WorldWideScience

Sample records for carcinoma molecular cloning

  1. [Advances in Molecular Cloning].

    Science.gov (United States)

    Ashwini, M; Murugan, S B; Balamurugan, S; Sathishkumar, R

    2016-01-01

    "Molecular cloning" meaning creation of recombinant DNA molecules has impelled advancement throughout life sciences. DNA manipulation has become easy due to powerful tools showing exponential growth in applications and sophistication of recombinant DNA technology. Cloning genes has become simple what led to an explosion in the understanding of gene function by seamlessly stitching together multiple DNA fragments or by the use of swappable gene cassettes, maximizing swiftness and litheness. A novel archetype might materialize in the near future with synthetic biology techniques that will facilitate quicker assembly and iteration of DNA clones, accelerating the progress of gene therapy vectors, recombinant protein production processes and new vaccines by in vitro chemical synthesis of any in silico-specified DNA construct. The advent of innovative cloning techniques has opened the door to more refined applications such as identification and mapping of epigenetic modifications and high-throughput assembly of combinatorial libraries. In this review, we will examine the major breakthroughs in cloning techniques and their applications in various areas of biological research that have evolved mainly due to easy construction of novel expression systems. PMID:27028806

  2. Cloning of monomeric human papillomavirus type 16 DNA integrated within cell DNA from a cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Matsukura, T.; Kanda, T.; Furuno, A.; Yoshikawa, H.; Kawana, T.; Yoshiike, K.

    1986-06-01

    The authors have molecularly cloned and characterized monomeric human papillomavirus type 16 DNA with flanking cell DNA sequences from a cervical carcinoma. Determination of nucleotide sequence around the junctions of human papillomavirus and cell DNAs revealed that at the site of integration within cell DNA the cloned viral DNA had a deletion between nucleotides 1284 and 4471 (numbering system from K. Seedorf, G. Kraemmer, M. Duerst, S. Suhai, and W.G. Roewkamp), which includes the greater part of E1 gene and the entire E2 gene. In the remaining part of the E1 gene, three guanines were found at the location where two guanines at nucleotides 1137 and 1138 have been recorded. This additional guanine shifted the reading frame and erased an interruption in the E1 gene. The data strongly suggest that, like other papillomaviruses, human papillomavirus type 16 has an uninterrupted E1 gene.

  3. Molecular cloning of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells.

    OpenAIRE

    Battey, J F; Way, J M; Corjay, M H; Shapira, H; Kusano, K; Harkins, R.; Wu, J M; Slattery, T; Mann, E.; Feldman, R I

    1991-01-01

    The mammalian bombesin-like peptides gastrin-releasing peptide (GRP) and neuromedin B regulate numerous and varied cell physiologic processes in various cell types and have also been implicated as autocrine growth factors influencing the pathogenesis and progression of human small cell lung carcinomas. We report here the molecular characterization of the bombesin/GRP receptor. Structural analysis of cDNA clones isolated from Swiss 3T3 murine embryonal fibroblasts shows that the GRP receptor i...

  4. Exression and Cloning of Apoptosis-related Gene and Its Association with Hepatocellular Carcinoma in Qidong

    Institute of Scientific and Technical Information of China (English)

    LUDongdong; ZHANGXiran; 等

    2002-01-01

    Objective:To explore the molecular basis of hepatocarcinogenesis by cloning and expressing a novel liver cancer apoptosis -related gene.Methods:With homologous screening and RT-PCR,we had cloned an apoptosis-related gene APG from liver cancer cells,compared its expression in hepatocellular carcinoma(HCC) tissue and paracarcinoma tissue,and analyzed its sequence from these tissues.The association of APG gene expression with HCC was investigated.Results:A new gene APG was cloned with a full-legth cDNA of 563 bp.Sequencing analysis showed heterogeneity of APG gene from hepatocarcinoma tissue and from paracarcinoma tissue.Among 50 cases of liver cancer,APG gene expressions were down-regulated in 42 cases(84%) ,while up-regulated in 8 cases(16%,P0.05).Conclusion APG is an appoptosis-relate gene and down-regualted in HCC.Its expression is associated with many clinical and pathologic features of HCC,suggesting that APG gene is probably involved in the tumorigenesis of HCC.

  5. MOLECULAR CLONING OF HUMAN NEUROTROPHIN-4 GENE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Cloning and sequencing of the human neurotrophin-4(hNT-4) gene.Methods With the chromosomal DNA of human blood lymphocytes as template,hNT-4 coding genes were amplified by polymerase chain reaction(PCR) and recombinated into phage vector pGEM-T Easy,which were sequenced by using Sanger's single stranded DNA terminal termination method.Results The sequence of the cloned gene is completely the same as that reported in the literature(GenBank data base,M86528).Conclusion This study successfully cloning and sequenced the gene of mhNT-4,and it would be convenient for us to study the expression of mhNT-4 in eukaryote,and to continue the research on the gene therapy of Alzheimer's disease intensively.This study indicate that the hNT-4 is conservative in different races and individuals.

  6. Molecular cloning and amplification of the adenylate cyclase gene.

    OpenAIRE

    Wang, J Y; Clegg, D O; Koshland, D E

    1981-01-01

    A segment of DNA containing cya, the gene for adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1], has been isolated from Salmonella typhimurium. The phage lambda gt4 was used as a cloning vector and adenylate cyclase-positive hybrid phages were isolated that complemented adenylate cyclase-negative bacteria. The cloned DNA fragment encodes a polypeptide of molecular weight 81,000 that gives rise to adenylate cyclase activity. This protein represents a functional mutant of the ...

  7. Molecular cloning and characterization of multidomain xylanase from manure library

    Science.gov (United States)

    The gene (manf-x10) encoding xylanase from an environmental genomic DNA library was cloned and expressed in Escherichia coli. The encoded enzyme was predicted to be 467 amino acids with a molecular mass of 50.3 kD. The recombinant ManF-X10 was purified by HisTrap affinity column and showed activit...

  8. Molecular Analysis of Mixed Endometrial Carcinomas Shows Clonality in Most Cases.

    Science.gov (United States)

    Köbel, Martin; Meng, Bo; Hoang, Lien N; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C Blake; Lee, Cheng-Han

    2016-02-01

    Mixed endometrial carcinoma refers to a tumor that comprises 2 or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas-11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade ECs (CCC/EC), and 2 mixed CCC and SCs (CCC/SC), using targeted next-generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC, and 1 SC/CCC) showed an SC molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch-repair protein deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and 1 EC/CCC case showed both shared and unique molecular features in the 2 histotype components, suggesting early molecular divergence from a common clonal origin. In 2 cases, there were no shared molecular features, and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphologic mimicry, whereby tumors with serous-type molecular profile show morphologic features of EC or CCC, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors).

  9. Advances and applications of molecular cloning in clinical microbiology.

    Science.gov (United States)

    Sharma, Kamal; Mishra, Ajay Kumar; Mehraj, Vikram; Duraisamy, Ganesh Selvaraj

    2014-10-01

    Molecular cloning is based on isolation of a DNA sequence of interest to obtain multiple copies of it in vitro. Application of this technique has become an increasingly important tool in clinical microbiology due to its simplicity, cost effectiveness, rapidity, and reliability. This review entails the recent advances in molecular cloning and its application in the clinical microbiology in the context of polymicrobial infections, recombinant antigens, recombinant vaccines, diagnostic probes, antimicrobial peptides, and recombinant cytokines. Culture-based methods in polymicrobial infection have many limitation, which has been overcome by cloning techniques and provide gold standard technique. Recombinant antigens produced by cloning technique are now being used for screening of HIV, HCV, HBV, CMV, Treponema pallidum, and other clinical infectious agents. Recombinant vaccines for hepatitis B, cholera, influenza A, and other diseases also use recombinant antigens which have replaced the use of live vaccines and thus reduce the risk for adverse effects. Gene probes developed by gene cloning have many applications including in early diagnosis of hereditary diseases, forensic investigations, and routine diagnosis. Industrial application of this technology produces new antibiotics in the form of antimicrobial peptides and recombinant cytokines that can be used as therapeutic agents. PMID:25023463

  10. A Practical Evaluation of Next Generation Sequencing & Molecular Cloning Software

    OpenAIRE

    Meintjes, Peter; Qaadri, Kashef; Olsen, Christian

    2013-01-01

    Laboratories using Next Generation Sequencing (NGS) technologies and/ or high-throughput molecular cloning experiments can spend a significant amount of their research budget on data analysis and data management. The decision to develop in-house software, to rely on combinations of free software packages, or to purchase commercial software can significantly affect productivity and ROI. In this talk, we will describe a practical software evaluation process that was developed to assist core fac...

  11. Molecular pathology of breast apocrine carcinomas

    DEFF Research Database (Denmark)

    Celis, J.E.; Gromova, I.; Gromov, P.;

    2006-01-01

    Breast cancer is a heterogeneous disease that encompasses a wide range of histopathological types including: invasive ductal carcinoma, lobular carcinoma, medullary carcinoma, mucinous carcinoma, tubular carcinoma, and apocrine carcinoma among others. Pure apocrine carcinomas represent about 0...... benign apocrine changes and breast carcinoma is unclear and has been a matter of discussion for many years. Recent proteome expression profiling studies of breast apocrine macrocysts, normal breast tissue, and breast tumours have identified specific apocrine biomarkers [15-hydroxyprostaglandin...... dehydrogenase (15-PGDH) and hydroxymethylglutaryl coenzyme A reductase (HMG-CoA reductase)] present in early and advanced apocrine lesions. These biomarkers in combination with proteins found to be characteristically upregulated in pure apocrine carcinomas (psoriasin, S100A9, and p53) provide a protein...

  12. Molecular photoacoustic imaging of follicular thyroid carcinoma

    DEFF Research Database (Denmark)

    Levi, Jelena; Kothapalli, Sri-Rajashekar; Bohndiek, Sarah;

    2013-01-01

    Purpose To evaluate the potential of targeted photoacoustic imaging as a non-invasive method for detection of follicular thyroid carcinoma. Experimental Design We determined the presence and activity of two members of matrix metalloproteinase family (MMP), MMP-2 and MMP-9, suggested as biomarkers...... for malignant thyroid lesions, in FTC133 thyroid tumors subcutaneously implanted in nude mice. The imaging agent used to visualize tumors was MMP activatable photoacoustic probe, Alexa750-CXeeeeXPLGLAGrrrrrXK-BHQ3. Cleavage of the MMP activatable agent was imaged after intratumoral and intravenous injections...... in living mice optically, observing the increase in Alexa750 fluorescence, and photoacoustically, using a dual wavelength imaging method. Results Active forms of both MMP2 and MMP-9 enzymes were found in FTC133 tumor homogenates, with MMP-9 detected in greater amounts. The molecular imaging agent...

  13. The prognostic molecular markers in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Lun-Xiu Qin; Zhao-You Tang

    2002-01-01

    The prognosis of hepatocellular carcinoma (HCC) stillremains dismal, although many advances in its clinicalstudy have been made. It is important for tumor control toidentity the factors that predispose patients to death. Withnew discoveries in cancer biology, the pathological andbiological prognostic factors of HCC have been studied quiteextensively. Analyzing molecular markers (biomarkers) withprognostic significance is a complementary method. A largenumber of molecular factors have been shown to associatewith the invasiveness of HCC, and have potential prognosticsignificance. One important aspect is the analysis ofmolecular markers for the cellular malignancy phenotypeThese include alterations in DNA ploidy, cellularproliferation markers (PCNA, Ki-67, Mcm2, MIB1, MIA, andCSE1L/CAS protein), nuclear morphology, the p53 geneand its related molecule MDM2, other cell cycle regulators(cyclin A, cyclin D, cyclin E, cdc2, p27, p73), oncogenesand their receptors (such as ras, c-myc, c-fms, HGF, c-met, and erb-B receptor family members ), apoptosisrelated factors (Fas and FasL), as well as telomeraseactivity. Another important aspect is the analysis ofmolecular markers involved in the process of cancerinvasion and metastasis. Adhesion molecules (E-cadherin,catenins, serum intercellular adhesion molecule-1, CD44variants), proteinases involved in the clegradation ofextracellular matrix (MMP-2, MMP-9, uPA, uPAR, PAl), aswell as other molecules have been regarded as biomarkersfor the malignant phenotype of HCC, and are related toprognosis and therapeutic outcomes. Tumor angiogenesisis critical to both the growth and metastasis of cancersincluding HCC, and has drawn much attention in recentyears. Many angiogenesis-related markers, such as vascularendothelial growth factor (VEGF), basic fibroblast growthfactor (bFGF), platelet-derived endothelial cell growth factor( PD-ECGF ), thrombospondin ( TSP ), angiogenin,pleiotrophin, and endostatin (ES) levels, as well asinratumor

  14. Molecular cloning of the extracellular endodextranase of Streptococcus salivarius.

    Science.gov (United States)

    Lawman, P; Bleiweis, A S

    1991-01-01

    We report the cloning in Escherichia coli of the gene encoding an extracellular endodextranase (alpha-1,6-glucanhydrolase, EC 3.2.1.11) from Streptococcus salivarius PC-1. Recombinants from a S. salivarius PC-1-Lambda ZAP II genomic library specifying dextranase activity were identified as plaques surrounded by zones of clearing on blue dextran agar. One such clone, PD1, had a 6.3-kb EcoRI fragment insert which encoded a 190-kDa protein with dextranase activity. The recombinant strain also produced two lower-molecular-mass polypeptides (90 and 70 kDa) that had dextranase activity. Native dextranase was recovered from concentrated culture fluids of S. salivarius as a single 110-kDa polypeptide. PD1 phage lysate and PC-1 culture supernatant fluid extract were used to measure substrate specificity of the recombinant and native forms of dextranase, respectively. Analysis of these reaction products by thin-layer chromatography revealed the expected isomaltosaccharide products yielded by the recombinant-specified enzyme but was unable to resolve the larger polysaccharide products of the native enzyme. Furthermore, S. salivarius utilized neither the substrates nor the products of dextran hydrolysis for growth. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 PMID:1938938

  15. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    Science.gov (United States)

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  16. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  17. Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates

    Science.gov (United States)

    Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang

    2009-01-01

    We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students a chance…

  18. Comprehensive Molecular Characterization of Papillary Renal Cell Carcinoma

    Science.gov (United States)

    Linehan, W. Marston; Spellman, Paul T.; Ricketts, Christopher J.; Creighton, Chad J.; Fei, Suzanne S.; Davis, Caleb; Wheeler, David A.; Murray, Bradley A.; Schmidt, Laura; Vocke, Cathy D.; Peto, Myron; Al Mamun, Abu Amar M.; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W. Kimryn; Brooks, Angela N.; Hoadley, Katherine A.; Robertson, A. Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J.; Bootwalla, Moiz; Baylin, Stephen B.; Laird, Peter W.; Cherniack, Andrew D.; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B.; Akbani, Rehan; Leiserson, Mark D.M.; Raphael, Benjamin J.; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K.; Czerniak, Bogdan; Godwin, Andrew K.; Hakimi, A. Ari; Ho, Thai; Hsieh, James; Ittmann, Michael; Kim, William Y.; Krishnan, Bhavani; Merino, Maria J.; Mills Shaw, Kenna R.; Reuter, Victor E.; Reznik, Ed; Shelley, Carl Simon; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D.; Penny, Robert J.; Shelton, Candace; Shelton, W. Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T.; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A.; Felau, Ina; Hutter, Carolyn M.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S.N.; Carlsen, Rebecca; Carter, Scott L.; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R.; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, HarshaVardhan; Drummond, Jennifer; Gabriel, Stacey B.; Gibbs, Richard A.; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D. Neil; Holt, Robert A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Steven J.M.; Jones, Corbin D.; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Moore, Richard A.; Morton, Donna; Mose, Lisle E.; Mungall, Andrew J.; Muzny, Donna; Parker, Joel S.; Perou, Charles M.; Roach, Jeffrey; Schein, Jacqueline E.; Schumacher, Steven E.; Shi, Yan; Simons, Janae V.; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G.; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D.; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N.; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J. Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L.; Boice, Lori; Bollag, Roni J.; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C.; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K.; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L.; Slaton, Joel; Stanton, Melissa; Thompson, R. Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M.; Winemiller, Cythnia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-01

    Background Papillary renal cell carcinoma, accounting for 15% of renal cell carcinoma, is a heterogeneous disease consisting of different types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal cell carcinoma; no effective forms of therapy for advanced disease exist. Methods We performed comprehensive molecular characterization utilizing whole-exome sequencing, copy number, mRNA, microRNA, methylation and proteomic analyses of 161 primary papillary renal cell carcinomas. Results Type 1 and Type 2 papillary renal cell carcinomas were found to be different types of renal cancer characterized by specific genetic alterations, with Type 2 further classified into three individual subgroups based on molecular differences that influenced patient survival. MET alterations were associated with Type 1 tumors, whereas Type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-ARE pathway. A CpG island methylator phenotype (CIMP) was found in a distinct subset of Type 2 papillary renal cell carcinoma characterized by poor survival and mutation of the fumarate hydratase (FH) gene. Conclusions Type 1 and Type 2 papillary renal cell carcinomas are clinically and biologically distinct. Alterations in the MET pathway are associated with Type 1 and activation of the NRF2-ARE pathway with Type 2; CDKN2A loss and CIMP in Type 2 convey a poor prognosis. Furthermore, Type 2 papillary renal cell carcinoma consists of at least 3 subtypes based upon molecular and phenotypic features. PMID:26536169

  19. [Basal cell carcinoma. Molecular genetics and unusual clinical features].

    Science.gov (United States)

    Reifenberger, J

    2007-05-01

    Basal cell carcinoma is the most common human cancer. Its incidence is steadily increasing. The development of basal cell carcinoma is linked to genetic factors, including the individual skin phototype, as well as the cumulative exposure to UVB. The vast majority of basal cell carcinomas are sporadic tumors, while familial cases associated with certain hereditary syndromes are less common. At the molecular level, basal cell carcinomas are characterized by aberrant activation of sonic hedgehog signaling, usually due to mutations either in the ptch or smoh genes. In addition, about half of the cases carry mutations in the tp53 tumor suppressor gene, which are often UVB-associated C-->T transition mutations. Clinically, basal cell carcinomas may show a high degree of phenotypical variability. In particular, tumors occurring in atypical locations, showing an unusual clinical appearance, or imitating other skin diseases may cause diagnostic problems. This review article summarizes the current state of the art concerning the etiology, predisposition and molecular genetics of basal cell carcinoma. In addition, examples of unusual clinical manifestations are illustrated. PMID:17440702

  20. Apocrine-eccrine carcinomas: molecular and immunohistochemical analyses.

    Directory of Open Access Journals (Sweden)

    Long P Le

    Full Text Available Apocrine-eccrine carcinomas are rare and associated with poor prognosis. Currently there is no uniform treatment guideline. Chemotherapeutic drugs that selectively target cancer-promoting pathways may complement conventional therapeutic approaches. However, studies on genetic alterations and EGFR and Her2 status of apocrine-eccrine carcinomas are few in number. In addition, hormonal studies have not been comprehensive and performed only on certain subsets of apocrine-eccrine carcinomas. To investigate whether apocrine-eccrine carcinomas express hormonal receptors or possess activation of oncogenic pathways that can be targeted by available chemotherapeutic agent we performed immunohistochemistry for AR, PR, ER, EGFR, and HER2 expression; fluorescence in situ hybridization (FISH for EGFR and ERBB2 gene amplification; and molecular analyses for recurrent mutations in 15 cancer genes including AKT-1, EGFR, PIK3CA, and TP53 on 54 cases of apocrine-eccrine carcinomas. They include 10 apocrine carcinomas, 7 eccrine carcinomas, 9 aggressive digital papillary adenocarcinomas, 10 hidradenocarcinomas, 11 porocarcinomas, 1 adenoid cystic carcinoma, 4 malignant chondroid syringomas, 1 malignant spiradenoma, and 1 malignant cylindroma. AR, ER, PR, EGFR and HER2 expression was seen in 36% (19/53, 27% (14/51, 16% (8/51, 85% (44/52 and 12% (6/52, respectively. Polysomy or trisomy of EGFR was detected by FISH in 30% (14/46. Mutations of AKT-1, PIK3CA, and TP53 were detected in 1, 3, and 7 cases, respectively (11/47, 23%. Additional investigation regarding the potential treatment of rare cases of apocrine-eccrine carcinomas with PI3K/Akt/mTOR pathway inhibitors, currently in clinical testing, may be of clinical interest.

  1. Molecular cloning of gluconobacter oxydans DSM 2003 xylitol dehydrogenase gene

    OpenAIRE

    Sadeghi, H. Mir Mohammad; Ahmadi, R; Aghaabdollahian, S.; Mofid, M.R.; Ghaemi, Y.; Abedi, D

    2011-01-01

    Due to the widespread applications of xylitol dehydrogenase, an enzyme used for the production of xylitol, the present study was designed for the cloning of xylitol dehydrogenase gene from Glcunobacter oxydans DSM 2003. After extraction of genomic DNA from this bacterium, xylitol dehydrogenase gene was replicated using polymerase chain reaction (PCR). The amplified product was entered into pTZ57R cloning vector by T/A cloning method and transformation was performed by heat shocking of the E. ...

  2. A new approach for molecular cloning in cyanobacteria: cloning of an anacystis nidulans met gene using a Tn 907-induced mutant

    NARCIS (Netherlands)

    Tandeau de Marsac, N.; Borrias, W.E.; Kuhlemeijer, C.J.; Castets, A.M.; Arkel, G.A. van; Hondel, C.A.M.J.J. van den

    1982-01-01

    A new strategy for molecular cloning in the cyanobacterium Anacystis nidulans R-2 is described. This strategy involved the use of a transposon and was developed for the cloning of a gene encoding methionine biosynthesis. A met::Tn 901 mutant was isolated. Chromosomal DNA fragments were cloned in the

  3. Cloning and expression of ornithine decarboxylase gene from human colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hai-Yan Hu; Xiao-Ming Wang; Wei Wang; Xian-Xi Liu; Chun-Ying Jiang; Yan Zhang; Ji-Feng Bian; Yi Lu; Zhao Geng; Shi-Lian Liu; Chuan-Hua Liu

    2003-01-01

    AIM: To construct and express ODC recombinant gene for further exploring its potential use in early diagnosis of colorectal carcinoma.METHODS: Total RNA was extracted from colon cancer tissues and amplified by reverse-transcription PCR with two primers, which span the whole coding region of ODC. The synthesized ODC cDNA was cloned into vector pQE-30 at restriction sites BamH I and Sal I which constituted recombinant expression plasmid pQE30-ODC. The sequence of inserted fragment was confirmed by DNA sequencing,the fusion protein including 6His-tag was facilitated for purification by Ni-NTA chromatographic column.RESULTS: ODC expression vector was constructed and confirmed with restriction enzyme digestion and subsequent DNA sequencing. The DNA sequence matching on NCBI Blast showed 99 % affinity. The vector was transformed into E.coli M15 and expressed. The expressed ODC protein was verified with Western blotting.CONCLUSION: The ODC prokaryote expression vector is constructed and thus greatly facilitates to study the role of ODC in colorectal carcinoma.

  4. Cloning

    Science.gov (United States)

    ... copies of whole animals Therapeutic cloning, which creates embryonic stem cells. Researchers hope to use these cells to grow healthy tissue to replace injured or diseased tissues in the human body. NIH: National Human Genome Research Institute

  5. MOLECULAR CLONING OF OVINE cDNA LEPTIN GENE

    OpenAIRE

    CLAUDIA TEREZIA SOCOL; A. VLAIC; VIORICA COSIER

    2013-01-01

    An efficient bacterial transformation system suitable for cloning the coding sequence of the ovine leptin gene in E. coli DH5α host cells using the pGEMT easy vector it is described in this paper. The necessity of producing leptin is based on the fact that the role of this molecule in the animal and human organism is still unknown, leptin not existing as commercial product on the Romanian market. The results obtained in the bacterial transformation, cloning, recombinant clones selection, cont...

  6. Molecular cloning of nif DNA from Azotobacter vinelandii.

    OpenAIRE

    Bishop, P E; Rizzo, T M; Bott, K F

    1985-01-01

    Two clones which contained nif DNA were isolated from a clone bank of total EcoRI-digested Azotobacter vinelandii DNA. The clones carrying the recombinant plasmids were identified by use of the 32P-labeled 6.2-kilobase (kb) nif insert from pSA30 (which contains the Klebsiella pneumoniae nifK, nifD, and nifH genes) as a hybridization probe. Hybridization analysis with fragments derived from the nif insert of pSA30 showed that the 2.6-kb insert from one of the plasmids (pLB1) contains nifK wher...

  7. Molecular cloning of the genome of human spumaretrovirus

    OpenAIRE

    Rethwilm, Axel; Darai, G; Rösen, A.; Maurer, Bernd; Flügel, Rolf M.

    2011-01-01

    DNA ofhuman spumaretrovirus (HSRV) was cloned from both cDNA and from viral DNA into phage A and bacterial plasmid vectors. The recombinant plasm.ids harboring viral DNA were characterized by Southern blot hybridization and restriction mapping. Physical maps were constructed from cDNA and found to be colinear with the restriction maps obtained from viral DNA. The recombinant clones isolated contained viral DNA inserts which rangein size from 2.2 kb to 15.4 kb. The recombinant clones allowed t...

  8. Molecular therapy for the treatment of hepatocellular carcinoma

    OpenAIRE

    Greten, T.F.; Korangy, F; Manns, M P; Malek, N. P.

    2008-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Conventional cytotoxic chemotherapy has failed to show a substantial benefit for patients with HCC. Recently, a number of new drugs targeting molecular mechanisms involved in liver cell transformation have entered into clinical trials and led to encouraging results. In this review we summarise this data and point to a number of new compounds, which are currently being tested and can potentially broaden our therapeutic a...

  9. Using Molecular Biology to Develop Drugs for Renal Cell Carcinoma

    Science.gov (United States)

    Cowey, C. Lance; Rathmell, W. Kimryn

    2010-01-01

    Background Renal cell carcinoma is a disease marked by a unique biology which has governed it’s long history of poor response to conventional cancer treatments. The discovery of the signaling pathway activated as a result of inappropriate constitutive activation of the hypoxia inducible factors (HIF), transcription factors physiologically and transiently stabilized in response to low oxygen, has provided a primary opportunity to devise treatment strategies to target this oncogenic pathway. Objective A review of the molecular pathogenesis of renal cell cancer as well as molecularly targeted therapies, both those currently available and those in development, will be provided. In addition, trials involving combination or sequential targeted therapy are discussed. Methods A detailed review of the literature describing the molecular biology of renal cell cancer and novel therapies was performed and summarized. Results/Conclusion Therapeutics targeting angiogenesis have provided the first class of agents which provide clinical benefit in a large majority of patients and heralded renal cell carcinoma as a solid tumor paradigm for the development of novel therapeutics. Multiple strategies targeting this pathway and now other identified pathways in renal cell carcinoma provide numerous potential opportunities to make major improvements in treating this historically devastating cancer. PMID:20648240

  10. MOLECULAR CLONING OF OVINE cDNA LEPTIN GENE

    Directory of Open Access Journals (Sweden)

    CLAUDIA TEREZIA SOCOL

    2013-12-01

    Full Text Available An efficient bacterial transformation system suitable for cloning the coding sequence of the ovine leptin gene in E. coli DH5α host cells using the pGEMT easy vector it is described in this paper. The necessity of producing leptin is based on the fact that the role of this molecule in the animal and human organism is still unknown, leptin not existing as commercial product on the Romanian market. The results obtained in the bacterial transformation, cloning, recombinant clones selection, control of the insertion experiments and DNA computational analysis represent the first steps in further genetic engineering experiments such as production of DNA libraries, DNA sequencing, protein expression, etc., for a further contribution in elucidating the role of leptin in the animal and human organism.

  11. Molecular cloning of the extracellular endodextranase of Streptococcus salivarius.

    OpenAIRE

    Lawman, P; Bleiweis, A S

    1991-01-01

    We report the cloning in Escherichia coli of the gene encoding an extracellular endodextranase (alpha-1,6-glucanhydrolase, EC 3.2.1.11) from Streptococcus salivarius PC-1. Recombinants from a S. salivarius PC-1-Lambda ZAP II genomic library specifying dextranase activity were identified as plaques surrounded by zones of clearing on blue dextran agar. One such clone, PD1, had a 6.3-kb EcoRI fragment insert which encoded a 190-kDa protein with dextranase activity. The recombinant strain also pr...

  12. Molecular cloning of lupin leghemoglobin cDNA

    DEFF Research Database (Denmark)

    Konieczny, A; Jensen, E O; Marcker, K A;

    1987-01-01

    Poly(A)+ RNA isolated from root nodules of yellow lupin (Lupinus luteus, var. Ventus) has been used as a template for the construction of a cDNA library. The ds cDNA was synthesized and inserted into the Hind III site of plasmid pBR 322 using synthetic Hind III linkers. Clones containing sequences...... its nucleotide sequence was consistent with known amino acid sequence of lupin Lb II. The cloned lupin Lb cDNA hybridized to poly(A)+ RNA from nodules only, which is in accordance with the general concept, that leghemoglobin is expressed exclusively in nodules. Udgivelsesdato: 1987-null...

  13. Cloning and characterization of a novel gene (C17orf25) from the deletion region on chromosome 17p13.3 in hepatocelular carcinoma

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using a combination of hybridization of PAC to a cDNA library and RACE technique, we isolated a novel cDNA, designated as C17orf25 (Chromosome 17 open reading frame 25, previously named it HC71A), from the deletion region on chromosome 17p13.3. The cDNA encodes a protein of 313 amino acids with a calculated molecular mass of 34.8 kDa. C17orf25 is divided into 10 exons and 9 introns, spanning 23 kb of genomic DNA. Northern blot analysis showed that the mRNA expression of C17orf25 was decreased in hepatocellular carcinoma samples as compared to adjacent noncancerous liver tissues from the same patients. The transfection of C17orf25 into the hepatocellular carcinoma cell SMMC7721 and overexpression could inhibit the cell growth. The above results indicate that C17orf25 is a novel human gene, and the cloning and preliminary characterization of C17orf25 is a prerequisite for further functional analysis of this novel gene in human hepatocellular carcinoma.

  14. Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide

    DEFF Research Database (Denmark)

    Röpke, M; Hald, J; Guldberg, Per;

    1996-01-01

    A cytotoxic T lymphocyte (CTL) clone generated in vitro from the peripheral blood of a healthy HLA-A2-positive individual against a synthetic p53 protein-derived wild-type peptide (L9V) was shown to kill squamous carcinoma cell lines derived from two head and neck carcinomas, which expressed mutant...

  15. Molecular cloning of the human excision repair gene ERCC-6.

    NARCIS (Netherlands)

    C. Troelstra (Christine); H. Odijk (Hanny); J. de Wit (Jan); A. Westerveld (Andries); L.H. Thompson; D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1990-01-01

    textabstractThe UV-sensitive, nucleotide excision repair-deficient Chinese hamster mutant cell line UV61 was used to identify and clone a correcting human gene, ERCC-6. UV61, belonging to rodent complementation group 6, is only moderately UV sensitive in comparison with mutant lines in groups 1 to 5

  16. Molecular cloning of gluconobacter oxydans DSM 2003 xylitol dehydrogenase gene

    Science.gov (United States)

    Sadeghi, H. Mir Mohammad; Ahmadi, R.; Aghaabdollahian, S.; Mofid, M.R.; Ghaemi, Y.; Abedi, D.

    2011-01-01

    Due to the widespread applications of xylitol dehydrogenase, an enzyme used for the production of xylitol, the present study was designed for the cloning of xylitol dehydrogenase gene from Glcunobacter oxydans DSM 2003. After extraction of genomic DNA from this bacterium, xylitol dehydrogenase gene was replicated using polymerase chain reaction (PCR). The amplified product was entered into pTZ57R cloning vector by T/A cloning method and transformation was performed by heat shocking of the E. coli XL1-blue competent cells. Following plasmid preparation, the cloned gene was digested out and ligated into the expression vector pET-22b(+). Electrophoresis of PCR product showed a 789 bp band. Recombinant plasmid (rpTZ57R) was then constructed. This plasmid was double digested with XhoI and EcoRI resulting in 800 bp and 2900 bp bands. The obtained insert was ligated into pET-22b(+) vector and its orientation was confirmed with XhoI and BamHI restriction enzymes. In conclusion, in the present study the recombinant expression vector containing xylitol dehydrogenase gene has been constructed and can be used for the production of this enzyme in high quantities. PMID:22110522

  17. Molecular cloning and functional characterization of avian interleukin-19

    Science.gov (United States)

    The present study describes the cloning and functional characterization of avian interleukin (IL)-19, a cytokine that, in mammals, alters the balance of Th1 and Th2 cells in favor of the Th2 phenotype. The full-length avian IL-19 gene, located on chromosome 26, was amplified from LPS-stimulated chi...

  18. Molecular cloning and characterization of duck interleukin-17

    Science.gov (United States)

    Interleukin-17 (IL-17) belonging to the Th17 family is a proinflammatory cytokine produced by activated T cells. A 1034-bp cDNA encoding duck IL-17 (duIL-17) was cloned from ConA-activated splenic lymphocytes of ducks. The encoded protein, predicted to consisted of 169 amino acids, displayed a molec...

  19. Molecular Cloning and Analysis of a DNA Repetitive Element from the Mouse Genome

    Science.gov (United States)

    Geisinger, Adriana; Cossio, Gabriela; Wettstein, Rodolfo

    2006-01-01

    We report the development of a 3-week laboratory activity for an undergraduate molecular biology course. This activity introduces students to the practice of basic molecular techniques such as restriction enzyme digestion, agarose gel electrophoresis, cloning, plasmid DNA purification, Southern blotting, and sequencing. Students learn how to carry…

  20. Cytogenetic and molecular genetic alterations in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Sze-hang LAU; Xin-yuan GUAN

    2005-01-01

    Specific chromosome aberrations are frequently detected during the development of hepatocellular carcinoma. Molecular cytogenetic approaches such as comparative genomic hybridization and loss of heterozygosity analyses have provided fruitful information on changes in HCC cases at the genomic level. Mapping of chromosome gains and losses have frequently resulted in the identification of oncogenes and tumor suppressors, respectively. In this review, we summarize some frequently detected chromosomal aberrations reported for hepatocellular carcinoma cases using comparative genomic hybridization and loss of heterozygosity studies. Focus will be on gains of 1q, 8q, and 20q, and losses of 4q,8p, 13q, 16q, and 17p. We then examine the candidate oncogenes and tumor suppressors located within these regions, and explore their possible functions in hepatocarcinogenesis. Finally, the impact of microarray-based screening platforms will be discussed.

  1. Application of high molecular weight DNA cloning in legume nodulation gene analysis

    International Nuclear Information System (INIS)

    High molecular weight (HMW) DNA was isolated from Glycine max (soybean) and the model legume Lotus japonicus for the purpose of legume genome analysis. The primary objectives were the gene regions that control nodulation, early plant-microbe interaction and cell division responses. HMW DNA was separated by pulse field gel electrophoresis (CHEF-PFGE) and analyzed with closely linked restriction fragment length polymorphism (RFLP) markers co-hybridized with clones, permitting estimation of the regional physical distances as they relate to recombination frequency. In the distal region of molecular linkage group H containing one of the genes controlling nodule number autoregulation and symbiotic nitrate tolerance (i.e. the nts gene), 1 cM was equivalent to less than 500 kb. Partially digested EcoRI soybean and L. japonicus HMW DNA were cloned into pYAC4. Stable yeast artificial chromosomes (YACs) carrying up to 960 kb DNA were generated. The average insert size was 200 kb. Hybridization with total genomic soybean DNA revealed YACs with different amounts of repeated DNA sequences. Mapping of the end clones demonstrated whether the YACs were chimeric. YACs of different complexity were used for chromosome identification using degenerate primer polymerase chain reaction and fluorescent in situ hybridization. This approach is a fast alternative to testing for YAC chimerism. Single arbitrary and structured mini-hairpin primers were used to amplify and DNA fingerprint the YACs, providing a means of identifying the additional markers needed for contig construction. HMW DNA was cloned into the F plasmid bacterial artificial chromosome (BAC) vector. The YACs and BACs were also constructed with DNA from the small genome/highly transformable legume L. japonicus. Mapping of the YAC and BAC clones with molecular markers will help to ascertain the degree of chimerism and stability in the different cloning systems. YACs, molecular markers and cDNA clones will be useful for chromosome

  2. Structural analysis and molecular modeling of two antitrichosanthin IgE clones from phage antibody library

    Institute of Scientific and Technical Information of China (English)

    LIZONGDONG; YURENYUAN; 等

    1997-01-01

    Recently we constructed a murine IgE phage surface display library and screened out two IgE (Fab) clones with specific binding activity to Trichosanthin (TCS).In this work,the Vε and Vκ genes of the two clones were sequenced and their putative germline gene usages were studied.On the basis of the known 3D structure of Trichosanthin and antibody,molecular modeling was carried out to study the antigen-antibody interaction.The possible antigenic determinant sites on the surface of TCS recognized by both the clones were analyzed,and the reaction forces between TCS and two Fab fragments were also analyzed respectively.

  3. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Xian; Wen-Ming Cong; Shu-Hui Zhang; Meng-Chao Wu

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments.METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD)with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated,purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data.RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size,histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene.CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcinogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis.

  4. Molecular cloning of avian myelocytomatosis virus (MC29) transforming sequences.

    OpenAIRE

    Lautenberger, J A; Schulz, R A; Garon, C F; Tsichlis, P N; Papas, T S

    1981-01-01

    Avian myelocytomatosis virus (MC29), a defective acute leukemia virus, has a broad oncogenic spectrum in vivo and transforms fibroblasts and hematopoietic target cells in vitro. We have used recombinant DNA technology to isolate and to characterize the sequences that are essential in the transformation process. Integrated MC29 proviral DNA was isolated from a library of recombinant phage containing DNA from the MC29-transformed nonproducer quail cell line Q5. The cloned DNA was analyzed by So...

  5. Molecular Cloning, Overexpression and Characterization of Human Interleukin 1α

    OpenAIRE

    Rajalingam, Dakshinamurthy; Kacer, Doreen; Prudovsky, Igor; Kumar, Thallapuranam Krishnaswamy Suresh

    2007-01-01

    Interleukin-1 alpha (IL-1α) regulates a wide range of important cellular processes. In this study for the first time we report the cloning, expression, biophysical and biological characterization of the human interleukin-1α. Human IL-1α has been expressed in Escherichia coli in high yields (~ 4 mg per liter of the bacterial culture). The protein was purified to homogeneity (~ 98% purity) using affinity chromatography and size exclusion chromatography. Results of the steady state fluorescence ...

  6. Generation of transmissible hepatitis C virions from a molecular clone in chimpanzees.

    Science.gov (United States)

    Hong, Z; Beaudet-Miller, M; Lanford, R E; Guerra, B; Wright-Minogue, J; Skelton, A; Baroudy, B M; Reyes, G R; Lau, J Y

    1999-03-30

    Multiple alignments of hepatitis C virus (HCV) polyproteins from six different genotypes identified a total of 22 nonconsensus mutations in a clone derived from the Hutchinson (H77) isolate. These mutations, collectively, may have contributed to the failure in generating a "functionally correct" or "infectious" clone in earlier attempts. A consensus clone was constructed after systematic repair of these mutations, which yielded infectious virions in a chimpanzee after direct intrahepatic inoculation of in vitro transcribed RNAs. This RNA-infected chimpanzee has developed hepatitis and remained HCV positive for more than 11 months. To further verify this RNA-derived infectivity, a second naive chimpanzee was injected intravenously with serum collected from the first chimpanzee. Infectivity analysis of the second chimpanzee demonstrated that the HCV infection was successfully transmitted, which validated unequivocally the infectivity of our repaired molecular clone. Amino acid sequence comparisons revealed that our repaired infectious clone had 4 mismatches with the isogenic clone reported by Kolykhalov et al. (1997, Science 277, 570-574) and 8 mismatches with that reported by Yanagi et al. (1997, Proc. Natl. Acad. Sci. USA 94, 8738-8743). At the RNA level, more mismatches (43 and 67, respectively) were identified; most of them were synonymous substitutions. Further comparisons with 16 isolates from different genotypes demonstrated that our repaired clone shares greater consensus than the reported isogenic clones. This approach of generating infectious HCV RNA validates the importance of amino acid sequence consensus in relation to the biology of HCV. PMID:10087224

  7. Clone-specific expression, transcriptional regulation, and action of interleukin-6 in human colon carcinoma cells

    International Nuclear Information System (INIS)

    Many cancer cells produce interleukin-6 (IL-6), a cytokine that plays a role in growth stimulation, metastasis, and angiogenesis of secondary tumours in a variety of malignancies, including colorectal cancer. Effectiveness of IL-6 in this respect may depend on the quantity of basal and inducible IL-6 expressed as the tumour progresses through stages of malignancy. We therefore have evaluated the effect of IL-6 modulators, i.e. IL-1β, prostaglandin E2, 17β-estradiol, and 1,25-dihydroxyvitamin D3, on expression and synthesis of the cytokine at different stages of tumour progression. We utilized cultures of the human colon carcinoma cell clones Caco-2/AQ, COGA-1A and COGA-13, all of which expressed differentiation and proliferation markers typical of distinct stages of tumour progression. IL-6 mRNA and protein levels were assayed by RT-PCR and ELISA, respectively. DNA sequencing was utilized to detect polymorphisms in the IL-6 gene promoter. IL-6 mRNA and protein concentrations were low in well and moderately differentiated Caco-2/AQ and COGA-1A cells, but were high in poorly differentiated COGA-13 cells. Addition of IL-1β (5 ng/ml) to a COGA-13 culture raised IL-6 production approximately thousandfold via a prostaglandin-independent mechanism. Addition of 17β-estradiol (10-7 M) reduced basal IL-6 production by one-third, but IL-1β-inducible IL-6 was unaffected. Search for polymorphisms in the IL-6 promoter revealed the presence of a single haplotype, i.e., -597A/-572G/-174C, in COGA-13 cells, which is associated with a high degree of transcriptional activity of the IL-6 gene. IL-6 blocked differentiation only in Caco-2/AQ cells and stimulated mitosis through up-regulation of c-myc proto-oncogene expression. These effects were inhibited by 10-8 M 1,25-dihydroxyvitamin D3. In human colon carcinoma cells derived from well and moderately differentiated tumours, IL-6 expression is low and only marginally affected, if at all, by PGE2, 1,25-dihydroxyvitamin D3, and 17

  8. Clone-specific expression, transcriptional regulation, and action of interleukin-6 in human colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    Fabjani Gerhild

    2008-01-01

    Full Text Available Abstract Background Many cancer cells produce interleukin-6 (IL-6, a cytokine that plays a role in growth stimulation, metastasis, and angiogenesis of secondary tumours in a variety of malignancies, including colorectal cancer. Effectiveness of IL-6 in this respect may depend on the quantity of basal and inducible IL-6 expressed as the tumour progresses through stages of malignancy. We therefore have evaluated the effect of IL-6 modulators, i.e. IL-1β, prostaglandin E2, 17β-estradiol, and 1,25-dihydroxyvitamin D3, on expression and synthesis of the cytokine at different stages of tumour progression. Methods We utilized cultures of the human colon carcinoma cell clones Caco-2/AQ, COGA-1A and COGA-13, all of which expressed differentiation and proliferation markers typical of distinct stages of tumour progression. IL-6 mRNA and protein levels were assayed by RT-PCR and ELISA, respectively. DNA sequencing was utilized to detect polymorphisms in the IL-6 gene promoter. Results IL-6 mRNA and protein concentrations were low in well and moderately differentiated Caco-2/AQ and COGA-1A cells, but were high in poorly differentiated COGA-13 cells. Addition of IL-1β (5 ng/ml to a COGA-13 culture raised IL-6 production approximately thousandfold via a prostaglandin-independent mechanism. Addition of 17β-estradiol (10-7 M reduced basal IL-6 production by one-third, but IL-1β-inducible IL-6 was unaffected. Search for polymorphisms in the IL-6 promoter revealed the presence of a single haplotype, i.e., -597A/-572G/-174C, in COGA-13 cells, which is associated with a high degree of transcriptional activity of the IL-6 gene. IL-6 blocked differentiation only in Caco-2/AQ cells and stimulated mitosis through up-regulation of c-myc proto-oncogene expression. These effects were inhibited by 10-8 M 1,25-dihydroxyvitamin D3. Conclusion In human colon carcinoma cells derived from well and moderately differentiated tumours, IL-6 expression is low and only marginally

  9. Molecular based subtyping of feline mammary carcinomas and clinicopathological characterization.

    Science.gov (United States)

    Soares, Maria; Madeira, Sara; Correia, Jorge; Peleteiro, Maria; Cardoso, Fátima; Ferreira, Fernando

    2016-06-01

    Molecular classification of feline mammary carcinomas (FMC) from which specific behavioral patterns may be estimated has potential applications in veterinary clinical practice and in comparative oncology. In this perspective, the main goal of this study was to characterize both the clinical and the pathological features of the different molecular phenotypes found in a population of FMC (n = 102), using the broadly accepted IHC-based classification established by St. Gallen International Expert Consensus panel. The luminal B/HER2-negative subtype was the most common (29.4%, 30/102) followed by luminal B/HER2-positive subtype (19.6%, 20/102), triple negative basal-like (16.7%, 17/102), luminal A (14.7%, 15/102), triple negative normal-like (12.7%, 13/102) and finally, HER2-positive subtype (6.9%, 7/102). Luminal A subtype was significantly associated with smaller tumors (p = 0.024) and with well differentiated ones (p molecular subtypes in each carcinoma, revealing that all independent lesions should be analyzed in order to improve the clinical management of animals. Finally, the similarities between the subtypes of feline mammary tumors and human breast cancer, reveal that feline can be a valuable model for comparative studies. PMID:27212699

  10. Molecular cloning of a human immunoglobulin G Fc receptor

    International Nuclear Information System (INIS)

    Human IgG Fc receptor (FcγR) cDNA clones were isolated by cross-species hybridization by probing cDNA libraries with the low-affinity FcγR β1 cDNA clone from mouse as well as a pool of oligonucleotides constructed from the nucleotide sequence of this FcγR. Three cDNA clones were isolated and analysis of the predicted amino acid sequence indicated that the human FcγR protein is synthesized with a 34-amino acid leader and the mature protein is composed of 281 amino acids. The extracellular region of this FcγR was divided into two domains, which were very similar to each other and to the corresponding regions of both mouse α and β FcγRs and showed a clear relationship to immunoglobulin variable regions. One possible N-linked glycosylation site was found in each of the extracellular domains. The human FcγR leader sequence was shown to be similar to the mouse α FcγR leader sequence, but the transmembrane region was most similar to the mouse β1 FcγR. The intracellular domain of the human FcγR was surprisingly different from both mouse FcγRs. RNA blot analysis of human cells demonstrated two transcripts (2.5 and 1.5 kilobases) that arise by use of different adenylylation signals. The cellular expression of these transcripts suggests that they encode the low-affinity p40 FcγR protein

  11. Molecular Cloning of MAPK Gene Family Using Synthetic Oligonucleotide Probe.

    Science.gov (United States)

    Zhou, Song; Wang, Qin; Chen, Jing; Chen, Jiang-Ye

    1999-01-01

    MAPK(mitogen activated protein kinase) is a kind of Ser/Thr protein kinase. The MAPKs play an important role in several different signal transduction pathways. The MAPKs may also have a role in morphorgenesis of Candida albicans. An oligonucleotide probe was used to screen novel MAPKs in C. albicans. All MAPKs shared high homogeneity in their eleven kinase subdomains, especially subdoman VII and VIII. In subdomain VII, nearly all MAPKs have the same KIDFGLAR sequence, and the two known MAPKs in C. albicans CEK1 and MKC1 have only one different nucleotide in that DNA sequence. This probe was hybridized with C. albicans genomic DNA. Under stringent conditions, the probe could only hybridize with CEK1 and MKC1 gene fragment. But when hybridized at 40 degrees in non-SDS solution, two novel bands appeared. This condition was used to screen SC5314 DNA library, and many positive clones with different hybridization density were obtained. The strongest hybridization clones were identified to contain CEK1 and MKC1 gene. From the stronger positive hybridization clones, two novel genes were identified. The first gene, named CRK1(CDC2-related protein kinase 1), shared high homogeneity to MAPKs, but was not of them. It is closest to SGV1 from S. cerevisiae (with homology 47%) and PITALRE from human (with homology 41%), both of which are CDC2-related protein kinases. The second gene called CEK2(Candida albicans extracelluar signal-regulated kinase 2) is a novel MAPK of Candida albicans, which shares the highest identity with CEK1 and its S. cerevisiae homologs, FUS3 and KSS1, two redundant MAPKs in yeast pheromone response and morphogenesis. PMID:12114967

  12. Molecular cloning and enzymatic characterization of sheep CYP2J

    OpenAIRE

    Messina, Andrea; Nencioni, Simona; Gervasi, Pier Giovanni; Gotlinger, K. H.; Schwartzman, Michael Linado; Longo, Vincenzo

    2010-01-01

    Abstract 1. Cytochrome P450 (CYP) 2Js have been studied in various mammals, but not in sheep, as an animal model used to test veterinary drug metabolism. 2. Sheep CYP2J was cloned from liver messenger RNA (mRNA) by RACE. The cDNA, after modification at its N- and C-terminals, was expressed in Escherichia coli and the sheep CYP2J protein, purified by chromatography, was 80% homologous to human and monkey CYP2J2. 3. Reverse transcriptase-polymerase chain reaction (RT-PCR) experiments showed tha...

