework is the key characteristics of CNT-GelMA leading to improved cardiac cell adhesion, organization, and cell-cell coupling. Centimeter-scale patches were released from glass substrates to form 3D biohybrid actuators, which showed controllable linear cyclic contraction/extension, pumping, and swimming actuations. In addition, we demonstrate for the first time that cardiac tissues cultured on CNT-GelMA resist damage by a model cardiac inhibitor as well as a cytotoxic compound. Therefore, incorporation of CNTs into gelatin, and potentially other biomaterials, could be useful in creating multifunctional cardiac scaffolds for both therapeutic purposes and in vitro studies. These hybrid materials could also be used for neuron and other muscle cells to create tissue constructs with improved organization, electroactivity, and mechanical integrity. PMID:23363247

  1. Illicit drugs and cardiac arrhythmias in athletes.

    Science.gov (United States)

    Furlanello, Francesco; Serdoz, Laura Vitali; Cappato, Riccardo; De Ambroggi, Luigi

    2007-08-01

    The current management of athletes with cardiac arrhythmias has become complicated by the widespread use of illicit drugs, which can be arrhythmogenic. The World Anti-Doping Agency annually updates a list of prohibited substances and methods banned by the International Olympic Committee that includes different classes of substances namely, anabolic androgenic steroids, hormones and related substances, beta2-agonists, diuretics, stimulants, narcotics, cannabinoids, glucocorticosteroids, alcohol, beta-blockers and others. Almost all illicit drugs may cause, through a direct or indirect arrhythmogenic effect, a wide range of cardiac arrhythmias (focal or reentry type, supraventricular and/or ventricular) that can even be lethal and which are frequently sport activity related. A large use of illicit drugs has been documented in competitive athletes, but the arrhythmogenic effect of specific substances is not precisely known. Precipitation of cardiac arrhythmias, particularly in the presence of a latent electrophysiologic substrate including some inherited cardiomyopathies, at risk of sudden death or due to long-term consumption of the substances, should raise the suspicion that illicit drugs may be a possible cause and lead cardiologists to investigate carefully this relationship and appropriately prevent the clinical consequences.

  2. 3-OST-7 regulates BMP-dependent cardiac contraction.

    Directory of Open Access Journals (Sweden)

    Shiela C Samson

    2013-12-01

    Full Text Available The 3-O-sulfotransferase (3-OST family catalyzes rare modifications of glycosaminoglycan chains on heparan sulfate proteoglycans, yet their biological functions are largely unknown. Knockdown of 3-OST-7 in zebrafish uncouples cardiac ventricular contraction from normal calcium cycling and electrophysiology by reducing tropomyosin4 (tpm4 expression. Normal 3-OST-7 activity prevents the expansion of BMP signaling into ventricular myocytes, and ectopic activation of BMP mimics the ventricular noncontraction phenotype seen in 3-OST-7 depleted embryos. In 3-OST-7 morphants, ventricular contraction can be rescued by overexpression of tropomyosin tpm4 but not by troponin tnnt2, indicating that tpm4 serves as a lynchpin for ventricular sarcomere organization downstream of 3-OST-7. Contraction can be rescued by expression of 3-OST-7 in endocardium, or by genetic loss of bmp4. Strikingly, BMP misregulation seen in 3-OST-7 morphants also occurs in multiple cardiac noncontraction models, including potassium voltage-gated channel gene, kcnh2, affected in Romano-Ward syndrome and long-QT syndrome, and cardiac troponin T gene, tnnt2, affected in human cardiomyopathies. Together these results reveal 3-OST-7 as a key component of a novel pathway that constrains BMP signaling from ventricular myocytes, coordinates sarcomere assembly, and promotes cardiac contractile function.

  3. A protocol for preparation and transfection of rat entorhinal cortex organotypic cultures for electrophysiological whole-cell recordings

    Directory of Open Access Journals (Sweden)

    Nicholas I. Cilz

    2017-01-01

    Full Text Available Understanding how neuromodulators influence synaptic transmission and intrinsic excitability within the entorhinal cortex (EC is critical to furthering our understanding of the molecular and cellular aspects of this region. Organotypic cultures can provide a cost-effective means to employ selective molecular biological strategies in elucidating cellular mechanisms of neuromodulation in the EC. We therefore adapted our acute slice model for organotypic culture applications and optimized a protocol for the preparation and biolistic transfection of cultured horizontal EC slices. Here, we present our detailed protocol for culturing EC slices. Using an n-methyl-d-glucamine (NMDG-containing cutting solution, we obtain healthy EC slice cultures for electrophysiological recordings. We also present our protocol for the preparation of “bullets” carrying one or more constructs and demonstrate successful transfection of EC slices. We build upon previous methods and highlight specific aspects in our method that greatly improved the quality of our results. We validate our methods using immunohistochemical, imaging, and electrophysiological techniques. The novelty of this method is that it provides a description of culturing and transfection of EC neurons for specifically addressing their functionality. This method will enable researchers interested in entorhinal function to quickly adopt a similar slice culture transfection system for their own investigations.

  4. Electrophysiological mechanisms of sophocarpine as a potential antiarrhythmic agent.

    Science.gov (United States)

    Yang, Zhi-fang; Li, Ci-zhen; Wang, Wei; Chen, Ying-min; Zhang, Ying; Liu, Yuan-mou; Wang, Hong-wei

    2011-03-01

    To examine the electrophysiological effects of sophocarpine on action potentials (AP) and ionic currents of cardiac myocytes and to compare some of these effects with those of amiodarone. Langendorff perfusion set-up was used in isolated guinea pig heart, and responses to sophocarpine were monitored using electrocardiograph. Conventional microelectrode, voltage clamp technique and perforated patch were employed to record fast response AP (fAP), slow response AP (sAP) and ionic currents in guinea pig papillary muscle or rabbit sinus node cells. Tachyarrhythmia produced by isoprenaline (15 μmol/L) could be reversed by sophocarpine (300 μmol/L). Sophocarpine (10 μmol/L) decreased the amplitude by 4.0%, maximal depolarization velocity (V(max)) of the fAP by 24.4%, and Na(+) current (I(Na)) by 18.0%, while it prolonged the effective refractory period (ERP) by 21.1%. The same concentration of sophocarpine could also decrease the amplitude and V(max) of the sAP, by 26.8% and 25.7%, respectively, and attenuated the Ca(2+) current (I(CaL)) and the K(+) tail current substantially. Comparison of sophocarpine with amiodarone demonstrated that both prolonged the duration and the ERP of fAP and sAP, both decreased the amplitude and V(max) of the fAP and sAP, and both slowed the automatic heart rate. Sophocarpine could reverse isoprenaline-induced arrhythmia and inhibit I(Na), I(CaL), and I(Kr) currents. The electrophysiological effects of sophocarpine are similar to those of amiodarone, which might be regarded as a prospective antiarrhythmic agent.

  5. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies

    Directory of Open Access Journals (Sweden)

    Georges N. Kanaan

    2018-04-01

    Full Text Available Glutaredoxin 2 (GRX2, a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Keywords: Human heart, Mitochondria, Oxidative stress, Redox, Cardiac metabolism, Cardiac hypertrophy

  6. Electrophysiologic Findings and Pain in Carpal Tunnel Syndrome

    Directory of Open Access Journals (Sweden)

    Hava Dönmez Keklikoğlu

    2009-12-01

    Full Text Available OBJECTIVE: Carpal tunnel syndrome (CTS is defined as median nerve entrapment within the carpal tunnel at the wrist. Pain and paresthesia are the most common presenting symptoms of the patients. In this study, our aim was to identify the association between intensity of presenting symptoms and electrophysiologic findings in patients referred to the electrophysiology laboratory with prediagnosis of CTS. METHODS: Sixty-two consecutive patients who were referred to the electrophysiology laboratory with the diagnosis of CTS were enrolled in the study. The intensity of pain was determined by visual analog scale, the findings of Tinel-Phalen tests were assessed, and clinico-demographic findings were recorded. Nerve conduction studies were performed bilaterally in median and ulnar nerves. The severity of CTS was determined with electrophysiologic evaluation, and the association between electrophysiologic findings and symptoms were analyzed statistically. RESULTS: Sixty-two (57 female, 5 male patients were examined in the study. CTS was bilateral in 53 patients and unilateral in 9 patients (total 115 hands. Mean pain score was 5.78 ± 3.50. In 28 hands with a clinical diagnosis of CTS, no electrophysiologic CTS findings were found, whereas in 32 hands mild, in 41 hands moderate and in 14 hands severe findings were obtained. CONCLUSION: According to our study, there was no statistically significant association between severity of symptoms and severity of electrophysiologic findings in CTS

  7. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  8. Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current.

    Science.gov (United States)

    Dallas, Mark L; Yang, Zhaokang; Boyle, John P; Boycott, Hannah E; Scragg, Jason L; Milligan, Carol J; Elies, Jacobo; Duke, Adrian; Thireau, Jérôme; Reboul, Cyril; Richard, Sylvain; Bernus, Olivier; Steele, Derek S; Peers, Chris

    2012-10-01

    Clinical reports describe life-threatening cardiac arrhythmias after environmental exposure to carbon monoxide (CO) or accidental CO poisoning. Numerous case studies describe disruption of repolarization and prolongation of the QT interval, yet the mechanisms underlying CO-induced arrhythmias are unknown. To understand the cellular basis of CO-induced arrhythmias and to identify an effective therapeutic approach. Patch-clamp electrophysiology and confocal Ca(2+) and nitric oxide (NO) imaging in isolated ventricular myocytes was performed together with protein S-nitrosylation to investigate the effects of CO at the cellular and molecular levels, whereas telemetry was used to investigate effects of CO on electrocardiogram recordings in vivo. CO increased the sustained (late) component of the inward Na(+) current, resulting in prolongation of the action potential and the associated intracellular Ca(2+) transient. In more than 50% of myocytes these changes progressed to early after-depolarization-like arrhythmias. CO elevated NO levels in myocytes and caused S-nitrosylation of the Na(+) channel, Na(v)1.5. All proarrhythmic effects of CO were abolished by the NO synthase inhibitor l-NAME, and reversed by ranolazine, an inhibitor of the late Na(+) current. Ranolazine also corrected QT variability and arrhythmias induced by CO in vivo, as monitored by telemetry. Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of Na(V)1.5 and to induction of the late Na(+) current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias.

  9. Mitochondrial oxidative stress and cardiac ageing.

    Science.gov (United States)

    Martín-Fernández, Beatriz; Gredilla, Ricardo

    According with different international organizations, cardiovascular diseases are becoming the first cause of death in western countries. Although exposure to different risk factors, particularly those related to lifestyle, contribute to the etiopathogenesis of cardiac disorders, the increase in average lifespan and aging are considered major determinants of cardiac diseases events. Mitochondria and oxidative stress have been pointed out as relevant factors both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy and diabetic cardiomyopathy. During aging, cellular processes related with mitochondrial function, such as bioenergetics, apoptosis and inflammation are altered leading to cardiac dysfunction. Increasing our knowledge about the mitochondrial mechanisms related with the aging process, will provide new strategies in order to improve this process, particularly the cardiovascular ones. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Proteostasis in cardiac health and disease.

    Science.gov (United States)

    Henning, Robert H; Brundel, Bianca J J M

    2017-11-01

    The incidence and prevalence of cardiac diseases, which are the main cause of death worldwide, are likely to increase because of population ageing. Prevailing theories about the mechanisms of ageing feature the gradual derailment of cellular protein homeostasis (proteostasis) and loss of protein quality control as central factors. In the heart, loss of protein patency, owing to flaws in genetically-determined design or because of environmentally-induced 'wear and tear', can overwhelm protein quality control, thereby triggering derailment of proteostasis and contributing to cardiac ageing. Failure of protein quality control involves impairment of chaperones, ubiquitin-proteosomal systems, autophagy, and loss of sarcomeric and cytoskeletal proteins, all of which relate to induction of cardiomyocyte senescence. Targeting protein quality control to maintain cardiac proteostasis offers a novel therapeutic strategy to promote cardiac health and combat cardiac disease. Currently marketed drugs are available to explore this concept in the clinical setting.

  11. Study on the effect of hypoxia on apoptosis of cultured newly born rat cardiac myocytes

    International Nuclear Information System (INIS)

    Su Weidong; Li Huiqiang; Yao Zhi

    2005-01-01

    Objective: To investigate the possible hypoxia-mediated cellular apoptosis after ischemic cardiac injury via a model of cultured newly born rat cardiac myocytes. Methods: Cardiac myocytes cultures from newly born rats (1-3d) were examined for apoptosis with HE stain and flow cytometry after cultured 96h and again examined after exposure to hypoxic environment for 16h. Results: Apoptotic changes were evident in the hypoxic culture cells. The HE stain revealed cellular shrinkage, nuclear chromosomal condensation with cytoplasmic eosinophilia. Also, distinct apoptosis peak was observed in the flow cytometry. Conclusion: This experiment proved that hypoxic model of cardiac myocyte culture showed definite apoptosis of the cells. (authors)

  12. A Roadmap for Reducing Cardiac Device Infections: a Review of Epidemiology, Pathogenesis, and Actionable Risk Factors to Guide the Development of an Infection Prevention Program for the Electrophysiology Laboratory.

    Science.gov (United States)

    Branch-Elliman, Westyn

    2017-08-16

    Cardiovascular implantable electronic device (CIED) infections are highly morbid, common, and costly, and rates are increasing (Sohail et al. Arch Intern Med 171(20):1821-8 2011; Voigt et al. J Am Coll Cardiol 48(3):590-1 2006). Factors that contribute to the development of CIED infections include patient factors (comorbid conditions, self-care, microbiome), procedural details (repeat procedure, contamination during procedure, appropriate pre-procedural prep, and antimicrobial use), environmental and organizational factors (patient safety culture, facility barriers, such as lack of space to store essential supplies, quality of environmental cleaning), and microbial factors (type of organism, virulence of organism). Each of these can be specifically targeted with infection prevention interventions. Basic prevention practices, such as administration of systemic antimicrobials prior to incision and delaying the procedure in the setting of fever or elevated INR, are helpful for day-to-day prevention of cardiac device infections. Small single-center studies provide proof-of-concept that bundled prevention interventions can reduce infections, particularly in outbreak settings. However, data regarding which prevention strategies are the most important is limited as are data regarding the optimal prevention program for day-to-day prevention (Borer et al. Infect Control Hosp Epidemiol 25(6):492-7 2004; Ahsan et al. Europace 16(10):1482-9 2014). Evolution of infection prevention programs to include ambulatory and procedural areas is crucial as healthcare delivery is increasingly provided outside of hospitals and operating rooms. The focus on traditional operating rooms and inpatient care leaves the vast majority of healthcare delivery-including cardiac device implantations in the electrophysiology laboratory-uncovered.

  13. Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy

    Directory of Open Access Journals (Sweden)

    Stephanie Friedrichs

    2015-01-01

    Full Text Available Disease-specific induced pluripotent stem (iPS cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening.

  14. Characterization of the in vitro propagation of epileptiform electrophysiological activity in organotypic hippocampal slice cultures coupled to 3D microelectrode arrays

    DEFF Research Database (Denmark)

    Pisciotta, Marzia; Morgavi, Giovanna; Jahnsen, Henrik

    2010-01-01

    Dynamic aspects of the propagation of epileptiform activity have so far received little attention. With the aim of providing new insights about the spatial features of the propagation of epileptic seizures in the nervous system, we studied in vitro the initiation and propagation of traveling...... activity are completely coherent with respect to the activity originating in the CA3, while components at higher frequencies lose the coherence, possibly suggesting that the cellular mechanism mediating propagation of electrophysiological activity becomes ineffective for those firing rates exceeding...... epileptiform waves of electrophysiological activity in the hippocampus by means of substrate three-dimensional microelectrode arrays (MEAs) for extracellular measurements. Pharmacologically disinhibited hippocampal slices spontaneously generate epileptiform bursts mostly originating in CA3 and propagating...

  15. Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, Microtus ochrogaster.

    Science.gov (United States)

    Willett, Jaime A; Johnson, Ashlyn G; Vogel, Andrea R; Patisaul, Heather B; McGraw, Lisa A; Meitzen, John

    2018-04-01

    Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and

  16. Gated cardiac blood pool studies in arrhythmias

    International Nuclear Information System (INIS)

    Itti, R.; Casset, D.; Philippe, L.; Cosnay, P.; Fauchier, J.P.

    1988-01-01

    Biventricular phase analysis a gated blood pool studies may help to solve two fundamental questions raised by patients suffering from arrhythmias: localization of an electrical cardiac activation abnormality by means of contraction mapping and assesment of an underlying organic disease using the phase histograms and their standard deviations. Three groups of patients have been evaluated to demonstrate the usefulness of radioisotopic techniques in arrhythmias: 36 patients with a Wolff-Parkinson-White syndrom, 27 patients studied during a ventricular tachycardia attack and 32 patients suspected of arrhythmogenic ventricular dysplasia. Correlations with invasive electrophysiologic studies are presented and the diagnostic and therapeutic implications of these results are discussed [fr

  17. Gated cardiac blood pool studies in arrhythmias

    Energy Technology Data Exchange (ETDEWEB)

    Itti, R.; Casset, D.; Philippe, L.; Cosnay, P.; Fauchier, J.P.

    1988-01-01

    Biventricular phase analysis a gated blood pool studies may help to solve two fundamental questions raised by patients suffering from arrhythmias: localization of an electrical cardiac activation abnormality by means of contraction mapping and assesment of an underlying organic disease using the phase histograms and their standard deviations. Three groups of patients have been evaluated to demonstrate the usefulness of radioisotopic techniques in arrhythmias: 36 patients with a Wolff-Parkinson-White syndrom, 27 patients studied during a ventricular tachycardia attack and 32 patients suspected of arrhythmogenic ventricular dysplasia. Correlations with invasive electrophysiologic studies are presented and the diagnostic and therapeutic implications of these results are discussed.

  18. Central vs. peripheral neuraxial sympathetic control of porcine ventricular electrophysiology

    Science.gov (United States)

    Yamakawa, Kentaro; Howard-Quijano, Kimberly; Zhou, Wei; Rajendran, Pradeep; Yagishita, Daigo; Vaseghi, Marmar; Ajijola, Olujimi A.; Armour, J. Andrew; Shivkumar, Kalyanam; Ardell, Jeffrey L.

    2015-01-01

    Sympathoexcitation is associated with ventricular arrhythmogenesis. The aim of this study was to determine the role of thoracic dorsal root afferent neural inputs to the spinal cord in modulating ventricular sympathetic control of normal heart electrophysiology. We hypothesize that dorsal root afferent input tonically modulates basal and evoked efferent sympathetic control of the heart. A 56-electrode sock placed on the epicardial ventricle in anesthetized Yorkshire pigs (n = 17) recorded electrophysiological function, as well as activation recovery interval (ARI) and dispersion in ARI, at baseline conditions and during stellate ganglion electrical stimulation. Measures were compared between intact states and sequential unilateral T1–T4 dorsal root transection (DRTx), ipsilateral ventral root transection (VRTx), and contralateral dorsal and ventral root transections (DVRTx). Left or right DRTx decreased global basal ARI [Lt.DRTx: 369 ± 12 to 319 ± 13 ms (P < 0.01) and Rt.DRTx: 388 ± 19 to 356 ± 15 ms (P < 0.01)]. Subsequent unilateral VRTx followed by contralateral DRx+VRTx induced no further change. In intact states, left and right stellate ganglion stimulation shortened ARIs (6 ± 2% vs. 17 ± 3%), while increasing dispersion (+139% vs. +88%). There was no difference in magnitude of ARI or dispersion change with stellate stimulation following spinal root transections. Interruption of thoracic spinal afferent signaling results in enhanced basal cardiac sympathoexcitability without diminishing the sympathetic response to stellate ganglion stimulation. This suggests spinal dorsal root transection releases spinal cord-mediated tonic inhibitory control of efferent sympathetic tone, while maintaining intrathoracic cardiocentric neural networks. PMID:26661096

  19. [Catheter ablation in patients with refractory cardiac arrhythmias with radiofrequency techniques].

    Science.gov (United States)

    de Paola, A A; Balbão, C E; Silva Netto, O; Mendonça, A; Villacorta, H; Vattimo, A C; Souza, I A; Guiguer Júnior, N; Portugal, O P; Martinez Filho, E E

    1993-02-01

    evaluate the efficacy of radiofrequency catheter ablation in patients with refractory cardiac arrhythmias. twenty patients with refractory cardiac arrhythmias were undertaken to electrophysiologic studies for diagnosis and radiofrequency catheter ablation of their reentrant arrhythmias. Ten patients were men and 10 women with ages varying from 13 to 76 years (mean = 42.4 years). Nineteen patients had supraventricular tachyarrhythmias: One patient had atrial tachycardia and 1 atrial fibrillation with rapid ventricular rate, 5 patients had reentrant nodal tachycardia, 12 patients had reentrant atrioventricular tachycardia and 1 patient had right ventricular outflow tract tachycardia. the mean time of the procedure was 4.1 hours. The radiofrequency current energy applied was 40-50 V for 30-40 seconds. Ablation was successful in 18/20 (90%) patients; in 15/18 (83%) of successfully treated patients the same study was done for diagnosis and radiofrequency ablation. One patient had femoral arterial occlusion and was treated with no significant sequelae. During a mean follow-up of 4 months no preexcitation or reentrant tachycardia occurred. the results of our experience with radiofrequency catheter ablation of cardiac arrhythmias suggest that this technique can benefit an important number of patients with cardiac arrhythmias.

  20. Electrocardiographic Patch Devices and Contemporary Wireless Cardiac Monitoring

    Directory of Open Access Journals (Sweden)

    Erik eFung

    2015-05-01

    Full Text Available Cardiac electrophysiologic derangements often coexist with disorders of the circulatory system. Capturing and diagnosing arrhythmias and conduction system disease may lead to a change in diagnosis, clinical management and patient outcomes. Standard 12-lead electrocardiogram (ECG, Holter monitors and event recorders have served as useful diagnostic tools over the last few decades. However, their shortcomings are only recently being addressed by emerging technologies. With advances in device miniaturization and wireless technologies, and changing consumer expectations, wearable ‘on-body’ ECG patch devices have evolved to meet contemporary needs. These devices are unobtrusive and easy to use, leading to increased device wear time and diagnostic yield. While becoming the standard for detecting arrhythmias and conduction system disorders in the outpatient setting where continuous ECG monitoring in the short to medium term (days to weeks is indicated, these cardiac devices and related digital mobile health technologies are reshaping the clinician-patient interface with important implications for future healthcare delivery.

  1. AKAP-scaffolding proteins and regulation of cardiac physiology

    Science.gov (United States)

    Mauban, JRH; O'Donnell, M; Warrier, S; Manni, S; Bond, M

    2009-01-01

    A kinase anchoring proteins (AKAPs) compose a growing list of diverse but functionally related proteins defined by their ability to bind to the regulatory subunit of protein kinase A. AKAPs perform an integral role in the spatiotemporal modulation of a multitude of cellular signaling pathways. This review highlights the extensive role of AKAPs in cardiac excitation/contraction coupling and cardiac physiology. The literature shows that particular AKAPs are involved in cardiac Ca2+ influx, release, re-uptake, and myocyte repolarization. Studies have also suggested roles for AKAPs in cardiac remodeling. Transgenic studies show functional effects of AKAPs, not only in the cardiovascular system, but in other organ systems as well. PMID:19364910

  2. The Electrophysiological Phenomenon of Alzheimer's Disease: A Psychopathology Theory.

    Science.gov (United States)

    Holston, Ezra C

    2015-08-01

    The current understanding of Alzheimer's disease (AD) is based on the Aβ and tau pathology and the resulting neuropathological changes, which are associated with manifested clinical symptoms. However, electrophysiological brain changes may provide a more expansive understanding of AD. Hence, the objective of this systematic review is to propose a theory about the electrophysiological phenomenon of Alzheimer's disease (EPAD). The review of literature resulted from an extensive search of PubMed and MEDLINE databases. One-hundred articles were purposively selected. They provided an understanding of the concepts establishing the theory of EPAD (neuropathological changes, neurochemical changes, metabolic changes, and electrophysiological brain changes). Changes in the electrophysiology of the brain are foundational to the association or interaction of the concepts. Building on Berger's Psychophysical Model, it is evident that electrophysiological brain changes occur and affect cortical areas to generate or manifest symptoms from onset and across the stages of AD, which may be prior to pathological changes. Therefore, the interaction of the concepts demonstrates how the psychopathology results from affected electrophysiology of the brain. The theory of the EPAD provides a theoretical foundation for appropriate measurements of AD without dependence on neuropathological changes. Future research is warranted to further test this theory. Ultimately, this theory contributes to existing knowledge because it shows how electrophysiological changes are useful in understanding the risk and progression of AD across the stages.

  3. Facilitating arrhythmia simulation: the method of quantitative cellular automata modeling and parallel running

    Directory of Open Access Journals (Sweden)

    Mondry Adrian

    2004-08-01

    Full Text Available Abstract Background Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. Methods We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. Results We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. Conclusions Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods

  4. Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Monia Savi

    2014-01-01

    Full Text Available We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs, activation of resident cardiac stem cells via growth factors (GFs [hepatocyte growth factor (HGF and insulin-like growth factor 1 (IGF-1:GFs] or both, are improved by pharmacologically active microcarriers (PAMs interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

  5. Cardiac involvement in myotonic muscular dystrophy (Steinert's disease): a prospective study of 25 patients

    International Nuclear Information System (INIS)

    Perloff, J.K.; Stevenson, W.G.; Roberts, N.K.; Cabeen, W.; Weiss, J.

    1984-01-01

    The presence, degree and frequency of disorders of cardiac conduction and rhythm and of regional or global myocardial dystrophy or myotonia have not previously been studied prospectively and systematically in the same population of patients with myotonic dystrophy. Accordingly, 25 adults with classic Steinert's disease underwent electrocardiography, 24-hour ambulatory electrocardiography, vectorcardiography, chest x-rays, echocardiography, electrophysiologic studies, and technetium-99m angiography. Clinically important cardiac manifestations of myotonic dystrophy reside in specialized tissues rather than in myocardium. Involvement is relatively specific, primarily assigned to the His-Purkinje system. The cardiac muscle disorder takes the form of dystrophy rather than myotonia, and is not selective, appearing with approximately equal distribution in all 4 chambers. Myocardial dystrophy seldom results in clinically overt ventricular failure, but may be responsible for atrial and ventricular arrhythmias. Since myotonic dystrophy is genetically transmitted, a primary biochemical defect has been proposed with complete expression of the gene toward striated muscle tissue, whether skeletal or cardiac. Specialized cardiac tissue and myocardium have close, if not identical, embryologic origins, so it is not surprising that the genetic marker affects both. Cardiac involvement is therefore an integral part of myotonic dystrophy, targeting particularly the infranodal conduction system, to a lesser extent the sinus node, and still less specifically, the myocardium

  6. Neurological prognostication of outcome in patients in coma after cardiac arrest.

    Science.gov (United States)

    Rossetti, Andrea O; Rabinstein, Alejandro A; Oddo, Mauro

    2016-05-01

    Management of coma after cardiac arrest has improved during the past decade, allowing an increasing proportion of patients to survive, thus prognostication has become an integral part of post-resuscitation care. Neurologists are increasingly confronted with raised expectations of next of kin and the necessity to provide early predictions of long-term prognosis. During the past decade, as technology and clinical evidence have evolved, post-cardiac arrest prognostication has moved towards a multimodal paradigm combining clinical examination with additional methods, consisting of electrophysiology, blood biomarkers, and brain imaging, to optimise prognostic accuracy. Prognostication should never be based on a single indicator; although some variables have very low false positive rates for poor outcome, multimodal assessment provides resassurance about the reliability of a prognostic estimate by offering concordant evidence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [Cardiac cachexia].

    Science.gov (United States)

    Miján, Alberto; Martín, Elvira; de Mateo, Beatriz

    2006-05-01

    Chronic heart failure (CHF), especially affecting the right heart, frequently leads to malnutrition. If the latter is severe and is combined to other factors, it may lead to cardiac cachexia. This one is associated to increased mortality and lower survival of patients suffering from it. The causes of cardiac cachexia are diverse, generally associated to maintenance of a negative energy balance, with increasing evidence of its multifactorial origin. Neurohumoral, inflammatory, immunological, and metabolic factors, among others, are superimposed in the patient with CHF, leading to involvement and deterioration of several organs and systems, since this condition affects both lean (or active cellular) mass and adipose and bone tissue osteoporosis. Among all, the most pronounced deterioration may be seen at skeletal muscle tissue, at both structural and functional levels, the heart not being spared. As for treatment, it should be based on available scientific evidence. Assessment of nutritional status of any patient with CHF is a must, with the requirement of nutritional intervention in case of malnutrition. In this situation, especially if accompanied by cardiac cachexia, it is required to modify energy intake and oral diet quality, and to consider the indication of specific complementary or alternative artificial nutrition. Besides, the causal relationship of the beneficial role of moderate physical exertion is increasing, as well as modulation of metabolic and inflammatory impairments observed in cardiac cachexia with several drugs, leading to a favorable functional and structural response in CHF patients.

  8. Cardiac glycoside activities link Na(+)/K(+) ATPase ion-transport to breast cancer cell migration via correlative SAR.

    Science.gov (United States)

    Magpusao, Anniefer N; Omolloh, George; Johnson, Joshua; Gascón, José; Peczuh, Mark W; Fenteany, Gabriel

    2015-02-20

    The cardiac glycosides ouabain and digitoxin, established Na(+)/K(+) ATPase inhibitors, were found to inhibit MDA-MB-231 breast cancer cell migration through an unbiased chemical genetics screen for cell motility. The Na(+)/K(+) ATPase acts both as an ion-transporter and as a receptor for cardiac glycosides. To delineate which function is related to breast cancer cell migration, structure-activity relationship (SAR) profiles of cardiac glycosides were established at the cellular (cell migration inhibition), molecular (Na(+)/K(+) ATPase inhibition), and atomic (computational docking) levels. The SAR of cardiac glycosides and their analogs revealed a similar profile, a decrease in potency when the parent cardiac glycoside structure was modified, for each activity investigated. Since assays were done at the cellular, molecular, and atomic levels, correlation of SAR profiles across these multiple assays established links between cellular activity and specific protein-small molecule interactions. The observed antimigratory effects in breast cancer cells are directly related to the inhibition of Na(+)/K(+) transport. Specifically, the orientation of cardiac glycosides at the putative cation permeation path formed by transmembrane helices αM1-M6 correlates with the Na(+) pump activity and cell migration. Other Na(+)/K(+) ATPase inhibitors that are structurally distinct from cardiac glycosides also exhibit antimigratory activity, corroborating the conclusion that the antiport function of Na(+)/K(+) ATPase and not the receptor function is important for supporting the motility of MDA-MB-231 breast cancer cells. Correlative SAR can establish new relationships between specific biochemical functions and higher-level cellular processes, particularly for proteins with multiple functions and small molecules with unknown or various modes of action.

  9. Radiation dose electrophysiology procedures

    International Nuclear Information System (INIS)

    Hernandez-Armas, J.; Rodriguez, A.; Catalan, A.; Hernandez Armas, O.; Luque Japon, L.; Moral, S.; Barroso, L.; Rfuez-Hdez, R.

    2006-01-01

    The aim of this paper has been to measure and analyse some of the parameters which are directly related with the doses given to patients in two electrophysiology procedures: diagnosis and ablation with radiofrequency. 16 patients were considered in this study. 13 them had an ablation with radiofrequency at the Unit of Electrophysiology at the University Hospital of the Canaries, La Laguna., Tenerife. The results of skin doses, in the ablation cases, were higher than 2 Gy (threshold of some deterministic effects). The average value was 1.1 Gy. The personal doses, measured under the lead apron, for physician and nurses were 4 and 3 micro Sievert. These results emphasised the necessity of radiation protection measures in order to reduce, ad much as possible, the doses to patients. (Author)

  10. MR Imaging in patients with cardiac pacemakers and implantable cardioverter defibrillators. Consensus paper of the German Cardiac Society and the German Roentgen Society; MR-Untersuchungen bei Patienten mit Herzschrittmachern und implantierbaren Kardioverter-Defibrillatoren. Konsensuspapier der Deutschen Gesellschaft fuer Kardiologie (DGK) und der Deutschen Roentgengesellschaft (DRG)

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Torsten [DRK Krankenhaus, Neuwied (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Bauer, Wolfgang [Deutsches Zentrum fuer Herzinsuffizienz Univ. Wuerzburg (Germany). Med. Klinik und Poliklinik I Univ. Klinikum Wuerzburg; Fischbach, Katharina [Universitaetsklinikum Magdeburg (Germany). Klinik fuer Radiologie und Nuklearmedizin; and others

    2017-03-15

    This joint consensus paper of the German Roentgen Society and the German Cardiac Society provides physical and electrophysiological background information and specific recommendations for the procedural management of patients with cardiac pacemakers (PM) and implantable cardioverter defibrillators (ICD) undergoing magnetic resonance (MR) imaging. The paper outlines the responsibilities of radiologists and cardiologists regarding patient education, indications, and monitoring with modification of MR sequences and PM/ICD reprogramming strategies being discussed in particular. The aim is to optimize patient safety and to improve legal clarity in order to facilitate the access of SM/ICD patients to MR imaging.

  11. Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions.

    Science.gov (United States)

    Dutta, Sara; Mincholé, Ana; Quinn, T Alexander; Rodriguez, Blanca

    2017-10-01

    Acute myocardial ischemia is one of the main causes of sudden cardiac death. The mechanisms have been investigated primarily in experimental and computational studies using different animal species, but human studies remain scarce. In this study, we assess the ability of four human ventricular action potential models (ten Tusscher and Panfilov, 2006; Grandi et al., 2010; Carro et al., 2011; O'Hara et al., 2011) to simulate key electrophysiological consequences of acute myocardial ischemia in single cell and tissue simulations. We specifically focus on evaluating the effect of extracellular potassium concentration and activation of the ATP-sensitive inward-rectifying potassium current on action potential duration, post-repolarization refractoriness, and conduction velocity, as the most critical factors in determining reentry vulnerability during ischemia. Our results show that the Grandi and O'Hara models required modifications to reproduce expected ischemic changes, specifically modifying the intracellular potassium concentration in the Grandi model and the sodium current in the O'Hara model. With these modifications, the four human ventricular cell AP models analyzed in this study reproduce the electrophysiological alterations in repolarization, refractoriness, and conduction velocity caused by acute myocardial ischemia. However, quantitative differences are observed between the models and overall, the ten Tusscher and modified O'Hara models show closest agreement to experimental data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Inhibition of cardiac inward rectifier currents by cationic amphiphilic drugs.

    Science.gov (United States)

    van der Heyden, M A G; Stary-Weinzinger, A; Sanchez-Chapula, J A

    2013-09-01

    Cardiac inward rectifier channels belong to three different classes of the KIR channel protein family. The KIR2.x proteins generate the classical inward rectifier current, IK1, while KIR3 and KIR6 members are responsible for the acetylcholine responsive and ATP sensitive inward rectifier currents IKAch and IKATP, respectively. Aberrant function of these channels has been correlated with severe cardiac arrhythmias, indicating their significant contribution to normal cardiac electrophysiology. A common feature of inward rectifier channels is their dependence on the lipid phosphatidyl-4,5-bisphospate (PIP2) interaction for functional activity. Cationic amphiphilic drugs (CADs) are one of the largest classes of pharmaceutical compounds. Several widely used CADs have been associated with inward rectifier current disturbances, and recent evidence points to interference of the channel-PIP2 interaction as the underlying mechanism of action. Here, we will review how six of these well known drugs, used for treatment in various different conditions, interfere in cardiac inward rectifier functioning. In contrast, KIR channel inhibition by the anionic anesthetic thiopental is achieved by a different mechanism of channel-PIP2 interference. We will discuss the latest basic science insights of functional inward rectifier current characteristics, recently derived KIR channel structures and specific PIP2-receptor interactions at the molecular level and provide insight in how these drugs interfere in the structure-function relationships.

  13. Autoclave Sterilization of PEDOT:PSS Electrophysiology Devices.

    Science.gov (United States)

    Uguz, Ilke; Ganji, Mehran; Hama, Adel; Tanaka, Atsunori; Inal, Sahika; Youssef, Ahmed; Owens, Roisin M; Quilichini, Pascale P; Ghestem, Antoine; Bernard, Christophe; Dayeh, Shadi A; Malliaras, George G

    2016-12-01

    Autoclaving, the most widely available sterilization method, is applied to poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) electrophysiology devices. The process does not harm morphology or electrical properties, while it effectively kills E. coli intentionally cultured on the devices. This finding paves the way to widespread introduction of PEDOT:PSS electrophysiology devices to the clinic. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Uncertainty and variability in computational and mathematical models of cardiac physiology.

    Science.gov (United States)

    Mirams, Gary R; Pathmanathan, Pras; Gray, Richard A; Challenor, Peter; Clayton, Richard H

    2016-12-01

    Mathematical and computational models of cardiac physiology have been an integral component of cardiac electrophysiology since its inception, and are collectively known as the Cardiac Physiome. We identify and classify the numerous sources of variability and uncertainty in model formulation, parameters and other inputs that arise from both natural variation in experimental data and lack of knowledge. The impact of uncertainty on the outputs of Cardiac Physiome models is not well understood, and this limits their utility as clinical tools. We argue that incorporating variability and uncertainty should be a high priority for the future of the Cardiac Physiome. We suggest investigating the adoption of approaches developed in other areas of science and engineering while recognising unique challenges for the Cardiac Physiome; it is likely that novel methods will be necessary that require engagement with the mathematics and statistics community. The Cardiac Physiome effort is one of the most mature and successful applications of mathematical and computational modelling for describing and advancing the understanding of physiology. After five decades of development, physiological cardiac models are poised to realise the promise of translational research via clinical applications such as drug development and patient-specific approaches as well as ablation, cardiac resynchronisation and contractility modulation therapies. For models to be included as a vital component of the decision process in safety-critical applications, rigorous assessment of model credibility will be required. This White Paper describes one aspect of this process by identifying and classifying sources of variability and uncertainty in models as well as their implications for the application and development of cardiac models. We stress the need to understand and quantify the sources of variability and uncertainty in model inputs, and the impact of model structure and complexity and their consequences for

  15. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  16. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease

    Science.gov (United States)

    Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.

    2016-01-01

    Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296

  17. A numerical guide to the solution of the bidomain equations of cardiac electrophysiology

    KAUST Repository

    Pathmanathan, Pras

    2010-06-01

    Simulation of cardiac electrical activity using the bidomain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bidomain modelling. Each component of bidomain simulations-discretisation, ODE-solution, linear system solution, and parallelisation-is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme. © 2010 Elsevier Ltd.

  18. A numerical guide to the solution of the bidomain equations of cardiac electrophysiology

    KAUST Repository

    Pathmanathan, Pras; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Garny, Alan; Pitt-Francis, Joe M.; Whiteley, Jonathan P.; Gavaghan, David J.

    2010-01-01

    Simulation of cardiac electrical activity using the bidomain equations can be a massively computationally demanding problem. This study provides a comprehensive guide to numerical bidomain modelling. Each component of bidomain simulations-discretisation, ODE-solution, linear system solution, and parallelisation-is discussed, and previously-used methods are reviewed, new methods are proposed, and issues which cause particular difficulty are highlighted. Particular attention is paid to the choice of stimulus currents, compatibility conditions for the equations, the solution of singular linear systems, and convergence of the numerical scheme. © 2010 Elsevier Ltd.

  19. Protective effects of isorhynchophylline on cardiac arrhythmias in rats and guinea pigs.

    Science.gov (United States)

    Gan, Runtao; Dong, Guo; Yu, Jiangbo; Wang, Xu; Fu, Songbin; Yang, Shusen

    2011-09-01

    As one important constituent extracted from a traditional Chinese medicine, Uncaria Rhynchophylla Miq Jacks, isorhynchophylline has been used to treat hypertension, epilepsy, headache, and other illnesses. Whether isorhynchophylline protects hearts against cardiac arrhythmias is still incompletely investigated. This study was therefore aimed to examine the preventive effects of isorhynchophylline on heart arrhythmias in guinea pigs and rats and then explore their electrophysiological mechanisms. In vivo, ouabain and calcium chloride were used to establish experimental arrhythmic models in guinea pigs and rats. In vitro, the whole-cell patch-lamp technique was used to study the effect of isorhynchophylline on action potential duration and calcium channels in acutely isolated guinea pig and rat cardiomyocytes. The dose of ouabain required to induce cardiac arrhythmias was much larger in guinea pigs administered with isorhynchophylline. Additionally, the onset time of cardiac arrhythmias induced by calcium chloride was prolonged, and the duration was shortened in rats pretreated with isorhynchophylline. The further study showed that isorhynchophylline could significantly decrease action potential duration and inhibit calcium currents in isolated guinea pig and rat cardiomyocytes in a dose-dependent manner. In summary, isorhynchophylline played a remarkably preventive role in cardiac arrhythmias through the inhibition of calcium currents in rats and guinea pigs. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Effect of different doses of oxytocin on cardiac electrophysiology and arrhythmias induced by ischemia.

    Science.gov (United States)

    Houshmand, Fariba; Faghihi, Mahdieh; Imani, Alireza; Kheiri, Soleiman

    2017-01-01

    The onset of acute myocardial ischemia (MI) is accompanied by a rapid increase in electrical instability and often fatal ventricular arrhythmias. This study investigated that whether oxytocin (OT) can modulate ischemia-induced arrhythmias and considered relationships between the severity of arrhythmia and the electrocardiogram parameters during ischemia. OT (0.0001-1 μg) was administrated intraperitoneally 30 min before ischemia. To examine receptor involved, a selective OT-receptor antagonist, atosiban (ATO), was infused 10 min before OT. OT caused a significant and biphasic dose-dependent reduction in ectopic heart activity and arrhythmia score. OT doses that reduced ventricular arrhythmia elicited significant increase in QT interval. OT attenuated the electrophysiological changes associated with MI and there was significant direct relationship between QRS duration and arrhythmia score. ATO treatment reduced beneficial effects of OT on arrhythmogenesis. Nevertheless, ATO failed to alter OT effects on premature ventricular contractions. We assume that the ability of OT to modulate the electrical activity of the heart may play an important role in the antiarrhythmic actions of OT.

  1. Effect of different doses of oxytocin on cardiac electrophysiology and arrhythmias induced by ischemia

    Directory of Open Access Journals (Sweden)

    Fariba Houshmand

    2017-01-01

    Full Text Available The onset of acute myocardial ischemia (MI is accompanied by a rapid increase in electrical instability and often fatal ventricular arrhythmias. This study investigated that whether oxytocin (OT can modulate ischemia-induced arrhythmias and considered relationships between the severity of arrhythmia and the electrocardiogram parameters during ischemia. OT (0.0001–1 μg was administrated intraperitoneally 30 min before ischemia. To examine receptor involved, a selective OT-receptor antagonist, atosiban (ATO, was infused 10 min before OT. OT caused a significant and biphasic dose-dependent reduction in ectopic heart activity and arrhythmia score. OT doses that reduced ventricular arrhythmia elicited significant increase in QT interval. OT attenuated the electrophysiological changes associated with MI and there was significant direct relationship between QRS duration and arrhythmia score. ATO treatment reduced beneficial effects of OT on arrhythmogenesis. Nevertheless, ATO failed to alter OT effects on premature ventricular contractions. We assume that the ability of OT to modulate the electrical activity of the heart may play an important role in the antiarrhythmic actions of OT.

  2. Molecular nuclear cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Paeng, Jin Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-04-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect.

  3. Molecular nuclear cardiac imaging

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Paeng, Jin Chul

    2004-01-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect

  4. Contribution of two-pore K+ channels to cardiac ventricular action potential revealed using human iPSC-derived cardiomyocytes.

    Science.gov (United States)

    Chai, Sam; Wan, Xiaoping; Nassal, Drew M; Liu, Haiyan; Moravec, Christine S; Ramirez-Navarro, Angelina; Deschênes, Isabelle

    2017-06-01

    Two-pore K + (K 2p ) channels have been described in modulating background conductance as leak channels in different physiological systems. In the heart, the expression of K 2p channels is heterogeneous with equivocation regarding their functional role. Our objective was to determine the K 2p expression profile and their physiological and pathophysiological contribution to cardiac electrophysiology. Induced pluripotent stem cells (iPSCs) generated from humans were differentiated into cardiomyocytes (iPSC-CMs). mRNA was isolated from these cells, commercial iPSC-CM (iCells), control human heart ventricular tissue (cHVT), and ischemic (iHF) and nonischemic heart failure tissues (niHF). We detected 10 K 2p channels in the heart. Comparing quantitative PCR expression of K 2p channels between human heart tissue and iPSC-CMs revealed K 2p 1.1, K 2p 2.1, K 2p 5.1, and K 2p 17.1 to be higher expressed in cHVT, whereas K 2p 3.1 and K 2p 13.1 were higher in iPSC-CMs. Notably, K 2p 17.1 was significantly lower in niHF tissues compared with cHVT. Action potential recordings in iCells after K 2p small interfering RNA knockdown revealed prolongations in action potential depolarization at 90% repolarization for K 2p 2.1, K 2p 3.1, K 2p 6.1, and K 2p 17.1. Here, we report the expression level of 10 human K 2p channels in iPSC-CMs and how they compared with cHVT. Importantly, our functional electrophysiological data in human iPSC-CMs revealed a prominent role in cardiac ventricular repolarization for four of these channels. Finally, we also identified K 2p 17.1 as significantly reduced in niHF tissues and K 2p 4.1 as reduced in niHF compared with iHF. Thus, we advance the notion that K 2p channels are emerging as novel players in cardiac ventricular electrophysiology that could also be remodeled in cardiac pathology and therefore contribute to arrhythmias. NEW & NOTEWORTHY Two-pore K + (K 2p ) channels are traditionally regarded as merely background leak channels in myriad

  5. Cardiac e-learning: Development of a web-based implantable cardioverter defibrillator educational system.

    Science.gov (United States)

    Hickey, Kathleen T; Johnson, Mary P; Biviano, Angelo; Aboelela, Sally; Thomas, Tami; Bakken, Suzanne; Garan, Hasan; Zimmerman, John L; Whang, William

    2011-04-01

    The objective of this study was to design a Web-based implantable cardioverter defibrillator (ICD) module that would allow greater access to learning which could occur at an individual's convenience outside the fast-paced clinical environment. A Web-based ICD software educational program was developed to provide general knowledge of the function of the ICD and the interpretation of the stored electrocardiograms. This learning tool could be accessed at any time via the Columbia University Internet server, using a unique, password protected login. A series of basic and advanced ICD terms were presented using actual ICD screenshots and videos that simulated scenarios the practitioner would most commonly encounter in the fast-paced clinical setting. To determine the usefulness of the site and improve the module, practitioners were asked to complete a brief (less than 5 min) online survey at the end of the module. Twenty-six practitioners have logged into our Web site: 20 nurses/nurse practitioners, four cardiac fellows, and two other practitioners. The majority of respondents rated the program as easy to use and useful. The success of this module has led to it becoming part of the training for student nurse practitioners before a clinical electrophysiology rotation, and the module is accessed by our cardiac entry level fellows before a rotation in the intensive care unit or electrophysiology service. Remote electronic arrhythmia learning is a successful example of the melding of technology and education to enhance clinical learning.