  13. Molecular cloning of cDNA encoding the small subunit of Drosophila transcription initiation factor TFIIF.

    OpenAIRE

    Gong, D W; Mortin, M A; Horikoshi, M; Nakatani, Y

    1995-01-01

    Transcription initiation factor TFIIF is a tetramer consisting of two large subunits (TFIIF alpha or RAP74) and two small subunits (TFIIF beta or RAP30). We report here the molecular cloning of a Drosophila cDNA encoding TFIIF beta. The cDNA clone contains an open-reading frame encoding a 277 amino acid polypeptide having a calculated molecular mass of 32,107 Da. Comparison of the deduced amino acid sequence with the corresponding sequences from vertebrates showed only 50% identity, with four...

  14. Medullary Thyroid Carcinoma: Molecular Signaling Pathways and Emerging Therapies

    Directory of Open Access Journals (Sweden)

    Karen Gómez

    2011-01-01

    Full Text Available Research on medullary thyroid carcinoma (MTC over the last 55 years has led to a good understanding of the genetic defects and altered molecular pathways associated with its development. Currently, with the use of genetic testing, patients at high risk for MTC can be identified before the disease develops and offered prophylactic treatment. In cases of localized neck disease, surgery can be curative. However, once MTC has spread beyond the neck, systemic therapy may be necessary. Conventional chemotherapy has been shown to be ineffective; however, multikinase inhibitors have shown promise in stabilizing disease, and this year will probably see the approval of a drug (Vandetanib for advanced unresectable or metastatic disease, which represents a new chapter in the history of MTC. In this paper, we explore newly understood molecular pathways and the most promising emerging therapies that may change the management of MTC.

  15. Cloning and molecular evolution research of porcine GAD65 gene

    Institute of Scientific and Technical Information of China (English)

    YU Hao; SONG Yuefen; LI Li; LIU Di

    2007-01-01

    Glutamate decarboxylase (GAD) has been found in animal and higher plant tissues as well as in yeasts and microorganisms.In animals the enzyme plays an important role in central nervous system activity because the enzyme substrate glutamic acid is a mediator of excitation process and the product, gamma-aminobutyric acid, is the most important mediator of inhibition process in the central nervous system. GAD65 is one form of the glutamate decarboxylases (GAD), GAD65 has been identified as a major autoantigen in type 1 diabetes, so the GAD65 gene of porcine was cloned by RT-PCR method to construct phylogenetic tree, the homology of 13glutamate decarboxylases (GAD) of different origin was analyzed by multiple alignment.

  16. Molecular Cloning, Expression and Characterization of Ribokinase of Leishmania major

    Institute of Scientific and Technical Information of China (English)

    Patrick. O.J. OGBUNUDE; Nadia LAMOUR; Michael P. BARRETT

    2007-01-01

    Ribokinase (EC 2.1.7.15) from Leishmania major was cloned, sequenced and overexpressed in Escherichia coli. The gene expressed an active enzyme that had comparable activity to the same enzyme studied in E. coli. It specifically phosphorylated D-ribose. Under defined conditions, the Km for the substrates D-ribose and ATP were 0.3±0.04 mM and 0.2±0.02 mM, respectively. The turnover numbers of the enzyme for the substrates were 10.8 s-1 and 10.2 s-1, respectively. The enzyme product ribose 5-phosphate inhibited the phosphorylation of D-ribose with an apparent Ki of 0.4 mM, which is close to the Km (0.3 mM) of D-ribose, suggesting that it might play a role in regulating flux through the enzyme.

  17. (Molecular cloning and structural characteristics of the R complex of maize)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Studies on the R complex in Maize continued Progress is discussed in the following areas: Establishing identity of R components and cloning of R components; CO allele origin; molecular organization of R-r complex; NCO allele origin; genetic analysis of R-r complex; studies of the Sn locus and reverse paramutation.

  18. [Molecular cloning and structural characteristics of the R complex of maize]. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    Studies on the R complex in Maize continued Progress is discussed in the following areas: Establishing identity of R components and cloning of R components; CO allele origin; molecular organization of R-r complex; NCO allele origin; genetic analysis of R-r complex; studies of the Sn locus and reverse paramutation.

  19. Molecular basis of essential fructosuria: molecular cloning and mutational analysis of human ketohexokinase (fructokinase).

    Science.gov (United States)

    Bonthron, D T; Brady, N; Donaldson, I A; Steinmann, B

    1994-09-01

    Essential fructosuria is one of the oldest known inborn errors of metabolism. It is a benign condition which is believed to result from deficiency of hepatic fructokinase (ketohexokinase, KHK, E.C.2.7.1.3). This enzyme catalyses the first step of metabolism of dietary fructose, conversion of fructose to fructose-1-phosphate. Despite the early recognition of this disorder, the primary structure of human KHK and the molecular basis of essential fructosuria have not been previously defined. In this report, the isolation and sequencing of full-length cDNA clones encoding human ketohexokinase are described. Alternative mRNA species and alternative KHK isozymes are produced by alternative polyadenylation and splicing of the KHK gene. The KHK proteins show a high level of sequence conservation relative to rat KHK. Direct evidence that mutation of the KHK structural gene is the cause of essential fructosuria was also obtained. In a well-characterized family, in which three of eight siblings have fructosuria, all affected individuals are compound heterozygotes for two mutations Gly40Arg and Ala43Thr. Both mutations result from G-->A transitions, and each alters the same conserved region of the KHK protein. Neither mutation was seen in a sample of 52 unrelated control individuals. An additional conservative amino acid change (Val49IIe) was present on the KHK allele bearing Ala43Thr.

  20. Molecular cloning of cecropin B responsive endonucleases in Yersinia ruckeri

    Science.gov (United States)

    We have previously demonstrated that Yersinia ruckeri resists cecropin B in an inducible manner. In this study, we sought to identify the molecular changes responsible for the inducible cecropin B resistance of Y. ruckeri. Differences in gene expression associated with the inducible resistance were ...

  1. Epidemiology, molecular epidemiology, and risk factors for renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Chiara Paglino

    2011-12-01

    Full Text Available Despite only accounting for approximately 2% of all new primary cancer cases, renal cell carcinoma (RCC incidence has dramatically increased over time. Incidence rates vary greatly according to geographic areas, so that it is extremely likely that exogenous risk factors could play an important role in the development of this cancer. Several risk factors have been linked with RCC, including cigarette smoking, obesity, hypertension (and antihypertensive drugs, chronic kidney diseases (also dialysis and transplantation, as well as the use of certain analgesics. Furthermore, although RCC has not generally been considered an occupational cancer, several types of occupationally-derived exposures have been implicated in its pathogenesis. These include exposure to asbestos, chlorinated solvents, gasoline, diesel exhaust fumes, polycyclic aromatic hydrocarbons, printing inks and dyes, cadmium and lead. Finally, families with a predisposition to the development of renal neoplasms were identified and the genes involved discovered and characterized. Therefore, there are now four well-characterized, genetically determined syndromes associated with an increased incidence of kidney tumors, i.e., Von Hippel Lindau (VHL, Hereditary Papillary Renal Carcinoma (HPRC, Birt-Hogg-Dubé Syndrome (BHD, and Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC. This review will address present knowledge about the epidemiology, molecular epidemiology and risk factors of RCC.

  2. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Zhao-You Tang; Sheng-Long Ye; Yin-Kun Liu; Jie Chen; Qiong Xue; Jun Chen; Dong-Mei Gao; Wei-Hua Bao

    2001-01-01

    ALM To establish clone cells with different metastatic potential for the study of metastasis-related mechanisms. METHODS Cloning procedure was performed on parental hepatocellular carcinoma (HCC) cell line MHCC97. andbiological characteristics of the target clones selected by in vivo screening were studied.``RESULTS Two clones with high MHCC97-H and IowMHCC9--L1 metastatic potential were isolated from theparent cell line. Compared with MHCC97-L. MHCC97-H hadsmaller cell size average cell diameter 43 um vs 50 μmand faster in vitro and in vivo growth rate tumor celldoubling time was 34.2 h vs 60.0 h. The main ranges ofchromosomes were 5.5 58 in MHCC97-H and 57 62 inMHCC97-L. Boyden chamber in vitro invasion assay demonstrated that the number of penetrating cells through the artificial basement membrane was 137.5 - 11 .0) cellsfield for MHC_C99--H vs 17.7 - 6.3) field for MHCC97-L.The proportions of cells in GO Gl phase. S phase, and G_ M phase for MHCC97-H MHCC97-L were 0.56 6.65.0.28 0.25 and 0.l6 0.10, respectively, as measured by flow cytometry. The serum AFP levels in nude mice 5 wk after orthotopic implantation of tumor tissue were ( 24666 μg. L for MHCC97-H and (91- 66) μg' L 1 for MHCC97L. The pulmonary metastatic rate was 100% (10-10) vs40% 4- 10).``CONCLUSION Two clones of the same genetic background but with different biological behaviors were established, which could be valuable models for investigation on HCC metastasis.``

  3. Molecular cloning and analysis of the Catsper1 gene promoter.

    Science.gov (United States)

    Mata-Rocha, Minerva; Alvarado-Cuevas, Edith; Hernández-Sánchez, Javier; Cerecedo, Doris; Felix, Ricardo; Hernández-Reyes, Adriana; Tesoro-Cruz, Emiliano; Oviedo, Norma

    2013-05-01

    CatSper channels are essential for hyperactivity of sperm flagellum, progesterone-mediated chemotaxis and oocyte fertilization. Catsper genes are exclusively expressed in the testis during spermatogenesis, but the function and regulation of the corresponding promoter regions are unknown. Here, we report the cloning and characterization of the promoter regions in the human and murine Catsper1 genes. These promoter regions were identified and isolated from genomic DNA, and transcriptional activities were tested in vitro after transfection into human embryonic kidney 293, mouse Sertoli cells 1 and GC-1spg cell lines as well as by injecting plasmids directly into mouse testes. Although the human and murine Catsper1 promoters lacked a TATA box, a well-conserved CRE site was identified. Both sequences may be considered as TATAless promoters because their transcriptional activity was not affected after deletion of TATA box-like sites. Several transcription initiation sites were revealed by RNA ligase-mediated rapid amplification of the cDNA 5'-ends. We also found that the immediate upstream region and the first exon in the human CATSPER1 gene negatively regulate transcriptional activity. In the murine Catsper1 promoter, binding sites for transcription factors SRY, SOX9 and CREB were protected by the presence of nuclear testis proteins in DNAse degradation assays. Likewise, the mouse Catsper1 promoter exhibited transcriptional activity in both orientations and displayed significant expression levels in mouse testis in vivo, whereas the suppression of transcription signals in the promoter resulted in low expression levels. This study, thus, represents the first identification of the transcriptional control regions in the genes encoding the human and murine CatSper channels.

  4. DNA methylation and gene expression: endogenous retroviral genome becomes infectious after molecular cloning.

    OpenAIRE

    Harbers, K; Schnieke, A; Stuhlmann, H; Jähner, D; Jaenisch, R

    1981-01-01

    The Mov-3 substrain of mice carries Moloney murine leukemia virus as a Mendelian gene in its germ line. All mice segregating the Mov-3 locus activate virus and develop viremia and leukemia. The integrated provirus (i.e., Mov-3 locus) was molecularly cloned from Mov-3 liver DNA as a 16.8 kilobase long EcoRI fragment. Comparison of the cloned and genomic Mov-3 specific EcoRI fragment by restriction enzyme analysis showed no differences in the size of the fragments, indicating that no major sequ...

  5. Molecular cloning of a peptidylglycine alpha-hydroxylating monooxygenase from sea anemones

    DEFF Research Database (Denmark)

    Hauser, F; Williamson, M; Grimmelikhuijzen, C J

    1997-01-01

    conserved regions of PHM, we have now cloned a PHM from the sea anemone Calliactis parasitica showing 42% amino acid sequence identity with rat PHM. Among the conserved (identical) amino acid residues are five histidine and one methionine residue, which bind two Cu2+ atoms that are essential for PHM...... activity. No cDNA coding for PAL could be identified, suggesting that sea anemone PAL is coded for by a gene that is different from the sea anemone PHM gene, a situation similar to the one found in insects. This is the first report on the molecular cloning of a cnidarian PHM. Udgivelsesdato: 1997-Dec-18...

  6. Construction and characterization of an infectious molecular clone of Koala retrovirus.

    Science.gov (United States)

    Shojima, Takayuki; Hoshino, Shigeki; Abe, Masumi; Yasuda, Jiro; Shogen, Hiroko; Kobayashi, Takeshi; Miyazawa, Takayuki

    2013-05-01

    Koala retrovirus (KoRV) is a gammaretrovirus that is currently endogenizing into koalas. Studies on KoRV infection have been hampered by the lack of a replication-competent molecular clone. In this study, we constructed an infectious molecular clone, termed plasmid pKoRV522, of a KoRV isolate (strain Aki) from a koala reared in a Japanese zoo. The virus KoRV522, derived from pKoRV522, grew efficiently in human embryonic kidney (HEK293T) cells, attaining 10(6) focus-forming units/ml. Several mutations in the Gag (L domain) and Env regions reported to be involved in reduction in viral infection/production in vitro are found in pKoRV522, yet KoRV522 replicated well, suggesting that any effects of these mutations are limited. Indeed, a reporter virus pseudotyped with pKoRV522 Env was found to infect human, feline, and mink cell lines efficiently. Analyses of KoRV L-domain mutants showed that an additional PPXY sequence, PPPY, in Gag plays a critical role in KoRV budding. Altogether, our results demonstrate the construction and characterization of the first infectious molecular clone of KoRV. The infectious clone reported here will be useful for elucidating the mechanism of endogenization of the virus in koalas and screening for antiretroviral drugs for KoRV-infected koalas.

  7. Molecular Cloning and Preliminary Analysis of a Fragile Site Associated Gene

    Institute of Scientific and Technical Information of China (English)

    YI-WEN CAO; CHUAN-LU JIANG; TAO JIANG

    2006-01-01

    Objective To analyze the molecular colning of a fragile site-associated gene. Methods Genomic Chinese hamster ovary (CHO) DNA library was constructed using high molecular weight CHO DNA partially digested with MboI restriction enzyme from cultured CHO cells. Screening of genomic DNA library followed the established procedures. Genomic CHO in the positive clones was sequenced. Appropriate primers were designed for the reverse transcriptase-polymerase chain reactions (RT-PCR). The RT-PCR products were cloned into a pCRⅡ TOPO vector and confirmed by DNA sequencing. Antibodies were prepared using synthetic peptides as antigens by immunizing the rabbits. Immunohistochemical analyses were performed to evaluate the expression of the novel gene in different tissues. Results To investigate the molecular mechanism underlying the initial events of mdrla amplification, we cloned 1q31 fragile site DNA. Strikingly, we found that this fragile site contained a novel gene which was designated as a fragile site-associated (FSA) gene. FSA encoded an unusually large mRNA of ~16 kb. Full-length human FSA cDNA was cloned. FSA mRNA was expressed in many cultured cells and tissue types. Immunohistochemical analyses also revealed an expression pattern of the encoded proteins in postmitotic, well-differentiated epithelial compartments of many organs, including colon, mammary glands, ovary, prostate, and bladder. Conclusion FSA plays an important role in regulating mammalian epithelial cell growth and differentiation.

  8. Molecular cloning and expression of Corynebacterium glutamicum genes for amino acid synthesis in Escherichia coli cells

    International Nuclear Information System (INIS)

    Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector λpSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB+ clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA+ transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmids consistently transduced the markers thrB+ and lysA+. The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes

  9. Clinicopathological and Molecular Histochemical Review of Skull Base Metastasis from Differentiated Thyroid Carcinoma

    International Nuclear Information System (INIS)

    Skull base metastasis from differentiated thyroid carcinoma including follicular thyroid carcinoma (FTC) and papillary thyroid carcinoma (PTC) is a rare clinical entity. Eighteen FTC cases and 10 PTC cases showing skull base metastasis have been reported. The most common symptom of skull base metastasis from FTC and PTC is cranial nerve dysfunction. Bone destruction and local invasion to the surrounding soft tissues are common on radiological imaging. Skull base metastases can be the initial clinical presentation of FTC and PTC in the presence of silent primary sites. The possibility of skull base metastasis from FTC and PTC should be considered in patients with the clinical symptoms of cranial nerve dysfunction and radiological findings of bone destruction. A variety of genetic alterations in thyroid tumors have been identified to have a fundamental role in their tumorigenesis. Molecular histochemical studies are useful for elucidating the histopathological features of thyroid carcinoma. Recent molecular findings may provide novel molecular-based treatment strategies for thyroid carcinoma

  10. Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features.

    Science.gov (United States)

    Rosty, Christophe; Young, Joanne P; Walsh, Michael D; Clendenning, Mark; Walters, Rhiannon J; Pearson, Sally; Pavluk, Erika; Nagler, Belinda; Pakenas, David; Jass, Jeremy R; Jenkins, Mark A; Win, Aung Ko; Southey, Melissa C; Parry, Susan; Hopper, John L; Giles, Graham G; Williamson, Elizabeth; English, Dallas R; Buchanan, Daniel D

    2013-06-01

    KRAS-mutated carcinomas comprise 35-40% of all colorectal carcinomas but little is known about their characteristics. The aim of this study was to examine the pathological and molecular features of KRAS-mutated colorectal carcinomas and to compare them with other carcinoma subgroups. KRAS mutation testing was performed in 776 incident tumors from the Melbourne Collaborative Cohort Study. O(6)-methylguanine DNA methyltransferase (MGMT) status was assessed using both immunohistochemistry and MethyLight techniques. Microsatellite instability (MSI) phenotype and BRAF V600E mutation status were derived from earlier studies. Mutation in KRAS codon 12 or codon 13 was present in 28% of colorectal carcinomas. Compared with KRAS wild-type carcinomas, KRAS-mutated carcinomas were more frequently observed in contiguity with a residual polyp (38 vs 21%; Pcarcinomas showed more frequent location in the proximal colon (41 vs 27%; P=0.001), mucinous differentiation (46 vs 25%; Pcarcinomas were distributed in a bimodal pattern along the proximal-distal axis of the colorectum. Compared with male subjects, female subjects were more likely to have KRAS-mutated carcinoma in the transverse colon and descending colon (39 vs 15%; P=0.02). No difference in overall survival was observed in patients according to their tumor KRAS mutation status. In summary, KRAS-mutated carcinomas frequently develop in contiguity with a residual polyp and show molecular features distinct from other colorectal carcinomas, in particular from tumors with neither BRAF nor KRAS mutation.

  11. [Cloning alphavirus and flavivirus sequences for use as positive controls in molecular diagnostics].

    Science.gov (United States)

    Camacho, Daría; Reyes, Jesús; Franco, Leticia; Comach, Guillermo; Ferrer, Elizabeth

    2016-06-01

    The purpose of the study was to obtain a positive control to validate molecular techniques (reverse transcription- polymerase chain reaction [RT-PCR]) used in the diagnosis and research of viral infections. From strains of Chikungunya virus (CHIKV), Zika virus, and Dengue virus (DENV-1, DENV-2, DENV- 3, and DENV-4) viral RNAs were extracted to obtain complementary DNA using RT-PCR from the nsP4 (CHIKV), NS5 (Zika virus), C/prM-M, and 5'UTR-C (DENV-1, DENV-2, DENV-3, DENV-4) sequences, which were cloned into pGEM®-T Easy. Cloning was confirmed through colony PCR, from which plasmid DNA was extracted for fragment cloning verification. Cloning of cDNA corresponding to nsP4, NS5, C/prM-M, and 5'UTR-C of the different viral agents was achieved. In conclusion, recombinant plasmids were obtained with each of the sequences specified for further assessment as positive controls in molecular techniques in an effort to avoid the use of cell cultures, which can be costly, time-consuming, and potentially dangerous.

  12. [Cloning alphavirus and flavivirus sequences for use as positive controls in molecular diagnostics].

    Science.gov (United States)

    Camacho, Daría; Reyes, Jesús; Franco, Leticia; Comach, Guillermo; Ferrer, Elizabeth

    2016-06-01

    The purpose of the study was to obtain a positive control to validate molecular techniques (reverse transcription- polymerase chain reaction [RT-PCR]) used in the diagnosis and research of viral infections. From strains of Chikungunya virus (CHIKV), Zika virus, and Dengue virus (DENV-1, DENV-2, DENV- 3, and DENV-4) viral RNAs were extracted to obtain complementary DNA using RT-PCR from the nsP4 (CHIKV), NS5 (Zika virus), C/prM-M, and 5'UTR-C (DENV-1, DENV-2, DENV-3, DENV-4) sequences, which were cloned into pGEM®-T Easy. Cloning was confirmed through colony PCR, from which plasmid DNA was extracted for fragment cloning verification. Cloning of cDNA corresponding to nsP4, NS5, C/prM-M, and 5'UTR-C of the different viral agents was achieved. In conclusion, recombinant plasmids were obtained with each of the sequences specified for further assessment as positive controls in molecular techniques in an effort to avoid the use of cell cultures, which can be costly, time-consuming, and potentially dangerous. PMID:27656926

  13. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    Energy Technology Data Exchange (ETDEWEB)

    Deymier, Martin J., E-mail: mdeymie@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Claiborne, Daniel T., E-mail: dclaibo@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ende, Zachary, E-mail: zende@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ratner, Hannah K., E-mail: hannah.ratner@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Kilembe, William, E-mail: wkilembe@rzhrg-mail.org [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Allen, Susan, E-mail: sallen5@emory.edu [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States); Hunter, Eric, E-mail: eric.hunter2@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States)

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  14. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    International Nuclear Information System (INIS)

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor

  15. Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons.

    OpenAIRE

    C. Yan; Zhao, A Z; Bentley, J K; Loughney, K; Ferguson, K; Beavo, J. A.

    1995-01-01

    The sensing of an odorant by an animal must be a rapid but transient process, requiring an instant response and also a speedy termination of the signal. Previous biochemical and electrophysiological studies suggest that one or more phosphodiesterases (PDEs) may play an essential role in the rapid termination of the odorant-induced cAMP signal. Here we report the molecular cloning, expression, and characterization of a cDNA from rat olfactory epithelium that encodes a member of the calmodulin-...

  16. Immersing Undergraduate Students in the Research Experience: A Practical Laboratory Module on Molecular Cloning of Microbial Genes

    Science.gov (United States)

    Wang, Jack T. H.; Schembri, Mark A.; Ramakrishna, Mathitha; Sagulenko, Evgeny; Fuerst, John A.

    2012-01-01

    Molecular cloning skills are an essential component of biological research, yet students often do not receive this training during their undergraduate studies. This can be attributed to the complexities of the cloning process, which may require many weeks of progressive design and experimentation. To address this issue, we incorporated an…

  17. Leptin signaling molecular actions and drug target in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Jiang N

    2014-11-01

    Full Text Available Nan Jiang,1,* Rongtong Sun,2,* Qing Sun3 1Shandong University School of Medicine, Jinan, Shandong Province, People’s Republic of China; 2Weihai Municipal Hospital, Weihai, Shandong Province, People’s Republic of China; 3Department of Pathology, QianFoShan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People’s Republic of China *These authors contributed equally to this work Abstract: Previous reports indicate that over 13 different tumors, including hepatocellular carcinoma (HCC, are related to obesity. Obesity-associated inflammatory, metabolic, and endocrine mediators, as well as the functioning of the gut microbiota, are suspected to contribute to tumorigenesis. In obese people, proinflammatory cytokines/chemokines including tumor necrosis factor-alpha, interleukin (IL-1 and IL-6, insulin and insulin-like growth factors, adipokines, plasminogen activator inhibitor-1, adiponectin, and leptin are found to play crucial roles in the initiation and development of cancer. The cytokines induced by leptin in adipose tissue or tumor cells have been intensely studied. Leptin-induced signaling pathways are critical for biological functions such as adiposity, energy balance, endocrine function, immune reaction, and angiogenesis as well as oncogenesis. Leptin is an activator of cell proliferation and anti-apoptosis in several cell types, and an inducer of cancer stem cells; its critical roles in tumorigenesis are based on its oncogenic, mitogenic, proinflammatory, and pro-angiogenic actions. This review provides an update of the pathological effects of leptin signaling with special emphasis on potential molecular mechanisms and therapeutic targeting, which could potentially be used in future clinical settings. In addition, leptin-induced angiogenic ability and molecular mechanisms in HCC are discussed. The stringent binding affinity of leptin and its receptor Ob-R, as well as the highly upregulated expression of both

  18. Esophageal combined carcinomas: Immunohoistochemical and molecular genetic studies

    Institute of Scientific and Technical Information of China (English)

    Tadashi Terada; Hirotoshi Maruo

    2012-01-01

    Primary esophageal combined carcinoma is very rare.The authors herein report 2 cases.Case 1 was a combined squamous cell carcinoma and small cell carcinoma,and case 2 was a combined squamous cell carcinoma,adenocarcinoma,and small cell carcinoma.Case 1 was a 67-year-old man with complaints of dysphagia.Endoscopic examination revealed an ulcerated tumor in the middle esophagus,and 6 biopsies were obtained.All 6 biopsies revealed a mixture of squamous cell carcinoma and small cell carcinoma.Both elements were positive for cytokeratin,epithelial membrane antigen,and p53 protein,and had high Ki-67 labeling.The small cell carcinoma element was positive for synaptophysin,CD56,KIT,and platelet-derived growth factor-α (PDG-FRA),while the squamous cell carcinoma element was not.Genetically,no mutations of KIT and PDGFRA were recognized.The patient died of systemic carcinomatosis 15 mo after presentation.Case 2 was a 74-year-old man presenting with dysplasia.Endoscopy revealed a polypoid tumor in the distal esophagus.Seven biopsies were taken,and 6 showed a mixture of squamous cell carcinoma,small cell carcinoma,and adenocarcinoma.The 3 elements were positive for cytokeratins,epithelial membrane antigen,and p53 protein,and had high Ki-67 labeling.The adenocarcinoma element was positive for mucins.The small cell carcinoma element was positive for CD56,synaptophysin,KIT,and PDGFRA,but the other elements were not.Mutations of KIT and PDGFRA were not recognized.The patient died of systemic carcinomatosis 7 mo after presentation.These combined carcinomas may arise from enterochromaffin cells or totipotential stem cell in the esophagus or transdifferentiation of one element to another.A review of the literature was performed.

  19. Molecular biology of rotaviruses. IV. Molecular cloning of the bovine rotavirus genome.

    OpenAIRE

    McCrae, M A; McCorquodale, J G

    1982-01-01

    A new cloning strategy has been developed for cloning the genomes of double-stranded RNA viruses by using bovine rotavirus as a test system. The major modification adopted was the use of denatured polyadenylated double-stranded RNA as the template for reverse transcriptase. This allowed the two complementary strands of cDNA to be synthesized in a single reaction and removed the need for S1 nuclease digestion to remove the 5' hairpin structure normally generated in cDNA synthesis.

  20. A positive selection vector for cloning high molecular weight DNA by the bacteriophage P1 system: improved cloning efficacy.

    OpenAIRE

    Pierce, J C; Sauer, B; Sternberg, N

    1992-01-01

    The bacteriophage P1 cloning system can package and propagate DNA inserts that are up to 95 kilobases. Clones are maintained in Escherichia coli by a low-copy replicon in the P1 cloning vector and can be amplified by inducing a second replicon in the vector with isopropyl beta-D-thiogalactopyranoside. To overcome the necessity of screening clones for DNA inserts, we have developed a P1 vector with a positive selection system that is based on the properties of the sacB gene from Bacillus amylo...

  1. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    Energy Technology Data Exchange (ETDEWEB)

    Brock, K.V.

    1987-01-01

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with /sup 32/P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus.

  2. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    International Nuclear Information System (INIS)

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with 32P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus

  3. Mucosal transmissibility, disease induction and coreceptor switching of R5 SHIVSF162P3N molecular clones in rhesus macaques

    OpenAIRE

    Ren Wuze; Mumbauer Alexandra; Zhuang Ke; Harbison Carole; Knight Heather; Westmoreland Susan; Gettie Agegnehu; Blanchard James; Cheng-Mayer Cecilia

    2013-01-01

    Abstract Background Mucosally transmissible and pathogenic CCR5 (R5)-tropic simian-human immunodeficiency virus (SHIV) molecular clones are useful reagents to identity neutralization escape in HIV-1 vaccine experiments and to study the envelope evolutionary process and mechanistic basis for coreceptor switch during the course of natural infection. Results We observed progression to AIDS in rhesus macaques infected intrarectally with molecular clones of the pathogenic R5 SHIVSF162P3N isolate. ...

  4. Molecular cloning of a full-length cDNA for ECBP21 from Angelica dahurica

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    ECBP21 is an extracellular calmodulin-binding protein which was first detected and purified from extracellular extracts of suspension-cultured cells of Angelica dahurica. The purified protein was electroblotted onto PVDF membrane and the amino acid sequences from 1 to 20 were determined. Using degenerate oligonucleotides of the sequence, a full-length cDNA coding for ECBP21 was isolated by a combination of RT-PCR and 5′-RACE cloning. The cDNA contains 947 nucleotides and codes for a precursor protein of 216 amino acids. The N-terminal 1-25 amino acid sequence is a predicted signal peptide and the other 26-216 amino acid sequence is a mature peptide. The 26-45 amino acid sequence shows identity with the N-terminal amino acid sequence of purified ECBP21 from Angelica dahurica. The fragment of encoding the mature protein was cloned into pET-28b(+) and transformed into E. coli BL21(DE3). A protein with relative molecular mass 21 ku was expressed in E. coli. Using a biotinylated-CaM gel overlay technique, the expression protein was tested for its ability to bind CaM. The results indicated that the expression protein is a Ca2+- dependent CaM-binding protein. Thus, these results further defined the cDNA clone for ECBP21. This work laid a foundation for elucidating biological functions of ECBP21 by using molecular biological means.

  5. Molecular cloning of osteoma-inducing replication-competent murine leukemia viruses from the RFB osteoma virus stock

    DEFF Research Database (Denmark)

    Pedersen, Lene; Behnisch, Werner; Schmidt, Jörg;

    1992-01-01

    We report the molecular cloning of two replication-competent osteoma-inducing murine leukemia viruses from the RFB osteoma virus stock (M. P. Finkel, C. A. Reilly, Jr., B. O. Biskis, and I. L. Greco, p. 353-366, in C. H. G. Price and F. G. M. Ross, ed., Bone--Certain Aspects of Neoplasia, 1973......). Like the original RFB osteoma virus stock, viruses derived from the molecular RFB clones induced multiple osteomas in mice of the CBA/Ca strain. The cloned RFB viruses were indistinguishable by restriction enzyme analysis and by nucleotide sequence analysis of their long-terminal-repeat regions...

  6. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene

    Energy Technology Data Exchange (ETDEWEB)

    Plowman, G.D.; Whitney, G.S.; Neubauer, M.G.; Green, J.M.; McDonald, V.L.; Todaro, G.J.; Shoyab, M. (Oncogen, Seattle, WA (USA))

    1990-07-01

    Epidermal growth factor (EGF), transforming growth factor {alpha} (TGF-{alpha}), and amphiregulin are structurally and functionally related growth regulatory proteins. These secreted polypeptides all bind to the 170-kDa cell-surface EGF receptor, activating its intrinsic kinase activity. However, amphiregulin exhibits different activities than EGF and TGF-{alpha} in a number of biological assays. Amphiregulin only partially competes with EGF for binding EGF receptor, and amphiregulin does not induce anchorage-independent growth of normal rat kidney cells (NRK) in the presence of TGF-{beta}. Amphiregulin also appears to abrogate the stimulatory effect of TGF-{alpha} on the growth of several aggressive epithelial carcinomas that over-express EGF receptor. These findings suggest that amphiregulin may interact with a separate receptor in certain cell types. Here the authors report the cloning of another member of the human EGF receptor (HER) family of receptor tyrosine kinases, which were named HER3/ERRB3. The cDNA was isolated from a human carcinoma cell line, and its 6-kilobase transcript was identified in various human tissues. They have generated peptide-specific antisera that recognizes the 160-kDa HER3 protein when transiently expressed in COS cells. These reagents will allow us to determine whether HER3 binds amphiregulin or other growth regulatory proteins and what role HER3 protein plays in the regulation of cell growth.

  7. Molecular cloning of GA-suppressed G2 pea genes by cDNA RDA

    Institute of Scientific and Technical Information of China (English)

    朱玉贤; 张翼凤; 李慧英

    1997-01-01

    GA-treated and non-treated G2 pea cDNAs were compared using a newly developed method called cDNA representational difference analysis (cDNA-RDA), and several GA-suppressed mRNAs were found. After cloning of the larger fragments PGAS1-3 ( pea GA-suppressed cDNA 1-3), they were demonstrated to be expressed only in pea tissue not treated with GA3 through Northern analysis. Compared with subtractive hybridization and differ-ential display techniques, this method not only can be easily manipulated but also has a relatively low rate of false posi-tive and is highly repetitive. It is the major progress in molecular cloning techniques.

  8. HMW glutenin subunits in multiploid Aegilops species: composition analysis and molecular cloning of coding sequences

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Aegilops genus contains species closely related to wheat. Incommon with wheat, Aegilops species accumulate high molecular weight (HMW) glutenin subunits in their endospermic tissue. In this study, we investigated the composition of HMW glutenin subunits in four multiploid Aegilops species using SDS-PAGE analysis. Furthermore, by working with Ae. ventricosa, we established an efficient genomic PCR condition for simultaneous amplification of DNA sequences coding for either x-ory-type HMW glutenin subunits from polyploid Aegilops species. Using the genomic PCR condition, we amplified and subsequently cloned two DNA fragments that may code for HMW glutenin subunits in Ae. ventricosa. Based on an analysis of the deduced amino acid sequences, we concluded that the two cloned sequences encode one x- and one y-type of HMW glutenin subunit, respectively.

  9. Neuroendocrine and squamous colonic composite carcinoma: Case report with molecular analysis

    Institute of Scientific and Technical Information of China (English)

    Sabrina C Wentz; Cindy Vnencak-Jones; William V Chopp

    2011-01-01

    Composite colorectal carcinomas are rare. There are a modest number of cases in the medical literature, with even fewer cases describing composite carcinoma with neuroendocrine and squamous components. There are to our knowledge no reports of composite carcinoma molecular alterations. We present a case of composite carcinoma of the splenic flexure in a 33 year-old Cau casian male to investigate the presence and prognos tic significance of molecular alterations in rare colonic carcinoma subtypes. Formalin-fixed paraffin-embedded (FFPE) tissue was hematoxylin and eosin- and mucicar-mine-stained according to protocol, and immuno-stained with cytokeratin (CK)7, CK20, CDX2, AE1/AE3, chromo-granin-A and synaptophysin. DNA was extracted from FFPE tissues and molecular analyses were performedaccording to lab-developed methods, followed by capil lary electrophoresis. Hematoxylin and eosin staining showed admixed neuroendocrine and keratinized squa mous cells. Positive nuclear CDX2 expression confirmed intestinal derivation. CK7 and CK20 were negative. Neuroendocrine cells stained positively for synaptophy sin and AE1/AE3 and negatively for chromogranin and mucicarmine. Hepatic metastases showed a similar im munohistochemical profile. Molecular analysis revealed a G13D KRAS mutation. BRAF mutational testing was negative and microsatellite instability was not detected. The patient had rapid disease progression on chemo therapy and died 60 d after presentation. Although the G13D KRAS mutation normally predicts an intermediate outcome, the aggressive tumor behavior suggests other modifying factors in rare types of colonic carcinomas.

  10. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    Science.gov (United States)

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  11. Molecular cloning and characterization of ADP-glucose pyrophosphorylase cDNA clones isolated from pea cotyledons.

    Science.gov (United States)

    Burgess, D; Penton, A; Dunsmuir, P; Dooner, H

    1997-02-01

    Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.

  12. Serologic and molecular biomarkers for recurrence of hepatocellular carcinoma after liver transplantation

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob;

    2016-01-01

    and molecular biomarkers for recurrence of hepatocellular carcinoma after liver transplantation. METHODS: A literature search was performed in the databases PubMed and Scopus to identify observational studies evaluating serological or molecular biomarkers for recurrence of HCC after LT using adjusted analysis...

  13. uvrD gene of E. coli: molecular cloning and expression

    International Nuclear Information System (INIS)

    We have cloned the uvrD gene of Escherichia coli in phage and plasmid vectors and identified the gene product. The uvrD protein whose molecular weight is 75,000 dalton has been purified to apparent physical homogeneity. The uvrD protein possessed DNA-dependent ATPase and DNA unwinding activities and may be identical to DNA-dependent ATPase I and DNA helicase II. Expression of the uvrD gene was stimulated by exposure of bacteria to DNA-damaging agents. 6 figures

  14. Molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis.

    Science.gov (United States)

    Gou, Jun-Bo; Li, Zhen-Qiu; Li, Chang-Fu; Chen, Fang-Fang; Lv, Shi-You; Zhang, Yan-Sheng

    2016-09-01

    Junenol based-eudesmanolides have been detected in many compositae plant species and were reported to exhibit various pharmacological activities. So far, the gene encoding junenol synthase has never been isolated. Here we report the molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis (designated IhsTPS1). IhsTPS1 converts the substrate farnesyl diphosphate into multiple sesquiterpenes with the product 10-epi-junenol being predominant. The transcript levels of IhsTPS1 correlate well with the accumulation pattern of 10-epi-junenol in I. hupehensis organs, supporting its biochemical roles in vivo. PMID:27231873

  15. Molecular cloning of the wild-type phoM operon in Escherichia coli K-12.

    OpenAIRE

    Wanner, B L; Wilmes, M R; Hunter, E

    1988-01-01

    A metastable bacterial alkaline phosphatase (Bap) phenotype is seen in phoR mutants, which alternately express a Bap-constitutive or -negative phenotype. The alteration is affected by mutations in the phoM region near 0 min. By molecular cloning of the wild-type phoM operon onto a multicopy plasmid and recombining onto the plasmid the pho-510 mutation that abolishes variation, the phoM operon, rather than some nearby gene, was shown to control variation. Complementation tests indicated that t...

  16. Molecular cloning and expression of a new gene, GON-SJTU1 in the rat testis

    Directory of Open Access Journals (Sweden)

    Tian Geng G

    2010-05-01

    Full Text Available Abstract Background Spermatogenesis is a complex process involving cell development, differentiation and apoptosis. This process is governed by a series of genes whose expressions are highly regulated. Male infertility can be attributed to multiple genetic defects or alterations that are related to spermatogenesis. The discovery, cloning and further functional study of genes related to spermatogenesis is of great importance to the elucidation of the molecular mechanism of spermatogenesis. It is also physiologically and pathologically significant to the therapy of male infertility. Methods GON-SJTU1 was identified and cloned from rat testis by cDNA library screening and 3'-and 5'-RACE. The products of GON-SJTU1 were assessed by Northern and Western blotting. The expression of GON-SJTU1 was also examined by In situ hybridization and immunohistochemistry. Results Here we identified and cloned a new gene, GON-SJTU1, with the biological process of spermatogenesis. GON-SJTU1 is highly expressed in the testis from day 1 to 15 and then decreased, suggesting that GON-SJTU1 might be a time-related gene and involved in the early stage of spermatogenesis. And the expression of GON-SJTU1 in the testis occurred in some male germ cells, particularly in gonocytes and spermatogonial stem cells. Conclusion GON-SJTU1 may play a role in the biological process of spermatogenesis.

  17. Molecular Cloning and Characterization of Enolase from Oilseed Rape (Brassica napus)

    Institute of Scientific and Technical Information of China (English)

    ZHAOJing-Ya; ZUOKai-Jing; QINJie; TANGKe-Xuan

    2004-01-01

    An enolase-encoding cDNA clone in oilseed rape (Brassica napus L.) was isolated. This gene (accession number: AY307449) had a total length of 1 624 bp with an open reading frame of 1 335 bp, and encoded a predicted polypeptide of 444 amino acids with a molecular weight of 47.38 kD. The deduced amino acid sequence shared identity with a number of enolases ranging from Bacillus subtilis to human beings and had much higher identity with other plant enolases than with enolases from Bacillus, yeast and human beings. Comparison of its primary structure with those of other enolases revealed the presence of an insertion of five amino acids in enolase of B. napus. Southern blotting analysis of genomic DNA indicated that enolase was likely to be a low-copy gene in the oilseed rape genome. Expression of the cloned enolase gene increased under salt stress, but decreased in response to low temperature. Our studies suggested that the cloned gene was a new member of plant enolase gene family, which contributed to the energy supply in stress-treated tissues.

  18. Molecular Cloning, and Characterization of an Adenylyl Cyclase-Associated Protein from Gossypium arboreum L.

    Institute of Scientific and Technical Information of China (English)

    WANG Sheng; ZHAO Guo-hong; JIA Yin-hua; DU Xiong-ming

    2009-01-01

    The aim of this study was to clone CAP (adenylyl cyclase-associated protein) gene from Gossypium arboreum L. and develop a platform for expressing and purifying CAP protein, which is a base for the construction and function researches of CAP. In this work, a CAP homolog from cotton (DPL971) ovule was identified and cloned. And the cDNA sequence consisted of an open reading frame of 1416 nucleotides encoding a protein of 471 amino acid residues with a calculated molecular weight of 50.6 kDa. To gain insight on the CAP role in cotton fiber development, the cloned CAP cDNA was expressed. A significant higher yield pure protein was obtained with the chromatographic method. Further experiments showed that the purified protein can bind with the actin in vitro indicating that the recombinant cotton CAP is functional. The procedure described here produced high yield pure protein through one chromatographic step, suitable for further structure-function studies.

  19. Molecular cloning, sequencing and expression in Escherichia coli cells Thermus thermophilus leucyl-tRNA synthetase

    Directory of Open Access Journals (Sweden)

    Kovalenko O. P.

    2011-12-01

    Full Text Available Aim. Cloning and sequencing of the T. thermophilus leucyl-tRNA synthetase (LeuRSTT followed by the creation of genetically engineered construct for protein expression in E.coli cells and its purification. Methods. Searching for the LeuRSTT gene was performed by Southern blot hybridization with chromosomal DNA, where digoxigenin-labeled PCR fragments of DNA were used as probes. Results. The gene of T. thermophilus HB27 leucyl-tRNA synthetase was cloned and sequenced. The open reading frame encodes a polypeptide chain of 878 amino acid residues in length (molecular mass 101 kDa. Comparison of the amino acid sequence of T. thermophilus LeuRS with that of the enzymes from other organisms showed that LeuRSTT was a part of the group of similar enzymes of prokaryotes, formed by the proteins of protobacteriae, rickettsia and mitochondria of eukaryotes. The resulting phylogenetic tree of LeuRSs reveals dichotomous branching into two lines: prokaryotic/eukaryotic mitochondrial and arhaeal/eukaryotic cytosolic proteins. Differences between prokaryotic and arhaeal branches of the LeuRSs phylogenetic tree are primarily due to the structure of two domains of the enzyme – the editing and the C-terminal. T. thermophilus LeuRS was expressed in E. coli cells by cloning the corresponding gene into pET29b vector. Conclusions. The cloned T. thermophilus leuS gene and expressed recombinant protein will be used for structural and functional studies on LeuRSTT, including X-ray analysis of the enzyme and its mutant forms in complex with different substrates

  20. Gene cloning and molecular breeding to improve fiber qualities in cotton

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Cotton fiber is one of known natural resources comprising the highest purity cellulose. It plays an important role worldwide in the textile industry. With the acceleration of spinning speeds and the improvement of the people's living level, the demand of improving cotton fiber qualities is getting stronger and stronger. So, making clear the developmental model of fiber cell and elucidating systematically the molecular mechanisms of cotton fiber development and regulation will produce a great significance to make full use of cotton gene resources, raise cotton yield and improve fiber quality, and even develop man-made fiber. In the paper, the status of the gene cloning and the molecular breeding to improve cotton fiber quality were reviewed, the importance and potential of gene cloning related with cotton fiber quality were put forward and the proposal and prospect on fiber quality improvement were made. Using national resources available and through the creative exploration in corresponding research, some international leading patents in genes or markers linked with cotton fiber development having Chinese own intellectual property should be licensed quickly. And they can be used to improve cotton fiber quality in cotton breeding practice.

  1. Cloning, expression, and molecular dynamics simulations of a xylosidase obtained from Thermomyces lanuginosus.

    Science.gov (United States)

    Gramany, Vashni; Khan, Faez Iqbal; Govender, Algasan; Bisetty, Krishna; Singh, Suren; Permaul, Kugenthiren

    2016-08-01

    The aim of this study was to clone, express, and characterize a β-xylosidase (Tlxyn1) from the thermophilic fungus Thermomyces lanuginosus SSBP in Pichia pastoris GS115 as well as analyze optimal activity and stability using computational and experimental methods. The enzyme was constitutively expressed using the GAP promoter and secreted into the medium due to the alpha-mating factor secretion signal present on the expression vector pBGPI. The 1276 bp gene consists of an open reading frame that does not contain introns. A 12% SDS-PAGE gel revealed a major protein band at an estimated molecular mass of 50 kDa which corresponded to zymogram analysis. The three-dimensional structure of β-xylosidase was predicted, and molecular dynamics simulations at different ranges of temperature and pH were performed in order to predict optimal activity and folding energy. The results suggested a strong conformational temperature and pH dependence. The recombinant enzyme exhibited optimal activity at pH 7 and 50°C and retained 80% activity at 50°C, pH 7 for about 45 min. This is the first report of the cloning, functional expression, and simulations study of a β-xylosidase from Thermomyces species in a fungal host. PMID:26336893

  2. From Uniplex to Multiplex Molecular Profiling in Advanced Non-Small Cell Lung Carcinoma.

    Science.gov (United States)

    Ileana, Ecaterina E; Wistuba, Ignacio I; Izzo, Julie G

    2015-01-01

    Non-small cell lung carcinoma is a leading cause of cancer death worldwide. Understanding the molecular biology of survival and proliferation of cancer cells led to a new molecular classification of lung cancer and the development of targeted therapies with promising results. With the advances of image-guided biopsy techniques, tumor samples are becoming smaller, and the molecular testing techniques have to overcome the challenge of integrating the characterization of a panel of abnormalities including gene mutations, copy-number changes, and fusions in a reduced number of assays using only a small amount of genetic material. This article reviews the current knowledge about the most frequent actionable molecular abnormalities in non-small cell lung carcinoma, the new approaches of molecular analysis, and the implications of these findings in the context of clinical practice.

  3. Molecular Cloning and Functional Analysis of ESGP, an Embryonic Stem Cell and Germ Cell Specific Protein

    Institute of Scientific and Technical Information of China (English)

    Yan-Mei CHEN; Zhong-Wei DU; Zhen YAO

    2005-01-01

    Several putative Oct-4 downstream genes from mouse embryonic stem (ES) cells have been identified using the suppression-subtractive hybridization method. In this study, one of the novel genes encoding an ES cell and germ cell specific protein (ESGP) was cloned by rapid amplification of cDNA ends.ESGP contains 801 bp encoding an 84 amino acid small protein and has no significant homology to any known genes. There is a signal peptide at the N-terminal of ESGP protein as predicted by SeqWeb (GCG)(SeqWeb version 2.0.2, http://gcg.biosino.org:8080/). The result of immunofluorescence assay suggested that ESGP might encode a secretory protein. The expression pattern of ESGP is consistent with the expression of Oct-4 during embryonic development. ESGP protein was detected in fertilized oocyte, from 3.5 day postcoital (dpc) blastocyst to 17.5 dpc embryo, and was only detected in testis and ovary tissues in adult. In vitro, ESGP was only expressed in pluripotent cell lines, such as embryonic stem cells, embryonic carcinoma cells and embryonic germ cells, but not in their differentiated progenies. Despite its specific expression,forced expression of ESGP is not indispensable for the effect of Oct-4 on ES cell self-renewal, and does not affect the differentiation to three germ layers.

  4. Molecular genetics of medullary thyroid carcinoma: multistep tumorigenesis

    NARCIS (Netherlands)

    van Veelen, W.

    2008-01-01

    The genetic mechanisms underlying the multistep process of medullary thyroid carcinoma (MTC) development is at present largely unknown. About 60% of all MTCs occur as sporadic cancer and the remaining 40% occur as familial cancer. Activation of RET, a receptor tyrosine kinase, initiates hereditary M

  5. Clinical and molecular studies on differentiated thyroid carcinoma management

    NARCIS (Netherlands)

    Abdulrahman Hareedy, Randa Mostafa

    2015-01-01

    This thesis describes clinical and fundamental studies addressing clinical challenges in patients with differentiated thyroid carcinoma (DTC). The diagnosis of DTC is hampered by the fact that although the incidence is low thyroid nodules are prevalent. In this thesis, the diagnostic value of a pote

  6. Molecular markers in the surgical margin of oral carcinomas

    DEFF Research Database (Denmark)

    Bilde, Anders; von Buchwald, Christian; Dabelsteen, Erik;

    2009-01-01

    BACKGROUND: Local or regional lymph node recurrence is the most common pattern of treatment failure in oral squamous cell carcinoma (SCC). The local recurrence rate is 30% even when the surgical resection margin is diagnosed as tumour free. Accumulation of genetic changes in histologically normal...

  7. Molecular basis for the presence of glycosylated onco-foetal fibronectin in oral carcinomas

    DEFF Research Database (Denmark)

    Wandall, Hans H; Dabelsteen, Sally; Sørensen, Jens Ahm;

    2007-01-01

    Glycosylated onco-foetal fibronectin (GOF) deposited in the stroma of oral squamous cell carcinomas correlates with survival. One of the two polypeptide GalNAc-transferases, GalNAc-T3 or GalNAc-T6, is required for the biosynthesis of GOF by the initiation of a unique O-glycan in the alternative...... spliced IIICS region. Using cell culture experiments, immunohistochemical staining of primary tissue, and RT-PCR of tumour cells isolated by laser capture techniques we have examined the molecular basis for the production of GOF in oral carcinomas. Immuno-histochemical investigation confirmed the stromal...... deposition of GOF in oral carcinomas. However, neither GalNAc-T3 nor GalNAc-T6 could be detected in stromal fibroblasts. In contrast both transferases were present in the oral squamous carcinoma cells, suggesting that GOF is produced by the oral cancer cells and not only the stromal cells. RT-PCR analysis...

  8. Immunohistochemical and molecular profiling of histologically defined apocrine carcinomas of the breast.

    Science.gov (United States)

    Vranic, Semir; Marchiò, Caterina; Castellano, Isabella; Botta, Cristina; Scalzo, Maria Stella; Bender, Ryan P; Payan-Gomez, Cesar; di Cantogno, Ludovica Verdun; Gugliotta, Patrizia; Tondat, Fabrizio; di Celle, Paola Francia; Mariani, Sara; Gatalica, Zoran; Sapino, Anna

    2015-09-01

    Despite the marked improvement in the understanding of molecular mechanisms and classification of apocrine carcinoma, little is known about its specific molecular genetic alterations and potentially targetable biomarkers. In this study, we explored immunohistochemical and molecular genetic characteristics of 37 invasive apocrine carcinomas using immunohistochemistry (IHC), fluorescent in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA), and next-generation sequencing (NGS) assays. IHC revealed frequent E-cadherin expression (89%), moderate (16%) proliferation activity [Ki-67, phosphohistone H3], infrequent (~10%) expression of basal cell markers [CK5/6, CK14, p63, caveolin-1], loss of PTEN (83%), and overexpression of HER2 (32%), EGFR (41%), cyclin D1 (50%), and MUC-1 (88%). MLPA assay revealed gene copy gains of MYC, CCND1, ZNF703, CDH1, and TRAF4 in 50% or greater of the apocrine carcinomas, whereas gene copy losses frequently affected BRCA2 (75%), ADAM9 (54%), and BRCA1 (46%). HER2 gain, detected by MLPA in 38% of the cases, was in excellent concordance with HER2 results obtained by IHC/FISH (κ = 0.915, P carcinomas exhibit complex molecular genetic alterations that are consistent with the "luminal-complex" phenotype. Some of the identified molecular targets are promising biomarkers; however, functional studies are needed to prove these observations.

  9. Development of a mutant strain of Escherichia coli for molecular cloning of highly methylated DNA

    International Nuclear Information System (INIS)

    A mutant strain of Escherichia coli designated as GR219 that allows efficient molecular cloning of highly methylated bean DNA has been developed by UV light mutation of the parent LE392 strr strain. This mutant strain, like the parent, is streptomycin resistant and is biologically contained, because it requires thymidine for growth. Both the wild type and the mutant strain have lambda phage receptors so both can be utilized for construction of genomic libraries using the phase as a vector. The efficiency of transformation of the parent and the mutant strain with a recombinant plasmid containing bean DNA was compared to the efficiency of transformation of the PLK-F' strain, which has a deletion of mcrA and mcrB genes and, therefore, allows transformation with methylated bean DNA. It has been found that the GR219 strain has the highest efficiency of transformation, while the PLK-F' strain shows less, and the parent LE392 strr strain the least efficiency of transformation. These results indicate that strains of E. coli with mcrA and mcrB genes can recognize and degrade highly methylated DNA. However, other undefined factors affected by the altered gene(s) in the GR219 strain are also involved in the recognition and degradation of any cloned foreign DNA

  10. Molecular cloning, structure, and reactivity of the second bromoperoxidase from Ascophyllum nodosum.

    Science.gov (United States)

    Wischang, Diana; Radlow, Madlen; Schulz, Heiko; Vilter, Hans; Viehweger, Lutz; Altmeyer, Matthias O; Kegler, Carsten; Herrmann, Jennifer; Müller, Rolf; Gaillard, Fanny; Delage, Ludovic; Leblanc, Catherine; Hartung, Jens

    2012-10-01

    The sequence of bromoperoxidase II from the brown alga Ascophyllum nodosum was determined from a full length cloned cDNA, obtained from a tandem mass spectrometry RT-PCR-approach. The clone encodes a protein composed of 641 amino-acids, which provides a mature 67.4 kDa-bromoperoxidase II-protein (620 amino-acids). Based on 43% sequence homology with the previously characterized bromoperoxidase I from A. nodosum, a tertiary structure was modeled for the bromoperoxidase II. The structural model was refined on the basis of results from gel filtration and vanadate-binding studies, showing that the bromoperoxidase II is a hexameric metalloprotein, which binds 0.5 equivalents of vanadate as cofactor per 67.4 kDa-subunit, for catalyzing oxidation of bromide by hydrogen peroxide in a bi-bi-ping-pong mechanism (k(cat) = 153 s(-1), 22 °C, pH 5.9). Bromide thereby is converted into a bromoelectrophile of reactivity similar to molecular bromine, based on competition kinetic data on phenol bromination and correlation analysis. Reactivity provided by the bromoperoxidase II mimics biosynthesis of methyl 4-bromopyrrole-2-carboxylate, a natural product isolated from the marine sponge Axinella tenuidigitata. PMID:22884431

  11. Molecular cloning and protein structure of a human blood group Rh polypeptide

    International Nuclear Information System (INIS)

    cDNA clones encoding a human blood group Rh polypeptide were isolated from a human bone marrow cDNA library by using a polymerase chain reaction-amplified DNA fragment encoding the known common N-terminal region of the Rh proteins. The entire primary structure of the Rh polypeptide has been deduced from the nucleotide sequence of a 1384-base-pair-long cDNA clone. Translation of the open reading frame indicates that the Rh protein is composed of 417 amino acids, including the initiator methionine, which is removed in the mature protein, lacks a cleavable N-terminal sequence, and has no consensus site for potential N-glycosylation. The predicted molecular mass of the protein is 45,500, while that estimated for the Rh protein analyzed in NaDodSO4/polyacrylamide gels is in the range of 30,000-32,000. These findings suggest either that the hydrophobic Rh protein behaves abnormally on NaDodSO4 gels or that the Rh mRNA may encode a precursor protein, which is further matured by a proteolytic cleavage of the C-terminal region of the polypeptide. Hydropathy analysis and secondary structure predictions suggest the presence of 13 membrane-spanning domains, indicating that the Rh polypeptide is highly hydrophobic and deeply buried within the phospholipid bilayer. These results suggest that the expression of the Rh gene(s) might be restricted to tissues or cell lines expressing erythroid characters

  12. Cloning and molecular characterization of a putative voltage-gated sodium channel gene in the crayfish.

    Science.gov (United States)

    Coskun, Cagil; Purali, Nuhan

    2016-06-01

    Voltage-gated sodium channel genes and associated proteins have been cloned and studied in many mammalian and invertebrate species. However, there is no data available about the sodium channel gene(s) in the crayfish, although the animal has frequently been used as a model to investigate various aspects of neural cellular and circuit function. In the present work, by using RNA extracts from crayfish abdominal ganglia samples, the complete open reading frame of a putative sodium channel gene has firstly been cloned and molecular properties of the associated peptide have been analyzed. The open reading frame of the gene has a length of 5793 bp that encodes for the synthesis of a peptide, with 1930 amino acids, that is 82% similar to the α-peptide of a sodium channel in a neighboring species, Cancer borealis. The transmembrane topology analysis of the crayfish peptide indicated a pattern of four folding domains with several transmembrane segments, as observed in other known voltage-gated sodium channels. Upon analysis of the obtained sequence, functional regions of the putative sodium channel responsible for the selectivity filter, inactivation gate, voltage sensor, and phosphorylation have been predicted. The expression level of the putative sodium channel gene, as defined by a qPCR method, was measured and found to be the highest in nervous tissue. PMID:27032955

  13. Molecular cloning and expression analysis of Crustin-like gene from Chinese shrimp Fenneropenaeus chinensis

    Institute of Scientific and Technical Information of China (English)

    LIU Fengsong; LI Fuhua; XIANG Jianhai; DONG Bo; LIU Yichen; ZHANG Xiaojun; ZHANG Liusuo

    2008-01-01

    A new member of antimicrobial protein genes of the Crustin family was cloned from haemocytes of the Chinese shrimp Fennero-penaeus chinensis by 3'and 5' RACE.The full-length cDNA of Crustin-like gene contains a 390 bp open reading frame,encoding 130 amino acids.The deduced peptide contains a putative signal peptide of 17 amino acids and mature peptide of 113 amino acids.The molecular mass of the deduced mature peptide is 12.3 ku.It is highly cationic with a theoretical isoelectric point of 8.5.The deduced amino acids sequence of this Crustin showed high homology with those of Penaeus (Litopenaeus) setferus.Northern blotting showed that the cloned Crustin gene was mainly expressed in haemocytes,gill,intestine,and RNA in situ hy-bridization indicated that the Crustin gene was constitutively expressed exclusively in haemocytes of these tissues.Capillary elee-trephoresis RT-PCR analysis showed that Crustin was up-regulated dramatically from 12 to 48 h after a brief decrease of mRNA during first 6 h in response to microbe infection.The level of Crustin mRNA began to restore at 72 h post-challenge.This indica-ted that Crustin gene might play an important role when shrimps are infected by bacterial pathogen.

  14. Primary structure of pregnancy zone protein. Molecular cloning of a full-length PZP cDNA clone by the polymerase chain reaction.

    Science.gov (United States)

    Devriendt, K; Van den Berghe, H; Cassiman, J J; Marynen, P

    1991-01-17

    A full-length cDNA clone of the human pregnancy zone protein (PZP) was cloned from the hepatocellular carcinoma cell line Hep3B. Based on the exon sequences of the PZP gene (Devriendt et al. (1989) Gene 81, 325-334; Marynen et al., unpublished data), primer pairs were designed to amplify six overlapping fragments of the PZP cDNA. The obtained cDNA is 4609 bp long and contains an open reading frame coding for 1482 amino acids, including a signal peptide of 25 amino acid residues. Comparison with the published partial PZP amino acid sequence (Sottrup-Jensen et al. (1984) Proc. Natl. Acad. Sci. USA 81, 7353-7357) and the PZP genomic sequences confirmed the identity as a PZP cDNA. 71% of the corresponding amino acid residues in PZP and human alpha 2-macroglobulin (alpha 2M) are identical and all cysteine residues are conserved. A typical internal thiol ester site and a bait domain were identified. A Pro/Thr polymorphism was identified at amino acid position 1180, and an A/G nucleotide polymorphism at bp 4097.

  15. Nasopharyngeal carcinoma: Advances in genomics and molecular genetics

    Institute of Scientific and Technical Information of China (English)

    ZENG ZhaoYang; LI XiaoLing; XIONG Wei; LI GuiYuan; HUANG HongBin; ZHANG WenLing; XIANG Bo; ZHOU Ming; ZHOU YanHong; MA Jian; YI Mei; LI XiaYu

    2011-01-01

    Nasopharyngeal carcinoma (NPC) is a squamous-cell carcinoma that arises in the epithelial lining of the nasopharynx [1].This neoplasm has a notable ethnic and geographic distribution,being of high prevalence in southern China but rare in other parts of the world [2].Familial clustering of NPC has been observed in diverse populations [3].Elevated levels of circulating free Epstein-Barr virus (EBV) DNA and EBV-related antibodies in sera,as well as EBV DNA in tumor cells,have been consistently detected in individuals with NPC [4,5].These studies have revealed that the risk factors of NPC are both environmental and genetic.How the risk factors interact,and the genes that are involved in the development of NPC,are not well understood [6].

  16. Molecular cloning and tissue distribution profiles of the chicken R-spondin1 gene.

    Science.gov (United States)

    Han, Y Q; Geng, J; Shi, H T; Zhang, X M; Du, L L; Liu, F T; Li, M M; Wang, X T; Wang, Y Y; Yang, G Y

    2015-01-01

    Rspo1 belongs to the Rspo family, which is composed of 4 members (Rspo1-4) that share 40 to 60% sequence homology and similar domain organizations, and regulate the WNT signaling pathway via a common mechanism. Rspo1 plays a key role in vertebrate development and is an effective mitogenic factor of gastrointestinal epithelial cells. We report the cloning of chicken Rspo1 and its gene expression distribution among tissues. It contained an open reading frame of 783 bp encoding a protein of 260 amino acids, and its molecular weight was predicted to be 28.80 kDa. Reverse transcription-polymerase chain reaction-based gene expression analysis indicated that chicken Rspo1 was highly expressed in the stomach muscle tissue, but was expressed at low levels in the lung, brain, jejunum, cecum, ileum, spleen, pancreas, kidney, and glandular stomach. These results suggest that Rspo1 plays a major role in muscular immune protection. PMID:25966073

  17. Molecular Backgrounds of ERAP1 Downregulation in Cervical Carcinoma

    OpenAIRE

    Mehta, Akash M.; Michelle Osse; Sandra Kolkman-Uljee; Gert Jan Fleuren; Jordanova, Ekaterina S.

    2015-01-01

    The antigen processing machinery (APM) plays an important role in immune recognition of virally infected and transformed cells. Defective expression of the APM component ERAP1 is associated with progression and poor clinical outcome in cervical carcinoma. However, the underlying mechanisms of ERAP1 protein downregulation remain to be established. We investigated ERAP1 mRNA expression levels in 14 patients with established ERAP1 protein downregulation. To further examine the possible pretransc...

  18. Characterization of nonprimate hepacivirus and construction of a functional molecular clone

    Science.gov (United States)

    Scheel, Troels K. H.; Kapoor, Amit; Nishiuchi, Eiko; Brock, Kenny V.; Yu, Yingpu; Andrus, Linda; Gu, Meigang; Renshaw, Randall W.; Dubovi, Edward J.; McDonough, Sean P.; Van de Walle, Gerlinde R.; Lipkin, W. Ian; Divers, Thomas J.; Tennant, Bud C.; Rice, Charles M.

    2015-01-01

    Nonprimate hepacivirus (NPHV) is the closest known relative of hepatitis C virus (HCV) and its study could enrich our understanding of HCV evolution, immunity, and pathogenesis. High seropositivity is found in horses worldwide with ∼3% viremic. NPHV natural history and molecular virology remain largely unexplored, however. Here, we show that NPHV, like HCV, can cause persistent infection for over a decade, with high titers and negative strand RNA in the liver. NPHV is a near-universal contaminant of commercial horse sera for cell culture. The complete NPHV 3′-UTR was determined and consists of interspersed homopolymer tracts and an HCV-like 3′-terminal poly(U)-X-tail. NPHV translation is stimulated by miR-122 and the 3′-UTR and, similar to HCV, the NPHV NS3-4A protease can cleave mitochondrial antiviral-signaling protein to inactivate the retinoic acid-inducible gene I pathway. Using an NPHV consensus cDNA clone, replication was not observed in primary equine fetal liver cultures or after electroporation of selectable replicons. However, intrahepatic RNA inoculation of a horse initiated infection, yielding high RNA titers in the serum and liver. Delayed seroconversion, slightly elevated circulating liver enzymes and mild hepatitis was observed, followed by viral clearance. This establishes the molecular components of a functional NPHV genome. Thus, NPHV appears to resemble HCV not only in genome structure but also in its ability to establish chronic infection with delayed seroconversion and hepatitis. This NPHV infectious clone and resulting acute phase sera will facilitate more detailed studies on the natural history, pathogenesis, and immunity of this novel hepacivirus in its natural host. PMID:25646476

  19. Retrospective analysis of the efficacy of chemotherapy and molecular targeted therapy for advanced pulmonary pleomorphic carcinoma

    OpenAIRE

    Tamura, Yosuke; Fujiwara, Yutaka; Yamamoto, Noboru; Nokihara, Hiroshi; Horinouchi, Hidehito; Kanda, Shintaro; Goto, Yasushi; Kubo, Emi; Kitahara, Shinsuke; Tsuruoka, Kenjiro; Tsuta, Koji; Ohe, Yuichiro

    2015-01-01

    Background Pulmonary pleomorphic carcinoma (PPC) follows an aggressive clinical course and outcomes are disappointing. Due to its rarity, however, the clinicopathological and molecular characteristics of this disease remain unclear. Methods We retrospectively evaluated the efficacy of chemotherapy and molecular targeted therapy in 16 patients with PPC who received chemotherapy or EGFR-TKI. We also investigated the status of EGFR mutation, KRAS mutation and ALK expression. Results On histologi...

  20. Molecular cloning and characterization of two hypersensitive induced reaction genes from wheat infected by stripe rust pathogen

    Science.gov (United States)

    A novel gene induced during hypersensitive reaction (HIR) in wheat was identified using in silico cloning and designated as TaHIR2. The TaHIR2 gene was deduced to encode a 284-amino acid protein, whose molecular mass and isoelectric point (pI) were 31.05 kD and 5.18, respectively. Amino acid sequenc...

  1. Ovarian carcinomas with genetic and epigenetic BRCA1 loss havedistinct molecular abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Press, Joshua Z.; De Luca, Alessandro; Boyd, Niki; Young, Sean; Troussard, Armelle; Ridge, Yolanda; Kaurah, Pardeep; Kalloger, Steve E.; Blood, Katherine A.; Smith, Margaret; Spellman, Paul T.; Wang, Yuker; Miller, Dianne M.; Horsman, Doug; Faham, Malek; Gilks, C. Blake; Gray,Joe; Huntsman, David G.

    2007-07-23

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumors were high-grade serous or undifferentiated type. None of the endometrioid (n = 5), clear cell (n = 4), or low grade serous (n = 2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumors with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.

  2. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Gilks, C. Blake; Press, Joshua Z.; De Luca, Alessandro; Boyd, Niki; Young, Sean; Troussard, Armelle; Ridge, Yolanda; Kaurah, Pardeep; Kalloger, Steve E.; Blood, Katherine A.; Smith, Margaret; Spellman, Paul T.; Wang, Yuker; Miller, Dianne M.; Horsman, Doug; Faham, Malek; Gilks, C. Blake; Gray, Joe; Huntsman, David G.

    2008-05-02

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumors were high-grade serous or undifferentiated type. None of the endometrioid (n=5), clear cell (n=4), or low grade serous (n=2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumors with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.

  3. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities

    Directory of Open Access Journals (Sweden)

    Miller Dianne M

    2008-01-01

    Full Text Available Background Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH, and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. Methods A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Results Eighteen (37% of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumours were high-grade serous or undifferentiated type. None of the endometrioid (n = 5, clear cell (n = 4, or low grade serous (n = 2 carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumours with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. Conclusion High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic, BRCA1 loss (epigenetic, and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.

  4. Molecular markers in the surgical margin of oral carcinomas

    DEFF Research Database (Denmark)

    Bilde, A.; Buchwald, C. von; Dabelsteen, E.;

    2009-01-01

    BACKGROUND: Local or regional lymph node recurrence is the most common pattern of treatment failure in oral squamous cell carcinoma (SCC). The local recurrence rate is 30% even when the surgical resection margin is diagnosed as tumour free. Accumulation of genetic changes in histologically normal....... METHODS: Formalin-fixed, paraffin-embedded surgical specimens from 16 consecutive patients with oral SCC and a clear surgical margin were obtained. The margin was analysed by immunohistochemistry for p53, p16, Chk2, Laminin-5 and glycosylated oncofetal fibronectin. RESULTS: Two patterns of p53 expression...

  5. Molecular cloning and phylogenetic analysis of Clonorchis sinensis elongation factor-1alpha.

    Science.gov (United States)

    Kim, Tae Yun; Cho, Pyo Yun; Na, Jong Won; Hong, Sung-Jong

    2007-11-01

    Elongation factor-1 (EF-1) plays a primary role in protein synthesis, e.g., in the regulation of cell growth, aging, motility, embryogenesis, and signal transduction. The authors identified a clone CsIH23 by immunoscreening a Clonorchis sinensis cDNA library. The cDNA of CsIH23 was found to have a putative open reading frame containing 461 amino acids with a predicted molecular mass of 50.5 kDa. Its polypeptide sequence was highly homologous with EF-1alpha of parasites and vertebrate animals. CsIH23 polypeptide contained three GTP/GDP-binding sites, one ribosome-binding domain, one actin-binding domain, one tRNA-binding domain, and two glyceryl-phosphoryl-ethanolamine attachment sites. Based on these primary and secondary structural similarities, it was concluded that CsIH23 cDNA encodes C. sinensis EF-1alpha (CsEF-1alpha). In a molecular phylogenic tree, CsEF-1alpha clustered with the EF-1alpha of helminthic parasites. Subsequently, CsEF-1alpha recombinant protein was bacterially overexpressed and purified by Ni-NTA affinity column chromatography. Immunoblotting using CsEF-1alpha recombinant protein produced positive signals for all serum samples tested from clonorchiasis, opisthorchiasis viverinii, and paragonimiasis westermani patients and normal healthy controls. These findings suggest that recombinant CsEF-1alpha is of limited usefulness as serodiagnostic antigen for clonorchiasis. PMID:17674047

  6. Molecular backgrounds of ERAP1 downregulation in cervical carcinoma.

    Science.gov (United States)

    Mehta, Akash M; Osse, Michelle; Kolkman-Uljee, Sandra; Fleuren, Gert Jan; Jordanova, Ekaterina S

    2015-01-01

    The antigen processing machinery (APM) plays an important role in immune recognition of virally infected and transformed cells. Defective expression of the APM component ERAP1 is associated with progression and poor clinical outcome in cervical carcinoma. However, the underlying mechanisms of ERAP1 protein downregulation remain to be established. We investigated ERAP1 mRNA expression levels in 14 patients with established ERAP1 protein downregulation. To further examine the possible pretranscriptional mechanisms of ERAP1 downregulation, ERAP1 DNA mutation status was analyzed alongside existing data on various single nucleotide polymorphisms. Moreover, loss of heterozygosity at various loci in the ERAP1 gene was investigated. In cases with ERAP1 protein downregulation, ERAP1 mRNA quantities were found to be significantly lower than in a cohort with normal ERAP1 protein expression (P = 0.001). Loss of heterozygosity was demonstrated to occur in up to 50% of tumors with ERAP1 downregulation. Our data indicate that ERAP1 downregulation is associated with loss of heterozygosity. These data provide the first insight into in vivo mechanisms of ERAP1 downregulation in cervical carcinoma. PMID:26146606

  7. Molecular Backgrounds of ERAP1 Downregulation in Cervical Carcinoma

    Directory of Open Access Journals (Sweden)

    Akash M. Mehta

    2015-01-01

    Full Text Available The antigen processing machinery (APM plays an important role in immune recognition of virally infected and transformed cells. Defective expression of the APM component ERAP1 is associated with progression and poor clinical outcome in cervical carcinoma. However, the underlying mechanisms of ERAP1 protein downregulation remain to be established. We investigated ERAP1 mRNA expression levels in 14 patients with established ERAP1 protein downregulation. To further examine the possible pretranscriptional mechanisms of ERAP1 downregulation, ERAP1 DNA mutation status was analyzed alongside existing data on various single nucleotide polymorphisms. Moreover, loss of heterozygosity at various loci in the ERAP1 gene was investigated. In cases with ERAP1 protein downregulation, ERAP1 mRNA quantities were found to be significantly lower than in a cohort with normal ERAP1 protein expression P=0.001. Loss of heterozygosity was demonstrated to occur in up to 50% of tumors with ERAP1 downregulation. Our data indicate that ERAP1 downregulation is associated with loss of heterozygosity. These data provide the first insight into in vivo mechanisms of ERAP1 downregulation in cervical carcinoma.

  8. Molecular cloning and expression of interleukin 1beta (IL-1β) from red seabream (Pagrus major)

    Institute of Scientific and Technical Information of China (English)

    CAI Zhonghua; SONG Linsheng; GAO Chunping; WU Longtao; QIU Lihua

    2004-01-01

    The interleukin 1β (IL-1β) Cdna was cloned from the red seabream (Pagrus major) by homology cloning strategy.A Cdna fragment was amplified by PCR using two degenerated primers,which were designed according to the conserved regions of other known IL-1β sequences,and elongated by 3′ ends and 5′ ends RACE PCR to get the full length coding sequence of red seabream IL-1β (RS IL-1β).The sequence contained 1252 nucleotides that included a 5′ untranslated region (UTR) of 84 bp,a 3′ UTR of 410 bp and an open reading frame (ORF) of 759 nucleotides which could be translated into a putative peptide of 253 amino acids with molecular weight of 28.6 Kd and putative isoelectric point Pi of 5.29.The deduced peptide contained two potential N-glycosylation sites and an identifiable IL1 family signature,but lacked the signal peptide and the clear ICE cut site,which were common in other nonmammalian IL-1β genes.The RS IL-1β had the highest homology with piscine IL-1β according to phylogenetic tree analysis.The transcript expression was detected in blood,brain,gill,heart,head kidney,kidney,liver,muscle and spleen in the pathogen challenged and healthy red seabream by RT-PCR.Results showed that the RS IL-1β Mrna was constitutively expressed in most of the tissues both in stimulated and un-stimulated fish,and the expression could be enhanced by pathogen challenging.

  9. Molecular cloning and pharmacological characterization of giant panda (Ailuropoda melanoleuca) melanocortin-4 receptor.

    Science.gov (United States)

    Wang, Zhi-Qiang; Wang, Wei; Shi, Lin; Chai, Ji-Tian; Zhang, Xin-Jun; Tao, Ya-Xiong

    2016-04-01

    The melanocortin-4 receptor (MC4R) is critical in regulating mammalian food intake and energy expenditure. Giant panda (Ailuropoda melanoleuca), famous as the living fossil, is an endangered species endemic to China. We are interested in exploring the functions of the giant panda MC4R (amMC4R) in regulating energy homeostasis and report herein the molecular cloning and pharmacology of the amMC4R. Sequence analysis revealed that amMC4R was highly homologous (>88%) at nucleotide and amino acid sequences to several mammalian MC4Rs. Western blot revealed that the expression construct myc-amMC4R in pcDNA3.1 was successfully constructed and expressed in HEK293T cells. With human MC4R (hMC4R) as a control, pharmacological characteristics of amMC4R were analyzed with binding and signaling assays. Four agonists, including [Nle(4), D-Phe(7)]-α-melanocyte stimulating hormone (NDP-MSH), α- and β-MSH, and a small molecule agonist, THIQ, were used in binding and signaling assays. We showed that amMC4R bound NDP-MSH with the highest affinity followed by THIQ, α-MSH, and β-MSH, with the same ranking order as hMC4R. Treatment of HEK293T cells expressing amMC4R with different concentrations of agonists resulted in dose-dependent increase of intracellular cAMP levels, with similar EC50s for the four agonists. The results suggested that the cloned amMC4R encoded a functional MC4R. The availability of amMC4R and its binding and signaling properties will facilitate the investigation of amMC4R in regulating food intake and energy homeostasis. PMID:26896843

  10. Molecular cloning and functional characterization of a rainbow trout liver Oatp

    International Nuclear Information System (INIS)

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrain fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772 bp containing a 2115 bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80 kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologues OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a Km value of 13.9 μM and 13.4 μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a Km value of 103 μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. - Highlights: • A new Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. • rtOatp1d1 is predominantly expressed in the liver. • rtOatp1d1 displays multi-specific transport of endogenous and xenobiotic substrates. • rtOatp1d1 is a homologue of the OATP1A1, OATP1B1 and OATP1B3. • rtOatp1d1 is a microcystin (MC) transporter

  11. Molecular cloning and functional characterization of a rainbow trout liver Oatp

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Konstanze, E-mail: konstanze.steiner@uni-konstanz.de [University of Konstanz, Human- and Environmental Toxicology, 78464 Konstanz (Germany); Hagenbuch, Bruno, E-mail: bhagenbuch@kumc.edu [Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City 66160, KS (United States); Dietrich, Daniel R., E-mail: daniel.dietrich@uni-konstanz.de [University of Konstanz, Human- and Environmental Toxicology, 78464 Konstanz (Germany)

    2014-11-01

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrain fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772 bp containing a 2115 bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80 kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologues OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a K{sub m} value of 13.9 μM and 13.4 μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a K{sub m} value of 103 μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. - Highlights: • A new Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. • rtOatp1d1 is predominantly expressed in the liver. • rtOatp1d1 displays multi-specific transport of endogenous and xenobiotic substrates. • rtOatp1d1 is a homologue of the OATP1A1, OATP1B1 and OATP1B3. • rtOatp1d1 is a microcystin (MC) transporter.

  12. Molecular cloning of the first metazoan beta-1,3 glucanase from eggs of the sea urchin Strongylocentrotus purpuratus.

    OpenAIRE

    Bachman, E S; McClay, D R

    1996-01-01

    We report the molecular cloning of the first beta-1,3 glucanase from animal tissue. Three peptide sequences were obtained from beta-1,3 glucanase that had been purified from eggs of the sea urchin Strongylocentrotus purpuratus and the gene was cloned by PCR using oligonucleotides deduced from the peptide sequences. The full-length cDNA shows a predicted enzyme structure of 499 aa with a hydrophobic signal sequence. A 3.2-kb message is present in eggs, during early embryogenesis, and in adult ...

  13. Morphologic correlates of molecular alterations in extrauterine Müllerian carcinomas.

    Science.gov (United States)

    Ritterhouse, Lauren L; Nowak, Jonathan A; Strickland, Kyle C; Garcia, Elizabeth P; Jia, Yonghui; Lindeman, Neal I; Macconaill, Laura E; Konstantinopoulos, Panagiotis A; Matulonis, Ursula A; Liu, Joyce; Berkowitz, Ross S; Nucci, Marisa R; Crum, Christopher P; Sholl, Lynette M; Howitt, Brooke E

    2016-08-01

    Extrauterine high-grade serous carcinomas can exhibit various histologic patterns including (1) classic architecture that is papillary, micropapillary and infiltrative and (2) solid, endometrioid, and transitional (ie, SET) patterns. Although the SET pattern has been associated with germline BRCA mutations, potential molecular underpinnings have not been fully investigated. DNA was isolated from 174 carcinomas of the fallopian tube, ovary, or peritoneum. Targeted next-generation sequencing was performed and single-nucleotide and copy number variants were correlated with morphologic subtype. Overall, 79% of tumors were classified as high-grade serous carcinoma (n=138), and the most common mutations in high-grade serous carcinomas were TP53 (94%), BRCA1 (25%), BRCA2 (11%), and ATM (7%). Among chemotherapy-naive high-grade serous carcinomas, 40 cases exhibited classic morphology and 40 cases had non-classic morphology (SET or ambiguous features). Mutations in homologous recombination pathways were seen across all tumor histotypes. High-grade serous carcinomas with homologous recombination mutations were six times more likely to be associated with non-classic histology (P=0.002) and were significantly more likely to be platinum sensitive and have improved progression-free survival (PFS) (P=0.007 and P=0.004, respectively). In a multivariate analysis adjusted for age, homologous recombination mutation status and increased copy number variants were independently associated with improved PFS (P=0.008 and P=0.005, respectively). These findings underscore the potential significance of variant morphologic patterns and comprehensive genomic analysis in high-grade serous carcinomas with potential implications for pathogenesis, as well as response to targeted therapies. PMID:27150160

  14. Human beta 2 chain of laminin (formerly S chain): cDNA cloning, chromosomal localization, and expression in carcinomas

    DEFF Research Database (Denmark)

    Wewer, U M; Gerecke, D R; Durkin, M E;

    1994-01-01

    Overlapping cDNA clones that encode the full-length human laminin beta 2 chain, formerly called the S chain, were isolated. The cDNA of 5680 nt contains a 5391-nt open reading frame encoding 1797 amino acids. At the amino terminus is a 32-amino-acid signal peptide that is followed by the mature...... beta 2 chain polypeptide of 1765 amino acids with a calculated molecular mass of 192,389 Da. The human beta 2 chain is predicted to have all of the seven structural domains typical of the beta chains of laminin, including the short cysteine-rich alpha region. The amino acid sequence of human beta 2...... chain showed 86.1% sequence identity to the rat beta 2 chain, 50.0% to the human beta 1 chain, and 36.3% to the human beta 3 chain. The greatest sequence identity was in domains VI, V, and III. The sequence of a 24-amino-acid peptide fragment isolated from the beta 2 chain of laminin purified from human...

  15. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome

    Directory of Open Access Journals (Sweden)

    Liu Yu

    2008-12-01

    , purified and characterized. The molecular mass of the native enzyme was approximately 31 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of the Pye3 indicated molecular mass of 31 kDa and 31.5 kDa, respectively, suggesting that the Pye3 is a monomer. The purified Pye3 not only degraded all pyrethroid pesticides tested, but also hydrolyzed ρ-nitrophenyl esters of medium-short chain fatty acids, indicating that the Pye3 is an esterase with broader specificity. The Km values for trans-Permethrin and cis-permethrin are 0.10 μM and 0.18 μM, respectively, and these catalytic properties were superior to carboxylesterases from resistant insects and mammals. The catalytic activity of the Pye3 was strongly inhibited by Hg2+, Ag+, ρ-chloromercuribenzoate, whereas less pronounced effect was observed in the presence of divalent cations, the chelating agent EDTA and phenanthroline. Conclusion A novel pyrethroid-hydrolyzing esterase gene was successfully cloned using metagenomic DNA combined with activity-based functional screening from soil, the broader substrate specificities and higher activity of the pyrethroid-hydrolyzing esterase (Pye3 make it an ideal candidate for in situ for detoxification of pyrethroids where they cause environmental contamination problems. Consequently, metagenomic DNA clone library offers possibilities to discover novel bio-molecules through the expression of genes from uncultivated bacteria.

  16. Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice

    Institute of Scientific and Technical Information of China (English)

    Dekai Wang; Heqin Liu; Sujuan Li; Guowei Zhai; Jianfeng Shao; Yuezhi Tao

    2015-01-01

    Serine hydroxymethyltransferase (SHMT) is impor-tant for one carbon metabolism and photorespiration in higher plants for its participation in plant growth and development, and resistance to biotic and abiotic stresses. A rice serine hydroxymethyltransferase gene, OsSHM1, an ortholog of Arabidopsis SHM1, was isolated using map-based cloning. The osshm1 mutant had chlorotic lesions and a considerably smaller, lethal phenotype under natural ambient CO2 concentrations, but could be restored to wild type with normal growth under elevated CO2 levels (0.5% CO2), showing a typical photo-respiratory phenotype. The data from antioxidant enzymes activity measurement suggested that osshm1 was subjected to significant oxidative stress. Also, OsSHM1 was expressed in al organs tested (root, culm, leaf, and young panicle) but predominantly in leaves. OsSHM1 protein is localized to the mitochondria. Our study suggested that molecular function of the OsSHM1 gene is conserved in rice and Arabidopsis.

  17. Molecular Cloning, Expression Analysis, and Functional Characterization of the H(+)-Pyrophosphatase from Jatropha curcas.

    Science.gov (United States)

    Yang, Yumei; Luo, Zhu; Zhang, Mengru; Liu, Chang; Gong, Ming; Zou, Zhurong

    2016-04-01

    H(+)-pyrophosphatase (H(+)-PPase) is a primary pyrophosphate (PPi)-energized proton pump to generate electrochemical H(+) gradient for ATP production and substance translocations across membranes. It plays an important role in stress adaptation that was intensively substantiated by numerous transgenic plants overexpressing H(+)-PPases yet devoid of any correlated studies pointing to the elite energy plant, Jatropha curcas. Herein, we cloned the full length of J. curcas H(+)-PPase (JcVP1) complementary DNA (cDNA) by reverse transcription PCR, based on the assembled sequence of its ESTs highly matched to Hevea brasiliensis H(+)-PPase. This gene encodes a polypeptide of 765 amino acids that was predicted as a K(+)-dependent H(+)-PPase evolutionarily closest to those of other Euphorbiaceae plants. Many cis-regulatory elements relevant to environmental stresses, molecular signals, or tissue-specificity were identified by promoter prediction within the 1.5-kb region upstream of JcVP1 coding sequence. Meanwhile, the responses of JcVP1 expression to several common abiotic stresses (salt, drought, heat, cold) were characterized with a considerable accordance with the inherent stress tolerance of J. curcas. Moreover, we found that the heterologous expression of JcVP1 could significantly improve the salt tolerance in both recombinant Escherichia coli and Saccharomyces cerevisiae, and this effect could be further fortified in yeast by N-terminal addition of a vacuole-targeting signal peptide from the H(+)-PPase of Trypanosoma cruzi. PMID:26643082

  18. Molecular cloning and characterization of a new and highly thermostable esterase from Geobacillus sp. JM6.

    Science.gov (United States)

    Zhu, Yanbing; Zheng, Wenguang; Ni, Hui; Liu, Han; Xiao, Anfeng; Cai, Huinong

    2015-10-01

    A new lipolytic enzyme gene was cloned from a thermophile Geobacillus sp. JM6. The gene contained 750 bp and encoded a 249-amino acid protein. The recombinant enzyme was expressed and purified from Escherichia coli BL21 (DE3) with a molecular mass of 33.6 kDa. Enzyme assays using p-nitrophenyl esters with different acyl chain lengths as the substrates confirmed its esterase activity, yielding the highest activity with p-nitrophenyl butyrate. When p-nitrophenyl butyrate was used as a substrate, the optimum reaction temperature and pH for the enzyme were 60 °C and pH 7.5, respectively. Geobacillus sp. JM6 esterase showed excellent thermostability with 68% residual activity after incubation at 100 °C for 18 h. A theoretical structural model of strain JM6 esterase was developed with a monoacylglycerol lipase from Bacillus sp. H-257 as a template. The predicted core structure exhibits an α/β hydrolase fold, and a putative catalytic triad (Ser97, Asp196, and His226) was identified. Inhibition assays with PMSF indicated that serine residue is involved in the catalytic activity of strain JM6 esterase. The recombinant esterase showed a relatively good tolerance to the detected detergents and denaturants, such as SDS, Chaps, Tween 20, Tween 80, Triton X-100, sodium deoxycholate, urea, and guanidine hydrochloride.

  19. Molecular cloning and polymorphism of major histocompatibility complex class I genes from grass carp (Ctenophayngodon idellus)

    Institute of Scientific and Technical Information of China (English)

    XIA Chun; XU Guangxian; LIN Changyou; HU Tuanjun; YAN Ruoqian; George F GAO

    2004-01-01

    In order to clarify the molecular sequences,allelic polymorphism and the tertiary structure of grass carp (Ctenophayngodon idellus) MHC class I,and to further study their relationship with disease resistances,grass carp MHC class I gene (Ctid-MHC I) was cloned from a cDNA library and the allelic polymorphism in the population was investigated.The results showed that most of the variations exist in the peptide-binding domain (PBD) and high polymorphism was identified in the Ctid-MHC I allelic genes from 12 individuals.Based on the genetic distance,Ctid-MHC class I can be classified into 6 types (from Ctid-MHC I-UA to Ctid-MHC I-UF) which were subdivided into 9 lineages (from A to I).Comparison of the Ctid-MHC I among animals and humans showed that the key amino acids of the peptide binding sites are conserved.Analysis of the tertiary structure of the PBD between Grass carp and human crystallographic data of HLA-A2,the variation with insertion or deletion was found in eight regions (A~H).The phylogenetic tree of MHC class I indicates the evolution of MHC class I among grass carp,fish,amphibian,birds,higher vertebrates and humans.

  20. Molecular cloning and characterization of a galectin-1 homolog in orange-spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Chen, Xiuli; Wei, Jingguang; Xu, Meng; Yang, Min; Li, Pingfei; Wei, Shina; Huang, Youhua; Qin, Qiwei

    2016-07-01

    As a member of animal lectin family, galectin has the functions of pathogen recognition, anti-bacteria and anti-virus. In the present study, a galectin-1 homolog (EcGel-1) from grouper (Epinephelus coioides) was cloned and its possible role in fish immunity was analyzed. The full length cDNA of EcGel-1 is 504 bp, including a 408 bp open reading frame (ORF) which encodes 135 amino acids with a molecular mass of 15.19 kDa. Quantitative real-time PCR analysis indicated that EcGel-1 was constitutively expressed in all analyzed tissues of healthy grouper. The expression of EcGel-1 in the spleen of grouper was differentially up-regulated challenged with Singapore grouper iridovirus (SGIV), poly (I:C), and LPS. EcGel-1 was abundantly distributed in the cytoplasm in GS cells. Recombinant EcGel-1(rEcGel-1) protein can make chicken erythrocyte aggregation, and combine with gram negative bacteria and gram positive bacteria in the presence of 2-Mercaptoethanol (β-ME). Taken together, the results showed that EcGel-1 may be an important molecule involved in pathogen recognition and pathogen elimination in the innate immunity of grouper.

  1. Simple and versatile molecular method of copy-number measurement using cloned competitors.

    Science.gov (United States)

    Kim, Hyun-Kyoung; Hwang, Hai-Li; Park, Seong-Yeol; Lee, Kwang Man; Park, Won Cheol; Kim, Han-Seong; Um, Tae-Hyun; Hong, Young Jun; Lee, Jin Kyung; Joo, Sun-Young; Seoh, Ju-Young; Song, Yeong-Wook; Kim, Soo-Youl; Kim, Yong-Nyun; Hong, Kyeong-Man

    2013-01-01

    Variations and alterations of copy numbers (CNVs and CNAs) carry disease susceptibility and drug responsiveness implications. Although there are many molecular methods to measure copy numbers, sensitivity, reproducibility, cost, and time issues remain. In the present study, we were able to solve those problems utilizing our modified real competitive PCR method with cloned competitors (mrcPCR). First, the mrcPCR for ERBB2 copy number was established, and the results were comparable to current standard methods but with a shorter assay time and a lower cost. Second, the mrcPCR assays for 24 drug-target genes were established, and the results in a panel of NCI-60 cells were comparable to those from real-time PCR and microarray. Third, the mrcPCR results for FCGR3A and the FCGR3B CNVs were comparable to those by the paralog ratio test (PRT), but without PRT's limitations. These results suggest that mrcPCR is comparable to the currently available standard or the most sensitive methods. In addition, mrcPCR would be invaluable for measurement of CNVs in genes with variants of similar structures, because combination of the other methods is not necessary, along with its other advantages such as short assay time, small sample amount requirement, and applicability to all sequences and genes.