  6. Ripk3 regulates cardiac microvascular reperfusion injury: The role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration.

    Science.gov (United States)

    Zhou, Hao; Wang, Jin; Zhu, Pingjun; Hu, Shunying; Ren, Jun

    2018-05-01

    Ripk3-mediated cellular apoptosis is a major contributor to the pathogenesis of myocardial ischemia reperfusion (IR) injury. However, the mechanisms by which Ripk3 influences microvascular homeostasis and endothelial apoptosis are not completely understood. In this study, loss of Ripk3 inhibited endothelial apoptosis, alleviated luminal swelling, maintained microvasculature patency, reduced the expression of adhesion molecules and limited the myocardial inflammatory response. In vitro, Ripk3 deficiency protected endothelial cells from apoptosis and migratory arrest induced by HR injury. Mechanistically, Ripk3 had the ability to migrate onto the endoplasmic reticulum (ER), leading to ER damage, as evidenced by increased IP3R and XO expression. The higher IP3R content was associated with cellular calcium overload, and increased XO expression was involved in cellular oxidative injury. Furthermore, IP3R-mediated calcium overload and XO-dependent oxidative damage were able to initiate cellular apoptosis. More importantly, IP3R and XO also caused F-actin degradation into G-actin via post-transcriptional modification of cofilin, impairing the formation of the filopodia and limiting the migratory response of endothelial cells. Altogether, our data confirmed that Ripk3 was involved in microvascular IR injury via regulation of IP3R-mediated calcium overload, XO-dependent oxidative damage and filopodia-related cellular migration, ultimately leading to endothelial apoptosis and migratory inhibition. These findings provide a potential target for treating cardiac microcirculatory IR injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Late-onset Becker muscular dystrophy: Refining the clinical features and electrophysiological findings.

    Science.gov (United States)

    Beltran Papsdorf, Tania; Howard, James F; Chahin, Nizar

    2015-11-01

    The aim of this study was to characterize a unique distribution of muscle involvement in sporadic Becker muscle dystrophy (BMD). Retrospective chart review, clinical examination, electrophysiological studies, cardiac testing, and genetic testing were performed in 5 patients. Predominant weakness and atrophy of biceps brachii, hip adduction, and quadriceps muscles was noted along with calf and extensor forearm hypertrophy. Finger flexor muscles were severely weak in 3 of 5 patients, a feature that could lead to a misdiagnosis of inclusion body myositis. Creatinine kinase was only mildly elevated in most patients. Electromyography was abnormal in all patients. Muscle biopsy in 1 patient demonstrated normal immunostaining for dystrophin. We found a unique and uniform distribution of muscle involvement in 5 sporadic cases of BMD. Recognizing these features is important for differentiating it from other myopathies that may have similar features and avoids unnecessary invasive procedures such as muscle biopsy. © 2015 Wiley Periodicals, Inc.

  8. Early electrophysiological findings in Fisher-Bickerstaff syndrome.

    Science.gov (United States)

    Alberti, M A; Povedano, M; Montero, J; Casasnovas, C

    2017-09-06

    The term Fisher-Bickerstaff syndrome (FBS) has been proposed to describe the clinical spectrum encompassing Miller-Fisher syndrome (MFS) and Bickerstaff brainstem encephalitis. The pathophysiology of FBS and the nature of the underlying neuropathy (demyelinating or axonal) are still subject to debate. This study describes the main findings of an early neurophysiological study on 12 patients diagnosed with FBS. Retrospective evaluation of clinical characteristics and electrophysiological findings of 12 patients with FBS seen in our neurology department within 10 days of disease onset. Follow-up electrophysiological studies were also evaluated, where available. The most frequent electrophysiological finding, present in 5 (42%) patients, was reduced sensory nerve action potential (SNAP) amplitude in one or more nerves. Abnormalities were rarely found in motor neurography, with no signs of demyelination. The cranial nerve exam revealed abnormalities in 3 patients (facial neurography and/or blink reflex test). Three patients showed resolution of SNAP amplitude reduction in serial neurophysiological studies, suggesting the presence of reversible sensory nerve conduction block. Results from cranial MRI scans were normal in all patients. An electrophysiological pattern of sensory axonal neuropathy, with no associated signs of demyelination, is an early finding of FBS. Early neurophysiological evaluation and follow-up are essential for diagnosing patients with FBS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells.

    Science.gov (United States)

    Gunhanlar, N; Shpak, G; van der Kroeg, M; Gouty-Colomer, L A; Munshi, S T; Lendemeijer, B; Ghazvini, M; Dupont, C; Hoogendijk, W J G; Gribnau, J; de Vrij, F M S; Kushner, S A

    2017-04-18

    Progress in elucidating the molecular and cellular pathophysiology of neuropsychiatric disorders has been hindered by the limited availability of living human brain tissue. The emergence of induced pluripotent stem cells (iPSCs) has offered a unique alternative strategy using patient-derived functional neuronal networks. However, methods for reliably generating iPSC-derived neurons with mature electrophysiological characteristics have been difficult to develop. Here, we report a simplified differentiation protocol that yields electrophysiologically mature iPSC-derived cortical lineage neuronal networks without the need for astrocyte co-culture or specialized media. This protocol generates a consistent 60:40 ratio of neurons and astrocytes that arise from a common forebrain neural progenitor. Whole-cell patch-clamp recordings of 114 neurons derived from three independent iPSC lines confirmed their electrophysiological maturity, including resting membrane potential (-58.2±1.0 mV), capacitance (49.1±2.9 pF), action potential (AP) threshold (-50.9±0.5 mV) and AP amplitude (66.5±1.3 mV). Nearly 100% of neurons were capable of firing APs, of which 79% had sustained trains of mature APs with minimal accommodation (peak AP frequency: 11.9±0.5 Hz) and 74% exhibited spontaneous synaptic activity (amplitude, 16.03±0.82 pA; frequency, 1.09±0.17 Hz). We expect this protocol to be of broad applicability for implementing iPSC-based neuronal network models of neuropsychiatric disorders.Molecular Psychiatry advance online publication, 18 April 2017; doi:10.1038/mp.2017.56.

  10. A space-fractional Monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries

    Science.gov (United States)

    Cusimano, N.; Gerardo-Giorda, L.

    2018-06-01

    Classical models of electrophysiology do not typically account for the effects of high structural heterogeneity in the spatio-temporal description of excitation waves propagation. We consider a modification of the Monodomain model obtained by replacing the diffusive term of the classical formulation with a fractional power of the operator, defined in the spectral sense. The resulting nonlocal model describes different levels of tissue heterogeneity as the fractional exponent is varied. The numerical method for the solution of the fractional Monodomain relies on an integral representation of the nonlocal operator combined with a finite element discretisation in space, allowing to handle in a natural way bounded domains in more than one spatial dimension. Numerical tests in two spatial dimensions illustrate the features of the model. Activation times, action potential duration and its dispersion throughout the domain are studied as a function of the fractional parameter: the expected peculiar behaviour driven by tissue heterogeneities is recovered.

  11. Electrophysiologic studies of neronal activities under ischemia condition.

    Science.gov (United States)

    Huang, Shun-Ho; Wang, Ping-Hsien; Chen, Jia-Jin Jason

    2008-01-01

    Substrate with integrated microelectrode arrays (MEAs) provides an alternative electrophysiological method. With MEAS, one can measure the impedance and elicit electrical stimulation from multiple sites of MEAs to determine the electrophysiological conditions of cells. The aims of this research were to construct an impedance and action potential measurement system for neurons cultured on MEAs for observing the electrophysiological signal transmission in neuronal network during glucose and oxygen deprivation (OGD). An extracellular stimulator producing the biphasic micro-current pulse for neuron stimulation was built in this study. From the time-course recording of impedance, OGD condition effectively induced damage in neurons in vitro. It is known that the results of cell stimulation are affected by electrode impedance, so does the result of neuron cells covered on the electrode can measure the sealing resistance. For extracellular stimulation study, cortical neuronal activity was recorded and the suitable stimulation window was determined. However, the stimulation results were affected by electrode impedance as well as sealing impedance resulting from neuron cells covering the electrode. Further development of surface modification for cultured neuron network should provide a better way for in vitro impedance and electrophysiological measurements.

  12. Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications.

    Science.gov (United States)

    Yoshida, Yoshinori; Yamanaka, Shinya

    2017-06-09

    Induced pluripotent stem cells (iPSCs) are reprogrammed cells that have features similar to embryonic stem cells, such as the capacity of self-renewal and differentiation into many types of cells, including cardiac myocytes. Although initially the reprogramming efficiency was low, several improvements in reprogramming methods have achieved robust and efficient generation of iPSCs without genomic insertion of transgenes. iPSCs display clonal variations in epigenetic and genomic profiles and cellular behavior in differentiation. iPSC-derived cardiac myocytes (iPSC cardiac myocytes) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models, and are useful for drug discovery and toxicology testing. In addition, iPSC cardiac myocytes can help with patient stratification in regard to drug responsiveness. Furthermore, they can be used as source cells for cardiac regeneration in animal models. Here, we review recent progress in iPSC technology and its applications to cardiac diseases. © 2017 American Heart Association, Inc.

  13. [On the first studies of electrophysiology].

    Science.gov (United States)

    de Micheli, Alfredo

    2011-01-01

    A historical outline of the evolution of electrophysiology from the eighteenth century is shortly presented. Topics concerning the so called animal electricity starting from the observations on descharges of Torpedo fish until Bolognese Galvani's researches on the frogs are exposed. The points of view of their oppositionists also are examined. These ones, leaded by the physicist Alessandro Volta, professor in the University of Pavia, believed that electricity detected by galvanists was not inherent to animal but was due to the action of the metallic conductors present in the circuit: contact electricity. Only towards the middle of the nineteenth century the physicist Carlo Matteucci attained to demonstrate the existente of the real animal electricity in form of injury current. It was possible to determine that quantitatively thanks to the capillary electrometer built in 1872 by the French physicist Gabriel Lippmann. This instrument was used by the English physiologist Waller in order to obtain the primitive electrocardiographic tracings in humans (1887). At beginnings of the twentieth century, the Dutch professor Willem Einthoven, of the University of Leiden, introduced his string galvanometer which permitted to allow the modern electrocardiography. So it was possible to record the electrical potentials of myocardial cells, first in vitro, later in isolated and perfused heart, son after in dog's heart in situ and finally in human heart. Therefore now it is possible to effectuate endocardial and epicardial mappings, indispensable in order to diagnose and treat the cardiac arrhythmias.

  14. Software and hardware infrastructure for research in electrophysiology.

    Science.gov (United States)

    Mouček, Roman; Ježek, Petr; Vařeka, Lukáš; Rondík, Tomáš; Brůha, Petr; Papež, Václav; Mautner, Pavel; Novotný, Jiří; Prokop, Tomáš; Stěbeták, Jan

    2014-01-01

    As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly. This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research. After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software.

  15. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

    Science.gov (United States)

    Hussain, Ali; Collins, George; Yip, Derek; Cho, Cheul H

    2013-02-01

    The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However

  16. Immune Modulation of Cardiac Repair and Regeneration: The Art of Mending Broken Hearts.

    Science.gov (United States)

    Zlatanova, Ivana; Pinto, Cristina; Silvestre, Jean-Sébastien

    2016-01-01

    The accumulation of immune cells is among the earliest responses that manifest in the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct and mutually non-exclusive events governing cardiac repair, including elimination of the cellular debris, compensatory growth of the remaining cardiac tissue, activation of resident or circulating precursor cells, quantitative and qualitative modifications of the vascular network, and formation of a fibrotic scar. The present review summarizes the mounting evidence suggesting that the inflammatory response also guides the regenerative process following cardiac damage. In particular, recent literature has reinforced the central role of monocytes/macrophages in poising the refreshment of cardiomyocytes in myocardial infarction- or apical resection-induced cardiac insult. Macrophages dictate cardiac myocyte renewal through stimulation of preexisting cardiomyocyte proliferation and/or neovascularization. Nevertheless, substantial efforts are required to identify the nature of these macrophage-derived factors as well as the molecular mechanisms engendered by the distinct subsets of macrophages pertaining in the cardiac tissue. Among the growing inflammatory intermediaries that have been recognized as essential player in heart regeneration, we will focus on the role of interleukin (IL)-6 and IL-13. Finally, it is likely that within the mayhem of the injured cardiac tissue, additional types of inflammatory cells, such as neutrophils, will enter the dance to ignite and refresh the broken heart. However, the protective and detrimental inflammatory pathways have been mainly deciphered in animal models. Future research should be focused on understanding the cellular effectors and molecular signals regulating inflammation in human heart to pave the way for the development of factual therapies targeting the inflammatory compartment in cardiac diseases.

  17. Immune modulation of cardiac repair and regeneration: the art of mending broken hearts

    Directory of Open Access Journals (Sweden)

    Ivana Zlatanova

    2016-10-01

    Full Text Available The accumulation of immune cells is amongst the earliest responses that manifest in the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct and mutually non-exclusive events governing cardiac repair including elimination of the cellular debris, compensatory growth of the remaining cardiac tissue, activation of resident or circulating precursor cells, quantitative and qualitative modifications of the vascular network and formation of a fibrotic scar. The present review summarizes the mounting evidence suggesting that the inflammatory response also guides the regenerative process following cardiac damage. In particular, recent literature has reinforced the central role of monocytes/macrophages in poising the refreshment of cardiomyocytes in myocardial infarction- or apical resection-induced cardiac insult. Macrophages dictate cardiac myocyte renewal through stimulation of pre-existing cardiomyocyte proliferation and/or neovascularization. Nevertheless, substantial efforts are required to identify the nature of these macrophage-derived factors as well as the molecular mechanisms engendered by the distinct subsets of macrophages pertaining in the cardiac tissue. Among the growing inflammatory intermediaries that have been recognized as essential player in heart regeneration, we will focus on the role of interleukin-6 and interleukin-13. Finally, it is likely that within the mayhem of the injured cardiac tissue, additional types of inflammatory cells, such as neutrophils, will enter the dance to ignite and refresh the broken heart. However, the protective and detrimental inflammatory pathways have been mainly deciphered in animal models. Future research should be focused on understanding the cellular effectors and molecular signals regulating inflammation in human heart to pave the way for the development of factual therapies targeting the inflammatory compartment in cardiac diseases.

  18. Dosimetric applications of cellular electrophysiological changes under high- and low-LET irradiation in health physics

    International Nuclear Information System (INIS)

    Steinhausler, F.; Hofmann, W.; Eckl, P.; Pohl-Ruling, J.

    1980-01-01

    The first step of interaction of radiation with any biological target occurs at the cellular level, especially at the cell membrane. This results in a Linear Energy Transfer (LET)-dependent deposition of energy at membrane substructures, where the supramolecular arrangement of components represents highly sensitive targets for ionizing radiation, e.g. the natural membrane lipid component. As part of a current research project on the influence of low level effects of ionizing radiation on biophysical cellular parameters, changes of electrical properties of irradiated cell membranes were studied for their suitability as biological dosimeters. Normal human embryonic lung cells (Flow 2002) and transformed human lung cells (WI-38/SV13) were exposed to ionizing radiation with LET ranging from 10 to over 100 keV/μm. With the use of micromanipulators, glass-micro-electrodes in a special headstage were used to determine intracellular electrical activity at different time intervals after irradiation of the cells. Population density of the irradiated cell colonies was varied in order to determine the influence of contact inhibition and intercellular communication on the observable radiation induced effect. Dose- and dose rate-dependent variation of cellular membrane resting potential and membrane resistance are discussed for both normal and malignant human cells. (author)

  19. Integration of genomics, proteomics, and imaging for cardiac stem cell therapy

    International Nuclear Information System (INIS)

    Chun, Hyung J.; Wilson, Kitch O.; Huang, Mei; Wu, Joseph C.

    2007-01-01

    Cardiac stem cell therapy is beginning to mature as a valid treatment for heart disease. As more clinical trials utilizing stem cells emerge, it is imperative to establish the mechanisms by which stem cells confer benefit in cardiac diseases. In this paper, we review three methods - molecular cellular imaging, gene expression profiling, and proteomic analysis - that can be integrated to provide further insights into the role of this emerging therapy. (orig.)

  20. Extracellular high-mobility group box 1 mediates pressure overload-induced cardiac hypertrophy and heart failure.

    Science.gov (United States)

    Zhang, Lei; Liu, Ming; Jiang, Hong; Yu, Ying; Yu, Peng; Tong, Rui; Wu, Jian; Zhang, Shuning; Yao, Kang; Zou, Yunzeng; Ge, Junbo

    2016-03-01

    Inflammation plays a key role in pressure overload-induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High-mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload-induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild-type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin-embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC-induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up-regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload-induced cardiac hypertrophy and cardiac dysfunction. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation.

    Directory of Open Access Journals (Sweden)

    Esra Cagavi

    Full Text Available As heart failure due to myocardial infarction remains a leading cause of morbidity worldwide, cell-based cardiac regenerative therapy using cardiac progenitor cells (CPCs could provide a potential treatment for the repair of injured myocardium. As adult CPCs may have limitations regarding tissue accessibility and proliferative ability, CPCs derived from embryonic stem cells (ESCs could serve as an unlimited source of cells with high proliferative ability. As one of the CPCs that can be derived from embryonic stem cells, Isl1 expressing cardiac progenitor cells (Isl1-CPCs may serve as a valuable source of cells for cardiac repair due to their high cardiac differentiation potential and authentic cardiac origin. In order to generate an unlimited number of Isl1-CPCs, we used a previously established an ESC line that allows for isolation of Isl1-CPCs by green fluorescent protein (GFP expression that is directed by the mef2c gene, specifically expressed in the Isl1 domain of the anterior heart field. To improve the efficiency of cardiac differentiation of Isl1-CPCs, we studied the role of Bmp4 in cardiogenesis of Isl1-CPCs. We show an inductive role of Bmp directly on cardiac progenitors and its enhancement on early cardiac differentiation of CPCs. Upon induction of Bmp4 to Isl1-CPCs during differentiation, the cTnT+ cardiomyocyte population was enhanced 2.8±0.4 fold for Bmp4 treated CPC cultures compared to that detected for vehicle treated cultures. Both Bmp4 treated and untreated cardiomyocytes exhibit proper electrophysiological and calcium signaling properties. In addition, we observed a significant increase in Tbx5 and Tbx20 expression in differentiation cultures treated with Bmp4 compared to the untreated control, suggesting a link between Bmp4 and Tbx genes which may contribute to the enhanced cardiac differentiation in Bmp4 treated cultures. Collectively these findings suggest a cardiomyogenic role for Bmp4 directly on a pure population of

  2. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.

    2017-03-17

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  3. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.; Scacchi, S.; Verdi, C.; Zampieri, E.; Zampini, Stefano

    2017-01-01

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  4. Asymptomatic Changes in Cardiac Function Can Occur in DCIS Patients Following Treatment with HER-2/neu Pulsed Dendritic Cell Vaccines

    Science.gov (United States)

    Bahl, Susan; Roses, Robert; Sharma, Anupama; Koldovsky, Ursula; Xu, Shuwen; Weinstein, Susan; Nisenbaum, Harvey; Fox, Kevin; Pasha, Theresa; Zhang, Paul; Araujo, Louis; Carver, Joseph; Czerniecki, Brian J

    2009-01-01

    Background Targeting HER-2/neu with Trastuzumab has been associated with development of cardiac toxicity. Methods Twenty-seven patients with ductal carcinoma in situ (DCIS) of the breast completed an IRB approved clinical trial of a HER-2/neu targeted dendritic cell based vaccine. Four weekly vaccinations were administered prior to surgical resection. All subjects underwent pre- and post-vaccine cardiac monitoring by MUGA/ECHO scanning allowing for a comparison of cardiac function. Results In 3 of 27 vaccinated patients (11%) transient asymptomatic decrements in ejection fraction of greater than 15% were noted after vaccination. Notably, evidence of circulating anti-HER-2/neu antibody was found prior to vaccination in all three patients, but cardiac toxicity was not noted until induction of cellular mediated immune responses. Conclusions This is the first description of HER-2/neu targeted vaccination associated with an incidence of cardiac changes, and the induction of cellular immune responses combined with antibody may contribute to changes in cardiac function. PMID:19800453

  5. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study*

    Science.gov (United States)

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-01-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687

  6. Software and Hardware Infrastructure for Research in Electrophysiology

    Directory of Open Access Journals (Sweden)

    Roman eMouček

    2014-03-01

    Full Text Available As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly.This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research.After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software.

  7. Electrophysiological Evidence in Schizophrenia in Relation to Treatment Response

    Directory of Open Access Journals (Sweden)

    Kazuki Sueyoshi

    2018-06-01

    Full Text Available Several domains of cognitive function, e.g., verbal memory, information processing, fluency, attention, and executive function are impaired in patients with schizophrenia. Cognitive impairments in schizophrenia have attracted interests as a treatment target, because they are considered to greatly affect functional outcome. Electrophysiological markers, including electroencephalogram (EEG, particularly, event-related potentials, have contributed to psychiatric research and clinical practice. In this review, we provide a summary of studies relating electrophysiological findings to cognitive performance in schizophrenia. Electrophysiological indices may provide an objective marker of cognitive processes, contributing to the development of effective interventions to improve cognitive and social outcomes. Further efforts to understand biological mechanisms of cognitive disturbances, and develop effective therapeutics are warranted.

  8. Cellular phones were found to pose no health risks

    International Nuclear Information System (INIS)

    Puranen, L.

    1997-01-01

    A cellular phone emits radiation very close to a person's head. Any harmful effects that might arise from the use of cellular phones are being studied carefully, but so far no health risks have been determined. However, the phones may interfere with the operation of electrical devices located close-by, such as a cardiac pacemaker. The biological effects of the microwaves emitted by cellular phones might be based on the resultant higher temperatures in the tissues of the head. Since, even in the worst cases, a cellular phone cannot raise the temperature of tissues by more than some tenths of a degree, no health risks based on thermal effects can be attributed to the use of a cellular phone. No reliable theory has been presented for the non-thermal effects of microwaves. Such effects may exist, however. The studies conducted so far have been unable to show that these effects might be harmful to human health. (orig.)

  9. Electrophysiology in visually impaired children

    NARCIS (Netherlands)

    Genderen, Maria Michielde van

    2006-01-01

    Inherited retinal disorders and posterior visual pathway abnormalities are important causes of visual impairment in children. Visual electrophysiology often is indispensable in diagnosing these conditions. This thesis shows the wide range of use of pediatric electro-ophthalmology, and demonstrates

  10. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    2006-09-01

    Full Text Available Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP, adenosine diphosphate (ADP, and phosphocreatine (CrP have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 mumol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 mumol min(-1 g(-1, model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded

  11. Model-based imaging of cardiac electrical function in human atria

    Science.gov (United States)

    Modre, Robert; Tilg, Bernhard; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Hintringer, Florian; Roithinger, Franz

    2003-05-01

    Noninvasive imaging of electrical function in the human atria is attained by the combination of data from electrocardiographic (ECG) mapping and magnetic resonance imaging (MRI). An anatomical computer model of the individual patient is the basis for our computer-aided diagnosis of cardiac arrhythmias. Three patients suffering from Wolff-Parkinson-White syndrome, from paroxymal atrial fibrillation, and from atrial flutter underwent an electrophysiological study. After successful treatment of the cardiac arrhythmia with invasive catheter technique, pacing protocols with stimuli at several anatomical sites (coronary sinus, left and right pulmonary vein, posterior site of the right atrium, right atrial appendage) were performed. Reconstructed activation time (AT) maps were validated with catheter-based electroanatomical data, with invasively determined pacing sites, and with pacing at anatomical markers. The individual complex anatomical model of the atria of each patient in combination with a high-quality mesh optimization enables accurate AT imaging, resulting in a localization error for the estimated pacing sites within 1 cm. Our findings may have implications for imaging of atrial activity in patients with focal arrhythmias.

  12. Radiation dose management for pediatric cardiac computed tomography: a report from the Image Gently 'Have-A-Heart' campaign.

    Science.gov (United States)

    Rigsby, Cynthia K; McKenney, Sarah E; Hill, Kevin D; Chelliah, Anjali; Einstein, Andrew J; Han, B Kelly; Robinson, Joshua D; Sammet, Christina L; Slesnick, Timothy C; Frush, Donald P

    2018-01-01

    Children with congenital or acquired heart disease can be exposed to relatively high lifetime cumulative doses of ionizing radiation from necessary medical imaging procedures including radiography, fluoroscopic procedures including diagnostic and interventional cardiac catheterizations, electrophysiology examinations, cardiac computed tomography (CT) studies, and nuclear cardiology examinations. Despite the clinical necessity of these imaging studies, the related ionizing radiation exposure could pose an increased lifetime attributable cancer risk. The Image Gently "Have-A-Heart" campaign is promoting the appropriate use of medical imaging studies in children with congenital or acquired heart disease while minimizing radiation exposure. The focus of this manuscript is to provide a comprehensive review of radiation dose management and CT performance in children with congenital or acquired heart disease.

  13. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Hieu T Nim

    Full Text Available The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP, an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1 relevant to cardiac literature, and (2 differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10 are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.

  14. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts.

    Science.gov (United States)

    Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Kitano, Hiroaki; Rosenthal, Nadia A; Boyd, Sarah E

    2015-01-01

    The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP), an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1) relevant to cardiac literature, and (2) differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10) are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.

  15. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.

    Science.gov (United States)

    Kharaziha, Mahshid; Shin, Su Ryon; Nikkhah, Mehdi; Topkaya, Seda Nur; Masoumi, Nafiseh; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-08-01

    In the past few years, a considerable amount of effort has been devoted toward the development of biomimetic scaffolds for cardiac tissue engineering. However, most of the previous scaffolds have been electrically insulating or lacked the structural and mechanical robustness to engineer cardiac tissue constructs with suitable electrophysiological functions. Here, we developed tough and flexible hybrid scaffolds with enhanced electrical properties composed of carbon nanotubes (CNTs) embedded aligned poly(glycerol sebacate):gelatin (PG) electrospun nanofibers. Incorporation of varying concentrations of CNTs from 0 to 1.5% within the PG nanofibrous scaffolds (CNT-PG scaffolds) notably enhanced fiber alignment and improved the electrical conductivity and toughness of the scaffolds while maintaining the viability, retention, alignment, and contractile activities of cardiomyocytes (CMs) seeded on the scaffolds. The resulting CNT-PG scaffolds resulted in stronger spontaneous and synchronous beating behavior (3.5-fold lower excitation threshold and 2.8-fold higher maximum capture rate) compared to those cultured on PG scaffold. Overall, our findings demonstrated that aligned CNT-PG scaffold exhibited superior mechanical properties with enhanced CM beating properties. It is envisioned that the proposed hybrid scaffolds can be useful for generating cardiac tissue constructs with improved organization and maturation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Intra-cardiac echocardiography guided catheter ablation of a right posterior accessory pathway in a patient with Ebstein׳s anomaly

    Directory of Open Access Journals (Sweden)

    Akira Shimane, MD

    2014-12-01

    Full Text Available We report a case of Ebstein׳s anomaly in which radiofrequency catheter ablation of an accessory pathway was successfully performed under intra-cardiac echocardiography. A 50-year-old woman was referred to our hospital for radiofrequency catheter ablation of a paroxysmal supraventricular tachycardia. A 12-lead surface electrocardiogram revealed ventricular pre-excitation associated with type B Wolff–Parkinson–White syndrome. In the baseline electrophysiological study, an orthodromic atrioventricular reciprocating tachycardia with a right posterior accessory pathway was induced. A phased-array intra-cardiac echo probe was positioned in the right atrium to visualize the atrioventricular junction. The key structures for catheter ablation, such as the atrialized right ventricle, atrioventricular junction, and tricuspid valve, were clearly visualized on intra-cardiac echocardiography. Radiofrequency current was successfully delivered at the atrioventricular junction, where a Kent potential was recorded. During a 6-month follow-up period, the patient was free from arrhythmias. The findings in this case suggest that phased-array intra-cardiac echocardiography is useful for ablation of right-sided accessory pathways in patients with Ebstein׳s anomaly.

  17. The reliability of commonly used electrophysiology measures.

    Science.gov (United States)

    Brown, K E; Lohse, K R; Mayer, I M S; Strigaro, G; Desikan, M; Casula, E P; Meunier, S; Popa, T; Lamy, J-C; Odish, O; Leavitt, B R; Durr, A; Roos, R A C; Tabrizi, S J; Rothwell, J C; Boyd, L A; Orth, M

    Electrophysiological measures can help understand brain function both in healthy individuals and in the context of a disease. Given the amount of information that can be extracted from these measures and their frequent use, it is essential to know more about their inherent reliability. To understand the reliability of electrophysiology measures in healthy individuals. We hypothesized that measures of threshold and latency would be the most reliable and least susceptible to methodological differences between study sites. Somatosensory evoked potentials from 112 control participants; long-latency reflexes, transcranial magnetic stimulation with resting and active motor thresholds, motor evoked potential latencies, input/output curves, and short-latency sensory afferent inhibition and facilitation from 84 controls were collected at 3 visits over 24 months at 4 Track-On HD study sites. Reliability was assessed using intra-class correlation coefficients for absolute agreement, and the effects of reliability on statistical power are demonstrated for different sample sizes and study designs. Measures quantifying latencies, thresholds, and evoked responses at high stimulator intensities had the highest reliability, and required the smallest sample sizes to adequately power a study. Very few between-site differences were detected. Reliability and susceptibility to between-site differences should be evaluated for electrophysiological measures before including them in study designs. Levels of reliability vary substantially across electrophysiological measures, though there are few between-site differences. To address this, reliability should be used in conjunction with theoretical calculations to inform sample size and ensure studies are adequately powered to detect true change in measures of interest. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Directory of Open Access Journals (Sweden)

    Jake Bedore

    Full Text Available Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina.A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5 deletion of VAChT (VAChTSix3-Cre-flox/flox and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses.This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  19. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  20. Rapid fusion of 2D X-ray fluoroscopy with 3D multislice CT for image-guided electrophysiology procedures

    Science.gov (United States)

    Zagorchev, Lyubomir; Manzke, Robert; Cury, Ricardo; Reddy, Vivek Y.; Chan, Raymond C.

    2007-03-01

    Interventional cardiac electrophysiology (EP) procedures are typically performed under X-ray fluoroscopy for visualizing catheters and EP devices relative to other highly-attenuating structures such as the thoracic spine and ribs. These projections do not however contain information about soft-tissue anatomy and there is a recognized need for fusion of conventional fluoroscopy with pre-operatively acquired cardiac multislice computed tomography (MSCT) volumes. Rapid 2D-3D integration in this application would allow for real-time visualization of all catheters present within the thorax in relation to the cardiovascular anatomy visible in MSCT. We present a method for rapid fusion of 2D X-ray fluoroscopy with 3DMSCT that can facilitate EP mapping and interventional procedures by reducing the need for intra-operative contrast injections to visualize heart chambers and specialized systems to track catheters within the cardiovascular anatomy. We use hardware-accelerated ray-casting to compute digitally reconstructed radiographs (DRRs) from the MSCT volume and iteratively optimize the rigid-body pose of the volumetric data to maximize the similarity between the MSCT-derived DRR and the intra-operative X-ray projection data.

  1. Clinical and electrophysiological evaluation of pediatric Wolff-Parkinson-White patients

    Science.gov (United States)

    Yıldırım, Işıl; Özer, Sema; Karagöz, Tevfik; Şahin, Murat; Özkutlu, Süheyla; Alehan, Dursun; Çeliker, Alpay

    2015-01-01

    Objective: Wolff-Parkinson-White (WPW) syndrome presents with paroxysmal supraventricular tachycardia and is characterized by electrocardiographic (ECG) findings of a short PR interval and a delta wave. The objective of this study was to evaluate the electrophysiological properties of children with WPW syndrome and to develop an algorithm for the management of these patients with limited access to electrophysiological study. Methods: A retrospective review of all pediatric patients who underwent electrophysiological evaluation for WPW syndrome was performed. Results: One hundred nine patients underwent electrophysiological evaluation at a single tertiary center between 1997 and 2011. The median age of the patients was 11 years (0.1-18). Of the 109 patients, 82 presented with tachycardia (median age 11 (0.1-18) years), and 14 presented with syncope (median age 12 (6-16) years); 13 were asymptomatic (median age 10 (2-13) years). Induced AF degenerated to ventricular fibrillation (VF) in 2 patients. Of the 2 patients with VF, 1 was asymptomatic and the other had syncope; the accessory pathway effective refractory period was ≤180 ms in both. An intracardiac electrophysiological study was performed in 92 patients, and ablation was not attempted for risk of atrioventricular block in 8 (8.6%). The success and recurrence rate of ablation were 90.5% and 23.8% respectively. Conclusion: The induction of VF in 2 of 109 patients in our study suggests that the prognosis of WPW in children is not as benign as once thought. All patients with a WPW pattern on the ECG should be assessed electrophysiologically and risk-stratified. Ablation of patients with risk factors can prevent sudden death in this population. PMID:26006136

  2. Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols

    Directory of Open Access Journals (Sweden)

    Dorota Jeziorowska

    2017-06-01

    Full Text Available Human induced pluripotent stem cells (iPSCs represent a powerful human model to study cardiac disease in vitro, notably channelopathies and sarcomeric cardiomyopathies. Different protocols for cardiac differentiation of iPSCs have been proposed either based on embroid body formation (3D or, more recently, on monolayer culture (2D. We performed a direct comparison of the characteristics of the derived cardiomyocytes (iPSC-CMs on day 27 ± 2 of differentiation between 3D and 2D differentiation protocols with two different Wnt-inhibitors were compared: IWR1 (inhibitor of Wnt response or IWP2 (inhibitor of Wnt production. We firstly found that the level of Troponin T (TNNT2 expression measured by FACS was significantly higher for both 2D protocols as compared to the 3D protocol. In the three methods, iPSC-CM show sarcomeric structures. However, iPSC-CM generated in 2D protocols constantly displayed larger sarcomere lengths as compared to the 3D protocol. In addition, mRNA and protein analyses reveal higher cTNi to ssTNi ratios in the 2D protocol using IWP2 as compared to both other protocols, indicating a higher sarcomeric maturation. Differentiation of cardiac myocytes with 2D monolayer-based protocols and the use of IWP2 allows the production of higher yield of cardiac myocytes that have more suitable characteristics to study sarcomeric cardiomyopathies.

  3. Electrophysiological measurements of diabetic peripheral neuropathy: A systematic review.

    Science.gov (United States)

    Shabeeb, Dheyauldeen; Najafi, Masoud; Hasanzadeh, Gholamreza; Hadian, Mohammed Reza; Musa, Ahmed Eleojio; Shirazi, Alireza

    2018-03-28

    Peripheral neuropathy is one of the main complications of diabetes mellitus. One of the features of diabetic nerve damage is abnormality of sensory and motor nerve conduction study. An electrophysiological examination can be reproduced and is also a non-invasive approach in the assessment of peripheral nerve function. Population-based and clinical studies have been conducted to validate the sensitivity of these methods. When the diagnosis was based on clinical electrophysiological examination, abnormalities were observed in all patients. In this research, using a review design, we reviewed the issue of clinical electrophysiological examination of diabetic peripheral neuropathy in articles from 2008 to 2017. For this purpose, PubMed, Scopus and Embase databases of journals were used for searching articles. The researchers indicated that diabetes (both types) is a very disturbing health issue in the modern world and should be given serious attention. Based on conducted studies, it was demonstrated that there are different procedures for prevention and treatment of diabetes-related health problems such as diabetic polyneuropathy (DPN). The first objective quantitative indication of the peripheral neuropathy is abnormality of sensory and motor nerve conduction tests. Electrophysiology is accurate, reliable and sensitive. It can be reproduced and also is a noninvasive approach in the assessment of peripheral nerve function. The methodological review has found that the best method for quantitative indication of the peripheral neuropathy compared with all other methods is clinical electrophysiological examination. For best results, standard protocols such as temperature control and equipment calibration are recommended. Copyright © 2018. Published by Elsevier Ltd.

  4. De Novo Human Cardiac Myocytes for Medical Research: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Veronique Hamel

    2017-01-01

    Full Text Available The advent of cellular reprogramming technology has revolutionized biomedical research. De novo human cardiac myocytes can now be obtained from direct reprogramming of somatic cells (such as fibroblasts, from induced pluripotent stem cells (iPSCs, which are reprogrammed from somatic cells, and from human embryonic stem cells (hESCs. Such de novo human cardiac myocytes hold great promise for in vitro disease modeling and drug screening and in vivo cell therapy of heart disease. Here, we review the technique advancements for generating de novo human cardiac myocytes. We also discuss several challenges for the use of such cells in research and regenerative medicine, such as the immature phenotype and heterogeneity of de novo cardiac myocytes obtained with existing protocols. We focus on the recent advancements in addressing such challenges.

  5. Non-uniform dispersion of the source-sink relationship alters wavefront curvature.

    Directory of Open Access Journals (Sweden)

    Lucia Romero

    Full Text Available The distribution of cellular source-sink relationships plays an important role in cardiac propagation. It can lead to conduction slowing and block as well as wave fractionation. It is of great interest to unravel the mechanisms underlying evolution in wavefront geometry. Our goal is to investigate the role of the source-sink relationship on wavefront geometry using computer simulations. We analyzed the role of variability in the microscopic source-sink relationship in driving changes in wavefront geometry. The electrophysiological activity of a homogeneous isotropic tissue was simulated using the ten Tusscher and Panfilov 2006 action potential model and the source-sink relationship was characterized using an improved version of the Romero et al. safety factor formulation (SFm2. Our simulations reveal that non-uniform dispersion of the cellular source-sink relationship (dispersion along the wavefront leads to alterations in curvature. To better understand the role of the source-sink relationship in the process of wave formation, the electrophysiological activity at the initiation of excitation waves in a 1D strand was examined and the source-sink relationship was characterized using the two recently updated safety factor formulations: the SFm2 and the Boyle-Vigmond (SFVB definitions. The electrophysiological activity at the initiation of excitation waves was intimately related to the SFm2 profiles, while the SFVB led to several counterintuitive observations. Importantly, with the SFm2 characterization, a critical source-sink relationship for initiation of excitation waves was identified, which was independent of the size of the electrode of excitation, membrane excitability, or tissue conductivity. In conclusion, our work suggests that non-uniform dispersion of the source-sink relationship alters wavefront curvature and a critical source-sink relationship profile separates wave expansion from collapse. Our study reinforces the idea that the

  6. Comparative study of cellular kinetics of reporter probe [{sup 131}I]FIAU in neonatal cardiac myocytes after transfer of HSV1-tk reporter gene with two vectors

    Energy Technology Data Exchange (ETDEWEB)

    Lan Xiaoli [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022 (China)], E-mail: lxl730724@hotmail.com; Yin Xiaohua; Wang Ruihua; Liu Ying [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022 (China); Zhang Yongxue [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China) and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022 (China)], E-mail: zhyx1229@163.com

    2009-02-15

    Aim: Reporter gene imaging is a promising approach for noninvasive monitoring of cardiac gene therapy. In this study, HSV1-tk (herpes simplex virus type 1 thymidine kinase) and FIAU (2'-fluoro-2'-deoxy-1-{beta}-D-arabinofuranosyl-5-iodouracil) were used as the reporter gene and probe, respectively. Cellular uptakes of radiolabeled FIAU of neonatal rat cardiac myocytes transferred with HSV1-tk were compared between two vectors, adenovirus and liposome. The aims of this study were to choose the better vector and to provide a theoretical basis for good nuclide images. Methods: Neonatal cardiac myocytes were obtained from rat heart by single collagenase digestion. HSV1-tk inserted into adenovirus vector (recombinant adenovirus type 5, Ad5-tk) and plasmid (pDC316-tk) coated with Lipofectamine 2000 (pDC316-tk/lipoplex) were developed; thus, HSV1-tk could be transferred into neonatal cardiac myocytes. FAU (2'-fluoro-2'-deoxy-1-{beta}-D-arabinofuranosyluracil) was labeled with {sup 131}I, and the product was assessed after purification with reversed-phase Sep-Pak C-18 column. The uptake rates of [{sup 131}I]FIAU in the transferred cardiac myocytes at different times (0.5, 1, 2, 3, 4 and 5 h) were detected. Furthermore, mRNA expression and protein expression of HSV1-tk were detected by semiquantitative reverse-transcriptase polymerase chain reaction and immunocytochemistry. Results: FAU could be labeled with {sup 131}I, and the labeling efficiency and radiochemical purity rates were 53.82{+-}2.05% and 94.85{+-}1.76%, respectively. Time-dependent increase of the accumulation of [{sup 131}I]FIAU was observed in both the Ad5-tk group and the pDC316/lipoplex group, and the highest uptake rate occurred at 5 h, with peak values of 12.55{+-}0.37% and 2.09{+-}0.34%, respectively. Greater uptakes of [{sup 131}I]FIAU in Ad5-tk-infected cells compared with pDC316/lipoplex-transfected ones occurred at all the time points (t=12.978-38.253, P<.01). The exogenous gene

  7. The assessment of visually impaired persons working capacities using electrophysiological and ophthalmic ergonomics methods

    Directory of Open Access Journals (Sweden)

    M. I. Razumovsky

    2014-07-01

    Full Text Available Aim was to analyze working capacities of visually impaired persons by means of complex electrophysiological and ophthalmic ergonomics eye examination.Materials and methods. Standard clinical ophthalmologic examination (visual acuity measurement, refractometry, biomicroscopy, ophthalmoscopy as well as electrophysiological (electrooculography, electrical sensitivity of the eye, critical flicker fusion frequency and ophthalmic ergonomics tests (accommodation measurement, professional testing using automated system «Proftest-1» were performed.Results. Complex electrophysiological and ophthalmic ergonomics tests were performed in 20 visually impaired persons. Their results revealed direct correlation between electrophysiological and ophthalmic ergonomics indices.Conclusion. Working capacities of visually impaired persons can be assessed reliably using complex electrophysiological and ophthalmic ergonomics eye examination only.

  8. The assessment of visually impaired persons working capacities using electrophysiological and ophthalmic ergonomics methods

    Directory of Open Access Journals (Sweden)

    M. I. Razumovsky

    2014-01-01

    Full Text Available Aim was to analyze working capacities of visually impaired persons by means of complex electrophysiological and ophthalmic ergonomics eye examination.Materials and methods. Standard clinical ophthalmologic examination (visual acuity measurement, refractometry, biomicroscopy, ophthalmoscopy as well as electrophysiological (electrooculography, electrical sensitivity of the eye, critical flicker fusion frequency and ophthalmic ergonomics tests (accommodation measurement, professional testing using automated system «Proftest-1» were performed.Results. Complex electrophysiological and ophthalmic ergonomics tests were performed in 20 visually impaired persons. Their results revealed direct correlation between electrophysiological and ophthalmic ergonomics indices.Conclusion. Working capacities of visually impaired persons can be assessed reliably using complex electrophysiological and ophthalmic ergonomics eye examination only.

  9. Prospective pre- and post-race evaluation of biochemical, electrophysiologic, and echocardiographic indices in 30 racing thoroughbred horses that received furosemide.

    Science.gov (United States)

    Gunther-Harrington, Catherine T; Arthur, Rick; Estell, Krista; Martinez Lopez, Beatriz; Sinnott, Alexandra; Ontiveros, Eric; Varga, Anita; Stern, Joshua A

    2018-01-18

    Exercise induced cardiac fatigue (EICF) and cardiac dysrhythmias are well described conditions identified in high-level human athletes that increase in frequency with intensity and duration of exercise. Identification of these conditions requires an understanding of normal pre- and post-race cardiac assessment values. The objectives of this study were to (1) characterize selected indices of cardiac function, electrophysiologic parameters, and biochemical markers of heart dysfunction prior to and immediately after high level racing in Thoroughbred horses receiving furosemide; and (2) create pre- and post-race reference values in order to make recommendations on possible screening practices for this population in the future. Thirty Thoroughbred horses were enrolled in the study with an age range of 3-6 years. All horses received furosemide prior to racing. Physical exams, ECGs, and echocardiograms were performed prior to racing (T0) and within 30-60 min following the race (T1). Blood samples were obtained at T0, T1, 4 h post-race (T4) and 24 h after the race (T24). Electrolytes, hematocrit, cardiac troponin I, and partial pressure CO2 values were obtained at all time points. Heart rate was significantly increased post-race compared to baseline value with a median difference of 49 bpm, 95% CI [31,58],(P horses demonstrating regurgitation through the aorta and AV valves was noted. Systolic function measured by fractional shortening increased significantly with a mean difference of 7.9%, 95% CI [4.8, 10.9], (P horse served as its own control, as such the possible effect of regression to the mean cannot be ruled out. The reference intervals generated in this study may be used to identify selected echocardiographic and electrocardiographic abnormalities in racing horses receiving furosemide.

  10. Effects of n-3 polyunsaturated fatty acids on cardiac ion channels

    Directory of Open Access Journals (Sweden)

    Cristina eMoreno

    2012-07-01

    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been reported to exhibit antiarrhythmic properties, attributed to their capability to modulate ion channels. In the present review, we will focus on the effects of PUFAs on cardiac sodium channel (Nav1.5 and two potassium channels (Kv (Kv1.5 and Kv11.1. n-3 marine (docohexaenoic and eicohexapentaenoic acid and plant origin (alpha-linolenic acid PUFAs block Kv1.5 and Kv11.1 channels at physiological concentrations. Also, DHA and EPA decreased Nav1.5 and calcium channels. These effects on Na and Ca channels theoretically should shorten the cardiac APD, whereas the blocking actions of n-3 PUFAs of Kv channels should lengthen the cardiac action potential. Experiments performed in female rabbits fed with a diet rich in n-3 PUFAs show a longer cardiac action potential and effective refractory period. This study was performed to analyze if their antiarrhythmic effects are due to a reduction of triangulation, reverse use-dependence, instability and dispersion of the cardiac action potential (TRIaD as a measure of proarrhythmic effects. Dietary n-3 PUFAs supplementation markedly reduced dofetilide-induced TRIaD and abolished dofetilide-induced torsades de pointes (TdP. Ultrafast sodium channel block by DHA may account for the antiarrhythmic protection of dietary supplements of n-3 PUFAs against dofetilide induced proarrhythmia observed in this animal model. The cardiac effects of n-3 PUFAs resemble those of amiodarone: both block sodium, calcium and potassium channels, have anti-adrenergic properties, can prolong the cardiac action potential, reverse TRIaD and suppress TdP. The main difference is that sodium channel block by n-3 PUFAs has a much faster onset and offset kinetics. Therefore, the electrophysiological profile of n-3 PUFAs appears more desirable: the duration of reduced sodium current (facilitates re-entry is much shorter. The n-3 PUFAs appear as a safer alternative to other antiarrhythmic

  11. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  12. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  13. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities.