  2. Molecular cloning and expression of lexA gene from the radioresistant bacterium deinococcus radiodurans

    International Nuclear Information System (INIS)

    In order to investigate the role of lexA gene in the radioresistance of Deinococcus radiodurans, the expressing vector of lexA gene was constructed. The genomic DNA was extracted from wild type Deinococcus radiodurans KD8301. The lexA gene was isolated from the genomic DNA and sequenced. The Plasmid vector pUC19 was used to clone lexA gene and the electroporation was employed to transfer the recombinant plasmid into E. coli JM109. SDS-PAGE was used to check the expression of lexA gene. The ribosome binding site (RBS) of lexA gene was mutated by means of Site -Directed Mutagenesis technique for the optimum of gene expression. The results indicated that the lexA gene was located in the BlnI-AscI fragment of Deinococcus radiodurans genomic DNA, containing 630bp and coding 210 aa. The theoretically deduced molecular weight and the isoelectric point were 2.5KDa and 6.4 respectively. lexA gene inserted into pUC19 could be expressed in JM109, but at very low level. After optimizing the RBS of lexA gene, higher level of lexA expression was observed. The results make it possible to isolate and purify lexA protein, and further to investigate the function of lexA gene in Deinococcus radiodurans

  3. Molecular cloning and structural characterization of Ecdysis Triggering Hormone from Choristoneura fumiferana.

    Science.gov (United States)

    P, Bhagath Kumar; K, Kasi Viswanath; S, Tuleshwori Devi; R, Sampath Kumar; Doucet, Daniel; Retnakaran, Arthur; Krell, Peter J; Feng, Qili; Ampasala, Dinakara Rao

    2016-07-01

    At the end of each stadium, insects undergo a precisely orchestrated process known as ecdysis which results in the replacement of the old cuticle with a new one. This physiological event is necessary to accommodate growth in arthropods since they have a rigid chitinous exoskeleton. Ecdysis is initiated by the direct action of Ecdysis Triggering Hormones on the central nervous system. Choristoneura fumiferana is a major defoliator of coniferous forests in Eastern North America. It is assumed that, studies on the ecdysis behavior of this pest might lead to the development of novel pest management strategies. Hence in this study, the cDNA of CfETH was cloned. The open reading frame of the cDNA sequence was found to encode three putative peptides viz., Pre-Ecdysis Triggering Hormone (PETH), Ecdysis Triggering Hormone (ETH), and Ecdysis Triggering Hormone Associated Peptide (ETH-AP). The CfETH transcript was detected in the epidermal tissue of larval and pupal stages, but not in eggs and adults. In order to explore the structural conformation of ETH, ab initio modelling and Molecular Dynamics (MD) Simulations were performed. Further, a library of insecticides was generated and virtual screening was performed to identify the compounds displaying high binding capacity to ETH. PMID:27012894

  4. Molecular cloning and daily variations of the Period gene in a reef fish Siganus guttatus.

    Science.gov (United States)

    Park, Ji-Gweon; Park, Yong-Ju; Sugama, Nozomi; Kim, Se-Jae; Takemura, Akihiro

    2007-04-01

    As the first step in understanding the molecular oscillation of the circa rhythms in the golden rabbitfish Siganus guttatus--a reef fish with a definite lunar-related rhythmicity--we cloned and sequenced a Period gene (rfPer). The rfPer gene contained an open reading frame that encodes a protein consisting of 1,452 amino acids; this protein is highly homologous to PER proteins of vertebrates including zebrafish. Phylogenetic analyses indicated that the rfPER protein is related to the zebrafish PER1 and PER4. The expression of rfPer mRNA in the whole brain, retina, and liver under light/dark (LD) conditions increased at 06:00 h and decreased at 18:00 h, suggesting that its robust circadian rhythm occurs in neural and peripheral tissues. When daily variation in the expression in rfPer mRNA in the whole brain and cultured pineal gland were examined under LD conditions, similar expression patterns of the gene were observed with an increase around dawn. Under constant light condition, the increased expression of rfPer mRNA in the whole brain disappeared around dawn. The present results demonstrate that rfPer is related to zPer4 and possibly zPer1. The present study is the first report on the Period gene from a marine fish.

  5. Molecular cloning, sequence characteristics, and tissue expression analysis of ECE1 gene in Tibetan pig.

    Science.gov (United States)

    Wang, Yan-Dong; Zhang, Jian; Li, Chuan-Hao; Xu, Hai-Peng; Chen, Wei; Zeng, Yong-Qing; Wang, Hui

    2015-10-25

    Low air pressure and low oxygen partial pressure at high altitude seriously affect the survival and development of human beings and animals. ECE1 is a recently discovered gene that is involved in anti-hypoxia, but the full-length cDNA sequence has not been obtained. For a better understanding of the structure and function of the ECE1 gene and to study its effect in Tibetan pig, the cDNA of the ECE1 gene from the muscle of Tibetan pig was cloned, sequenced and characterized. The ECE1 full-length cDNA sequence consists of 2262 bp coding sequence (CDS) that encodes 753 amino acids with a molecular mass of 85,449 kD, 2 bp 5'UTR and 1507 bp 3'UTR. In addition, the phylogenetic tree analysis revealed that the Tibetan pig ECE1 has a closer genetic relationship and evolution distance with the land mammals ECE1. Furthermore, analysis by qPCR showed that the ECE1 transcript is constitutively expressed in the 10 tissues tested: the liver, subcutaneous fat, kidney, muscle, stomach, heart, brain, spleen, pancreas, and lung. These results serve as a foundation for further insight into the Tibetan pig ECE1 gene. PMID:26115769

  6. Molecular cloning and characterization of a galectin-1 homolog in orange-spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Chen, Xiuli; Wei, Jingguang; Xu, Meng; Yang, Min; Li, Pingfei; Wei, Shina; Huang, Youhua; Qin, Qiwei

    2016-07-01

    As a member of animal lectin family, galectin has the functions of pathogen recognition, anti-bacteria and anti-virus. In the present study, a galectin-1 homolog (EcGel-1) from grouper (Epinephelus coioides) was cloned and its possible role in fish immunity was analyzed. The full length cDNA of EcGel-1 is 504 bp, including a 408 bp open reading frame (ORF) which encodes 135 amino acids with a molecular mass of 15.19 kDa. Quantitative real-time PCR analysis indicated that EcGel-1 was constitutively expressed in all analyzed tissues of healthy grouper. The expression of EcGel-1 in the spleen of grouper was differentially up-regulated challenged with Singapore grouper iridovirus (SGIV), poly (I:C), and LPS. EcGel-1 was abundantly distributed in the cytoplasm in GS cells. Recombinant EcGel-1(rEcGel-1) protein can make chicken erythrocyte aggregation, and combine with gram negative bacteria and gram positive bacteria in the presence of 2-Mercaptoethanol (β-ME). Taken together, the results showed that EcGel-1 may be an important molecule involved in pathogen recognition and pathogen elimination in the innate immunity of grouper. PMID:27109200

  7. Purification and molecular cloning of a new galactose-specific lectin from Bauhinia variegata seeds

    Indian Academy of Sciences (India)

    Luciano S Pinto; Celso S Nagano; Taianá M Oliveira; Tales R Moura; Alexandre H Sampaio; Henri Debray; Vicente P Pinto; Odir A Dellagostin; Benildo S Cavada

    2008-09-01

    A new galactose-specific lectin was purified from seeds of a Caesalpinoideae plant, Bauhinia variegata, by affinity chromatography on lactose–agarose. Protein extracts haemagglutinated rabbit and human erythrocytes (native and treated with proteolytic enzymes), showing preference for rabbit blood treated with papain and trypsin. Among various carbohydrates tested, the lectin was best inhibited by D-galactose and its derivatives, especially lactose. SDS-PAGE showed that the lectin, named BVL, has a pattern similar to other lectins isolated from the same genus, Bauhinia purpurea agglutinin (BPA). The molecular mass of BVL subunit is 32 871 Da, determined by MALDI-TOF spectrometry. DNA extracted from B. variegata young leaves and primers designed according to the B. purpurea lectin were used to generate specific fragments which were cloned and sequenced, revealing two distinct isoforms. The bvl gene sequence comprised an open reading frame of 876 base pairs which encodes a protein of 291 amino acids. The protein carried a putative signal peptide. The mature protein was predicted to have 263 amino acid residues and 28 963 Da in size.

  8. Molecular cloning and characterization of a novel splicing variant of PIASx

    Institute of Scientific and Technical Information of China (English)

    Ying ZHENG; Zuo-min ZHOU; Lan-lan YIN; Jian-ming LI; Jia-hao SHA

    2004-01-01

    AIM: To investigate molecular mechanism of testis development and spermatogenesis. METHODS: A human testis cDNA microarray was hybridized with probes from human adult testis, embryo testis and human sperm, and the differential expressed clones were sequenced and analyzed. Expression of PIAS-NY gene was analyzed by RTPCR. RESULT: A new isoform of PIAS family, named PIAS-NY, was isolated from human testis cDNA liabrary.It was strongly expressed in adult testis and weakly expressed in both embryo testis and human sperm. Analysis of the open reading frame of PIAS-NY indicated that PIAS-NY was a polypeptide of 405 amino acid residues, and the sequence from the 15th amino acid to the end of PIAS-NY protein was the same as the N-terminal amino acids of PIASx-o and PIASx-β protein. PIAS-NY protein contained two conserved putative LXXLL signature motifs and a zinc binding motif. Tissue distribution analysis revealed that PIAS-NY was predominantly expressed in testis,weakly in the pancreas, and almost imperceptibly in the other organs. CONCLUSION: PIAS-NY may play important role in testis development and/or spermatogenesis.

  9. Molecular Cloning, Expression Analysis, and Functional Characterization of the H(+)-Pyrophosphatase from Jatropha curcas.

    Science.gov (United States)

    Yang, Yumei; Luo, Zhu; Zhang, Mengru; Liu, Chang; Gong, Ming; Zou, Zhurong

    2016-04-01

    H(+)-pyrophosphatase (H(+)-PPase) is a primary pyrophosphate (PPi)-energized proton pump to generate electrochemical H(+) gradient for ATP production and substance translocations across membranes. It plays an important role in stress adaptation that was intensively substantiated by numerous transgenic plants overexpressing H(+)-PPases yet devoid of any correlated studies pointing to the elite energy plant, Jatropha curcas. Herein, we cloned the full length of J. curcas H(+)-PPase (JcVP1) complementary DNA (cDNA) by reverse transcription PCR, based on the assembled sequence of its ESTs highly matched to Hevea brasiliensis H(+)-PPase. This gene encodes a polypeptide of 765 amino acids that was predicted as a K(+)-dependent H(+)-PPase evolutionarily closest to those of other Euphorbiaceae plants. Many cis-regulatory elements relevant to environmental stresses, molecular signals, or tissue-specificity were identified by promoter prediction within the 1.5-kb region upstream of JcVP1 coding sequence. Meanwhile, the responses of JcVP1 expression to several common abiotic stresses (salt, drought, heat, cold) were characterized with a considerable accordance with the inherent stress tolerance of J. curcas. Moreover, we found that the heterologous expression of JcVP1 could significantly improve the salt tolerance in both recombinant Escherichia coli and Saccharomyces cerevisiae, and this effect could be further fortified in yeast by N-terminal addition of a vacuole-targeting signal peptide from the H(+)-PPase of Trypanosoma cruzi.

  10. MOLECULAR CLONING AND HETEROLOGOUS EXPRESSION OF HUMAN INTERFERON ALPHA2b GENE

    Directory of Open Access Journals (Sweden)

    I. Made Artika

    2013-01-01

    Full Text Available Human alpha Interferons (hIFNα have been shown to have antiviral, antiproliferative and immunomodulatory activities. The human interferon alpha2b (hIFNα2b, is one of the human interferon alpha2 sub variants, naturally synthesized as a polypeptide of 188 amino acid residues, the first 23 residues of which represents a signal peptide. In the present study, the hIFNα2b gene was expressed after being fused with Glutathione S-Transferase (GST gene. The hIFNα2b gene was amplified from human genomic DNA by using a pair of specific primers, cloned into an Escherichia coli expression vector and expressed in E. coli cells under the direction of the tac promoter. The expressed protein was purified using a one-step affinity chromatography column containing immobilized gluthatione-bound resin. The purified protein was shown to react specifically with anti-human-interferon-alpha antibody, confirming that the protein was the human interferon alpha molecule. This strategy has the potential to be used as an alternative mean for production of pure human interferon α proteins for therapeutic purposes and for further studies on their molecular characterization and mechanism of action.

  11. Molecular cloning, expression and characterization of acylpeptide hydrolase in the silkworm, Bombyx mori.

    Science.gov (United States)

    Fu, Ping; Sun, Wei; Zhang, Ze

    2016-04-10

    Acylpeptide hydrolase (APH) can catalyze the release of the N-terminal amino acid from acetylated peptides. There were many documented examples of this enzyme in various prokaryotic and eukaryotic organisms. However, knowledge about APH in insects still remains unknown. In this study, we cloned and sequenced a putative silkworm Bombyx mori APH (BmAPH) gene. The BmAPH gene encodes a protein of 710 amino acids with a predicted molecular mass of 78.5kDa. The putative BmAPH and mammal APHs share about 36% amino acid sequence identity, yet key catalytic residues are conserved (Ser566, Asp654, and His686). Expression and purification of the recombinant BmAPH in Escherichia coli showed that it has acylpeptide hydrolase activity toward the traditional substrate, Ac-Ala-pNA. Furthermore, organophosphorus (OP) insecticides, chlorpyrifos, phoxim, and malathion, significantly inhibited the activity of the APH both in vitro and in vivo. In addition, BmAPH was expressed in all tested tissues and developmental stages of the silkworm. Finally, immunohistochemistry analysis showed that BmAPH protein was localized in the basement membranes. These results suggested that BmAPH may be involved in enhancing silkworm tolerance to the OP insecticides. In a word, our results provide evidence for understanding of the biological function of APH in insects. PMID:26778207

  12. Molecular cloning and characterization of a cotton phosphoen01pyruVate carboxylase gene

    Institute of Scientific and Technical Information of China (English)

    Zhixin Qiao; Jin-Yuan Liu

    2008-01-01

    Phosphoenolpyruvate carboxylase(PEPC)plays diverse physiological functions during plant development.In this study,a new phosphoenolpyruvate carboxylase gene GhPEPC2 is isolated from cotton(Gossypium hirsutum CV.zhongmian 35)by RACE-PCR.The cloned eDNA of GhPEPC2 is 3364 bp in length,and has an open reading frame of 2913 bp,encoding for 971 putative amino acids with a calculated molecular mass of 110.6 kD and pI of 5.56.The deduced amino acid sequence Of GhPEPC2 shares high similarity with other reported plant PEPCs.Southern blot analysis indicates that the cotton PEPC exists as a small gene family and the GhPEPC2 might have two copies in the cotton genome.The semi-quantitative RT-PCR reveals that GhPEPC2 constitutively expresses in all the tissues of cotton and accumulated highly in roots.flowers and embryos but relatively low in stems and fibers.In addition.the recombinant GhPEPC2 has been purified by expressing it in Escherichia coli and the catalytic properties of it were also investigated.The results showed that GhPEPC2 is a typical C3 PEPC with a higher Km(83.6 μM)and lower Vmax(8.0 μmol min-1mg-1)compared with the C3 PEPCs previously reported.

  13. Molecular Cloning and Expression of Pro J 1: A New Allergen of Prosopis Juliflora Pollen.

    Science.gov (United States)

    Dousti, Fatemeh; Assarehzadegan, Mohammad-Ali; Morakabati, Payam; Khosravi, Gholam Reza; Akbari, Bahareh

    2016-04-01

    Pollen from mesquite (Prosopis juliflora) is one of the important causes of immediate hypersensitivity reactions in the arid and semi-arid regions of the world. The aim of present study is to produce and purify the recombinant form of allergenic Ole e 1-like protein from the pollen of this allergenic tree. Immunological and cross-inhibition assays were performed for the evaluation of IgE-binding capacity of purified recombinant protein. For molecular cloning, the coding sequence of the mesquite Ole e 1-like protein was inserted into pTZ57R/T vector and expressed in Escherichia coli using the vector pET-21b(+). After purification of the recombinant protein, its immunoreactivity was analysed by in vitro assays using sera from twenty one patients with an allergy to mesquite pollen. The purified recombinant allergen was a member of Ole e 1-like protein family and consisted of 150 amino acid residues, with a predicted molecular mass of 16.5 kDa and a calculated isoelectric point (pI) of 4.75. Twelve patients (57.14%) had significant specific IgE levels for this recombinant allergen. Immunodetection and inhibition assays indicated that the purified recombinant allergen might be the same as that in the crude extract. Herein, we introduce an important new allergen from P. juliflora pollen (Pro j 1), which is a member of the Ole e 1-like protein family and exhibits significant identity and similarity to other allergenic members of this family.

  14. Molecular cloning and characterization of growth factor receptor bound-protein in Clonorchis sinensis.

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    Full Text Available BACKGROUND: Clonorchis sinensis causes clonorchiasis, a potentially serious disease. Growth factor receptor-bound protein 2 (Grb2 is a cytosolic protein conserved among animals and plays roles in cellular functions such as meiosis, organogenesis and energy metabolism. In the present study, we report first molecular characters of growth factor receptor bound-protein (CsGrb2 from C. sinensis as counter part of Grb2 from animals and its possible functions in development and organogenesis of C. sinensis. METHODOLOGY/PRINCIPAL FINDINGS: A CsGrb2 cDNA clone retrieved from the C. sinensis transcriptome encoded a polypeptide with a SH3-SH2-SH3 structure. Recombinant CsGrb2 was bacterially produced and purified to homogeneity. Native CsGrb2 with estimated molecular weight was identified from C. sinensis adult extract by western blotting using a mouse immune serum to recombinant CsGrb2. CsGrb2 transcripts was more abundant in the metacercariae than in the adults. Immunohistochemical staining showed that CsGrb2 was localized to the suckers, mesenchymal tissues, sperms in seminal receptacle and ovary in the adults, and abundantly expressed in most organs of the metacercariae. Recombinant CsGrb2 was evaluated to be little useful as a serodiagnostic reagent for C. sinesis human infections. CONCLUSION: Grb2 protein found in C. sinensis was conserved among animals and suggested to play a role in the organogenesis, energy metabolism and mitotic spermatogenesis of C. sinensis. These findings from C. sinensis provide wider understanding on diverse function of Grb2 in lower animals such as platyhelminths.

  15. Molecular cloning and expression analysis of cytochrome c oxidase subunit II from Sitophilus zeamais.

    Science.gov (United States)

    Hou, Chang-Liang; Wang, Jing-Bo; Wu, Hua; Liu, Jia-Yu; Ma, Zhi-Qing; Feng, Jun-Tao; Zhang, Xing

    2016-09-30

    Cytochrome c oxidase subunit II (COX II) containing a dual core CuA active site is one of the core subunits of mitochondrial Cytochrome c oxidase (Cco), which plays a significant role in the physiological process. In this report, the full-length cDNA of COXII gene was cloned from Sitophilus zeamais, which had an open reading frame (ORF) of 684 bp encoding 227 amino acids residues. The predicted COXII protein had a molecular mass of 26.2 kDa with pI value of 6.37. multiple sequence alignment and phylogenetic analysis indicated that Sitophilus zeamais COXII had high sequence identity with the COXII of other insect species. The gene was subcloned into the expression vector pET-32a, and induced by isopropyl β-d-thiogalactopyranoside (IPTG) in E. coli Transetta (DE3) expression system. Finally the recombinant COXII with 6-His tag was purified using affinity chromatography with Ni(2+)-NTA agarose. Western Blotting (WB) showed the recombinant protein was about 44 kD, and the concentration of fusion protein was 50 μg/mL. UV-spectrophotometer and infrared spectrometer analysis showed that recombinant COXII could catalyze the oxidation of substrate Cytochrome C (Cyt c), and influenced by allyl isothiocyanate (AITC). By using molecular docking method, It was found that a sulfur atom of AITC structure could form a length of 2.9 Å hydrogen bond with Leu-31. These results suggested that tag-free COXII was functional and one of the action sites of AITC, which will be helpful to carry out a point mutation in binding sites for the future research. PMID:27614312

  16. Update on Anaplastic Thyroid Carcinoma: Morphological, Molecular, and Genetic Features of the Most Aggressive Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Moira Ragazzi

    2014-01-01

    Full Text Available Anaplastic thyroid carcinoma (ATC is the most aggressive form of thyroid cancer. It shows a wide spectrum of morphological presentations and the diagnosis could be challenging due to its high degree of dedifferentiation. Molecular and genetic features of ATC are widely heterogeneous as well and many efforts have been made to find a common profile in order to clarify its cancerogenetic process. A comprehensive review of the current literature is here performed, focusing on histopathological and genetic features.

  17. Isolation and partial characterization of infectious molecular clones of feline immunodeficiency virus obtained directly from bone marrow DNA of a naturally infected cat.

    OpenAIRE

    Siebelink, Kees; Chu, I-Hai; Rimmelzwaan, Guus; Weijer, Kees; Osterhaus, Ab; Bosch, Marnix

    1992-01-01

    textabstractReplication-competent molecular clones of feline immunodeficiency virus (FIV) were isolated directly from the DNA of bone marrow cells of a naturally FIV-infected cat. After transfection in a feline kidney cell line (CrFK) and subsequent cocultivation with peripheral blood mononuclear cells (PBMC), the viral progeny of the clones was infectious for PBMC but not for CrFK cells. PBMC infected with these clones showed syncytium formation, a decrease in cell viability, and gradual los...

  18. Molecular Cloning of MSRG-11 Gene Related to Apoptosis of Mouse Spermatogenic Cells

    Institute of Scientific and Technical Information of China (English)

    Yun DENG; Dong-Song NIE; Jian WANG; Xiao-Jun TAN; Zhao-Yan NIE; Hong-Mei YANG; Liang-Sha HU; Guang-Xiu LU

    2005-01-01

    Beginning with a new contig of the expressed sequence tags (Mm.63892) obtained by comparing testis libraries with other tissue and cell line libraries using the digital differential display program,we cloned a new gene which is related to the apoptosis of mouse spermatogenic cells using the Genscan program and polymerase chain reaction (PCR) technology. The sequence data have been submitted to the GenBank database under accession number AY747687. The full cDNA length is 1074 bp, and the gene with7 exons and 6 introns is located in mouse chromosome 1 H5. The protein is recognized as a new member of calmodulin (CaM) binding protein family because the sequence contains three short calmodulin-binding motifs containing conserved Ile and Gln residues (IQ motif) and is considered to play a critical role in interactions of IQ motif-containing proteins with CaM proteins. The putative protein encoded by this gene has 192 amino acid residues with a theoretical molecular mass of 23.7 kDa and a calculated isoelectric point of 9.71. The sequence shares no significant homology with any known protein in databases. RT-PCR and Northern blot analyses revealed that 1.3 kb MSRG-11 transcript was strongly expressed in adult mouse testis but weakly expressed in the spleen and thymus. The MSRG-11 gene was expressed at various levels, faintly at two weeks postpartum and strongly from three weeks postpartum in adult testes. The green fluorescence produced by pEGFP-C2/MSRG-11 was detected in the cytoplasm of COS7 cells 24 h post-transfection. The pcDNA3. 1(-)/MSRG-11 plasmid was constructed and introduced into COS7 cells using Lipofectamine 2000transfection reagent (Invitrogen, Carlsbad, USA). MSRG-11 can accelerate COS7 cell apoptosis, which suggests that this gene may play an important role in the development of mouse testes and is a candidate gene of testis-specific apoptosis. Based on these observations, it was considered that we cloned a new gene which probably accelerates

  19. Immunohistochemical Expression of Survivin in Breast Carcinoma: Relationship with Clinico pathological Parameters, Proliferation and Molecular Classification

    International Nuclear Information System (INIS)

    Background and Objective: Survivin is a novel member of the inhibitor of apoptosis (IAP) gene family. It is associated with more aggressive behavior and parameters of poor prognosis in most human cancers including gastric, colorectal and bladder carcinomas. However, conflicting data exist on its prognostic effect in breast cancer. This current study is designed to assess survivin expression in breast carcinoma relating results with clinico pathological parameters, proliferation (MIB-1) and molecular classification. Material and Methods: Our retrospective study com- prised of 65 archived cases of breast carcinoma. Samples from the tumor and the adjacent normal breast tissue were immuno stained for survivin and MIB-1. Nuclear and cytoplasmic survivin expression was evaluated in normal breast tissue and carcinoma regarding both the intensity and the percentage of positive cells. ER, PR, HER2 were used as surrogate markers to classify the cases into four molecular subtypes. Results: Survivin expression was detected in 78.5% of breast carcinomas. The adjacent normal breast tissue was immuno negative. Survivin expression showed significant association with increased tumor size ( p <0.0001), high histologic grade ( p =0.04), lymph node metastases ( p <0.001), advanced tumor stage ( p <0.0001), MIB-1 expression ( p =0.02), negative estrogen receptor status ( p =0.01) and negative progesterone receptor status ( p <0.0001). The subcellular localization of survivin significantly related to histologic grade, stage and lymph node involvement. The percentage of TNP (triple negative phenotype) and HER2+/ER-PR- tumors expressing survivin were significantly higher compared to the Luminal subtypes ( p =0.01). Conclusion: Survivin expression was associated with parameters of poor prognosis in breast cancer. Moreover, the cancer-specific expression of survivin, coupled with its importance in inhibiting cell death and in regulating cell division, makes it a potential target for novel

  20. Molecular cloning and expression of Treponema pallidum DNA in Escherichia coli K12.

    NARCIS (Netherlands)

    J.D.A. van Embden; H.J.M. van de Donk; R.V.W. van Eijk (Ron); H.G. v.d. Heide; J.A. de Jong (Jan); M.F. van Olderen; A.D.M.E. Osterhaus (Ab); L.M. Schouls

    1983-01-01

    textabstractA gene bank of Treponema pallidum DNA in Escherichia coli K-12 was constructed by cloning SauI-cleaved T. pallidum DNA into the cosmid pHC79. Sixteen of 800 clones investigated produced one or more antigens that reacted with antibodies from syphilitic patients. According to the separatio

  1. Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1

    NARCIS (Netherlands)

    Nielsen, Peter A; Beahm, Derek L; Giepmans, Ben N G; Baruch, Amos; Hall, James E; Kumar, Nalin M

    2002-01-01

    A novel human connexin gene (GJA11) was cloned from a genomic library. The open reading frame encoded a hypothetical protein of 294 amino acid residues with a predicted molecular mass of 31,933, hence referred to as connexin-31.9 (Cx31.9) or alpha 11 connexin. A clone in GenBank containing the Cx31.

  2. Molecular-based tumour subtypes of canine mammary carcinomas assessed by immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Sarli Giuseppe

    2010-01-01

    Full Text Available Abstract Background Human breast cancer is classified by gene expression profile into subtypes consisting of two hormone (oestrogen and/or progesterone receptor-positive types (luminal-like A and luminal-like B and three hormone receptor-negative types [human epidermal growth factor receptor 2-expressing, basal-like, and unclassified ("normal-like"]. Immunohistochemical surrogate panels are also proposed to potentially identify the molecular-based groups. The present study aimed to apply an immunohistochemical panel (anti-ER, -PR, -ERB-B2, -CK 5/6 and -CK14 in a series of canine malignant mammary tumours to verify the molecular-based classification, its correlation with invasion and grade, and its use as a prognostic aid in veterinary practice. Results Thirty-five tumours with luminal pattern (ER+ and PR+ were subgrouped into 13 A type and 22 B type, if ERB-B2 positive or negative. Most luminal-like A and basal-like tumours were grade 1 carcinomas, while the percentage of luminal B tumours was higher in grades 2 and 3 (Pearson Chi-square P = 0.009. No difference in the percentage of molecular subtypes was found between simple and complex/mixed carcinomas (Pearson Chi-square P = 0.47. No significant results were obtained by survival analysis, even if basal-like tumours had a more favourable prognosis than luminal-like lesions. Conclusion The panel of antibodies identified only three tumour groups (luminal-like A and B, and basal-like in the dog. Even though canine mammary tumours may be a model of human breast cancer, the existence of the same carcinoma molecular subtypes in women awaits confirmation. Canine mammary carcinomas show high molecular heterogeneity, which would benefit from a classification based on molecular differences. Stage and grade showed independent associations with survival in the multivariate regression, while molecular subtype grouping and histological type did not show associations. This suggests that caution should be

  3. Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, W.; Ferrer-Montiel, A.V.; Schinder, A.F.; Montal, M. (Univ. of California, San Diego, La Jolla (United States)); McPherson, J.P. (Univ. of California, Irvine (United States)); Evans, G.A. (Salk Inst. for Biological Studies, La Jolla, CA (United States))

    1992-02-15

    A full-length cDNA clone encoding a glutamate receptor was isolated from a human brain cDNA library, and the gene product was characterized after expression in Xenopus oocytes. Degenerate PCR primers to conserved regions of published rat brain glutamate receptor sequences amplified a 1-kilobase fragment from a human brain cDNA library. This fragment was used as a probe for subsequent hybridization screening. Two clones were isolated that, based on sequence information, code for different receptors: a 3-kilobase clone, HBGR1, contains a full-length glutamate receptor cDNA highly homologous to the rat brain clone GluR1, and a second clone, HBGR2, contains approximately two-thirds of the coding region of a receptor homologous to rat brain clone GluR2. Southern and PCr analysis of a somatic cell-hybrid panel mapped HBGR1 to human chromosome 5q31.3-33.3 and mapped HBGR2 to chromosome 4q25-34.3. Xenopus oocytes injected with in vitro-synthesized HBGR1 cRNA expressed currents activated by glutamate receptor agonists. These results indicate that clone HBGR1 codes for a glutamate receptor of the kainate subtype cognate to members of the glutamate receptor family from rodent brain.

  4. Molecular cloning and expression profiling of a chalcone synthase gene from Lamiophlomis rotata

    Indian Academy of Sciences (India)

    Qiao Feng; Geng Gui-Gong; Zeng Yang; Xie Hui-Chun; Jin Lan; Shang Jun; Chen Zhi

    2015-06-01

    Lamiophlomis rotata is a renowned Chinese medicinal plant. Chalcone synthase (CHS) is important in flavonoid and isoflavonoid biosynthesis, catalysing the formation of naringenin chalcone in plants. A full-length cDNA encoding the CHS gene was cloned from L. rotata based on the highly conserved CHS gene sequences of Labiatae plants. A blast search showed its homology (named LrCHS) with other CHS genes of Labiate plants. The full-length genomic DNA of LrCHS was 2026 bp with one intron of 651 bp, two exons of 178 bp and 998 bp, flanked by a 73 bp $5'$-UTR and a 126 bp $3'$-UTR. The cDNA sequence of the LrCHS gene had an 1176 bp open reading frame encoding a 391 amino acid protein of 42,798 Da. The CHS protein predicted from L. rotata showed 79–86% identity with CHS of other plant species. We conducted a phylogenetic analysis of nine families containing 48 plants and L. rotata based on the full amino acid sequences of CHS proteins. Consequently, LrCHS was located in the Labiatae branch. Additionally, we examined LrCHS gene expression patterns in different tissues by quantitative real-time PCR with specific primers. The expression analysis showed preferential expression of LrCHS in flowers and leaves during the flowering stage. Total flavonoid content and CHS gene expression exhibited similar patterns during L. rotata organ development. In agreement with its function as an elicitor-responsive gene, LrCHS expression was coordinated by methyl jasmonate and UV light, and induced between 6 and 18 h. These results provide a molecular basis for additional functional studies of LrCHS in L. rotata.

  5. Molecular cloning of rhamnose-binding lectin gene and its promoter region from snakehead Channa argus.

    Science.gov (United States)

    Jia, W Z; Shang, N; Guo, Q L

    2010-09-01

    Lectins are sugar-binding proteins that mediate pathogen recognition and cell-cell interactions. A rhamnose-binding lectin (RBL) gene and its promoter region have been cloned and characterized from snakehead Channa argus. From the transcription initiation site, snakehead rhamnose-binding lectin (SHL) gene extends 2,382 bp to the end of the 3' untranslated region (UTR), and contains nine exons and eight introns. The open reading frame (ORF) of the SHL transcript has 675 bp which encodes 224 amino acids. The molecular structure of SHL is composed of two tandem repeat carbohydrate recognition domains (CRD) with 35% internal identity. Analysis of the gene organization of SHL indicates that the ancestral gene of RBL may diverge and evolve by exon shuffling and gene duplication, producing new forms to play their own roles in various organisms. The characteristics of SHL gene 5' flanking region are the presence of consensus nuclear factor of interleukin 6 (NF-IL6) and IFN-gamma activation (GAS) sites. The results provide indirect evidence that up-regulation of SHL expression may be induced in response to inflammatory stimuli, such as lipopolysaccharide (LPS), interleukin 6 (IL-6), and interferon gamma (IFN-gamma). The transcript of SHL mRNA was expressed in the head kidney, posterior kidney, spleen, liver, intestine, heart, muscle, and ovary. No tissue-specific expressive pattern is different from reported STLs, WCLs, and PFLs, suggesting that different types of RBLs exist in species-specific fish that have evolved and adapted to their surroundings.

  6. Mole ghrelin: cDNA cloning, gene expression, and diverse molecular forms in Mogera imaizumii.

    Science.gov (United States)

    Satou, Motoyasu; Kaiya, Hiroyuki; Nishi, Yoshihiro; Shinohara, Akio; Kawada, Shin-Ichiro; Miyazato, Mikiya; Kangawa, Kenji; Sugimoto, Hiroyuki

    2016-06-01

    Here, we describe cDNA cloning and purification of the ghrelin gene sequences and ghrelin peptides from the Japanese true mole, Mogera imaizumii. The gene spans >2.9kbp, has four exons and three introns, and shares structural similarity with those of terrestrial animals. Mature mole ghrelin peptide was predicted to be 28 amino acids long (GSSFLSPEHQKVQQRKESKKPPSKPQPR) and processed from a prepropeptide of 116 amino acids. To further elucidate molecular characteristics, we purified ghrelin peptides from mole stomach. By mass spectrometry, we found that the mole ghrelin peptides had higher ratios of the odd-number fatty acids (C9 and C11 as much as C8) attached to the third serine residue than other vertebrate ghrelin. Truncated forms of ghrelins such as [1-27], [1-19], [1-16] and [1-15], and that lacked the 14th glutamine residue (des-Gln14 ghrelin) were produced in the stomach. Marked expression of ghrelin mRNA in lung was observed as in stomach and brain. Phylogenetic analysis indicated that the branch of M. imaizumii has slightly higher dN/dS ratios (the nucleotide substitution rates at non-synonymous and synonymous sites) than did other eulipotyphlans. Peptide length was positively correlated with human ghrelin receptor activation, whereas the length of fatty-acyl chains showed no obvious functional correlation. The basal higher luciferase activities of the 5'-proximal promoter region of mole ghrelin were detected in ghrelin-negative C2C12 cells and hypoxic culture conditions impaired transcriptional activity. These results indicated that moles have acquired diverse species of ghrelin probably through distinctive fatty acid metabolism because of their food preferences. The results provide a gateway to understanding ghrelin metabolism in fossorial animals. PMID:27102942

  7. Molecular cloning, characterization and expression analysis of a catalase gene inPaphia textile

    Institute of Scientific and Technical Information of China (English)

    WU Xiangwei; LI Jiakai; TAN Jing; LIU Xiande

    2016-01-01

    Catalase is an important antioxidant protein that can protect organisms against various forms of oxidative damage by eliminating hydrogen peroxide. In this study, the catalase cDNA ofPaphia textile (PtCAT) was cloned using RT-PCR and rapid amplification of cDNA ends (RACE).PtCAT is 1 921 bp long and consists of a 5′-UTR of 50 bp, a 3′-UTR of 349 bp, and an ORF of 1 542 bp that encodes 513 amino acids with a molecular weight of 58.4 kD and an estimated isoelectric point of 8.2. Sequence alignment indicated that PtCAT contained a highly conserved catalytic signature motif (61FNRERIPERVVHAKGAG77), a proximal heme-ligand signature sequence (352RLFSYSDP359), and three catalytic amino acid residues (H72, N145, and Y356). PtCAT also contains two putative N-glycosylation sites (34NKT36 and437NFT439) and a peroxisome-targeting signal (511AQL513). Furthermore, PtCAT shares 53%–88% identity and 29%–89% similarity with other catalase amino acid sequences.PtCAT mRNA was present in all tested organs, including the heart, digestive gland, adductor muscle, gonad, gill, and mantle, but its expression was highest in the digestive gland. High-temperature-induced stress produced two expression patterns ofPtCAT mRNA: first, an initial up-regulation followed by a down-regulation in the heart, digestive gland, and gonad and, second, consistent down-regulation in all other organs. These results demonstrate that PtCAT is a typical member of the catalase family and might be involved in the responses to harmful environmental factors.

  8. Molecular cloning, characterization and expression profiles of thioredoxin 1 and thioredoxin 2 genes in Mytilus galloprovincialis

    Science.gov (United States)

    Wang, Qing; Ning, Xuanxuan; Pei, Dong; Zhao, Jianmin; You, Liping; Wang, Chunyan; Wu, Huifeng

    2013-05-01

    Thioredoxin (Trx) proteins are involved in many biological processes especially the regulation of cellular redox homeostasis. In this study, two Trx cDNAs were cloned from the mussel Mytilus galloprovincialis using rapid amplifi cation of cDNA ends-polymerase chain reaction (RACE-PCR). The two cDNAs were named MgTrx1 and MgTrx2, respectively. The open reading frames of MgTrx1 and MgTrx2 were 318 and 507 base pairs (bp) and they encoded proteins of 105 and 168 amino acids with estimated molecular masses of 11.45 and 18.93 kDa, respectively. Sequence analysis revealed that both proteins possessed the conserved active site dithiol motif Cys-Gly-Pro-Cys. In addition, MgTrx2 also possessed a putative mitochondrial targeting signal suggesting that it is located in the mitochondria. Quantitative real-time polymerase chain reaction (qPCR) revealed that both MgTrx1 and MgTrx2 were constitutively expressed in all tissues examined. The MgTrx1 transcript was most abundant in hemocytes and gills, whereas the MgTrx2 transcript was most abundant in gonad, hepatopancreas, gill and hemocytes. Following Vibrio anguillarum challenge, the expression of MgTrx1 was up-regulated and reached its peak, at a value 10-fold the initial value, at 24 h. Subsequently, expression returned back to the original level. In contrast, the expression level of MgTrx2 was down-regulated following bacterial stimulation, with one fi fth of the control level evident at 12 h post challenge. These results suggest that MgTrx1 and MgTrx2 may play important roles in the response of M. galloprovincialis to bacterial challenge.

  9. Molecular cloning, characterization and expression profiles of thioredoxin 1 and thioredoxin 2 genes in Mytilus galloprovincialis

    Institute of Scientific and Technical Information of China (English)

    WANG Qing; NING Xuanxuan; PEI Dong; ZHAO Jianmin; YOU Liping; WANG Chunyan; WU Huifeng

    2013-01-01

    Thioredoxin (Trx) proteins are involved in many biological processes especially the regulation of cellular redox homeostasis.In this study,two Trx cDNAs were cloned from the mussel Mytilus galloprovincialis using rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR).The two cDNAs were named MgTrx1 and MgTrx2,respectively.The open reading frames of MgTrx1 and MgTrx2 were 318 and 507 base pairs (bp) and they encoded proteins of 105 and 168 amino acids with estimated molecular masses of 11.45 and 18.93 kDa,respectively.Sequence analysis revealed that both proteins possessed the conserved active site dithiol motif Cys-Gly-Pro-Cys.In addition,MgTrx2 also possessed a putative mitochondrial targeting signal suggesting that it is located in the mitochondria.Quantitative real-time polymerase chain reaction (qPCR) revealed that both MgTrx1 and MgTrx2 were constitutively expressed in all tissues examined.The MgTrxl transcript was most abundant in hemocytes and gills,whereas the MgTrx2 transcript was most abundant in gonad,hepatopancreas,gill and hemocytes.Following Vibrio anguillarum challenge,the expression of MgTrxl was up-regulated and reached its peak,at a value 10-fold the initial value,at 24 h.Subsequently,expression returned back to the original level.In contrast,the expression level of MgTrx2 was down-regulated following bacterial stimulation,with one fifth of the control level evident at 12 h post challenge.These results suggest that MgTrxl and MgTrx2 may play important roles in the response of M.galloprovincialis to bacterial challenge.

  10. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones.

    Science.gov (United States)

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones. PMID:27555864

  11. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones.

    Science.gov (United States)

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.

  12. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones

    Science.gov (United States)

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones. PMID:27555864

  13. Bladder Carcinoma Data with Clinical Risk Factors and Molecular Markers: A Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Enrique Redondo-Gonzalez

    2015-01-01

    Full Text Available Bladder cancer occurs in the epithelial lining of the urinary bladder and is amongst the most common types of cancer in humans, killing thousands of people a year. This paper is based on the hypothesis that the use of clinical and histopathological data together with information about the concentration of various molecular markers in patients is useful for the prediction of outcomes and the design of treatments of nonmuscle invasive bladder carcinoma (NMIBC. A population of 45 patients with a new diagnosis of NMIBC was selected. Patients with benign prostatic hyperplasia (BPH, muscle invasive bladder carcinoma (MIBC, carcinoma in situ (CIS, and NMIBC recurrent tumors were not included due to their different clinical behavior. Clinical history was obtained by means of anamnesis and physical examination, and preoperative imaging and urine cytology were carried out for all patients. Then, patients underwent conventional transurethral resection (TURBT and some proteomic analyses quantified the biomarkers (p53, neu, and EGFR. A postoperative follow-up was performed to detect relapse and progression. Clusterings were performed to find groups with clinical, molecular markers, histopathological prognostic factors, and statistics about recurrence, progression, and overall survival of patients with NMIBC. Four groups were found according to tumor sizes, risk of relapse or progression, and biological behavior. Outlier patients were also detected and categorized according to their clinical characters and biological behavior.

  14. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    International Nuclear Information System (INIS)

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli

  15. Molecular Clone, Expression, and Prediction of Construction and Function to Key Genes of Interleukin Family of Porcine

    Institute of Scientific and Technical Information of China (English)

    JING Zhi-zhong; DOU Yong-xi; LUO Qi-hui; CHEN Guo-hua; MENG Xue-lian; ZHENG Ya-dong; LUO Xue-nong; CAI Xue-peng

    2007-01-01

    This research was to clone, express, and analyze the structure and function of major molecules of porcine interleukin family. Genes of porcine interleukin family were cloned by RT-PCR from stimulated porcine PBMC by LPS and PHA, and then expressed in E. coli, and the structure and function of these molecules were predicted by ExPASY. The results showed that genes of IL-4, IL-6, and IL-18 were successfully cloned and expressed. Furthermore, the expression products of recombinant IL-4 and IL-6 both have multiple biological activities. By analyzing these genes with the NCBI/GenBank data, the homologies of the nucleotide acid sequence are 99.25, 99.21, and 100%, respectively, and have great species differences when compared with other animal species. The results of the prediction showed that all these molecules contain several phosphorylation, glycosylation, protein kinase, and signal transduction bonding sites in secondary structure, and all are compact globularity protein in space configuration. These characteristics of structure are the basis for their multiple biological functions. The genes, structure and function of key molecular of porcine interleukin family were successfully cloned, expressed, and analyzed in this paper.

  16. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Woon, J. S. K., E-mail: jameswoon@siswa.ukm.edu.my; Murad, A. M. A., E-mail: munir@ukm.edu.my; Abu Bakar, F. D., E-mail: fabyff@ukm.edu.my [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  17. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    Science.gov (United States)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  18. Differential diagnosis of lung carcinoma with three-dimensional quantitative molecular vibrational imaging

    Science.gov (United States)

    Gao, Liang; Hammoudi, Ahmad A.; Li, Fuhai; Thrall, Michael J.; Cagle, Philip T.; Chen, Yuanxin; Yang, Jian; Xia, Xiaofeng; Fan, Yubo; Massoud, Yehia; Wang, Zhiyong; Wong, Stephen T. C.

    2012-06-01

    The advent of molecularly targeted therapies requires effective identification of the various cell types of non-small cell lung carcinomas (NSCLC). Currently, cell type diagnosis is performed using small biopsies or cytology specimens that are often insufficient for molecular testing after morphologic analysis. Thus, the ability to rapidly recognize different cancer cell types, with minimal tissue consumption, would accelerate diagnosis and preserve tissue samples for subsequent molecular testing in targeted therapy. We report a label-free molecular vibrational imaging framework enabling three-dimensional (3-D) image acquisition and quantitative analysis of cellular structures for identification of NSCLC cell types. This diagnostic imaging system employs superpixel-based 3-D nuclear segmentation for extracting such disease-related features as nuclear shape, volume, and cell-cell distance. These features are used to characterize cancer cell types using machine learning. Using fresh unstained tissue samples derived from cell lines grown in a mouse model, the platform showed greater than 97% accuracy for diagnosis of NSCLC cell types within a few minutes. As an adjunct to subsequent histology tests, our novel system would allow fast delineation of cancer cell types with minimum tissue consumption, potentially facilitating on-the-spot diagnosis, while preserving specimens for additional tests. Furthermore, 3-D measurements of cellular structure permit evaluation closer to the native state of cells, creating an alternative to traditional 2-D histology specimen evaluation, potentially increasing accuracy in diagnosing cell type of lung carcinomas.

  19. Molecular cloning of a family of retroviral sequences found in chimpanzee but not human DNA.

    OpenAIRE

    Bonner, T I; Birkenmeier, E. H.; Gonda, M A; Mark, G E; Searfoss, G H; Todaro, G J

    1982-01-01

    A number of retrovirus-like sequences have been cloned from chimpanzee DNA which constitute the chimpanzee homologs of the endogenous colobus type C virus CPC-1. One of the clones contains a nearly complete viral genome, but others have sustained deletions of 1 to 2 kilobases in the polymerase gene. The pattern of related sequences detected in other primate species is consistent with the genetic transmission of these sequences for millions of years. However, the appropriately related sequence...

  20. Clear cell adenocarcinoma of the colon is a unique morphological variant of intestinal carcinoma: Case report with molecular analysis

    Institute of Scientific and Technical Information of China (English)

    Marta Barisella; Andrea Lampis; Federica Perrone; Antonino Carbone

    2008-01-01

    Here we report a new case of clear cell adenocarcinoma (CCA) of the colon in a 54-year-old Caucasian man. Despite of the previous reported cases, the lesion was located in the right colon and was not associated with the conventional adenoma. We performed immunohistochemical and molecular analyses in order to explore whether the CCA had the molecular features generally associated with conventional colorectal carcinoma. The immunohistochemical and molecular analyses showed that the different morphology of CCA does not reflect a distinct biological entity but only an unusual morphological variant of intestinal carcinoma.

  1. Toward a Molecular Cytogenetic Map for Cultivated Sunflower (Helianthus annuus L.) by Landed BAC/BIBAC Clones

    Science.gov (United States)

    Feng, Jiuhuan; Liu, Zhao; Cai, Xiwen; Jan, Chao-Chien

    2013-01-01

    Conventional karyotypes and various genetic linkage maps have been established in sunflower (Helianthus annuus L., 2n = 34). However, the relationship between linkage groups and individual chromosomes of sunflower remains unknown and has considerable relevance for the sunflower research community. Recently, a set of linkage group-specific bacterial /binary bacterial artificial chromosome (BAC/BIBAC) clones was identified from two complementary BAC and BIBAC libraries constructed for cultivated sunflower cv. HA89. In the present study, we used these linkage group-specific clones (∼100 kb in size) as probes to in situ hybridize to HA89 mitotic chromosomes at metaphase using the BAC- fluorescence in situ hybridization (FISH) technique. Because a characteristic of the sunflower genome is the abundance of repetitive DNA sequences, a high ratio of blocking DNA to probe DNA was applied to hybridization reactions to minimize the background noise. As a result, all sunflower chromosomes were anchored by one or two BAC/BIBAC clones with specific FISH signals. FISH analysis based on tandem repetitive sequences, such as rRNA genes, has been previously reported; however, the BAC-FISH technique developed here using restriction fragment length polymorphism (RFLP)−derived BAC/BIBAC clones as probes to apply genome-wide analysis is new for sunflower. As chromosome-specific cytogenetic markers, the selected BAC/BIBAC clones that encompass the 17 linkage groups provide a valuable tool for identifying sunflower cytogenetic stocks (such as trisomics) and tracking alien chromosomes in interspecific crosses. This work also demonstrates the potential of using a large-insert DNA library for the development of molecular cytogenetic resources. PMID:23316437

  2. Molecular Basis of Ribotype Variation in the Seventh Pandemic Clone and its O139 Variant of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Ruiting Lan

    1998-09-01

    Full Text Available Ribotyping has been widely used to characterise the seventh pandemic clone including South American and O139 variants which appeared in 1991 and 1992 respectively. To reveal the molecular basis of ribotype variation we analysed the rrn operons and their flanking regions. All but one variation detected by BglI, the most discriminatory enzyme, was found to be due to changes within the rrn operons, resulting from recombination between operons. The recombinants are detected because of the presence of a BglI site in the 16S gene in three of the nine rrn operons and/or changes of intergenic spacer types of which four variants were identified. As the frequency of rrn recombination is high, ribotyping becomes a less useful tool for evolutionary studies and long term monitoring of the pathogenic clones of Vibrio cholerae as variation could undergo precise reversion by the same recombination event.

  3. Molecular cloning and regulation of murine fatty acid synthase mRNA

    International Nuclear Information System (INIS)

    Mouse liver mRNA that was enriched in sequences coding for fatty acid synthase (FAS) by sucrose-density gradient centrifugation was used as a template for cDNA synthesis. Double-stranded cDNA sequences were inserted into pBR322 and λgt10 and cloned. Clones containing putative cDNA sequences for FAS were identified by differential hybridization where 32P-cDNAs, synthesized from sucrose gradient purified liver mRNA from mice starved or starved and refed a fat-free diet, were used as probes. Two of these clones were further studied and found to contain sequences complementary to FAS mRNA by hybrid-selected translation and specific immunoprecipitation. Using these clones as probes, they selected 33 additional clones containing cDNA sequences for FAS. Partial DNA sequence data for these clones were obtained. Northern blot analysis revealed a single mRNA size of 9.3 kb when a cDNA clone with a 3.1 kb insert was used as a probe. This is in contrast to rat liver FAS which showed two mRNAs sizes of 9.2 and 10.0 kb. They also studied FAS mRNA level of 3T3-L1 preadipocytes during differentiation into adipocytes. An approximate 10-fold increase in FAS mRNA content was observed which corresponded with an increased rate of FAS synthesis indicating pretranslational regulation. The FAS cDNA probe was also employed to demonstrate that induction of FAS in the livers of previously starved mice that were fed a fat-free diet was controlled pretranslationally by a parallel modulation of the FAS mRNA concentration

  4. Molecular cloning and characterization of multiple isoforms of the snowdrop (Galanthus nivalis L.) lectin.

    Science.gov (United States)

    Van Damme, E J; De Clercq, N; Claessens, F; Hemschoote, K; Peeters, B; Peumans, W J

    1991-12-01

    Screening of a copy-DNA (cDNA) library constructed from RNA isolated from young developing ovaries of snowdrop (Galanthus nivalis) resulted in the isolation of five lectin clones which clearly differed from each other with regard to their nucleotide sequence and deduced amino-acid sequence. Sequence comparison between the coding regions of different lectin cDNAs revealed the highest homology between lectin clones LECGNA 3 and LECGNA 5, showing 96.4% and 93.6% similarity at the nucleotide level and at the deduced amino-acid level, respectively, whereas lectin clones LECGNA 1 and LECGNA 3 showed the lowest homology of 81.6% and 68.6% for the nucleotide sequence and the amino-acid sequence, respectively. Only very few lectin cDNA clones containing a polyadenylated tail could be isolated. Moreover all these cDNA clones were derived from isolectin 3 and showed some variability within the length of the 3' untranslated region. The major transcription initiation site was located 30 bases upstream from the AUG codon as could be deduced from primer-extension analysis. Taking into account the small 5' untranslated region of the lectin clones, the size of the lectin mRNA, which is approx. 780 nucleotides as determined by Northern blot analysis, is in good agreement with the length of the cDNA clones isolated. Besides the ovary tissue, both the leaf and the flower tissue were also shown to express the lectin mRNA in a flowering snowdrop plant.

  5. Molecular cloning and analysis of Ancylostoma ceylanicum glutamate-cysteine ligase.

    Science.gov (United States)

    Wiśniewski, Marcin; Lapiński, Maciej; Zdziarska, Anna; Długosz, Ewa; Bąska, Piotr

    2014-08-01

    Glutamate-cysteine ligase (GCL) is a heterodimer enzyme composed of a catalytic subunit (GCLC) and a modifier subunit (GCLM). This enzyme catalyses the synthesis of γ-glutamylcysteine, a precursor of glutathione. cDNAs of the putative glutamate-cysteine ligase catalytic (Ace-GCLC) and modifier subunits (Ace-GCLM) of Ancylostoma ceylanicum were cloned using the RACE-PCR amplification method. The Ace-gclc and Ace-gclm cDNAs encode proteins with 655 and 254 amino acids and calculated molecular masses of 74.76 and 28.51kDa, respectively. The Ace-GCLC amino acid sequence shares about 70% identity and 80% sequence similarity with orthologs in Loa loa, Onchocerca volvulus, Brugia malayi, and Ascaris suum, whereas the Ace-GCLM amino acid sequence has only about 30% sequence identity and 50% similarity to homologous proteins in those species. Real-time PCR analysis of mRNA expression in L3, serum stimulated L3 and adult stages of A. ceylanicum showed the highest level of Ace-GCLC and Ace-GCLM expression occurred in adult worms. No differences were detected among adult hookworms harvested 21 and 35dpi indicating expression of Ace-gclc and Ace-gclm in adult worms is constant during the course of infection. Positive interaction between two subunits of glutamate-cysteine ligase was detected using the yeast two-hybrid system, and by specific enzymatic reaction. Ace-GCL is an intracellular enzyme and is not exposed to the host immune system. Thus, as expected, we did not detect IgG antibodies against Ace-GCLC or Ace-GCLM on days 21, 60 and 120 of A. ceylanicum infection in hamsters. Furthermore, vaccination with one or both antigens did not reduce worm burdens, and resulted in no improvement of clinical parameters (hematocrit and hemoglobin) of infected hamsters. Therefore, due to the significant role of the enzyme in parasite metabolism, our analyses raises hope for the development of a successful new drug against ancylostomiasis based on the specific GCL inhibitor. PMID

  6. Genetic molecular diversity, production and resistance to witches’ broom in cacao clones

    Directory of Open Access Journals (Sweden)

    José Luis Pires

    2013-06-01

    Full Text Available The 32 cacao clones selected as being resistant following the witches’ broom epidemic and for having distinct productivitywere characterized according to their genetic diversity and were submitted to a new selection. These plants were assessed for eightyears at the Oceania Farm (FO in Itagibá, Bahia, Brazil. The 13 microsatellite primers generated an average of 11.7 amplicons perlocus, and based on them it was demonstrated that the 32 clones distribute themselves in groups apart from the nine clones used ascontrols. The 32 materials displayed significant differences in relation to the characters assessed in the field. Two criteria were formedfrom the classification of the most productive and resistant plants, and then used to select plants within the clusters. The selected plantsdisplayed potential for the cacao improvement program, that they have a high production and high resistance to witches’ broom.

  7. Molecular cloning of a cDNA for the chicken progesterone receptor B antigen.

    OpenAIRE

    Zarucki-Schulz, T; Kulomaa, M S; Headon, D R; N.L. Weigel; Baez, M; Edwards, D.P.; McGuire, W L; Schrader, W T; O'Malley, B W

    1984-01-01

    A cDNA for the chicken progesterone receptor B subunit antigen (Mr, 108,000) has been isolated from a cDNA library prepared from size-selected chicken oviduct poly(A)+RNA. A specific monoclonal antibody raised against hen progesterone receptor B subunit (alpha PR-B) was used to screen the library. Recombinant clones reacting with the antibody by virtue of antigen expression were used in hybrid-selected translation. A single clone, pPRB-1, hybridized specifically to a mRNA that yielded a Mr 10...

  8. Molecular cloning and biological characterization of the human excision repair gene ERCC-3.

    OpenAIRE

    Weeda, G; van Ham, R C; Masurel, R; Westerveld, A; Odijk, H; Wit, J.; Bootsma, D; van der Eb, A J; Hoeijmakers, J. H.

    1990-01-01

    In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent m...

  9. Molecular cloning of a new bombesin receptor subtype expressed in uterus during pregnancy

    OpenAIRE

    Gorboulev, Valentin; Akhundova, Aida; Büchner, Hubert; Fahrenholz, Falk

    2011-01-01

    The homology screening approach has been used to clone a new member of the guanine-nucleotidebinding-protein-coupled receptor superfamily from guinea pig uterus. The cloned cDNA encodes a 399-amino-acid protein and shows the highest amino acid similarity to members of the bombesin receptor family; 52% and 47% similarity to the gastrin-releasing-peptide (GRP) receptor and the neuromedin-B receptor, respectively. Bindingexperiments with the stably transfected LLC-PK1 cell line expressing the ne...

  10. Dietary immunosuppressants do not enhance UV-induced skin carcinogenesis, and reveal discordance between p53-mutant early clones and carcinomas.

    Science.gov (United States)

    Voskamp, Pieter; Bodmann, Carolien A; Koehl, Gudrun E; Rebel, Heggert G; Van Olderen, Marjolein G E; Gaumann, Andreas; El Ghalbzouri, Abdoel; Tensen, Cornelis P; Bavinck, Jan N Bouwes; Willemze, Rein; Geissler, Edward K; De Gruijl, Frank R

    2013-02-01

    Immunosuppressive drugs are thought to cause the dramatically increased risk of carcinomas in sun-exposed skin of organ transplant recipients. These drugs differ in local effects on skin. We investigated whether this local impact is predictive of skin cancer risk and may thus provide guidance on minimizing the risk. Immunosuppressants (azathioprine, cyclosporine, tacrolimus, mycophenolate mofetil, and rapamycin) were assessed on altering the UV induction of apoptosis in human skin models and of p53 mutant cell clones (putative tumor precursors) and ensuing skin carcinomas (with mutant p53) in the skin of hairless mice. Rapamycin was found to increase apoptosis (three-fold), whereas cyclosporine decreased apoptosis (three-fold). Correspondingly, a 1.5- to five-fold reduction (P = 0.07) or a two- to three-fold increase (P UV-exposed skin of mice that had been fed rapamycin or cyclosporine, respectively. Deep sequencing showed, however, that the allelic frequency (∼5%) of the hotspot mutations in p53 (codons 270 and 275) remained unaffected. The majority of cells with mutated p53 seemed not to overexpress the mutated protein. Unexpectedly, none of the immunosuppressants admixed in high dosages to the diet accelerated tumor development, and cyclosporine even delayed tumor onset by approximately 15% (P < 0.01). Thus, in contrast to earlier findings, the frequency of p53-mutant cells was not predictive of the incidence of skin carcinoma. Moreover, the lack of any accelerative effect on tumor development suggests that immunosuppressive medication is not the sole cause of the dramatic increase in skin cancer risk in organ transplant recipients.

  11. MOLECULAR-CLONING AND CHARACTERIZATION OF A CDNA FOR THE BETA-SUBUNIT OF HUMAN ALCOHOL-DEHYDROGENASE

    OpenAIRE

    Duester, G; Hatfield, G.; Buhler, R; Hempel, J; Jornvall, H; Smith, M.

    1984-01-01

    Human alcohol dehydrogenase (ADH) is encoded by at least five genes that fall into three classes. The class I ADH genes encode the three closely related alpha, beta, and gamma polypeptides. Molecular genetic analysis of class I ADH genes has been initiated by isolating a cDNA clone from a human adult liver cDNA library. A synthetic oligonucleotide mixture encoding a portion of the beta subunit of ADH was used as an in situ hybridization probe for the cDNA library. One positively hybridizing c...

  12. Polysaccharide Lyase: Molecular Cloning, Sequencing, and Overexpression of the Xanthan Lyase Gene of Bacillus sp. Strain GL1

    OpenAIRE

    Hashimoto, Wataru; Miki, Hikaru; Tsuchiya, Noriaki; Nankai, Hirokazu; Murata, Kousaku

    2001-01-01

    When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520–2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open reading frame consisting of 2,793 bp coding for a polypeptide with a molecular weight of 99,308. The poly...

  13. Molecular cloning and expression analysis of a gene for sucrose transporter from pear (Pyrus bretschneideri Rehd.) fruit.

    Science.gov (United States)

    Zhang, Huping; Zhang, Shujun; Qin, Gaihua; Wang, Lifen; Wu, Tao; Qi, Kaijie; Zhang, Shaoling

    2013-12-01

    Here we report the cloning of a sucrose transporter cDNA from pear (Pyrus bretschneideri Rehd. cv 'Yali') fruit and an analysis of the expression of the gene. A cDNA clone, designated PbSUT1 was identified as a sucrose transporter cDNA from its sequence homology at the amino acid level to sucrose transporters that have been cloned from other higher plant species. PbSUT1 potentially encoded a protein of 499 amino acid residues with a predicted molecular mass of 53.4 kDa and an isoelectric point (pI) of 9.21. Phylogenetic analysis revealed that the PbSUT1 belonged to type III SUTs and was more closely related to the MdSUT1 from apple fruit. Some major facilitator superfamily (MFS)-specific sequence motifs were found in the predicted PbSUT1 peptides, and an MFS_1 domain was located at the amino acid positions of 29-447 of the sequence. A study of gene expression along fruit development showed that PbSUT1 transcripts are present at all stages but significantly increase before fruit enlargement and during the ripening process with increasing sucrose levels. In contrast, the expression levels don't change much during the period of rapid fruit growth. This work shows that sucrose transporter may play a role in the accumulation of sugars during maturation and in maintaining the internal cellular distribution.

  14. Molecular cloning, characterisation, and tissue distribution of oestrogen receptor alpha in eelpout (Zoarces viviparus)

    DEFF Research Database (Denmark)

    Andreassen, Thomas K; Skjødt, Karsten; Anglade, Isabelle;

    2003-01-01

    A cDNA encoding the eelpout (Zoarces viviparus) oestrogen receptor alpha (eERalpha) has been isolated from eelpout liver, cloned and sequenced. The cDNA contains a complete open reading frame encoding 570 amino acid residues (mw: 63.0 kDa). The amino acid sequence of eERalpha showed a high degree...

  15. Molecular cloning and characterization of the alkaline ceramidase from Pseudomonas aeruginosa PA01

    NARCIS (Netherlands)

    Nieuwenhuizen, W.F.; Leeuwen, S. van; Jack, R.W.; Egmond, M.R.; Götz, F.

    2003-01-01

    Ceramidase (CDase) hydrolyzes the amide bond in ceramides to yield free fatty acid and sphingosine. From a 3-L Pseudomonas aeruginosa PA01 culture, 70 μg of extracellular alkaline, Ca2+-dependent CDase, was purified to homogeneity, the N-terminal sequence was determined, and the CDase gene was clone

  16. Recovery, Purification, and Cloning of High-Molecular-Weight DNA from Soil Microorganisms▿

    OpenAIRE

    Mark R Liles; Williamson, Lynn L.; Rodbumrer, Jitsupang; Torsvik, Vigdis; Goodman, Robert M.; Handelsman, Jo

    2008-01-01

    We describe here an improved method for isolating, purifying, and cloning DNA from diverse soil microbiota. Soil microorganisms were extracted from soils and embedded and lysed within an agarose plug. Nucleases that copurified with the metagenomic DNA were removed by incubating plugs with a high-salt and -formamide solution. This method was used to construct large-insert soil metagenomic libraries.

  17. Molecular pharmacology of homologues of ibotenic acid at cloned metabotropic glutamic acid receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Nielsen, B; Krogsgaard-Larsen, P

    1998-01-01

    We have studied the effects of the enantiomers of 2-amino-3-(3-hydroxyisoxazol-5-yl)propionic acid (homoibotenic acid, HIBO) and analogues substituted with a methyl, bromo or butyl group in the four position of the ring at cloned metabotropic glutamate (mGlu) receptors expressed in Chinese hamste...

  18. Molecular cloning, characterization and developmental expression of porcine β-synuclein

    DEFF Research Database (Denmark)

    Larsen, Knud; Frandsen, Pernille Munk; Madsen, Lone Bruhn;

    2010-01-01

    The synuclein family includes three known proteins: alpha-synuclein, beta-synuclein and gamma-synuclein. beta-Synuclein inhibits the aggregation of alpha-synuclein, a protein involved in Parkinson's disease. We have cloned and characterized the cDNA sequence for porcine beta-synuclein (SNCB) from...

  19. Molecular cloning and genomic organization of an allatostatin preprohormone from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    insect allatostatins. This resulted in alignment with a DNA sequence coding for some Drosophila allatostatins (drostatins). Using PCR with oligonucleotide primers directed against the presumed exons of this Drosophila allatostatin gene and subsequent 3'- and 5'-RACE, we were able to clone its c...

  20. Molecular Cloning and Characterization of a Broad Substrate Terpenoid Oxidoreductase from Artemisia annua

    NARCIS (Netherlands)

    Ryden, Anna-Margareta; Ruyter-Spira, Carolien; Litjens, Ralph; Takahashi, Shunji; Quax, Wim; Osada, Hiroyuki; Bouwmeester, Harro; Kayser, Oliver

    2010-01-01

    From Artemisia annua L., a new oxidoreductase (Red 1) was cloned, sequenced and functionally characterized. Through bioinformatics, heterologous protein expression and enzyme substrate conversion assays, the elucidation of the enzymatic capacities of Red1 was achieved. Red1 acts on monoterpenoids, a

  1. Molecular cloning and characterization of a broad substrate terpenoid oxidoreductase from Artemisia annua.

    NARCIS (Netherlands)

    Ryden, A.M.; Ruyter-Spira, C.P.; Litjens, R.; Takahashi, S.; Quax, W.J.; Osada, H.; Bouwmeester, H.J.; Kayser, O.

    2010-01-01

    From Artemisia annua L., a new oxidoreductase (Red 1) was cloned, sequenced and functionally characterized. Through bioinformatics, heterologous protein expression, and enzyme substrate conversion assays, the elucidation of the enzymatic capacities of Red1 was achieved. Red1 acts on monoterpenoids,

  2. Molecular cloning of a K+ channel from the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Ricke, Christina Høier; Litman, Thomas;

    2004-01-01

    concentrations of K(+) when inside the erythrocyte and low concentrations when in plasma. In the recently published genome of P. falciparum, we have identified a gene, pfkch1, encoding a potential K(+) channel, which to some extent resembles the big-conductance (BK) K(+) channel. We have cloned the approximately...

  3. Characterization of nonprimate hepacivirus and construction of a functional molecular clone

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Kapoor, Amit; Nishiuchi, Eiko;

    2015-01-01

    consensus cDNA clone, replication was not observed in primary equine fetal liver cultures or after electroporation of selectable replicons. However, intrahepatic RNA inoculation of a horse initiated infection, yielding high RNA titers in the serum and liver. Delayed seroconversion, slightly elevated...

  4. Molecular Cloning and Sequencing of Hemoglobin-Beta Gene of Channel Catfish, Ictalurus Punctatus Rafinesque

    Science.gov (United States)

    : Hemoglobin-y gene of channel catfish , lctalurus punctatus, was cloned and sequenced . Total RNA from head kidneys was isolated, reverse transcribed and amplified . The sequence of the channel catfish hemoglobin-y gene consists of 600 nucleotides . Analysis of the nucleotide sequence reveals one o...

  5. Molecular Cloning, Expression and Genome Organization of Channel Catfish (Ictalurus punctatus) Matrix Metalloproteinase-9

    Science.gov (United States)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned, sequenced using the RACE (rapid amplification of cDNA ends) method and cha...

  6. Molecular Cloning of Genes for Cellobiose Utilization and Their Expression in Escherichia coli

    OpenAIRE

    Armentrout, Richard W.; Brown, Ronald D.

    1981-01-01

    The genes for cellobiose utilization in Escherichia adecarboxylata were cloned by using recombinant deoxyribonucleic acid techniques and transferred to Escherichia coli. Preliminary analysis of the β-glucosidase activity expressed in these host cells indicated that the enzyme is membrane bound and required magnesium ions, phosphate ions, and heat-stable, non-dialyzable factors from the bacterial cytoplasm.

  7. Isolation, characterization and molecular cloning of Duplex-Specific Nuclease from the hepatopancreas of the Kamchatka crab

    Directory of Open Access Journals (Sweden)

    Vagner Laura L

    2008-05-01

    Full Text Available Abstract Background Nucleases, which are key components of biologically diverse processes such as DNA replication, repair and recombination, antiviral defense, apoptosis and digestion, have revolutionized the field of molecular biology. Indeed many standard molecular strategies, including molecular cloning, studies of DNA-protein interactions, and analysis of nucleic acid structures, would be virtually impossible without these versatile enzymes. The discovery of nucleases with unique properties has often served as the basis for the development of modern molecular biology methods. Thus, the search for novel nucleases with potentially exploitable functions remains an important scientific undertaking. Results Using degenerative primers and the rapid amplification of cDNA ends (RACE procedure, we cloned the Duplex-Specific Nuclease (DSN gene from the hepatopancreas of the Kamchatka crab and determined its full primary structure. We also developed an effective method for purifying functional DSN from the crab hepatopancreas. The isolated enzyme was highly thermostable, exhibited a broad pH optimum (5.5 – 7.5 and required divalent cations for activity, with manganese and cobalt being especially effective. The enzyme was highly specific, cleaving double-stranded DNA or DNA in DNA-RNA hybrids, but not single-stranded DNA or single- or double-stranded RNA. Moreover, only DNA duplexes containing at least 9 base pairs were effectively cleaved by DSN; shorter DNA duplexes were left intact. Conclusion We describe a new DSN from Kamchatka crab hepatopancreas, determining its primary structure and developing a preparative method for its purification. We found that DSN had unique substrate specificity, cleaving only DNA duplexes longer than 8 base pairs, or DNA in DNA-RNA hybrids. Interestingly, the DSN primary structure is homologous to well-known Serratia-like non-specific nucleases structures, but the properties of DSN are distinct. The unique substrate

  8. Molecular cloning of transcripts induced by UV-radiation in rodent cells

    International Nuclear Information System (INIS)

    Several inducible DNA repair genes have been well characterized in bacteria. In eukaryotes including mammalian cells, there is increasing evidence that similar events may occur. Recently, the authors have shown that hybridization subtraction can be used to enrich for sequences induced only several fold by a particular cell treatment such as heat shock. Chinese hamster V79 cells were UV-irradiated with 17 Jm/sup -2/ and cDNA was synthesized from the polyadenylated (poly A) RNA. This ''UV'' cDNA was hybridized with a 3 fold excess of polyA RNA from unirradiated cells and the nonhybridizing cDNA was isolated. With this approach, UV-induced sequences were enriched over 20 fold. This enriched cDNA was cloned into a high copy number plasmid and a cDNA library was constructed. By RNA dot blot and northern analysis, 42 clones from this library were found to represent transcripts induced 3 to 25 fold by UV. The most common isolates were found to be metallothionein transcripts by DNA sequencing. The metallothionein transcripts were found to be induced 10 to 25 fold by UV with maximum induction at 4-8 h after 10 Jm/sup -2/. A similar approach was also used with a Chinese hamster ovary line which does not express metallothionein and multiple clones were isolated which represented transcripts induced 3-15 fold by UV. Except for the metallothionein clones, the other Chinese hamster cDNA clones have not been identified, but it is probable that the protein products of at least some of these transcripts play a role in the cellular response to UV damage

  9. Molecular cloning and characterization of transgelin-like proteins mainly transcribed in newborn larvae of Trichinella spp.

    Science.gov (United States)

    Nagano, Isao; Wu, Zhiliang; Asano, Kazunobu; Takahashi, Yuzo

    2011-05-31

    A cDNA library was constructed from Trichinella pseudospiralis muscle larvae. One cDNA clone, designated Tp4, contained a cDNA transcript of 783 bp in length, with a single open reading frame that encoded 153 amino acids (16,793 Da as the estimated molecular mass). The predicted amino acid sequence of Tp4 showed that the clone had a calponin homology domain and was approximately 50% identical to the transgelin-like proteins (calponin-family members) present in Bombyx mori or Tribolium castaneum. A homologue of the Tp4 clone was also present in cDNA from Trichinella spiralis, and this clone was designated Ts4. A comparison of the amino acid sequence of the transgelin-like proteins from T. spiralis (Ts4 protein) with the Tp4 protein indicated that the two proteins are very similar (about 94% homology). Real time quantitative polymerase chain reaction results showed that the transcription level of the Tp4 and Ts4 genes was highest in newborn larvae. On Western blot, the recombinant Tp4 and Ts4 proteins migrated at 20 kDa when reacted to an antibody against the recombinant Tp4 and Ts4 proteins, respectively. An antibody against the recombinant Tp4 and Ts4 proteins strongly stained two bands migrating at approximately 9 and 8 kDa in the crude extracts from adult worms and newborn larvae, but only weakly stained proteins in muscle larvae. However, an immunocytochemical study showed that the Tp4 protein was present within the muscle of the muscle larvae of T. pseudospiralis. The antibody level against the recombinant Tp4 antigens in infected mice began to increase from 8 days post-infection, was highest in 13 days post-infection, and then slowly decreased. PMID:21242032

  10. Adenosquamous carcinoma of the pancreas: Molecular characterization of 23 patients along with a literature review

    Institute of Scientific and Technical Information of China (English)

    Erkut; Borazanci; Sherri; Z; Millis; Ron; Korn; Haiyong; Han; Clifford; J; Whatcott; Zoran; Gatalica; Michael; T; Barrett; Derek; Cridebring; Daniel; D; Von; Hoff

    2015-01-01

    Adenosquamous carcinoma of the pancreas(ASCP)is a rare entity. Like adenocarcinoma of the pancreas,overall survival is poor. Characteristics of ASCP include central tumor necrosis, along with osteoclasts and hypercalcemia. Various theories exist as to why this histological subtype exists, as normal pancreas tissue has no benign squamous epithelium. Due to the rarity of this disease, limited molecular analysis has been performed, and those reports indicate unique molecular features of ASCP. In this paper, we characterize 23 patients diagnosed with ASCP through molecular profiling using immunohistochemistry staining, fluorescent in situ hybridization, chromogenic in situ hybridization, and gene sequencing, Additionally, we provide a comprehensive literature review of what is known to date of ASCP.Molecular characterization revealed overexpression in MRP1(80%), MGMT(79%), TOP2A(75), RRM1(42%),TOPO1(42%), PTEN(45%), CMET(40%), and C-KIT(10%) among others. One hundred percent of samples tested were positive for KRAS mutations. This analysis shows heretofore unsuspected leads to be considered for treatments of this rare type of exocrine pancreas cancer. Molecular profiling may be appropriate to provide maximum information regarding the patient’s tumor. Further work should be pursued to better characterize this disease.

  11. Molecular cloning and characterisation of two kinds of proteins in excretory-secretory products of Trichinella pseudospiralis.

    Science.gov (United States)

    Nagano, Isao; Wu, Zhiliang; Boonmars, Thidarut; Takahashi, Yuzo

    2004-03-29

    Two genes encoding Trichinella pseudospiralis excretory-secretory proteins related to the Trichinella spiralis glycoproteins were cloned and the excretory-secretory proteins were characterised. A cloned gene, designated Tp38 (Ts43), contained a cDNA transcript of 1035 bp, and the predicted amino acid sequence of the Tp38 (Ts43) pro-protein had a similarity of about 84% to that of the T. spiralis 43 kDa glycoprotein. A cloned gene, designated Tp53 (Ts53), contained a cDNA transcript of 1239 bp, and the predicted amino acid sequence of the Tp53 (Ts53) pro-protein had a similarity of about 68% to that of the T. spiralis 53 kDa glycoprotein. Southern blots indicated that the Tp38 (Ts43) and Tp53 (Ts53) genes were encoded in a single copy within the T. pseudospiralis genome. Western blots showed that T. pseudospiralis-infected sera recognised the Tp53 (Ts53) recombinant protein, but did not recognise the Tp38 (Ts43) recombinant protein. The Tp38 (Ts43) and Tp53 (Ts53) proteins in the excretory-secretory product were 3 and 9 kDa greater than the expected molecular mass, respectively, and had three isoforms with a similar molecular size. Reverse transcription polymerase chain reaction results showed that the production of the mRNA transcript for the Tp38 (Ts43) or Tp53 (Ts53) gene was restricted predominantly to muscle larvae. Western blots confirmed that the gene products were predominantly expressed by muscle-stage larvae. An immunolocalisation study showed the Tp38 (Ts43) and Tp53 (Ts53) proteins were present within the alpha-stichocyte and the beta-stichocyte of muscle larvae, respectively. PMID:15013739

  12. Molecular cloning and characterization of the light-harvesting chlorophyll a/b gene from the pigeon pea (Cajanus cajan).

    Science.gov (United States)

    Qiao, Guang; Wen, Xiao-Peng; Zhang, Ting

    2015-12-01

    Light-harvesting chlorophyll a/b-binding proteins (LHCB) have been implicated in the stress response. In this study, a gene encoding LHCB in the pigeon pea was cloned and characterized. Based on the sequence of a previously obtained 327 bp Est, a full-length 793 bp cDNA was cloned using the rapid amplification of cDNA ends (RACE) method. It was designated CcLHCB1 and encoded a 262 amino acid protein. The calculated molecular weight of the CcLHCB1 protein was 27.89 kDa, and the theoretical isoelectric point was 5.29. Homology search and sequence multi-alignment demonstrated that the CcLHCB1 protein sequence shared a high identity with LHCB from other plants. Bioinformatics analysis revealed that CcLHCB1 was a hydrophobic protein with three transmembrane domains. By fluorescent quantitative real-time polymerase chain reaction (PCR), CcLHCB1 mRNA transcripts were detectable in different tissues (leaf, stem, and root), with the highest level found in the leaf. The expression of CcLHCB1 mRNA in the leaves was up-regulated by drought stimulation and AM inoculation. Our results provide the basis for a better understanding of the molecular organization of LCHB and might be useful for understanding the interaction between plants and microbes in the future. PMID:26329890

  13. Molecular cloning, sequence analysis and phylogeny of first caudata g-type lysozyme in axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng

    2013-11-01

    Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate. PMID:24199859

  14. Molecular cloning and characterization of the light-harvesting chlorophyll a/b gene from the pigeon pea (Cajanus cajan).

    Science.gov (United States)

    Qiao, Guang; Wen, Xiao-Peng; Zhang, Ting

    2015-12-01

    Light-harvesting chlorophyll a/b-binding proteins (LHCB) have been implicated in the stress response. In this study, a gene encoding LHCB in the pigeon pea was cloned and characterized. Based on the sequence of a previously obtained 327 bp Est, a full-length 793 bp cDNA was cloned using the rapid amplification of cDNA ends (RACE) method. It was designated CcLHCB1 and encoded a 262 amino acid protein. The calculated molecular weight of the CcLHCB1 protein was 27.89 kDa, and the theoretical isoelectric point was 5.29. Homology search and sequence multi-alignment demonstrated that the CcLHCB1 protein sequence shared a high identity with LHCB from other plants. Bioinformatics analysis revealed that CcLHCB1 was a hydrophobic protein with three transmembrane domains. By fluorescent quantitative real-time polymerase chain reaction (PCR), CcLHCB1 mRNA transcripts were detectable in different tissues (leaf, stem, and root), with the highest level found in the leaf. The expression of CcLHCB1 mRNA in the leaves was up-regulated by drought stimulation and AM inoculation. Our results provide the basis for a better understanding of the molecular organization of LCHB and might be useful for understanding the interaction between plants and microbes in the future.

  15. Molecular cloning, sequence analysis and phylogeny of first caudata g-type lysozyme in axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng

    2013-11-01

    Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate.

  16. Molecular cloning and expression of a human heat shock factor, HSF1

    Energy Technology Data Exchange (ETDEWEB)

    Rabindran, S.K.; Giorgi, G.; Clos, J.; Wu, C. (National Institutes of Health, Bethesda, MD (United States))

    1991-08-15

    Human cells respond to heat stress by inducing the binding of a preexisting transcriptional activator (heat shock factor, HSF) to DNA. The authors isolated recombinant DNA clones for a human cDNA fragment. The human HSF1 probe was produced by the PCR with primers deduced from conserved amino acids in the Drosophila and yeast HSF sequences. The human HSF1 mRNA is constitutively expressed in HeLa cells under nonshock conditions and encodes a protein with four conserved leucine zipper motifs. Like its counterpart in Drosophila, human HSF1 produced in Escherichia coli in the absence of heat shock is active as a DNA binding transcription factor, suggesting that the intrinsic activity of HSF is under negative control in human cells. Surprisingly, an independently isolated human HSF clone, HSF2, is related to but significantly different from HSF.

  17. Molecular cloning and in vitro expression of a silent phenoxazinone synthase gene from Streptomyces lividans.

    Science.gov (United States)

    Madu, A C; Jones, G H

    1989-12-14

    Phenoxazinone synthase (PHS) catalyzes a step in actinomycin D biosynthesis in Streptomyces antibioticus. Two sequences from Streptomyces lividans that hybridize to the phs gene of S. antibioticus have been cloned in Escherichia coli K-12 using the plasmid pBR322. Although there was some similarity in the restriction maps of the two cloned fragments, neither insert appeared to be a direct subset of the other nor of the S. antibioticus phs gene. In vitro expression studies, in a streptomycete coupled transcription-translation system, showed that a 3.98-kb SphI fragment encoded a PHS-related protein. These observations provide additional support for the existence of silent genes for antibiotic production in streptomycetes.

  18. Molecular Cloning and Characterization of the Actin-depolymerizing Factor Gene in Gossypium barbadense

    Institute of Scientific and Technical Information of China (English)

    MA Zhi-ying; CHI Ji-na; WANG Xing fen; ZHOU Hong-mei; ZHANG Gui-yin

    2008-01-01

    @@ Sea Island cotton (Gossypium barbadense L.) has been highly valued in Verticillium wilt resistance and many fiber qualities including fiber length,strength,and fineness.To identify whether it had some special genes in fiber development in comparison with the upland cotton (G.hirsutum L.),an actin-depolymerizing factor (ADF) gene was cloned and characterized in this research.A 420 bp open reading frame of the cloned gene,termed GbADF1,encoded a protein of 139 amino acids,which included39.57% nonpolar amino acids,17.27% acidic amino acids,15.83% basic amino acids,and 31.92% hydrophobic amino aids.

  19. Identification and molecular cloning of glutamate decarboxylase gene from Lactobacillus casei

    Directory of Open Access Journals (Sweden)

    Yasaman Tavakoli

    2015-09-01

    Full Text Available Gamma-amino butyric acid (GABA possesses several physiological functions such as neurotransmission, induction of hypotension, diuretic and tranquilizer effects. Production of GABA-enriched products by lactic acid bacteria has been a focus of different researches in recent years because of their safety and health-promoting specifities. In this study, glutamate decarboxylase (gad gene of a local strains Lactobacillus casei was identified and cloned. In order to clone the gad gene from this strain, the PCR was carried out using primers designed based on conserved regions. The PCR product was purified and ligated into PGEM-T vector. Comparison of obtained sequences shows that this fragment codes the pyridoxal 5′-phosphate binding region. This strain could possibly be used for the industrial GABA production and also for development of functional fermented foods. Gad gene manipulation can also either decrease or increase the activity of enzyme in bacteria.

  20. MOLECULAR CLONING, EXPRESSION AND SUBCELLULAR LOCALIZATION OF HUMAN OCT-4 PROTEIN

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To clone, express, purify human Oct-4 and detect its subcellular localization.Methods Human Oct-4 cDNA was amplified by RT-PCR strategy. Oct-4 protein was induced and expressed in BL21 (DE3) strain. Furthermore, the protein was purified with Ni-NTA resin. Subsequently, site-directed mutagenesis of Oct-4 (aa 236 -240) was introduced. Finally, the subcellular localization of wide type Oct-4 and mutant Oct-4 was examined by immunofluorescent cytochemistry staining and confocal laser scanning microscope analysis.Results The full length cDNA of human Oct-4 was 1083bp. Human Oct-4 encoded a 55 kd protein by prokaryotic vector in E coli. Compared with pure nuclear localization of wide type Oct-4, mutant Oct-4 was mostly enriched in the cytoplasm. Conclusion The cloning, expression and investigation of subcellular localization of human Oct-4 are basis of studying its biological function.

  1. Characterization and molecular cloning in Escherichia coli of a plasmid from the mollicute Spiroplasma citri.

    OpenAIRE

    Mouches, C; Barroso, G.; Bové, J M

    1983-01-01

    Two plasmids, pMH1 with 7 kilobase pairs and pM41 with 8 kilobase pairs, were purified from the plant pathogen Spiroplasma citri and characterized by restriction mapping. Upon in vitro DNA recombination with plasmid pBR328 as a vector, we have cloned pMH1 in Escherichia coli. A radioactive probe obtained upon nick translation of the recombinant plasmid was used to further characterize and compare pMH1 and pM41.

  2. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae.

    OpenAIRE

    Qureshi, S A; Khoo, B; Baumann, P; Jackson, S P

    1995-01-01

    The Archaea (archaebacteria) constitute a group of prokaryotes that are phylogenetically distinct from Eucarya (eukaryotes) and Bacteria (eubacteria). Although Archaea possess only one RNA polymerase, evidence suggests that their transcriptional apparatus is similar to that of Eucarya. For example, Archaea contain a homolog of the TATA-binding protein which interacts with the TATA-box like A-box sequence upstream of many archaeal genes. Here, we report the cloning of a Sulfolobus shibatae gen...

  3. Teaching molecular genetics: chapter 4—positional cloning of genetic disorders

    OpenAIRE

    Puliti, Aldamaria; Caridi, Gianluca; Ravazzolo, Roberto; Ghiggeri, Gian Marco

    2007-01-01

    Positional cloning is the approach of choice for the identification of genetic mutations underlying the pathological development of diseases with simple Mendelian inheritance. It consists of different consecutive steps, starting with recruitment of patients and DNA collection, that are critical to the overall process. A genetic analysis of the enrolled patients and their families is performed, based on genetic recombination frequencies generated by meiotic cross-overs and on genome-wide molec...

  4. Molecular Cloning and Characterization of OsCDase, a Ceramidase Enzyme from Rice

    OpenAIRE

    Pata, Mickael O.; Wu, Bill X.; Bielawski, Jacek; Xiong, Tou Cheu; Hannun, Yusuf A.; Ng, Carl K. -Y.

    2008-01-01

    Sphingolipids are a structurally diverse group of molecules based on long-chain sphingoid bases found in animal, fungal and plant cells. In contrast to the situation in animals and yeast, we know much less about the spectrum of sphingolipid species in plants and the roles they play in mediating cellular processes. Here, we report the cloning and characterization of a plant ceramidase from rice (Oryza sativa spp. Japonica cv. Nipponbare). Sequence analysis suggests that the rice ceramidase (Os...

  5. Molecular Cloning and Characterization of G Alpha Proteins from the Western Tarnished Plant Bug, Lygus hesperus

    OpenAIRE

    J Joe Hull; Meixian Wang

    2014-01-01

    The Gα subunits of heterotrimeric G proteins play critical roles in the activation of diverse signal transduction cascades. However, the role of these genes in chemosensation remains to be fully elucidated. To initiate a comprehensive survey of signal transduction genes, we used homology-based cloning methods and transcriptome data mining to identity Gα subunits in the western tarnished plant bug (Lygus hesperus Knight). Among the nine sequences identified were single variants of the Gαi, Gαo...

  6. Molecular cloning and biological characterization of the human excision repair gene ERCC-3

    International Nuclear Information System (INIS)

    In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion

  7. Molecular tracking of antigen-specific T cell clones in neurological immune-mediated disorders

    Science.gov (United States)

    Muraro, Paolo A.; Wandinger, Klaus-Peter; Bielekova, Bibiana; Gran, Bruno; Marques, Adriana; Utz, Ursula; McFarland, Henry F.; Jacobson, Steve; Martin, Roland

    2016-01-01

    Summary T cells recognizing self or microbial antigens may trigger or reactivate immune-mediated diseases. Monitoring the frequency of specific T cell clonotypes to assess a possible link with the course of disease has been a difficult task with currently available technology. Our goal was to track individual candidate pathogenic T cell clones, selected on the basis of previous extensive studies from patients with immune-mediated disorders of the CNS, including multiple sclerosis, HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/ TSP) and chronic Lyme neuroborreliosis. We developed and applied a highly specific and sensitive technique to track single CD4+ and CD8+ T cell clones through the detection and quantification of T cell receptor (TCR) α or β chain complementarity-determining region 3 transcripts by real-time reverse transcriptase (RT)-PCR. We examined the frequency of the candidate pathogenic T cell clones in the peripheral blood and CSF during the course of neurological disease. Using this approach, we detected variations of clonal frequencies that appeared to be related to clinical course, significant enrichment in the CSF, or both. By integrating clono-type tracking with direct visualization of antigen-specific staining, we showed that a single T cell clone contributed substantially to the overall recognition of the viral peptide/MHC complex in a patient with HAM/ TSP. T cell clonotype tracking is a powerful new technology enabling further elucidation of the dynamics of expansion of autoreactive or pathogen-specific T cells that mediate pathological or protective immune responses in neurological disorders. PMID:12477694

  8. Class I defective herpes simplex virus DNA as a molecular cloning vehicle in eucaryotic cells.

    OpenAIRE

    Barnett, J W; Eppstein, D A; Chan, H W

    1983-01-01

    Defective herpes simplex virus type 1 genomes are composed of head-to-tail tandem repeats of small regions of the nondefective genome. Monomeric repeat units of class I defective herpes simplex virus genomes were cloned into bacterial plasmids. The repeat units functioned as replicons since both viral and convalently linked bacterial plasmid DNA replicated (with the help of DNA from nondefective virus) when transfected into rabbit skin cells. Recombinant plasmids were packaged into virions an...

  9. Cloning and molecular characterization of a novel lectin gene from Pinellia ternata

    Institute of Scientific and Technical Information of China (English)

    JIAN HONG YAO; XIU YUN ZHAO; ZHI HUA LIAO; JUAN LIN; ZHONG HAI CHEN; FEI CHEN; JUN SONG; XIAO FEN SUN; KE XUAN TANG

    2003-01-01

    The full-length cDNA of Pinellia ternata agglutinin (PTA) was cloned from inflorescences using RACE-PCR. Through comparative analysis of PTA gene (pta) and its deduced amino acid sequence with those of other Araceae species, pta was found to encode a precursor lectin with signal peptide and to have extensive homology with those of other Araceae species. PTA was a heterotetrameric mannose-binding lectin with three mannose-binding boxes like lectins from other Araceae and Amaryllidaceae species. Southern blot analysis of the genomic DNA revealed that pta belonged to a low-copy gene family. Northern blot analysis demonstrated that pta constitutively expressed in various plant tissues including root, leaf, stem and inflorescence. The pta cDNA sequence encoding for mature PTA protein was cloned into pET-32a plasmid and the resulting plasmid, pET-32a-PTA containing Trx-PTA fusion protein, was investigated for the expression in E. coli BL21. SDS-PAGE gel analysis showed that the Trx-PTA fusion protein was successfully expressed in E. coli BL21 when induced by IPTG. Artificial diet assay revealed that PTA fusion protein had significant levels of resistance against peach potato aphids when incorporated into artificial diet at 0.1% (w/v). The cloning of the pta gene will enable us to further test its effect in depth on aphids by transferring the gene into crop plants.

  10. Molecular cloning of starch synthase I from maize (W64) endosperm and expression in Escherichia coli.

    Science.gov (United States)

    Knight, M E; Harn, C; Lilley, C E; Guan, H; Singletary, G W; MuForster, C; Wasserman, B P; Keeling, P L

    1998-06-01

    A full length cDNA clone encoding a starch synthase (zSS) from maize endosperm (inbred line W64) was isolated and characterized. The cDNA clone (Ss1) is 2907 bp in length and contains an open reading frame of 1866 bp corresponding to a polypeptide of 622 amino acid residues including a transit peptide of 39 amino acids. The Ss1 cDNA clone was identified as zSSI by its direct alignment with sequences to: (i) the N-terminus obtained from the granule-associated form of the zSSI polypeptide, (ii) four internal peptide fragments obtained from the granule-associated form of the zSSI protein, and (iii) one internal fragment from the soluble form of the zSSI protein. The deduced amino acid sequence of Ss1 shares 75.7% sequence identity with rice soluble Ss and contains the highly conserved KSGGLGDV putative ADP-Glc binding site. Moreover, Ss1 exhibited significant activity when expressed in E. coli and the expressed protein is recognized by the antibody raised against the granule associated zSSI protein. Ss1 transcripts were detected in endosperm beginning at 15 days after pollination, but were not found in embryo, leaf or root. Maize contains a single copy of the Ss1 gene, which maps close to the Waxy locus of chromosome 9. PMID:9675904

  11. Molecular cloning and structural analysis of human norepinephrine transporter gene(NETHG)

    Institute of Scientific and Technical Information of China (English)

    GUOLIHE; LIHUAZHU; 等

    1995-01-01

    A cDNA molecule encoding a major part of the human Norepinephrine transporter(hNET) was synthesized by means of Polymerase Chain Reaction(PCR) technique and used as a probe for selecting the human genomic NET gene.A positive clone harbouring the whole gene was obtained from a human lymphocyte genomic library through utilizing the “genomic walking” technique.The clone,designated as phNET,harbours a DNA fragment of about 59 kd in length inserted into BamH I site in cosmid pWE15.The genomic clone contains 14 exons encoding all amino acid residues in the protein.A single exon encodes a distinct transmembrane domain,except for transmembrane domain 10 and 11,which are encoded by part of two exons respectively,and exon 12,which encodes part of domain 11 and all of domain 12.These results imply that there is a close relationship between exon splicing of a gene and structureal domains of the protein,as is the case for the human γ-aminobutyric acid transporter(hGAT) and a number of other membrane proteins.