    Science.gov (United States)

    Gajarsa, Jason J; Kloner, Robert A

    2011-01-01

    As more patients survive myocardial infarctions, the incidence of heart failure increases. After an infarction, the human heart undergoes a series of structural changes, which are governed by cellular and molecular mechanisms in a pathological metamorphosis termed "remodeling." This review will discuss the current developments in our understanding of these molecular and cellular events in remodeling and the various pharmacological, cellular and device therapies used to treat, and potentially retard, this condition. Specifically, this paper will examine the neurohormonal activity of the renin-angiotensin-aldosterone axis and its molecular effects on the heart. The emerging understanding of the extra-cellular matrix and the various active molecules within it, such as the matrix metalloproteinases, elicits new appreciation for their role in cardiac remodeling and as possible future therapeutic targets. Cell therapy with stem cells is another recent therapy with great potential in improving post-infarcted hearts. Lastly, the cellular and molecular effects of left ventricular assist devices on remodeling will be reviewed. Our increasing knowledge of the cellular and molecular mechanisms underlying cardiac remodeling enables us not only to better understand how our more successful therapies, like angiotensin-converting enzyme inhibitors, work, but also to explore new therapies of the future.

  14. Dynamics of intrinsic electrophysiological properties in spinal cord neurones

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1999-01-01

    The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. ....... Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands....

  15. Radiation dose management for pediatric cardiac computed tomography. A report from the Image Gently 'Have-A-Heart' campaign

    International Nuclear Information System (INIS)

    Rigsby, Cynthia K.; Sammet, Christina L.; McKenney, Sarah E.; Hill, Kevin D.; Chelliah, Anjali; Einstein, Andrew J.; Han, B.K.; Robinson, Joshua D.; Slesnick, Timothy C.; Frush, Donald P.

    2018-01-01

    Children with congenital or acquired heart disease can be exposed to relatively high lifetime cumulative doses of ionizing radiation from necessary medical imaging procedures including radiography, fluoroscopic procedures including diagnostic and interventional cardiac catheterizations, electrophysiology examinations, cardiac computed tomography (CT) studies, and nuclear cardiology examinations. Despite the clinical necessity of these imaging studies, the related ionizing radiation exposure could pose an increased lifetime attributable cancer risk. The Image Gently ''Have-A-Heart'' campaign is promoting the appropriate use of medical imaging studies in children with congenital or acquired heart disease while minimizing radiation exposure. The focus of this manuscript is to provide a comprehensive review of radiation dose management and CT performance in children with congenital or acquired heart disease. (orig.)

  16. Radiation dose management for pediatric cardiac computed tomography. A report from the Image Gently 'Have-A-Heart' campaign

    Energy Technology Data Exchange (ETDEWEB)

    Rigsby, Cynthia K.; Sammet, Christina L. [Northwestern University Feinberg School of Medicine, Department of Medical Imaging 9, Ann and Robert H. Lurie Children' s Hospital of Chicago, Departments of Radiology and Pediatrics, Chicago, IL (United States); McKenney, Sarah E. [Children' s National Medical Center, Division of Diagnostic Imaging and Radiology, Washington, DC (United States); Hill, Kevin D. [Duke University Medical Center, Department of Pediatrics, Durham, NC (United States); Chelliah, Anjali [Columbia University Medical Center and New York-Presbyterian Hospital, Division of Pediatric Cardiology, New York, NY (United States); Einstein, Andrew J. [Columbia University Medical Center and New York-Presbyterian Hospital, Division of Cardiology, Departments of Medicine and Radiology, New York, NY (United States); Han, B.K. [Children' s Heart Clinic at The Children' s Hospitals and Clinics of Minnesota, Department of Pediatrics, Minneapolis, MN (United States); Robinson, Joshua D. [Northwestern University Feinberg School of Medicine, Division of Pediatric Cardiology, Ann and Robert H. Lurie Children' s Hospital of Chicago, Departments of Pediatrics and Radiology, Chicago, IL (United States); Slesnick, Timothy C. [Children' s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (United States); Frush, Donald P. [Duke University Medical Center, Department of Radiology, Durham, NC (United States)

    2018-01-15

    Children with congenital or acquired heart disease can be exposed to relatively high lifetime cumulative doses of ionizing radiation from necessary medical imaging procedures including radiography, fluoroscopic procedures including diagnostic and interventional cardiac catheterizations, electrophysiology examinations, cardiac computed tomography (CT) studies, and nuclear cardiology examinations. Despite the clinical necessity of these imaging studies, the related ionizing radiation exposure could pose an increased lifetime attributable cancer risk. The Image Gently ''Have-A-Heart'' campaign is promoting the appropriate use of medical imaging studies in children with congenital or acquired heart disease while minimizing radiation exposure. The focus of this manuscript is to provide a comprehensive review of radiation dose management and CT performance in children with congenital or acquired heart disease. (orig.)

  17. Simulation study of a magnetocardiogram based on a virtual heart model: effect of a cardiac equivalent source and a volume conductor

    International Nuclear Information System (INIS)

    Shou Guo-Fa; Xia Ling; Dai Ling; Ma Ping; Tang Fa-Kuan

    2011-01-01

    In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contributions of cardiac equivalent source models and volume conductor models to the MCG are deeply and comprehensively investigated. The single dipole source model, the multiple dipoles source model and the equivalent double layer (EDL) source model are analysed and compared with the cardiac equivalent source models. Meanwhile, the effect of the volume conductor model on the MCG combined with these cardiac equivalent sources is investigated. The simulation results demonstrate that the cardiac electrophysiological information will be partly missed when only the single dipole source is taken, while the EDL source is a good option for MCG simulation and the effect of the volume conductor is smallest for the EDL source. Therefore, the EDL source is suitable for the study of MCG forward and inverse problems, and more attention should be paid to it in future MCG studies. (general)

  18. 19-Hydroxyeicosatetraenoic acid and isoniazid protect against angiotensin II-induced cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Elkhatali, Samya; El-Sherbeni, Ahmed A.; Elshenawy, Osama H. [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Abdelhamid, Ghada [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Helwan (Egypt); El-Kadi, Ayman O.S., E-mail: aelkadi@ualberta.ca [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2015-12-15

    We have recently demonstrated that 19-hydroxyeicosatetraenoic acid (19-HETE) is the major subterminal-HETE formed in the heart tissue, and its formation was decreased during cardiac hypertrophy. In the current study, we examined whether 19-HETE confers cardioprotection against angiotensin II (Ang II)-induced cardiac hypertrophy. The effect of Ang II, with and without 19-HETE (20 μM), on the development of cellular hypertrophy in cardiomyocyte RL-14 cells was assessed by real-time PCR. Also, cardiac hypertrophy was induced in Sprague–Dawley rats by Ang II, and the effect of increasing 19-HETE by isoniazid (INH; 200 mg/kg/day) was assessed by heart weight and echocardiography. Also, alterations in cardiac cytochrome P450 (CYP) and their associated arachidonic acid (AA) metabolites were determined by real-time PCR, Western blotting and liquid-chromatography–mass-spectrometry. Our results demonstrated that 19-HETE conferred a cardioprotective effect against Ang II-induced cellular hypertrophy in vitro, as indicated by the significant reduction in β/α-myosin heavy chain ratio. In vivo, INH improved heart dimensions, and reversed the increase in heart weight to tibia length ratio caused by Ang II. We found a significant increase in cardiac 19-HETE, as well as a significant reduction in AA and its metabolite, 20-HETE. In conclusion, 19-HETE, incubated with cardiomyocytes in vitro or induced in the heart by INH in vivo, provides cardioprotection against Ang II-induced hypertrophy. This further confirms the role of CYP, and their associated AA metabolites in the development of cardiac hypertrophy. - Highlights: • We found 19-hydroxy arachidonic acid to protect cardiomyocytes from hypertrophy. • We validated the use of isoniazid as a cardiac 19-hydroxy arachidonic acid inducer. • We found isoniazid to increase protective and inhibit toxic eicosanoides. • We found isoniazid to protect against angiotensin-induced cardiac hypertrophy. • This will help to

  19. [Automated processing of electrophysiologic signals].

    Science.gov (United States)

    Korenevskiĭ, N A; Gubanov, V V

    1995-01-01

    The paper outlines a diagram of a multichannel analyzer of electrophysiological signals while are significantly non-stationary (such as those of electroencephalograms, myograms, etc.), by using a method based on the ranging procedure by the change-over points which may be the points of infection, impaired locality, minima, maxima, discontinuity, etc.

  20. CAPSAICIN SUPPLEMENTATION FAILS TO MODULATE AUTONOMIC AND CARDIAC ELECTROPHYSIOLOGIC ACTIVITY DURING EXERCISE IN THE OBESE: WITH VARIANTS OF UCP2 AND UCP3 POLYMORPHISM

    Directory of Open Access Journals (Sweden)

    Ki Ok Shin

    2008-09-01

    Full Text Available We investigated the effects of capsaicin supplementation (150mg on alterations of autonomic nervous system (ANS activity associated with adverse effects of cardiac depolarization-repolarization intervals during aerobic exercise in obese humans. Nine obese males (26.1 ± 1.5 yrs volunteered between study designed. The cardiac ANS activities evaluated by means of heart rate variability of power spectral analysis and cardiac QT interval were continuously measured during 5-min rest and 30-min exercise at 50% of maximal ventilation threshold (50%VTmax on stationary ergometer with placebo (CON or capsaicin (CAP oral administration chosen at random. The uncoupling protein (UCP 2 and UCP 3 genetic variants of the subjects were analyzed by noninvasive genotyping method from collecting buccal mucosa cells. The results indicated that there were no significant differences in cardiac ANS activities during rest and exercise between CON and CAP trials. Although no significant difference, A/A allele of UCP2 polymorphism showed a reduced sympathetic nervous system (SNS index activity compared to G/G + G/A allele during exercise intervention in our subjects. On the other hand, the data on cardiac QT interval showed no significant difference, indicating that oral administration of capsaicin did not cause any adverse effect on cardiac depolarization-repolarization. In conclusion, our results suggest that capsaicin supplementation 1 h before exercise intervention has no effect on cardiac ANS activities and cardiac electrical stability during exercise in obese individuals. Further studies should also consider genetic variants for exercise efficacy against obesity

  1. The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration.

    Science.gov (United States)

    Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S

    2015-01-01

    The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P=0.002), hepatic (39%, Prespiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR.

  2. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues.

    Directory of Open Access Journals (Sweden)

    Nicolas Christoforou

    Full Text Available The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS cells, which once differentiated allow for the enrichment of Nkx2-5(+ cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+ cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological

  3. Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.

    Science.gov (United States)

    He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming

    2018-06-04

    Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.

  4. Reproducibility of the acute rejection diagnosis in human cardiac allografts. The Stanford Classification and the International Grading System

    DEFF Research Database (Denmark)

    Nielsen, H; Sørensen, Flemming Brandt; Nielsen, B

    1993-01-01

    Transplantation has become an accepted treatment of many cardiac end-stage diseases. Acute cellular rejection accounts for 15% to 20% of all graft failures. The first grading system of acute cellular rejection, the Stanford Classification, was introduced in 1979, and since then many other grading...

  5. A Cellular Automata-based Model for Simulating Restitution Property in a Single Heart Cell.

    Science.gov (United States)

    Sabzpoushan, Seyed Hojjat; Pourhasanzade, Fateme

    2011-01-01

    Ventricular fibrillation is the cause of the most sudden mortalities. Restitution is one of the specific properties of ventricular cell. The recent findings have clearly proved the correlation between the slope of restitution curve with ventricular fibrillation. This; therefore, mandates the modeling of cellular restitution to gain high importance. A cellular automaton is a powerful tool for simulating complex phenomena in a simple language. A cellular automaton is a lattice of cells where the behavior of each cell is determined by the behavior of its neighboring cells as well as the automata rule. In this paper, a simple model is depicted for the simulation of the property of restitution in a single cardiac cell using cellular automata. At first, two state variables; action potential and recovery are introduced in the automata model. In second, automata rule is determined and then recovery variable is defined in such a way so that the restitution is developed. In order to evaluate the proposed model, the generated restitution curve in our study is compared with the restitution curves from the experimental findings of valid sources. Our findings indicate that the presented model is not only capable of simulating restitution in cardiac cell, but also possesses the capability of regulating the restitution curve.

  6. NeuroElectro: A Window to the World's Neuron Electrophysiology Data

    Directory of Open Access Journals (Sweden)

    Shreejoy J Tripathy

    2014-04-01

    Full Text Available The behavior of neural circuits is determined largely by the electrophysiological properties of the neurons they contain. Understanding the relationships of these properties requires the ability to first identify and catalog each property. However, information about such properties is largely locked away in decades of closed-access journal articles with heterogeneous conventions for reporting results, making it difficult to utilize the underlying data. We solve this problem through the NeuroElectro project: a Python library, RESTful API, and web application (at http://neuroelectro.org for the extraction, visualization, and summarization of published data on neurons' electrophysiological properties. Information is organized both by neuron type (using neuron definitions provided by NeuroLex and by electrophysiological property (using a newly developed ontology. We describe the techniques and challenges associated with the automated extraction of tabular electrophysiological data and methodological metadata from journal articles. We further discuss strategies for how to best combine, normalize and organize data across these heterogeneous sources. NeuroElectro is a valuable resource for experimental physiologists looking to supplement their own data, for computational modelers looking to constrain their model parameters, and for theoreticians searching for undiscovered relationships among neurons and their properties.

  7. Evolution of strategies to improve preclinical cardiac safety testing.

    Science.gov (United States)

    Gintant, Gary; Sager, Philip T; Stockbridge, Norman

    2016-07-01

    The early and efficient assessment of cardiac safety liabilities is essential to confidently advance novel drug candidates. This article discusses evolving mechanistically based preclinical strategies for detecting drug-induced electrophysiological and structural cardiotoxicity using in vitro human ion channel assays, human-based in silico reconstructions and human stem cell-derived cardiomyocytes. These strategies represent a paradigm shift from current approaches, which rely on simplistic in vitro assays that measure blockade of the Kv11.1 current (also known as the hERG current or IKr) and on the use of non-human cells or tissues. These new strategies have the potential to improve sensitivity and specificity in the early detection of genuine cardiotoxicity risks, thereby reducing the likelihood of mistakenly discarding viable drug candidates and speeding the progression of worthy drugs into clinical trials.

  8. Effects of Prolonged Spaceflight on Atrial Size, Atrial Electrophysiology, and Risk of Atrial Fibrillation.

    Science.gov (United States)

    Khine, Htet W; Steding-Ehrenborg, Katarina; Hastings, Jeffrey L; Kowal, Jamie; Daniels, James D; Page, Richard L; Goldberger, Jeffery J; Ng, Jason; Adams-Huet, Beverley; Bungo, Michael W; Levine, Benjamin D

    2018-05-01

    The prevalence of atrial fibrillation (AF) in active astronauts is ≈5%, similar to the general population but at a younger age. Risk factors for AF include left atrial enlargement, increased number of premature atrial complexes, and certain parameters on signal-averaged electrocardiography, such as P-wave duration, root mean square voltage for the terminal 20 ms of the signal-averaged P wave, and P-wave amplitude. We aimed to evaluate changes in atrial structure, supraventricular beats, and atrial electrophysiology to determine whether spaceflight could increase the risk of AF. Thirteen astronauts underwent cardiac magnetic resonance imaging to assess atrial structure and function before and after 6 months in space and high-resolution Holter monitoring for multiple 48-hour time periods before flight, during flight, and on landing day. Left atrial volume transiently increased after 6 months in space (12±18 mL; P =0.03) without changing atrial function. Right atrial size remained unchanged. No changes in supraventricular beats were noted. One astronaut had a large increase in supraventricular ectopic beats but none developed AF. Filtered P-wave duration did not change over time, but root mean square voltage for the terminal 20 ms decreased on all fight days except landing day. No changes in P-wave amplitude were seen in leads II or V 1 except landing day for lead V 1 . Six months of spaceflight may be sufficient to cause transient changes in left atrial structure and atrial electrophysiology that increase the risk of AF. However, there was no definite evidence of increased supraventricular arrhythmias and no identified episodes of AF. © 2018 American Heart Association, Inc.

  9. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  10. High Density Sphere Culture of Adult Cardiac Cells Increases the Levels of Cardiac and Progenitor Markers and Shows Signs of Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Kristina Vukusic

    2013-01-01

    Full Text Available 3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks. The possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM were studied by histology, immunohistochemistry, and quantitative real-time PCR. Defined media gave significant increase in both cardiac- and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3 inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology.

  11. Eye lens exposure to medical staff performing electrophysiology procedures: dose assessment and correlation to patient dose

    International Nuclear Information System (INIS)

    Ciraj-Bjelac, Olivera; Bozovic, Predrag; Arandjic, Danijela; Antic, Vojislav; Selakovic, Jovana; Pavlovic, Sinisa

    2016-01-01

    The purpose of this study was to assess the patient exposure and staff eye dose levels during implantation procedures for all types of pacemaker therapy devices performed under fluoroscopic guidance and to investigate potential correlation between patients and staff dose levels. The mean eye dose during pacemaker/defibrillator implementation was 12 μSv for the first operator, 8.7 μSv for the second operator/nurse and 0.50 μSv for radiographer. Corresponding values for cardiac re-synchronisation therapy procedures were 30, 26 and 2.0 μSv, respectively. Significant (p < 0.01) correlation between the eye dose and the kerma-area product was found for the first operator and radiographers, but not for other staff categories. The study revealed eye dose per procedure and eye dose normalised to patient dose indices for different staff categories and provided an input for radiation protection in electrophysiology procedures. (authors)

  12. Anatomical and Electrophysiological Clustering of Superficial Medial Entorhinal Cortex Interneurons

    Science.gov (United States)

    2017-01-01

    Abstract Local GABAergic interneurons regulate the activity of spatially-modulated principal cells in the medial entorhinal cortex (MEC), mediating stellate-to-stellate connectivity and possibly enabling grid formation via recurrent inhibitory circuitry. Despite the important role interneurons seem to play in the MEC cortical circuit, the combination of low cell counts and functional diversity has made systematic electrophysiological studies of these neurons difficult. For these reasons, there remains a paucity of knowledge on the electrophysiological profiles of superficial MEC interneuron populations. Taking advantage of glutamic acid decarboxylase 2 (GAD2)-IRES-tdTomato and PV-tdTomato transgenic mice, we targeted GABAergic interneurons for whole-cell patch-clamp recordings and characterized their passive membrane features, basic input/output properties and action potential (AP) shape. These electrophysiologically characterized cells were then anatomically reconstructed, with emphasis on axonal projections and pial depth. K-means clustering of interneuron anatomical and electrophysiological data optimally classified a population of 106 interneurons into four distinct clusters. The first cluster is comprised of layer 2- and 3-projecting, slow-firing interneurons. The second cluster is comprised largely of PV+ fast-firing interneurons that project mainly to layers 2 and 3. The third cluster contains layer 1- and 2-projecting interneurons, and the fourth cluster is made up of layer 1-projecting horizontal interneurons. These results, among others, will provide greater understanding of the electrophysiological characteristics of MEC interneurons, help guide future in vivo studies, and may aid in uncovering the mechanism of grid field formation. PMID:29085901

  13. Denervation syndromes of the shoulder girdle: MR imaging with electrophysiologic correlation

    International Nuclear Information System (INIS)

    Bredella, M.A.; Wischer, T.K.; Stork, A.; Genant, H.K.; Tirman, P.F.J.; Fritz, R.C.

    1999-01-01

    Objective. To investigate the use of MR imaging in the characterization of denervated muscle of the shoulder correlated with electrophysiologic studies.Design and patients. We studied with MR imaging five patients who presented with shoulder weakness and pain and who underwent electrophysiologic studies. On MR imaging the distribution of muscle edema and fatty infiltration was recorded, as was the presence of masses impinging on a regional nerve.Results. Acute/subacute denervation was best seen on T2-weighted fast spin-echo images with fat saturation, showing increased SI related to neurogenic edema. Chronic denervation was best seen on T1-weighted spin-echo images, demonstrating loss of muscle bulk and diffuse areas of increased signal intensity within the muscle. Three patients showed MR imaging and electrophysiologic findings of Parsonage Turner syndrome. One patient demonstrated an arteriovenous malformation within the spinoglenoid notch, impinging on the suprascapular nerve with associated atrophy of the infraspinatus muscle. The fifth patient demonstrated fatty atrophy of the teres minor muscle caused by compression by a cyst of the axillary nerve and electrophysiologic findings of an incomplete axillary nerve block.Conclusion. MR imaging is useful in detecting and characterizing denervation atrophy and neurogenic edema in shoulder muscles. MR imaging can provide additional information to electrophysiologic studies by estimating the age (acute/chronic) and identifying morphologic causes for shoulder pain and atrophy. (orig.)

  14. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats.

    Science.gov (United States)

    Bozi, Luiz H M; Jannig, Paulo R; Rolim, Natale; Voltarelli, Vanessa A; Dourado, Paulo M M; Wisløff, Ulrik; Brum, Patricia C

    2016-11-01

    Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Importance of Thickness in Human Cardiomyocyte Network for Effective Electrophysiological Stimulation Using On-Chip Extracellular Microelectrodes

    Science.gov (United States)

    Hamada, Tomoyo; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-06-01

    We have developed a three-dimensionally controlled in vitro human cardiomyocyte network assay for the measurements of drug-induced conductivity changes and the appearance of fatal arrhythmia such as ventricular tachycardia/fibrillation for more precise in vitro predictive cardiotoxicity. To construct an artificial conductance propagation model of a human cardiomyocyte network, first, we examined the cell concentration dependence of the cell network heights and found the existence of a height limit of cell networks, which was double-layer height, whereas the cardiomyocytes were effectively and homogeneously cultivated within the microchamber maintaining their spatial distribution constant and their electrophysiological conductance and propagation were successfully recorded using a microelectrode array set on the bottom of the microchamber. The pacing ability of a cardiomyocyte's electrophysiological response has been evaluated using microelectrode extracellular stimulation, and the stimulation for pacing also successfully regulated the beating frequencies of two-layered cardiomyocyte networks, whereas monolayered cardiomyocyte networks were hardly stimulated by the external electrodes using the two-layered cardiomyocyte stimulation condition. The stability of the lined-up shape of human cardiomyocytes within the rectangularly arranged agarose microchambers was limited for a two-layered cardiomyocyte network because their stronger force generation shrunk those cells after peeling off the substrate. The results indicate the importance of fabrication technology of thickness control of cellular networks for effective extracellular stimulation and the potential concerning thick cardiomyocyte networks for long-term cultivation.

  16. Wearable carbon nanotube based dry-electrodes for electrophysiological sensors

    Science.gov (United States)

    Kang, Byeong-Cheol; Ha, Tae-Jun

    2018-05-01

    In this paper, we demonstrate all-solution-processed carbon nanotube (CNT) dry-electrodes for the detection of electrophysiological signals such as electrocardiograms (ECG) and electromyograms (EMG). The key parameters of P, Q, R, S, and T peaks are successfully extracted by such CNT based dry-electrodes, which is comparable with conventional silver/chloride (Ag/AgCl) wet-electrodes with a conducting gel film for the ECG recording. Furthermore, the sensing performance of CNT based dry-electrodes is secured during the bending test of 200 cycles, which is essential for wearable electrophysiological sensors in a non-invasive method on human skin. We also investigate the application of wearable CNT based dry-electrodes directly attached to the human skins such as forearm for sensing the electrophysiological signals. The accurate and rapid sensing response can be achieved by CNT based dry-electrodes to supervise the health condition affected by excessive physical movements during the real-time measurements.

  17. A systemic evaluation of cardiac differentiation from mRNA reprogrammed human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ashish Mehta

    Full Text Available Genetically unmodified cardiomyocytes mandated for cardiac regenerative therapy is conceivable by "foot-print free" reprogramming of somatic cells to induced pluripotent stem cells (iPSC. In this study, we report generation of foot-print free hiPSC through messenger RNA (mRNA based reprograming. Subsequently, we characterize cardiomyocytes derived from these hiPSC using molecular and electrophysiological methods to characterize their applicability for regenerative medicine. Our results demonstrate that mRNA-iPSCs differentiate ontogenetically into cardiomyocytes with increased expression of early commitment markers of mesoderm, cardiac mesoderm, followed by cardiac specific transcriptional and sarcomeric structural and ion channel genes. Furthermore, these cardiomyocytes stained positively for sarcomeric and ion channel proteins. Based on multi-electrode array (MEA recordings, these mRNA-hiPSC derived cardiomyocytes responded predictably to various pharmacologically active drugs that target adrenergic, sodium, calcium and potassium channels. The cardiomyocytes responded chronotropically to isoproterenol in a dose dependent manner, inotropic activity of nifidipine decreased spontaneous contractions. Moreover, Sotalol and E-4031 prolonged QT intervals, while TTX reduced sodium influx. Our results for the first time show a systemic evaluation based on molecular, structural and functional properties of cardiomyocytes differentiated from mRNA-iPSC. These results, coupled with feasibility of generating patient-specific iPSCs hold great promise for the development of large-scale generation of clinical grade cardiomyocytes for cardiac regenerative medicine.

  18. Re-visiting the electrophysiology of language.

    Science.gov (United States)

    Obleser, Jonas

    2015-09-01

    This editorial accompanies a special issue of Brain and Language re-visiting old themes and new leads in the electrophysiology of language. The event-related potential (ERP) as a series of characteristic deflections ("components") over time and their distribution on the scalp has been exploited by speech and language researchers over decades to find support for diverse psycholinguistic models. Fortunately, methodological and statistical advances have allowed human neuroscience to move beyond some of the limitations imposed when looking at the ERP only. Most importantly, we currently witness a refined and refreshed look at "event-related" (in the literal sense) brain activity that relates itself more closely to the actual neurobiology of speech and language processes. It is this imminent change in handling and interpreting electrophysiological data of speech and language experiments that this special issue intends to capture. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Conductive Hearing Loss during Infancy: Effects on Later Auditory Brain Stem Electrophysiology.

    Science.gov (United States)

    Gunnarson, Adele D.; Finitzo, Terese

    1991-01-01

    Long-term effects on auditory electrophysiology from early fluctuating hearing loss were studied in 27 children, aged 5 to 7 years, who had been evaluated originally in infancy. Findings suggested that early fluctuating hearing loss disrupts later auditory brain stem electrophysiology. (Author/DB)

  20. Preventing tomorrow's sudden cardiac death today: part I: Current data on risk stratification for sudden cardiac death.

    Science.gov (United States)

    Al-Khatib, Sana M; Sanders, Gillian D; Bigger, J Thomas; Buxton, Alfred E; Califf, Robert M; Carlson, Mark; Curtis, Anne; Curtis, Jeptha; Fain, Eric; Gersh, Bernard J; Gold, Michael R; Haghighi-Mood, Ali; Hammill, Stephen C; Healey, Jeff; Hlatky, Mark; Hohnloser, Stefan; Kim, Raymond J; Lee, Kerry; Mark, Daniel; Mianulli, Marcus; Mitchell, Brent; Prystowsky, Eric N; Smith, Joseph; Steinhaus, David; Zareba, Wojciech

    2007-06-01

    Accurate and timely prediction of sudden cardiac death (SCD) is a necessary prerequisite for effective prevention and therapy. Although the largest number of SCD events occurs in patients without overt heart disease, there are currently no tests that are of proven predictive value in this population. Efforts in risk stratification for SCD have focused primarily on predicting SCD in patients with known structural heart disease. Despite the ubiquity of tests that have been purported to predict SCD vulnerability in such patients, there is little consensus on which test, in addition to the left ventricular ejection fraction, should be used to determine which patients will benefit from an implantable cardioverter defibrillator. On July 20 and 21, 2006, a group of experts representing clinical cardiology, cardiac electrophysiology, biostatistics, economics, and health policy were joined by representatives of the US Food and Drug administration, Centers for Medicare Services, Agency for Health Research and Quality, the Heart Rhythm Society, and the device and pharmaceutical industry for a round table meeting to review current data on strategies of risk stratification for SCD, to explore methods to translate these strategies into practice and policy, and to identify areas that need to be addressed by future research studies. The meeting was organized by the Duke Center for the Prevention of SCD at the Duke Clinical Research Institute and was funded by industry participants. This article summarizes the presentations and discussions that occurred at that meeting.

  1. Functional modulation of cardiac form through regionally confined cell shape changes.

    Directory of Open Access Journals (Sweden)

    Heidi J Auman

    2007-03-01

    Full Text Available Developing organs acquire a specific three-dimensional form that ensures their normal function. Cardiac function, for example, depends upon properly shaped chambers that emerge from a primitive heart tube. The cellular mechanisms that control chamber shape are not yet understood. Here, we demonstrate that chamber morphology develops via changes in cell morphology, and we determine key regulatory influences on this process. Focusing on the development of the ventricular chamber in zebrafish, we show that cardiomyocyte cell shape changes underlie the formation of characteristic chamber curvatures. In particular, cardiomyocyte elongation occurs within a confined area that forms the ventricular outer curvature. Because cardiac contractility and blood flow begin before chambers emerge, cardiac function has the potential to influence chamber curvature formation. Employing zebrafish mutants with functional deficiencies, we find that blood flow and contractility independently regulate cell shape changes in the emerging ventricle. Reduction of circulation limits the extent of cardiomyocyte elongation; in contrast, disruption of sarcomere formation releases limitations on cardiomyocyte dimensions. Thus, the acquisition of normal cardiomyocyte morphology requires a balance between extrinsic and intrinsic physical forces. Together, these data establish regionally confined cell shape change as a cellular mechanism for chamber emergence and as a link in the relationship between form and function during organ morphogenesis.

  2. In vivo characterization of the electrophysiological and astrocytic responses to a silicon neuroprobe implanted in the mouse neocortex.

    Science.gov (United States)

    Mols, Katrien; Musa, Silke; Nuttin, Bart; Lagae, Liesbet; Bonin, Vincent

    2017-11-15

    Silicon neuroprobes hold great potential for studies of large-scale neural activity and brain computer interfaces, but data on brain response in chronic implants is limited. Here we explored with in vivo cellular imaging the response to multisite silicon probes for neural recordings. We tested a chronic implant for mice consisting of a CMOS-compatible silicon probe rigidly implanted in the cortex under a cranial imaging window. Multiunit recordings of cortical neurons with the implant showed no degradation of electrophysiological signals weeks after implantation (mean spike and noise amplitudes of 186 ± 42 µV pp and 16 ± 3.2 µV rms , respectively, n = 5 mice). Two-photon imaging through the cranial window allowed longitudinal monitoring of fluorescently-labeled astrocytes from the second week post implantation for 8 weeks (n = 3 mice). The imaging showed a local increase in astrocyte-related fluorescence that remained stable from the second to the tenth week post implantation. These results demonstrate that, in a standard electrophysiology protocol in mice, rigidly implanted silicon probes can provide good short to medium term chronic recording performance with a limited astrocyte inflammatory response. The precise factors influencing the response to silicon probe implants remain to be elucidated.

  3. Neuromodulation of hypoglossal motoneurons: cellular and developmental mechanisms.

    Science.gov (United States)

    Bayliss, D A; Viana, F; Talley, E M; Berger, A J

    1997-11-01

    Hypoglossal motoneurons (HMs) in the caudal brainstem have a respiratory-related activity pattern and contribute to control of upper airway resistance. In this review, we focus primarily on signalling mechanisms utilized by neurotransmitters to enhance HM excitability. In particular, we consider: (1) the membrane depolarization induced by a number of different putative transmitters [thyrotropin-releasing hormone (TRH), serotonin (5-HT), norepinephrine (NE)]; and (2) the inhibition of a calcium-dependent spike after hyperpolarization (AHP) by 5-HT and its effect on firing behavior. Potential functional consequences on HM behavior of these different neurotransmitter effects is discussed. In addition, we describe postnatal changes in transmitter effects and suggest potential cellular mechanisms to explain those developmental changes. Most of the data discussed are derived from in vitro electrophysiological recordings performed in preparations from neonatal and adult rats.

  4. Cardiac dysfunction in heart failure: the cardiologist's love affair with time.

    Science.gov (United States)

    Brutsaert, Dirk L

    2006-01-01

    relaxation abnormalities and inappropriate degrees of nonuniformities has, indeed, led to some unfortunate misunderstandings about the pathophysiologic time progression of heart failure, in particular, heart failure with compensated hemodynamic pump function (ie, with normal or preserved LV ejection fraction). We have seen that with the introduction of newer powerful diagnostic techniques, as, for example, TDI and MRI, to evaluate ventricular "muscular pump" function, this debate can now be held in a more serene physiologic context. These aspects will be elaborated further in subsequent chapter papers of this symposium. With ongoing stem and other cell-based therapies and future reductionistic insights into cardiac cellular performance, we foresee the emergence of a fourth simple-parallel school of thought viewing the heart as a network of communicating different cell types, that is, cardiomyocytes, endothelial cells, fibroblasts, neurons. In this postgenomic age with the introduction of the rapidly evolving discipline of in vivo molecular imaging techniques, we anticipate that novel measurements of cardiac performance in patients with heart failure will soon become available and complement biopsy and other already available cardiac cellular biomarkers (cardiac troponin I; creatine kinase-MB; myoglobin; BNP). Through the use of these novel biomarkers as a fourth diagnostic track in the evaluation of cardiac performance in patients with heart failure, we will soon be able to increasingly understand the behavior of the heart as a complex biologic system-in other words, how these "low-level" biologic functions and signal transduction pathways at a cellular level contribute to the above "high-level" or system-level approach of cardiac performance at the muscular, the hemodynamic, and the input-output pump system levels and, hopefully, how they could contribute to an early diagnosis of chronic heart failure, in patients.

  5. Cardiac tissue slices: preparation, handling, and successful optical mapping.

    Science.gov (United States)

    Wang, Ken; Lee, Peter; Mirams, Gary R; Sarathchandra, Padmini; Borg, Thomas K; Gavaghan, David J; Kohl, Peter; Bollensdorff, Christian

    2015-05-01

    Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands ("fibers") in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. Copyright © 2015 the American Physiological Society.

  6. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy

    2016-09-01

    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  7. Retinal dysfunction and refractive errors: an electrophysiological study of children

    Science.gov (United States)

    Flitcroft, D I; Adams, G G W; Robson, A G; Holder, G E

    2005-01-01

    Aims: To evaluate the relation between refractive error and electrophysiological retinal abnormalities in children referred for investigation of reduced vision. Methods: The study group comprised 123 consecutive patients referred over a 14 month period from the paediatric service of Moorfields Eye Hospital for electrophysiological investigation of reduced vision. Subjects were divided into five refractive categories according to their spectacle correction: high myopia (⩽−6D), low myopia (>−6D and ⩽−0.75D), emmetropia (>−0.75 and 1.5D) and ERG abnormalities (18/35 with high astigmatism v 20/88 without, χ2 test, p = 0.002). There was no significant variation in frequency of abnormalities between low myopes, emmetropes, and low hyperopes. The rate of abnormalities was very similar in both high myopes (8/15) and high hyperopes (5/10). Conclusions: High ametropia and astigmatism in children being investigated for poor vision are associated with a higher rate of retinal electrophysiological abnormalities. An increased rate of refractive errors in the presence of retinal pathology is consistent with the hypothesis that the retina is involved in the process of emmetropisation. Electrophysiological testing should be considered in cases of high ametropia in childhood to rule out associated retinal pathology. PMID:15774929

  8. A highly versatile and easily configurable system for plant electrophysiology.

    Science.gov (United States)

    Gunsé, Benet; Poschenrieder, Charlotte; Rankl, Simone; Schröeder, Peter; Rodrigo-Moreno, Ana; Barceló, Juan

    2016-01-01

    In this study we present a highly versatile and easily configurable system for measuring plant electrophysiological parameters and ionic flow rates, connected to a computer-controlled highly accurate positioning device. The modular software used allows easy customizable configurations for the measurement of electrophysiological parameters. Both the operational tests and the experiments already performed have been fully successful and rendered a low noise and highly stable signal. Assembly, programming and configuration examples are discussed. The system is a powerful technique that not only gives precise measuring of plant electrophysiological status, but also allows easy development of ad hoc configurations that are not constrained to plant studies. •We developed a highly modular system for electrophysiology measurements that can be used either in organs or cells and performs either steady or dynamic intra- and extracellular measurements that takes advantage of the easiness of visual object-oriented programming.•High precision accuracy in data acquisition under electrical noisy environments that allows it to run even in a laboratory close to electrical equipment that produce electrical noise.•The system makes an improvement of the currently used systems for monitoring and controlling high precision measurements and micromanipulation systems providing an open and customizable environment for multiple experimental needs.

  9. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability.

    Directory of Open Access Journals (Sweden)

    Paul W Burridge

    2011-04-01

    Full Text Available The production of cardiomyocytes from human induced pluripotent stem cells (hiPSC holds great promise for patient-specific cardiotoxicity drug testing, disease modeling, and cardiac regeneration. However, existing protocols for the differentiation of hiPSC to the cardiac lineage are inefficient and highly variable. We describe a highly efficient system for differentiation of human embryonic stem cells (hESC and hiPSC to the cardiac lineage. This system eliminated the variability in cardiac differentiation capacity of a variety of human pluripotent stem cells (hPSC, including hiPSC generated from CD34(+ cord blood using non-viral, non-integrating methods.We systematically and rigorously optimized >45 experimental variables to develop a universal cardiac differentiation system that produced contracting human embryoid bodies (hEB with an improved efficiency of 94.7±2.4% in an accelerated nine days from four hESC and seven hiPSC lines tested, including hiPSC derived from neonatal CD34(+ cord blood and adult fibroblasts using non-integrating episomal plasmids. This cost-effective differentiation method employed forced aggregation hEB formation in a chemically defined medium, along with staged exposure to physiological (5% oxygen, and optimized concentrations of mesodermal morphogens BMP4 and FGF2, polyvinyl alcohol, serum, and insulin. The contracting hEB derived using these methods were composed of high percentages (64-89% of cardiac troponin I(+ cells that displayed ultrastructural properties of functional cardiomyocytes and uniform electrophysiological profiles responsive to cardioactive drugs.This efficient and cost-effective universal system for cardiac differentiation of hiPSC allows a potentially unlimited production of functional cardiomyocytes suitable for application to hPSC-based drug development, cardiac disease modeling, and the future generation of clinically-safe nonviral human cardiac cells for regenerative medicine.

  10. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Radiofrequency and microwave tumor ablation in patients with implanted cardiac devices: Is it safe?

    Energy Technology Data Exchange (ETDEWEB)

    Skonieczki, Brendan D., E-mail: bskonieczki@lifespan.org [Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University/Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 (United States); Wells, Catherine, E-mail: cwells1@bidmc.harvard.edu [Department of Radiology, Harvard Medical School/Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215 (United States); Wasser, Elliot J., E-mail: ewasser@lifespan.org [Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University/Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 (United States); Dupuy, Damian E., E-mail: ddupuy@lifespan.org [Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University/Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 (United States)

    2011-09-15

    Purpose: To identify malfunction of implanted cardiac devices during or after thermal ablation of tumors in lung, kidney, liver or bone, using radiofrequency (RF) or microwave (MW) energy. Materials and methods: After providing written consent, 19 patients (15 men and 4 women; mean age 78 years) with pacemakers or pacemaker/defibrillators underwent 22 CT image-guided percutaneous RF or MW ablation of a variety of tumors. Before and after each procedure, cardiac devices were interrogated and reprogrammed by a trained cardiac electrophysiology fellow. Possible pacer malfunctions included abnormalities on electrocardiographic (EKG) monitoring and alterations in device settings. Our institutional review board approved this Health Insurance Portability and Accountability Act-compliant study. Informed consent for participation in this retrospective study was deemed unnecessary by our review board. Results: During 20 of 22 sessions, no abnormalities were identified in continuous, EKG tracings or pacemaker functions. However, in two sessions significant changes, occurred in pacemaker parameters: inhibition of pacing during RF application in one, session and resetting of mode by RF energy in another session. These changes did not, result in hemodynamic instability of either patient. MW ablation was not associated with, any malfunction. In all 22 sessions, pacemakers were undamaged and successfully reset to original parameters. Conclusion: RF or MW ablation of tumors in liver, kidney, bone and lung can be performed safely in patients with permanent intra-cardiac devices, but careful planning between radiology and cardiology is essential to avoid adverse outcomes.

  12. Pelvic floor electrophysiology patterns associated with faecal ...

    African Journals Online (AJOL)

    Hussein Al-Moghazy Sultan

    2012-12-28

    Dec 28, 2012 ... pelvic floor electrophysiological abnormalities associated with. FI were illustrated in ... detection of a localized anal sphincter defect clinically and ..... Woods R, Voyvodic F, Schloithe A, Sage M, Wattchow D. Anal sphincter ...

  13. Cardiomyocytes Derived From Pluripotent Stem Cells Recapitulate Electrophysiological Characteristics of an Overlap Syndrome of Cardiac Sodium Channel Disease

    NARCIS (Netherlands)

    Davis, Richard P.; Casini, Simona; van den Berg, Cathelijne W.; Hoekstra, Maaike; Remme, Carol Ann; Dambrot, Cheryl; Salvatori, Daniela; Ward-van Oostwaard, Dorien; Wilde, Arthur A. M.; Bezzina, Connie R.; Verkerk, Arie O.; Freund, Christian; Mummery, Christine L.

    2012-01-01

    Background-Pluripotent stem cells (PSCs) offer a new paradigm for modeling genetic cardiac diseases, but it is unclear whether mouse and human PSCs can truly model both gain-and loss-of-function genetic disorders affecting the Na+ current (I-Na) because of the immaturity of the PSC-derived

  14. Intravital imaging of cardiac function at the single-cell level.

    Science.gov (United States)

    Aguirre, Aaron D; Vinegoni, Claudio; Sebas, Matt; Weissleder, Ralph

    2014-08-05

    Knowledge of cardiomyocyte biology is limited by the lack of methods to interrogate single-cell physiology in vivo. Here we show that contracting myocytes can indeed be imaged with optical microscopy at high temporal and spatial resolution in the beating murine heart, allowing visualization of individual sarcomeres and measurement of the single cardiomyocyte contractile cycle. Collectively, this has been enabled by efficient tissue stabilization, a prospective real-time cardiac gating approach, an image processing algorithm for motion-artifact-free imaging throughout the cardiac cycle, and a fluorescent membrane staining protocol. Quantification of cardiomyocyte contractile function in vivo opens many possibilities for investigating myocardial disease and therapeutic intervention at the cellular level.

  15. PERIPHERAL NEUROPATHY ELECTROPHYSIOLOGICAL SCREENING IN CHILDREN WITH CELIAC DISEASE

    Directory of Open Access Journals (Sweden)

    Şedat IŞIKAY

    2015-06-01

    Full Text Available Background The involvement of the peripheral nervous system in children with celiac disease is particularly rare. Objective The aim of this study was to assess the need for neurophysiological testing in celiac disease patients without neurological symptoms in order to detect early subclinical neuropathy and its possible correlations with clinical and demographic characteristics. Methods Two hundred and twenty consecutive children with celiac disease were screened for neurological symptoms and signs, and those without symptoms or signs were included. Also, patients with comorbidities associated with peripheral neuropathy or a history of neurological disease were excluded. The remaining 167 asymptomatic patients as well as 100 control cases were tested electro-physiologically for peripheral nervous system diseases. Motor nerve conduction studies, including F-waves, were performed for the median, ulnar, peroneal, and tibial nerves, and sensory nerve conduction studies were performed for the median, ulnar, and sural nerves with H reflex of the soleus muscle unilaterally. All studies were carried out using surface recording electrodes. Normative values established in our laboratory were used. Results Evidence for subclinical neuropathy was not determined with electrophysiological studies in any of the participants. Conclusion In this highly selective celiac disease group without any signs, symptoms as well as the predisposing factors for polyneuropathy, we did not determine any cases with neuropathy. With these results we can conclude that in asymptomatic cases with celiac disease electrophysiological studies are not necessary. However, larger studies with the electrophysiological studies performed at different stages of disease at follow-ups are warranted.

  16. Take Heart America: A comprehensive, community-wide, systems-based approach to the treatment of cardiac arrest.

    Science.gov (United States)

    Lick, Charles J; Aufderheide, Tom P; Niskanen, Robert A; Steinkamp, Janet E; Davis, Scott P; Nygaard, Susan D; Bemenderfer, Kim K; Gonzales, Louis; Kalla, Jeffrey A; Wald, Sarah K; Gillquist, Debbie L; Sayre, Michael R; Osaki Holm, Susie Y; Oski Holm, Susie Y; Oakes, Dana A; Provo, Terry A; Racht, Ed M; Olsen, John D; Yannopoulos, Demetris; Lurie, Keith G

    2011-01-01

    To determine out-of-hospital cardiac arrest survival rates before and after implementation of the Take Heart America program (a community-based initiative that sequentially deployed all of the most highly recommended 2005 American Heart Association resuscitation guidelines in an effort to increase out-of-hospital cardiac arrest survival). Out-of-hospital cardiac arrest patients in Anoka County, MN, and greater St. Cloud, MN, from November 2005 to June 2009. Two sites in Minnesota with a combined population of 439,692 people (greater St. Cloud and Anoka County) implemented: 1) widespread cardiopulmonary resuscitation and automated external defibrillator skills training in schools and businesses; 2) retraining of all emergency medical services personnel in methods to enhance circulation, including minimizing cardiopulmonary resuscitation interruptions, performing cardiopulmonary resuscitation before and after single-shock defibrillation, and use of an impedance threshold device; 3) additional deployment of automated external defibrillators in schools and public places; and 4) protocols for transport to and treatment by cardiac arrest centers for therapeutic hypothermia, coronary artery evaluation and treatment, and electrophysiological evaluation. More than 28,000 people were trained in cardiopulmonary resuscitation and automated external defibrillator use in the two sites. Bystander cardiopulmonary resuscitation rates increased from 20% to 29% (p = .086, odds ratio 1.7, 95% confidence interval 0.96-2.89). Three cardiac arrest centers were established, and hypothermia therapy for admitted out-of-hospital cardiac arrest victims increased from 0% to 45%. Survival to hospital discharge for all patients after out-of-hospital cardiac arrest in these two sites improved from 8.5% (nine of 106, historical control) to 19% (48 of 247, intervention phase) (p = .011, odds ratio 2.60, confidence interval 1.19-6.26). A financial analysis revealed that the cardiac arrest centers

  17. Cardiac telomere length in heart development, function, and disease.

    Science.gov (United States)

    Booth, S A; Charchar, F J

    2017-07-01

    Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury. Copyright © 2017 the American Physiological Society.