  12. Molecular cloning and comparative sequence analysis of fungal β-Xylosidases.

    Science.gov (United States)

    Mustafa, Ghulam; Kousar, Sumaira; Rajoka, Muhammad Ibrahim; Jamil, Amer

    2016-12-01

    Commercial scale degradation of hemicelluloses into easily accessible sugar residues is practically crucial in industrial as well as biochemical processes. Xylanolytic enzymes have a great number of possible applications in many biotechnological processes and therefore, these enzymes are continuously attracting the attention of scientists. Due to this fact, different β-Xylosidases have been isolated, purified and characterized from several bacteria and fungi. Microorganisms in this respect have gained much momentum for production of these significant biocatalysts with remarkable features. It is difficult to propagate microorganisms for efficient and cost-competitive production of β-Xylosidase from hemicelluloses due to expensive conditions of fermentation. The screening of new organisms with an enhanced production of β-Xylosidases has been made possible with the help of recombinant DNA technology. β-Xylosidase genes haven been cloned and expressed on large scale in both homologous and heterologous hosts with the advent of genetic engineering. Therefore, we have reviewed the literature regarding cloning of β-Xylosidase genes into various hosts for their heterologous production along with sequence similarities among different β-Xylosidases. The study provides insight into the current status of cloning, expression and sequence analysis of β-Xylosidases for industrial applications. PMID:27080227

  13. RET-rearranged non-small-cell lung carcinoma: a clinicopathological and molecular analysis

    OpenAIRE

    Tsuta, K; Kohno, T.; Yoshida, A.; Shimada, Y.; Asamura, H.; Furuta, K; Kushima, R

    2014-01-01

    Background: To elucidate clinicopathological characteristics of non-small-cell lung carcinoma (NSCLC) cases carrying RET rearrangements causing oncogenic fusions to identify responders to therapy with RET tyrosine kinase inhibitors. Methods: We investigated 1874 patients with carcinomas, including 1620 adenocarcinomas (ADCs), 203 squamous cell carcinomas (SCCs), 8 large cell carcinomas, and 43 sarcomatoid carcinomas (SACs). Fluorescence in situ hybridisation (FISH) and/or reverse transcriptio...

  14. Molecular cloning and characterization of a glycine-like receptor gene from the cattle tick Rhipicephalus (Boophilus microplus (Acari: Ixodidae

    Directory of Open Access Journals (Sweden)

    Flores-Fernández José Miguel

    2014-01-01

    Full Text Available The cattle tick Rhipicephalus (Boophilus microplus is the most economically important ectoparasite affecting the cattle industry in tropical and subtropical areas around the world. The principal method of tick control has relied mainly on the use of chemical acaricides, including ivermectin; however, cattle tick populations resistant to ivermectin have recently been reported in Brazil, Mexico, and Uruguay. Currently, the molecular basis for ivermectin susceptibility and resistance are not well understood in R. microplus. This prompted us to search for potential molecular targets for ivermectin. Here, we report the cloning and molecular characterization of a R. microplus glycine-like receptor (RmGlyR gene. The characterized mRNA encodes for a 464-amino acid polypeptide, which contains features common to ligand-gated ion channels, such as a large N-terminal extracellular domain, four transmembrane domains, a large intracellular loop and a short C-terminal extracellular domain. The deduced amino acid sequence showed around 30% identity to GlyRs from some invertebrate and vertebrate organisms. The polypeptide also contains the PAR motif, which is important for forming anion channels, and a conserved glycine residue at the third transmembrane domain, which is essential for high ivermectin sensitivity. PCR analyses showed that RmGlyR is expressed at egg, larval and adult developmental stages. Our findings suggest that the deduced receptor is an additional molecular target to ivermectin and it might be involved in ivermectin resistance in R. microplus.

  15. Molecular cloning and characterization of a glycine-like receptor gene from the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    Science.gov (United States)

    Flores-Fernández, José Miguel; Gutiérrez-Ortega, Abel; Padilla-Camberos, Eduardo; Rosario-Cruz, Rodrigo; Hernández-Gutiérrez, Rodolfo; Martínez-Velázquez, Moisés

    2014-01-01

    The cattle tick Rhipicephalus (Boophilus) microplus is the most economically important ectoparasite affecting the cattle industry in tropical and subtropical areas around the world. The principal method of tick control has relied mainly on the use of chemical acaricides, including ivermectin; however, cattle tick populations resistant to ivermectin have recently been reported in Brazil, Mexico, and Uruguay. Currently, the molecular basis for ivermectin susceptibility and resistance are not well understood in R. microplus. This prompted us to search for potential molecular targets for ivermectin. Here, we report the cloning and molecular characterization of a R. microplus glycine-like receptor (RmGlyR) gene. The characterized mRNA encodes for a 464-amino acid polypeptide, which contains features common to ligand-gated ion channels, such as a large N-terminal extracellular domain, four transmembrane domains, a large intracellular loop and a short C-terminal extracellular domain. The deduced amino acid sequence showed around 30% identity to GlyRs from some invertebrate and vertebrate organisms. The polypeptide also contains the PAR motif, which is important for forming anion channels, and a conserved glycine residue at the third transmembrane domain, which is essential for high ivermectin sensitivity. PCR analyses showed that RmGlyR is expressed at egg, larval and adult developmental stages. Our findings suggest that the deduced receptor is an additional molecular target to ivermectin and it might be involved in ivermectin resistance in R. microplus. PMID:25174962

  16. Molecular cloning, bioinformatics analysis and functional characterization of HWTX-XI toxin superfamily from the spider Ornithoctonus huwena.

    Science.gov (United States)

    Jiang, Liping; Deng, Meichun; Duan, Zhigui; Tang, Xing; Liang, Songping

    2014-04-01

    Spider venom contains a very valuable repertoire of natural resources to discover novel components for molecular diversity analyses and therapeutic applications. In this study, HWTX-XI toxins from the spider venom glands of Ornithoctonus huwena which are Kunitz-type toxins (KTTs) and were directly cloned, analyzed and functionally characterized. To date, the HWTX-XI superfamily consists of 38 members deduced from 121 high-quality expressed sequence tags, which is the largest spider KTT superfamily with significant molecular diversity mainly resulted from cDNA tandem repeats as well as focal hypermutation. Among them, HW11c40 and HW11c50 may be intermediate variants between native Kunitz toxins and sub-Kunitz toxins based on evolutionary analyses. In order to elucidate their biological activities, recombinant HW11c4, HW11c24, HW11c27 and HW11c39 were successfully expressed, further purified and functionally characterized. Both HW11c4 and HW11c27 display inhibitory activities against trypsin, chymotrypsin and kallikrein. Moreover, HW11c4 is also an inhibitor relatively specific for Kv1.1 channels. HW11c24 and HW11c39 are found to be inactive on chymotrysin, trypsin, kallikrein, thrombin and ion channels. These findings provide molecular evidence for toxin diversification of the HWTX-XI superfamily and useful molecular templates of serine protease inhibitors and ion channel blockers for the development of potentially clinical applications.

  17. The molecular mechanisms of Curcuma Wenyujin extract-mediated inhibitory effects on human esophageal carcinoma cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    景钊

    2012-01-01

    Objective To study the molecular mechanisms of Curcuma Wenyujin extract-mediated inhibitory effects on human esophageal carcinoma cells. Methods The Curcuma Wenyujin extract was obtained by supercritical carbon dioxide extraction. TE-1 cells were divided into 4 groups after adherence.

  18. Molecular Cloning and Production of Recombinant Phytase from Bacillus subtilis ASUIA243 in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Nor Soleha Mohd Dali

    2011-12-01

    Full Text Available Phytase gene obtained from Bacillus subtilis ASUIA243 was cloned into a medium vector and transformed into E. coli. Restriction enzyme digestion was conducted to get blunt-ended phytase gene and ligated into the Pichia expression vector, pPICZαA. The recombinant vector, pPICZαA-243HPp was then linearized with PmeI and transformed into P. pastoris strain X33. Screening for multi copy gene number of transformants was done by re-plating the selected colonies on increasing concentration of zeocin. One positive clone, X243HPp#2 was then grown in BMGY media as the starting culture, followed by induction in BMMY media for protein expression study. The supernatant was then analysed by SDS-PAGE and Western blot method to check the protein expression.ABSTRAK: Gen fitase yang didapati daripada Bacillus subtilis ASUIA243 diklonkan sebagai vektor perantara dan berubah menjadi E. coli. Sekatan pencernaan enzim dijalankan untuk mendapatkan gen fitase berhujung tumpul dan diligatkan dengan vektor ekspresi Pichia, pPICZαA. Vektor rekombinan, pPICZαA-243HPp kemudian dilinearkan dengan PmeI dan berubah menjadi P. pastoris strain X33. Penyaringan untuk nombor gen berbilang salinan yang menjalani transformasi genetik dijalankan dengan menyalur semula koloni terpilih dengan penambahan kepekatan zeocin. Satu klon positif, X243HPp#2 kemudian dibiarkan hidup dalam perantara BMGY sebagai kultur permulaan, diikuti dengan aruhan dalam perantara BMMY untuk kajian penglahiran protein. Supernatan kemudian dikaji dengan SDS-PAGE dan kaedah sap Western untuk menyemak penglahiran protein.KEYWORDS:  phytase, Bacillus subtilis, Pichia pastoris, gene cloning.

  19. Molecular cloning and characterization of the full-length Hsp90 gene from Matricaria recutita.

    Science.gov (United States)

    Ling, S P; Su, S S; Zhang, H M; Zhang, X S; Liu, X Y; Pan, G F; Yuan, Y

    2014-01-01

    Heat shock protein 90 (Hsp90) is one of the most abundant and conserved chaperone proteins and plays important roles in plant growth and responses to environmental stimuli. However, little is known regarding the sequence and function of Hsp90s in Matricaria recutita. In the present study, we cloned the full-length cDNA sequence of the hsp90 gene from this species. Using rapid amplification of cDNA ends technologies with 2 degenerate primers that were designed based on the hsp90 gene sequence from other members of Asteraceae, we isolated and characterized an Hsp90 homolog gene from M. recutita (Mr-Hsp90). The full-length Mr-hsp90 cDNA sequence, containing 2097 base pairs, encodes a protein of 698 amino acids. Based on amino acid sequence identity, Mr-Hsp90 showed high similarity to other cloned Hsp90 proteins. The Mr-Hsp90 protein was closely clustered with the Lactuca sativa in a phylogenetic tree. These results indicate that the cloned sequence of Mr-Hsp90 is a member of the Hsp90 family, which is reported for the first time in M. recutita. Next, we conducted a salt stress experiment to determine the protein's function under salt stress conditions. Survival of chamomile seedlings subjected to heat-shock pretreatment was significantly increased compared with groups that had not undergone heat-shock pretreatment in a salt stress environment. This indicates that Mr-Hsp90 plays an important role in the salt resistance of chamomile seedlings. PMID:25526220

  20. Molecular cloning and chemical synthesis of a region of platelet glycoprotein IIb involved in adhesive function.

    OpenAIRE

    Loftus, J C; Plow, E F; Frelinger, A.L.; D'Souza, S E; Dixon, D; Lacy, J.; Sorge, J; Ginsberg, M H

    1987-01-01

    Membrane glycoprotein (GP) IIb-IIIa is a component of a platelet adhesive protein receptor. A region of the heavy chain of GPIIb, defined by the monoclonal antibody PMI-1, is involved in adhesion receptor function. We have localized and chemically synthesized this region of GPIIb. A cDNA clone that directs the synthesis of a fusion protein reactive with the PMI-1 antibody was isolated from a phage lambda gt11 expression library constructed with mRNA from an erythroleukemia (HEL) cell line. Th...

  1. Molecular Cloning and Production of Recombinant Phytase from Bacillus subtilis ASUIA243 in Pichia pastoris

    OpenAIRE

    Nor Soleha Mohd Dali; Tamrin Nuge; Mohd Hafidz Mahamad Maifiah; Faridah Yusof; Anis Shobirin Meor Hussin; Abd-Elaziem Farouk; and Hamzah Mohd. Salleh

    2011-01-01

    Phytase gene obtained from Bacillus subtilis ASUIA243 was cloned into a medium vector and transformed into E. coli. Restriction enzyme digestion was conducted to get blunt-ended phytase gene and ligated into the Pichia expression vector, pPICZαA. The recombinant vector, pPICZαA-243HPp was then linearized with PmeI and transformed into P. pastoris strain X33. Screening for multi copy gene number of transformants was done by re-plating the selected colonies on increasing concentrati...

  2. Molecular cloning and sequencing analysis of the interferon receptor (IFNAR-1) from Columba livia

    OpenAIRE

    Li, Chao; Chang, Wei Shan

    2014-01-01

    Objective Partial sequence cloning of interferon receptor (IFNAR-1) of Columba livia. Material and methods In order to obtain a certain length (630 bp) of gene, a pair of primers was designed according to the conserved nucleotide sequence of Gallus (EU477527.1) and Taeniopygia guttata (XM_002189232.1) IFNAR-1 gene fragment that was published by GenBank. Special primers were designed by the Race method to amplify the 3'terminal cDNA. Results The Columba livia IFNAR-1 displayed 88.5%, 80.5% and...

  3. Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster.

    OpenAIRE

    Elsinghorst, E A; Mortlock, R. P.

    1994-01-01

    To metabolize the uncommon pentose D-arabinose, enteric bacteria often recruit the enzymes of the L-fucose pathway by a regulatory mutation. However, Escherichia coli B can grow on D-arabinose without the requirement of a mutation, using some of the L-fucose enzymes and a D-ribulokinase that is distinct from the L-fuculokinase of the L-fucose pathway. To study this naturally occurring D-arabinose pathway, we cloned and partially characterized the E. coli B L-fucose-D-arabinose gene cluster an...

  4. Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene.

    OpenAIRE

    Bzik, D J; Li, W B; Horii, T; Inselburg, J

    1987-01-01

    Genomic DNA clones that coded for the bifunctional dihydrofolate reductase (DHFR) and thymidylate synthase (TS) (DHFR-TS) activities from a pyrimethamine-sensitive strain of Plasmodium falciparum were isolated and sequenced. The deduced DHFR-TS protein contained 608 amino acids (71,682 Da). The coding region for DHFR-TS contained no intervening sequences and had a high A + T content (75%). The DHFR domain, in the amino-terminal portion of the protein, was joined by a 94-amino acid junction se...

  5. Molecular cloning and characterization of two Helicobacter pylori genes coding for plasminogen-binding proteins

    OpenAIRE

    Jönsson, Klas; Guo, Betty P.; Monstein, Hans-Jürg; Mekalanos, John J.; Kronvall, Göran

    2004-01-01

    Helicobacter pylori binds a number of host cell proteins, including the plasma protein plasminogen, which is the proenzyme of the serine protease plasmin. Two H. pylori plasminogen-binding proteins have been described; however, no genes were identified. Here we report the use of a phage display library to clone two genes from the H. pylori CCUG 17874 genome that mediate binding to plasminogen. DNA sequence analysis of one of these genes revealed 96.6% homology with H. pylori 26695 HP0508. A s...

  6. Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and -2

    DEFF Research Database (Denmark)

    Iversen, Annette; Cazzamali, Giuseppe; Williamson, Michael;

    2002-01-01

    of the annotated gene. We expressed the coding part of the cloned cDNA in Chinese hamster ovary cells and found that the receptor was activated by two neuropeptides, capa-1 and -2, encoded by the Drosophila capability gene. Database searches led to the identification of a similar receptor in the genome from...... the malaria mosquito Anopheles gambiae (58% amino acid residue identities; 76% conserved residues; and 5 introns at identical positions within the two insect genes). Because capa-1 and -2 and related insect neuropeptides stimulate fluid secretion in insect Malpighian (renal) tubules, the identification...

  7. Cloning and molecular characterization of Cu,Zn superoxide dismutase from Actinobacillus pleuropneumoniae.

    OpenAIRE

    Langford, P R; Loynds, B M; Kroll, J S

    1996-01-01

    Copper-zinc superoxide dismutases (Cu,Zn SODs), until recently considered very unusual in bacteria, are now being found in a wide range of gram-negative bacterial species. Here we report the cloning and characterization of sodC, encoding Cu,Zn SOD in Actinobacillus pleuropneumoniae, a major pathogen of pigs and the causative organism of porcine pleuropneumonia. sodC was shown to lie on a monocistronic operon, at the chromosomal locus between the genes asd (encoding aspartate semialdehyde dehy...

  8. Molecular cloning and sequencing of the gene encoding the fimbrial subunit protein of Bacteroides gingivalis.

    OpenAIRE

    Dickinson, D P; Kubiniec, M A; Yoshimura, F; Genco, R J

    1988-01-01

    The gene encoding the fimbrial subunit protein of Bacteroides gingivalis 381, fimbrilin, has been cloned and sequenced. The gene was present as a single copy on the bacterial chromosome, and the codon usage in the gene conformed closely to that expected for an abundant protein. The predicted size of the mature protein was 35,924 daltons, and the secretory form may have had a 10-amino-acid, hydrophilic leader sequence similar to the leader sequences of the MePhe fimbriae family. The protein se...

  9. Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme.

    OpenAIRE

    Olsen, L C; Aasland, R; Wittwer, C U; Krokan, H E; Helland, D E

    1989-01-01

    Uracil-DNA glycosylase is the DNA repair enzyme responsible for the removal of uracil from DNA, and it is present in all organisms investigated. Here we report on the cloning and sequencing of a cDNA encoding the human uracil-DNA glycosylase. The sequences of uracil-DNA glycosylases from yeast, Escherichia coli, herpes simplex virus type 1 and 2, and homologous genes from varicella-zoster and Epstein-Barr viruses are known. It is shown in this report that the predicted amino acid sequence of ...

  10. Mucosal transmissibility, disease induction and coreceptor switching of R5 SHIVSF162P3N molecular clones in rhesus macaques

    Directory of Open Access Journals (Sweden)

    Ren Wuze

    2013-01-01

    Full Text Available Abstract Background Mucosally transmissible and pathogenic CCR5 (R5-tropic simian-human immunodeficiency virus (SHIV molecular clones are useful reagents to identity neutralization escape in HIV-1 vaccine experiments and to study the envelope evolutionary process and mechanistic basis for coreceptor switch during the course of natural infection. Results We observed progression to AIDS in rhesus macaques infected intrarectally with molecular clones of the pathogenic R5 SHIVSF162P3N isolate. Expansion to CXCR4 usage was documented in one diseased macaque that mounted a neutralizing antibody response and in another that failed to do so, with the latter displaying a rapid progressor phenotype. V3 loop envelop glycoprotein gp120 sequence changes that are predictive of a CXCR4 (X4-using phenotype in HIV-1 subtype B primary isolates, specifically basic amino acid substations at positions 11 (S11R, 24 (G24R and 25 (D25K of the loop were detected in the two infected macaques. Functional assays showed that envelopes with V3 S11R or D25K mutation were dual-tropic, infecting CD4+ target cells that expressed either the CCR5 or CXCR4 coreceptor. And, consistent with findings of coreceptor switching in macaques infected with the pathogenic isolate, CXCR4-using variant was first detected in the lymph node of the chronically infected rhesus monkey several weeks prior to its presence in peripheral blood. Moreover, X4 emergence in this macaque coincided with persistent peripheral CD4+ T cell loss and a decline in neutralizing antibody titer that are suggestive of immune deterioration, with macrophages as the major virus-producing cells at the end-stage of disease. Conclusions The data showed that molecular clones derived from the R5 SHIVSF162P3N isolate are mucosally transmissible and induced disease in a manner similar to that observed in HIV-1 infected individuals, providing a relevant and useful animal infection model for in-depth analyses of host selection

  11. Cloning Yeast Actin cDNA Leads to an Investigative Approach for the Molecular Biology Laboratory

    Science.gov (United States)

    Black, Michael W.; Tuan, Alice; Jonasson, Erin

    2008-01-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the…

  12. Molecular cloning and sequence analysis of a phenylalanine ammonia-lyase gene from dendrobium.

    Directory of Open Access Journals (Sweden)

    Qing Jin

    Full Text Available In this study, a phenylalanine ammonia-lyase (PAL gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum (designated Dc-PAL1, GenBank No. JQ765748 has 2,458 bps and contains a complete open reading frame (ORF of 2,142 bps, which encodes 713 amino acid residues. The amino acid sequence of DcPAL1 has more than 80% sequence identity with the PAL genes of other plants, as indicated by multiple alignments. The dominant sites and catalytic active sites, which are similar to that showing in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum, are also found in DcPAL1. Phylogenetic tree analysis revealed that DcPAL is more closely related to PALs from orchidaceae plants than to those of other plants. The differential expression patterns of PAL in protocorm-like body, leaf, stem, and root, suggest that the PAL gene performs multiple physiological functions in Dendrobium candidum.

  13. Molecular cloning and expression analysis of a novel BCCP subunit gene from Aleurites moluccana.

    Science.gov (United States)

    Xuan, W Y; Zhang, Y; Liu, Z Q; Feng, D; Luo, M Y

    2015-01-01

    Aleurites moluccana L. is grown as a roadside tree in southern China and the oil content of its seed is higher than other oil plants, such as Jatropha curcas and Camellia oleifera. A. moluccana is considered a promising energy plant because its seed oil could be used to produce biodiesel and bio-jet fuel. In addition, the bark, leaves, and kernels of A. moluccana have various medical and commercial uses. Here, a novel gene coding the biotin carboxyl carrier protein subunit (BCCP) was cloned from A. moluccana L. using the homology cloning method combined with rapid amplification of cDNA end (RACE) technology. The isolated full-length cDNA sequence (designated AM-accB) was 1188 bp, containing a 795-bp open reading frame coding for 265 amino acids. The deduced amino acid sequence of AM-accB contained a biotinylated domain located between amino acids 190 and 263. A. moluccana BCCP shows high identity at the amino acid level to its homologues in other higher plants, such as Vernicia fordii, J. curcas, and Ricinus communis (86, 77, and 70%, respectively), which all contain conserved domains for ACCase activity. The expression of the AM-accB gene during the middle stage of development and maturation in A. moluccana seeds was higher than that in early and later stages. The expression pattern of the AM-accB gene is very similar to that of the oil accumulation rate. PMID:26345927

  14. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in lambda gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated lambda hARG6 and lambda hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying lambda hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes.

  15. Molecular cloning and characterization of Hymenolepis diminuta alpha-tubulin gene.

    Science.gov (United States)

    Mohajer-Maghari, Behrokh; Amini-Bavil-Olyaee, Samad; Webb, Rodney A; Coe, Imogen R

    2007-02-01

    To isolate a full-length alpha-tubulin cDNA from an eucestode, Hymenolepis diminuta, a lambda phage cDNA library was constructed. The alpha-tubulin gene was cloned, sequenced and characterized. The H. diminuta alpha-tubulin consisted of 450 amino acids. This protein contained putative sites for all posttranslational modifications as detyrosination/tyrosination at the carboxyl-terminal of protien, phosphorylation at residues R79 and K336, glycylation/glutamylation at residue G445 and acetylation at residue K40. Comparisons of H. diminuta alpha-tubulin with all full-length alpha-tubulin proteins revealed that H. diminuta alpha-tubulin possesses 10 distinctive residues, which are not found in any other alpha-tubulins. Phylogenetic analysis showed that H. diminuta alpha-tubulin has grouped in a separated branch adjacent eucestode and trematodes branch with 92% bootstrap value (1000 replicates). In conclusion, this is the first report of H. diminuta cDNA library construction, cloning and characterization of H. diminuta alpha-tubulin gene.

  16. Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin.

    Science.gov (United States)

    Van Damme, E J; Kaku, H; Perini, F; Goldstein, I J; Peeters, B; Yagi, F; Decock, B; Peumans, W J

    1991-11-15

    Poly(A)-rich RNA isolated from ripening ovaries of snowdrop (Galanthus nivalis L.) yielded a single 17-kDa lectin polypeptide upon translation in a wheat-germ cell-free system. This lectin was purified by affinity chromatography. Translation of the same RNA in Xenopus leavis oocytes revealed a lectin polypeptide which was about 2 kDa smaller than the in vitro synthesized precursor, suggesting that the oocyte system had removed a 2-kDa signal peptide. A second post-translational processing step was likely to be involved since both the in vivo precursor and the Xenopus translation products were about 2 kDa larger than the mature lectin polypeptide. This hypothesis was confirmed by the structural analysis of the amino acid sequence of the mature protein and the cloned mRNA. Edman degradation and carboxypeptidase Y digestion of the mature protein, and structural analysis of the peptides obtained after chemical cleavage and modification, allowed determination of the complete 105 amino acid sequence of the snowdrop lectin polypeptide. Comparison of this sequence with the deduced amino acid sequence of a lectin cDNA clone revealed that besides the mature lectin polypeptide, the lectin mRNA also encoded a 23 amino acid signal-sequence and a C-terminal extension of 29 amino acids, which confirms the results from in vitro translation experiments.

  17. Molecular Cloning of TSARG6 Gene Related to Apoptosis in Human Spermatogenic Cells

    Institute of Scientific and Technical Information of China (English)

    Gang LIU; Guang-Xiu LU; Xiao-Wei XING

    2004-01-01

    Beginning from a mouse EST (GenBank accession No. BE644537) which was significantly up-regulated in cryptorchidism and represented a novel gene, we cloned a new gene (GenBank accessionNo. AY138810) which is related to apoptosis in human spermatogenic cells by means of GeneScan programand PCR technology. The gene whose full cDNA length is 1875 bp containing 8 exons and 7 introns islocated in human chromosome lq13.3. Its protein containing 316 amino acid residues is a new member ofHSP40 protein family because the sequence contains the highly conserved J domain which is present in allDna J-like proteins and is considered to have a critical role in DnaJ-DnaK protein-protein interactions. TSARG6protein displays a 45% identity in a 348-amino acid overlap with DJB5_HUMAN protein. The result ofRT-PCR and Northern blot analysis showed that TSARG6 is specifically expressed in adult testis and thetranscript is 1.8 kb. Based upon all these observations, it is considered that we cloned a new gene whichprobably inhibited human testis spermatogenesis apoptosis.

  18. Molecular cloning and expression of bovine kappa-casein in Escherichia coli

    International Nuclear Information System (INIS)

    A cDNA library was constructed using poly(A)+RNA from bovine mammary gland. This cDNA library of 6000 clones was screened employing colony hybridization using 32P-labelled oligonucleotide probes and restriction endonuclease mapping. The cDNA from the selected plasmid, pKR76, was sequenced using the dideoxy-chain termination method. The cDNA insert of pKR76 carries the full-length sequence, which codes for mature kappa-casein protein. The amino acid sequence deduced from the cDNA sequence fits the published amino acid sequence with three exceptions; the reported pyroglutamic acid at position 1, tyrosine at position 35, and aspartic acid at position 81 are, respectively, a glutamine, a histidine, and an asparagine in the clone containing pKR76. The MspI-, NlaIV-cleaved fragment (630 base pair) from the kappa-casein cDNA insert has been subcloned into expression vectors pUC18 and pKK233-2, which contain a lac promoter and a trc promoter, respectively. Escherichia coli cells carrying the recombinant expression plasmids were shown to produce kappa-casein protein having the expected mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and being recognized by specific antibodies raised against natural bovine kappa-casein

  19. Molecular Cloning and Sequence Analysis of IGF-I from Triangular Bream(Megalobrama terminalis)

    Institute of Scientific and Technical Information of China (English)

    TONG Fu-dan; LIU Hong-yun

    2004-01-01

    The insulin-like growth factor Ⅰ(IGF-Ⅰ)gene of triangular bream(Megalobrama terminalis)(GenBank No.AY247412)(Tb)was cloned for the first time from liver by RT-PCR. The nucleotide sequence analysis showed the Tb IGF-Ⅰ cDNA consisted of 486 nucleotides and encoded 117 amino acids including B,C,A,D and E five domains. Analysis of E-domain indicated that cloned Tb IGF-Ⅰ belonged to IGF-Ⅰ Ea-2 subtype. Identity analysis showed the IGF-Ⅰ nucleotide sequence shared 99.8% homology with bluntnose bream,88.8% with grass Carp,85.8% with common carp; the pre-IGF-Ⅰ amine acid sequence shared 99.4% with bluntnose bream,88.8% with grass carp,85.4% homology with common carp. In the Cyprinus Carpio,the higher homology of nucleotide sequence and amino acid sequence in IGF-Ⅰshowed that the closer relationship the fishes have. These results could provide basic data for the research on Tb germplasm and the development and utilization of biological feed additives.

  20. Cloning and molecular characterization of Omp31 gene from Brucella melitensis Rev 1 strain

    Directory of Open Access Journals (Sweden)

    Yousefi, S.

    2016-07-01

    Full Text Available Brucellosis, caused by the genus Brucella bacterium, is a well-known infection among domestic animals. Considering the serious economic and medical consequences of this infection, various preventive efforts have been made through using recombinant vaccines, based on outer membrane protein (OMP antigens of Brucella species. The objective of the present study was to clone, analyze the sequence, and predict the epitopes of Omp31 gene as a major B. melitensis antigen. The full-length open reading frame (ORF for this gene was amplified by specific primers and cloned into the pTZ57R/T vector. The gene sequence of B. melitensis Rev 1 strain was submitted to NCBI database. The results of phylogenetic analysis showed that Omp31 is almost similar in different Brucella species. Online prediction software programs were also used to predict B- and Tcell epitopes, secondary and tertiary structures, antigenicity, and enzymatic degradation sites. The bioinformatic tools in the current study were confirmed by the results of three different experimental epitope prediction studies. Bioinformatic analysis identified one T-cell and three B-cell epitopes for Omp31 antigen. Finally, based on the antigenicity and proteosome recognition sites, common B- and T-cell epitopes were predicted for Omp31 (amino acids 191-204. Bioinformatic analysis showed that these regions had proper epitope characterization and could be useful for recombinant vaccine development.

  1. Molecular cloning of HSP70 in Mycoplasma ovipneumoniae and comparison with that of other mycoplasmas.

    Science.gov (United States)

    Li, M; Ma, C J; Liu, X M; Zhao, D; Xu, Q C; Wang, Y J

    2011-05-10

    Mycoplasma ovipneumoniae, a bacterial species that specifically affects ovine and goat, is the cause of ovine infectious pleuropneumonia. We cloned, sequenced and analyzed heat shock protein 70 (HSP70) (dnaK) gene of M. ovipneumoniae. The full length open reading frame of the M. ovipneumoniae HSP70 gene consists of 1812 nucleotides, with a G+C content of 34.16%, encoding 604 amino acids. Comparative analysis with the HSP70 sequences of 15 Mycoplasma species revealed 59 to 87% DNA sequence identity, with an amino acid sequence identity range of 58 to 94%. M. ovipneumoniae and M. hyopneumoniae shared the highest DNA and amino acid sequence identity (87 and 94%, respectively). Based on phylogenetic analysis, both the DNA and amino acid identities of M. ovipneumoniae with other mycoplasmal HSP70 were correlated with the degree of relationship between the species. The C-terminus of the HSP70 was cloned into a bacterial expression vector and expressed in Escherichia coli cells. The recombinant C-terminal portion of HSP70 protein strongly reacted with convalescent sera from M. ovipneumoniae-infected sheep, based on an immunoblotting assay. This indicates that HSP70 is immunogenic in a natural M. ovipneumoniae infection and may be a relevant antigen for vaccine development.

  2. Molecular cloning, nucleotide sequence, and expression of the gene encoding human eosinophil differentiation factor (interleukin 5)

    International Nuclear Information System (INIS)

    The human eosinophil differentiation factor (EDF) gene was cloned from a genomic library in λ phage EMBL3A by using a murine EDF cDNA clone as a probe. The DNA sequence of a 3.2-kilobase BamHI fragment spanning the gene was determined. The gene contains three introns. The predicted amino acid sequence of 134 amino acids is identical with that recently reported for human interleukin 5 but shows no significant homology with other known hemopoietic growth regulators. The amino acid sequence shows strong homology (∼ 70% identity) with that of murine EDF. Recombinant human EDF, expressed from the human EDF gene after transfection into monkey COS cells, stimulated the production of eosinophils and eosinophil colonies from normal human bone marrow but had no effect on the production of neutrophils or mononuclear cells (monocytes and lymphoid cells). The apparent specificity of human EDF for the eosinophil lineage in myeloid hemopoiesis contrasts with the properties of human interleukin 3 and granulocyte/macrophage and granulocyte colony-stimulating factors but is directly analogous to the biological properties of murine EDF. Human EDF therefore represents a distinct hemopoietic growth factor that could play a central role in the regulation of eosinophilia

  3. Molecular Cloning and Characterization of P4 Nuclease from Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Safar Farajnia

    2011-01-01

    Full Text Available Parasite of the genus Leishmania is reliant on the salvage pathway for recycling of ribonucleotides. A class I nuclease enzyme also known as P4 nuclease is involved in salvage of purines in cutaneous Leishmania species but the relevant enzymes have not been characterized in Leishmania infantum (L. infantum. The aim of this study was to clone and characterize the gene encoding class I nuclease in L. infantum. DNA extracted from L. infantum was used for amplification of P4 nuclease gene (Li-P4 by PCR. The product was cloned, sequenced, and expressed in E. coli for further characterization. Analysis of the sequence of Li-P4 revealed that the gene consists of an ORF of 951 bp. Sequence similarity analysis indicated that Li-P4 has a high homology to relevant enzymes of other kintoplastids with the highest homology (88% to p1/s1 class I nuclease from L. donovani. Western blotting of antirecombinant Li-P4 with promastigote and amastigote stages of L. infantum showed that this nuclease is present in both stages of parasite with higher expression in amastigote stage. The highly conserved nature of this essential enzyme in Leishmania parasites suggests it as a promising drug target for leishmaniasis.

  4. Molecular cloning of a cDNA encoding the human Sm-D autoantigen

    Energy Technology Data Exchange (ETDEWEB)

    Rokeach, L.A.; Haselby, J.A.; Hoch, S.O. (Agouron Institute, La Jolla, CA (USA))

    1988-07-01

    Antibodies to the Sm-D polypeptide antigen are closely associated with the rheumatic disease systemic lupus erythematosus. Sm-D exists in the cell as one of the core proteins of the small nuclear ribonucleoprotein complexes implicated in RNA processing. The authors have isolated a cDNA clone, D45-2, coding for the Sm-D human nuclear antigen by screening a human B-lymphocyte cDNA library with synthetic oligonucleotide probes. The 1633-base-pair clone contains an open reading frame (ORF) 357 nucleotides long, capable of encoding a 13,282-dalton polypeptide. The Sm-D coding region is initiated at an AUG codon downstream from a sequence with excellent match to the consensus for the eukaryotic ribosome-binding site. The Sm-D ORF is preceded by a 150-nucleotide-long untranslated leader and followed by a 1126-nucleotide-long untranslated region containing four putative poly(A) signals. The predicted amino acid sequence reveals a (Gly-Arg){sub 9} repeated motif at the C terminus, which may constitute one of the Sm-D immunoreactive determinants. Moreover, this C terminus shows interesting features: (i) a good homology to protamines as expected for a nucleic acid binding protein and (ii) a striking similarity to a region in the Epstein-Barr nuclear antigen.

  5. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes

    Science.gov (United States)

    Wang, Huina; Liu, Chengbo; Gong, Xiaojing; Hu, Dehong; Lin, Riqiang; Sheng, Zonghai; Zheng, Cuifang; Yan, Meng; Chen, Jingqin; Cai, Lintao; Song, Liang

    2014-11-01

    As an optical-acoustic hybrid imaging technology, photoacoustic imaging uniquely combines the advantages of rich optical contrast with high ultrasonic resolution in depth, opening up many new possibilities not attainable with conventional pure optical imaging technologies. To perform photoacoustic molecular imaging, optically absorbing exogenous contrast agents are needed to enhance the signals from specifically targeted disease activity. In this work, we designed and developed folate receptor targeted, indocyanine green dye doped poly(d,l-lactide-co-glycolide) lipid nanoparticles (FA-ICG-PLGA-lipid NPs) for molecular photoacoustic imaging of tumor. The fabricated FA-ICG-PLGA-lipid NPs exhibited good aqueous stability, a high folate-receptor targeting efficiency, and remarkable optical absorption in near-infrared wavelengths, providing excellent photoacoustic signals in vitro. Furthermore, after intravenous administration of FA-ICG-PLGA-lipid NPs, mice bearing MCF-7 breast carcinomas showed significantly enhanced photoacoustic signals in vivo in the tumor regions, compared with those using non-targeted ICG-PLGA-lipid NPs. Given the existing wide clinical use of ICG and PLGA, the developed FA-ICG-PLGA-lipid NPs, in conjunction with photoacoustic imaging technology, offer a great potential to be translated into the clinic for non-ionizing molecular imaging of breast cancer in vivo.

  6. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes.

    Science.gov (United States)

    Wang, Huina; Liu, Chengbo; Gong, Xiaojing; Hu, Dehong; Lin, Riqiang; Sheng, Zonghai; Zheng, Cuifang; Yan, Meng; Chen, Jingqin; Cai, Lintao; Song, Liang

    2014-11-01

    As an optical-acoustic hybrid imaging technology, photoacoustic imaging uniquely combines the advantages of rich optical contrast with high ultrasonic resolution in depth, opening up many new possibilities not attainable with conventional pure optical imaging technologies. To perform photoacoustic molecular imaging, optically absorbing exogenous contrast agents are needed to enhance the signals from specifically targeted disease activity. In this work, we designed and developed folate receptor targeted, indocyanine green dye doped poly(d,l-lactide-co-glycolide) lipid nanoparticles (FA-ICG-PLGA-lipid NPs) for molecular photoacoustic imaging of tumor. The fabricated FA-ICG-PLGA-lipid NPs exhibited good aqueous stability, a high folate-receptor targeting efficiency, and remarkable optical absorption in near-infrared wavelengths, providing excellent photoacoustic signals in vitro. Furthermore, after intravenous administration of FA-ICG-PLGA-lipid NPs, mice bearing MCF-7 breast carcinomas showed significantly enhanced photoacoustic signals in vivo in the tumor regions, compared with those using non-targeted ICG-PLGA-lipid NPs. Given the existing wide clinical use of ICG and PLGA, the developed FA-ICG-PLGA-lipid NPs, in conjunction with photoacoustic imaging technology, offer a great potential to be translated into the clinic for non-ionizing molecular imaging of breast cancer in vivo.

  7. Molecular cloning and characterization of an Rcd1-like protein in excretory-secretory products of Trichinella pseudospiralis.

    Science.gov (United States)

    Nagano, I; Wu, Z; Takahashi, Y

    2006-12-01

    A cDNA library was constructed from muscle larvae of Trichinella pseudospiralis. A cDNA clone, designated as Tp8 contained a cDNA transcript of 1326 bp length with a single open reading frame, which encoded 303 amino acid residues (34,187 Da, estimated molecular mass). The predicted amino acid sequence of the clone had an identity of approximately 60% to the Rcd1 (Required cell differentiation 1) -like proteins among a wide range of organisms. Real-time quantitative polymerase chain reaction results showed that the transcription level of Tp8 gene reached the highest value in adult worms, and that the transcription level in muscle larvae before stichosome formation was higher than in muscle larvae after stichosome formation. The recombinant Tp8 protein migrated at 37 kDa and reacted to antibody against T. pseudospiralis excretory-secretory (E-S) products and sera from mice infected with T. pseudospiralis. An antibody against the Tp8 recombinant protein could stain proteins migrating at approximately 34 kDa (which is the expected size from the sequence) on Western blotting of E-S products from muscle larvae. An immunocytochemical study showed that the Tp8 protein was present within the stichocyte of muscle larvae and adults worms. PMID:16899141

  8. Cloning, molecular modeling, and docking analysis of alkali-thermostable β-mannanase from Bacillus nealsonii PN-11.

    Science.gov (United States)

    Chauhan, Prakram Singh; Tripathi, Satya Prakash; Sangamwar, Abhays T; Puri, Neena; Sharma, Prince; Gupta, Naveen

    2015-11-01

    An alkali-thermostable β-mannanase gene from Bacillus nealsonii PN-11 was cloned by functional screening of E. coli cells transformed with pSMART/HaeIII genomic library. The ORF encoding mannanase consisted of 1100 bp, corresponding to protein of 369 amino acids and has a catalytic domain belonging to glycoside hydrolase family 5. Cloned mannanase was smaller in size than the native mannanase by 10 kDa. This change in molecular mass could be because of difference in the glycosylation. The tertiary structure of the β-mannanase (MANPN11) was designed and it showed a classical (α/β) TIM-like barrel motif. Active site of MANPN11 was represented by 8 amino acid residues viz., Glu152, Trp189, His217, Tyr219, Glu247, Trp276, Trp285, and Tyr287. Model surface charge of MANPN11 predicted that surface near active site was mostly negative, and the opposite side was positive which might be responsible for the stability of the enzymes at high pH. Stability of MANPN11 at alkaline pH was further supported by the formation of a hydrophobic pocket near active site of the enzyme. To understand the ability of MANPN11 to bind with different substrates, docking studies were performed and found that mannopentose fitted properly into active site and form stable enzyme substrate complex.

  9. Role of CD97stalk and CD55 as molecular markers for prognosis and therapy of gastric carcinoma patients

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; CHEN Li; PENG Shu-you; CHEN Zhou-xun; HOANG-VU C

    2005-01-01

    Objectives: To explore the mechanism of development and aggressiveness in gastric carcinomas by investigating the expression and role of CD97 and its cellular ligand CD55 in gastric carcinomas. Methods: Tumor and corresponding normal mucosal tissue, collected from 39 gastric carcinoma patients, were examined by immunohistochemistry and RT-PCR for the expression of CD97 and CD55. Results: CD97stalk was strongly stained on scattered tumor cells or small tumor cell clusters at the invasion front of gastric carcinomas. The expression of CD97stalk was frequently observed in tumors of stage Ⅰ and T1 gastric carcinoma patients. The expression of CD97stalk between Stage Ⅰ and Stage Ⅱ, Ⅲ, Ⅳ specimens showed significant difference (P<0.05), between T1 and T2, T3, T4 specimens also showed significant difference (P<0.05). Specimens with tumor invasion depth limited in mucosa of T 1 specimens showed higher positive CD55 expression than specimens with the same tumor invasion depth in T2, T3, T4 specimens, the expression of CD55 between T1 and T2, T3, T4 specimens was significantly different (P<0.05).There was strong correlation between the distribution patterns of CD97stalk and CD55 on tumor tissues (r=0.73, P<0.05). Signet ring cell carcinomas frequently contained strong CD97stalk and CD55-staining. Conclusions: Our results suggest that CD97stalk is probably involved in the growth, invasion and aggressiveness of gastric carcinomas by binding its cellular ligand CD55. CD97stalk and CD55 could be useful as molecular markers for prognosis and therapy of gastric carcinoma patients.

  10. DNA cloning of human liver monoamine oxidase A and B: Molecular basis of differences in enzymatic properties

    Energy Technology Data Exchange (ETDEWEB)

    Back, A.W.J.; Lan, N.C.; Johnson, D.L.; Abell, C.W.; Bembenek, M.E.; Kwan, S.W.; Seeburg, P.H.; Shih, J.C. (Univ. of Heidelberg (West Germany))

    1988-07-01

    The monoamine oxidases play a vital role in the metabolism of biogenic amines in the central nervous system and in peripheral tissues. Using oligonucleotide probes derived from three sequenced peptide fragments, the authors have isolated cDNA clones that encode the A and B forms of monoamine oxidase and have determined the nucleotide sequences of these cDNAs. Comparison of the deduced amino acid sequences shows that the A and B forms have subunit molecular weights of 59,700 and 58,800, respectively, and have 70% sequence identity. Both sequences contain the pentapeptide Ser-Gly-Gly-Cys-Tyr, in which the obligatory cofactor FAD is covalently bound to cysteine. Based on differences in primary amino acid sequences and RNA gel blot analysis of mRNAs, the A and B forms of monoamine oxidase appear to be derived from separate genes.

  11. Molecular Phylogenetics and Functional Evolution of Major RNA Recognition Domains of Recently Cloned and Characterized Autoimmune RNA-Binding Particle

    Institute of Scientific and Technical Information of China (English)

    Erhan Süleymano(g)lu

    2003-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) are spliceosomal macromolecular assemblages and thus actively participate in pre-mRNA metabolism. They are composed of evolutionarily conserved and tandemly repeated motifs, where both RNA-binding and protein-protein recognition occur to achieve cellular activities. By yet unknown mechanisms, these ribonucleoprotein (RNP) particles are targeted by autoantibodies and hence play significant role in a variety of human systemic autoimmune diseases. This feature makes them important prognostic markers in terms of molecular epidemiology and pathogenesis of autoimmunity.Since RNP domain is one of the most conserved and widespread scaffolds, evolutiona lyses of these RNA-binding domains can provide further clues on disease-specific epitope formation. The study presented herein represents a sequence comparison of RNA-recognition regions of recently cloned and characterized human hnRNP A3 with those of other relevant hnRNP A/B-type proteins.Their implications in human autoimmunity are particularly emphasized.

  12. Biological Parameters and Molecular Markers of Clone CL Brener - The Reference Organism of the Trypanosoma cruzi Genome Project

    Directory of Open Access Journals (Sweden)

    Bianca Zingales

    1997-11-01

    Full Text Available Clone CL Brener is the reference organism used in the Trypanosoma cruzi Genome Project. Some biological parameters of CL Brener were determined: (a the doubling time of epimastigote forms cultured in liver infusion-tryptose (LIT medium at 28oC is 58±13 hr; (b differentiation of epimastigotes to metacyclic trypomastigotes is obtained by incubation in LIT-20% Grace´s medium; (c trypomastigotes infect mammalian cultured cells and perform the complete intracellular cycle at 33 and 37oC; (d blood forms are highly infective to mice; (e blood forms are susceptible to nifurtimox and benznidazole. The molecular typing of CL Brener has been determined: (a isoenzymatic profiles are characteristic of zymodeme ZB; (b PCR amplification of a 24Sa ribosomal RNA sequence indicates it belongs to T. cruzi lineage 1; (c schizodeme, randomly amplified polymorphic DNA (RAPD and DNA fingerprinting analyses were performed

  13. Molecular cloning, in vitro expression and enzyme activity analysis of violaxan-thin de-epoxidase from Oryza sativa L.

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The violaxanthin de-epoxidase gene was cloned from rice (Oryza sativa subsp. japonica). The full length of the cDNA is 1887 bp, encoding a 446-amino acids protein with the transit peptide of 98 amino acids. The bacterial expression vector pET-Rvde was constructed and the expression quantity of the exogenous protein increased with the induction time by 0.4 mmol/L IPTG. Its molecular weight was similar with that of the native VDE. Western blotting indicated that the expressed protein has immunological reaction with the VDE polyclonal antibody. The absorbance spectrum together with xanthophyll pigments quantification by HPLC demonstrated that the expressed VDE has its enzyme activity, which can de-epoxidate violaxanthin into antheraxanthin and zeaxanthin in vitro.

  14. Molecular cloning, sequence analysis and homology modeling of the first caudata amphibian antifreeze-like protein in axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Zhang, Songyan; Gao, Jiuxiang; Lu, Yiling; Cai, Shasha; Qiao, Xue; Wang, Yipeng; Yu, Haining

    2013-08-01

    Antifreeze proteins (AFPs) refer to a class of polypeptides that are produced by certain vertebrates, plants, fungi, and bacteria and which permit their survival in subzero environments. In this study, we report the molecular cloning, sequence analysis and three-dimensional structure of the axolotl antifreeze-like protein (AFLP) by homology modeling of the first caudate amphibian AFLP. We constructed a full-length spleen cDNA library of axolotl (Ambystoma mexicanum). An EST having highest similarity (∼42%) with freeze-responsive liver protein Li16 from Rana sylvatica was identified, and the full-length cDNA was subsequently obtained by RACE-PCR. The axolotl antifreeze-like protein sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 93 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein were 10128.6 Da and 8.97, respectively. The molecular characterization of this gene and its deduced protein were further performed by detailed bioinformatics analysis. The three-dimensional structure of current AFLP was predicted by homology modeling, and the conserved residues required for functionality were identified. The homology model constructed could be of use for effective drug design. This is the first report of an antifreeze-like protein identified from a caudate amphibian. PMID:23915159

  15. Molecular cloning, sequence analysis and expression in Escherichia coli of Camelus dromedarius glucose-6-phosphate dehydrogenase cDNA.

    Science.gov (United States)

    Saeed, Hesham Mahmoud; Alanazi, Mohammad Saud; Abduljaleel, Zainularifeen; Al-Amri, Abdullah; Khan, Zahid

    2012-06-01

    This study determined the full length sequence of glucose-6-phosphate dehydrogenase cDNA (G6PD) from the Arabian camel Camelus dromedarius using reverse transcription polymerase chain reaction. The C. dromedarius G6PD has an open reading frame of 1545 bp, and the cDNA encodes a protein of 515 amino acid residues with a molecular weight of 59.0 KDa. The amino acid sequence showed the highest identity with Equus caballus (92%) and Homo sapiens (92%). The G6PD cDNA was cloned and expressed into Escherichia coli as a fusion protein and was purified in a single chromatographic step using nickel affinity gel column. The purity and the molecular weight of the enzyme were checked on SDS-PAGE and the purified enzyme showed a single band on the gel with a molecular weight of 63.0 KDa. The specific activity of G6PD was determined to be 289.6 EU/mg protein with a fold purification of 95.45 and yield of 56.8%. PMID:22538316

  16. Molecular cloning, sequence analysis and homology modeling of the first caudata amphibian antifreeze-like protein in axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Zhang, Songyan; Gao, Jiuxiang; Lu, Yiling; Cai, Shasha; Qiao, Xue; Wang, Yipeng; Yu, Haining

    2013-08-01

    Antifreeze proteins (AFPs) refer to a class of polypeptides that are produced by certain vertebrates, plants, fungi, and bacteria and which permit their survival in subzero environments. In this study, we report the molecular cloning, sequence analysis and three-dimensional structure of the axolotl antifreeze-like protein (AFLP) by homology modeling of the first caudate amphibian AFLP. We constructed a full-length spleen cDNA library of axolotl (Ambystoma mexicanum). An EST having highest similarity (∼42%) with freeze-responsive liver protein Li16 from Rana sylvatica was identified, and the full-length cDNA was subsequently obtained by RACE-PCR. The axolotl antifreeze-like protein sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 93 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein were 10128.6 Da and 8.97, respectively. The molecular characterization of this gene and its deduced protein were further performed by detailed bioinformatics analysis. The three-dimensional structure of current AFLP was predicted by homology modeling, and the conserved residues required for functionality were identified. The homology model constructed could be of use for effective drug design. This is the first report of an antifreeze-like protein identified from a caudate amphibian.

  17. Molecular Cloning and Characterization of Genes Involved in Cotton (Gossypium barbadense L.) Response to Verticillium dahliae

    Institute of Scientific and Technical Information of China (English)

    XU Li; ZHANG Xian-long; ZHU Long-fu; TU Li-li

    2008-01-01

    @@ Verticillium dahliae Kleb.is a necrotrophic plant pathogen which causes serious soil borne vascular disease in cotton.The molecular basis the defense response of cotton to this pathogen is poorly understood.

  18. Molecular Cloning and Prokaryotic Expression of Non-Structural Protein NS1 Gene of Porcine Parvovirus

    Institute of Scientific and Technical Information of China (English)

    WU Dan; TONG Guang-zhi; QIU Hua-ji; XUE Qiang; ZHOU Yan-jun; LI Jing-peng

    2003-01-01

    Porcine parvovirus (PPV) is one of the major agents causing swine reproductive failure. NS1protein is a non-structural protein of PPV and can be used as a reagent for differentiation of vaccinated ani-mals and infected ones. In present study, a recombinant plasmid pET28a/NS1 was constructed by cloning thecoding sequence for NS1 of PPV into pET28a, a bacterial expression vector. The NS1 protein was expressed inE. coli BL21 (DE3) after induced by IPTG and the recombinant fusion protein was purified with affinity chro-matography. Expression amount of NS1 protein was improved by optimizing the inducing parameters. The re-combinant NS1 protein is reactive to PPV positive sera in Western blot and ELISA test and therefore can beapplicable in differential diagnosis of PPV infections.

  19. Cloning, expression and mo-lecular characterization of promoter elements from Ba-cillus pumilus

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Promoter elements from random chromosomal DNA of a rice epiphytic Bacillus pumilus were cloned into promoter probe shuttle vector ECE7 and sequenced. The results showed that these elements were all new DNA sequences. Six strong promoter elements were obtained by determination of CAT enzyme activity in both E. coli and B. pumilus. Transcription start sites of the cat mRNA were located by primer extension using total RNA. Comparison of the promoter sequences indicated that three of them contain -10 and -35 regions like B. pumilus s43 consensus sequence and another one is similar to B. pumilus s29. The other two have no typical consensus sequences of known sigma factors so far.

  20. Molecular cloning, expression, purification and crystallographic analysis of PRRSV 3CL protease

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xinsheng; Feng, Youjun [Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Graduate University, Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Tiezhu [China Animal Disease Control Center, Beijing 100094 (China); Peng, Hao; Yan, Jinghua [Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Qi, Jianxun [Graduate University, Chinese Academy of Sciences, Beijing 100049 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Jiang, Fan [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Tian, Kegong, E-mail: tiankg@263.net [China Animal Disease Control Center, Beijing 100094 (China); Gao, Feng, E-mail: tiankg@263.net [Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); College of Biological Sciences, China Agricultural University, Beijing 100094 (China)

    2007-08-01

    Recombinant PRRSV 3CL protease was crystallized and the crystals diffracted to 2.1 Å resolution. 3CL protease, a viral chymotrypsin-like proteolytic enzyme, plays a pivotal role in the transcription and replication machinery of many RNA viruses, including porcine reproductive and respiratory syndrome virus (PRRSV). In this study, the full-length 3CL protease from PRRSV was cloned and overexpressed in Escherichia coli. Crystallization experiments yielded crystals that diffracted to 2.1 Å resolution and belong to space group C2, with unit-cell parameters a = 112.31, b = 48.34, c = 42.88 Å, β = 109.83°. The Matthews coefficient and the solvent content were calculated to be 2.49 Å{sup 3} Da{sup −1} and 50.61%, respectively, for one molecule in the asymmetric unit.

  1. Molecular cloning and chromosomal localization of the ADH7 gene encoding human class IV ({sigma}) ADH

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Hirokazu; Baraona, E.; Lieber, C.S. [Mount Sinai School of Medicine, Bronx, NY (United States)

    1996-01-15

    The ADH7 gene encoding human Class IV ({sigma}) alcohol dehydrogenase (ADH) was cloned from a Caucasian genomic DNA library and characterized. It has nine exons and eight introns that span about 22 kb, and its intron insertion is identical to that of the other ADH genes (ADH1 to ADH5). The nucleotide sequences of the exons encoding 374 amino acids are identical to the previously reported cDNA sequence of {sigma} ADH. Fluorescence in situ hybridization analysis showed that ADH7 is located on human chromosome 4q23-q24, close to the ADH cluster locus (4q21-q25). These data are consistent with the view that Class IV ADH is a member of the ADH family and is phylogenetically close to the other ADHs. 15 refs., 2 figs., 1 tab.

  2. Molecular Cloning and Characterization of cDNA Encoding Fibrinolytic Enzyme-3 from Earthworm Eisenia foetida

    Institute of Scientific and Technical Information of China (English)

    Guo-Qing DONG; Xiao-Ling YUAN; Ya-Jun SHAN; Zhen-Hu ZHAO; Jia-Pei CHEN; Yu-Wen CONG

    2004-01-01

    The earthworm fibrinolytic enzyme-3 (EFE-3, GenBank accession No: AY438622), from the earthworm Eiseniafoetida, is a component of earthworm fibrinolytic enzymes. In this study, cDNA encoding the EFE-3 was cloned by RT-PCR. The eDNA contained an open reading frame of 741 nucleotides, which encoded a deduced protein of 247 amino acid residues, including signal sequences. EFE-3 showed a high degree of homology to earthworm (Lumbricus rebullus) proteases F-III-1, F-III-2, and bovine trypsin. The recombinant EFE-3 was expressed in E. coli as inclusion bodies, and the gene encoding the native form of EFE-3 was expressed in COS-7 cells in the medium. Both the refolding product of inclusion bodies and the secreted protease could dissolve the artificial fibrin plate.

  3. Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene.

    Science.gov (United States)

    Bzik, D J; Li, W B; Horii, T; Inselburg, J

    1987-12-01

    Genomic DNA clones that coded for the bifunctional dihydrofolate reductase (DHFR) and thymidylate synthase (TS) (DHFR-TS) activities from a pyrimethamine-sensitive strain of Plasmodium falciparum were isolated and sequenced. The deduced DHFR-TS protein contained 608 amino acids (71,682 Da). The coding region for DHFR-TS contained no intervening sequences and had a high A + T content (75%). The DHFR domain, in the amino-terminal portion of the protein, was joined by a 94-amino acid junction sequence to the TS domain in the carboxyl-terminal portion of the protein. The TS domain was more conserved than the DHFR domain and both P. falciparum domains were more homologous to eukaryotic than to prokaryotic forms of the enzymes. Predicted secondary structures of the DHFR and TS domains were nearly identical to the structures identified in other DHFR and TS enzymes. PMID:2825189

  4. Molecular cloning and characterization of cystatin, a cysteine protease inhibitor, from bufo melanostictus.

    Science.gov (United States)

    Liu, Wa; Ji, Senlin; Zhang, A-Mei; Han, Qinqin; Feng, Yue; Song, Yuzhu

    2013-01-01

    Cystatins are efficient inhibitors of papain-like cysteine proteinases, and they serve various important physiological functions. In this study, a novel cystatin, Cystatin-X, was cloned from a cDNA library of the skin of Bufo melanostictus. The single nonglycosylated polypeptide chain of Cystatin-X consisted of 102 amino acid residues, including seven cysteines. Evolutionary analysis indicated that Cystatin-X can be grouped with family 1 cystatins. It contains cystatin-conserved motifs known to interact with the active site of cysteine proteinases. Recombinant Cystatin-X expressed and purified from Escherichia coli exhibited obvious inhibitory activity against cathepsin B. rCystatin-X at a concentration of 8 µM inhibited nearly 80% of cathepsin B activity within 15 s, and about 90% of cathepsin B activity within 15 min. The Cystatin-X identified in this study can play an important role in host immunity and in the medical effect of B. melanostictus.

  5. Molecular cloning and characterization of a threonine/serine protein kinase lvakt from Litopenaeus vannamei

    Science.gov (United States)

    Ruan, Lingwei; Liu, Rongdiao; Xu, Xun; Shi, Hong

    2014-07-01

    The phosphatidylinositol 3-kinase (PI3K)-AKT pathway is involved in various cellular functions, including anti-apoptosis, protein synthesis, glucose metabolism and cell cycling. However, the role of the PI3K-AKT pathway in crustaceans remains unclear. In the present study, we cloned and characterized the AKT gene lvakt from Litopenaeus vannamei. The 511-residue LVAKT was highly conserved; contained a PH domain, a catalytic domain and a hydrophobic domain; and was highly expressed in the heart and gills of L. vannamei. We found, using Real-Time Quantitative PCR (Q-PCR) analysis, that lvakt was up-regulated during early white spot syndrome virus (WSSV) infection. Moreover, the PI3K-specific inhibitor, LY294002, reduced viral gene transcription, implying that the PI3K-AKT pathway might be hijacked by WSSV. Our results therefore suggest that LVAKT may play an important role in the shrimp immune response against WSSV.

  6. Molecular cloning of a cDNA related to vernalization(verc203) in winter wheat

    Institute of Scientific and Technical Information of China (English)

    种康; 谭克辉; 黄华梁; 梁厚果

    1995-01-01

    A cDNA clone related to the vernalization in winter wheat(verc203)was harvested from the en-riched cold-induced cDNA library of 10~4 pfu with differential screening.The insert of verc203 in λ gt10 vector wassubcloned into the sites between BamH Ⅰ and Hind Ⅲ in pUC19 plasmid after being amplified with PCR.the analysis of the Northern blotting with a probe of verc203 indicated that the verc203 has a negative signalfor the control and the devernalized mRNA and a positive signal for the vernalized winter wheat and non-vernalized spring wheat at about 2.6 kb.

  7. Molecular Cloning and Bacterial Expression of Germacrene A Synthase cDNA from Crepidiastrum sonchifolium

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Germacrene A synthase(GAS) catalyzes the biosynthesis of germacrene A, which is a key precursor for sesquiterpene lactones. Cloning of a novel full-length cDNA encoding GAS from the medicinal plant Crepidiastrum sonchifolium(designated CsGAS) is reported in this study. The cDNA is 1837 bp long and contains a 1680-bp open reading frame encoding a 559 amino-acid protein. The functional expression of the cDNA in Escherichia coli, as an N-terminal thioredoxin fusion protein, with the pET32a vector yielding a recombinant enzyme. Sequence analysis was used to compare this enzyme with the mechanistically related epi-aristolochene synthase from tobacco, and the effect of possible involvement of a number of amino acids in sesquiterpene synthase on product specificity was also discussed.

  8. Cloning, and Molecular Characterization of Polymorphic Iranian Isolate Theileria annulata Surface Protein (Tasp

    Directory of Open Access Journals (Sweden)

    E Ebrahimzadeh

    2012-06-01

    Full Text Available Background: Because of the strong immunologic responses of surface protein TaSp in Theileria annu­lata infected host, we tried to characterize this protein in a T. annulata isolate from Iran.Methods: The RNA prepared from T. annulata infected cells was used to produce SMART-DS-cDNA. The Double strand cDNA was then amplified with primers derived from TaSp mRNA se­quences. The PCR product was cloned in pTZ57R/T vector, sequenced and registered under acces­sion no. JQ003240 in GenBank.Results: The sequence analysis showed 90%-94% nucleotide sequence identity and 68%-94% amino acid homology to the corresponding sequences of TaSp gene by T. annulata, T. sp. china I, T. sp. china and T. lestoquardi and three T. annulata reported from Iran respectively. Interestingly, the sequence analysis also showed small nucleotide sequence region near the 5` end in which the presented TaSp protein differed very strongly from the other known TaSp sequences. For the preparation of the recombi­nant protein, the cDNA was cloned in pQE-32 vector, the recombinant protein was pre­pared and assayed by Theileria infected bovine serum.Conclusion: The polymorphism in TaSp gene could be detected in intra- as well as inter species. The different characterized TaSp proteins had a common identic region, which may be helpful for develop­ment of broad band vaccine based on the recombinant proteins. The polymorphism in this gene, make this protein also interesting for the diagnostic purposes.

  9. Molecular cloning and ontogenesis expression of fatty acid transport protein-1 in yellow-feathered broilers

    Institute of Scientific and Technical Information of China (English)

    Yuzhen Song; Jiaying Feng; Lihua Zhou; Gang Shu; Xiaotong Zhu; Ping Gao; Yongliang Zhang; Qingyan Jiang

    2008-01-01

    Fatty acid transport protein-1 (FATP-1) is one of the important transporter proteins involved in fatty acid transmembrane transport and fat deposition. To study the relationship between FATP-1 mRNA expression and fat deposition, chicken (Gallus gallus) FATP-1 sequence was first cloned by rapid amplification of cDNA ends (RACE). Tissue samples of chest muscle, leg muscle, subcutaneous fat, and abdominal fat were collected from six male and six female broilers each, at 22 days, 29 days, and 42 days, respectively. The tissue specificity and ontogenesis expression pattern of the FATP-1 mRNA of yellow-feathered broilers was studied by real-time reverse transcription polymerase chain reaction (RT-PCR), and the fat deposition laws in different tissues were also compared. A 2,488 bp cDNA sequence of chicken FATP-1 was cloned by RACE (GenBank accession no. DQ352834), including 547 bp 3' end untranslated region (URT) and 1,941 bp open reading frame (ORF). Chicken FATP-1 encoded 646 amino acid residues, which shared 83.9% and 83.0% identity with those of human and rat, respectively. The results of quantitative PCR demonstrated a constant FATP-1 mRNA expression level in the chest muscle and subcutaneous fat of both male and female broilers at three stages, whereas the expression level of the FATP-1 mRNA in the leg muscle at 42 days was significantly higher than that at 22 days or 29 days. In the abdominal fat of male broilers, the gene expression significantly increased with age, whereas the female broilers showed a dramatic downregulation of FATP-1 expression in abdominal fat at 42 days. This suggested a typical tissue-and gender-specific expression pattern of chicken FATP-1, mediating the specific process of fatty acid transport or utilization in muscle and adipose tissues.

  10. Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone

    Directory of Open Access Journals (Sweden)

    Karlsson Johnny

    2005-08-01

    Full Text Available Abstract Although 11-ketotestosterone is a potent androgen and induces male secondary sex characteristics in many teleosts, androgen receptors with high binding affinity for 11-ketotestosterone or preferential activation by 11-ketotestosterone have not been identified. So, the mechanism by which 11-ketotestosterone exhibits such high potency remains unclear. Recently we cloned the cDNA of an 11-ketotestosterone regulated protein, spiggin, from three-spined stickleback renal tissue. As spiggin is the only identified gene product regulated by 11-ketotestosterone, the stickleback kidney is ideal for determination of the mechanism of 11-ketotestosterone gene regulation. A single androgen receptor gene with two splicing variants, belonging to the androgen receptor-β subfamily was cloned from stickleback kidney. A high affinity, saturable, single class of androgen specific binding sites, with the characteristics of an androgen receptor, was identified in renal cytosolic and nuclear fractions. Measurement of ligand binding moieties in the cytosolic and nuclear fractions as well as to the recombinant receptor revealed lower affinity for 11-ketotestosterone than for dihydrotestosterone. Treatment with different androgens did not up-regulate androgen receptor mRNA level or increase receptor abundance, suggesting that auto-regulation is not involved in differential ligand activation. However, comparison of the trans-activation potential of the stickleback androgen receptor with the human androgen receptor, in both human HepG2 cells and zebrafish ZFL cells, revealed preferential activation by 11-ketotestosterone of the stickleback receptor, but not of the human receptor. These findings demonstrate the presence of a receptor preferentially activated by 11-ketotestosterone in the three-spined stickleback, so far the only one known in any animal.

  11. Heat shock proteins in hepatocellular carcinoma: Molecular mechanism and therapeutic potential.

    Science.gov (United States)

    Wang, Cun; Zhang, Yurong; Guo, Kun; Wang, Ning; Jin, Haojie; Liu, Yinkun; Qin, Wenxin

    2016-04-15

    Heat shock proteins (HSPs) are highly conserved proteins, which are expressed at low levels under normal conditions, but significantly induced in response to cellular stresses. As molecular chaperones, HSPs play crucial roles in protein homeostasis, apoptosis, invasion and cellular signaling transduction. The induction of HSPs is an important part of heat shock response, which could help cancer cells to adapt to stress conditions. Because of the constant stress condition in tumor microenvironment, HSPs overexpression is widely reported in many human cancers. In light of the significance of HSPs for cancer cells to survive and obtain invasive phenotype under stress condition, HSPs are often associated with poor prognosis and treatment resistance in many types of human cancers. It has been described that upregulation of HSPs may serve as diagnostic and prognostic markers in hepatocellular carcinoma (HCC). Targeting HSPs with specific inhibitor alone or in combination with chemotherapy regimens holds promise for the improvement of outcomes for HCC patients. In this review, we summarize the expression profiles, functions and molecular mechanisms of HSPs (HSP27, HSP70 and HSP90) as well as a HSP-like protein (clusterin) in HCC. In addition, we address progression and challenges in targeting these HSPs as novel therapeutic strategies in HCC. PMID:26853533

  12. Molecular signatures associated with HCV-induced hepatocellular carcinoma and liver metastasis.

    Directory of Open Access Journals (Sweden)

    Valeria De Giorgi

    Full Text Available Hepatocellular carcinomas (HCCs are a heterogeneous group of tumors that differ in risk factors and genetic alterations. In Italy, particularly Southern Italy, chronic hepatitis C virus (HCV infection represents the main cause of HCC. Using high-density oligoarrays, we identified consistent differences in gene-expression between HCC and normal liver tissue. Expression patterns in HCC were also readily distinguishable from those associated with liver metastases. To characterize molecular events relevant to hepatocarcinogenesis and identify biomarkers for early HCC detection, gene expression profiling of 71 liver biopsies from HCV-related primary HCC and corresponding HCV-positive non-HCC hepatic tissue, as well as gastrointestinal liver metastases paired with the apparently normal peri-tumoral liver tissue, were compared to 6 liver biopsies from healthy individuals. Characteristic gene signatures were identified when normal tissue was compared with HCV-related primary HCC, corresponding HCV-positive non-HCC as well as gastrointestinal liver metastases. Pathway analysis classified the cellular and biological functions of the genes differentially expressed as related to regulation of gene expression and post-translational modification in HCV-related primary HCC; cellular Growth and Proliferation, and Cell-To-Cell Signaling and Interaction in HCV-related non HCC samples; Cellular Growth and Proliferation and Cell Cycle in metastasis. Also characteristic gene signatures were identified of HCV-HCC progression for early HCC diagnosis.A diagnostic molecular signature complementing conventional pathologic assessment was identified.

  13. Molecular cloning and expression analysis of dmrt1 and sox9 during gonad development and male reproductive cycle in the lambari fish, Astyanax altiparanae

    OpenAIRE

    Adolfi, Mateus C.; Carreira, Ana C O; Lázaro W.O. Jesus; Bogerd, Jan; Funes, Rejane M.; Schartl, Manfred; Sogayar, Mari C.; Borella, Maria I.

    2015-01-01

    Background: The dmrt1 and sox9 genes have a well conserved function related to testis formation in vertebrates, and the group of fish presents a great diversity of species and reproductive mechanisms. The lambari fish (Astyanax altiparanae) is an important Neotropical species, where studies on molecular level of sex determination and gonad maturation are scarce. Methods: Here, we employed molecular cloning techniques to analyze the cDNA sequences of the dmrt1 and sox9 genes, and describe the ...

  14. Poliovirus type 3: molecular cloning of the genome and nucleotide sequence of the region encoding the protease and polymerase proteins.

    OpenAIRE

    1983-01-01

    Overlapping cDNA clones representing the entire genome of poliovirus type 3 have been prepared in E. coli by two separate methods. Cloning of RNA . cDNA hybrids produced a more comprehensive set of clones with generally larger cDNA inserts than cloning of double - stranded cDNA. A restriction map of the entire genome and the nucleotide sequence of 2003 bases from the 3' terminus, comprising the region encoding the protease and polymerase proteins, are presented.

  15. Diffuse sclerosing variant of papillary thyroid carcinoma--an update of its clinicopathological features and molecular biology.

    Science.gov (United States)

    Pillai, Suja; Gopalan, Vinod; Smith, Robert A; Lam, Alfred K-Y

    2015-04-01

    Diffuse sclerosing variant of papillary thyroid carcinoma (DSVPTC) is an uncommon variant of papillary thyroid carcinoma. The aim of this review is to critically analyse the features of this entity. A search of the literature revealed 25 clinicopathological studies with in-depth analysis of features of DSVPTC. Overall, the prevalence of DSVPTC varies from 0.7-6.6% of all papillary thyroid carcinoma. Higher prevalence of DSVPTC was noted in paediatric patients and in patients affected by irradiation. DSVPTC tends to occur more frequently in women and in patients in the third decade of life. Macroscopically, DSVPTC can involve the thyroid gland extensively without forming a dominant mass. Microscopic examination of DSVPTC revealed extensive fibrosis, squamous metaplasia and numerous psammoma bodies. The latter pathological feature can aid in the pre-operative diagnosis of the entity by fine needle aspiration and ultrasound. Compared to conventional papillary thyroid carcinoma, DSVPTC had a higher incidence of lymph node metastases at presentation. Distant metastases were noted in approximately 5% of the cases. Patients with DSVPTC were recommended to be managed by aggressive treatment protocols. It is likely that as a result of this, the prognosis of the patients with DSVPTC was noted to be similar to conventional papillary thyroid carcinoma. Overall, cancer recurrence and cancer related mortality have been reported in 14% and 3%, respectively, of patients with DSVPTC. In immunohistochemical studies, DSVPTC showed different expression patterns of epithelial membrane antigen, galectin 3, cell adhesion molecules, p53 and p63 when compared to conventional papillary thyroid carcinoma. On genetic analysis, the occurrence of BRAF and RAS mutations are uncommon events in DSVPTC and activation of RET/PTC rearrangements are common. To conclude, DSVPTC has different clinical, pathological and molecular profiles when compared to conventional papillary thyroid carcinoma.

  16. Molecular Evidence for Dissemination of Unique Campylobacter jejuni Clones in Curaçao, Netherlands Antilles

    NARCIS (Netherlands)

    Duim, B.; Godschalk, P.C.R.; Braak, N. van den; Dingle, K.E.; Dijkstra, J.R.; Leyde, E.; Plas, J. van der; Colles, F.M.; Endtz, H.P.; Wagenaar, J.A.; Maiden, M.C.J.; Belkum, A. van

    2003-01-01

    Campylobacter jejuni isolates (n = 234) associated with gastroenteritis and the Guillain-Barré syndrome (GBS) in the island of Curaçao, Netherlands Antilles, and collected from March 1999 to March 2000 were investigated by a range of molecular typing techniques. Data obtained by pulsed-field gel ele

  17. Molecular mapping and cloning of genes and QTLs in Brassica rapa

    NARCIS (Netherlands)

    Bonnema, Guusje

    2015-01-01

    In this chapter an overview is given of QTL studies performed in the species Brassica rapa. First we provide an overview of the types of molecular markers that have been used in time, and the genetic maps that have been constructed from a broad range of populations, both in terms of population ty

  18. Molecular cloning and analysis of the partial sequence of Rhinopithecus roxellanae growth hormone gene

    Institute of Scientific and Technical Information of China (English)

    徐来祥; 孔繁华; 华育平

    2000-01-01

    Growth hormone gene (GH) of Rhinopithecus roxellanae was amplified by PCR based on the sequences of the reported mammalian growth hormone gene for the first time. The amplified fragment was about 1.8 kb. It was cloned and its upper stream was sequenced. This sequencing region consists of a 5¢ flanking regulatory region, exon I and part of exon II, intron I of growth hormone gene. Comparing the corresponding sequences of growth hormone gene between Rhinopithecus roxellanae and the porcine, we concluded that the homology reached 81% in the region, and there was high conservation in the 5¢ flanking sequence. The kinds of amino acids of exon I and exon II for about 90% were the same to those in pig. Many mutations occurred in the degenerate site of the triplet code. In the nucleotides of intron I, there were only 72% homologies with those in pig. It means that introns and 3¢ flanking sequence maybe play an important part in growth hormone gene regulation of the different animals.

  19. Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi.

    Science.gov (United States)

    Tang, Wei; Zhang, Sufang; Tan, Haidong; Zhao, Zongbao K

    2010-06-01

    The malic enzyme-encoding cDNA (GQ372891) from the oleaginous yeast Lipomyces starkeyi AS 2.1560 was isolated, which has an 1719-bp open reading frame flanked by a 290-bp 5' untranslated sequence and a 92-bp 3' untranslated sequence. The proposed gene, LsME1, encoded a protein with 572 amino acid residues. The protein presented 58% sequence identity with the malic enzymes from Yarrowia lipolytica CLIB122 and Aspergillus fumigatus Af293. The LsME1 gene was cloned into the vector pMAL-p4x to express a fusion protein (MBP-LsME1) in Escherichia coli TB1. The fusion protein was purified and then cleaved by Factor Xa to give the recombinant LsME1. This purified enzyme took either NAD(+) or NADP(+) as the coenzyme but preferred NAD(+). The K (m) values for malic acid, NAD(+) and NADP(+) were 0.85 +/- 0.05 mM, 0.34 +/- 0.08 mM, and 7.4 +/- 0.32 mM, respectively, at pH 7.3.

  20. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori

    International Nuclear Information System (INIS)

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with Kcat of 3.4 s-1, Km of 1.7 mM, and Kcat/Km of 2000 M-1 s-1. HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 deg. C. The enzyme activity of Co2+-containing HpPDF is apparently higher than that of Zn2+-containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori

  1. Cloning and molecular analysis of L-asparaginase II gene (ansB

    Directory of Open Access Journals (Sweden)

    ZEINAT K. MOHAMED

    2015-12-01

    Full Text Available The deamination of L-asparagine to L-aspartic acid and ammonia is catalyzed by L-asparaginases (L-asparagine amino hydrolase. The enzyme L-asparaginase is widely distributed in nature from different living organisms, starting from bacteria till mammals and plants. It has been recently thought to be a therapeutic agent in treatment of various lymphoblastic leukemia diseases. There have been many attempts to isolate microorganisms that produce L-asparaginase. L-ASNase producing bacteria, Escherichia coli MG27, was previously isolated from the River Nile and identified. In this study, ansB gene, encoding L-ASNase II from E. coli MG27, was amplified by PCR, cloned and characterized by DNA sequencing. The DNA sequence was then analyzed using bioinformatics analysis and translated into amino acid sequence. Identification of highly conserved amino acid sequence motifs was conducted by comparison against the InterPro database. Analysis revealed that the protein sequence had a catalytic domain of L-asparaginase type II (IPR004550 that belong to asparaginase/glutaminase family (IPR006034 and has asparaginase/glutaminase conserved site (IPR020827. According to results predicted using PSIpred tool, ansB consists of eight α-helices and 13 β-strands.

  2. Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana.

    Science.gov (United States)

    Villand, P; Olsen, O A; Kleczkowski, L A

    1993-12-01

    PCR amplification of cDNA prepared from poly(A)+ RNA from aerial parts of Arabidopsis thaliana, using degenerate nucleotide primers based on conserved regions between the large and small subunits of ADP-glucose pyrophosphorylase (AGP), yielded four different cDNAs of ca. 550 nucleotides each. Based on derived amino acid sequences, the identities between the clones varied from 49 to 69%. Sequence comparison to previously published cDNAs for AGP from various species and tissues has revealed that three of the amplified cDNAs (ApL1, ApL2 and ApL3) correspond to the large subunit of AGP, and one cDNA (ApS) encodes the small subunit of AGP. Both ApL1 and ApS were subsequently found to be present in a cDNA library made from Arabidopsis leaves. All four PCR products are encoded by single genes, as found by genomic Southern analysis. PMID:8292792

  3. Molecular cloning and sequencing analysis of the interferon receptor (IFNAR-1) from Columba livia

    Science.gov (United States)

    Chang, Wei Shan

    2014-01-01

    Objective Partial sequence cloning of interferon receptor (IFNAR-1) of Columba livia. Material and methods In order to obtain a certain length (630 bp) of gene, a pair of primers was designed according to the conserved nucleotide sequence of Gallus (EU477527.1) and Taeniopygia guttata (XM_002189232.1) IFNAR-1 gene fragment that was published by GenBank. Special primers were designed by the Race method to amplify the 3'terminal cDNA. Results The Columba livia IFNAR-1 displayed 88.5%, 80.5% and 73.8% nucleotide identity to Falco peregrinus, Gallus and Taeniopygia guttata, respectively. Phylogenetic analysis of the IFNAR1 gene showed that the relationship of Columba livia, Falco peregrinus and chicken had high homology. Conclusions We successfully obtained a Columba livia IFNAR-1 gene partial sequence. Analysis of the genetic tree showed that the relationship of Columba livia and Falco peregrinus IFNAR-1 had high homology. This result can be used as reference for further research and practical application. PMID:26155117

  4. Molecular cloning, characterization and functional analysis of QRFP in orange-spotted grouper (Epinephelus coioides).

    Science.gov (United States)

    Shu, Hu; Chen, Huapu; Liu, Yun; Yang, Lidong; Yang, Yuqing; Zhang, Haifa

    2014-10-01

    The peptide QRFP plays an important role in the regulation of vertebrate feeding behavior. In this study, we cloned the full length cDNA of a QRFP precursor in a teleost fish, the orange-spotted grouper (Epinephelus coioides). Sequence analysis has shown that the functional regions of QRFP in other vertebrates (QRFP-25 and QRFP-7) are conserved in orange-spotted grouper. RT-PCR demonstrated that the pre-processed mRNA of QRFP is widely expressed in orange-spotted grouper. Three days of food deprivation did not change the hypothalamic pre-processed QRFP expression. However, QRFP expression significantly increased when the fish were reefed after three days of fasting. Intraperitoneal injection of QRFP-25 peptide to orange-spotted grouper suppressed expression of orexin, but elevated expression of pro-opiomelanocortin (POMC) in the hypothalamus. We also investigated the effects of QRFP-25 on the expression of reproductive genes. The peptide suppressed the expression of seabream-type gonadotropin-releasing hormones (sbGnRH), luteinizing hormone beta subunit (LHβ) and follicle-stimulating hormone beta subunit (FSHβ) in vivo, as well as inhibited the expression of LHβ and FSHβ in pituitary cells in primary culture. Our results indicate that QRFP may play an inhibitory role in the regulation of feeding behavior and reproduction in orange-spotted grouper.

  5. Molecular cloning and functional characterization of spexin in orange-spotted grouper (Epinephelus coioides).

    Science.gov (United States)

    Li, Shuisheng; Liu, Qiongyu; Xiao, Ling; Chen, Huapu; Li, Guangli; Zhang, Yong; Lin, Haoran

    2016-01-01

    Spexin is a newly discovered neuropeptide in vertebrates. Comprehensive comparative studies are required to unveil its biological functions. In order to ascertain the neuroendocrine function of spexin in orange-spotted grouper, its full-length cDNA and genomic DNA sequences were cloned and analyzed. Sequence analyses showed that the spexin gene structure is composed of six exons and five introns, and the amino acids of mature peptide (spexin-14) in grouper are identical to that of other fish. Tissue expression analysis found that grouper spexin is highly expressed in the brain, liver and ovary. Real time-PCR analysis demonstrated that the hypothalamic expression of spexin declined gradually during the ovarian development, and was up-regulated by food deprivation. Intraperitoneal administration of spexin-14 peptides to grouper significantly elevated the mRNA levels of proopiomelanocortin (pomc) and suppressed the orexin expression in the hypothalamus, but could not change the hypothalamic expression of gonadotropin releasing hormone 1 (gnrh1). Both in vivo and in vitro administration of spexin could not significantly influence the expression of follicle-stimulating hormone β (fshβ) and luteinizing hormone β (lhβ) in the pituitary with the exception of an inhibition of gh expression. Our data suggested that the spexin has a significant role in the regulation of energy metabolism and food intake in orange-spotted grouper.

  6. Molecular cloning and characterization of orange-spotted grouper (Epinephelus coioides) CXC chemokine ligand 12.

    Science.gov (United States)

    Wu, Chen-Shiou; Wang, Ting-Yu; Liu, Chin-Feng; Lin, Hao-Ping; Chen, Young-Mao; Chen, Tzong-Yueh

    2015-12-01

    Chemokines are a family of soluble peptides that can recruit a wide range of immune cells to sites of infection and disease. The CXCL12 is a chemokine that binds to its cognate receptor CXCR4 and thus involved in multiple physiological and pathophysiological processes. In this study, we cloned and characterized CXCL12 from Epinephelus coioides (osgCXCL12). We found that the open reading frame of osgCXCL12 consists of 98 amino acid residues with the small cytokine C-X-C domain located between residues 29 and 87. Higher expression levels for osgCXCL12 were detected at the kitting stage, compared with the prolarva and larva shape stages. The expression patterns revealed that osgCXCL12 may play a key role in early grouper development. We detected mRNA transcripts for osgCXCL12 in healthy tissues and found the highest osgCXCL12 expression in the head kidney. Furthermore, a time-course analysis revealed significantly increased osgCXCL12 and osgCXCR4 expression levels after the nervous necrosis virus (NNV) challenge. In addition, expression of osgCXCL12 was affected by injection with microbial mimics [LPS and poly(I:C)]. These results suggest that osgCXCL12 is associated with inflammatory and developmental processes in the grouper.

  7. Molecular cloning and functional characterization of porcine E74-like factor 4 (ELF4).

    Science.gov (United States)

    Shi, Yanling; Wang, Dang; Zhu, Xinyu; Wu, Qiong; Chen, Huanchun; Xiao, Shaobo; Fang, Liurong

    2016-12-01

    E74-like factor 4 (ELF4) is a novel transcription factor that initiates transcription of type I interferon (IFN) genes to control diverse pathogens. Here, porcine ELF4 (poELF4) was cloned and its role in type I IFN signaling was investigated in different porcine cell lines. Full-length cDNA of poELF4 encodes 663 amino acid residues and ectopic expression of poELF4 significantly induced IFN-β production. Interestingly, difference from the human ELF4 (huELF4), poELF4 mutants lacking the serine/threonine rich domain, which has been demonstrated to be responsible for the phosphorylation of huELF4, were still capable of activating IFN-β promoter. Using pseudorabies virus (PRV) and porcine reproductive and respiratory syndrome virus (PRRSV) as the models of DNA virus and RNA virus, respectively, we found that the replication of both PRV and PRRSV was reduced with poELF4 overexpression and enhanced with poELF4 knockdown. Taken together, these results suggested that poELF4 is an important antiviral host restriction factor. PMID:27426928

  8. Molecular cloning, characterization, and expression profiles of androgen receptors in spotted scat (Scatophagus argus).

    Science.gov (United States)

    Chen, H P; Deng, S P; Dai, M L; Zhu, C H; Li, G L

    2016-01-01

    Androgen plays critical roles in vertebrate reproductive systems via androgen receptors (ARs). In the present study, the full-length spotted scat (Scatophagus argus) androgen receptor (sAR) cDNA sequence was cloned from testis. The sAR cDNA measured 2448 bp in length with an open-reading frame of 2289 bp, encoding 763 amino acids. Amino acid alignment analyses showed that the sARs exhibited highly evolutionary conserved functional domains. Phylogenetically, the sARs clustered within the ARβ common vertebrate group. Real-time polymerase chain reaction (RT-PCR) revealed that sAR expression varied in level and distribution throughout the tissues of both females and males. sAR expression was detected during testicular development by quantitative RT-PCR. The results showed that the highest transcription of sARs was observed in the mid-testicular stage, and remained at a high expression level until the late-testicular stage. In addition, the effects of 17α-methyltestosterone (MT) and estrogen (E2) on the expression of sARs in ovaries were determined using quantitative RT-PCR. sAR expression increased at 12 and 24 h post-MT treatment and decreased with E2 treatment. The present study provides preliminary evidence indicating gonadal plasticity of spotted scat under exogenous steroidal hormone treatments. It also provides a theoretical basis for sex reversal and production of artificial pseudo-males for female monosex breeding. PMID:27173207

  9. The murine ufo receptor: molecular cloning, chromosomal localization and in situ expression analysis.

    Science.gov (United States)

    Faust, M; Ebensperger, C; Schulz, A S; Schleithoff, L; Hameister, H; Bartram, C R; Janssen, J W

    1992-07-01

    We have cloned the mouse homologue of the ufo oncogene. It encodes a novel tyrosine kinase receptor characterized by a unique extracellular domain containing two immunoglobulin-like and two fibronectin type III repeats. Comparison of the predicted ufo amino acid sequences of mouse and man revealed an overall identity of 87.6%. The ufo locus maps to mouse chromosome 7A3-B1 and thereby extends the known conserved linkage group between mouse chromosome 7 and human chromosome 19. RNA in situ hybridization analysis established the onset of specific ufo expression in the late embryogenesis at day 12.5 post coitum (p.c.) and localized ufo transcription to distinct substructures of a broad spectrum of developing tissues (e.g. subepidermal cells of the skin, mesenchymal cells of the periosteum). In adult animals ufo is expressed in cells forming organ capsules as well as in connective tissue structures. ufo may function as a signal transducer between specific cell types of mesodermal origin.

  10. Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato

    Energy Technology Data Exchange (ETDEWEB)

    Bender, C.L.; Cooksey, D.A.

    1987-02-01

    A cosmid library of copper-resistant (Cu/sup r/) Psuedomonas syringe pv. tomato PT23 plasmid DNA was constructed and mobilized into the copper-sensitive recipient P. syringae pv. syringae PS61. One resultant cosmid clone, pCOP1 (46 kilobases), conferred copper resistance. The PT23 Cu/sup r/ gene(s) was located on pCOP1 by subcloning PstI restriction endonuclease fragments of pCOP1 in the broad-host-range vector pRK404. A subclone containing a 4.4-kilobase PstI fragment conferred Cu/sup r/ on PS61. The Cu/sup r/ gene(s0 was further located by insertional inactivation with Tn5. A subcloned fragment internal to the Cu/sup r/ determinant on pCOP2 was probed to plasmid and chromosomal DNA of four copper-resistant and three copper-sensitive strains of P. syringae pv. tomato. The probe hybridized to plasmids in resistant strains, but showed no detectable homology to copper-sensitive strains.

  11. Molecular cloning and characterization of lymphocyte cell kinase from humphead snapper (Lutjanus sanguineus).

    Science.gov (United States)

    Huang, Y; Cai, J; Wang, B; Tang, J-F; Jian, J-C; Wu, Z-H; Gan, Z; Lu, Y-S

    2016-07-01

    Lymphocyte cell kinase (LCK) belongs to the Src family of tyrosine kinases, which involves in the proliferation control of lymphocytes. In this study, we cloned the LCK gene of humphead snapper (Lutjanus sanguineus) (designed as LsLCK). Sequence analysis showed that the full-length cDNA of LsLCK was 2279 bp, contained a 1506-bp open reading frame (ORF), encoding a polypeptide of 501 amino acids. The deduced amino acid possessed the typical structural features of known LCK proteins, including four Src homology (SH) domains arranged as the SH1 domain followed by a regulatory C-terminal tail (COOH-domain), SH2 and SH3 adapter domains and SH4 domain which required for membrane attachment and CD4/CD8 binding. Fluorescent quantitative real-time PCR analysis indicated that LsLCK transcripts were expressed mainly in thymus, spleen and head kidney in healthy fish. Moreover, the mRNA expressions in these tissues were significantly up-regulated after challenge with Vibrio harveyi. The results of immunohistochemistry showed that LsLCK protein localized distinctly in cytoplasm of cell in thymus, spleen and head kidney. Taken together, these findings indicated that LsLCK may play an important role in the immune response of humphead snapper against bacterial infection.

  12. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.

    Science.gov (United States)

    Paldi, Tzur; Levy, Ilan; Shoseyov, Oded

    2003-01-01

    Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch. PMID:12646045

  13. Characterization of grass carp (Ctenopharyngodon idella) IL-17D: molecular cloning, functional implication and signal transduction.

    Science.gov (United States)

    Du, Linyong; Qin, Lei; Wang, Xinyan; Zhang, Anying; Wei, He; Zhou, Hong

    2014-02-01

    Although the roles of IL-17 family members during inflammation have been extensively studied in mammals, their knowledge in lower vertebrates is limited. In particular, the biological activities of fish IL-17 and their functional roles are largely unknown. In this study, we cloned grass carp IL-17D (gcIL-17D) and found that its putative protein possessed the conserved features of IL-17 family members. Tissue distribution analysis showed that gcIL-17D was preferentially expressed in the mucosal tissues, including skin, gill and intestine. Subsequently, the involvement of gcIL-17D in inflammatory response was demonstrated by examining the expression profiles of gcIL-17D in head kidney and head kidney leukocytes following in vivo bacterial infection and in vitro LPS treatment, respectively. Furthermore, recombinant gcIL-17D (rgcIL-17D) was prepared in grass carp kidney cells and was able to promote the gene expression of some pro-inflammatory cytokines (IL-1β, TNF-α and CXCL-8) in grass carp primary head kidney cells, revealing gcIL-17D can function as a pro-inflammatory cytokine. Moreover, rgcIL-17D appeared to activate NF-κB signaling by modulating the phosphorylation of IκBα and up-regulated CXCL-8 mRNA expression possibly through NF-κB pathway. Our data shed new light on the functional role of teleost IL-17D in inflammatory response. PMID:24120974

  14. Molecular cloning, characterisation, and tissue distribution of oestrogen receptor alpha in eelpout (Zoarces viviparus).

    Science.gov (United States)

    Andreassen, Thomas K; Skjoedt, Karsten; Anglade, Isabelle; Kah, Olivier; Korsgaard, Bodil

    2003-07-01

    A cDNA encoding the eelpout (Zoarces viviparus) oestrogen receptor alpha (eERalpha) has been isolated from eelpout liver, cloned and sequenced. The cDNA contains a complete open reading frame encoding 570 amino acid residues (mw: 63.0 kDa). The amino acid sequence of eERalpha showed a high degree of identity to ERalpha of other teleost species. The tissue distribution of eERalpha mRNA was examined using Northern blotting, RT-PCR and in situ hybridisation (ISH). All three methods identified a pronounced expression of eERalpha in liver, pituitary, testis and ovary. In the brain ISH experiments showed that ERalpha mRNA was highly expressed in distinct regions of the preoptic area and the mediobasal hypothalamus. We have provided evidence that the receptor is auto-regulated by 17beta-oestradiol (E(2)) not only in liver but also in the testis, indicating an important role for E(2) during spermatogenesis in male eelpout. RT-PCR analysis showed a broader expression pattern including significant expression in the brain, kidney, heart, and gut of adult eelpout. In eelpout embryos eERalpha expression has also been identified, indicating a possible role for the receptor in early development. This study contributes to the accumulating evidence that in fish E(2) is not only involved in the regulation of liver specific proteins, but has a much broader range of targets.

  15. Molecular cloning, chromosomal mapping, and characterization of the mouse UDP-galactose: Ceramide galactosyltransferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Coetzee, T.; Fujita, N.; Marcus, J. [Univ. of North Carolina, Chapel Hill, NC (United States)] [and others

    1996-07-01

    UDP-galactose:ceramide galactosyltransferase (CGT) (EC 2.11.62) catalyzes the final step in the synthesis of galactocerebroside, a glycosphingolipid characteristically abundant in myelin. In this report, we describe the isolation of genomic clones spanning the mouse CGT gene. The mouse CGT gene consists of six exons that span a minimum of 70 kb of DNA and that encode a 541 amino acid translation product with extensive sequence similarity to the rat CGT enzyme and to UDP-glucuronosyltransferases (UGT). The 5{prime}-untranslated region of the mouse CGT gene is encoded by a separate exon located approximately 25 kb upstream of the first protein-encoding exon. Furthermore, the genomic organization of the five encoding region exons of the mouse CGT gene resembles that of the human UGT1 and rat UGT2B1 genes. Finally, analysis of somatic cell hybrids by PCR and fluorescence in situ hybridization to metaphase chromosomes has localized the mouse CGT gene to chromosome 3, bands E3-F1. 26 refs., 5 figs., 1 tab.