  18. Effects of Caloric Restriction on Cardiac Oxidative Stress and Mitochondrial Bioenergetics: Potential Role of Cardiac Sirtuins

    Directory of Open Access Journals (Sweden)

    Ken Shinmura

    2013-01-01

    Full Text Available The biology of aging has not been fully clarified, but the free radical theory of aging is one of the strongest aging theories proposed to date. The free radical theory has been expanded to the oxidative stress theory, in which mitochondria play a central role in the development of the aging process because of their critical roles in bioenergetics, oxidant production, and regulation of cell death. A decline in cardiac mitochondrial function associated with the accumulation of oxidative damage might be responsible, at least in part, for the decline in cardiac performance with age. In contrast, lifelong caloric restriction can attenuate functional decline with age, delay the onset of morbidity, and extend lifespan in various species. The effect of caloric restriction appears to be related to a reduction in cellular damage induced by reactive oxygen species. There is increasing evidence that sirtuins play an essential role in the reduction of mitochondrial oxidative stress during caloric restriction. We speculate that cardiac sirtuins attenuate the accumulation of oxidative damage associated with age by modifying specific mitochondrial proteins posttranscriptionally. Therefore, the distinct role of each sirtuin in the heart subjected to caloric restriction should be clarified to translate sirtuin biology into clinical practice.

  19. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    Directory of Open Access Journals (Sweden)

    Chunxiang Yao

    Full Text Available Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2, react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat, an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  20. Complete cardiac regeneration in a mouse model of myocardial infarction.

    Science.gov (United States)

    Haubner, Bernhard Johannes; Adamowicz-Brice, Martyna; Khadayate, Sanjay; Tiefenthaler, Viktoria; Metzler, Bernhard; Aitman, Tim; Penninger, Josef M

    2012-12-01

    Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated

  1. Prolonged action potential duration in cardiac ablation of PDK1 mice.

    Science.gov (United States)

    Han, Zhonglin; Jiang, Yu; Yang, Zhongzhou; Cao, Kejiang; Wang, Dao W

    2015-01-01

    The involvement of the AGC protein kinase family in regulating arrhythmia has drawn considerable attention, but the underlying mechanisms are still not clear. The aim of this study is to explore the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1), one of upstream protein kinases of the AGC protein kinase family, in the pathogenesis of dysregulated electrophysiological basis. PDK1(F/F) αMHC-Cre mice and PDK1(F/F) mice were divided into experiment group and control group. Using patch clamping technology, we explored action potential duration in both groups, and investigated the functions of transient outward potassium channel and L-type Ca(2+) channel to explain the abnormal action potential duration. Significant prolongation action potential duration was found in mice with PDK1 deletion. Further, the peak current of transient outward potassium current and L-type Ca(2+) current were decreased by 84% and 49% respectively. In addition, dysregulation of channel kinetics lead to action potential duration prolongation further. In conclusion, we have demonstrated that PDK1 participates in action potential prolongation in cardiac ablation of PDK1 mice. This effect is likely to be mediated largely through downregulation of transient outward potassium current. These findings indicate the modulation of the PDK1 pathway could provide a new mechanism for abnormal electrophysiological basis.

  2. How to achieve ultrasound-guided femoral venous access: the new standard of care in the electrophysiology laboratory.

    Science.gov (United States)

    Wiles, Benedict M; Child, Nicholas; Roberts, Paul R

    2017-06-01

    Bedside vascular ultrasound machines are increasingly available. They are used to facilitate safer vascular access across a number of different specialties. In the electrophysiology laboratory however, where patients are frequently anticoagulated and require the insertion of multiple venous sheaths, anatomical landmark techniques predominate. Despite the high number of vascular complications associated with electrophysiological procedures and the increasing evidence to support its use in electrophysiology, ultrasound remains underutilised. A new standard of care is required. A comprehensive technical report, providing a detailed explanation of this important technique, will provide other electrophysiology centres with the knowledge and justification for adopting ultrasound guidance as their standard practice. We review the increasing body of evidence which demonstrates that routine ultrasound usage can substantially improve the safety of femoral venous access in the electrophysiology laboratory. We offer a comprehensive technical report to guide operators through the process of ultrasound-guided venous access, with a specific focus on the electrophysiology laboratory. Additionally, we detail a novel technique which utilises real-time colour Doppler ultrasound to accurately identify needle tip location during venous puncture. The use of vascular ultrasound to guide femoral venous cannulation is rapid, inexpensive and easily learnt. Ultrasound is readily available and offers the potential to significantly reduce vascular complications in the unique setting of the electrophysiology laboratory. Ultrasound guidance to achieve femoral venous access should be the new standard of care in electrophysiology.

  3. Association of Atrial Fibrillation with Morphological and Electrophysiological Changes of the Atrial Myocardium.

    Science.gov (United States)

    Matějková, Adéla; Šteiner, Ivo

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. For long time it was considered as pure functional disorder, but in recent years, there were identified atrial locations, which are involved in the initiation and maintenance of this arrhythmia. These structural changes, so called remodelation, start at electric level and later they affect contractility and morphology. In this study we attempted to find a possible relation between morphological (scarring, amyloidosis, left atrial (LA) enlargement) and electrophysiological (ECG features) changes in patients with AF. We examined grossly and histologically 100 hearts of necropsy patients - 54 with a history of AF and 46 without AF. Premortem ECGs were evaluated. The patients with AF had significantly heavier heart, larger LA, more severely scarred myocardium of the LA and atrial septum, and more severe amyloidosis in both atria. Severity of amyloidosis was higher in LAs vs. right atria (RAs). Distribution of both fibrosis and amyloidosis was irregular. The most affected area was in the LA anterior wall. Patients with a history of AF and with most severe amyloidosis have more often abnormally long P waves. Finding of long P wave may contribute to diagnosis of a hitherto undisclosed atrial fibrillation.

  4. Characterization of respiratory and cardiac motion from electro-anatomical mapping data for improved fusion of MRI to left ventricular electrograms.

    Directory of Open Access Journals (Sweden)

    Sébastien Roujol

    Full Text Available Accurate fusion of late gadolinium enhancement magnetic resonance imaging (MRI and electro-anatomical voltage mapping (EAM is required to evaluate the potential of MRI to identify the substrate of ventricular tachycardia. However, both datasets are not acquired at the same cardiac phase and EAM data is corrupted with respiratory motion limiting the accuracy of current rigid fusion techniques. Knowledge of cardiac and respiratory motion during EAM is thus required to enhance the fusion process. In this study, we propose a novel approach to characterize both cardiac and respiratory motion from EAM data using the temporal evolution of the 3D catheter location recorded from clinical EAM systems. Cardiac and respiratory motion components are extracted from the recorded catheter location using multi-band filters. Filters are calibrated for each EAM point using estimates of heart rate and respiratory rate. The method was first evaluated in numerical simulations using 3D models of cardiac and respiratory motions of the heart generated from real time MRI data acquired in 5 healthy subjects. An accuracy of 0.6-0.7 mm was found for both cardiac and respiratory motion estimates in numerical simulations. Cardiac and respiratory motions were then characterized in 27 patients who underwent LV mapping for treatment of ventricular tachycardia. Mean maximum amplitude of cardiac and respiratory motion was 10.2±2.7 mm (min = 5.5, max = 16.9 and 8.8±2.3 mm (min = 4.3, max = 14.8, respectively. 3D Cardiac and respiratory motions could be estimated from the recorded catheter location and the method does not rely on additional imaging modality such as X-ray fluoroscopy and can be used in conventional electrophysiology laboratory setting.

  5. Signaling Pathways in Cardiac Myocyte Apoptosis

    Science.gov (United States)

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  6. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications.

    Science.gov (United States)

    Silvestre, Jean-Sébastien; Smadja, David M; Lévy, Bernard I

    2013-10-01

    After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.

  7. Convergence of circuit dysfunction in ASD: a common bridge between diverse genetic and environmental risk factors and common clinical electrophysiology.

    Science.gov (United States)

    Port, Russell G; Gandal, Michael J; Roberts, Timothy P L; Siegel, Steven J; Carlson, Gregory C

    2014-01-01

    Most recent estimates indicate that 1 in 68 children are affected by an autism spectrum disorder (ASD). Though decades of research have uncovered much about these disorders, the pathological mechanism remains unknown. Hampering efforts is the seeming inability to integrate findings over the micro to macro scales of study, from changes in molecular, synaptic and cellular function to large-scale brain dysfunction impacting sensory, communicative, motor and cognitive activity. In this review, we describe how studies focusing on neuronal circuit function provide unique context for identifying common neurobiological disease mechanisms of ASD. We discuss how recent EEG and MEG studies in subjects with ASD have repeatedly shown alterations in ensemble population recordings (both in simple evoked related potential latencies and specific frequency subcomponents). Because these disease-associated electrophysiological abnormalities have been recapitulated in rodent models, studying circuit differences in these models may provide access to abnormal circuit function found in ASD. We then identify emerging in vivo and ex vivo techniques, focusing on how these assays can characterize circuit level dysfunction and determine if these abnormalities underlie abnormal clinical electrophysiology. Such circuit level study in animal models may help us understand how diverse genetic and environmental risks can produce a common set of EEG, MEG and anatomical abnormalities found in ASD.

  8. Convergence of circuit dysfunction in ASD: a common bridge between diverse genetic and environmental risk factors and common clinical electrophysiology

    Science.gov (United States)

    Port, Russell G.; Gandal, Michael J.; Roberts, Timothy P. L.; Siegel, Steven J.; Carlson, Gregory C.

    2014-01-01

    Most recent estimates indicate that 1 in 68 children are affected by an autism spectrum disorder (ASD). Though decades of research have uncovered much about these disorders, the pathological mechanism remains unknown. Hampering efforts is the seeming inability to integrate findings over the micro to macro scales of study, from changes in molecular, synaptic and cellular function to large-scale brain dysfunction impacting sensory, communicative, motor and cognitive activity. In this review, we describe how studies focusing on neuronal circuit function provide unique context for identifying common neurobiological disease mechanisms of ASD. We discuss how recent EEG and MEG studies in subjects with ASD have repeatedly shown alterations in ensemble population recordings (both in simple evoked related potential latencies and specific frequency subcomponents). Because these disease-associated electrophysiological abnormalities have been recapitulated in rodent models, studying circuit differences in these models may provide access to abnormal circuit function found in ASD. We then identify emerging in vivo and ex vivo techniques, focusing on how these assays can characterize circuit level dysfunction and determine if these abnormalities underlie abnormal clinical electrophysiology. Such circuit level study in animal models may help us understand how diverse genetic and environmental risks can produce a common set of EEG, MEG and anatomical abnormalities found in ASD. PMID:25538564

  9. Electrophysiological gap detection thresholds: effects of age and comparison with a behavioral measure.

    Science.gov (United States)

    Palmer, Shannon B; Musiek, Frank E

    2014-01-01

    Temporal processing ability has been linked to speech understanding ability and older adults often complain of difficulty understanding speech in difficult listening situations. Temporal processing can be evaluated using gap detection procedures. There is some research showing that gap detection can be evaluated using an electrophysiological procedure. However, there is currently no research establishing gap detection threshold using the N1-P2 response. The purposes of the current study were to 1) determine gap detection thresholds in younger and older normal-hearing adults using an electrophysiological measure, 2) compare the electrophysiological gap detection threshold and behavioral gap detection threshold within each group, and 3) investigate the effect of age on each gap detection measure. This study utilized an older adult group and younger adult group to compare performance on an electrophysiological and behavioral gap detection procedure. The subjects in this study were 11 younger, normal-hearing adults (mean = 22 yrs) and 11 older, normal-hearing adults (mean = 64.36 yrs). All subjects completed an adaptive behavioral gap detection procedure in order to determine their behavioral gap detection threshold (BGDT). Subjects also completed an electrophysiologic gap detection procedure to determine their electrophysiologic gap detection threshold (EGDT). Older adults demonstrated significantly larger gap detection thresholds than the younger adults. However, EGDT and BGDT were not significantly different in either group. The mean difference between EGDT and BGDT for all subjects was 0.43 msec. Older adults show poorer gap detection ability when compared to younger adults. However, this study shows that gap detection thresholds can be measured using evoked potential recordings and yield results similar to a behavioral measure. American Academy of Audiology.

  10. Ion Channel ElectroPhysiology Ontology (ICEPO) - a case study of text mining assisted ontology development.

    Science.gov (United States)

    Elayavilli, Ravikumar Komandur; Liu, Hongfang

    2016-01-01

    Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological

  11. Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.

    Science.gov (United States)

    Annecchino, Luca A; Morris, Alexander R; Copeland, Caroline S; Agabi, Oshiorenoya E; Chadderton, Paul; Schultz, Simon R

    2017-08-30

    Whole-cell patch-clamp electrophysiological recording is a powerful technique for studying cellular function. While in vivo patch-clamp recording has recently benefited from automation, it is normally performed "blind," meaning that throughput for sampling some genetically or morphologically defined cell types is unacceptably low. One solution to this problem is to use two-photon microscopy to target fluorescently labeled neurons. Combining this with robotic automation is difficult, however, as micropipette penetration induces tissue deformation, moving target cells from their initial location. Here we describe a platform for automated two-photon targeted patch-clamp recording, which solves this problem by making use of a closed loop visual servo algorithm. Our system keeps the target cell in focus while iteratively adjusting the pipette approach trajectory to compensate for tissue motion. We demonstrate platform validation with patch-clamp recordings from a variety of cells in the mouse neocortex and cerebellum. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Acute effects of sex steroid hormones on susceptibility to cardiac arrhythmias: a simulation study.

    Directory of Open Access Journals (Sweden)

    Pei-Chi Yang

    2010-01-01

    Full Text Available Acute effects of sex steroid hormones likely contribute to the observation that post-pubescent males have shorter QT intervals than females. However, the specific role for hormones in modulating cardiac electrophysiological parameters and arrhythmia vulnerability is unclear. Here we use a computational modeling approach to incorporate experimentally measured effects of physiological concentrations of testosterone, estrogen and progesterone on cardiac ion channel targets. We then study the hormone effects on ventricular cell and tissue dynamics comprised of Faber-Rudy computational models. The "female" model predicts changes in action potential duration (APD at different stages of the menstrual cycle that are consistent with clinically observed QT interval fluctuations. The "male" model predicts shortening of APD and QT interval at physiological testosterone concentrations. The model suggests increased susceptibility to drug-induced arrhythmia when estradiol levels are high, while testosterone and progesterone are apparently protective. Simulations predict the effects of sex steroid hormones on clinically observed QT intervals and reveal mechanisms of estrogen-mediated susceptibility to prolongation of QT interval. The simulations also indicate that acute effects of estrogen are not alone sufficient to cause arrhythmia triggers and explain the increased risk of females to Torsades de Pointes. Our results suggest that acute effects of sex steroid hormones on cardiac ion channels are sufficient to account for some aspects of gender specific susceptibility to long-QT linked arrhythmias.

  13. Spiral wave classification using normalized compression distance: Towards atrial tissue spatiotemporal electrophysiological behavior characterization.

    Science.gov (United States)

    Alagoz, Celal; Guez, Allon; Cohen, Andrew; Bullinga, John R

    2015-08-01

    Analysis of electrical activation patterns such as re-entries during atrial fibrillation (Afib) is crucial in understanding arrhythmic mechanisms and assessment of diagnostic measures. Spiral waves are a phenomena that provide intuitive basis for re-entries occurring in cardiac tissue. Distinct spiral wave behaviors such as stable spiral waves, meandering spiral waves, and spiral wave break-up may have distinct electrogram manifestations on a mapping catheter. Hence, it is desirable to have an automated classification of spiral wave behavior based on catheter recordings for a qualitative characterization of spatiotemporal electrophysiological activity on atrial tissue. In this study, we propose a method for classification of spatiotemporal characteristics of simulated atrial activation patterns in terms of distinct spiral wave behaviors during Afib using two different techniques: normalized compressed distance (NCD) and normalized FFT (NFFTD). We use a phenomenological model for cardiac electrical propagation to produce various simulated spiral wave behaviors on a 2D grid and labeled them as stable, meandering, or breakup. By mimicking commonly used catheter types, a star shaped and a circular shaped both of which do the local readings from atrial wall, monopolar and bipolar intracardiac electrograms are simulated. Virtual catheters are positioned at different locations on the grid. The classification performance for different catheter locations, types and for monopolar or bipolar readings were also compared. We observed that the performance for each case differed slightly. However, we found that NCD performance is superior to NFFTD. Through the simulation study, we showed the theoretical validation of the proposed method. Our findings suggest that a qualitative wavefront activation pattern can be assessed during Afib without the need for highly invasive mapping techniques such as multisite simultaneous electrogram recordings.

  14. Cardiac management of oncology patients clinical handbook for cardio-oncology

    CERN Document Server

    Baron Esquivias, Gonzalo

    2015-01-01

    This book is designed for clinical cardiologists and other physicians working with cardiac patients, where specific specialized teams of cardio-oncologists are not available and who are called to perform a clinical consultation to evaluate both the cardiac condition and the eligibility for chemotherapy or radiotherapy treatment, and to evaluate if a cancer treatment produces toxic effects on a patient treated with chemo or radiotherapy and if appearance of new symptoms is due to this treatment. In recent years, progress in oncologic therapy has resulted in important developments and the prognostic improvement of patients with malignancy. The cornerstone of chemotherapy are the anthracyclines (and the analogue Mitoxantrone), that are direct cellular toxic agents and that are among the most powerful anti-neoplastic drugs, but their cardiac toxicity is well known. Significant breakthroughs in cancer therapy have also been achieved with the introduction of signalling inhibitors, such as VEGF inhibitors, HERB2 inh...

  15. Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury.

    Directory of Open Access Journals (Sweden)

    Jianqin Ye

    Full Text Available BACKGROUND: Endogenous cardiac progenitor cells are a promising option for cell-therapy for myocardial infarction (MI. However, obtaining adequate numbers of cardiac progenitors after MI remains a challenge. Cardiospheres (CSs have been proposed to have cardiac regenerative properties; however, their cellular composition and how they may be influenced by the tissue milieu remains unclear. METHODOLOGY/PRINCIPAL FINDING: Using "middle aged" mice as CSs donors, we found that acute MI induced a dramatic increase in the number of CSs in a mouse model of MI, and this increase was attenuated back to baseline over time. We also observed that CSs from post-MI hearts engrafted in ischemic myocardium induced angiogenesis and restored cardiac function. To determine the role of Sca-1(+CD45(- cells within CSs, we cloned these from single cell isolates. Expression of Islet-1 (Isl1 in Sca-1(+CD45(- cells from CSs was 3-fold higher than in whole CSs. Cloned Sca-1(+CD45(- cells had the ability to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. We also observed that cloned cells engrafted in ischemic myocardium induced angiogenesis, differentiated into endothelial and smooth muscle cells and improved cardiac function in post-MI hearts. CONCLUSIONS/SIGNIFICANCE: These studies demonstrate that cloned Sca-1(+CD45(- cells derived from CSs from infarcted "middle aged" hearts are enriched for second heart field (i.e., Isl-1(+ precursors that give rise to both myocardial and vascular tissues, and may be an appropriate source of progenitor cells for autologous cell-therapy post-MI.

  16. Imaging experimental infective endocarditis with indium-111-labeled blood cellular components

    International Nuclear Information System (INIS)

    Riba, A.L.; Thakur, M.L.; Gottschalk, A.; Andriole, V.T.; Zaret, B.L.

    1979-01-01

    The capability of radionuclide imaging to detect experimental aortic valve infective endocarditis was assessed with indium-111 ( 111 In)-labeled blood cells. Sequential cardiac imaging and tissue distribution studies were obtained in 17 rabbits with infective endocarditis after administration of 111 In-platelets and in five after 111 In-polymorphonuclear leukocytes. Forty-eight to 72 hours after platelet administration, in vivo imaging demonstrated abnormal 111 In uptake in all animals in the region of the aortic valve in an anatomically distinct pattern. Images of the excised heart showed discrete cardiac uptake conforming to the in vivo image and gross pathological examination. 111 In-platelet uptake in vegetations from the 17 animals averaged 240 +- 41 times greater than that in normal myocardium and 99 +- 15 times greater uptake in blood. In contrast, 111 In-leukocyte cardiac imaging showed no abnormal aortic valve uptake 24 hours after tracer administration and the lesion myocardium activity ratio was only 5 +- 2 (3 +- 1 for lesion/blood activity). Four normal rabbits demonstrated neither positive 111 In-platelet scintigraphs nor abnormal cardiac tissue uptake. Likewise, noncellular 111 In was not concentrated to any significant extent in three animals with infective endocarditis. This study demonstrates that 111 In-platelet, but not leukocyte cardiac imaging, is a sensitive technique for detecting experimental infective endocarditis. The imaging data conform to the cellular pathology of the infective endocarditis vegetation

  17. Sedation for paediatric auditory electrophysiology in South Africa

    African Journals Online (AJOL)

    emergency departments and nuclear medicine.1 Added to this is the periodic need ... electrophysiology in the paediatric population in South Africa were not found. ..... to inadequate information technology infrastructure as well as limited data ...

  18. Development of a force-reflecting robotic platform for cardiac catheter navigation.

    Science.gov (United States)

    Park, Jun Woo; Choi, Jaesoon; Pak, Hui-Nam; Song, Seung Joon; Lee, Jung Chan; Park, Yongdoo; Shin, Seung Min; Sun, Kyung

    2010-11-01

    Electrophysiological catheters are used for both diagnostics and clinical intervention. To facilitate more accurate and precise catheter navigation, robotic cardiac catheter navigation systems have been developed and commercialized. The authors have developed a novel force-reflecting robotic catheter navigation system. The system is a network-based master-slave configuration having a 3-degree of freedom robotic manipulator for operation with a conventional cardiac ablation catheter. The master manipulator implements a haptic user interface device with force feedback using a force or torque signal either measured with a sensor or estimated from the motor current signal in the slave manipulator. The slave manipulator is a robotic motion control platform on which the cardiac ablation catheter is mounted. The catheter motions-forward and backward movements, rolling, and catheter tip bending-are controlled by electromechanical actuators located in the slave manipulator. The control software runs on a real-time operating system-based workstation and implements the master/slave motion synchronization control of the robot system. The master/slave motion synchronization response was assessed with step, sinusoidal, and arbitrarily varying motion commands, and showed satisfactory performance with insignificant steady-state motion error. The current system successfully implemented the motion control function and will undergo safety and performance evaluation by means of animal experiments. Further studies on the force feedback control algorithm and on an active motion catheter with an embedded actuation mechanism are underway. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. An electrophysiological approach to the diagnosis of neurogenic dysphagia: implications for botulinum toxin treatment.

    Science.gov (United States)

    Alfonsi, E; Merlo, I M; Ponzio, M; Montomoli, C; Tassorelli, C; Biancardi, C; Lozza, A; Martignoni, E

    2010-01-01

    Botulinum toxin (BTX) injection into the cricopharyngeal (CP) muscle has been proposed for the treatment of neurogenic dysphagia due to CP hyperactivity. The aim was to determine whether an electrophysiological method exploring oropharyngeal swallowing could guide treatment and discriminate responders from non-responders, based on the association of CP dysfunction with other electrophysiological abnormalities of swallowing. Patients with different neurological disorders were examined: Parkinson disease, progressive supranuclear palsy, multiple system atrophy-Parkinson variant, multiple system atrophy cerebellar variant, stroke, multiple sclerosis and ataxia telangiectasia. All patients presented with clinical dysphagia, and with complete absence of CP muscle inhibition during the hypopharyngeal phase of swallowing. Each patient underwent clinical and electrophysiological investigations before and after treatment with BTX into the CP muscle of one side (15 units of Botox). Clinical and electrophysiological procedures were performed in a blind manner by two different investigators. The following electrophysiological measures were analysed: (1) duration of EMG activity of suprahyoid/submental muscles (SHEMG-D); (2) duration of laryngopharyngeal mechanogram (LPM-D); (3) duration of the inhibition of the CP muscle EMG activity (CPEMG-ID); and (4) interval between onset of EMG activity of suprahyoid/submental muscles and onset of laryngopharyngeal mechanogram (I-SHEMG-LPM). Two months after treatment, 50% of patients showed a significant improvement. Patients with prolonged or reduced SHEMG-D values and prolonged I-SHEMG-LPM values did not respond to BTX. Therefore, values for which BTX had no effect (warning values) were identified. This electrophysiological method can recognise swallowing abnormalities which may affect the outcome of the therapeutic approach to dysphagia with BTX treatment.

  20. Electrophysiological Evaluation of Oropharyngeal Dysphagia in Parkinson’s Disease

    Science.gov (United States)

    Ertekin, Cumhur

    2014-01-01

    Parkinson’s disease (PD) is a chronic, neurodegenerative movement disorder that typically affects elderly patients. Swallowing disorders are highly prevalent in PD and can have grave consequences, including pneumonia, malnutrition, dehydration and mortality. Neurogenic dysphagia in PD can manifest with both overt clinical symptoms or silent dysphagia. Regardless, early diagnosis and objective follow-up of dysphagia in PD is crucial for timely and appropriate care for these patients. In this review, we provide a comprehensive summary of the electrophysiological methods that can be used to objectively evaluate dysphagia in PD. We discuss the electrophysiological abnormalities that can be observed in PD, their clinical correlates and the pathophysiology underlying these findings. PMID:25360228

  1. Towards an integrative computational model of the guinea pig cardiac myocyte

    Directory of Open Access Journals (Sweden)

    Laura Doyle Gauthier

    2012-07-01

    Full Text Available The local control theory of excitation-contraction (EC coupling asserts that regulation of calcium (Ca2+ release occurs at the nanodomain level, where openings of single L-type Ca2+ channels (LCCs trigger openings of small clusters of ryanodine receptors (RyRs co-localized within the dyad. A consequence of local control is that the whole-cell Ca2+ transient is a smooth continuous function of influx of Ca2+ through LCCs. While this so-called graded release property has been known for some time, it’s functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically-based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca2+ release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally-observed causal relationship between action potential (AP shape and timing of Ca2+ and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca2+ transients, thus influencing tissue-level electro-mechanical function.

  2. Toward an integrative computational model of the Guinea pig cardiac myocyte.

    Science.gov (United States)

    Gauthier, Laura Doyle; Greenstein, Joseph L; Winslow, Raimond L

    2012-01-01

    The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca(2+)) release occurs at the nanodomain level, where openings of single L-type Ca(2+) channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca(2+) transient is a smooth continuous function of influx of Ca(2+) through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca(2+) release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca(2+) and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca(2+) transients, thus influencing tissue level electromechanical function.

  3. Biomaterial property-controlled stem cell fates for cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Yanyi Xu

    2016-09-01

    Full Text Available Myocardial infarction (MI affects more than 8 million people in the United States alone. Due to the insufficient regeneration capacity of the native myocardium, one widely studied approach is cardiac tissue engineering, in which cells are delivered with or without biomaterials and/or regulatory factors to fully regenerate the cardiac functions. Specifically, in vitro cardiac tissue engineering focuses on using biomaterials as a reservoir for cells to attach, as well as a carrier of various regulatory factors such as growth factors and peptides, providing high cell retention and a proper microenvironment for cells to migrate, grow and differentiate within the scaffolds before implantation. Many studies have shown that the full establishment of a functional cardiac tissue in vitro requires synergistic actions between the seeded cells, the tissue culture condition, and the biochemical and biophysical environment provided by the biomaterials-based scaffolds. Proper electrical stimulation and mechanical stretch during the in vitro culture can induce the ordered orientation and differentiation of the seeded cells. On the other hand, the various scaffolds biochemical and biophysical properties such as polymer composition, ligand concentration, biodegradability, scaffold topography and mechanical properties can also have a significant effect on the cellular processes.

  4. Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays

    Science.gov (United States)

    Gonzales, Daniel L.; Badhiwala, Krishna N.; Vercosa, Daniel G.; Avants, Benjamin W.; Liu, Zheng; Zhong, Weiwei; Robinson, Jacob T.

    2017-07-01

    Electrical measurements from large populations of animals would help reveal fundamental properties of the nervous system and neurological diseases. Small invertebrates are ideal for these large-scale studies; however, patch-clamp electrophysiology in microscopic animals typically requires invasive dissections and is low-throughput. To overcome these limitations, we present nano-SPEARs: suspended electrodes integrated into a scalable microfluidic device. Using this technology, we have made the first extracellular recordings of body-wall muscle electrophysiology inside an intact roundworm, Caenorhabditis elegans. We can also use nano-SPEARs to record from multiple animals in parallel and even from other species, such as Hydra littoralis. Furthermore, we use nano-SPEARs to establish the first electrophysiological phenotypes for C. elegans models for amyotrophic lateral sclerosis and Parkinson's disease, and show a partial rescue of the Parkinson's phenotype through drug treatment. These results demonstrate that nano-SPEARs provide the core technology for microchips that enable scalable, in vivo studies of neurobiology and neurological diseases.

  5. Risk of malignant arrhythmias in initially symptomatic patients with Wolff-Parkinson-White syndrome: results of a prospective long-term electrophysiological follow-up study.

    Science.gov (United States)

    Pappone, Carlo; Vicedomini, Gabriele; Manguso, Francesco; Baldi, Mario; Pappone, Alessia; Petretta, Andrea; Vitale, Raffaele; Saviano, Massimo; Ciaccio, Cristiano; Giannelli, Luigi; Calovic, Zarko; Tavazzi, Luigi; Santinelli, Vincenzo

    2012-02-07

    The available amount of detailed long-term data in patients with Wolff-Parkinson-White syndrome is limited, and no prospective electrophysiological studies looking at predictors of malignant arrhythmia are available. Among 8575 symptomatic Wolff-Parkinson-White patients with atrioventricular reentrant tachycardia referred for electrophysiological test, 369 (mean age, 23±12.5 years) declined catheter ablation and were followed up. The primary end point of the study was to evaluate over a 5-year follow-up the predictors and characteristics of patients who develop malignant arrhythmias. After a mean follow-up of 42.1±10 months, malignant arrhythmias developed in 29 patients (mean age, 13.9±5.6 years; 26 male), resulting in presyncope/syncope (25 patients), hemodynamic collapse (3 patients), or cardiac arrest caused by ventricular fibrillation (1 patient). Of the remaining 340 patients, 168 (mean age, 34.2±9.0 years) remained asymptomatic up to 5 years, and 172 (mean age, 13.6±5.1 years) had benign recurrence, including sustained atrioventricular reentrant tachycardia (132 patients) or atrial fibrillation (40 patients). Compared with the group with no malignant arrhythmias, the group with malignant arrhythmias showed shorter accessory-pathway effective refractory period (PWolff-Parkinson-White syndrome generally have a good outcome, and predictors of malignant arrhythmias are similar to those reported for asymptomatic patients with ventricular pre-excitation.

  6. Ultraconformable Temporary Tattoo Electrodes for Electrophysiology

    Science.gov (United States)

    Ferrari, Laura M.; Sudha, Sudha; Tarantino, Sergio; Esposti, Roberto; Bolzoni, Francesco; Cavallari, Paolo; Cipriani, Christian

    2018-01-01

    Abstract Electrically interfacing the skin for monitoring personal health condition is the basis of skin‐contact electrophysiology. In the clinical practice the use of stiff and bulky pregelled or dry electrodes, in contrast to the soft body tissues, imposes severe restrictions to user comfort and mobility while limiting clinical applications. Here, in this work dry, unperceivable temporary tattoo electrodes are presented. Customized single or multielectrode arrays are readily fabricated by inkjet printing of conducting polymer onto commercial decal transfer paper, which allows for easy transfer on the user's skin. Conformal adhesion to the skin is provided thanks to their ultralow thickness (Tattoo electrode–skin contact impedance is characterized on short‐ (1 h) and long‐term (48 h) and compared with standard pregelled and dry electrodes. The viability in electrophysiology is validated by surface electromyography and electrocardiography recordings on various locations on limbs and face. A novel concept of tattoo as perforable skin‐contact electrode, through which hairs can grow, is demonstrated, thus permitting to envision very long‐term recordings on areas with high hair density. The proposed materials and patterning strategy make this technology amenable for large‐scale production of low‐cost sensing devices. PMID:29593975

  7. [Why does our heart fibrillate?- or what goats can teach us].

    Science.gov (United States)

    Eckstein, Jens

    2014-07-23

    Our present knowledge about cardiac electrophysiology is based on numerous experiments and discoveries going back to the Greek antique and ancient Egypt. Exploration of cardiac anatomy was followed by the description of circulation and cardiac physiology in the 17th century. In the early 20th century cardiac electrophysiology became the new field of interest and was studied with the help of numerous animal experiments (squid, rays, dogs, goats, mice and other species). We ought to be grateful for the knowledge and possibilities in modern medicine that were made possible by the great number of researchers, patients and animals that contributed to this.

  8. CARDIAC TRANSPLANT REJECTION AND NON-INVASIVE COMON CAROTID ARTERY WALL FUNCTIONAL INDICES

    Directory of Open Access Journals (Sweden)

    A. O. Shevchenko

    2015-01-01

    Full Text Available Allograft rejection would entail an increase in certain blood biomarkers and active substances derived from activated inflammatory cells which could influence entire vascular endothelial function and deteriorate arterial wall stiffness. We propose that carotid wall functional indices measured with non-invasive ultrasound could we valuable markers of the subclinical cardiac allograft rejection. Aim. Our goal was to analyze the clinical utility of functional common carotid wall (CCW variables measured with high-resolution Doppler ultrasound as a non-invasive screening tool for allograft rejection in cardiac transplant patients (pts. Methods. One hundred and seventy one pts included 93 cardiac recipients, 30 dilated cardiomyopathy waiting list pts, and 48 stable coronary artery disease (SCAD pts without decompensated heart failure were included. Along with resistive index (Ri, pulsative index (Pi, and CCW intima-media thickness (IMT, CCW rigidity index (iRIG was estimated using empirical equation. Non-invasive evaluation was performed in cardiac transplant recipients prior the endomyo- cardial biopsy. Results. Neither of Ri, Pi, or CCW IMT were different in studied subgroups. iRIG was signifi- cantly lower in SCAD pts when compared to the dilated cardiomyopathy subgroup. The later had similar values with cardiac transplant recipients without rejection. Antibody-mediated and cellular rejection were found in 22 (23.7% and 17 (18.3% cardiac recipients, respectively. Mean iRIG in pts without rejection was significantly lower in comparison to antibody-mediated rejection and cell-mediated (5514.7 ± 2404.0 vs 11856.1 ± 6643.5 and 16071.9 ± 10029.1 cm/sec2, respectively, p = 0.001. Area under ROC for iRIG was 0.90 ± 0.03 units2. Analysis showed that iRIG values above estimated treshold 7172 cm/sec2 suggested relative risk of any type of rejection 17.7 (95%CI = 6.3–49.9 sensitivity 80.5%, specificity – 81.1%, negative predictive value – 84

  9. The Consistency Between Clinical and Electrophysiological Diagnoses

    Directory of Open Access Journals (Sweden)

    Esra E. Okuyucu

    2009-09-01

    Full Text Available OBJECTIVE: The aim of this study was to provide information concerning the impact of electrophysiological tests in the clinical management and diagnosis of patients, and to evaluate the consistency between referring clinical diagnoses and electrophysiological diagnoses. METHODS: The study included 957 patients referred to the electroneuromyography (ENMG laboratory from different clinics with different clinical diagnoses in 2008. Demographic data, referring clinical diagnoses, the clinics where the requests wanted, and diagnoses after ENMG testing were recorded and statistically evaluated. RESULTS: In all, 957 patients [644 (67.3% female and 313 (32.7% male] were included in the study. Mean age of the patients was 45.40 ± 14.54 years. ENMG requests were made by different specialists; 578 (60.4% patients were referred by neurologists, 122 (12.8% by orthopedics, 140 (14.6% by neurosurgeons, and 117 (12.2% by physical treatment and rehabilitation departments. According to the results of ENMG testing, 513 (53.6% patients’ referrals were related to their referral diagnosis, whereas 397 (41.5% patients had normal ENMG test results, and 47 (4.9% patients had a diagnosis that differed from the referring diagnosis. Among the relation between the referral diagnosis and electrophysiological diagnosis according to the clinics where the requests were made, there was no statistical difference (p= 0.794, but there were statistically significant differences between the support of different clinical diagnoses, such as carpal tunnel syndrome, polyneuropathy, radiculopathy-plexopathy, entrapment neuropathy, and myopathy based on ENMG test results (p< 0.001. CONCLUSION: ENMG is a frequently used neurological examination. As such, referrals for ENMG can be made to either support the referring diagnosis or to exclude other diagnoses. This may explain the inconsistency between clinical referring diagnoses and diagnoses following ENMG

  10. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  11. Retinal Electrophysiology Is a Viable Preclinical Biomarker for Drug Penetrance into the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Jason Charng

    2016-01-01

    Full Text Available Objective. To examine whether retinal electrophysiology is a useful surrogate marker of drug penetrance into the central nervous system (CNS. Materials and Methods. Brain and retinal electrophysiology were assessed with full-field visually evoked potentials and electroretinograms in conscious and anaesthetised rats following systemic or local administrations of centrally penetrant (muscimol or nonpenetrant (isoguvacine compounds. Results. Local injections into the eye/brain bypassed the blood neural barriers and produced changes in retinal/brain responses for both drugs. In conscious animals, systemic administration of muscimol resulted in retinal and brain biopotential changes, whereas systemic delivery of isoguvacine did not. General anaesthesia confounded these outcomes. Conclusions. Retinal electrophysiology, when recorded in conscious animals, shows promise as a viable biomarker of drug penetration into the CNS. In contrast, when conducted under anaesthetised conditions confounds can be induced in both cortical and retinal electrophysiological recordings.

  12. A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures

    Directory of Open Access Journals (Sweden)

    Piero Colli Franzone

    2018-04-01

    Full Text Available We introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1 the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2 the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3 the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4 the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The results of several 3D parallel simulations show the scalability of both linear and non-linear solvers and their application to the study of both physiological excitation-contraction cardiac dynamics and re-entrant waves in the presence of different mechano-electrical feedbacks.

  13. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    Science.gov (United States)

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  14. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants

    Directory of Open Access Journals (Sweden)

    T. Fernandes

    2011-09-01

    Full Text Available Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1 receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  15. Electrophysiological characteristics of a SCN5A voltage sensors mutation R1629Q associated with Brugada syndrome.

    Directory of Open Access Journals (Sweden)

    Zhipeng Zeng

    Full Text Available Brugada syndrome (BrS is an inherited arrhythmogenic syndrome leading to sudden cardiac death, partially associated with autosomal dominant mutations in SCN5A, which encodes the cardiac sodium channel alpha-subunit (Nav1.5. To date some SCN5A mutations related with BrS have been identified in voltage sensor of Nav1.5. Here, we describe a dominant missense mutation (R1629Q localized in the fourth segment of domain IV region (DIV-S4 in a Chinese Han family. The mutation was identified by direct sequencing of SCN5A from the proband's DNA. Co-expression of Wild-type (WT or R1629Q Nav1.5 channel and hβ1 subunit were achieved in human embryonic kidney cells by transient transfection. Sodium currents were recorded using whole cell patch-clamp protocols. No significant changes between WT and R1629Q currents were observed in current density or steady-state activation. However, hyperpolarized shift of steady-state inactivation curve was identified in cells expressing R1629Q channel (WT: V1/2 = -81.1 ± 1.3 mV, n = 13; R1629Q: V1/2 = -101.7 ± 1.2 mV, n = 18. Moreover, R1629Q channel showed enhanced intermediate inactivation and prolonged recovery time from inactivation. In summary, this study reveals that R1629Q mutation causes a distinct loss-of-function of the channel due to alter its electrophysiological characteristics, and facilitates our understanding of biophysical mechanisms of BrS.

  16. Review: electrophysiology of basal ganglia and cortex in models of Parkinson disease.

    Science.gov (United States)

    Ellens, Damien J; Leventhal, Daniel K

    2013-01-01

    Incomplete understanding of the systems-level pathophysiology of Parkinson Disease (PD) remains a significant barrier to improving its treatment. Substantial progress has been made, however, due to the availability of neurotoxins that selectively target monoaminergic (in particular, dopaminergic) neurons. This review discusses the in vivo electrophysiology of basal ganglia (BG), thalamic, and cortical regions after dopamine-depleting lesions. These include firing rate changes, neuronal burst-firing, neuronal oscillations, and neuronal synchrony that result from a combination of local microanatomic changes and network-level interactions. While much is known of the clinical and electrophysiological phenomenology of dopamine loss, a critical gap in our conception of PD pathophysiology is the link between them. We discuss potential mechanisms by which these systems-level electrophysiological changes may emerge, as well as how they may relate to clinical parkinsonism. Proposals for an updated understanding of BG function are reviewed, with an emphasis on how emerging frameworks will guide future research into the pathophysiology and treatment of PD.

  17. Electrophysiologic Assessments of Involuntary Movements: Tremor and Myoclonus

    Directory of Open Access Journals (Sweden)

    Hyun-Dong Park

    2009-05-01

    Full Text Available Tremor is defined as a rhythmical, involuntary oscillatory movement of a body part. Although neurological examination reveals information regarding its frequency, regularity, amplitude, and activation conditions, the electrophysiological investigations help in confirming the tremor, in differentiating it from other hyperkinetic disorders like myoclonus, and may provide etiological clues. Accelerometer with surface electromyogram (EMG can be used to document the dominant frequency of a tremor, which may be useful as certain frequencies are more characteristic of specific etiologies than others hyperkinetic disorders. It may show rhythmic bursts, duration and activation pattern (alternating or synchronous. Myoclonus is a quick, involuntary movement. Electrophysiological studies may helpful in the evaluation of myoclonus, not only for confirming the clinical diagnosis but also for understanding the underlying physiological mechanisms. Electroencephalogram (EEG-EMG correlates can give us important information about myoclonus. Jerk-locked back-averaging and evoked potentials with recording of the long-latency, long-loop reflexes are currently available to study the pathophysiology of myoclonus.

  18. Breadboard Amplifier: Building and Using Simple Electrophysiology Equipment.

    Science.gov (United States)

    Crisp, Kevin M; Lin, Hunter; Prosper, Issa

    2016-01-01

    Electrophysiology is a valuable skill for the neuroscientist, but the learning curve for students can be steep. Here we describe a very simple electromyography (EMG) amplifier that can be built from scratch by students with no electronics experience in about 30 minutes, making it ideal for incorporating into a laboratory activity. With few parts and no adjustments except the gain, students can begin physiology experiments quickly while having the satisfaction of having built the equipment themselves. Because the output of the circuit goes to a computer sound card, students can listen to electrophysiological activity as they see it on the computer screen, a feature many of our students greatly appreciated. Various applications are discussed, including dual channel recording, using streaming media platforms with remote lab partners and acquiring data in the field on a smart phone. Our students reported that they enjoyed being able to build a working device and using it to record from their own muscles.

  19. Cardiac and renal dysfunction is associated with progressive hearing loss in patients with Fabry disease.

    Directory of Open Access Journals (Sweden)

    Maria Köping

    Full Text Available Fabry disease (FD is an X-linked recessive hereditary lysosomal storage disorder which results in the accumulation of globotriaosylceramid (Gb3 in tissues of kidney and heart as well as central and peripheral nervous system. Besides prominent renal and cardiac organ involvement, cochlear symptoms like high-frequency hearing loss and tinnitus are frequently found with yet no comprehensive data available in the literature.To examine hearing loss in patients with FD depending on cardiac and renal function.Single-center study with 68 FD patients enrolled between 2012 and 2016 at the Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery of the University of Würzburg. Every subject underwent an oto-rhino-laryngological examination as well as behavioral, electrophysiological and electroacoustical audiological testing. High-frequency thresholds were evaluated by using a modified PTA6 (0.5, 1, 2, 4, 6, 8 and HF-PTA (6, 8 kHz. Renal function was measured by eGFR, cardiac impairment was graduated by NYHA class.Sensorineural hearing loss was detected in 58.8% of the cohort, which occurred typically in sudden episodes and affected especially high frequencies. Hearing loss is asymmetric, beginning unilaterally and affecting the contralateral ear later. Tinnitus was reported by 41.2%. Renal and cardiac impairment influenced the severity of hearing loss (p < 0.05.High frequency hearing loss is a common problem in patients with FD. Although not life-threatening, it can seriously reduce quality of life and should be taken into account in diagnosis and therapy. Optimized extensive hearing assessment including higher frequency thresholds should be used.

  20. Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from in vivo MRI

    International Nuclear Information System (INIS)

    Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Filgueiras-Rama, David; Pizarro, Gonzalo; Ibañez, Borja; Berenfeld, Omer; Boyers, Pamela; Gold, Jeffrey

    2012-01-01

    This paper presents an automated method to segment left ventricle (LV) tissues from functional and delayed-enhancement (DE) cardiac magnetic resonance imaging (MRI) scans using a sequential multi-step approach. First, a region of interest (ROI) is computed to create a subvolume around the LV using morphological operations and image arithmetic. From the subvolume, the myocardial contours are automatically delineated using difference of Gaussians (DoG) filters and GSV snakes. These contours are used as a mask to identify pathological tissues, such as fibrosis or scar, within the DE-MRI. The presented automated technique is able to accurately delineate the myocardium and identify the pathological tissue in patient sets. The results were validated by two expert cardiologists, and in one set the automated results are quantitatively and qualitatively compared with expert manual delineation. Furthermore, the method is patient-specific, performed on an entire patient MRI series. Thus, in addition to providing a quick analysis of individual MRI scans, the fully automated segmentation method is used for effectively tagging regions in order to reconstruct computerized patient-specific 3D cardiac models. These models can then be used in electrophysiological studies and surgical strategy planning. (paper)

  1. Distinct electrophysiological potentials for intention in action and prior intention for action

    DEFF Research Database (Denmark)

    Vinding, Mikkel C; Jensen, Mads; Overgaard, Morten

    2014-01-01

    The role of conscious intention in relation to motoric movements has become a major topic of investigation in neuroscience. Traditionally, reports of conscious intention have been compared to various features of the readiness-potential (RP) – an electrophysiological signal that appears before...... electrophysiological “intention potential” above the mid-frontal areas at the time participants formed a distal intention. This potential was only found when the distal intention was self-paced and not when the intention was formed in response to an external cue....

  2. Halogenated anaesthetics and cardiac protection in cardiac and non-cardiac anaesthesia

    Directory of Open Access Journals (Sweden)

    Landoni Giovanni

    2009-01-01

    Full Text Available Volatile anaesthetic agents have direct protective properties against ischemic myocardial damage. The implementation of these properties during clinical anaesthesia can provide an additional tool in the treatment or prevention, or both, of ischemic cardiac dysfunction in the perioperative period. A recent meta-analysis showed that desflurane and sevoflurane reduce postoperative mortality and incidence of myocardial infarction following cardiac surgery, with significant advantages in terms of postoperative cardiac troponin release, need for inotrope support, time on mechanical ventilation, intensive care unit and overall hospital stay. Multicentre, randomised clinical trials had previously demonstrated that the use of desflurane can reduce the postoperative release of cardiac troponin I, the need for inotropic support, and the number of patients requiring prolonged hospitalisation following coronary artery bypass graft surgery either with and without cardiopulmonary bypass. The American College of Cardiology/American Heart Association Guidelines recommend volatile anaesthetic agents during non-cardiac surgery for the maintenance of general anaesthesia in patients at risk for myocardial infarction. Nonetheless, e vidence in non-coronary surgical settings is contradictory and will be reviewed in this paper together with the mechanisms of cardiac protection by volatile agents.

  3. Detecting Regional Myocardial Abnormalities in Patients With Wolff-Parkinson-White Syndrome With the Use of ECG-Gated Cardiac MDCT.

    Science.gov (United States)

    Lee, Hye-Jeong; Uhm, Jae-Sun; Joung, Boyoung; Hong, Yoo Jin; Hur, Jin; Choi, Byoung Wook; Kim, Young Jin

    2016-04-01

    Myocardial dyskinesia caused by the accessory pathway and related reversible heart failure have been well documented in echocardiographic studies of pediatric patients with Wolff-Parkinson-White (WPW) syndrome. However, the long-term effects of dyskinesia on the myocardium of adult patients have not been studied in depth. The goal of the present study was to evaluate regional myocardial abnormalities on cardiac CT examinations of adult patients with WPW syndrome. Of 74 patients with WPW syndrome who underwent cardiac CT from January 2006 through December 2013, 58 patients (mean [± SD] age, 52.2 ± 12.7 years), 36 (62.1%) of whom were men, were included in the study after the presence of combined cardiac disease was excluded. Two observers blindly evaluated myocardial thickness and attenuation on cardiac CT scans. On the basis of CT findings, patients were classified as having either normal or abnormal findings. We compared the two groups for other clinical findings, including observations from ECG, echocardiography, and electrophysiologic study. Of the 58 patients studied, 16 patients (27.6%) were found to have myocardial abnormalities (i.e., abnormal wall thinning with or without low attenuation). All abnormal findings corresponded with the location of the accessory pathway. Patients with abnormal findings had statistically significantly decreased left ventricular function, compared with patients with normal findings (p syndrome. These abnormal findings might reflect the long-term effects of dyskinesia, suggesting irreversible myocardial injury that ultimately causes left ventricular dysfunction.

  4. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase.

    Science.gov (United States)

    Fischer, Kimberlee M; Cottage, Christopher T; Wu, Weitao; Din, Shabana; Gude, Natalie A; Avitabile, Daniele; Quijada, Pearl; Collins, Brett L; Fransioli, Jenna; Sussman, Mark A

    2009-11-24

    Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.

  5. Cellular Therapeutics for Heart Failure: Focus on Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Amitabh C. Pandey

    2017-01-01

    Full Text Available Resulting from a various etiologies, the most notable remains ischemia; heart failure (HF manifests as the common end pathway of many cardiovascular processes and remains among the top causes for hospitalization and a major cause of morbidity and mortality worldwide. Current pharmacologic treatment for HF utilizes pharmacologic agents to control symptoms and slow further deterioration; however, on a cellular level, in a patient with progressive disease, fibrosis and cardiac remodeling can continue leading to end-stage heart failure. Cellular therapeutics have risen as the new hope for an improvement in the treatment of HF. Mesenchymal stem cells (MSCs have gained popularity given their propensity of promoting endogenous cellular repair of a myriad of disease processes via paracrine signaling through expression of various cytokines, chemokines, and adhesion molecules resulting in activation of signal transduction pathways. While the exact mechanism remains to be completely elucidated, this remains the primary mechanism identified to date. Recently, MSCs have been incorporated as the central focus in clinical trials investigating the role how MSCs can play in the treatment of HF. In this review, we focus on the characteristics of MSCs that give them a distinct edge as cellular therapeutics and present results of clinical trials investigating MSCs in the setting of ischemic HF.

  6. Peripheral Neuropathy – Clinical and Electrophysiological Considerations

    Science.gov (United States)

    Chung, Tae; Prasad, Kalpana; Lloyd, Thomas E.

    2013-01-01

    This article is a primer on the pathophysiology and clinical evaluation of peripheral neuropathy for the radiologist. Magnetic resonance neurography (MRN) has utility in the diagnosis of many focal peripheral nerve lesions. When combined with history, examination, electrophysiology, and laboratory data, future advancements in high-field MRN may play an increasingly important role in the evaluation of patients with peripheral neuropathy. PMID:24210312

  7. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR

    Science.gov (United States)

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand

    2012-01-01

    Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology. PMID:22833816

  8. Is hospital care of major importance for outcome after out-of-hospital cardiac arrest? Experience acquired from patients with out-of-hospital cardiac arrest resuscitated by the same Emergency Medical Service and admitted to one of two hospitals over a 16-year period in the municipality of Göteborg.

    Science.gov (United States)

    Engdahl, J; Abrahamsson, P; Bång, A; Lindqvist, J; Karlsson, T; Herlitz, J

    2000-02-01

    To describe patient characteristics, hospital investigations and interventions and early mortality among patients being hospitalized after out-of-hospital cardiac arrest in two hospitals. Municipality of Göteborg, Sweden. All patients suffering an out-of-hospital cardiac arrest who were successfully resuscitated and admitted to hospital between 1 October 1980 and 31 December 1996. All patients were resuscitated by the same Emergency Medical Service and admitted alive to one of the two city hospitals in Göteborg. Of 579 patients admitted to Sahlgrenska Hospital, 253 (44%) were discharged alive and of 459 patients admitted to Ostra Hospital, 152 (33%) were discharged alive (P percentage of patients admitted to Sahlgrenska Hospital underwent coronary angiography (P < 0.001), electrophysiological testing (P < 0.001), Holter recording (P < 0.001), echocardiography (P = 0.004), percutaneous transluminal coronary angioplasty (PTCA, P = 0.009), implantation of automatic implantable cardioverter defibrillator (AICD, P = 0.03) and exercise stress tests (P = 0.003). Inhabitants in the catchment area of Ostra Hospital had a less favourable socio-economic profile. Survival after out-of-hospital cardiac arrest may be affected by the course of hospital management. Other variables that might influence survival are socio-economic factors and cardiorespiratory status on admission to hospital. Further investigation is called for as more patients are being hospitalised alive after out-of-hospital cardiac arrest.

  9. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    Science.gov (United States)

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms. Copyright © 2016. Published by Elsevier B.V.

  10. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function

    Science.gov (United States)

    Zhou, Jin; Chen, Jun; Sun, Hongyu; Qiu, Xiaozhong; Mou, Yongchao; Liu, Zhiqiang; Zhao, Yuwei; Li, Xia; Han, Yao; Duan, Cuimi; Tang, Rongyu; Wang, Chunlan; Zhong, Wen; Liu, Jie; Luo, Ying; (Mengqiu) Xing, Malcolm; Wang, Changyong

    2014-01-01

    Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction. PMID:24429673

  11. Resuscitation great. Luigi Galvani and the foundations of electrophysiology.

    Science.gov (United States)

    Cajavilca, Christian; Varon, Joseph; Sternbach, George L

    2009-02-01

    Luigi Galvani became one of the greatest scientists of the 18th century with his research and the development of his theory on animal electricity. His work was appreciated by many scientists. Nevertheless, it gave rise to one of the most passionate scientific debates in history when Alessandro Volta postulated that Galvani had confused intrinsic animal electricity with small currents produced by metals. This debate would result in the creation of electrophysiology, electromagnetism, electrochemistry and the electrical battery. Galvani responded to each of the postulated theories of Volta giving irrefutable proof of the involvement of electricity in the contraction of muscles. However, his work was subsequently abandoned and silenced for many years but his ideas and theories were finally confirmed by the creation of new instruments and the interest of new scientists who helped position Galvani as the father of electrophysiology.

  12. Electrophysiological studies in thyrotoxicosis with and without associated sick sinus syndrome

    International Nuclear Information System (INIS)

    Talwar, K.K.; Gupta, V.; Kaul, U.; Ahuja, M.M.; Bhatia, M.L.

    1987-01-01

    Electrophysiological studies in 13 patients with thyrotoxicosis (5 men and 8 women, aged 17 to 76 years) are reported. Five patients presented with features of sick sinus syndrome (SSS) (Group A) while the remaining 8 patients (Group B) had no detectable cardiovascular abnormality. Sinus node function (corrected sinus node recovery and sinoatrial conduction time) was abnormal in all Group A but normal in Group B patients. Intra-atrial, artioventricular (AV) nodal, and infranodal conduction time and effective refractory period of atrium were normal in all patients in both groups. Effective refractory period of AV node was decreased in 6 patients (3 in each group). All Group A patients received radioiodine with complete clinical remission of sick sinus state in 4 subjects. Repeat electrophysiological studies in two of these patients, 6 and 12 months after treatment, showed complete normalization of sinus node function. This is the first reported electrophysiological study documenting the occurrence of SSS in thyrotoxicosis reversed by effective antithyroid treatment. We suggest that attempts should be made to identify underlying thyrotoxicosis in all patients with SSS, especially in the older age group. Appropriate medical treatment may prevent unnecessary implantation of permanent pacemakers in such patients

  13. Electrophysiological evidence for enhanced representation of food stimuli in working memory.

    Science.gov (United States)

    Rutters, Femke; Kumar, Sanjay; Higgs, Suzanne; Humphreys, Glyn W

    2015-02-01

    Studies from our laboratory have shown that, relative to neutral objects, food-related objects kept in working memory (WM) are particularly effective in guiding attention to food stimuli (Higgs et al. in Appetite, 2012). Here, we used electrophysiological measurements to investigate the neural representation of food versus non-food items in WM. Subjects were presented with a cue (food or non-food item) to either attend to or hold in WM. Subsequently, they had to search for a target, while the target and distractor were each flanked by a picture of a food or non-food item. Behavioural data showed that a food cue held in WM modulated the deployment of visual attention to a search target more than a non-food cue, even though the cue was irrelevant for target selection. Electrophysiological measures of attention, memory and retention of memory (the P3, LPP and SPCN components) were larger when food was kept in WM, compared to non-food items. No such effect was observed in a priming task, when the initial cue was merely identified. Overall, our electrophysiological data are consistent with the suggestion that food stimuli are particularly strongly represented in the WM system.

  14. Existence of a sex pheromone in Triatoma infestans (Hemiptera: Reduvidae: II. Electrophysiological correlates

    Directory of Open Access Journals (Sweden)

    Maria G. de Brito Sanchez

    1995-10-01

    Full Text Available The stimulus provided by a copulating pair of Triatoma infestans significantly affects the electrical activity of the nervous system of Triatoma infestans. Electrophysiological recordings were perfomed on stationary adult males presented with stimuli of an air current carrying odors from males, females, non-copulating pairs and mating pairs. The electrophysiological response was characterized by the low frequency occurrence of biphasic compound impulses. A significant increase in the frequency of the impulses occurred in stationary males when exposed to air currents of mating pairs, when compared to that evoked by a clean air stream. Analysis of the time course of the assays, showed that the electrophisiological activity during the copula was higher than prior to or after copula. The electrophysiological evidence presented here strongly supports the existence of pheromone(s released by one or both sexes during mating and which is perceived by male chemoreceptors located on the antennae.

  15. Oxidized CaMKII causes cardiac sinus node dysfunction in mice

    OpenAIRE

    Swaminathan, Paari Dominic; Purohit, Anil; Soni, Siddarth; Voigt, Niels; Singh, Madhu V.; Glukhov, Alexey V.; Gao, Zhan; He, B. Julie; Luczak, Elizabeth D.; Joiner, Mei-ling A.; Kutschke, William; Yang, Jinying; Donahue, J. Kevin; Weiss, Robert M.; Grumbach, Isabella M.

    2011-01-01

    Sinus node dysfunction (SND) is a major public health problem that is associated with sudden cardiac death and requires surgical implantation of artificial pacemakers. However, little is known about the molecular and cellular mechanisms that cause SND. Most SND occurs in the setting of heart failure and hypertension, conditions that are marked by elevated circulating angiotensin II (Ang II) and increased oxidant stress. Here, we show that oxidized calmodulin kinase II (ox-CaMKII) is a biomark...

  16. Visualization of spiral and scroll waves in simulated and experimental cardiac tissue

    Science.gov (United States)

    Cherry, E. M.; Fenton, F. H.

    2008-12-01

    The heart is a nonlinear biological system that can exhibit complex electrical dynamics, complete with period-doubling bifurcations and spiral and scroll waves that can lead to fibrillatory states that compromise the heart's ability to contract and pump blood efficiently. Despite the importance of understanding the range of cardiac dynamics, studying how spiral and scroll waves can initiate, evolve, and be terminated is challenging because of the complicated electrophysiology and anatomy of the heart. Nevertheless, over the last two decades advances in experimental techniques have improved access to experimental data and have made it possible to visualize the electrical state of the heart in more detail than ever before. During the same time, progress in mathematical modeling and computational techniques has facilitated using simulations as a tool for investigating cardiac dynamics. In this paper, we present data from experimental and simulated cardiac tissue and discuss visualization techniques that facilitate understanding of the behavior of electrical spiral and scroll waves in the context of the heart. The paper contains many interactive media, including movies and interactive two- and three-dimensional Java appletsDisclaimer: IOP Publishing was not involved in the programming of this software and does not accept any responsibility for it. You download and run the software at your own risk. If you experience any problems with the software, please contact the author directly. To the fullest extent permitted by law, IOP Publishing Ltd accepts no responsibility for any loss, damage and/or other adverse effect on your computer system caused by your downloading and running this software. IOP Publishing Ltd accepts no responsibility for consequential loss..

  17. Six Conductivity Values to Use in the Bidomain Model of Cardiac Tissue.

    Science.gov (United States)

    Johnston, Barbara M

    2016-07-01

    The aim of this work is to produce a consistent set of six conductivity values for use in the bidomain model of cardiac tissue. Studies in 2007 by Hooks et al. and in 2009 by Caldwell et al. have found that, in the directions longitudinal:transverse:normal (l:t:n) to the cardiac fibers, ratios of bulk conductivities and conduction velocities are each approximately in the ratio 4:2:1. These results are used here as the basis for a method that can find sets of six normalized bidomain conductivity values. It is found that the ratios involving transverse and normal conductivities are quite consistent, allowing new light to be shed on conductivity in the normal direction. For example, it is found that the ratio of transverse to normal conductivity is much greater in the intracellular (i) than the extracellular (e) domain. Using parameter values from experimental studies leads to the proposal of a new nominal six conductivity dataset: gil=2.4, gel=2.4, git=0.35, get=2.0, gin=0.08, and gen=1.1 (all in mS/cm). When it is used to model partial thickness ischaemia, this dataset produces epicardial potential distributions in accord with experimental studies in an animal model. It is, therefore, suggested that the dataset is suitable for use in numerical simulations. Since the bidomain approach is the most commonly used method for modeling cardiac electrophysiological phenomena, new information about conductivity in the normal direction, as well as a consistent set of six conductivity values, is valuable for researchers who perform simulation studies.

  18. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)

    2014-09-15

    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  19. Electrophysiological studies in healthy subjects involving caffeine

    OpenAIRE

    Carvalho, Mamede de; Marcelino, Erica; Mendonça, Alexandre de

    2010-01-01

    Copyright ©2012 IOS Press All rights reserved. We review the electrophysiological studies concerning the effects of caffeine on muscle, lower and upper motor neuron excitability and cognition. Several different methods have been used, such as electromyography, recruitment analysis, H-reflex, transcranial magnetic stimulation (TMS), electroencephalography and event-related potentials. The positive effect of caffeine on vigilance, attention, speed of reaction, information processing and arou...

  20. Electrophysiological evidence for phenomenal consciousness.

    Science.gov (United States)

    Revonsuo, Antti; Koivisto, Mika

    2010-09-01

    Abstract Recent evidence from event-related brain potentials (ERPs) lends support to two central theses in Lamme's theory. The earliest ERP correlate of visual consciousness appears over posterior visual cortex around 100-200 ms after stimulus onset. Its scalp topography and time window are consistent with recurrent processing in the visual cortex. This electrophysiological correlate of visual consciousness is mostly independent of later ERPs reflecting selective attention and working memory functions. Overall, the ERP evidence supports the view that phenomenal consciousness of a visual stimulus emerges earlier than access consciousness, and that attention and awareness are served by distinct neural processes.

  1. Electrophysiological effects of the aqueous extract of Averrhoa carambola L. leaves on the guinea pig heart.

    Science.gov (United States)

    Vasconcelos, C M L; Araújo, M S; Conde-Garcia, E A

    2006-07-01

    This work aims to describe some electrophysiological changes promoted by the aqueous extract (AEx) from Averrhoa carambola leaves in guinea pig heart. The experiments were carried out on isolated heart or on right atrium-ventricle preparations. In 6 hearts, the extract induced many kinds of atrioventricular blocks (1st, 2nd, and 3rd degrees); increased the QT interval from 229+/-23 to 264+/-19 ms; increased the QRS complex duration from 27+/-3.1 to 59+/-11 ms, and depressed the cardiac rate from 136+/-17 to 89+/-14b pm. Furthermore, it decreased the conduction velocity of atrial impulse (17+/-3%); reduced the intraventricular pressure (86+/-6%), and increased the conduction time between the right atrium and the His bundle (27+/-6.5%). The conduction time from the His bundle to the right ventricle was not altered. Atropine sulfate did not change either the electrocardiographic parameters or the intraventricular pressure effects promoted by the A. carambola AEx. Based on these results, the popular use of such extracts should be avoided because it can promote electrical and mechanical changes in the normal heart.

  2. Cardiac re-entry dynamics and self-termination in DT-MRI based model of Human Foetal Heart

    Science.gov (United States)

    Biktasheva, Irina V.; Anderson, Richard A.; Holden, Arun V.; Pervolaraki, Eleftheria; Wen, Fen Cai

    2018-02-01

    The effect of human foetal heart geometry and anisotropy on anatomy induced drift and self-termination of cardiac re-entry is studied here in MRI based 2D slice and 3D whole heart computer simulations. Isotropic and anisotropic models of 20 weeks of gestational age human foetal heart obtained from 100μm voxel diffusion tensor MRI data sets were used in the computer simulations. The fiber orientation angles of the heart were obtained from the orientation of the DT-MRI primary eigenvectors. In a spatially homogeneous electrophysiological monodomain model with the DT-MRI based heart geometries, cardiac re-entry was initiated at a prescribed location in a 2D slice, and in the 3D whole heart anatomy models. Excitation was described by simplified FitzHugh-Nagumo kinetics. In a slice of the heart, with propagation velocity twice as fast along the fibres than across the fibers, DT-MRI based fiber anisotropy changes the re-entry dynamics from pinned to an anatomical re-entry. In the 3D whole heart models, the fiber anisotropy changes cardiac re-entry dynamics from a persistent re-entry to the re-entry self-termination. The self-termination time depends on the re-entry’s initial position. In all the simulations with the DT-MRI based cardiac geometry, the anisotropy of the myocardial tissue shortens the time to re-entry self-termination several folds. The numerical simulations depend on the validity of the DT-MRI data set used. The ventricular wall showed the characteristic transmural rotation of the helix angle of the developed mammalian heart, while the fiber orientation in the atria was irregular.

  3. History of Bioelectrical Study and the Electrophysiology of the Primo Vascular System

    Directory of Open Access Journals (Sweden)

    Sang Hyun Park

    2013-01-01

    Full Text Available Background. Primo vascular system is a new anatomical structure whose research results have reported the possibility of a new circulatory system similar to the blood vascular system and cells. Electrophysiology, which measures and analyzes bioelectrical signals tissues and cells, is an important research area for investigating the function of tissues and cells. The bioelectrical study of the primo vascular system has been reported by using modern techniques since the early 1960s by Bonghan Kim. This paper reviews the research result of the electrophysiological study of the primo vascular system for the discussion of the circulatory function. We hope it would help to study the electrophysiology of the primo vascular system for researchers. This paper will use the following exchangeable expressions: Kyungrak system = Bonghan system = Bonghan circulatory system = primo vascular system = primo system; Bonghan corpuscle = primo node; Bonghan duct = primo vessel. We think that objective descriptions of reviewed papers are more important than unified expressions when citing the papers. That said, this paper will unify the expressions of the primo vascular system.

  4. Hyperpolarized metabolic MR in the study of cardiac function and disease

    DEFF Research Database (Denmark)

    Lauritzen, M. H.; Søgaard, L. V.; Madsen, Pia Lisbeth

    2014-01-01

    Several diseases of the heart have been linked to an insufficient ability to generate enough energy (ATP) to sustain proper heart function. Hyperpolarized magnetic resonance (MR) is a novel technique that can visualize and quantify myocardial energy metabolism. Hyperpolarization enhances the MR...... signal from a biological molecule of interest by more than 10,000 times, making it possible to measure its cellular uptake and conversion in specific enzymatic pathways in real time. We review the role of hyperpolarized MR in identifying changes in cardiac metabolism in vivo, and present the extensive...... literature on hyperpolarized pyruvate that has been used to characterize cardiac disease in various in vivo models, such as myocardial ischemia, hypertension, diabetes, hyperthyroidism and heart failure. The technical aspects of the technique are presented as well as the challenges of translating...

  5. Electrophysiological assessment in patients with Mobius syndrome and clumsiness.

    NARCIS (Netherlands)

    Verzijl, H.T.F.M.; Padberg, G.W.A.M.; Zwarts, M.J.

    2005-01-01

    The authors studied the nature of clumsiness in Mobius syndrome in terms of motor or sensory deficits, and sought to clarify the pathophysiological mechanism of the syndrome. Standardized electrophysiologic studies were conducted, with special emphasis on the long motor and sensory tracts and

  6. Subthalamic stimulation: toward a simplification of the electrophysiological procedure.

    Science.gov (United States)

    Fetter, Damien; Derrey, Stephane; Lefaucheur, Romain; Borden, Alaina; Wallon, David; Chastan, Nathalie; Maltete, David

    2016-06-01

    The aim of the present study was to assess the consequences of a simplification of the electrophysiological procedure on the post-operative clinical outcome after subthalamic nucleus implantation in Parkinson disease. Microelectrode recordings were performed on 5 parallel trajectories in group 1 and less than 5 trajectories in group 2. Clinical evaluations were performed 1 month before and 6 months after surgery. After surgery, the UPDRS III score in the off-drug/on-stimulation and on-drug/on-stimulation conditions significantly improved by 66,9% and 82%, respectively in group 1, and by 65.8% and 82.3% in group 2 (P<0.05). Meanwhile, the total number of words (P<0.05) significantly decreased for fluency tasks in both groups. Motor disability improvement and medication reduction were similar in both groups. Our results suggest that the electrophysiological procedure should be simplified as the team's experience increases.

  7. Staying young at heart: autophagy and adaptation to cardiac aging.

    Science.gov (United States)

    Leon, Leonardo J; Gustafsson, Åsa B

    2016-06-01

    Aging is a predominant risk factor for developing cardiovascular disease. Therefore, the cellular processes that contribute to aging are attractive targets for therapeutic interventions that can delay or prevent the development of age-related diseases. Our understanding of the underlying mechanisms that contribute to the decline in cell and tissue functions with age has greatly advanced over the past decade. Classical hallmarks of aging cells include increased levels of reactive oxygen species, DNA damage, accumulation of dysfunctional organelles, oxidized proteins and lipids. These all contribute to a progressive decline in the normal physiological function of the cell and to the onset of age-related conditions. A major cause of the aging process is progressive loss of cellular quality control. Autophagy is an important quality control pathway and is necessary to maintain cardiac homeostasis and to adapt to stress. A reduction in autophagy has been observed in a number of aging models and there is compelling evidence that enhanced autophagy delays aging and extends life span. Enhancing autophagy counteracts age-associated accumulation of protein aggregates and damaged organelles in cells. In this review, we discuss the functional role of autophagy in maintaining homeostasis in the heart, and how a decline is associated with accelerated cardiac aging. We also evaluate therapeutic approaches being researched in an effort to maintain a healthy young heart. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Electrophysiological Evaluation of People With Volatile Substance Addiction

    Directory of Open Access Journals (Sweden)

    Nurten Uzun

    2008-02-01

    Full Text Available OBJECTIVE: Scientific BACKGROUND: There is an increase in addiction of volatile substances in recent years. Miscellaneous electrophysiological pathological findings are determined in volatile substance abusers. OBJECTIVE: In this study, we aim to examine the neurologic effects of these substances by electrophysiologic methods. METHODS: Cases and METHOD: Twenty-three patients from Bakirkoy Psychiatry Hospital, Alcohol and Substance Addiction Research and Treatment Center were included in this study. Motor and sensory nerve conduction studies, somatosensorial, visual and auditory evoked potentials (SEP, VEP, BAEP as well as electroencephalography (EEG were studied in all 23 patients. The results were compared with the published data and the values of age matched 19 normal controls. RESULTS: RESULTS: In nerve conduction studies, there were pathological findings in 14 (60.9% cases, in three (13% mild sensorimotor polyneuropathy was determined. Tibial nerve motor distal latencies as well as median nerve sensorial and sural nerve distal latencies were longer in patients compared to controls (p<0.05. SEP findings were pathological in six (26.1% cases, VEP in two (8.7% cases and BAEP in eight (34.8% cases. Scalp SEP distal latency by tibial nerve stimulation as well as distal latencies of right and left V. wave, left III-V interpeak latency, right and left interpeak latencies and I-V interaural latency difference in BAEP were longer in abusers (p<0.05. Although it was not statistically significant, the ratio of pathological findings was higher if the exposure time was over 2 years. EEG was found to be normal in all patients. CONCLUSION: YORUM: Our results showed that toluene results in slowly progressive multifocal central nervous system damage and subclinical damage could be determined in early stages by electrophysiologic methods

  9. A Cardiac Cell Outgrowth Assay for Evaluating Drug Compounds Using a Cardiac Spheroid-on-a-Chip Device

    Directory of Open Access Journals (Sweden)

    Jonas Christoffersson

    2018-05-01

    Full Text Available Three-dimensional (3D models with cells arranged in clusters or spheroids have emerged as valuable tools to improve physiological relevance in drug screening. One of the challenges with cells cultured in 3D, especially for high-throughput applications, is to quickly and non-invasively assess the cellular state in vitro. In this article, we show that the number of cells growing out from human induced pluripotent stem cell (hiPSC-derived cardiac spheroids can be quantified to serve as an indicator of a drug’s effect on spheroids captured in a microfluidic device. Combining this spheroid-on-a-chip with confocal high content imaging reveals easily accessible, quantitative outgrowth data. We found that effects on outgrowing cell numbers correlate to the concentrations of relevant pharmacological compounds and could thus serve as a practical readout to monitor drug effects. Here, we demonstrate the potential of this semi-high-throughput “cardiac cell outgrowth assay” with six compounds at three concentrations applied to spheroids for 48 h. The image-based readout complements end-point assays or may be used as a non-invasive assay for quality control during long-term culture.

  10. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury.

    Science.gov (United States)

    Perucca, Piero; Smith, Gregory; Santana-Gomez, Cesar; Bragin, Anatol; Staba, Richard

    2018-06-05

    Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies. Copyright © 2017. Published by Elsevier Inc.

  11. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology.

    Directory of Open Access Journals (Sweden)

    Guy eElston

    2014-08-01

    Full Text Available Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1 prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE and granular prefrontal cortex (gPFC; Brodmann’s area 12 grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the use it or lose it notion of synaptic reinforcement may speak to only part of the story, use it but you still might lose it may be just as prevalent in the cerebral cortex.

  12. Serial electrophysiological findings in Guillain-Barré syndrome not fulfilling AIDP or AMAN criteria.

    Science.gov (United States)

    Hosokawa, Takafumi; Nakajima, Hideto; Unoda, Kiichi; Yamane, Kazushi; Doi, Yoshimitsu; Ishida, Shimon; Kimura, Fumiharu; Hanafusa, Toshiaki

    2016-09-01

    Guillain-Barré syndrome (GBS) is categorized into two major subtypes: acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN). However, a proportion of patients are electrophysiologically unclassified because of electrophysiological findings that do not fulfil AIDP or AMAN criteria, and underlying pathophysiological mechanisms and lesion distributions of unclassified patients are not well defined. The aims of this study are to elucidate disease pathophysiology and lesion distribution in unclassified patients. We retrospectively studied 48 consecutive GBS patients. Patients were classified on the basis of initial electrophysiological findings according to Ho's criteria. Clinical and serial electrophysiological examinations of unclassified patients were conducted. Twelve (25 %) GBS patients were unclassified. All unclassified patients were able to walk independently at 21 days after onset. No unclassified patients, except one patient with diabetes mellitus, had sensory nerve involvement. Eight patients underwent a follow-up study within 15 days of the initial study. Distal motor latencies (DMLs) of the left median motor nerve were found to be significantly and uniformly decreased compared with initial studies (p = 0.008). DMLs (p < 0.0001) and distal compound action potential (CMAP) durations (p = 0.002) of all nerves were significantly decreased, and distal CMAP amplitudes (p = 0.026) significantly increased compared with initial studies. In unclassified GBS patients, DML values during initial electrophysiological studies would be prolonged compared with expected values in the same patient unaffected by GBS and later improve rapidly with increased distal CMAP amplitudes without the development of excessive temporal dispersions. Lesions are also present in distal nerve segments caused by reversible conduction failure.

  13. Subjective symptoms of carpal tunnel syndrome correlate more with psychological factors than electrophysiological severity

    Directory of Open Access Journals (Sweden)

    Firosh Khan

    2017-01-01

    Full Text Available Aim: Carpal tunnel syndrome (CTS is the most common entrapment neuropathy and is one of the most common requests for electrodiagnosis. We aimed to note the relationship of subjective symptom severity of CTS, with objective electrophysiological severity and psychological status of patients. Patients and Methods: One hundred and forty-four consecutive patients of CTS referred to neurophysiology laboratory of a tertiary care hospital over 1 year were prospectively studied. Boston CTS Assessment Questionnaire (BCTSAQ and visual analog scale (VAS were used to assess subjective symptom severity. Psychological status was assessed by Hospital Anxiety and Depression Scale (HADS. Electrophysiological severity of CTS was estimated by median motor distal latency and median to ulnar peak sensory latency difference across the wrist. Each parameter in both hands was scored from 0 to 3 depending on the severity grade, and a composite electrophysiological severity score (CEPSS was calculated for each patient by summing up the scores in both hands. Statistical analysis was done by Spearman's rank correlation test. Results: There was significant correlation of BCTSAQ with VAS (P = 0.001, HADS anxiety score (P < 0.001, and HADS depression score (P = 0.01. CEPSS had no significant correlation with VAS (P = 0.103, HADS anxiety score (P = 0.211, or HADS depression score (P = 0.55. CEPSS had a borderline correlation with BCTSAQ (P = 0.048. Conclusions: While the subjective symptoms of CTS are well correlated with psychological factors, their correlation with objective electrophysiological severity is weak. Hence, prompt treatment of psychological comorbidity is important in symptomatic management of CTS; decision about surgical intervention should be based on electrophysiological severity rather than symptom severity.

  14. Modelling the pathogenesis of Myotonic Dystrophy type 1 cardiac phenotype through human iPSC-derived cardiomyocytes.

    Science.gov (United States)

    Spitalieri, Paola; Talarico, Rosa V; Caioli, Silvia; Murdocca, Michela; Serafino, Annalucia; Girasole, Marco; Dinarelli, Simone; Longo, Giovanni; Pucci, Sabina; Botta, Annalisa; Novelli, Giuseppe; Zona, Cristina; Mango, Ruggiero; Sangiuolo, Federica

    2018-03-15

    Myotonic Dystrophy type 1 (DM1) is a multisystemic disease, autosomal dominant, caused by a CTG repeat expansion in DMPK gene. We assessed the appropriateness of patient-specific induced pluripotent stem cell-derived cardiomyocytes (CMs) as a model to recapitulate some aspects of the pathogenetic mechanism involving cardiac manifestations in DM1 patients. Once obtained in vitro, CMs have been characterized for their morphology and their functionality. CMs DM1 show intranuclear foci and transcript markers abnormally spliced respect to WT ones, as well as several irregularities in nuclear morphology, probably caused by an unbalanced lamin A/C ratio. Electrophysiological characterization evidences an abnormal profile only in CMs DM1 such that the administration of antiarrythmic drugs to these cells highlights even more the functional defect linked to the disease. Finally, Atomic Force Measurements reveal differences in the biomechanical behaviour of CMs DM1, in terms of frequencies and synchronicity of the beats. Altogether the complex phenotype described in this work, strongly reproduces some aspects of the human DM1 cardiac phenotype. Therefore, the present study provides an in vitro model suggesting novel insights into the mechanisms leading to the development of arrhythmogenesis and dilatative cardiomyopathy to consider when approaching to DM1 patients, especially for the risk assessment of sudden cardiac death (SCD). These data could be also useful in identifying novel biomarkers effective in clinical settings and patient-tailored therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model.

    Science.gov (United States)

    Toib, Amir; Zhang, Chen; Borghetti, Giulia; Zhang, Xiaoxiao; Wallner, Markus; Yang, Yijun; Troupes, Constantine D; Kubo, Hajime; Sharp, Thomas E; Feldsott, Eric; Berretta, Remus M; Zalavadia, Neil; Trappanese, Danielle M; Harper, Shavonn; Gross, Polina; Chen, Xiongwen; Mohsin, Sadia; Houser, Steven R

    2017-09-01

    Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na + and Ca 2+ in the development of HCM, but the role of repolarizing K + currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K + currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K + currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K + channel subunits. In conclusion, decrease in repolarizing K + currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility. NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K + currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy. Copyright © 2017

  16. Thallium kinetics in rat cardiac transplant rejection

    International Nuclear Information System (INIS)

    Barak, J.H.; LaRaia, P.J.; Boucher, C.A.; Fallon, J.T.; Buckley, M.J.

    1988-01-01

    Cardiac transplant rejection is a very complex process involving both cellular and vascular injury. Recently, thallium imaging has been used to assess acute transplant rejection. It has been suggested that changes in thallium kinetics might be a sensitive indicator of transplant rejection. Accordingly, thallium kinetics were assessed in vivo in acute untreated rat heterotopic (cervical) transplant rejection. Male Lewis rats weighing 225-250 g received heterotopic heart transplants from syngeneic Lewis rats (group A; n = 13), or allogeneic Brown Norway rats (group B; n = 11). Rats were imaged serially on the 2nd and the 7th postoperative days. Serial cardiac thallium content was determined utilizing data collected every 150 sec for 2 hr. The data were fit to a monoexponential curve and the decay rate constant (/sec) derived. By day 7 all group B hearts had histological evidence of severe acute rejection, and demonstrated decreased global contraction. Group A hearts showed normal histology and contractility. However, thallium uptakes and washout of the two groups were the same. Peak thallium uptake of group B was +/- 3758 1166 counts compared with 3553 +/- 950 counts in the control group A (P = 0.6395); The 2-hr percentage of washout was 12.1 +/- 1.04 compared with 12.1 +/- 9.3 (P = 1.0000); and the decay constant was -0.00002065 +/- 0.00001799 compared with -0.00002202 +/- 0.00001508 (P = 0.8409). These data indicate that in vivo global thallium kinetics are preserved during mild-to-severe acute transplant rejection. These findings suggest that the complex cellular and extracellular processes of acute rejection limit the usefulness of thallium kinetics in the detection of acute transplant rejection

  17. The sound of feelings: electrophysiological responses to emotional speech in alexithymia.

    Directory of Open Access Journals (Sweden)

    Katharina Sophia Goerlich

    Full Text Available Alexithymia is a personality trait characterized by difficulties in the cognitive processing of emotions (cognitive dimension and in the experience of emotions (affective dimension. Previous research focused mainly on visual emotional processing in the cognitive alexithymia dimension. We investigated the impact of both alexithymia dimensions on electrophysiological responses to emotional speech in 60 female subjects.During unattended processing, subjects watched a movie while an emotional prosody oddball paradigm was presented in the background. During attended processing, subjects detected deviants in emotional prosody. The cognitive alexithymia dimension was associated with a left-hemisphere bias during early stages of unattended emotional speech processing, and with generally reduced amplitudes of the late P3 component during attended processing. In contrast, the affective dimension did not modulate unattended emotional prosody perception, but was associated with reduced P3 amplitudes during attended processing particularly to emotional prosody spoken in high intensity.Our results provide evidence for a dissociable impact of the two alexithymia dimensions on electrophysiological responses during the attended and unattended processing of emotional prosody. The observed electrophysiological modulations are indicative of a reduced sensitivity to the emotional qualities of speech, which may be a contributing factor to problems in interpersonal communication associated with alexithymia.

  18. Cellular and oscillatory substrates of fear extinction learning.

    Science.gov (United States)

    Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G

    2017-11-01

    The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a combination of chemogenetics, activity-based neuronal-ensemble labeling and in vivo electrophysiology, we found that fear extinction learning confers on parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6-12 Hz oscillation and a fear-associated 3-6 Hz oscillation within the BLA. Loss of this competition increases a 3-6 Hz oscillatory signature, with BLA→medial prefrontal cortex directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning.

  19. Teaching Cardiac Electrophysiology Modeling to Undergraduate Students: Laboratory Exercises and GPU Programming for the Study of Arrhythmias and Spiral Wave Dynamics

    Science.gov (United States)

    Bartocci, Ezio; Singh, Rupinder; von Stein, Frederick B.; Amedome, Avessie; Caceres, Alan Joseph J.; Castillo, Juan; Closser, Evan; Deards, Gabriel; Goltsev, Andriy; Ines, Roumwelle Sta.; Isbilir, Cem; Marc, Joan K.; Moore, Diquan; Pardi, Dana; Sadhu, Sandeep; Sanchez, Samuel; Sharma, Pooja; Singh, Anoopa; Rogers, Joshua; Wolinetz, Aron; Grosso-Applewhite, Terri; Zhao, Kai; Filipski, Andrew B.; Gilmour, Robert F., Jr.; Grosu, Radu; Glimm, James; Smolka, Scott A.; Cherry, Elizabeth M.; Clarke, Edmund M.; Griffeth, Nancy; Fenton, Flavio H.

    2011-01-01

    As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions…

  20. Electrophysiological studies in healthy subjects involving caffeine.

    Science.gov (United States)

    de Carvalho, Mamede; Marcelino, Erica; de Mendonça, Alexandre

    2010-01-01

    We review the electrophysiological studies concerning the effects of caffeine on muscle, lower and upper motor neuron excitability and cognition. Several different methods have been used, such as electromyography, recruitment analysis, H-reflex, transcranial magnetic stimulation (TMS), electroencephalography and event-related potentials. The positive effect of caffeine on vigilance, attention, speed of reaction, information processing and arousal is supported by a number of electrophysiological studies. The evidence in favor of an increased muscle fiber resistance is not definitive, but higher or lower motor neuron excitability can occur as a consequence of a greater excitation of the descending input from the brainstem and upper motor neurons. TMS can address the influence of caffeine on the upper motor neuron. Previous studies showed that cortico-motor threshold and intracortical excitatory and inhibitory pathways are not influenced by caffeine. Nonetheless, our results indicate that cortical silent period (CSP) is reduced in resting muscles after caffeine consumption, when stimulating the motor cortex with intensities slightly above threshold. We present new data demonstrating that this effect is also observed in fatigued muscle. We conclude that CSP can be considered a surrogate marker of the effect of caffeine in the brain, in particular of its central ergogenic effect.

  1. Electrophysiological mechanisms of the SI SII SIII electrocardiographic morphology

    International Nuclear Information System (INIS)

    Bayes de Luna, A.; Carrio, I.; Subirana, M.T.; Torner, P.; Cosin, J.; Sagues, F.; Guindo, J.

    1987-01-01

    We studied three groups of individuals by means of spatial-velocity electrocardiograms and thallium-201 myocardial imaging to figure out the electrophysiological explanation of the SI SII SIII electrocardiographic morphology. We studied twelve healthy individuals without SI SII SIII, seven healthy individuals with SI SII SIII and fifteen patients with chronic obstructive pulmonary disease with SI SII SIII. The average values of the QRS-E and QRS-F intervals were higher in the second and third groups than in the first. One patient of the second group and thirteen of the third showed right ventricular enlargement. The slowing down of the right ventricular conduction explained the SI SII SIII morphology in normal individuals in more than half the cases. In patients with chronic obstructive pulmonary disease with SI SII SIII the conduction delay plays an important part in the electrogenesis of the right ventricular enlargement electrocardiographic morphology. We think that these observations can give further data about the electrophysiologic mechanism of the SI SII SIII morphology

  2. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome.

    Science.gov (United States)

    Kumar, Adarsh; Kaur, Harharpreet; Devi, Pushpa; Mohan, Varun

    2009-12-01

    Coenzyme Q10 (ubiquinone) is a mitochondrial coenzyme which is essential for the production of ATP. Being at the core of cellular energy processes it assumes importance in cells with high energy requirements like the cardiac cells which are extremely sensitive to CoQ10 deficiency produced by cardiac diseases. CoQ10 has thus a potential role for prevention and treatment of heart ailments by improving cellular bioenergetics. In addition it has an antioxidant, a free radical scavenging and a vasodilator effect which may be helpful in these conditions. It inhibits LDL oxidation and thus the progression of atherosclerosis. It decreases proinflammatory cytokines and decreases blood viscosity which is helpful in patients of heart failure and coronary artery disease. It also improves ischemia and reperfusion injury of coronary revascularisation. Significant improvement has been observed in clinical and hemodynamic parameters and in exercise tolerance in patients given adjunctive CoQ10 in doses from 60 to 200 mg daily in the various trials conducted in patients of heart failure, hypertension, ischemic heart disease and other cardiac illnesses. Recently it has been found to be an independent predictor of mortality in congestive heart failure. It has also been found to be helpful in vertigo and Meniere-like syndrome by improving the immune system. Further research is going on to establish firmly its role in the therapy of cardiovascular diseases.

  3. Intracardiac electrophysiology study (EPS)

    Science.gov (United States)

    ... rhythm Determine whether you are at risk for future heart events, especially sudden cardiac death See if ... patient with suspected arrhythmia. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: ...

  4. Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Florian eMüller-Dahlhaus

    2013-12-01

    Full Text Available Despite numerous clinical studies, which have investigated the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS in various brain diseases, our knowledge of the cellular and molecular mechanisms underlying rTMS-based therapies remains limited. Thus, a deeper understanding of rTMS-induced neural plasticity is required to optimize current treatment protocols. Studies in small animals or appropriate in vitro preparations (including models of brain diseases provide highly useful experimental approaches in this context. State-of-the-art electrophysiological and live-cell imaging techniques that are well established in basic neuroscience can help answering some of the major questions in the field, such as (i which neural structures are activated during TMS, (ii how does rTMS induce Hebbian plasticity, and (iii are other forms of plasticity (e.g., metaplasticity, structural plasticity induced by rTMS? We argue that data gained from these studies will support the development of more effective and specific applications of rTMS in clinical practice.

  5. Magnetic resonance imaging guided transatrial electrophysiological studies in swine using active catheter tracking - experience with 14 cases

    Energy Technology Data Exchange (ETDEWEB)

    Grothoff, Matthias; Gutberlet, Matthias [University of Leipzig - Heart Center, Department of Radiology, Leipzig (Germany); Hindricks, Gerhard; Sommer, Philipp; Hilbert, Sebastian [University of Leipzig - Heart Center, Department of Electrophysiology, Leipzig (Germany); Fleiter, Christian [Helios Klinikum Berlin-Buch, Department of Orthopaedic Surgery, Berlin (Germany); Schnackenburg, Bernhard [Philips Healthcare, Hamburg (Germany); Weiss, Steffen; Krueger, Sascha [Philips Innovative Technologies, Hamburg (Germany); Piorkowski, Christopher; Gaspar, Thomas [University of Dresden - Heart Center, Department of Electrophysiology, Dresden (Germany); Wedan, Steve; Lloyd, Thomas [Imricor Medical Systems, Burnsville, MN (United States)

    2017-05-15

    To evaluate the feasibility of performing comprehensive Cardiac Magnetic resonance (CMR) guided electrophysiological (EP) interventions in a porcine model encompassing left atrial access. After introduction of two femoral sheaths 14 swine (41 ± 3.6 kg) were transferred to a 1.5 T MR scanner. A three-dimensional whole-heart sequence was acquired followed by segmentation and the visualization of all heart chambers using an image-guidance platform. Two MR conditional catheters were inserted. The interventional protocol consisted of intubation of the coronary sinus, activation mapping, transseptal left atrial access (n = 4), generation of ablation lesions and eventually ablation of the atrioventricular (AV) node. For visualization of the catheter tip active tracking was used. Catheter positions were confirmed by passive real-time imaging. Total procedure time was 169 ± 51 minutes. The protocol could be completed in 12 swine. Two swine died from AV-ablation induced ventricular fibrillation. Catheters could be visualized and navigated under active tracking almost exclusively. The position of the catheter tips as visualized by active tracking could reliably be confirmed with passive catheter imaging. Comprehensive CMR-guided EP interventions including left atrial access are feasible in swine using active catheter tracking. (orig.)

  6. Electrophysiological, vasoactive, and gastromodulatory effects of stevia in healthy Wistar rats.

    Science.gov (United States)

    Yesmine, Saquiba; Connolly, Kylie; Hill, Nicholas; Coulson, Fiona R; Fenning, Andrew S

    2013-07-01

    Antihypertensive and antidiabetic effects of stevia, Stevia rebaudiana (Asteraceae), have been demonstrated in several human and animal models. The current study aims to define stevia's role in modifying the electrophysiological and mechanical properties of cardiomyocytes, blood vessels, and gastrointestinal smooth muscle. Tissues from thoracic aorta, mesenteric arteries, ileum, and left ventricular papillary muscles were excised from 8-week-old healthy Wistar rats. The effects of stevia (1 × 10-9 M to 1 × 10-4 M) were measured on these tissues. Stevia's effects in the presence of verapamil, 4-AP, and L-NAME were also assessed. In cardiomyocytes, stevia attenuated the force of contraction, decreased the average peak amplitude, and shortened the repolarisation phase of action potential - repolarisation phase of action potential20 by 25 %, repolarisation phase of action potential50 by 34 %, and repolarisation phase of action potential90 by 36 %. Stevia caused relaxation of aortic tissues which was significantly potentiated in the presence of verapamil. In mesenteric arteries, incubation with L-NAME failed to block stevia-induced relaxation indicating the mechanism of action may not be fully via nitric oxide-dependent pathways. Stevia concentration-dependently reduced electrical field stimulated and carbachol-induced contractions in the isolated ileum. This study is the first to show the effectiveness of stevia in reducing cardiac action potential duration at 20 %, 50 %, and 90 % of repolarisation. Stevia also showed beneficial modulatory effects on cardiovascular and gastrointestinal tissues via calcium channel antagonism, activation of the M2 muscarinic receptor function, and enhanced nitric oxide release. Georg Thieme Verlag KG Stuttgart · New York.

  7. Cardiac tamponade: contrast reflux as an indicator of cardiac chamber equalization

    Directory of Open Access Journals (Sweden)

    Nauta Foeke Jacob

    2012-05-01

    Full Text Available Abstract Background Traumatic hemopericardium remains a rare entity; it does however commonly cause cardiac tamponade which remains a major cause of death in traumatic blunt cardiac injury. Objectives We present a case of blunt chest trauma complicated by cardiac tamponade causing cardiac chamber equalization revealed by reflux of contrast. Case report A 29-year-old unidentified male suffered blunt chest trauma in a motor vehicle collision. Computed tomography (CT demonstrated a periaortic hematoma and hemopericardium. Significant contrast reflux was seen in the inferior vena cava and hepatic veins suggesting a change in cardiac chamber pressures. After intensive treatment including cardiac massage this patient expired of cardiac arrest. Conclusion Reflux of contrast on CT imaging can be an indicator of traumatic cardiac tamponade.

  8. Reversible electrophysiological abnormalities in acute secondary hyperkalemic paralysis

    OpenAIRE

    Karkal R Naik; Aralikatte O Saroja; Mallikarjun S Khanpet

    2012-01-01

    Hyperkalemia manifests clinically with acute neuromuscular paralysis, which can simulate Guillain Barr? syndrome (GBS) and other causes of acute flaccid paralysis. Primary hyperkalemic paralysis occurs from genetic defects in the sodium channel, and secondary hyperkalemic paralysis (SHP) from diverse causes including renal dysfunction, potassium retaining drugs, Addison's disease, etc. Clinical characteristics of SHP have been addressed in a number of publications. However, electrophysiologic...

  9. Evidence of cardiac involvement in the fetal inflammatory response syndrome: disruption of gene networks programming cardiac development in nonhuman primates.

    Science.gov (United States)

    Mitchell, Timothy; MacDonald, James W; Srinouanpranchanh, Sengkeo; Bammler, Theodor K; Merillat, Sean; Boldenow, Erica; Coleman, Michelle; Agnew, Kathy; Baldessari, Audrey; Stencel-Baerenwald, Jennifer E; Tisoncik-Go, Jennifer; Green, Richard R; Gale, Michael J; Rajagopal, Lakshmi; Adams Waldorf, Kristina M

    2018-04-01

    , angiogenesis, and tissue remodeling (eg, angiotensin I converting enzyme 2, STEAP family member 4, natriuretic peptide A, and secreted frizzled-related protein 4; all P<.05). Multiple gene sets and pathways that are involved in cardiac morphogenesis and vasculogenesis were downregulated significantly by gene set and Ingenuity Pathway Analysis (hallmark transforming growth factor beta signaling, cellular morphogenesis during differentiation, morphology of cardiovascular system; all P<.05). Disruption of gene networks for cardiac morphogenesis and vasculogenesis occurred in the preterm fetal heart of nonhuman primates with preterm labor, intraamniotic infection, and severe fetal inflammation. Inflammatory injury to the fetal heart in utero may contribute to the development of heart disease later in life. Development of preterm labor therapeutics must also target fetal inflammation to lessen organ injury and potential long-term effects on cardiac function. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Novel regulation of cardiac Na pump via phospholemman.

    Science.gov (United States)

    Pavlovic, Davor; Fuller, William; Shattock, Michael J

    2013-08-01

    As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange, thus setting cardiac Ca load and contractility. As Na influx varies with electrical excitation, heart rate and pathology, the dynamic regulation of Na efflux is essential. It is now widely recognized that phospholemman, a 72 amino acid accessory protein which forms part of the Na pump complex, is the key nexus linking cellular signaling to pump regulation. Phospholemman is the target of a variety of post-translational modifications (including phosphorylation, palmitoylation and glutathionation) and these can dynamically alter the activity of the Na pump. This review summarizes our current understanding of the multiple regulatory mechanisms that converge on phospholemman and govern NA pump activity in the heart. The corrected Fig. 4 is reproduced below. The publisher would like to apologize for any inconvenience caused. [corrected]. Copyright © 2013. Published by Elsevier Ltd.

  11. Predicting haemodynamic networks using electrophysiology: The role of non-linear and cross-frequency interactions

    Science.gov (United States)

    Tewarie, P.; Bright, M.G.; Hillebrand, A.; Robson, S.E.; Gascoyne, L.E.; Morris, P.G.; Meier, J.; Van Mieghem, P.; Brookes, M.J.

    2016-01-01

    Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology. PMID:26827811

  12. 4 cases of 'ataxic hemiparesis'. A comparative study of computed tomography and electrophysiological findings

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Kiyoshi; Kamei, Hidekazu; Kitamura, Eiko; Komatsuzaki, Satoshi; Yamane, Kiyomi; Takemiya, Toshiko; Kobayashi, Itsuro; Maruyama, Shoichi

    1984-10-01

    Ataxic hemiparesis is described as a syndrome in which pyramidal and cerebellar signs occur ipsilaterally. Fisher who suggested the designation ''ataxic hemiparesis'' for this syndrome confirmed by pathological study that causative lesion was in the basis pontis at the level of the junction of the upper one third and lower two thirds on the opposite side of the neurological deficit and he also reported that CT might fail to show the lesion. We observed 4 patients with ataxic hemiparesis and examined them in auditory brainstem response (ABR), somatosensory evoked potential (SEP), and blink reflex as electrophysiological study. Their CT and electrophysiological findings were compared with each others to define the responsible lesion more clearly. Essentially, these abnormal electrophysiological findings were recognized only in the case of pontine hemorrhage, and these findings recovered to normal as clinical and CT findings were improved. In the other cases, the electrophysiological findings were not prominent and CT revealed the lesions in deep frontal region, internal capsule and cerebellar hemispheres respectively. These results might show that many cases of extra-pontine lesions could develop the syndrome of ataxic hemiparesis. However, the relation between responsible lesions for ataxic hemiparesis and electrophysiological findings are still uncertain. Further evidences including clinicopathological studies will be required to clarify this relation and to get the more accurate anatomical interpretation of ataxic hemiparesis from lesions besides the pontine region. (author).

  13. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  14. The role of mitochondria for the regulation of cardiac alternans

    Directory of Open Access Journals (Sweden)

    Stela M Florea

    2010-11-01

    Full Text Available Electromechanical and Ca alternans is a beat-to-beat alternation of action potential duration, contraction strength and Ca transient amplitude observed in cardiac myocytes at regular stimulation frequency. Ca alternans is a multifactorial process that is causally linked to cardiac arrhythmias. At the cellular level, conditions that increase fractional release from the sarcoplasmic reticulum or reduce diastolic Ca sequestration favor the occurrence of alternans. Mitochondria play a significant role in cardiac excitation-contraction coupling and Ca signaling by providing the energy for contraction and ATP-dependent processes and possibly by serving as Ca buffering organelles. Here we tested the hypothesis that impairment of mitochondrial function generates conditions that favor the occurrence of Ca alternans. Alternans were elicited by electrical pacing (>1 Hz in single cat atrial myocytes and intracellular Ca ([Ca]i was measured with the fluorescent Ca indicator Indo-1. The degree of alternans was quantified as the alternans ratio (AR=1-S/L, where S/L is the ratio of the small to the large amplitude of a pair of alternating Ca transients. Dissipation of mitochondrial membrane potential (with FCCP as well as inhibition of mitochondrial F1/F0-ATP synthase (oligomycin, electrontransport chain (rotenone, antimycin, CN-, Ca-dependent dehydrogenases and mitochondrial Ca uptake or extrusion, all enhanced AR and lowered the threshold for the occurrence of Ca alternans. The data indicate that impairment of mitochondrial function adversely affects cardiac Ca cycling leading to proarrhythmic Ca alternans.

  15. A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Panayiotou, Maria, E-mail: maria.panayiotou@kcl.ac.uk; King, Andrew P.; Housden, R. James; Ma, YingLiang; Rhode, Kawal S. [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Cooklin, Michael; O' Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo [Department of Cardiology, Guy' s and St. Thomas' Hospitals NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2014-07-15

    Purpose: Image-guided cardiac interventions involve the use of fluoroscopic images to guide the insertion and movement of interventional devices. Cardiorespiratory gating can be useful for 3D reconstruction from multiple x-ray views and for reducing misalignments between 3D anatomical models overlaid onto fluoroscopy. Methods: The authors propose a novel and potentially clinically useful retrospective cardiorespiratory gating technique. The principal component analysis (PCA) statistical method is used in combination with other image processing operations to make our proposed masked-PCA technique suitable for cardiorespiratory gating. Unlike many previously proposed techniques, our technique is robust to varying image-content, thus it does not require specific catheters or any other optically opaque structures to be visible. Therefore, it works without any knowledge of catheter geometry. The authors demonstrate the application of our technique for the purposes of retrospective cardiorespiratory gating of normal and very low dose x-ray fluoroscopy images. Results: For normal dose x-ray images, the algorithm was validated using 28 clinical electrophysiology x-ray fluoroscopy sequences (2168 frames), from patients who underwent radiofrequency ablation (RFA) procedures for the treatment of atrial fibrillation and cardiac resynchronization therapy procedures for heart failure. The authors established end-systole, end-expiration, and end-inspiration success rates of 97.0%, 97.9%, and 97.0%, respectively. For very low dose applications, the technique was tested on ten x-ray sequences from the RFA procedures with added noise at signal to noise ratio (SNR) values of√(5)0, √(1)0, √(8), √(6), √(5), √(2), and √(1) to simulate the image quality of increasingly lower dose x-ray images. Even at the low SNR value of √(2), representing a dose reduction of more than 25 times, gating success rates of 89.1%, 88.8%, and 86.8% were established. Conclusions: The proposed

  16. Initial Efficacy of a Cardiac Rehabilitation Transition Program: Cardiac TRUST

    Science.gov (United States)

    Zullo, Melissa; Boxer, Rebecca; Moore, Shirley M.

    2012-01-01

    Patients recovering from cardiac events are increasingly using postacute care, such as home health care and skilled nursing facility services. The purpose of this pilot study was to test the initial efficacy, feasibility, and safety of a specially designed postacute care transitional rehabilitation intervention for cardiac patients. Cardiac Transitional Rehabilitation Using Self- Management Techniques (Cardiac TRUST) is a family-focused intervention that includes progressive low-intensity walking and education in self-management skills to facilitate recovery following a cardiac event. Using a randomized two-group design, exercise self-efficacy, steps walked, and participation in an outpatient cardiac rehabilitation program were compared in a sample of 38 older adults; 17 who received the Cardiac TRUST program and 21 who received usual care only. At discharge from postacute care, the intervention group had a trend for higher levels of self-efficacy for exercise outcomes (X=39.1, SD=7.4) than the usual care group (X=34.5; SD=7.0) (t-test 1.9, p=.06). During the 6 weeks following discharge, compared with the usual care group, the intervention group had more attendance in out-patient cardiac rehabilitation (33% compared to 11.8%, F=7.1, p=.03) and a trend toward more steps walked during the first week (X=1,307, SD=652 compared to X=782, SD=544, t-test 1.8, p=.07). The feasibility of the intervention was better for the home health participants than for those in the skilled nursing facility and there were no safety concerns. The provision of cardiac-focused rehabilitation during postacute care has the potential to bridge the gap in transitional services from hospitalization to outpatient cardiac rehabilitation for these patients at high risk for future cardiac events. Further evidence of the efficacy of Cardiac TRUST is warranted. PMID:22084960

  17. Behavioral and electrophysiological signatures of word translation processes.

    Science.gov (United States)

    Jost, Lea B; Radman, Narges; Buetler, Karin A; Annoni, Jean-Marie

    2018-01-31

    Translation is a demanding process during which a message is analyzed, translated and communicated from one language to another. Despite numerous studies on translation mechanisms, the electrophysiological processes underlying translation with overt production remain largely unexplored. Here, we investigated how behavioral response patterns and spatial-temporal brain dynamics differ in a translation compared to a control within-language word-generation task. We also investigated how forward and backward translation differs on the behavioral and electrophysiological level. To address these questions, healthy late bilingual subjects performed a translation and a within-language control task while a 128-channel EEG was recorded. Behavioral data showed faster responses for translation compared to within-language word generation and faster responses for backward than forward translation. The ERP-analysis revealed stronger early ( processes for between than within word generation. Later (424-630ms) differences were characterized by distinct engagement of domain-general control networks, namely self-monitoring and lexical access interference. Language asymmetry effects occurred at a later stage (600ms), reflecting differences in conceptual processing characterized by a larger involvement of areas implicated in attention, arousal and awareness for forward versus backward translation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Modulation of sarcoplasmic reticulum calcium release by calsequestrin in cardiac myocytes

    Directory of Open Access Journals (Sweden)

    SANDOR GYÖRKE

    2004-01-01

    Full Text Available Calsequestrin (CASQ2 is a high capacity Ca-binding protein expressed inside the sarcoplasmic reticulum (SR. Mutations in the cardiac calsequestrin gene (CASQ2 have been linked to arrhythmias and sudden death induced by exercise and emotional stress. We have studied the function of CASQ2 and the consequences of arrhythmogenic CASQ2 mutations on intracellular Ca signalling using a combination of approaches of reverse genetics and cellular physiology in adult cardiac myocytes. We have found that CASQ2 is an essential determinant of the ability of the SR to store and release Ca2+ in cardiac muscle. CASQ2 serves as a reservoir for Ca2+ that is readily accessible for Ca2+-induced Ca2+ release (CICR and also as an active Ca2+ buffer that modulates the local luminal Ca-dependent closure of the SR Ca2+ release channels. At the same time, CASQ2 stabilizes the CICR process by slowing the functional recharging of SR Ca2+ stores. Abnormal restitution of the Ca2+ release channels from a luminal Ca-dependent refractory state could account for ventricular arrhythmias associated with mutations in the CASQ2 gene.

  19. Remote Monitoring of Cardiac Implantable Electronic Devices.

    Science.gov (United States)

    Cheung, Christopher C; Deyell, Marc W

    2018-01-08

    Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  20. Identification of cardiac rhythm features by mathematical analysis of vector fields.

    Science.gov (United States)

    Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K

    2005-01-01

    Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.

  1. Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data.

    Science.gov (United States)

    Brinkmann, Benjamin H; Bower, Mark R; Stengel, Keith A; Worrell, Gregory A; Stead, Matt

    2009-05-30

    The use of large-scale electrophysiology to obtain high spatiotemporal resolution brain recordings (>100 channels) capable of probing the range of neural activity from local field potential oscillations to single-neuron action potentials presents new challenges for data acquisition, storage, and analysis. Our group is currently performing continuous, long-term electrophysiological recordings in human subjects undergoing evaluation for epilepsy surgery using hybrid intracranial electrodes composed of up to 320 micro- and clinical macroelectrode arrays. DC-capable amplifiers, sampling at 32kHz per channel with 18-bits of A/D resolution are capable of resolving extracellular voltages spanning single-neuron action potentials, high frequency oscillations, and high amplitude ultra-slow activity, but this approach generates 3 terabytes of data per day (at 4 bytes per sample) using current data formats. Data compression can provide several practical benefits, but only if data can be compressed and appended to files in real-time in a format that allows random access to data segments of varying size. Here we describe a state-of-the-art, scalable, electrophysiology platform designed for acquisition, compression, encryption, and storage of large-scale data. Data are stored in a file format that incorporates lossless data compression using range-encoded differences, a 32-bit cyclically redundant checksum to ensure data integrity, and 128-bit encryption for protection of patient information.

  2. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    International Nuclear Information System (INIS)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na v 1.5 sodium and Ca v 1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on ion channels are a potential

  3. An animal model (guinea pig) of ocular siderosis: histopathology, pharmacology, and electrophysiology.

    Science.gov (United States)

    Mumcuoglu, Tarkan; Ozge, Gokhan; Soykut, Bugra; Erdem, Onur; Gunal, Armagan; Acikel, Cengizhan

    2015-03-01

    Ocular siderosis is a rare sight-threatening complication that occurs after a penetrating ocular injury by an iron-containing foreign body. The purposes of this study were to (i) investigate the histopathology, electrophysiology and iron levels/accumulation in ocular siderosis using an animal (Guinea pig) model and (ii) determine the appropriate timing for follow-up foreign body-removal surgery. Thirty guinea pigs were divided into five groups (n = 6 animals/group). On day-1, an iron body was inserted into the vitreous of the right eye of all animals; the left eyes were left undisturbed and were used as controls. At the end of each week during the 5-week study period, electroretinography (ERG) was performed on all animals in one of the five groups. Each animal in that group was sacrificed, after which both eyes were enucleated for histopathological and pharmacological evaluation of intraocular iron. Accumulated iron levels of study eyes were significantly higher than those of control eyes (135.13 and 13.55 μg/g, respectively, p < 0.01). In addition, there was a significant decrease in electrophysiological responses of study eyes. During the first week, iron levels were higher in study eyes than control eyes, but neither histological iron accumulation nor decreased electrophysiological responses could be detected. By the end of the second week, increased iron accumulation was observed histologically in intraocular tissues, along with signs of retinal toxicity, as verified by decreased electrophysiological responses. The present study indicates that the 14th day after a penetrating eye injury by an iron-containing intraocular foreign body represents a clinically critical threshold, after which structural damage to and functional alterations in ocular tissues occur.

  4. Pelvic floor electrophysiology in spinal cord injury.

    Science.gov (United States)

    Tankisi, H; Pugdahl, K; Rasmussen, M M; Clemmensen, D; Rawashdeh, Y F; Christensen, P; Krogh, K; Fuglsang-Frederiksen, A

    2016-05-01

    The study aimed to investigate sacral peripheral nerve function and continuity of pudendal nerve in patients with chronic spinal cord injury (SCI) using pelvic floor electrophysiological tests. Twelve patients with low cervical or thoracic SCI were prospectively included. Quantitative external anal sphincter (EAS) muscle electromyography (EMG), pudendal nerve terminal motor latency (PNTML) testing, bulbocavernosus reflex (BCR) testing and pudendal short-latency somatosensory-evoked potential (SEP) measurement were performed. In EAS muscle EMG, two patients had abnormal increased spontaneous activity and seven prolonged motor unit potential duration. PNTML was normal in 10 patients. BCR was present with normal latency in 11 patients and with prolonged latency in one. The second component of BCR could be recorded in four patients. SEPs showed absent cortical responses in 11 patients and normal latency in one. Pudendal nerve and sacral lower motor neuron involvement are significantly associated with chronic SCI, most prominently in EAS muscle EMG. The frequent finding of normal PNTML latencies supports earlier concerns on the utility of this test; however, BCR and pudendal SEPs may have clinical relevance. As intact peripheral nerves including pudendal nerve are essential for efficient supportive therapies, pelvic floor electrophysiological testing prior to these interventions is highly recommended. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. The Role of Nrf2-Mediated Pathway in Cardiac Remodeling and Heart Failure

    Directory of Open Access Journals (Sweden)

    Shanshan Zhou

    2014-01-01

    Full Text Available Heart failure (HF is frequently the consequence of sustained, abnormal neurohormonal, and mechanical stress and remains a leading cause of death worldwide. The key pathophysiological process leading to HF is cardiac remodeling, a term referring to maladaptation to cardiac stress at the molecular, cellular, tissue, and organ levels. HF and many of the conditions that predispose one to HF are associated with oxidative stress. Increased generation of reactive oxygen species (ROS in the heart can directly lead to increased necrosis and apoptosis of cardiomyocytes which subsequently induce cardiac remodeling and dysfunction. Nuclear factor-erythroid-2- (NF-E2- related factor 2 (Nrf2 is a transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes that are ubiquitously expressed in the cardiovascular system. Emerging evidence has revealed that Nrf2 and its target genes are critical regulators of cardiovascular homeostasis via the suppression of oxidative stress, which is the key player in the development and progression of HF. The purpose of this review is to summarize evidence that activation of Nrf2 enhances endogenous antioxidant defenses and counteracts oxidative stress-associated cardiac remodeling and HF.

  6. Eicosapentenoic Acid Attenuates Allograft Rejection in an HLA-B27/EGFP Transgenic Rat Cardiac Transplantation Model.

    Science.gov (United States)

    Liu, Zhong; Hatayama, Naoyuki; Xie, Lin; Kato, Ken; Zhu, Ping; Ochiya, Takahiro; Nagahara, Yukitoshi; Hu, Xiang; Li, Xiao-Kang

    2012-01-01

    The development of an animal model bearing definite antigens is important to facilitate the evaluation and modulation of specific allo-antigen responses after transplantation. In the present study, heterotopic cardiac transplantation was performed from F344/EGFPTg and F344/HLA-B27Tg rats to F344 rats. The F344 recipients accepted the F344/EGFPTg transplants, whereas they rejected the cardiac tissue from the F344/HLA-B27Tg rats by 39.4 ± 6.5 days, due to high production of anti-HLA-B27 IgM- and IgG-specific antibodies. In addition, immunization of F344 rats with skin grafts from F344/HLA-B27Tg rats resulted in robust production of anti- HLA-B27 IgM and IgG antibodies and accelerated the rejection of a secondary cardiac allograft (7.4 ± 1.9 days). Of interest, the F344 recipients rejected cardiac grafts from double transgenic F344/HLA-B27&EGFPTg rats within 9.0 ± 3.2 days, and this was associated with a significant increase in the infiltration of lymphocytes by day 7, suggesting a role for cellular immune rejection. Eicosapentenoic acid (EPA), one of the ω-3 polyunsaturated fatty acids in fish oil, could attenuate the production of anti-HLA IgG antibodies and B-cell proliferation, significantly prolonging double transgenic F344HLA-B27&EGFPTg to F344 rat cardiac allograft survival (36.1 ± 13.6 days). Moreover, the mRNA expression in the grafts was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), revealing an increase in the expression of the HO-1, IL-10, TGF-β, IDO, and Foxp3 genes in the EPA-treated group. Hence, our data indicate that HLA-B27 and/or GFP transgenic proteins are useful for establishing a unique animal transplantation model to clarify the mechanism underlying the allogeneic cellular and humoral immune response, in which the transplant antigens are specifically presented. Furthermore, we also demonstrated that EPA was effective in the treatment of rat cardiac allograft rejection and may allow the development of

  7. Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2

    International Nuclear Information System (INIS)

    Gattin, Zrinka; Schneider, Robert; Laukat, Yvonne; Giller, Karin; Maier, Elke; Zweckstetter, Markus; Griesinger, Christian; Benz, Roland; Becker, Stefan; Lange, Adam

    2015-01-01

    The voltage-dependent anion channel (VDAC) is the most abundant protein of the outer mitochondrial membrane and constitutes the major pathway for the transport of ADP, ATP, and other metabolites. In this multidisciplinary study we combined solid-state NMR, electrophysiology, and molecular dynamics simulations, to study the structure of the human VDAC isoform 2 in a lipid bilayer environment. We find that the structure of hVDAC2 is similar to the structure of hVDAC1, in line with recent investigations on zfVDAC2. However, hVDAC2 appears to exhibit an increased conformational heterogeneity compared to hVDAC1 which is reflected in broader solid-state NMR spectra and less defined electrophysiological profiles

  8. Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2

    Energy Technology Data Exchange (ETDEWEB)

    Gattin, Zrinka; Schneider, Robert; Laukat, Yvonne; Giller, Karin [Max Planck Institute for Biophysical Chemistry (Germany); Maier, Elke [Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Lehrstuhl für Biotechnologie (Germany); Zweckstetter, Markus; Griesinger, Christian [Max Planck Institute for Biophysical Chemistry (Germany); Benz, Roland [Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Lehrstuhl für Biotechnologie (Germany); Becker, Stefan; Lange, Adam, E-mail: alange@fmp-berlin.de [Max Planck Institute for Biophysical Chemistry (Germany)

    2015-04-15

    The voltage-dependent anion channel (VDAC) is the most abundant protein of the outer mitochondrial membrane and constitutes the major pathway for the transport of ADP, ATP, and other metabolites. In this multidisciplinary study we combined solid-state NMR, electrophysiology, and molecular dynamics simulations, to study the structure of the human VDAC isoform 2 in a lipid bilayer environment. We find that the structure of hVDAC2 is similar to the structure of hVDAC1, in line with recent investigations on zfVDAC2. However, hVDAC2 appears to exhibit an increased conformational heterogeneity compared to hVDAC1 which is reflected in broader solid-state NMR spectra and less defined electrophysiological profiles.

  9. Innate heart regeneration: endogenous cellular sources and exogenous therapeutic amplification.

    Science.gov (United States)

    Malliaras, Konstantinos; Vakrou, Styliani; Kapelios, Chris J; Nanas, John N

    2016-11-01

    The -once viewed as heretical- concept of the adult mammalian heart as a dynamic organ capable of endogenous regeneration has recently gained traction. However, estimated rates of myocyte turnover vary wildly and the underlying mechanisms of cardiac plasticity remain controversial. It is still unclear whether the adult mammalian heart gives birth to new myocytes through proliferation of resident myocytes, through cardiomyogenic differentiation of endogenous progenitors or through both mechanisms. In this review, the authors discuss the cellular origins of postnatal mammalian cardiomyogenesis and touch upon therapeutic strategies that could potentially amplify innate cardiac regeneration. The adult mammalian heart harbors a limited but detectable capacity for spontaneous endogenous regeneration. During normal aging, proliferation of pre-existing cardiomyocytes is the dominant mechanism for generation of new cardiomyocytes. Following myocardial injury, myocyte proliferation increases modestly, but differentiation of endogenous progenitor cells appears to also contribute to cardiomyogenesis (although agreement on the latter point is not universal). Since cardiomyocyte deficiency underlies almost all types of heart disease, development of therapeutic strategies that amplify endogenous regeneration to a clinically-meaningful degree is of utmost importance.

  10. Histamine-2 receptor antagonist famotidine modulates cardiac stem cell characteristics in hypertensive heart disease

    Directory of Open Access Journals (Sweden)

    Sherin Saheera

    2017-10-01

    Full Text Available Background Cardiac stem cells (CSCs play a vital role in cardiac homeostasis. A decrease in the efficiency of cardiac stem cells is speculated in various cardiac abnormalities. The maintenance of a healthy stem cell population is essential for the prevention of adverse cardiac remodeling leading to cardiac failure. Famotidine, a histamine-2 receptor antagonist, is currently used to treat ulcers of the stomach and intestines. In repurposing the use of the drug, reduction of cardiac hypertrophy and improvement in cardiac function of spontaneously hypertensive rats (SHR was reported by our group. Given that stem cells are affected in cardiac pathologies, the effect of histamine-2 receptor antagonism on CSC characteristics was investigated. Methods To examine whether famotidine has a positive effect on CSCs, spontaneously hypertensive rats (SHR treated with the drug were sacrificed; and CSCs isolated from atrial appendages was evaluated. Six-month-old male SHRs were treated with famotidine (30 mg/kg/day for two months. The effect of famotidine treatment on migration, proliferation and survival of CSCs was compared with untreated SHRs and normotensive Wistar rats. Results Functional efficiency of CSCs from SHR was compromised relative to that in Wistar rat. Famotidine increased the migration and proliferation potential, along with retention of stemness of CSCs in treated SHRs. Cellular senescence and oxidative stress were also reduced. The expression of H2R was unaffected by the treatment. Discussion As anticipated, CSCs from SHRs were functionally impaired. Stem cell attributes of famotidine-treated SHRs was comparable to that of Wistar rats. Therefore, in addition to being cardioprotective, the histamine 2 receptor antagonist modulated cardiac stem cells characteristics. Restoration of stem cell efficiency by famotidine is possibly mediated by reduction of oxidative stress as the expression of H2R was unaffected by the treatment. Maintenance of

  11. Winding through the WNT pathway during cellular development and demise.

    Science.gov (United States)

    Li, F; Chong, Z Z; Maiese, K

    2006-01-01

    In slightly over a period of twenty years, our comprehension of the cellular and molecular mechanisms that govern the Wnt signaling pathway continue to unfold. The Wnt proteins were initially implicated in viral carcinogenesis experiments associated with mammary tumors, but since this period investigations focusing on the Wnt pathways and their transmembrane receptors termed Frizzled have been advanced to demonstrate the critical nature of Wnt for the development of a variety of cell populations as well as the potential of the Wnt pathway to avert apoptotic injury. In particular, Wnt signaling plays a significant role in both the cardiovascular and nervous systems during embryonic cell patterning, proliferation, differentiation, and orientation. Furthermore, modulation of Wnt signaling under specific cellular influences can either promote or prevent the early and late stages of apoptotic cellular injury in neurons, endothelial cells, vascular smooth muscle cells, and cardiomyocytes. A number of downstream signal transduction pathways can mediate the biological response of the Wnt proteins that include Dishevelled, beta-catenin, intracellular calcium, protein kinase C, Akt, and glycogen synthase kinase-3beta. Interestingly, these cellular cascades of the Wnt-Frizzled pathways can participate in several neurodegenerative, vascular, and cardiac disorders and may be closely integrated with the function of trophic factors. Identification of the critical elements that modulate the Wnt-Frizzled signaling pathway should continue to unlock the potential of Wnt pathway for the development of new therapeutic options against neurodegenerative and vascular diseases.

  12. A time course analysis of the electrophysiological properties of neurons differentiated from human induced pluripotent stem cells (iPSCs.

    Directory of Open Access Journals (Sweden)

    Deborah Prè

    Full Text Available Many protocols have been designed to differentiate human embryonic stem cells (ESCs and human induced pluripotent stem cells (iPSCs into neurons. Despite the relevance of electrophysiological properties for proper neuronal function, little is known about the evolution over time of important neuronal electrophysiological parameters in iPSC-derived neurons. Yet, understanding the development of basic electrophysiological characteristics of iPSC-derived neurons is critical for evaluating their usefulness in basic and translational research. Therefore, we analyzed the basic electrophysiological parameters of forebrain neurons differentiated from human iPSCs, from day 31 to day 55 after the initiation of neuronal differentiation. We assayed the developmental progression of various properties, including resting membrane potential, action potential, sodium and potassium channel currents, somatic calcium transients and synaptic activity. During the maturation of iPSC-derived neurons, the resting membrane potential became more negative, the expression of voltage-gated sodium channels increased, the membrane became capable of generating action potentials following adequate depolarization and, at day 48-55, 50% of the cells were capable of firing action potentials in response to a prolonged depolarizing current step, of which 30% produced multiple action potentials. The percentage of cells exhibiting miniature excitatory post-synaptic currents increased over time with a significant increase in their frequency and amplitude. These changes were associated with an increase of Ca2+ transient frequency. Co-culturing iPSC-derived neurons with mouse glial cells enhanced the development of electrophysiological parameters as compared to pure iPSC-derived neuronal cultures. This study demonstrates the importance of properly evaluating the electrophysiological status of the newly generated neurons when using stem cell technology, as electrophysiological properties of

  13. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2012-02-01

    OBJECTIVE: This article reviews the optimal cardiac MRI sequences for and the spectrum of imaging appearances of cardiac tumors. CONCLUSION: Recent technologic advances in cardiac MRI have resulted in the rapid acquisition of images of the heart with high spatial and temporal resolution and excellent myocardial tissue characterization. Cardiac MRI provides optimal assessment of the location, functional characteristics, and soft-tissue features of cardiac tumors, allowing accurate differentiation of benign and malignant lesions.

  14. Mitral valve prolapse: an underestimated cause of sudden cardiac death-a current review of the literature.

    Science.gov (United States)

    Spartalis, Michael; Tzatzaki, Eleni; Spartalis, Eleftherios; Athanasiou, Antonios; Moris, Demetrios; Damaskos, Christos; Garmpis, Nikolaos; Voudris, Vassilis

    2017-12-01

    Mitral valve prolapse (MVP) is a common valve abnormality in general population. Despite the general belief of a benign disorder, several articles since the 1980s report sudden cardiac death (SCD) in MVP patients, with a substantial percentage of asymptomatic young individuals. The problem is to detect those patients at increased risk and implement methods that are suitable to prevent cardiac arrest. This review investigates the correlation between MVP and SCD, the understanding of the pathophysiology, the strategies for detecting those at risk and treatment options. A complete literature survey was performed using PubMed database search to gather available information regarding MVP and SCD. A total of 33 studies met selection criteria for inclusion in the review. MVP is an underrated cause of arrhythmic SCD. The subset of patients with malignant MVP who may be at greater risk for SCD is characterized by young women with bileaflet MVP, biphasic or inverted T waves in the inferior leads, and frequent complex ventricular ectopic activity with documented ventricular bigeminy or ventricular tachycardia (VT) and premature ventricular contractions (PVCs) configurations of outflow tract alternating with fascicular origin or papillary muscle. MVP is a common condition in the general population and is often encountered in asymptomatic individuals. The existing literature continues to generate significant controversy regarding the association of MVP with ventricular arrhythmias and SCD. Early echocardiography and cardiac magnetic resonance (CMR) are essential, as is a greater understanding of the potential electrophysiological processes of primary arrhythmogenesis and the evaluation of the genetic substrate.

  15. Time course of electrophysiologic effects induced by di-n-butyl-2,2-dichlorovinyl phosphate (DBCV) in the adult hen.

    Science.gov (United States)

    Robertson, D G; Mattson, A M; Bestervelt, L L; Richardson, R J; Anderson, R J

    1988-01-01

    Previous work in our laboratory indicated that di-n-butyl-2,2-dichlorovinyl phosphate (DBCV) produced electrophysiologic changes in hen peripheral nerve that coincided with the development of histopathologic changes and neurologic signs of peripheral neuropathy. The purpose of the present study was to follow the time course for the development of the electrophysiologic changes and to determine whether pretreatment with the phosphinate analog of DBCV (DBCV-P), a nonageable organophosphorus compound, prevented these effects. Although significant electrophysiologic deficits occurred in the tibial and sciatic nerve 24 h after DBCV treatment, the most marked changes coincided with the onset of clinical signs of organophosphorus-induced delayed neuropathy (14-21 d). The sciatic and tibial nerves were equally susceptible to DBCV in producing deficits characterized by changes in the relative refractory period and an increased strength-duration threshold. Pretreatment with DBCV-P prevented the clinical signs and also attenuated the electrophysiologic deficits induced by DBCV treatment. These data suggest that electrophysiologic deficits occur before clinical signs of organophosphorus-induced delayed neuropathy (OPIDN) and may be indicative of a link between neurotoxic esterase (NTE) inhibition and onset of overt clinical toxicity.

  16. Automatic fitting of spiking neuron models to electrophysiological recordings

    Directory of Open Access Journals (Sweden)

    Cyrille Rossant

    2010-03-01

    Full Text Available Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains that can run in parallel on graphics processing units (GPUs. The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models.

  17. Cardiac gated ventilation

    International Nuclear Information System (INIS)

    Hanson, C.W. III; Hoffman, E.A.

    1995-01-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart

  18. Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells.

    Science.gov (United States)

    Sundnes, J; Lines, G T; Tveito, A

    2001-08-01

    The contraction of the heart is preceded and caused by a cellular electro-chemical reaction, causing an electrical field to be generated. Performing realistic computer simulations of this process involves solving a set of partial differential equations, as well as a large number of ordinary differential equations (ODEs) characterizing the reactive behavior of the cardiac tissue. Experiments have shown that the solution of the ODEs contribute significantly to the total work of a simulation, and there is thus a strong need to utilize efficient solution methods for this part of the problem. This paper presents how an efficient implicit Runge-Kutta method may be adapted to solve a complicated cardiac cell model consisting of 31 ODEs, and how this solver may be coupled to a set of PDE solvers to provide complete simulations of the electrical activity.

  19. Obesity, metabolic dysfunction and cardiac fibrosis: pathophysiologic pathways, molecular mechanisms and therapeutic opportunities

    Science.gov (United States)

    Cavalera, Michele; Wang, Junhong; Frangogiannis, Nikolaos G

    2014-01-01

    Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias and sudden cardiac death in obese subjects. Our review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiologic alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiologic alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the Renin-Angiotensin-Aldosterone System, induction of Transforming Growth Factor-β, oxidative stress, advanced glycation end-products (AGEs), endothelin-1, Rho-kinase signaling, leptin-mediated actions and upregulation of matricellular proteins (such as thrombospondin-1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response following cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to development of novel therapies to prevent heart failure and to attenuate post-infarction cardiac remodeling in obese patients. PMID:24880146

  20. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Ewa Soltysinska

    Full Text Available Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK-/- permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK-/- hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK-/- hearts upon I/R injury in the absence of ischemic pre-conditioning (IP, but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK-/- hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of

  1. Cohort of Patients Referred for Brugada Syndrome Investigation in an Electrophysiology Service - 19-Year Registry

    Directory of Open Access Journals (Sweden)

    Stefan Warpechowski Neto

    2018-06-01

    Full Text Available Abstract Background: Brugada syndrome (SBr is an arrhythmic condition characterized by ST-T segment abnormalities in the right precordial leads associated with a high risk of ventricular arrhythmias and sudden death. Local data regarding the clinical characteristics of patients with a typical electrocardiographic (ECG pattern undergoing electrophysiological study are scarce. Objective: To evaluate patients with an ECG pattern suggestive of SBr referred for electrophysiological evaluation in a specialized center. Methods: Cohort study of patients referred for electrophysiological study because of an ECG pattern compatible with SBr between January 1998 and March 2017. Results: Of the 5506 procedures, 35 (0.64% were for SBr investigation, 25 of which (71.42% were performed in men. The mean age was 43.89 ± 13.1 years. The ECG patterns were as follows: type I, 22 (62.85%; type II, 12 (34.30%; and type III, 1 (2.85%. Twenty-three patients (65.7% were asymptomatic, 6 (17.14% had palpitations, 5 (14.3% had syncope, and 3 (8.6% had a family history of sudden death. Electrophysiological study induced ventricular tachyarrhythmias in 16 cases (45.7%, the mean ventricular refractory period being 228 ± 36 ms. Ajmaline / procainamide was used in 11 cases (31.4%, changing the ECG pattern to type I in 7 (63.6%. Sixteen cases (45.7% received an implantable cardioverter defibrillator (ICD. In a mean 5-year follow-up, 1 of the 16 patients (6.25% with ICD had appropriate therapy for ventricular fibrillation. There was no death. Other arrhythmias occurred in 4 (11.4% cases. Conclusions: Most patients are men, and a type I ECG pattern is the main indication for electrophysiological study. Class IA drugs have a high ECG conversion rate. The ICD event rate was 6%. (Arq Bras Cardiol. 2018; [online].ahead print, PP.0-0

  2. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.

    Science.gov (United States)

    Hichri, Echrak; Abriel, Hugues; Kucera, Jan P

    2018-02-15

    It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na + ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na + channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na + channels, we show that restricting the extracellular space modulates the Na + current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na + channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na + channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na + current (I Na ) are scarce. Furthermore, Na + channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Na v 1.5 channels, we examined how restricting the extracellular space modulates I Na elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na + channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak I Na at step potentials near the threshold of I Na activation

  3. Electrophysiological heterogeneity of pacemaker cells in the rabbit intercaval region, including the SA node: insights from recording multiple ion currents in each cell.

    Science.gov (United States)

    Monfredi, Oliver; Tsutsui, Kenta; Ziman, Bruce; Stern, Michael D; Lakatta, Edward G; Maltsev, Victor A

    2018-03-01

    Cardiac pacemaker cells, including cells of the sinoatrial node, are heterogeneous in size, morphology, and electrophysiological characteristics. The exact extent to which these cells differ electrophysiologically is unclear yet is critical to understanding their functioning. We examined major ionic currents in individual intercaval pacemaker cells (IPCs) sampled from the paracristal, intercaval region (including the sinoatrial node) that were spontaneously beating after enzymatic isolation from rabbit hearts. The beating rate was measured at baseline and after inhibition of the Ca 2+ pump with cyclopiazonic acid. Thereafter, in each cell, we consecutively measured the density of funny current ( I f ), delayed rectifier K + current ( I K ) (a surrogate of repolarization capacity), and L-type Ca 2+ current ( I Ca,L ) using whole cell patch clamp . The ionic current densities varied to a greater extent than previously appreciated, with some IPCs demonstrating very small or zero I f . The density of none of the currents was correlated with cell size, while I Ca,L and I f densities were related to baseline beating rates. I f density was correlated with I K density but not with that of I Ca,L . Inhibition of Ca 2+ cycling had a greater beating rate slowing effect in IPCs with lower I f densities. Our numerical model simulation indicated that 1) IPCs with small (or zero) I f or small I Ca,L can operate via a major contribution of Ca 2+ clock, 2) I f -Ca 2+ -clock interplay could be important for robust pacemaking function, and 3) coupled I f - I K function could regulate maximum diastolic potential. Thus, we have demonstrated marked electrophysiological heterogeneity of IPCs. This heterogeneity is manifested in basal beating rate and response to interference of Ca 2+ cycling, which is linked to I f . NEW & NOTEWORTHY In the present study, a hitherto unrecognized range of heterogeneity of ion currents in pacemaker cells from the intercaval region is demonstrated

  4. From neuroscience to application in neuropharmacology: A generation of progress in electrophysiology.

    Science.gov (United States)

    Carozzo, S; Fornaro, S; Garbarino, S; Saturno, M; Sannita, W G

    2006-04-01

    A continuum from neuronal cellular/subcellular properties to system processes appears to exist in many instances and to allow privileged approaches in neuroscience and neuropharmacology research. Brain signals and the cholinergic and GABAergic systems, in vivo and in vitro evidence from studies on the retina, or the "gamma band" oscillations in neuron membrane potential/spiking rate and neuronal assemblies are examples in this respect. However, spontaneous and stimulus-event-related signals at any location and time point reflect brain state conditions that depend on neuromodulation, neurotransmitter interaction, hormones (e.g., glucocorticois, ACTH, estrogens) and neuroendocrine interaction at different levels of complexity, as well as on the spontaneous or experimentally-induced changes in metabolism (e.g., glucose, ammonia), blood flow, pO2, pCO2, acid/base balance, K activity, etc., that occur locally or systemically. Any of these factors can account for individual differences and/or changes over time that often are (or need to be) neglected in pharmaco-EEG studies or are dealt with statistically and by controlling the experimental conditions. As a result, the electrophysiological effects of neuroactive drugs are to an extent non-specific and require adequate modeling and precise correlation with independent parameters (e.g., drug kinetics, vigilance, hormonal profile or metabolic status, etc.) to avoid biased results in otherwise controlled studies.

  5. Accessory left atrial diverticulae: contractile properties depicted with 64-slice cine-cardiac CT.

    LENUS (Irish Health Repository)

    Killeen, Ronan P

    2012-02-01

    To assess the contractility of accessory left atrial appendages (LAAs) using multiphasic cardiac CT. We retrospectively analyzed the presence, location, size and contractile properties of accessory LAAs using multiphasic cardiac 64-slice CT in 102 consecutive patients (63 males, 39 females, mean age 57). Multiplanar reformats were used to create image planes in axial oblique, sagittal oblique and coronal oblique planes. For all appendages with an orifice diameter >or= 10 mm, axial and sagittal diameters and appendage volumes were recorded in atrial diastole and systole. Regression analysis was performed to assess which imaging appearances best predicted accessory appendage contractility. Twenty-three (23%) patients demonstrated an accessory LAA, all identified along the anterior LA wall. Dimensions for axial oblique (AOD) and sagittal oblique (SOD) diameters and sagittal oblique length (SOL) were 6.3-19, 3.4-20 and 5-21 mm, respectively. All appendages (>or=10 mm) demonstrated significant contraction during atrial systole (greatest diameter reduction was AOD [3.8 mm, 27%]). Significant correlations were noted between AOD-contraction and AOD (R = 0.57, P < 0.05) and SOD-contraction and AOD, SOD and SOL (R = 0.6, P < 0.05). Mean diverticulum volume in atrial diastole was 468.4 +\\/- 493 mm(3) and in systole was 171.2 +\\/- 122 mm(3), indicating a mean change in volume of 297.2 +\\/- 390 mm(3), P < 0.0001. Stepwise multiple regression analysis revealed SOL to be the strongest independent predictor of appendage contractility (R(2) = 0.86, P < 0.0001) followed by SOD (R(2) = 0.91, P < 0.0001). Accessory LAAs show significant contractile properties on cardiac CT. Those accessory LAAs with a large sagittal height or depth should be evaluated for contractile properties, and if present should be examined for ectopic activity during electrophysiological studies.

  6. Cardiac function and cognition in older community-dwelling cardiac patients.

    Science.gov (United States)

    Eggermont, Laura H P; Aly, Mohamed F A; Vuijk, Pieter J; de Boer, Karin; Kamp, Otto; van Rossum, Albert C; Scherder, Erik J A

    2017-11-01

    Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older cardiac patients remains unknown. An older (≥70 years) heterogeneous group of 117 community-dwelling cardiac patients under medical supervision by a cardiologist underwent thorough echocardiographic assessment including left ventricular ejection fraction, cardiac index, left atrial volume index, left ventricular mass index, left ventricular diastolic function, and valvular calcification. During a home visit, a neuropsychological assessment was performed within 7.1 ± 3.8 months after echocardiographic assessment; the neuropsychological assessment included three subtests of a word-learning test (encoding, recall, recognition) to examine one memory function domain and three executive function tests, including digit span backwards, Trail Making Test B minus A, and the Stroop colour-word test. Regression analyses showed no significant linear or quadratic associations between any of the echocardiographic functions and the cognitive function measures. None of the echocardiographic measures as representative of cardiac function was correlated with memory or executive function in this group of community-dwelling older cardiac patients. These findings contrast with those of previous studies. © 2017 Japanese Psychogeriatric Society.

  7. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts.

    Science.gov (United States)

    Bernardo, Bianca C; Ooi, Jenny Y Y; Weeks, Kate L; Patterson, Natalie L; McMullen, Julie R

    2018-01-01

    The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.

  8. A novel radiation protection drape reduces radiation exposure during fluoroscopy guided electrophysiology procedures.

    Science.gov (United States)

    Germano, Joseph J; Day, Gina; Gregorious, David; Natarajan, Venkataraman; Cohen, Todd

    2005-09-01

    The purpose of this study was to evaluate a novel disposable lead-free radiation protection drape for decreasing radiation scatter during electrophysiology procedures. In recent years, there has been an exponential increase in the number of electrophysiology (EP) procedures exposing patients, operators and laboratory staff to higher radiation doses. The RADPAD was positioned slightly lateral to the incision site for pectoral device implants and superior to the femoral vein during electrophysiology studies. Each patient served as their own control and dosimetric measurements were obtained at the examiner's elbow and hand. Radiation badge readings for the operator were obtained three months prior to RADPAD use and three months after introduction. Radiation dosimetry was obtained in twenty patients: 7 electrophysiology studies, 6 pacemakers, 5 catheter ablations, and 2 implantable cardioverter-defibrillators. Eleven women and nine men with a mean age of 63 +/- 4 years had an average fluoroscopy time of 2.5 +/- 0.42 minutes per case. Mean dosimetric measurements at the hand were reduced from 141.38 +/- 24.67 to 48.63 +/- 9.02 milliroentgen (mR) per hour using the protective drape (63% reduction; p < 0.0001). Measurements at the elbow were reduced from 78.78 +/- 7.95 mR per hour to 34.50 +/- 4.18 mR per hour using the drape (55% reduction; p < 0.0001). Badge readings for three months prior to drape introduction averaged 2.45 mR per procedure versus 1.54 mR per procedure for 3 months post-initiation (37% reduction). The use of a novel radiation protection surgical drape can significantly reduce scatter radiation exposure to staff and operators during a variety of EP procedures.

  9. Level of patient and operator dose in the largest cardiac centre in Greece

    International Nuclear Information System (INIS)

    Tsapaki, V.; Patsilinakos, S.; Voudris, V.; Magginas, A.; Pavlidis, S.; Maounis, T.; Theodorakis, G.; Koutelou, M.; Vrantza, T.; Nearchou, M.; Nikolaki, N.; Kollaros, N.; Kyrozi, E.; Kottou, S.; Karaiskos, P.; Neofotistou, E.; Cokkinos, D.

    2008-01-01

    The objective of this study was to investigate the patient and staff doses in the most frequent interventional cardiology (IC) procedures performed in Onassio, the largest Cardiac Centre in Greece. Data were collected from three digital X-ray systems for 212 coronary angiographies, 203 percutaneous transluminal coronary angio-plasties (PTCA) and 134 various electrophysiological studies. Patient skin dose was measured using suitably calibrated slow radiotherapy films and cardiologist dose using suitably calibrated thermoluminescent dosemeters placed on left arm, hand and foot. Patient median dose area product (DAP) (all examinations) ranged between 6.7 and 83.5 Gy cm 2 . Patient median skin dose in PTCA was 799 mGy (320-1660 mGy) and in RF ablation 160 mGy (35-1920 mGy). Median arm, hand and foot dose to the cardiologist were 12.6, 27 and 13 μSv, respectively, per procedure. The great range of radiation doses received by both patients and operators confirms the need for continuous monitoring of all IC techniques. (authors)

  10. Serum cytokine contents in schizophrenia patient with metabolic syndrome and their correlation with nerve electrophysiology

    Directory of Open Access Journals (Sweden)

    Li-Yong Chen

    2016-07-01

    Full Text Available Objective: To analyze serum cytokine contents in schizophrenia patient with metabolic syndrome (MS and their correlation with nerve electrophysiology. Methods: A total of 90 chizophrenia patient with MS, including 41 cases with simple schizophrenia and 39 cases with simple metabolic syndrome were included for study. The values of nerve electrophysiology indexes and serum illness-related indexes were compared among included patients, and the correlation between the two was further analyzed. Results: Compared with simple schizophrenia group and simple MS group, P300 latency of schizophrenia with MS group was longer, and the amplitude was shorter; N2-P3 latency and amplitude were shorter (P<0.05; serum SOD, S100b, BDNF, ABAb, PAI-1, 毩-HBDH, AST, cystatin c, TG, FBG and 2hPG values of schizophrenia with MS group were higher, IGF1, HMW-APN and HDL-C levels were lower, and compared with simple schizophrenia group and simple MS group, differences were significant (P<0.05; P300 latency, P300 amplitude, N2-P3 latency and N2- P3 amplitude of schizophrenia with MS group were directly correlated with serum cytokine contents (P<0.05. Conclusions: There are significantly abnormal serum cytokines and nerve electrophysiology indexes in schizophrenia patient with MS, and nerve electrophysiology detection can be used as the means to judge disease and guide treatment.

  11. Cardiac function and cognition in older community-dwelling cardiac patients

    NARCIS (Netherlands)

    Eggermont, Laura H.P.; Aly, Mohamed F.A.; Vuijk, Pieter J.; de Boer, Karin; Kamp, Otto; van Rossum, Albert C.; Scherder, Erik J.A.

    2017-01-01

    Background: Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older

  12. Thermal adaptation of the crucian carp (Carassius carassius) cardiac delayed rectifier current, IKs, by homomeric assembly of Kv7.1 subunits without MinK.

    Science.gov (United States)

    Hassinen, Minna; Laulaja, Salla; Paajanen, Vesa; Haverinen, Jaakko; Vornanen, Matti

    2011-07-01

    Ectothermic vertebrates experience acute and chronic temperature changes which affect cardiac excitability and may threaten electrical stability of the heart. Nevertheless, ectothermic hearts function over wide range of temperatures without cardiac arrhythmias, probably due to special molecular adaptations. We examine function and molecular basis of the slow delayed rectifier K(+) current (I(Ks)) in cardiac myocytes of a eurythermic fish (Carassius carassius L.). I(Ks) is an important repolarizing current that prevents excessive prolongation of cardiac action potential, but it is extremely slowly activating when expressed in typical molecular composition of the endothermic animals. Comparison of the I(Ks) of the crucian carp atrial myocytes with the currents produced by homomeric K(v)7.1 and heteromeric K(v)7.1/MinK channels in Chinese hamster ovary cells indicates that activation kinetics and pharmacological properties of the I(Ks) are similar to those of the homomeric K(v)7.1 channels. Consistently with electrophysiological properties and homomeric K(v)7.1 channel composition, atrial transcript expression of the MinK subunit is only 1.6-1.9% of the expression level of the K(v)7.1 subunit. Since activation kinetics of the homomeric K(v)7.1 channels is much faster than activation of the heteromeric K(v)7.1/MinK channels, the homomeric K(v)7.1 composition of the crucian carp cardiac I(Ks) is thermally adaptive: the slow delayed rectifier channels can open despite low body temperatures and curtail the duration of cardiac action potential in ectothermic crucian carp. We suggest that the homomeric K(v)7.1 channel assembly is an evolutionary thermal adaptation of ectothermic hearts and the heteromeric K(v)7.1/MinK channels evolved later to adapt I(Ks) to high body temperature of endotherms.

  13. Hypertrophic cardiomyopathy-linked mutation in troponin T causes myofibrillar disarray and pro-arrhythmic action potential changes in human iPSC cardiomyocytes.

    Science.gov (United States)

    Wang, Lili; Kim, Kyungsoo; Parikh, Shan; Cadar, Adrian Gabriel; Bersell, Kevin R; He, Huan; Pinto, Jose R; Kryshtal, Dmytro O; Knollmann, Bjorn C

    2018-01-01

    Mutations in cardiac troponin T (TnT) are linked to increased risk of ventricular arrhythmia and sudden death despite causing little to no cardiac hypertrophy. Studies in mice suggest that the hypertrophic cardiomyopathy (HCM)-associated TnT-I79N mutation increases myofilament Ca sensitivity and is arrhythmogenic, but whether findings from mice translate to human cardiomyocyte electrophysiology is not known. To study the effects of the TnT-I79N mutation in human cardiomyocytes. Using CRISPR/Cas9, the TnT-I79N mutation was introduced into human induced pluripotent stem cells (hiPSCs). We then used the matrigel mattress method to generate single rod-shaped cardiomyocytes (CMs) and studied contractility, Ca handling and electrophysiology. Compared to isogenic control hiPSC-CMs, TnT-I79N hiPSC-CMs exhibited sarcomere disorganization, increased systolic function and impaired relaxation. The Ca-dependence of contractility was leftward shifted in mutation containing cardiomyocytes, demonstrating increased myofilament Ca sensitivity. In voltage-clamped hiPSC-CMs, TnT-I79N reduced intracellular Ca transients by enhancing cytosolic Ca buffering. These changes in Ca handling resulted in beat-to-beat instability and triangulation of the cardiac action potential, which are predictors of arrhythmia risk. The myofilament Ca sensitizer EMD57033 produced similar action potential triangulation in control hiPSC-CMs. The TnT-I79N hiPSC-CM model not only reproduces key cellular features of TnT-linked HCM such as myofilament disarray, hypercontractility and diastolic dysfunction, but also suggests that this TnT mutation causes pro-arrhythmic changes of the human ventricular action potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Alterations in NO/ROS ratio and expression of Trx1 and Prdx2 in isoproterenol-induced cardiac hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Hao Su; Marco Pistolozzi; Xingjuan Shi; Xiaoou Sun; Wen Tan

    2017-01-01

    The development of cardiac hypertrophy is a complicated process,which undergoes a transition from compensatory hypertrophy to heart failure,and the identification of new biomarkers and targets for this disease is greatly needed.Here we investigated the development of isoproterenol (ISO)-induced cardiac hypertrophy in an in vitro experimental model.After the induction of hypertrophy with ISO treatment in H9c2 cells,cell surface area,cell viability,cellular reactive oxygen species (ROS),and nitric oxide (NO) levels were tested.Our data showed that the cell viability,mitochondrial membrane potential,and NO/ROS balance varied during the development of cardiac hypertrophy in H9c2 cells.It was also found that the expression of thioredoxin1 (Trx1) and peroxiredoxin2 (Prdx2) was decreased during the cardiac hypertrophy of H9c2 cells.These results suggest a critical role for Trx1 and Prdx2 in the cardiac hypertrophy of H9c2 cells and in the transition from compensated hypertrophy to de-compensated hypertrophy in H9c2 cells,and our findings may have important implications for the management of this disease.

  15. Excitation model of pacemaker cardiomyocytes of cardiac conduction system

    Science.gov (United States)

    Grigoriev, M.; Babich, L.

    2015-11-01

    Myocardium includes typical and atypical cardiomyocytes - pacemakers, which form the cardiac conduction system. Excitation from the atrioventricular node in normal conditions is possible only in one direction. Retrograde direction of pulses is impossible. The most important prerequisite for the work of cardiomyocytes is the anatomical integrity of the conduction system. Changes in contractile force of the cardiomyocytes, which appear periodically, are due to two mechanisms of self-regulation - heterometric and homeometric. Graphic course of the excitation pulse propagation along the heart muscle more accurately reveals the understanding of the arrhythmia mechanism. These models have the ability to visualize the essence of excitation dynamics. However, they do not have the proper forecasting function for result estimation. Integrative mathematical model enables further investigation of general laws of the myocardium active behavior, allows for determination of the violation mechanism of electrical and contractile function of cardiomyocytes. Currently, there is no full understanding of the topography of pacemakers and ionic mechanisms. There is a need for the development of direction of mathematical modeling and comparative studies of the electrophysiological arrangement of cells of atrioventricular connection and ventricular conduction system.

  16. A Decade of Information on the Use of Cardiac Implantable Electronic Devices and Interventional Electrophysiological Procedures in the European Society of Cardiology Countries

    DEFF Research Database (Denmark)

    Raatikainen, M J Pekka; Arnar, David O; Merkely, Bela

    2017-01-01

    Aims: The aim of this analysis was to provide comprehensive information on invasive cardiac arrhythmia therapies in the European Society of Cardiology (ESC) area over the past 10 years. Methods and results: The European Heart Rhythm Association (EHRA) has collected data on invasive arrhythmia...

  17. To4, the first Tityus obscurus β-toxin fully electrophysiologically characterized on human sodium channel isoforms.

    Science.gov (United States)

    Duque, Harry Morales; Mourão, Caroline Barbosa Farias; Tibery, Diogo Vieira; Barbosa, Eder Alves; Campos, Leandro Ambrósio; Schwartz, Elisabeth Ferroni

    2017-09-01

    Many scorpion toxins that act on sodium channels (NaScTxs) have been characterized till date. These toxins may act modulating the inactivation or the activation of sodium channels and are named α- or β-types, respectively. Some venom toxins from Tityus obscurus (Buthidae), a scorpion widely distributed in the Brazilian Amazon, have been partially characterized in previous studies; however, little information about their electrophysiological role on sodium ion channels has been published. In the present study, we describe the purification, identification and electrophysiological characterization of a NaScTx, which was first described as Tc54 and further fully sequenced and renamed To4. This toxin shows a marked β-type effect on different sodium channel subtypes (hNa v 1.1-hNa v 1.7) at low concentrations, and has more pronounced activity on hNa v 1.1, hNa v 1.2 and hNa v 1.4. By comparing To4 primary structure with other Tityus β-toxins which have already been electrophysiologically tested, it is possible to establish some key amino acid residues for the sodium channel activity. Thus, To4 is the first toxin from T. obscurus fully electrophysiologically characterized on different human sodium channel isoforms. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. PGC-1α accelerates cytosolic Ca2+ clearance without disturbing Ca2+ homeostasis in cardiac myocytes

    International Nuclear Information System (INIS)

    Chen, Min; Wang, Yanru; Qu, Aijuan

    2010-01-01

    Energy metabolism and Ca 2+ handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1α in cardiac Ca 2+ signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1α via adenoviral transduction. Our data shows that overexpressing PGC-1α improved myocyte contractility without increasing the amplitude of Ca 2+ transients, suggesting that myofilament sensitivity to Ca 2+ increased. Interestingly, the decay kinetics of global Ca 2+ transients and Ca 2+ waves accelerated in PGC-1α-expressing cells, but the decay rate of caffeine-elicited Ca 2+ transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca 2+ -ATPase (SERCA2a), but not Na + /Ca 2+ exchange (NCX) contribute to PGC-1α-induced cytosolic Ca 2+ clearance. Furthermore, PGC-1α induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1α did not disturb cardiac Ca 2+ homeostasis, because SR Ca 2+ load and the propensity for Ca 2+ waves remained unchanged. These data suggest that PGC-1α can ameliorate cardiac Ca 2+ cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1α-calcium handing pathway sheds new light on the role of PGC-1α in the therapy of cardiac diseases.

  19. Detection of electrophysiology catheters in noisy fluoroscopy images

    NARCIS (Netherlands)

    Franken, E.M.; Rongen, P.M.J.; Almsick, van M.A.; Haar Romenij, ter B.M.

    2006-01-01

    Cardiac catheter ablation is a minimally invasive medical procedure to treat patients with heart rhythm disorders. It is useful to know the positions of the catheters and electrodes during the intervention, e.g. for the automatization of cardiac mapping. Our goal is therefore to develop a robust

  20. Computational Intelligence Techniques for Electro-Physiological Data Analysis

    OpenAIRE

    Riera Sardà, Alexandre

    2012-01-01

    This work contains the efforts I have made in the last years in the field of Electrophysiological data analysis. Most of the work has been done at Starlab Barcelona S.L. and part of it at the Neurodynamics Laboratory of the Department of Psychiatry and Clinical Psychobiology of the University of Barcelona. The main work deals with the analysis of electroencephalography (EEG) signals, although other signals, such as electrocardiography (ECG), electroculography (EOG) and electromiography (EMG) ...

  1. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story

    Directory of Open Access Journals (Sweden)

    Mohammad T. Elnakish

    2015-01-01

    Full Text Available Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models.

  2. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres.

    Science.gov (United States)

    Hanft, Laurin M; McDonald, Kerry S

    2010-08-01

    According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length

  3. Nonthyroidal Illness Syndrome in Cardiac Illness Involves Elevated Concentrations of 3,5-Diiodothyronine and Correlates with Atrial Remodeling

    Science.gov (United States)

    Dietrich, Johannes W.; Müller, Patrick; Schiedat, Fabian; Schlömicher, Markus; Strauch, Justus; Chatzitomaris, Apostolos; Klein, Harald H.; Mügge, Andreas; Köhrle, Josef; Rijntjes, Eddy; Lehmphul, Ina

    2015-01-01

    Background Although hyperthyroidism predisposes to atrial fibrillation, previous trials have suggested decreased triiodothyronine (T3) concentrations to be associated with postoperative atrial fibrillation (POAF). Therapy with thyroid hormones (TH), however, did not reduce the risk of POAF. This study reevaluates the relation between thyroid hormone status, atrial electromechanical function and POAF. Methods Thirty-nine patients with sinus rhythm and no history of atrial fibrillation or thyroid disease undergoing cardiac surgery were prospectively enrolled. Serum concentrations of thyrotropin, free (F) and total (T) thyroxine (T4) and T3, reverse (r)T3, 3-iodothyronamine (3-T1AM) and 3,5-diiodothyronine (3,5-T2) were measured preoperatively, complemented by evaluation of echocardiographic and electrophysiological parameters of cardiac function. Holter-ECG and telemetry were used to screen for POAF for 10 days following cardiac surgery. Results Seven of 17 patients who developed POAF demonstrated nonthyroidal illness syndrome (NTIS; defined as low T3 and/or low T4 syndrome), compared to 2 of 22 (p < 0.05) patients who maintained sinus rhythm. In patients with POAF, serum FT3 concentrations were significantly decreased, but still within their reference ranges. 3,5-T2 concentrations directly correlated with rT3 concentrations and inversely correlated with FT3 concentrations. Furthermore, 3,5-T2 concentrations were significantly elevated in patients with NTIS and in subjects who eventually developed POAF. In multivariable logistic regression FT3, 3,5-T2, total atrial conduction time, left atrial volume index and Fas ligand were independent predictors of POAF. Conclusion This study confirms reduced FT3 concentrations in patients with POAF and is the first to report on elevated 3,5-T2 concentrations in cardiac NTIS. The pathogenesis of NTIS therefore seems to involve more differentiated allostatic mechanisms. PMID:26279999

  4. Intraoperative high-field magnetic resonance imaging, multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas.

    Science.gov (United States)

    Li, Fang-Ye; Chen, Xiao-Lei; Xu, Bai-Nan

    2016-09-01

    To determine the beneficial effects of intraoperative high-field magnetic resonance imaging (MRI), multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas. Twelve patients with 13 supratentorial cavernomas were prospectively enrolled and operated while using a 1.5 T intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. All cavernomas were deeply located in subcortical areas or involved critical areas. Intraoperative high-field MRIs were obtained for the intraoperative "visualization" of surrounding eloquent structures, "brain shift" corrections, and navigational plan updates. All cavernomas were successfully resected with guidance from intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. In 5 cases with supratentorial cavernomas, intraoperative "brain shift" severely deterred locating of the lesions; however, intraoperative MRI facilitated precise locating of these lesions. During long-term (>3 months) follow-up, some or all presenting signs and symptoms improved or resolved in 4 cases, but were unchanged in 7 patients. Intraoperative high-field MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring are helpful in surgeries for the treatment of small deeply seated subcortical cavernomas.

  5. Hand-arm vibration syndrome: clinical characteristics, conventional electrophysiology and quantitative sensory testing.

    Science.gov (United States)

    Rolke, Roman; Rolke, Silke; Vogt, Thomas; Birklein, Frank; Geber, Christian; Treede, Rolf-Detlef; Letzel, Stephan; Voelter-Mahlknecht, Susanne

    2013-08-01

    Workers exposed to vibrating tools may develop hand-arm vibration syndrome (HAVS). We assessed the somatosensory phenotype using quantitative sensory testing (QST) in comparison to electrophysiology to characterize (1) the most sensitive QST parameter for detecting sensory loss, (2) the correlation of QST and electrophysiology, and (3) the frequency of a carpal tunnel syndrome (CTS) in HAVS. QST, cold provocation tests, fine motor skills, and median nerve neurography were used. QST included thermal and mechanical detection and pain thresholds. Thirty-two patients were examined (54 ± 11 years, 91% men) at the more affected hand compared to 16 matched controls. Vibration detection threshold was the most sensitive parameter to detect sensory loss that was more pronounced in the sensitivity range of Pacinian (150 Hz, x12) than Meissner's corpuscles (20 Hz, x3). QST (84% abnormal) was more sensitive to detect neural dysfunction than conventional electrophysiology (37% abnormal). Motor (34%) and sensory neurography (25%) were abnormal in HAVS. CTS frequency was not increased (9.4%). Findings are consistent with a mechanically-induced, distally pronounced motor and sensory neuropathy independent of CTS. HAVS involves a neuropathy predominantly affecting large fibers with a sensory damage related to resonance frequencies of vibrating tools. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Detecting early cardiac dysfunction with radionuclide cardiac blood-pool imaging

    International Nuclear Information System (INIS)

    Wu Kegui; Chen Daguang; Lin Haoxue

    1992-01-01

    Cardiac function was measured by radionuclide cardiac blood-pool imaging in 15 normal persons, 19 cases of hypertension, 32 cases of coronary heart disease, 35 cases of coronary heart disease combined with hypertension and 44 cases of myocardial infarction. Significant differences have been found in indices of cardiac function between normal subjects and patients with coronary heart disease and coronary heart disease combined with hypertension, even though the patients were without any clinical sin of cardiac failure. Lowered regional EF and decreased ventricular was motion were found in 38.8% of patients, while 65.7%of patients revealed marked abnormality in MFR. The results indicate that latent cardiac dysfunction is common in patients with coronary heart disease. The earliest change is diastolic function abnormalities

  7. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: karlheinz.hilber@meduniwien.ac.at [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  8. Cardiac Function Remains Impaired Despite Reversible Cardiac Remodeling after Acute Experimental Viral Myocarditis

    Directory of Open Access Journals (Sweden)

    Peter Moritz Becher

    2017-01-01

    Full Text Available Background. Infection with Coxsackievirus B3 induces myocarditis. We aimed to compare the acute and chronic phases of viral myocarditis to identify the immediate effects of cardiac inflammation as well as the long-term effects after resolved inflammation on cardiac fibrosis and consequently on cardiac function. Material and Methods. We infected C57BL/6J mice with Coxsackievirus B3 and determined the hemodynamic function 7 as well as 28 days after infection. Subsequently, we analyzed viral burden and viral replication in the cardiac tissue as well as the expression of cytokines and matrix proteins. Furthermore, cardiac fibroblasts were infected with virus to investigate if viral infection alone induces profibrotic signaling. Results. Severe cardiac inflammation was determined and cardiac fibrosis was consistently colocalized with inflammation during the acute phase of myocarditis. Declined cardiac inflammation but no significantly improved hemodynamic function was observed 28 days after infection. Interestingly, cardiac fibrosis declined to basal levels as well. Both cardiac inflammation and fibrosis were reversible, whereas the hemodynamic function remains impaired after healed viral myocarditis in C57BL/6J mice.

  9. Current role of cardiac and extra-cardiac pathologies in clinically indicated cardiac computed tomography with emphasis on status before pulmonary vein isolation

    Energy Technology Data Exchange (ETDEWEB)

    Sohns, J.M.; Lotz, J. [Goettingen University Medical Center (Germany). Inst. for Diagnostic and Interventional Radiology; German Center for Cardiovascular Research (DZHK), Goettingen (Germany); Menke, J.; Staab, W.; Fasshauer, M.; Kowallick, J.T.; Zwaka, P.A.; Schwarz, A. [Goettingen University Medical Center (Germany). Inst. for Diagnostic and Interventional Radiology; Spiro, J. [Koeln University Hospital (Germany). Radiology; Bergau, L.; Unterberg-Buchwald, C. [Goettingen University Medical Center (Germany). Cardiology and Pneumology

    2014-09-15

    Purpose: The aim of this study was to assess the incidence of cardiac and significant extra-cardiac findings in clinical computed tomography of the heart in patients with atrial fibrillation before pulmonary vein isolation (PVI). Materials and Methods: 224 patients (64 ± 10 years; male 63%) with atrial fibrillation were examined by cardiac 64-slice multidetector CT before PVI. Extra-cardiac findings were classified as 'significant' if they were recommended to additional diagnostics or therapy, and otherwise as 'non-significant'. Additionally, cardiac findings were documented in detail. Results: A total of 724 cardiac findings were identified in 203 patients (91% of patients). Additionally, a total of 619 extra-cardiac findings were identified in 179 patients (80% of patients). Among these extra-cardiac findings 196 (32%) were 'significant', and 423 (68%) were 'non-significant'. In 2 patients (1%) a previously unknown malignancy was detected (esophageal cancer and lung cancer, local stage, no metastasis). 203 additional imaging diagnostics followed to clarify the 'significant' findings (124 additional CT, costs 38,314.69 US dollars). Overall, there were 3.2 cardiac and 2.8 extra-cardiac findings per patient. Extra-cardiac findings appear significantly more frequently in patients over 60 years old, in smokers and in patients with a history of cardiac findings (p < 0.05). Conclusion: Cardiac CT scans before PVI should be screened for extracardiac incidental findings that could have important clinical implications for each patient. (orig.)

  10. Biosynthetic hydrogels--studies on chemical and physical characteristics on long-term cellular response for tissue engineering.

    Science.gov (United States)

    Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2014-07-01

    Biosynthetic hydrogels can meet the drawbacks caused by natural and synthetic ones for biomedical applications. In the current article we present a novel biosynthetic alginate-poly(propylene fumarate) copolymer based chemically crosslinked hydrogel scaffolds for cardiac tissue engineering applications. Partially crosslinked PA hydrogel and fully cross linked PA-A hydrogel scaffolds were prepared. The influence of chemical and physical (morphology and architecture of hydrogel) characteristics on the long term cellular response was studied. Both these hydrogels were cytocompatible and showed no genotoxicity upon contact with fibroblast cells. Both PA and PA-A were able to resist deleterious effects of reactive oxygen species and sustain the viability of L929 cells. The hydrogel incubated oxidative stress induced cells were capable of maintaining the intra cellular reduced glutathione (GSH) expression to the normal level confirmed their protective effect. Relatively the PA hydrogel was found to be unstable in the cell culture medium. The PA-A hydrogel was able to withstand appreciable cyclic stretching. The cyclic stretching introduced complex macro and microarchitectural features with interconnected pores and more structured bound water which would provide long-term viability of around 250% after the 24th day of culture. All these qualities make PA-A hydrogel form a potent candidate for cardiac tissue engineering. © 2013 Wiley Periodicals, Inc.

  11. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes.

    Science.gov (United States)

    Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B Cicero; Zarzoso, Manuel; Ramirez, Rafael J; Sener, Michelle F; Mundada, Lakshmi V; Klos, Matthew; Devaney, Eric J; Vikstrom, Karen L; Herron, Todd J; Jalife, José

    2013-11-01

    Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. © 2013.

  12. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability.

    Science.gov (United States)

    Fujita, Akie; Bonnavion, Patricia; Wilson, Miryam H; Mickelsen, Laura E; Bloit, Julien; de Lecea, Luis; Jackson, Alexander C

    2017-09-27

    Histaminergic (HA) neurons, found in the posterior hypothalamic tuberomammillary nucleus (TMN), extend fibers throughout the brain and exert modulatory influence over numerous physiological systems. Multiple lines of evidence suggest that the activity of HA neurons is important in the regulation of vigilance despite the lack of direct, causal evidence demonstrating its requirement for the maintenance of arousal during wakefulness. Given the strong correlation between HA neuron excitability and behavioral arousal, we investigated both the electrophysiological diversity of HA neurons in brain slices and the effect of their acute silencing in vivo in male mice. For this purpose, we first validated a transgenic mouse line expressing cre recombinase in histidine decarboxylase-expressing neurons ( Hdc -Cre) followed by a systematic census of the membrane properties of both HA and non-HA neurons in the ventral TMN (TMNv) region. Through unsupervised hierarchical cluster analysis, we found electrophysiological diversity both between TMNv HA and non-HA neurons, and among HA neurons. To directly determine the impact of acute cessation of HA neuron activity on sleep-wake states in awake and behaving mice, we examined the effects of optogenetic silencing of TMNv HA neurons in vivo We found that acute silencing of HA neurons during wakefulness promotes slow-wave sleep, but not rapid eye movement sleep, during a period of low sleep pressure. Together, these data suggest that the tonic firing of HA neurons is necessary for the maintenance of wakefulness, and their silencing not only impairs arousal but is sufficient to rapidly and selectively induce slow-wave sleep. SIGNIFICANCE STATEMENT The function of monoaminergic systems and circuits that regulate sleep and wakefulness is often disrupted as part of the pathophysiology of many neuropsychiatric disorders. One such circuit is the posterior hypothalamic histamine (HA) system, implicated in supporting wakefulness and higher brain

  13. Prevention of Pazopanib-Induced Prolonged Cardiac Repolarization and Proarrhythmic Effects

    Directory of Open Access Journals (Sweden)

    Tulay Akman

    2014-11-01

    Full Text Available Background: Pazopanib (PZP may induce prolonged cardiac repolarization and proarrhythmic effects, similarly to other tyrosine kinase inhibitors. Objectives: To demonstrate PZP-induced prolonged cardiac repolarization and proarrhythmic electrophysiological effects and to investigate possible preventive effects of metoprolol and diltiazem on ECG changes (prolonged QT in an experimental rat model. Methods: Twenty-four Sprague-Dawley adult male rats were randomly assigned to 4 groups (n = 6. The first group (normal group received 4 mL of tap water and the other groups received 100 mg/kg of PZP (Votrient® tablet perorally, via orogastric tubes. After 3 hours, the following solutions were intraperitoneally administered to the animals: physiological saline solution (SP, to the normal group and to the second group (control-PZP+SP group; 1 mg/kg metoprolol (Beloc, Ampule, AstraZeneca, to the third group (PZP+metoprolol group; and 1mg/kg diltiazem (Diltiazem, Mustafa Nevzat, to the fourth group (PZP+diltiazem group. One hour after, and under anesthesia, QTc was calculated by recording ECG on lead I. Results: The mean QTc interval values were as follows: normal group, 99.93 ± 3.62 ms; control-PZP+SP group, 131.23 ± 12.21 ms; PZP+metoprolol group, 89.36 ± 3.61 ms; and PZP+diltiazem group, 88.86 ± 4.04 ms. Both PZP+metoprolol and PZP+diltiazem groups had significantly shorter QTc intervals compared to the control-PZP+SP group (p < 0.001. Conclusion: Both metoprolol and diltiazem prevented PZP-induced QT interval prolongation. These drugs may provide a promising prophylactic strategy for the prolonged QTc interval associated with tyrosine kinase inhibitor use.

  14. Electrophysiological evidence for enhanced representation of food stimuli in working memory

    NARCIS (Netherlands)

    Rutters, F.; Kumar, S.; Higgs, S.; Humphreys, G.W.

    2015-01-01

    Studies from our laboratory have shown that, relative to neutral objects, food-related objects kept in working memory (WM) are particularly effective in guiding attention to food stimuli (Higgs et al. in Appetite, 2012). Here, we used electrophysiological measurements to investigate the neural

  15. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives.

    Science.gov (United States)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa; Thielscher, Axel; Siebner, Hartwig Roman

    2016-10-15

    Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures or neuronal activity patterns for a given brain function. It is nowadays feasible to combine NTBS, either consecutively or concurrently, with a variety of neuroimaging and electrophysiological techniques. Here we discuss what kind of information can be gained from combined approaches, which often are technically demanding. We argue that the benefit from this combination is twofold. Firstly, neuroimaging and electrophysiology can inform subsequent NTBS, providing the required information to optimize where, when, and how to stimulate the brain. Information can be achieved both before and during the NTBS experiment, requiring consecutive and concurrent applications, respectively. Secondly, neuroimaging and electrophysiology can provide the readout for neural changes induced by NTBS. Again, using either concurrent or consecutive applications, both "online" NTBS effects immediately following the stimulation and "offline" NTBS effects outlasting plasticity-inducing NTBS protocols can be assessed. Finally, both strategies can be combined to close the loop between measuring and modulating brain activity by means of closed-loop brain state-dependent NTBS. In this paper, we will provide a conceptual framework, emphasizing principal strategies and highlighting promising future directions to exploit the benefits of combining NTBS with neuroimaging or electrophysiology. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Electrophysiology of Axonal Constrictions

    Science.gov (United States)

    Johnson, Christopher; Jung, Peter; Brown, Anthony

    2013-03-01

    Axons of myelinated neurons are constricted at the nodes of Ranvier, where they are directly exposed to the extracellular space and where the vast majority of the ion channels are located. These constrictions are generated by local regulation of the kinetics of neurofilaments the most important cytoskeletal elements of the axon. In this paper we discuss how this shape affects the electrophysiological function of the neuron. Specifically, although the nodes are short (about 1 μm) in comparison to the distance between nodes (hundreds of μm) they have a substantial influence on the conduction velocity of neurons. We show through computational modeling that nodal constrictions (all other features such as numbers of ion channels left constant) reduce the required fiber diameter for a given target conduction velocity by up to 50% in comparison to an unconstricted axon. We further show that the predicted optimal fiber morphologies closely match reported fiber morphologies. Supported by The National Science Foundation (IOS 1146789)

  17. Electrophysiological Evaluation of Dysphagia in the Mild or Moderate Patients with Multiple Sclerosis: A Concept of Subclinical Dysphagia.

    Science.gov (United States)

    Beckmann, Yesim; Gürgör, Nevin; Çakır, Ahmet; Arıcı, Şehnaz; İncesu, Tülay Kurt; Seçil, Yaprak; Ertekin, Cumhur

    2015-06-01

    Swallowing mechanism and neurogenic dysphagia in MS have been rarely studied by electromyographical (EMG) methods. This study aims to evaluate the presence of subclinical dysphagia in patients with mild multiple sclerosis (MS) using electrophysiological methods. A prospective study of 51 patients with relapsing remitting multiple sclerosis and 18 age-matched healthy adults was investigated. We used electromyography to measure the activity of the submental muscles during swallowing. Electrophysiological recordings of patients were obtained during relapse, after relapse, and at any time in remission period. Clinical dysphagia was found in 12% of MS patients, while electrophysiological swallowing abnormalities were encountered in 33% of patients. Subclinical dysphagia was determined in 35% of patients during an MS relapse, in 20% of patients after a relapse, and in 25% of all 51 patients in the remission period based on EMG findings. Duration of swallowing signal of submental muscles in all MS patients was found to be longer than in normal subjects (p = 0.001). During swallowing of 50 ml of sequential water, the compensatory respiratory cycles occurred more often in MS patients than normal subjects, especially during a relapse (p = 0.005). This is the first study investigating swallowing abnormalities and subclinical dysphagia from the electrophysiological aspect in MS patients with mild disability. The electrophysiological tests described in this study are useful to uncover subclinical dysphagia since they have the advantage of being rapid, easy to apply, non-invasive, and without risk for the patients.

  18. Electrophysiological Monitoring in Patients With Tumors of the Skull Base Treated by Carbon-12 Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carozzo, Simone [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Schardt, Dieter [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Narici, Livio [Department of Physics, University of Rome Tor Vergata, Rome (Italy); Combs, Stephanie E.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Sannita, Walter G., E-mail: wgs@dism.unige.it [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Department of Psychiatry, State University of New York, Stony Brook, New York (United States)

    2013-03-15

    Purpose: To report the results of short-term electrophysiologic monitoring of patients undergoing {sup 12}C therapy for the treatment of skull chordomas and chondrosarcomas unsuitable for radical surgery. Methods and Materials: Conventional electroencephalogram (EEG) and retinal and cortical electrophysiologic responses to contrast stimuli were recorded from 30 patients undergoing carbon ion radiation therapy, within a few hours before the first treatment and after completion of therapy. Methodologies and procedures were compliant with the guidelines of the International Federation for Clinical Neurophysiology and International Society for Clinical Electrophysiology of Vision. Results: At baseline, clinical signs were reported in 56.6% of subjects. Electrophysiologic test results were abnormal in 76.7% (EEG), 78.6% (cortical evoked potentials), and 92.8% (electroretinogram) of cases, without correlation with neurologic signs, tumor location, or therapy plan. Results on EEG, but not electroretinograms and cortical responses, were more often abnormal in patients with reported clinical signs. Abnormal EEG results and retinal/cortical responses improved after therapy in 40% (EEG), 62.5% (cortical potentials), and 70% (electroretinogram) of cases. Results on EEG worsened after therapy in one-third of patients whose recordings were normal at baseline. Conclusions: The percentages of subjects whose EEG results improved or worsened after therapy and the improvement of retinal/cortical responses in the majority of patients are indicative of a limited or negligible (and possibly transient) acute central nervous system toxicity of carbon ion therapy, with a significant beneficial effect on the visual pathways. Research on large samples would validate electrophysiologic procedures as a possible independent test for central nervous system toxicity and allow investigation of the correlation with clinical signs; repeated testing over time after therapy would demonstrate, and may

  19. IMPROVING QUALITY OF WORK LIFE THROUGH ELECTROPHYSIOLOGY: AN IDEA ACCEPTED BY INDUSTRY

    Directory of Open Access Journals (Sweden)

    Evanthia Giagloglou

    2015-12-01

    Full Text Available Quality of Work Life (QWL and Occupational Health and Safety (OHS are two interconnected and important human needs. Modern industry shows a clear will for improving QWL and OHS, nevertheless, existent automatization and technological advances may negatively influence employees' wellbeing and result as triggers to their health deterioration. Subjective measures of employees workload can help, however, the lack of objectivity may be an issue. Improvement of working life needs objective measures. There is technology for measuring objectively employees' psychophysiology, but is considered to interfere with the flexibility needed for performing working tasks. Today electrophysiological methods require minimal dimensions, are wireless connected, allow movement and are proved to be useful in capturing psychophysical wellbeing. This study shows that the industry is ready to accept electrophysiological measures for monitoring and improving the employees' wellbeing.

  20. Comparison of electrophysiological findings in axonal and demyelinating Guillain-Barre syndrome

    Science.gov (United States)

    Yadegari, Samira; Nafissi, Shahriar; Kazemi, Neda

    2014-01-01

    Background: Incidence and predominant subtype of Guillain-Barre syndrome (GBS) differs geographically. Electrophysiology has an important role in early diagnosis and prediction of prognosis. This study is conducted to determine the frequent subtype of GBS in a large group of patients in Iran and compare nerve conduction studies in axonal and demyelinating forms of GBS. Methods: We retrospectively evaluated the medical records and electrodiagnostic study (EDS) of 121 GBS patients who were managed in our hospital during 11 years. After regarding the exclusion criteria, patients classified as three groups: acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), and acute motor sensory axonal neuropathy (AMSAN). The most frequent subtype and then electrophysiological characteristic based on the time of EDS and their cerebrospinal fluid (CSF) profile were assessed. Results: Among 70 patients finally included in the study, 67% were men. About 63%, 23%, and 14% had AIDP, AMAN, and AMSAN, respectively. AIDP patients represented a wider range of ages compared with other groups. Higher levels of CSF protein, abnormal late responses and sural sparing were more frequent in AIDP subtype. Five AMSAN patients also revealed sural sparing. Conduction block (CB) was observed in one AMAN patient. Prolonged F-wave latency was observed only in AIDP cases. CB and inexcitable sensory nerves were more frequent after 2 weeks, but reduced F-wave persistency was more prominent in the early phase. Conclusion: AIDP was the most frequent subtype. Although the electrophysiology and CSF are important diagnostic tools, classification should not be made based on a distinct finding. PMID:25422732

  1. Epidemiology and Outcomes After In-Hospital Cardiac Arrest After Pediatric Cardiac Surgery

    Science.gov (United States)

    Gupta, Punkaj; Jacobs, Jeffrey P.; Pasquali, Sara K.; Hill, Kevin D.; Gaynor, J. William; O’Brien, Sean M.; He, Max; Sheng, Shubin; Schexnayder, Stephen M.; Berg, Robert A.; Nadkarni, Vinay M.; Imamura, Michiaki; Jacobs, Marshall L.

    2014-01-01

    Background Multicenter data regarding cardiac arrest in children undergoing heart operations are limited. We describe epidemiology and outcomes associated with postoperative cardiac arrest in a large multiinstitutional cohort. Methods Patients younger than 18 years in the Society of Thoracic Surgeons Congenital Heart Surgery Database (2007 through 2012) were included. Patient factors, operative characteristics, and outcomes were described for patients with and without postoperative cardiac arrest. Multivariable models were used to evaluate the association of center volume with cardiac arrest rate and mortality after cardiac arrest, adjusting for patient and procedural factors. Results Of 70,270 patients (97 centers), 1,843 (2.6%) had postoperative cardiac arrest. Younger age, lower weight, and presence of preoperative morbidities (all p < 0.0001) were associated with cardiac arrest. Arrest rate increased with procedural complexity across common benchmark operations, ranging from 0.7% (ventricular septal defect repair) to 12.7% (Norwood operation). Cardiac arrest was associated with significant mortality risk across procedures, ranging from 15.4% to 62.3% (all p < 0.0001). In multivariable analysis, arrest rate was not associated with center volume (odds ratio, 1.06; 95% confidence interval, 0.71 to 1.57 in low- versus high-volume centers). However, mortality after cardiac arrest was higher in low-volume centers (odds ratio, 2.00; 95% confidence interval, 1.52 to 2.63). This association was present for both high- and low-complexity operations. Conclusions Cardiac arrest carries a significant mortality risk across the stratum of procedural complexity. Although arrest rates are not associated with center volume, lower-volume centers have increased mortality after cardiac arrest. Further study of mechanisms to prevent cardiac arrest and to reduce mortality in those with an arrest is warranted. PMID:25443018

  2. Evidence for Acute Electrophysiological and Cognitive Changes Following Routine Soccer Heading

    Directory of Open Access Journals (Sweden)

    Thomas G. Di Virgilio

    2016-11-01

    Discussion: Sub-concussive head impacts routine in soccer heading are associated with immediate, measurable electrophysiological and cognitive impairments. Although these changes in brain function were transient, these effects may signal direct consequences of routine soccer heading on (long-term brain health which requires further study.

  3. Cardiac Subtype-Specific Modeling of Kv1.5 Ion Channel Deficiency Using Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Maike Marczenke

    2017-07-01

    Full Text Available The ultrarapid delayed rectifier K+ current (IKur, mediated by Kv1.5 channels, constitutes a key component of the atrial action potential. Functional mutations in the underlying KCNA5 gene have been shown to cause hereditary forms of atrial fibrillation (AF. Here, we combine targeted genetic engineering with cardiac subtype-specific differentiation of human induced pluripotent stem cells (hiPSCs to explore the role of Kv1.5 in atrial hiPSC-cardiomyocytes. CRISPR/Cas9-mediated mutagenesis of integration-free hiPSCs was employed to generate a functional KCNA5 knockout. This model as well as isogenic wild-type control hiPSCs could selectively be differentiated into ventricular or atrial cardiomyocytes at high efficiency, based on the specific manipulation of retinoic acid signaling. Investigation of electrophysiological properties in Kv1.5-deficient cardiomyocytes compared to isogenic controls revealed a strictly atrial-specific disease phentoype, characterized by cardiac subtype-specific field and action potential prolongation and loss of 4-aminopyridine sensitivity. Atrial Kv1.5-deficient cardiomyocytes did not show signs of arrhythmia under adrenergic stress conditions or upon inhibiting additional types of K+ current. Exposure of bulk cultures to carbachol lowered beating frequencies and promoted chaotic spontaneous beating in a stochastic manner. Low-frequency, electrical stimulation in single cells caused atrial and mutant-specific early afterdepolarizations, linking the loss of KCNA5 function to a putative trigger mechanism in familial AF. These results clarify for the first time the role of Kv1.5 in atrial hiPSC-cardiomyocytes and demonstrate the feasibility of cardiac subtype-specific disease modeling using engineered hiPSCs.

  4. Prognostic EEG patterns in patients resuscitated from cardiac arrest with particular focus on Generalized Periodic Epileptiform Discharges (GPEDs).

    Science.gov (United States)

    Milani, P; Malissin, I; Tran-Dinh, Y R; Deye, N; Baud, F; Lévy, B I; Kubis, N

    2014-04-01

    We assessed clinical and early electrophysiological characteristics, in particular Generalized Periodic Epileptiform Discharges (GPEDs) patterns, of consecutive patients during a 1-year period, hospitalized in the Intensive Care Unit (ICU) after resuscitation following cardiac arrest (CA). Consecutive patients resuscitated from cardiac arrest (CA) with first EEG recordings within 48hours were included. Clinical data were collected from hospital records, in particular therapeutic hypothermia. Electroencephalograms (EEGs) were re-analyzed retrospectively. Sixty-two patients were included. Forty-two patients (68%) were treated with therapeutic hypothermia according to international guidelines. Global mortality was 74% but not significantly different between patients who benefited from therapeutic hypothermia compared to those who did not. All the patients who did not have an initial background activity (36/62; 58%) died. By contrast, initial background activity was present in 26/62 (42%) and among these patients, 16/26 (61%) survived. Electroencephalography demonstrated GPEDs patterns in 5 patients, all treated by therapeutic hypothermia and antiepileptic drugs. One of these survived and showed persistent background activity with responsiveness to benzodiazepine intravenous injection. Patients presenting suppressed background activity, even when treated by hypothermia, have a high probability of poor outcome. Thorough analysis of EEG patterns might help to identify patients with a better chance of survival. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. High LET radiation shows no major cellular and functional effects on primary cardiomyocytes in vitro

    Science.gov (United States)

    Heselich, Anja; Frieß, Johannes L.; Ritter, Sylvia; Benz, Naja P.; Layer, Paul G.; Thielemann, Christiane

    2018-02-01

    It is well known that ionizing radiation causes adverse effects on various mammalian tissues. However, there is little information on the biological effects of heavy ion radiation on the heart. In order to fill this gap, we systematically examined DNA-damage induction and repair, as well as proliferation and apoptosis in avian cardiomyocyte cultures irradiated with heavy ions such as titanium and iron, relevant for manned space-flight, and carbon ions, as used for radiotherapy. Further, and to our knowledge for the first time, we analyzed the effect of heavy ion radiation on the electrophysiology of primary cardiomyocytes derived from chicken embryos using the non-invasive microelectrode array (MEA) technology. As electrophysiological endpoints beat rate and field action potential duration were analyzed. The cultures clearly exhibited the capacity to repair induced DNA damage almost completely within 24 h, even at doses of 7 Gy, and almost completely recovered from radiation-induced changes in proliferative behavior. Interestingly, no significant effects on apoptosis could be detected. Especially the functionality of primary cardiac cells exhibited a surprisingly high robustness against heavy ion radiation, even at doses of up to 7 Gy. In contrast to our previous study with X-rays the beat rate remained more or less unaffected after heavy ion radiation, independently of beam quality. The only change we could observe was an increase of the field action potential duration of up to 30% after titanium irradiation, diminishing within the following three days. This potentially pathological observation may be an indication that heavy ion irradiation at high doses could bear a long-term risk for cardiovascular disease induction.

  6. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  7. Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes

    Science.gov (United States)

    Urbano, Francisco J.; Simpson, John I.; Llinás, Rodolfo R.

    2006-01-01

    The electrophysiological properties of rat inferior olive (IO) neurons in the dorsal cap of Kooy (DCK) and the adjacent ventrolateral outgrowth (VLO) were compared with those of IO neurons in the principal olive (PO). Whereas DCK/VLO neurons are involved in eye movement control via their climbing fiber projection to the cerebellar flocculus, PO neurons control limb and digit movements via their climbing fiber projection to the lateral cerebellar hemisphere. In vitro patch recordings from DCK/VLO neurons revealed that low threshold calcium currents, Ih currents, and subthreshold oscillations are lacking in this subset of IO neurons. The recordings of activity in DCK neurons obtained by using voltage-sensitive dye imaging showed that activity is not limited to a single neuron, but rather that clusters of DCK neurons can be active in unison. These electrophysiological results show that the DCK/VLO neurons have unique properties that set them apart from the neurons in the PO nucleus. This finding indicates that motor control, from the perspective of the olivocerebellar system, is fundamentally different for the oculomotor and the somatomotor systems. PMID:17050678

  8. Clonidine, an alpha2-receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Philbin, Kerry E; Bateman, Ryan J; Mendelowitz, David

    2010-08-06

    In hypertension, there is an autonomic imbalance in which sympathetic activity dominates over parasympathetic control. Parasympathetic activity to the heart originates from cardiac vagal neurons located in the nucleus ambiguus. Presympathetic neurons that project to sympathetic neurons in the spinal cord are located in the ventral brainstem in close proximity to cardiac vagal neurons, and many of these presympathetic neurons are catecholaminergic. In addition to their projection to the spinal cord, many of these presympathetic neurons have axon collaterals that arborize into neighboring cardiorespiratory locations and likely release norepinephrine onto nearby neurons. Activation of alpha(2)-adrenergic receptors in the central nervous system evokes a diverse range of physiological effects, including reducing blood pressure. This study tests whether clonidine, an alpha(2)-adrenergic receptor agonist, alters excitatory glutamatergic, and/or inhibitory GABAergic or glycinergic synaptic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Cardiac vagal neurons were identified in an in vitro brainstem slice preparation, and synaptic events were recording using whole cell voltage clamp methodologies. Clonidine significantly inhibited GABAergic neurotransmission but had no effect on glycinergic or glutamatergic pathways to cardiac vagal neurons. This diminished inhibitory GABAergic neurotransmission to cardiac vagal neurons would increase parasympathetic activity to the heart, decreasing heart rate and blood pressure. The results presented here provide a cellular substrate for the clinical use of clonidine as a treatment for hypertension as well as a role in alleviating posttraumatic stress disorder by evoking an increase in parasympathetic cardiac vagal activity, and a decrease in heart rate and blood pressure. Copyright 2010 Elsevier B.V. All rights reserved.

  9. The other side of cardiac Ca2+ signaling: transcriptional control

    Directory of Open Access Journals (Sweden)

    Alejandro eDomínguez-Rodríquez

    2012-11-01

    Full Text Available Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling, but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling. ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII and phosphatase calcineurin, both of which are activated by the complex Ca2+/ /Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n or cytoplasmic ([Ca2+]c, and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs in [Ca2+]c, needed to activate calcineurin.

  10. The roles of non-coding RNAs in cardiac regenerative medicine

    Directory of Open Access Journals (Sweden)

    Oi Kuan Choong

    2017-06-01

    Full Text Available The emergence of non-coding RNAs (ncRNAs has challenged the central dogma of molecular biology that dictates that the decryption of genetic information starts from transcription of DNA to RNA, with subsequent translation into a protein. Large numbers of ncRNAs with biological significance have now been identified, suggesting that ncRNAs are important in their own right and their roles extend far beyond what was originally envisaged. ncRNAs do not only regulate gene expression, but are also involved in chromatin architecture and structural conformation. Several studies have pointed out that ncRNAs participate in heart disease; however, the functions of ncRNAs still remain unclear. ncRNAs are involved in cellular fate, differentiation, proliferation and tissue regeneration, hinting at their potential therapeutic applications. Here, we review the current understanding of both the biological functions and molecular mechanisms of ncRNAs in heart disease and describe some of the ncRNAs that have potential heart regeneration effects. Keywords: Non-coding RNAs, Cardiac regeneration, Cardiac fate, Proliferation, Differentiation, Reprograming

  11. Ca(2+) mishandling and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress.

    Science.gov (United States)

    Carvajal, Karla; Balderas-Villalobos, Jaime; Bello-Sanchez, Ma Dolores; Phillips-Farfán, Bryan; Molina-Muñoz, Tzindilu; Aldana-Quintero, Hugo; Gómez-Viquez, Norma L

    2014-11-01

    Obesity and insulin resistance (IR) are strongly connected to the development of subclinical cardiac dysfunction and eventually can lead to heart failure, which is the main cause of morbidity and death in patients having these metabolic diseases. It has been considered that excessive fat tissue may play a critical role in producing systemic IR and enhancing reactive oxygen species (ROS) generation. This oxidative stress (OS) may elicit or exacerbate IR. On the other hand, evidence suggests that some of the cellular mechanisms involved in the pathophysiology of obesity and IR-related cardiomyopathy are excessive myocardial ROS production and abnormal Ca(2+) homeostasis. In addition, emerging evidence suggests that augmented ROS production may contribute to Ca(2+) mishandling by affecting the redox state of key proteins implicated in this process. In this review, we focus on the role of Ca(2+) mishandling in the development of cardiac dysfunction in obesity and IR and address the evidence suggesting that OS might also contribute to cardiac dysfunction by affecting Ca(2+) handling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Healthy aging and myocardium: A complicated process with various effects in cardiac structure and physiology.

    Science.gov (United States)

    Nakou, E S; Parthenakis, F I; Kallergis, E M; Marketou, M E; Nakos, K S; Vardas, P E

    2016-04-15

    It is known that there is an ongoing increase in life expectancy worldwide, especially in the population older than 65years of age. Cardiac aging is characterized by a series of complex pathophysiological changes affecting myocardium at structural, cellular, molecular and functional levels. These changes make the aged myocardium more susceptible to stress, leading to a high prevalence of cardiovascular diseases (heart failure, atrial fibrillation, left ventricular hypertrophy, coronary artery disease) in the elderly population. The aging process is genetically programmed but modified by environmental influences, so that the rate of aging can vary widely among people. We summarized the entire data concerning all the multifactorial changes in aged myocardium and highlighting the recent evidence for the pathophysiological basis of cardiac aging. Keeping an eye on the clinical side, this review will explore the potential implications of the age-related changes in the clinical management and on novel therapeutic strategies potentially deriving from the scientific knowledge currently acquired on cardiac aging process. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Biofeedback in psychomotor training. Electrophysiological basis.

    Science.gov (United States)

    Bazanova, O M; Mernaya, E M; Shtark, M B

    2009-06-01

    The influences of individual musical practice and the same practice supplemented with biofeedback using electrophysiological markers for optimum music-performing activity were studied in 39 music students. Traditional technical practice produced increases in integral EMG power and decreases in alpha activity in most of the students with initially low maximum alpha activity peak frequencies. Similar practice but combined with individual sessions of alpha-EEG/EMG biofeedback were accompanied by increases in the frequency, bandwidth, and activation responses of EEG alpha rhythms in all subjects, along with decreases in EEG integral power. The efficacy of training with biofeedback and the ability to experience psychomotor learning depended on the initial individual characteristics of EEG alpha activity.

  14. Cardiac rehabilitation

    Science.gov (United States)

    ... rehab; Heart failure - cardiac rehab References Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: ... of Medicine, Division of Cardiology, Harborview Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed ...

  15. Is there a prognostic relevance of electrophysiological studies in bundle branch block patients?

    Science.gov (United States)

    Bogossian, Harilaos; Frommeyer, Gerrit; Göbbert, Kornelius; Hasan, Fuad; Nguyen, Quy Suu; Ninios, Ilias; Mijic, Dejan; Bandorski, Dirk; Hoeltgen, Reinhard; Seyfarth, Melchior; Lemke, Bernd; Eckardt, Lars; Zarse, Markus

    2017-08-01

    The present European guidelines suggest a diagnostic electrophysiological (EP) study to determine indication for cardiac pacing in patients with bundle branch block and unexplained syncope. We evaluated the prognostic relevance of an EP study for mortality and the development of permanent complete atrioventricular (AV) block in patients with symptomatic bifascicular block and first-degree AV block. The HV interval is a poor prognostic marker to predict the development of permanent AV block in patients with symptomatic bifascicular block (BFB) and AV block I°. Thirty consecutive patients (mean age, 74.8 ± 8.6 years; 25 males) with symptomatic BFB and first-degree AV block underwent an EP study before device implantation, according to current guidelines. For 53 ± 31 months, patients underwent yearly follow-up screening for syncope or higher-degree AV block. Thirty patients presented with prolonged HV interval during the EP study (mean, 82.2 ± 20.1 ms; range, 57-142 ms), classified into 3 groups: group 1, 70 to ≤100 ms (mean, 80 ± 8 ms; range, 70-97 ms; n = 18), and group 3, >100 ms (mean, 119 ± 14 ms; range, 107-142 ms; n = 5). According to the guidelines, patients in groups 2 and 3 received a pacemaker. The length of the HV interval was not associated with the later development of third-degree AV block or with increased mortality. Our present study suggests that an indication for pacemaker implantation based solely on a diagnostic EP study with prolongation of the HV interval is not justified. © 2017 Wiley Periodicals, Inc.

  16. A low-energy x-ray irradiator for electrophysiological studies

    International Nuclear Information System (INIS)

    Schauer, D.A.; Zeman, G.H.; Pellmar, T.C.

    1989-01-01

    A 50 kVp molybdenum target/filter x-ray tube has been installed inside a lead-shielded Faraday cage. High-dose rates of up to 1.54 Gy min -1 (17.4 keV weighted average photons) have been used to conduct local in vitro irradiations of the hippocampal region of guinea pig brains. Electrophysiological recordings of subtle changes in neuronal activity indicate this system is suitable for this application. (author)

  17. Anatomical and electrophysiological changes in striatal TH interneurons after loss of the nigrostriatal dopaminergic pathway.

    Science.gov (United States)

    Ünal, Bengi; Shah, Fulva; Kothari, Janish; Tepper, James M

    2015-01-01

    Using transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the tyrosine hydroxylase (TH) promoter, we have previously shown that there are approximately 3,000 striatal EGFP-TH interneurons per hemisphere in mice. Here, we report that striatal TH-EGFP interneurons exhibit a small, transient but significant increase in number after unilateral destruction of the nigrostriatal dopaminergic pathway. The increase in cell number is accompanied by electrophysiological and morphological changes. The intrinsic electrophysiological properties of EGFP-TH interneurons ipsilateral to 6-OHDA lesion were similar to those originally reported in intact mice except for a significant reduction in the duration of a characteristic depolarization induced plateau potential. There was a significant change in the distribution of the four previously described electrophysiologically distinct subtypes of striatal TH interneurons. There was a concomitant increase in the frequency of both spontaneous excitatory and inhibitory post-synaptic currents, while their amplitudes did not change. Nigrostriatal lesions did not affect somatic size or dendritic length or branching, but resulted in an increase in the density of proximal dendritic spines and spine-like appendages in EGFP-TH interneurons. The changes indicate that electrophysiology properties and morphology of striatal EGFP-TH interneurons depend on endogenous levels of dopamine arising from the nigrostriatal pathway. Furthermore, these changes may serve to help compensate for the changes in activity of spiny projection neurons that occur following loss of the nigrostriatal innervation in experimental or in early idiopathic Parkinson's disease by increasing feedforward GABAergic inhibition exerted by these interneurons.

  18. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Javier Duran

    Full Text Available Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis. Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results

  19. Defining the Intrinsic Cardiac Risks of Operations to Improve Preoperative Cardiac Risk Assessments.

    Science.gov (United States)

    Liu, Jason B; Liu, Yaoming; Cohen, Mark E; Ko, Clifford Y; Sweitzer, Bobbie J

    2018-02-01

    Current preoperative cardiac risk stratification practices group operations into broad categories, which might inadequately consider the intrinsic cardiac risks of individual operations. We sought to define the intrinsic cardiac risks of individual operations and to demonstrate how grouping operations might lead to imprecise estimates of perioperative cardiac risk. Elective operations (based on Common Procedural Terminology codes) performed from January 1, 2010 to December 31, 2015 at hospitals participating in the American College of Surgeons National Surgical Quality Improvement Program were studied. A composite measure of perioperative adverse cardiac events was defined as either cardiac arrest requiring cardiopulmonary resuscitation or acute myocardial infarction. Operations' intrinsic cardiac risks were derived from mixed-effects models while controlling for patient mix. Resultant risks were sorted into low-, intermediate-, and high-risk categories, and the most commonly performed operations within each category were identified. Intrinsic operative risks were also examined using a representative grouping of operations to portray within-group variation. Sixty-six low, 30 intermediate, and 106 high intrinsic cardiac risk operations were identified. Excisional breast biopsy had the lowest intrinsic cardiac risk (overall rate, 0.01%; odds ratio, 0.11; 95% CI, 0.02 to 0.25) relative to the average, whereas aorto-bifemoral bypass grafting had the highest (overall rate, 4.1%; odds ratio, 6.61; 95% CI, 5.54 to 7.90). There was wide variation in the intrinsic cardiac risks of operations within the representative grouping (median odds ratio, 1.40; interquartile range, 0.88 to 2.17). A continuum of intrinsic cardiac risk exists among operations. Grouping operations into broad categories inadequately accounts for the intrinsic cardiac risk of individual operations.

  20. A relationship between bruxism and orofacial-dystonia? A trigeminal electrophysiological approach in a case report of pineal cavernoma

    OpenAIRE

    Frisardi, Gianni; Iani, Cesare; Sau, Gianfranco; Frisardi, Flavio; Leornadis, Carlo; Lumbau, Aurea; Enrico, Paolo; Sirca, Donatella; Staderini, Enrico Maria; Chessa, Giacomo

    2013-01-01

    Background: In some clinical cases, bruxism may be correlated to central nervous system hyperexcitability, suggesting that bruxism may represent a subclinical form of dystonia. To examine this hypothesis, we performed an electrophysiological evaluation of the excitability of the trigeminal nervous system in a patient affected by pineal cavernoma with pain symptoms in the orofacial region and pronounced bruxism. Methods: Electrophysiological studies included bilateral electrical transcrania...

  1. Profound Autonomic Instability Complicated by Multiple Episodes of Cardiac Asystole and Refractory Bradycardia in a Patient with Anti-NMDA Encephalitis

    Directory of Open Access Journals (Sweden)

    Stephanie R. Mehr

    2016-01-01

    Full Text Available Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE is autoimmune encephalitis primarily affecting young adults and children. First described about a decade ago, it frequently manifests as a syndrome that includes progressive behavioral changes, psychosis, central hypoventilation, seizures, and autonomic instability. Although cardiac arrhythmias often accompany anti-NMDARE, the need for long-term electrophysiological support is rare. We describe the case of NMDARE whose ICU course was complicated by progressively worsening episodes of tachyarrhythmia-bradyarrhythmia and episodes of asystole from which she was successfully resuscitated. Her life-threatening episodes of autonomic instability were successfully controlled only after the placement of a permanent pacemaker during her ICU stay. She made a clinical recovery and was discharged to a skilled nursing facility after a protracted hospital course.

  2. Therapy with mesenchymal stromal cells or conditioned medium reverse cardiac alterations in a high-fat diet-induced obesity model.

    Science.gov (United States)

    Daltro, P S; Barreto, B C; Silva, P G; Neto, P Chenaud; Sousa Filho, P H F; Santana Neta, D; Carvalho, G B; Silva, D N; Paredes, B D; de Alcantara, A C; Freitas, L A R; Couto, R D; Santos, R R; Souza, B S F; Soares, M B P; Macambira, S G

    2017-10-01

    Obesity is associated with numerous cardiac complications, including arrhythmias, cardiac fibrosis, remodeling and heart failure. Here we evaluated the therapeutic potential of mesenchymal stromal cells (MSCs) and their conditioned medium (CM) to treat cardiac complications in a mouse model of high-fat diet (HFD)-induced obesity. After obesity induction and HFD withdrawal, obese mice were treated with MSCs, CM or vehicle. Cardiac function was assessed using electrocardiography, echocardiography and treadmill test. Body weight and biochemical parameters were evaluated. Cardiac tissue was used for real time (RT)-polymerase chain reaction (PCR) and histopathologic analysis. Characterization of CM by protein array showed the presence of different cytokines and growth factors, including chemokines, osteopontin, cystatin C, Serpin E1 and Gas 6. HFD-fed mice presented cardiac arrhythmias, altered cardiac gene expression and fibrosis reflected in physical exercise incapacity associated with obesity and diabetes. Administration of MSCs or CM improved arrhythmias and exercise capacity. This functional improvement correlated with normalization of GATA4 gene expression in the hearts of MSC- or CM-treated mice. The gene expression of connexin 43, troponin I, adiponectin, transforming growth factor (TGF) β, peroxisome proliferator activated receptor gamma (PPARγ), insulin-like growth factor 1 (IGF-1), matrix metalloproteinase-9 (MMP9) and tissue inhibitor of metalloproteinases 1 (TIMP1) were significantly reduced in MSCs, but not in CM-treated mice. Moreover, MSC or CM administration reduced the intensity of cardiac fibrosis. Our results suggest that MSCs and CM have a recovery effect on cardiac disturbances due to obesity and corroborate to the paracrine action of MSCs in heart disease models. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI

    Science.gov (United States)

    Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis

    2015-01-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370

  4. [Changes of the neuronal membrane excitability as cellular mechanisms of learning and memory].

    Science.gov (United States)

    Gaĭnutdinov, Kh L; Andrianov, V V; Gaĭnutdinova, T Kh

    2011-01-01

    In the presented review given literature and results of own studies of dynamics of electrical characteristics of neurons, which change are included in processes both an elaboration of learning, and retention of the long-term memory. Literary datas and our results allow to conclusion, that long-term retention of behavioural reactions during learning is accompanied not only by changing efficiency of synaptic transmission, as well as increasing of excitability of command neurons of the defensive reflex. This means, that in the process of learning are involved long-term changes of the characteristics a membrane of certain elements of neuronal network, dependent from the metabolism of the cells. see text). Thou phenomena possible mark as cellular (electrophysiological) correlates of long-term plastic modifications of the behaviour. The analyses of having results demonstrates an important role of membrane characteristics of neurons (their excitability) and parameters an synaptic transmission not only in initial stage of learning, as well as in long-term modifications of the behaviour (long-term memory).

  5. Circulating Histones Are Major Mediators of Cardiac Injury in Patients With Sepsis.

    Science.gov (United States)

    Alhamdi, Yasir; Abrams, Simon T; Cheng, Zhenxing; Jing, Shengjie; Su, Dunhao; Liu, Zhiyong; Lane, Steven; Welters, Ingeborg; Wang, Guozheng; Toh, Cheng-Hock

    2015-10-01

    To investigate the impact of circulating histones on cardiac injury and dysfunction in a murine model and patients with sepsis. Prospective, observational clinical study with in vivo and ex vivo translational laboratory investigations. General ICU and university research laboratory. Sixty-five septic patients and 27 healthy volunteers. Twelve-week-old male C57BL/6N mice. Serial blood samples from 65 patients with sepsis were analyzed, and left ventricular function was assessed by echocardiography. Patients' sera were incubated with cultured cardiomyocytes in the presence or absence of antihistone antibody, and cellular viability was assessed. Murine sepsis was initiated by intraperitoneal Escherichia coli injection (10(8) colony-forming unit/mouse) in 12-week-old male C57BL/6N mice, and the effect of antihistone antibody (10 mg/kg) was studied. Murine blood samples were collected serially, and left ventricular function was assessed by intraventricular catheters and electrocardiography. Circulating histones and cardiac troponins in human and murine plasma were quantified. In 65 patients with sepsis, circulating histones were significantly elevated compared with healthy controls (n = 27) and linearly correlated with cardiac troponin T levels (rs = 0.650; p histone levels were significantly associated with new-onset left ventricular dysfunction (p = 0.001) and arrhythmias (p = 0.01). Left ventricular dysfunction only predicted adverse outcomes when combined with elevated histones or cardiac troponin levels. Furthermore, patients' sera directly induced histone-specific cardiomyocyte death ex vivo, which was abrogated by antihistone antibodies. In vivo studies on septic mice confirmed the cause-effect relationship between circulating histones and the development of cardiac injury, arrhythmias, and left ventricular dysfunction. Circulating histones are novel and important mediators of septic cardiomyopathy, which can potentially be utilized for prognostic and therapeutic

  6. NeoAnalysis: a Python-based toolbox for quick electrophysiological data processing and analysis.

    Science.gov (United States)

    Zhang, Bo; Dai, Ji; Zhang, Tao

    2017-11-13

    In a typical electrophysiological experiment, especially one that includes studying animal behavior, the data collected normally contain spikes, local field potentials, behavioral responses and other associated data. In order to obtain informative results, the data must be analyzed simultaneously with the experimental settings. However, most open-source toolboxes currently available for data analysis were developed to handle only a portion of the data and did not take into account the sorting of experimental conditions. Additionally, these toolboxes require that the input data be in a specific format, which can be inconvenient to users. Therefore, the development of a highly integrated toolbox that can process multiple types of data regardless of input data format and perform basic analysis for general electrophysiological experiments is incredibly useful. Here, we report the development of a Python based open-source toolbox, referred to as NeoAnalysis, to be used for quick electrophysiological data processing and analysis. The toolbox can import data from different data acquisition systems regardless of their formats and automatically combine different types of data into a single file with a standardized format. In cases where additional spike sorting is needed, NeoAnalysis provides a module to perform efficient offline sorting with a user-friendly interface. Then, NeoAnalysis can perform regular analog signal processing, spike train, and local field potentials analysis, behavioral response (e.g. saccade) detection and extraction, with several options available for data plotting and statistics. Particularly, it can automatically generate sorted results without requiring users to manually sort data beforehand. In addition, NeoAnalysis can organize all of the relevant data into an informative table on a trial-by-trial basis for data visualization. Finally, NeoAnalysis supports analysis at the population level. With the multitude of general-purpose functions provided

  7. Breakdown evaluation of corneal epithelial barrier caused by antiallergic eyedrops using an electrophysiologic method.

    Science.gov (United States)

    Nakashima, Mikiro; Nakamura, Tadahiro; Teshima, Mugen; To, Hideto; Uematsu, Masafumi; Kitaoka, Takashi; Taniyama, Kotaro; Nishida, Koyo; Nakamura, Junzo; Sasaki, Hitoshi

    2008-02-01

    The aim of this study was to examine the usefulness of an electrophysiologic method for predicting corneal epithelial breakdown by antiallergic eyedrops and comparing the results with those in other appraisal methods. Six kinds of antiallergic eyedrops, including benzalkonium chloride (BK) as an ophthalmic preservative and two kinds of BK-free antiallergic eyedrops, were used in this study. Eyedrops were applied to excise rabbit corneas and monitoring was performed according to an electrophysiologic method, using a commercially available chamber system to mimic human tear turnover. Changes in transepithelial electrical resistance (TEER) in the corneal surface were recorded. The cytotoxicity of each kind of eyedrops in a normal rabbit corneal epithelial (NRCE) cell line and a human endothelial cell line EA.hy926 was also examined. The extent of decrease in the corneal TEER after applying antiallergic eyedrops was dependent on the concentration of the BK included as a preservative, but it was also affected by the different kinds of drugs when the BK concentration was low. Higher cytotoxicity of the eyedrops against the NRCE and EA.hy926 cell lines was observed with a reduction of TEER. Monitoring changes in the corneal TEER, according to the electrophysiologic method with the application of antiallergic eyedrops, is useful for predicting corneal epithelial breakdown caused by their instillation.

  8. 3D stereotaxis for epileptic foci through integrating MR imaging with neurological electrophysiology data

    International Nuclear Information System (INIS)

    Luo Min; Peng Chenglin; Wang Kang; Lei Wenyong; Luo Song; Wang Xiaolin; Wang Xuejian; Wu Ruoqiu; Wu Guofeng

    2005-01-01

    Objective: To improve the accuracy of the epilepsy diagnoses by integrating MR image from PACS with data from neurological electrophysiology. The integration is also very important for transmiting diagnostic information to 3D TPS of radiotherapy. Methods: The electroencephalogram was redisplayed by EEG workstation, while MR image was reconstructed by Brainvoyager software. 3D model of patient brain was built up by combining reconstructed images with electroencephalogram data in Base 2000. 30 epileptic patients (18 males and 12 females) with their age ranged from 12 to 54 years were confirmed by using the integrated MR images and the data from neurological electrophysiology and their 3D stereolocating. Results: The corresponding data in 3D model could show the real situation of patients' brain and visually locate the precise position of the focus. The suddessful rate of 3D guided operation was greatly improved, and the number of epileptic onset was markedly decreased. The epilepsy was stopped for 6 months in 8 of the 30 patients. Conclusion: The integration of MR image and information of neurological electrophysiology can improve the diagnostic level for epilepsy, and it is crucial for imp roving the successful rate of manipulations and the epilepsy analysis. (authors)

  9. Clinical and electrophysiological aspects of tics in children.

    Science.gov (United States)

    Safiullina, G I; Safiullina, A A

    2015-01-01

    Tics are diverse in nature inappropriate movements or vocalizations. They significantly degrade patients' quality of life, lead to social difficulties, and disturbance of learning especially during exacerbations. The prevalence of tics among children ranges from 4% to 24%, thus emphasizing the relevance of the problem. To study clinical and electrophysiological features of tics in children with development of new treatment methods. We conducted a comprehensive clinical and electrophysiological examination of 50 patients with tics, aged 5 to 15 years. The control group consisted of 20 healthy children. The research included a thorough study of the history, neurological examination, manual testing of skeletal muscles, psychological testing. Electrophysiological examination included a review of the functional state of corticospinal tract (CST) by the method of magnetic stimulation (MS), study of polysynaptic reflex excitability (PRE) according to a late component of the blink reflex (BR). Statistical analysis included parametric and nonparametric methods of data processing. All children of the study group showed signs of minimal brain dysfunction (MBD), they had complicated antenatal and postnatal history (trauma, disease, occurring with intoxication). There was a trend towards the increase of MBD signs with worsening of tics. Manual diagnosis in patients identified functional blockade at different levels of the vertebral column, sacroiliac joints, we identified latent myofascial trigger points (MFTP) mainly in the cervical-collar zone, in the area of the paravertebral muscles, periosteal triggers in the area of the sacroiliac joints.The research allowed determining decrease in propagation velocity of excitation (PVE) throughout CST in patients with tics. Correlation analysis revealed a negative correlation between the severity of tics and PVE (r = -0.38; p tics: I - low and moderate type of reflex responses; and II - high type of reflex responses. Collation of data

  10. Association between dental caries and out-of-hospital cardiac arrests of cardiac origin in Japan.

    Science.gov (United States)

    Suematsu, Yasunori; Miura, Shin-Ichiro; Zhang, Bo; Uehara, Yoshinari; Ogawa, Masahiro; Yonemoto, Naohiro; Nonogi, Hiroshi; Nagao, Ken; Kimura, Takeshi; Saku, Keijiro

    2016-04-01

    Oral infection contributes to atherosclerosis and coronary heart disease. We hypothesized that dental caries may be associated with out-of-hospital cardiac arrests (OHCA) of cardiac origin, but not non-cardiac origin. We compared the age-adjusted incidence of OHCA (785,591 cases of OHCA: 55.4% of cardiac origin and 44.6% of non-cardiac origin) to the age-adjusted prevalence of dental caries between 2005 and 2011 in the 47 prefectures of Japan. In both the total population and males over 65 years, the number of cases of dental caries was significantly associated with the number of OHCA of total and cardiac origin from 2005 to 2011, but not those of non-cardiac origin. In the total population, the age-adjusted prevalence of dental caries was not significantly associated with the age-adjusted incidence of OHCA (total OHCA: r correlation coefficient=0.22, p=0.14; OHCA of cardiac origin: r=0.25, p=0.09; OHCA of non-cardiac origin: r=-0.002, p=0.99). Among male patients over 65 years, the age-adjusted prevalence of dental caries was significantly associated with OHCA of total and cardiac origin, but not non-cardiac origin (total OHCA: r=0.47, p<0.001; OHCA of cardiac origin: r=0.37, p=0.01; OHCA of non-cardiac origin: r=0.28, p=0.054). While oral hygiene is important in all age groups, it may be particularly associated with OHCAs of cardiac origin in males over 65 years. Copyright © 2015. Published by Elsevier Ltd.

  11. Exercise-related cardiac arrest in cardiac rehabilitation - The ...

    African Journals Online (AJOL)

    Prescribed physical activity plays a major role in the rehabilitation of patients with coronary artery disease, and as with any other form of treatment its benefits must be weighed against its possible risks. This study attempted to establish the safety of cardiac rehabilitation as a medical intervention at the Johannesburg Cardiac ...

  12. Identification of cellular targets involved in cardiac failure caused by PKI in oncology: an approach combining pharmacovigilance and pharmacodynamics.

    Science.gov (United States)

    Patras de Campaigno, Emilie; Bondon-Guitton, Emmanuelle; Laurent, Guy; Montastruc, Francois; Montastruc, Jean-Louis; Lapeyre-Mestre, Maryse; Despas, Fabien

    2017-07-01

    The aims of the present study were to evaluate the risk of cardiac failure (CF) associated with 15 anticancer protein kinase inhibitors (PKIs) through a case/noncase analysis and to identify which PK(s) and pathways are involved in PKI-induced CF. In order to evaluate the risk of CF, adjusted reporting odds ratios (aRORs) were calculated for the 15 anticancer PKIs in the World Health Organization safety report database (VigiBase®). We realised a literature review to identify 21 protein kinases (PKs) that were possibly involved in CF caused by PKIs. Pearson correlation coefficients (r) between aRORs and affinity data of the 15 PKIs for the 21 PKs were calculated to identify the cellular target most likely to be involved in PKI-induced CF. A total of 141 601 individual case safety reports (ICSRs) were extracted from VigiBase® for the following PKIs: afatinib, axitinib, bosutinib, crizotinib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, pazopanib, ruxolitinib, sorafenib, sunitinib and vandetanib. Among them, 2594 ICSRs concerned CF. The disproportionality analysis revealed that, for dasatinib, imatinib, bosutinib, sunitinib and nilotinib, disproportionality for CF was significantly higher than for other PKIs, with aRORs of 2.52 [95% CI 2.26, 2.82], 1.79 (95% CI 1.57, 2.03), 1.73 (95% CI 1.18, 2.54), 1.67 (95% CI 1.51, 1.84) and 1.38 (95% CI 1.18, 1.61), respectively. Significant values for correlation coefficients between the product of dissociation constant (pKd) and aROR were observed for two non-receptor protein kinases: ABL1 (non-phosphorylated and phosphorylated forms) and ABL2 protein kinases, with values of r = 0.83 (P = 0.0001), r = 0.75 (P = 0.0014) and r = 0.78 (P = 0.0006), respectively. We observed a higher disproportionality for CF with dasatinib, imatinib, bosutinib, sunitinib and nilotinib than with other PKIs. In addition, the study highlighted the role of ABL tyrosine kinases in CF caused by anticancer PKIs. © 2017 The British

  13. Sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Neeraj Parakh

    2015-01-01

    Full Text Available Sudden cardiac death is one of the most common cause of mortality worldwide. Despite significant advances in the medical science, there is little improvement in the sudden cardiac death related mortality. Coronary artery disease is the most common etiology behind sudden cardiac death, in the above 40 years population. Even in the apparently healthy population, there is a small percentage of patients dying from sudden cardiac death. Given the large denominator, this small percentage contributes to the largest burden of sudden cardiac death. Identification of this at risk group among the apparently healthy individual is a great challenge for the medical fraternity. This article looks into the causes and methods of preventing SCD and at some of the Indian data. Details of Brugada syndrome, Long QT syndrome, Genetics of SCD are discussed. Recent guidelines on many of these causes are summarised.

  14. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Catalán, Mabel; Smolic, Christian [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Contreras, Ariel [Instituto Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile (Chile); Ayala, Pedro; Olmedo, Ivonne; Copaja, Miguel; Boza, Pía; Vivar, Raúl; Avalos, Yennifer [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Lavandero, Sergio [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Instituto Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile (Chile); Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX (United States); Velarde, Victoria [Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago (Chile); Díaz-Araya, Guillermo, E-mail: gadiaz@ciq.uchile.cl [Centro de estudios moleculares de la célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile)

    2012-06-15

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca{sup +2} levels were evaluated with Fluo-4AM; collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca{sup 2+} levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca{sup 2+} levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca{sup 2+} levels. Finally, DAKD increased intracellular Ca{sup 2+} levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was

  15. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    International Nuclear Information System (INIS)

    Catalán, Mabel; Smolic, Christian; Contreras, Ariel; Ayala, Pedro; Olmedo, Ivonne; Copaja, Miguel; Boza, Pía; Vivar, Raúl; Avalos, Yennifer; Lavandero, Sergio; Velarde, Victoria; Díaz-Araya, Guillermo

    2012-01-01

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca +2 levels were evaluated with Fluo-4AM; collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca 2+ levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca 2+ levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca 2+ levels. Finally, DAKD increased intracellular Ca 2+ levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was regulated differentially by

  16. Immune function surveillance: association with rejection, infection and cardiac allograft vasculopathy.

    Science.gov (United States)

    Heikal, N M; Bader, F M; Martins, T B; Pavlov, I Y; Wilson, A R; Barakat, M; Stehlik, J; Kfoury, A G; Gilbert, E M; Delgado, J C; Hill, H R

    2013-01-01

    Rejection, cardiac allograft vasculopathy (CAV), and infection are significant causes of mortality in heart transplantation recipients. Assessing the immune status of a particular patient remains challenging. Although endomyocardial biopsy (EMB) and angiography are effective for the identification of rejection and CAV, respectively, these are expensive, invasive, and may have numerous complications. The aim of this study was to evaluate the immune function and assess its utility in predicting rejection, CAV, and infection in heart transplantation recipients. We prospectively obtained samples at the time of routine EMB and when clinically indicated for measurement of the ImmuKnow assay (IM), 12 cytokines and soluble CD30 (sCD30). EMB specimens were evaluated for acute cellular rejection, and antibody-mediated rejection (AMR). CAV was diagnosed by the development of angiographic coronary artery disease. Infectious episodes occurring during the next 30 days after testing were identified by the presence of positive bacterial or fungal cultures and/or viremia that prompted treatment with antimicrobials. We collected 162 samples from 56 cardiac transplant recipients. There were 31 infection episodes, 7 AMR, and 4 CAV cases. The average IM value was significantly lower during infection, (P = .04). Soluble CD30 concentrations showed significantly positive correlation with infection episodes, (P = .001). Significant positive correlation was observed between interleukin-5(IL-5) and AMR episodes (P = .008). Tumor necrosis factor-α and IL-8 showed significant positive correlation with CAV (P = .001). Immune function monitoring appears promising in predicting rejection, CAV, and infection in cardiac transplantation recipients. This approach may help in more individualized immunosuppression and it may also minimize unnecessary EMBs and cardiac angiographies. Published by Elsevier Inc.

  17. The Acoustic Lens Design and in Vivo Use of a Multifunctional Catheter Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    Science.gov (United States)

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Sahn, David

    2009-01-01

    A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter’s unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. PMID:18407850

  18. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    International Nuclear Information System (INIS)

    Duverger, James Elber; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-01-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction–diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh–Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation. (paper)

  19. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    Science.gov (United States)

    Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-11-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.

  20. Analyzing clinical and electrophysiological characteristics of Paroxysmal Dyskinesia

    Directory of Open Access Journals (Sweden)

    Jue-qian Zhou

    2011-01-01

    Full Text Available The classification, clinical and electrophysiological characteristics, treatment outcome and pathogenesis of paroxysmal dyskinesia were summarized and analyzed. Paroxysmal dyskinesia was classified into three types. Different types had different incentives in clinical practice. Patients were mostly male adolescents, and the attacks, which were in various forms, manifested as dysmyotonia of choreoathetosis, body torsion and facemaking; no disturbance of consciousness during attacks. Electroencephalogram and other examinations showed no specific abnormalities during both the attacks and interictal period. Paroxysmal dyskinesia was an independent disease and different from epilepsy.

  1. Assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring

    NARCIS (Netherlands)

    Jennekens, W.

    2012-01-01

    The aim of this thesis was the assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring, i.e. to evaluate the function of the neonatal cortex and brainstem through quantitative analysis of signals readily available in the NICU. These signals include

  2. Cardiac allograft immune activation: current perspectives

    Directory of Open Access Journals (Sweden)

    Chang D

    2014-12-01

    Full Text Available David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibody-mediated rejection, and chronic rejection. In this review, we will summarize the innate and adaptive immune responses which influence the post-heart transplant recipient. Different forms of rejection and their clinical presentation, detection, and immune monitoring will be discussed. Treatment of heart transplant rejection will be examined. We will discuss potential treatment strategies for preventing rejection post-transplant in immunologically high-risk patients with antibody sensitization. Keywords: heart transplant, innate immunity, adaptive immunity, rejection, immunosuppression

  3. The Impact of Ventricular Assist Device Prior to Transplantation on Morphological Parameters in Cardiac Allografts

    DEFF Research Database (Denmark)

    Wassilew, Katharina

    2017-01-01

    . The Cochran-Mantel-Haenzsel test was applied to assess significance of the differences in interactions between groups. To evaluate the impact of bridge- to- transplant mechanical circulatory support on development on transplant vasculopathy in cardiac allografts, the intramyocardial terminal arterial network...... allograft dysfunction, as MCS patients show a higher frequency of antibody-mediated rejection (AMR) episodes. We aimed to analyze the effects of MCS on cardiac AMR with regards to capillary C3d and C4d depositions. Regarding the functional parameters, both acute cellular rejection (ACR) and an increase...... of interstitial fibrosis (IF) often correlate with impaired ventricular function. The innate immune system, in particular macrophages, plays an important role in the resorptive process of ACR and is, on the other hand, known to promote IF. In this study we aimed to analyze the effect of ACR and specifically...

  4. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter

    2003-01-01

    . A cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct....... The introduction of new powerful HTS electrophysiological techniques is predicted to cause a revolution in ion channel drug discovery....

  5. Pediatric Electrophysiology in India: A Sub-speciality Come of Age

    Directory of Open Access Journals (Sweden)

    Johnson Francis

    2008-05-01

    Full Text Available Electrophysiology started in India in the early 70's with the earliest published diagnostic His bundle studies coming from the All India Institute of Medical Sciences by Bhatia ML et al and the GB Pant Hospital by Khalilullah et al . That era was remarkable with the first indigenously made temporary pacemaker being used to treat complete heart block as early as in 1970

  6. Evidence-based medicine evaluation of electrophysiological studies of the anxiety disorders.

    Science.gov (United States)

    Clark, C Richard; Galletly, Cherrie A; Ash, David J; Moores, Kathryn A; Penrose, Rebecca A; McFarlane, Alexander C

    2009-04-01

    We provide a systematic, evidence-based medicine (EBM) review of the field of electrophysiology in the anxiety disorders. Presently, electrophysiological studies of anxiety focus primarily on etiological aspects of brain dysfunction. The review highlights many functional similarities across studies, but also identifies patterns that clearly differentiate disorder classifications. Such measures offer clinical utility as reliable and objective indicators of brain dysfunction in individuals and indicate potential as biomarkers for the improvement of diagnostic specificity and for informing treatment decisions and prognostic assessments. Common to most of the anxiety disorders is basal instability in cortical arousal, as reflected in measures of quantitative electroencephalography (qEEG). Resting electroencephalographic (EEG) measures tend to correlate with symptom sub-patterns and be exacerbated by condition-specific stimulation. Also common to most of the anxiety disorders are condition-specific difficulties with sensory gating and the allocation and deployment of attention. These are clearly evident from evoked potential (EP) and event-related potential (ERP) electrical measures of information processing in obsessive compulsive disorder (OCD), post-traumatic stress disorder (PTSD), panic disorder (PD), generalized anxiety disorder (GAD) and the phobias. Other'ERP measures clearly differentiate the disorders. However, there is considerable variation across studies, with inclusion and exclusion criteria, medication status and control group selection not standardized within condition or across studies. Study numbers generally preclude analysis for confound removal or for the derivation of diagnostic biomarker patterns at this time. The current trend towards development of databases of brain and cognitive function is likely to obviate these difficulties. In particular, electrophysiological measures of function are likely to play a significant role in the development and

  7. Neo: an object model for handling electrophysiology data in multiple formats

    Directory of Open Access Journals (Sweden)

    Samuel eGarcia

    2014-02-01

    Full Text Available Neuroscientists use many different software tools to acquire, analyse and visualise electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs.A common representation of the core data would improve interoperability and facilitate data-sharing.To that end, we propose here a language-independent object model, named Neo, suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language.In addition to representing electrophysiology data in memory for the purposes of analysis and visualisation, the Python implementation provides a set of input/output (IO modules for reading/writing the data from/to a variety of commonly used file formats.Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB.Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation.For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualisation.Software for neurophysiology data analysis and visualisation built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in

  8. Mobile telephony (cellular) and public health

    International Nuclear Information System (INIS)

    Saravi, F.D.

    2007-01-01

    One third of the world population uses mobile phones or cellular (TM), as possible repercussions on health has resulted in numerous studies. TM and their bases (antennae) exchange information through microwaves, which are non-ionizing electromagnetic radiations. Microwaves have thermal effects, which are avoided by current safety standards. However, there are lingering doubts about possible adverse health consequences of non-thermal effects of microwaves. As a whole, basic and epidemiological research on TM and cancer indicates a very low or nonexistent risk, although longer prospective studies are needed. In the nervous system, TM microwaves cause electrophysiological changes and modifications of blood flow, with little effect on performance. Possible effects on the thyroid gland, the reproductive system, and oxidative stress demand additional research. Some TM users complain of unspecific symptoms, but no causal relationship has been proved either in normal subjects or those self-characterized as hypersensitive to electromagnetic fields. Epidemiological research on populations living close to base stations suggests adverse effects from exposition, but experimental work has yielded contradictory results. The effects on children have just begun to be explored. TM may interfere with medical equipment when the phones are operated very close to the devices. Ironically, the clearest adverse effect of TM has no direct relationship with microwaves. The use of TM while driving causes a decrease in performance comparable to moderate consumption of alcohol and quadruples the risk of accidents. (author) [es

  9. Electrophysiological assessment of water stress in fruit-bearing woody plants.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Tapia, Franco; Gurovich, Luis A

    2014-06-15

    Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a

  10. Electrophysiologic characteristics of tremor in Parkinson?s disease and essential tremor

    Directory of Open Access Journals (Sweden)

    Ederson Cichaczewski

    2014-04-01

    Full Text Available Tremor in essential tremor (ET and Parkinson’s disease (PD usually present specific electrophysiologic profiles, however amplitude and frequency may have wide variations. Objective: To present the electrophysiologic findings in PD and ET. Method: Patients were assessed at rest, with posture and action. Seventeen patients with ET and 62 with PD were included. PD cases were clustered into three groups: predominant rest tremor; tremor with similar intensity at rest, posture and during kinetic task; and predominant kinetic tremor. Results: Patients with PD presented tremors with average frequency of 5.29±1.18 Hz at rest, 5.79±1.39 Hz with posture and 6.48±1.34 Hz with the kinetic task. Tremor in ET presented with an average frequency of 5.97±1.1 Hz at rest, 6.18±1 Hz with posture and 6.53±1.2 Hz with kinetic task. Seven (41.2% also showed rest tremor. Conclusion: The tremor analysis alone using the methodology described here, is not sufficient to differentiate tremor in ET and PD.

  11. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  12. Recurrent late cardiac tamponade following cardiac surgery : a deceiving and potentially lethal complication

    NARCIS (Netherlands)

    Harskamp, Ralf E.; Meuzelaar, Jacobus J.

    2010-01-01

    Background - Cardiac tamponade, characterized by inflow obstruction of the heart chambers by extracardiac compression, is a potentially lethal complication following cardiac surgery. Case report - We present a case of recurrent cardiac tamponade following valve surgery. At first presentation,

  13. Prognostic significance of electrophysiological tests for facial nerve outcome in vestibular schwannoma surgery.

    Science.gov (United States)

    van Dinther, J J S; Van Rompaey, V; Somers, T; Zarowski, A; Offeciers, F E

    2011-01-01

    To assess the prognostic significance of pre-operative electrophysiological tests for facial nerve outcome in vestibular schwannoma surgery. Retrospective study design in a tertiary referral neurology unit. We studied a total of 123 patients with unilateral vestibular schwannoma who underwent microsurgical removal of the lesion. Nine patients were excluded because they had clinically abnormal pre-operative facial function. Pre-operative electrophysiological facial nerve function testing (EPhT) was performed. Short-term (1 month) and long-term (1 year) post-operative clinical facial nerve function were assessed. When pre-operative facial nerve function, evaluated by EPhT, was normal, the outcome from clinical follow-up at 1-month post-operatively was excellent in 78% (i.e. HB I-II) of patients, moderate in 11% (i.e. HB III-IV), and bad in 11% (i.e. HB V-VI). After 1 year, 86% had excellent outcomes, 13% had moderate outcomes, and 1% had bad outcomes. Of all patients with normal clinical facial nerve function, 22% had an abnormal EPhT result and 78% had a normal result. No statistically significant differences could be observed in short-term and long-term post-operative facial function between the groups. In this study, electrophysiological tests were not able to predict facial nerve outcome after vestibular schwannoma surgery. Tumour size remains the best pre-operative prognostic indicator of facial nerve function outcome, i.e. a better outcome in smaller lesions.

  14. Electrophysiological Evidence of Developmental Changes in the Duration of Auditory Sensory Memory.

    Science.gov (United States)

    Gomes, Hilary; And Others

    1999-01-01

    Investigated developmental change in duration of auditory sensory memory for tonal frequency by measuring mismatch negativity, an electrophysiological component of the auditory event-related potential that is relatively insensitive to attention and does not require a behavioral response. Findings among children and adults suggest that there are…

  15. PGC-1{alpha} accelerates cytosolic Ca{sup 2+} clearance without disturbing Ca{sup 2+} homeostasis in cardiac myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Min, E-mail: chenminyx@gmail.com [Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871 (China); Yunnan Centers for Diseases Prevention and Control, Kunming 650022 (China); Wang, Yanru [Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871 (China); Qu, Aijuan [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2010-06-11

    Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+} transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.

  16. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A [Hijiyanna Park, Hiroshima JP; Nakashima, N; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction; (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically; and apparently is not associated with any cardiac abnormality; and (3) focal cardiac myocytolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by non-bacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  17. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A; Nakashima, T; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction, (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically, and apparently is not associated with any cardiac abnormality, and (3) focal cardiac myochtolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by nonbacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  18. Electrophysiology of Hypothalamic Magnocellular Neurons In vitro: A Rhythmic Drive in Organotypic Cultures and Acute Slices.

    Science.gov (United States)

    Israel, Jean-Marc; Oliet, Stéphane H; Ciofi, Philippe

    2016-01-01

    Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  19. Electrophysiology of hypothalamic magnocellular neurons in vitro: a rhythmic drive in organotypic cultures and acute slices

    Directory of Open Access Journals (Sweden)

    Jean-Marc eIsrael

    2016-03-01

    Full Text Available Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  20. Recurrent late cardiac tamponade following cardiac surgery: a deceiving and potentially lethal complication

    NARCIS (Netherlands)

    Harskamp, Ralf E.; Meuzelaar, Jacobus J.

    2010-01-01

    Cardiac tamponade, characterized by inflow obstruction of the heart chambers by extracardiac compression, is a potentially lethal complication following cardiac surgery. We present a case of recurrent cardiac tamponade following valve surgery. At first presentation, diagnosis was delayed because of