  16. Molecular Cloning and Characterization of G Alpha Proteins from the Western Tarnished Plant Bug, Lygus hesperus

    Directory of Open Access Journals (Sweden)

    J. Joe Hull

    2014-12-01

    Full Text Available The Gα subunits of heterotrimeric G proteins play critical roles in the activation of diverse signal transduction cascades. However, the role of these genes in chemosensation remains to be fully elucidated. To initiate a comprehensive survey of signal transduction genes, we used homology-based cloning methods and transcriptome data mining to identity Gα subunits in the western tarnished plant bug (Lygus hesperus Knight. Among the nine sequences identified were single variants of the Gαi, Gαo, Gαs, and Gα12 subfamilies and five alternative splice variants of the Gαq subfamily. Sequence alignment and phylogenetic analyses of the putative L. hesperus Gα subunits support initial classifications and are consistent with established evolutionary relationships. End-point PCR-based profiling of the transcripts indicated head specific expression for LhGαq4, and largely ubiquitous expression, albeit at varying levels, for the other LhGα transcripts. All subfamilies were amplified from L. hesperus chemosensory tissues, suggesting potential roles in olfaction and/or gustation. Immunohistochemical staining of cultured insect cells transiently expressing recombinant His-tagged LhGαi, LhGαs, and LhGαq1 revealed plasma membrane targeting, suggesting the respective sequences encode functional G protein subunits.

  17. Molecular cloning and characterization of violaxanthin de-epoxidase (CsVDE in cucumber.

    Directory of Open Access Journals (Sweden)

    Xin Li

    Full Text Available Violaxanthin de-epoxidase (VDE plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V to intermediate product antheraxanthin (A and final product zeaxanthin (Z under high light stress. We have cloned a violaxanthin de-epoxidase gene (CsVDE from cucumber. The amino acid sequence of CsVDE has high homology with VDEs in other plants. RT-PCR analysis and histochemical staining show that CsVDE is expressed in all green tissues in cucumber and Arabidopsis. Using GFP fusion protein and immunogold labeling methods, we show that CsVDE is mainly localized in chloroplasts in cucumber. Under high light stress, relative expression of CsVDE and the de-epoxidation ratio (A+Z/(V+A+Z is increased rapidly, and abundance of the gold particles was also increased. Furthermore, CsVDE is quickly induced by cold and drought stress, reaching maximum levels at the 2(nd hour and the 9(th day, respectively. The ratio of (A+Z/(V+A+Z and non-photochemical quenching (NPQ is reduced in transgenic Arabidopsis down-regulated by the antisense fragment of CsVDE, compared to wild type (WT Arabidopsis under high light stress. This indicates decreased functionality of the xanthophyll cycle and increased sensitivity to photoinhibition of photosystem II (PSII in transgenic Arabidopsis under high light stress.

  18. Molecular cloning and mRNA expression analysis of sheep MYL3 and MYL4 genes.

    Science.gov (United States)

    Zhang, Chunlan; Wang, Jianmin; Wang, Guizhi; Ji, Zhibin; Hou, Lei; Liu, Zhaohua; Chao, Tianle

    2016-02-15

    Using longissimus dorsi muscles of Dorper sheep as the experimental materials, the complete cDNAs of ovine MYL3 (Myosin light chain 3) and MYL4 (Myosin light chain 4) genes were cloned using RT-PCR, 5' RACE and 3' RACE. We obtained 925-bp and 869-bp full-length cDNAs and submitted their sequences to GenBank as accession numbers of KJ710703 and KJ768855, respectively. The cDNAs contained 600-bp and 582-bp open reading frames (ORFs) and encoded proteins comprising 199 and 193 amino acid residues, respectively. Neither protein was predicted to have a signal peptide, but both were predicted to have several N-glycosylation, O-glycosylation, and phosphorylation sites. The secondary structures of MYL3 and MYL4 were predicted to be 40.70% and 48.70% α- helical, respectively. Sequence alignment showed that the MYL3 and MYL4 proteins of Ovis aries both shared more than 91% amino acid sequence similarity with those of Mus musculus, Homo sapiens, Rattus norvegicus, Bos taurus, and Sus scrofa. The levels of MYL3 and MYL4 mRNA in various sheep tissues were determined using qRT-PCR. The results showed that both mRNAs were highly expressed in the heart. This study has established a foundation for further investigation of the ovine MYL3 and MYL4 genes. PMID:26656596

  19. Molecular cloning and primary structure of human glial fibrillary acidic protein

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, S.A.; Helman, L.J.; Allison, A.; Israel, M.A. (National Cancer Institute, Bethesda, MD (USA))

    1989-07-01

    Glial fibrillary acidic protein (GFAP) is an intermediate-filament (IF) protein that is highly specific for cells of astroglial lineage, although its tissue-specific role is speculative. Determination of the primary structure of this protein should be of importance for understanding the functional role it plays in astroglia. Therefore, the authors isolated a cDNA clone encoding this protein and determined its nucleotide sequence. The predicted amino acid sequence indicates that GFAP shares structural similarities-particularly in the central rod domain and to a lesser degree in the carboxyl-terminal domain-with other IF proteins found in nonepithelial cell types. Considerable sequence divergence in the amino-terminal region of GFAP suggests that the tissue-specific functions of this IF protein might be mediated through this region of the molecule. In contrast, conservation of structural characteristics and a moderate degree of sequence conservation in the carboxyl-terminal region suggest functional similarities. Blot hybridization analysis using the GFAP cDNA as a probe failed to detect GFAP mRNA in both normal and neoplastic human tissues in which IF proteins other than GFAP are known to be expressed.

  20. Bacterial phytoene synthase: molecular cloning, expression, and characterization of Erwinia herbicola phytoene synthase.

    Science.gov (United States)

    Iwata-Reuyl, Dirk; Math, Shivanand K; Desai, Shrivallabh B; Poulter, C Dale

    2003-03-25

    Phytoene synthase (PSase) catalyzes the condensation of two molecules of geranylgeranyl diphosphate (GGPP) to give prephytoene diphosphate (PPPP) and the subsequent rearrangement of the cyclopropylcarbinyl intermediate to phytoene. These reactions constitute the first pathway specific step in carotenoid biosynthesis. The crtB gene encoding phytoene synthase was isolated from a plasmid containing the carotenoid gene cluster in Erwinia herbicola and cloned into an Escherichia coli expression system. Upon induction, recombinant phytoene synthase constituted 5-10% of total soluble protein. To facilitate purification of the recombinant enzyme, the structural gene for PSase was modified by site-directed mutagenesis to incorporate a C-terminal Glu-Glu-Phe (EEF) tripepetide to allow purification by immunoaffinity chromatography on an immobilized monoclonal anti-alpha-tubulin antibody YL1/2 column. Purified recombinant PSase-EEF gave a band at 34.5 kDa upon SDS-PAGE. Recombinant PSase-EEF was then purified to >90% homogeneity in two steps by ion-exchange and immunoaffinity chromatography. The enzyme required Mn(2+) for activity, had a pH optimum of 8.2, and was strongly stimulated by detergent. The concentration of GGPP needed for half-maximal activity was approximately 35 microM, and a significant inhibition of activity was seen at GGPP concentrations above 100 microM. The sole product of the reaction was 15,15'-Z-phytoene. PMID:12641468

  1. Molecular Cloning and Characterization of Fruit Softening Related Gene Mannanase from Banana Fruit

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Jun-ping; SU Jing; CHEN Wei-xin

    2006-01-01

    A 1 250 bp cDNA fragment encoding β-mannanase, named MaMAN, was cloned from banana (Musa spp cv. Baxi) fruit using degenerate primers designed with reference to the conserved nucleic acid sequences of known β-mannanase genes by RT-PCR. Sequence analysis showed that MaMAN cDNA encompassed a 1 085 bp open-reading frame (ORF), encoding a predicted polypeptide of 395 amino acids. Alignment of the deduced amino acid sequence of MaMAN and other putative β-mannanases showed that MaMAN has an identity of 86, 70, 69, 54, and 57%, respectively, to β-mannanases from tomato, lettuce, arabidopsis, carrot and oryza sativa. The catalytic residues: Asn203, Glu204, Glu318 and the active site residues: Arg86, His277, Tyr279, and Trp360, which were strictly conserved in the glycoside hydrolase family 5 to which all 3-mannanases belonged, were found in MaMAN. Semi-quantitative RT-PCR revealed that the level of MaMAN transcript in the pulp increased during banana fruit ripening, suggesting that MaMAN was likely to be involved highly in banana fruit softening.

  2. Molecular cloning, expression analysis, and function of decorin in goat ovarian granulosa cells.

    Science.gov (United States)

    Peng, J Y; Gao, K X; Xin, H Y; Han, P; Zhu, G Q; Cao, B Y

    2016-10-01

    Decorin (DCN), a component of the extracellular matrix (ECM), participates in ECM assembly and influences cell proliferation and apoptosis in many mammalian tissues and cells. However, expression and function of DCN in the ovary remain unclear. This study cloned the full-length cDNA of goat DCN obtained from the ovary of an adult goat. Sequence analysis revealed that the putative DCN protein shared a highly conserved amino acid sequence with known mammalian homologs. The tissue distribution of DCN mRNA expression was evaluated by real-time PCR, and the results showed that DCN was widely expressed in the tissues of adult goat. Immunohistochemistry results suggested that DCN protein existed in the granulosa cells and oocytes from all types of follicles and theca cells of antral follicles. Moreover, hCG-induced DCN mRNA expression was significantly reduced by the inhibitors of protein kinase A, PI3K, or p38 kinase (P 0.05). These findings suggested that DCN regulates the apoptosis and cell cycle of granulosa cells. PMID:27565237

  3. Molecular cloning of pheromone biosynthesis activating neuropeptide in silkworm, Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    徐卫华; Yukihiro Stao; Okitsugu Yamashita

    1996-01-01

    Pheromone biosynthesis activating neuropeptide (PBAN) is a suboesophageal ganglion secretory polypeptide of insect, which activates the pheromone gland to produce sex pheromone biosynthesis in female silkworm, Bombyx mori. A Bombyx genomic library was screened by the method of plaque hybridization using the 32P-labeled BomDH cDNA as a probe. The genomic sequence encoding PBAN has been cloned and its structure is analyzed. The PBAN gene comprises two exons interspersed by a single intron 697 bp in length. Preceding the PBAN amino acid sequence is a 32-amino acid sequence containing two FXPRL amide peptides, which are α-SGNP (Ile-Ile-Phe-Thr-Pro-Lys-Leu) and β-SGNP (Ser-Val-Ala-Asn-Pro-Arg-Thr-His-Glu-Ser-Leu-Glu-Phe-Ile-Pro-Arg-Leu), which is followed by a Gly-Arg processing site. Immediately, after the PBAN amino acid sequence is a Gly-Arg processing site and a FXPRL amide peptide γ-SGNP (Thr-Met-Ser-Phe-Ser-Pro-Arg-Leu). It is suggested that besides PBAN, 7-, 8-, and 17-residue amidated peptides wer

  4. Molecular cloning of a gene that is necessary for G1 progression in mammalian cells

    International Nuclear Information System (INIS)

    The authors have cloned a human cDNA that complements the mutation of ts11, a temperature-sensitive (ts) mutant of the BHK hamster cell line that at the nonpermissive temperature is blocked in progression through the G1 phase of the cell growth cycle. After transfecting human chromosomal DNA into ts11 cells and selecting for cells that had acquired a non-ts phenotype, the authors screened a geonomic library constructed in the EMBL3 λ vector from a secondary non-ts transformant and isolated a recombinant phage containing human DNA sequences that were uniformly present in primary and secondary non-ts transformants. Genomic probes that recognized an mRNA of about 2 kilobases in human cells were used to isolate from a cDNA expression library two cDNA plasmids that could efficiently transform ts11 cells to a non-ts phenotype. Sequencing of one of these cDNAs revealed a single open reading frame, which could encode a 540 amino acid protein. The ts11 gene has at least two other homologs in human DNA and thus it appears to be part of a small gene/pseudogene family. Experiments with serum-synchronized cells indicate that the expression of the ts11 gene, which is necessary for G1 progression, is itself cell-cycle regulated, being induced in approximately mid-G1

  5. Molecular cloning and characterization of a trehalose-6-phosphate synthase/phosphatase from Dunaliella viridis.

    Science.gov (United States)

    Zhang, Nan; Wang, Fei; Meng, Xiangzong; Luo, Saifan; Li, Qiyun; Dong, Hongyun; Xu, Zhengkai; Song, Rentao

    2011-04-01

    Dunaliella is a group of green algae with exceptional stress tolerance capability, and is considered as an important model organism for stress tolerance study. Here we cloned a TPS (trehalose-6-phosphate synthase) gene from Dunaliella viridis and designated it as DvTPS (D. viridis trehalose-6-phosphate synthase/phosphatase).The DvTPS cDNA contained an ORF of 2793 bp encoding 930 aa. DvTPS had both TPS and TPP domain and belonged to the Group II TPS/TPP fusion gene family. Southern blots showed it has a single copy in the genome. Genome sequence analysis revealed that it has 18 exons and 17 introns. DvTPS had a constitutive high expression level under various NaCl culture conditions, however, could be induced by salt shock. Promoter analysis indicated there were ten STREs (stress response element) in its promoter region, giving a possible explanation of its inducible expression pattern upon salt shock. Yeast functional complementation analysis showed that DvTPS had neither TPS nor TPP activity. However, DvTPS could improve the salt tolerance of yeast salt sensitive mutant G19. Our results indicated that despite DvTPS showed significant similarity with TPS/TPP, its real biological function is still remained to be revealed. PMID:20878239

  6. Molecular Cloning and Characterization of G Alpha Proteins from the Western Tarnished Plant Bug, Lygus hesperus.

    Science.gov (United States)

    Hull, J Joe; Wang, Meixian

    2014-01-01

    The Gα subunits of heterotrimeric G proteins play critical roles in the activation of diverse signal transduction cascades. However, the role of these genes in chemosensation remains to be fully elucidated. To initiate a comprehensive survey of signal transduction genes, we used homology-based cloning methods and transcriptome data mining to identity Gα subunits in the western tarnished plant bug (Lygus hesperus Knight). Among the nine sequences identified were single variants of the Gαi, Gαo, Gαs, and Gα12 subfamilies and five alternative splice variants of the Gαq subfamily. Sequence alignment and phylogenetic analyses of the putative L. hesperus Gα subunits support initial classifications and are consistent with established evolutionary relationships. End-point PCR-based profiling of the transcripts indicated head specific expression for LhGαq4, and largely ubiquitous expression, albeit at varying levels, for the other LhGα transcripts. All subfamilies were amplified from L. hesperus chemosensory tissues, suggesting potential roles in olfaction and/or gustation. Immunohistochemical staining of cultured insect cells transiently expressing recombinant His-tagged LhGαi, LhGαs, and LhGαq1 revealed plasma membrane targeting, suggesting the respective sequences encode functional G protein subunits. PMID:26463065

  7. Molecular cloning and primary structure of human glial fibrillary acidic protein

    International Nuclear Information System (INIS)

    Glial fibrillary acidic protein (GFAP) is an intermediate-filament (IF) protein that is highly specific for cells of astroglial lineage, although its tissue-specific role is speculative. Determination of the primary structure of this protein should be of importance for understanding the functional role it plays in astroglia. Therefore, the authors isolated a cDNA clone encoding this protein and determined its nucleotide sequence. The predicted amino acid sequence indicates that GFAP shares structural similarities-particularly in the central rod domain and to a lesser degree in the carboxyl-terminal domain-with other IF proteins found in nonepithelial cell types. Considerable sequence divergence in the amino-terminal region of GFAP suggests that the tissue-specific functions of this IF protein might be mediated through this region of the molecule. In contrast, conservation of structural characteristics and a moderate degree of sequence conservation in the carboxyl-terminal region suggest functional similarities. Blot hybridization analysis using the GFAP cDNA as a probe failed to detect GFAP mRNA in both normal and neoplastic human tissues in which IF proteins other than GFAP are known to be expressed

  8. Vacuolar invertases in sweet potato: molecular cloning, characterization, and analysis of gene expression.

    Science.gov (United States)

    Wang, Li-Ting; Wang, Ai-Yu; Hsieh, Chang-Wen; Chen, Chih-Yu; Sung, Hsien-Yi

    2005-05-01

    Two cDNAs (Ib beta fruct2 and Ib beta fruct3) encoding vacuolar invertases were cloned from sweet potato leaves, expressed in Pichia pastoris, and the recombinant proteins were purified by ammonium sulfate fractionation and chromatography on Ni-NTA agarose. The deduced amino acid sequences encoded by the cDNAs contained characteristic conserved elements of vacuolar invertases, including the sequence R[G/A/P]xxxGVS[E/D/M]K[S/T/A/R], located in the prepeptide region, Wxxx[M/I/V]LxWQ, located around the starting site of the mature protein, and an intact beta-fructosidase motif. The pH optimum, the substrate specificity, and the apparent K(m) values for sucrose exhibited by the recombinant proteins were similar to those of vacuolar invertases purified from sweet potato leaves and cell suspensions, thus confirming that the proteins encoded by Ib beta fruct2 and Ib beta fruct3 are vacuolar invertases. Moreover, northern analysis revealed that the expression of the two genes was differentially regulated. With the exception of mature leaves and sprouting storage roots, Ib beta fruct2 mRNA is widely expressed among the tissues of the sweet potato and is more abundant in young sink tissues. By contrast, Ib beta fruct3 mRNA was only detected in shoots and in young and mature leaves. It appears, therefore, that these two vacuolar invertases play different physiological roles during the development of the sweet potato plant.

  9. Molecular cloning, characterization, and expression studies of water buffalo (Bubalus bubalis) somatotropin.

    Science.gov (United States)

    Sadaf, S; Khan, M A; Wilson, D B; Akhtar, M W

    2007-02-01

    Cloning, high-level expression, and characterization of the somatotropin (ST) gene of an indigenous Nili-Ravi breed of water buffalo Bubalus bubalis (BbST) are described. Coding, non-coding, and promoter regions of BbST were amplified and sequenced. Sequence analysis revealed several silent and two interesting point mutations on comparison with STs of other vertebrate species. One interesting variation in the BbST sequence was the replacement of a conserved glutamine residue by arginine. A plasmid was also constructed for the production of BbST in Escherichia coli BL21 (RIPL) CodonPlus, under the control of IPTG-inducible T7-lac promoter. High-level expression could be obtained by synthesizing a codon-optimized ST gene and expressing it in the form of inclusion bodies. The inclusion bodies represented over 20% of the E. coli cellular proteins. The biologically active conformation of purified BbST was confirmed by its efficient growth promoting activity in Nb2 cell proliferation assay. The expression system and purification strategy employed promise to be a useful approach to produce BbST for further use in structure-function studies and livestock industry. PMID:17367293

  10. Molecular cloning and expression profiling of multiple Dof genes of Sorghum bicolor (L) Moench.

    Science.gov (United States)

    Gupta, Shubhra; Arya, Gulab C; Malviya, Neha; Bisht, Naveen C; Yadav, Dinesh

    2016-08-01

    DNA binding with one finger (Dof) proteins represent a family of plant specific transcription factors associated with diverse biological processes, such as seed maturation and germination, phytohormone and light mediated regulation, and plant responses to biotic and abiotic stresses. In present study, a total of 21 Dof genes from Sorghum bicolor were cloned, sequenced and in silico characterized for homology search, revealing their identity to Dof like proteins. The expression profiling of SbDof genes using quantitative RT-PCR in different tissue types and also under drought and salt stresses was attempted. The SbDof genes displayed differential expression either in their transcript abundance or in their expression patterns under normal growth condition. Two of the SbDof genes namely SbDof8 and SbDof12 showed comparatively high level of transcript abundance in all the tissue types tested; whereas some of the SbDof genes showed a distinct tissue specific expression pattern. Further a total of 13 SbDof genes showed differential expression when subjected to either of the abiotic stress i.e. drought or salinity. Three of the SbDof genes namely SbDof12, SbDof19 and SbDof24 were found to be up-regulated in response to drought and salt stress. Comparative analysis of SbDof genes expression revealed existence of a complex transcriptional and functional diversity across plant growth and developmental stages. PMID:27230576

  11. Molecular cloning and functional analysis of duck ubiquitin-specific protease 18 (USP18) gene.

    Science.gov (United States)

    Qian, Wei; Wei, Xiaoqin; Zhou, Hongbo; Jin, Meilin

    2016-09-01

    In mammals, ubiquitin-specific protease 18 (USP18) is an interferon (IFN)-inducible gene and is a negative regulator of Toll-like receptor-mediated nuclear factor kappa B (NF-κB) activation. The role of USP18 in ducks (duUSP18) remains poorly understood. In the present study, we cloned and characterized the full-length coding sequence of duUSP18 from duck embryo fibroblasts (DEFs). In healthy ducks, duUSP18 transcripts were broadly expressed in different tissues, with higher expression levels in the spleen, lung and kidney. Quantitative real-time PCR (qRT-PCR) analysis revealed that duUSP18 could be induced by treatment with Poly(I:C) or LPS. Overexpression of duUSP18 inhibited NF-κB and IFN-β expression. Furthermore, deletion mutant analysis revealed that the duUSP18 region between aa 75 and 304 was essential for inhibiting NF-κB. In addition, overexpression of duUSP18 also suppressed the secretion of NF-κB-dependent proinflammatory cytokines. Taken together, these results suggest that duUSP18 regulates duck innate immune responses. PMID:27133094

  12. Type I interferon receptors in goose: molecular cloning, structural identification, evolutionary analysis and age-related tissue expression profile.

    Science.gov (United States)

    Zhou, Hao; Chen, Shun; Qi, Yulin; Zhou, Qin; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Liu, Fei; Chen, Xiaoyue; Cheng, Anchun

    2015-04-25

    The cDNAs encoding two distinct type I interferon receptors were firstly cloned from the spleen of white goose (the Chinese goose, Anser cygnoides). The cDNA of goose IFNAR1 consisted of 1616 bp and encoded 406 amino acids with a predicted molecular weight of 46.4 kDa, while the cDNA of goose IFNAR2 consisted of 1525 bp and encoded 294 amino acids with a predicted molecular weight of 32.6 kDa. The IFNAR1 shared 85.4% identity in deduced amino acid sequence with duck IFNAR1, while IFNAR2 amino acid sequence showed 86% identity with that of duck IFNAR2. The age-related analysis of gene expression revealed that goose IFNα and IFNARs were all highly transcribed in pancreas, which may due to a reasonable amount of dendritic cells aggregated in pancreas. And goose IFNα and its cognate receptors had different structural features and tissue expression patterns during the period from embryonic goose to adult goose, suggesting that IFNα and IFNARs may maintain a developmental dynamic immune competence in unstimulated states. The data provided in this study may contribute to future understanding of the interaction between interferon and interferon receptors in immune mechanism. And it also helps us to understand the age-related susceptibility to pathogens in birds better. PMID:25617523

  13. Molecular cloning and differential expression of three GnRH genes during ovarian maturation of spotted halibut, Verasper variegatus.

    Science.gov (United States)

    Xu, Yong-Jiang; Liu, Xue-Zhou; Liao, Mei-Jie; Wang, Han-Ping; Wang, Qing-Yin

    2012-08-01

    In this study, the gonadotropin-releasing hormone (GnRH) genes in spotted halibut were cloned and sequenced by isolating their cDNAs. The species expressed three molecular forms of GnRH in the brain: chicken-type GnRH-II (cGnRH-II), seabream-type GnRH (sbGnRH), and salmon-type GnRH (sGnRH). Phylogenetic analysis divided the molecular forms of GnRHs into three branches: cGnRH-II branch, sGnRH branch, and fish-specific GnRH branch. The spatial expression showed that they had the highest expression levels in the brain. cGnRH-II was exclusively detected in the brain, while sbGnRH had a global expression pattern in all examined organs. sGnRH was detected in the brain, pituitary, and ovary. The temporal changes of brain GnRH mRNA expression levels were examined during ovarian maturation and postspawning, and the serum steroid hormones and gonadosomatic index (GSI) were recorded. Amounts of sbGnRH mRNA substantially elevated (P GnRH genes are the important regulators for the differential expression of GnRH in spotted halibut, and would help us better understand the reproductive endocrine mechanism of spotted halibut. PMID:22674773

  14. Molecular cloning, sequence characterization and heterologous expression of buffalo (Bubalus bubalis) oviduct-specific glycoprotein in E. coli.

    Science.gov (United States)

    Janjanam, Jagadeesh; Singh, Surender; Choudhary, Suman; Pradeep, Mangottil A; Kumar, Sudarshan; Kumaresan, A; Das, Subrata K; Kaushik, Jai K; Mohanty, Ashok K

    2012-12-01

    Oviductin is a high molecular weight oviduct-specific glycoprotein secreted by the non-ciliated epithelial cells of oviduct during estrous cycle and early pregnancy. It plays an important role during fertilization and early embryonic development. The oviductin gene from oviductal tissues of buffalo was successfully cloned and sequenced. The sequence analysis revealed that buffalo and cattle oviductin share very high homology between their cDNA sequences. The predicted amino acid sequences of the buffalo oviductin exhibited the highest percent of identity of 97 % with bovine followed by 94 % with goat, 93 % with sheep, 78 % with porcine, 72 % with human, 67 % with hamster and rabbit and 65 % with mouse. Oviductin was also observed to share high similarity with the mammalian chitinase, however oviductins do not show chitinase activity due to Glu→Ile mutation in the active site responsible for chitinase activity. The phylogenetic tree based on amino acid sequences of oviductin indicated that buffalo oviductin was closely related to its cattle counterpart, and this clustering is in accordance with the classic taxonomic relationship. Tissue specific expression of the transcripts for buffalo oviductin revealed a high level expression in oviduct and ovary followed by testis, mammary gland, kidney, while in mammary epithelial cells and liver its expression was very low. The full length matured oviductin and its domains constituting chitinase-like domain and mucin-like domain were cloned into pET and pGEX series of expression vectors and over expressed in E. coli. The soluble recombinant oviductin was successfully purified to homogeneity. Full length recombinant oviductin was expressed partially in soluble form, where as the chitinase-like and mucin-like domains of oviductin were expressed in insoluble form and aggregating to form inclusion bodies at both 37 and 16 °C induction temperatures. PMID:22782592

  15. Plasmid transformation of Streptococcus lactis protoplasts: optimization and use in molecular cloning.

    OpenAIRE

    Kondo, J K; McKay, L. L.

    1984-01-01

    The parameters affecting polyethylene glycol-induced plasmid transformation of Streptococcus lactis LM0230 protoplasts were examined to increase the transformation frequency. In contrast to spreading protoplasts over the surface of an agar medium, their incorporation into soft agar overlays enhanced regeneration of protoplasts and eliminated variability in transformation frequencies. Polyethylene glycol with a molecular weight of 3,350 at a final concentration of 22.5% yielded optimal transfo...

  16. Molecular cloning of magnesium-independent type 2 phosphatidic acid phosphatases from airway smooth muscle.

    Science.gov (United States)

    Tate, R J; Tolan, D; Pyne, S

    1999-07-01

    Members of the type 2 phosphatidic acid phosphatase (PAP2) family catalyse the dephosphorylation of phosphatidic acid (PA), lysophosphatidate and sphingosine 1-phosphate. Here, we demonstrate the presence of a Mg(2+)-independent and N-ethymaleimide-insensitive PAP2 activity in cultured guinea-pig airway smooth muscle (ASM) cells. Two PAP2 cDNAs of 923 and 926 base pairs were identified and subsequently cloned from these cells. The ORF of the 923 base pair cDNA encoded a protein of 285 amino acids (Mr = 32.1 kDa), which had 94% homology with human PAP2a (hPAP2a) and which probably represents a guinea-pig specific PAP2a (gpPAP2a1). The ORF of the 926 base pair cDNA encoded a protein of 286 amino acids (Mr = 32.1 kDa) which had 84% and 91% homology with hPAP2a and gpPAP2a1, respectively. This protein, termed gpPAP2a2, has two regions (aa 21-33 and 51-74) of marked divergence and altered hydrophobicity compared with hPAP2a and gpPAP2a1. This occurs in the predicted first and second transmembrane domains and at the extremes of the first outer loop. Other significant differences between gpPAP2a1/2 and hPAP2a, hPAP2b and hPAP2c occur at the cytoplasmic C-terminal. Transient expression of gpPAP2a2 in Cos-7 cells resulted in an approx. 4-fold increase in Mg(2+)-independent PAP activity, thereby confirming that gpPAP2a2 is another catalytically active member of an extended PAP2 family.

  17. Molecular cloning, characterization, and bioactivity analysis of interleukin 18 in giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Yan, Y; Wang, Q; Niu, L L; Deng, J B; Yu, J Q; Zhang J X Wang, Y Z; Yin, M M; Tan, X M

    2014-01-01

    Interleukin 18 (IL-18), as a member of IL-1 superfamily, is an important pleiotropic cytokine that modulates Th1 immune responses. In this report, we cloned and identified a homolog of IL-18 in giant panda (Ailuropoda melanoleuca) (designated as AmIL-18) from peripheral blood mononuclear cells stimulated with lipopolysaccharide. The open readin g frame of AmIL-18 cDNA is 579 bp encoding a deduced protein of 192 amino acids. AmIL-18 gDNA fragments contained 5 exons and 4 introns. The amino acid sequence of AmIL-18 shared 23.9 to 87.0% identity with other species. To evaluate the effects of AmIL-18 on the immune response, we expressed the recombinant AmIL-18 in Escherichia coli BL21 (DE3). The fusion protein PET-AmIL-18 was purified by nickel affinity column chromatography and verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot analysis. The biological function of purified PET-AmIL-18 was determined on mouse splenocytes by quantitative real-time polymerase chain reaction. INF-γ and other cytokines were increased when stimulated by PET-AmIL-18, particularly when combined with recombinant human interleukin 12, while a Th2-type cytokine, interleukin-4, was strikingly suppressed. These results will provide information for the potential use of recombinant proteins to manipulate the immune response in giant pandas and facilitate the study to protect this treasured species. PMID:25501180

  18. Molecular cloning, expression and functional analysis of ISG15 in orange-spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Huang, Xiaohong; Huang, Youhua; Cai, Jia; Wei, Shina; Ouyang, Zhengliang; Qin, Qiwei

    2013-05-01

    Interferon-stimulated gene 15 (ISG15) is an ubiquitin homolog that is significantly induced by type I interferons or viral infections. Groupers, Epinephelus spp. being maricultured in China and Southeast Asian countries, always suffer from virus infection, including iridovirus and nodavirus. To date, the roles of grouper genes, especially interferon related genes in virus infection remained largely unknown. Here, the ISG15 homolog (EcISG15) was cloned from grouper Epinephelus coioides and its immune response to Singapore grouper iridovirus (SGIV) and grouper nervous necrosis virus (GNNV) was investigated. The full-length EcISG15 cDNA was composed of 948 bp and encoded a polypeptide of 155 amino acids with 37-68% identity with the known ISG15 homologs from other fish species. Amino acid alignment analysis indicated that EcISG15 contained two ubiquitin-like (UBL) domains and an Ub-conjugation domain (LRGG). Expressional analysis showed that EcISG15 was dramatically induced by GNNV infection, poly I:C or poly dA-dT treatment, but no obvious changes were observed during SGIV infection. Immunofluorescence assay showed that EcISG15 localized mainly in the cytoplasm of grouper cells in response to poly I:C stimulation or GNNV infection, but not in mock or SGIV infected cells. Western blot analysis indicated that the ISGylation was absent in SGIV-infected cells, but significantly enhanced in GNNV-infected or poly I:C transfected cells, suggesting that EcISG15 might play different roles in SGIV and GNNV infection. Furthermore, overexpression of EcISG15 in vitro inhibited the transcription of GNNV genes significantly. Taken together, the results indicated that fish ISG15 might exert important roles against RNA virus infection.

  19. Molecular cloning and characterization of SoxB2 gene from Zhikong scallop Chlamys farreri

    Science.gov (United States)

    He, Yan; Bao, Zhenmin; Guo, Huihui; Zhang, Yueyue; Zhang, Lingling; Wang, Shi; Hu, Jingjie; Hu, Xiaoli

    2013-11-01

    The Sox proteins play critical roles during the development of animals, including sex determination and central nervous system development. In this study, the SoxB2 gene was cloned from a mollusk, the Zhikong scallop ( Chlamys farreri), and characterized with respect to phylogeny and tissue distribution. The full-length cDNA and genomic DNA sequences of C. farreri SoxB2 ( Cf SoxB2) were obtained by rapid amplification of cDNA ends and genome walking, respectively, using a partial cDNA fragment from the highly conserved DNA-binding domain, i.e., the High Mobility Group (HMG) box. The full-length cDNA sequence of Cf SoxB2 was 2 048 bp and encoded 268 amino acids protein. The genomic sequence was 5 551 bp in length with only one exon. Several conserved elements, such as the TATA-box, GC-box, CAAT-box, GATA-box, and Sox/sry-sex/testis-determining and related HMG box factors, were found in the promoter region. Furthermore, real-time quantitative reverse transcription PCR assays were carried out to assess the mRNA expression of Cf SoxB 2 in different tissues. SoxB2 was highly expressed in the mantle, moderately in the digestive gland and gill, and weakly expressed in the gonad, kidney and adductor muscle. In male and female gonads at different developmental stages of reproduction, the expression levels of Cf SoxB2 were similar. Considering the specific expression and roles of SoxB 2 in other animals, in particular vertebrates, and the fact that there are many pallial nerves in the mantle, cerebral ganglia in the digestive gland and gill nerves in gill, we propose a possible essential role in nervous tissue function for Sox B 2 in C. farreri.

  20. Molecular cloning and expression analysis of the STAT1 gene from olive flounder, Paralichthys olivaceus

    Directory of Open Access Journals (Sweden)

    Chung Jongkyeong

    2008-06-01

    Full Text Available Abstract Background Signal transducer and activator of transcription 1 (STAT1 is a critical component of interferon (IFN-alpha/beta and IFN-gamma signaling. Although seven isoforms of STAT proteins have been reported from mammals, limited information is available for the STAT genes in fish. We isolated complementary DNA with high similarity to mammalian STAT1 from the olive flounder, Paralichthys olivaceus. Results A DNA fragment containing the conserved SH2 domain was amplified by RT-PCR using degenerate primers designed based on the highly conserved sequences in the SH2 domains of the zebrafish and mammalian STAT1. The complete cDNA sequence was obtained by 5' and 3' RACE. The flounder STAT1 transcript consisted of 2,909 bp that encoded a polypeptide of 749 amino acids. The overall similarity between flounder STAT1 and other STATs was very high, with the highest amino acid sequence identity to snakehead (89%. Phylogenetic analyses reveal that flounder STAT1 is in the same monophyletic group with snakehead STAT1. Quantitative real time RT-PCR and in situ hybridization revealed that STAT1 was expressed in almost all examined organs and tissues, with high expression in gill, spleen, kidney, and heart. The accumulation of STAT1 mRNA in different developmental stages, as determined by real time RT-PCR, increased with development. Conclusion Recent cloning of various cytokine genes and the STAT1 gene of olive flounder here suggest that fish also use the highly specialized JAK-STAT pathway for cytokine signaling. Identification of other STAT genes will elucidate in detail the signal transduction system in this fish.

  1. Molecular cloning and characterization of an S-adenosylmethionine synthetase gene from Chorispora bungeana.

    Science.gov (United States)

    Ding, Chenchen; Chen, Tao; Yang, Yu; Liu, Sha; Yan, Kan; Yue, Xiule; Zhang, Hua; Xiang, Yun; An, Lizhe; Chen, Shuyan

    2015-11-10

    S-adenosylmethionine synthetase (SAMS) catalyzes the formation of S-adenosylmethionine (SAM) which is a molecule essential for polyamines and ethylene biosynthesis, methylation modifications of protein, DNA and lipids. SAMS also plays an important role in abiotic stress response. Chorispora bungeana (C. bungeana) is an alpine subnival plant species which possesses strong tolerance to cold stress. Here, we cloned and characterized an S-adenosylmethionine synthetase gene, CbSAMS (C. bungeana S-adenosylmethionine synthetase), from C. bungeana, which encodes a protein of 393 amino acids containing a methionine binding motif GHPDK, an ATP binding motif GAGDQG and a phosphate binding motif GGGAFSGDK. Furthermore, an NES (nuclear export signal) peptide was identified through bioinformatics analysis. To explore the CbSAMS gene expression regulation, we isolated the promoter region of CbSAMS gene 1919bp upstream the ATG start codon, CbSAMSp, and analyzed its cis-acting elements by bioinformatics method. It was revealed that a transcription start site located at 320 bp upstream the ATG start codon and cis-acting elements related to light, ABA, auxin, ethylene, MeJA, low temperature and drought had been found in the CbSAMSp sequence. The gene expression pattern of CbSAMS was then analyzed by TR-qPCR and GUS assay method. The result showed that CbSAMS is expressed in all examined tissues including callus, roots, petioles, leaves, and flowers with a significant higher expression level in roots and flowers. Furthermore, the expression level of CbSAMS was induced by low temperature, ethylene and NaCl. Subcellular localization revealed that CbSAMS was located in the cytoplasm and nucleus but has a significant higher level in the nucleus. These results indicated a potential role of CbSAMS in abiotic stresses and plant growth in C. bungeana. PMID:26205258

  2. Molecular cloning and functional analysis of zebrafish (Danio rerio) chemokine genes.

    Science.gov (United States)

    Chen, Li-Chen; Chen, Jyh-Yih; Hour, Ai-Ling; Shiau, Chyuan-Yuan; Hui, Cho-Fat; Wu, Jen-Leih

    2008-12-01

    Chemokines control leukocyte trafficking which plays important roles in resistance to pathogenic infection. Five CXC chemokines have been reported in the zebrafish (Danio rerio) in GenBank, and herein we named them CXC-46, -56, -64, -66, and scyba. Through RT-PCR for cloning and sequencing these chemokines, the cDNA sequences of CXC-46, -56, -64, and -66 of zebrafish were determined, and it was found that the cDNA sequences were the same as those published in GenBank. Phylogenetic analysis revealed that zebrafish scyba is closest to the CXCL14 subgroup, CXC-46 is closest to the human CCL25 and catfish CXCL-2-like gene, and CXC-56, -64, and -66 are closest to the catfish CXCL10 subgroup. Further study of the tissue-specific, lipopolysaccharide (LPS) stimulation-specific, and polyinosinic-polycytidylic acid (poly I:C) stimulation-specific expressions of these five zebrafish CXC chemokine messenger (m)RNAs were determined by a comparative reverse-transcription polymerase chain reaction (RT-PCR). The RT-PCR revealed a high level of constitutive expression of CXC-56 in many tissues including the eyes, fins, heart, liver, muscles, and skin. Starvation had significant effects on the gene expressions of several zebrafish CXC chemokines including CXC-56, -64, -66, and scyba compared to the control group. Zebrafish CXC chemokines showed a concave pattern of expression after stimulation with LPS. Following poly I:C treatment of between 0.1 and 10 g/fish, dose-dependent effects were revealed. Temperature and acid-base conditions affected these zebrafish chemokines by increasing their induction compared to the control group, except for CXC-64 which exhibited no significant differences in either condition. Furthermore, these novel research results indicate that chemokines can be markers of different experimental conditions. PMID:18778789

  3. Molecular Cloning and Expression of a New Allergen of Acacia farnesiana (Aca f 2

    Directory of Open Access Journals (Sweden)

    Najmeh Sepahi

    2015-10-01

    Full Text Available Inhalation of pollens from different species of Acacia is a common cause of respiratory allergy in tropical areas of the world. Acacia farnesiana is commonly used as street trees in towns and ornamental shade trees in parks and gardens throughout arid and semi-arid regions of Asia. This study aimed to produce and purify the A. farnesiana pollen profilin (Aca f 2 and evaluate its nucleotide sequence homology with profilins of common allergenic plants to predict allergenic cross-reactivity.Thirty-nine patients who were allergic to Acacia pollens were included in the study. Cloning of Acacia profilin-coding sequence was performed by polymerase chain reaction using primers from Acacia pollen RNA. The cDNA of Acacia pollen profilin was then expressed in Escherichia coli using pET-21b(+ vector and purified by metal affinity chromatography. Immunoreactivity of the recombinant Acacia profilin (rAca f 2 was evaluated by specific ELISA, immunoblotting, and inhibition assays.The coding sequence of the Acacia profilin cDNA was recognized as a 399-bp open reading frame encoding 133 amino acid residues. Eighteen patients (18/39, 46.15% had significant specific IgE levels against Aca f 2. Immunodetection and inhibition assays indicated that purified Aca f 2 might be the same as that in the crude extract.Aca f2, the first allergen from A. farnesiana pollen, was identified as belonging to the family ofprofilins. The amino acid sequence homology analysis showed high cross-reactivity betweenAca f 2 and other profilins from botanically unrelated common allergenic plants.

  4. Molecular Cloning and Expression of a New Allergen of Acacia farnesiana (Aca f 2).

    Science.gov (United States)

    Sepahi, Najmeh; Khodadadi, Ali; Assarehzadegan, Mohammad-Ali; Amini, Akram; Zarinhadideh, Farnoosh; Ali-Sadeghi, Hosein

    2015-08-01

    Inhalation of pollens from different species of Acacia is a common cause of respiratory allergy in tropical areas of the world. Acacia farnesiana is commonly used as street trees in towns and ornamental shade trees in parks and gardens throughout arid and semi-arid regions of Asia. This study aimed to produce and purify the A. farnesiana pollen profilin (Aca f 2) and evaluate its nucleotide sequence homology with profilins of common allergenic plants to predict allergenic cross-reactivity. Thirty-nine patients who were allergic to Acacia pollens were included in the study. Cloning of Acacia profilin-coding sequence was performed by polymerase chain reaction using primers from Acacia pollen RNA. The cDNA of Acacia pollen profilin was then expressed in Escherichia coli using pET-21b(+) vector and purified by metal affinity chromatography. Immunoreactivity of the recombinant Acacia profilin (rAca f 2) was evaluated by specific ELISA, immunoblotting, and inhibition assays. The coding sequence of the Acacia profilin cDNA was recognized as a 399-bp open reading frame encoding 133 amino acid residues. Eighteen patients (18/39, 46.15%) had significant specific IgE levels against Aca f 2. Immunodetection and inhibition assays indicated that purified Aca f 2 might be the same as that in the crude extract. Aca f2, the first allergen from A. farnesiana pollen, was identified as belonging to the family of profilins. The amino acid sequence homology analysis showed high cross-reactivity between Aca f 2 and other profilins from botanically unrelated common allergenic plants. PMID:26547704

  5. Molecular Cloning and Functional Analysis of Squalene Synthase 2(SQS2) in Salvia miltiorrhiza Bunge

    Science.gov (United States)

    Rong, Qixian; Jiang, Dan; Chen, Yijun; Shen, Ye; Yuan, Qingjun; Lin, Huixin; Zha, Liangping; Zhang, Yan; Huang, Luqi

    2016-01-01

    Salvia miltiorrhiza Bunge, which is also known as a traditional Chinese herbal medicine, is widely studied for its ability to accumulate the diterpene quinone Tanshinones. In addition to producing a variety of diterpene quinone, S. miltiorrhiza Bunge also accumulates sterol, brassinosteroid and triterpenoids. During their biosynthesis, squalene synthase (SQS, EC 2.5.1.21) converts two molecules of the hydrophilic substrate farnesyl diphosphate (FPP) into a hydrophobic product, squalene. In the present study, cloning and characterization of S. miltiorrhiza Bunge squalene synthase 2 (SmSQS2, Genbank Accession Number: KM408605) cDNA was investigated subsequently followed by its recombinant expression and preliminary enzyme activity. The full-length cDNA of SmSQS2 was 1 597 bp in length, with an open reading frame of 1 245 bp encoding 414 amino acids. The deduced amino acid sequence of SmSQS2 shared high similarity with those of SQSs from other plants. To obtain soluble recombinant enzymes, the truncated SmSQS2 in which 28 amino acids were deleted from the carboxy terminus was expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western Blot analysis, and the resultant bacterial crude extract was incubated with FPP and NADPH. Gas chromatograph-mass spectrometer analysis showed that squalene was detected in the in vitro reaction mixture. The gene expression level was analyzed through Quantitative real-time PCR, and was found to be higher in roots as compared to the leaves, and was up-regulated upon YE+ Ag+ treatment. These results could serve as an important to understand the function of the SQS family. In addition, the identification of SmSQS2 is important for further studies of terpenoid and sterol biosynthesis in S. miltiorrhiza Bunge.

  6. Molecular cloning and characterization of enhanced disease susceptibility 1 (EDS1) from Gossypium barbadense.

    Science.gov (United States)

    Su, Xiaofeng; Qi, Xiliang; Cheng, Hongmei

    2014-06-01

    Arabidopsis enhanced disease susceptibility 1 (EDS1) plays an important role in plant defense against biotrophic and necrotrophic pathogens. The necrotrophic pathogen Verticillium dahliae infection of Gossypium barbadense could lead to Verticillium wilt which seriously reduces the cotton production. Here, we cloned and characterized a G. barbadense homolog of EDS1, designated as GbEDS1. The full-length cDNA of the GbEDS1 gene was obtained by the technique of rapid-amplification of cDNA ends. The open reading frame of the GbEDS1 gene was 1,647 bp long and encoded a protein of 548 amino acids residues. Comparison of the cDNA and genomic DNA sequence of GbEDS1 indicated that this gene contained a single intron and two exons. Like other EDS1s, GbEDS1 contained a conserved N-terminal lipase domain and an EDS1-specific KNEDT motif. Subcellular localization assay revealed that GbEDS1-green fluorescence protein fusion protein was localized in both cytosol and nucleus. Interestingly, the transcript levels of GbEDS1 were dramatically increased in response to pathogen V. dahliae infection. To investigate the role of GbEDS1 in plant resistance against V. dahliae, a conserved fragment derived from GbEDS1 was used to knockdown the endogenous EDS1 in Nicotiana benthamiana by heterologous virus-induced gene silencing. Our data showed that silencing of NbEDS1 resulted in increased susceptibility to V. dahliae infection in N. benthamiana, suggesting a possible involvement of the novelly isolated GbEDS1 in the regulation of plant defense against V. dahliae.

  7. Molecular Cloning and Functional Analysis of Squalene Synthase 2(SQS2) in Salvia miltiorrhiza Bunge

    Science.gov (United States)

    Rong, Qixian; Jiang, Dan; Chen, Yijun; Shen, Ye; Yuan, Qingjun; Lin, Huixin; Zha, Liangping; Zhang, Yan; Huang, Luqi

    2016-01-01

    Salvia miltiorrhiza Bunge, which is also known as a traditional Chinese herbal medicine, is widely studied for its ability to accumulate the diterpene quinone Tanshinones. In addition to producing a variety of diterpene quinone, S. miltiorrhiza Bunge also accumulates sterol, brassinosteroid and triterpenoids. During their biosynthesis, squalene synthase (SQS, EC 2.5.1.21) converts two molecules of the hydrophilic substrate farnesyl diphosphate (FPP) into a hydrophobic product, squalene. In the present study, cloning and characterization of S. miltiorrhiza Bunge squalene synthase 2 (SmSQS2, Genbank Accession Number: KM408605) cDNA was investigated subsequently followed by its recombinant expression and preliminary enzyme activity. The full-length cDNA of SmSQS2 was 1 597 bp in length, with an open reading frame of 1 245 bp encoding 414 amino acids. The deduced amino acid sequence of SmSQS2 shared high similarity with those of SQSs from other plants. To obtain soluble recombinant enzymes, the truncated SmSQS2 in which 28 amino acids were deleted from the carboxy terminus was expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western Blot analysis, and the resultant bacterial crude extract was incubated with FPP and NADPH. Gas chromatograph-mass spectrometer analysis showed that squalene was detected in the in vitro reaction mixture. The gene expression level was analyzed through Quantitative real-time PCR, and was found to be higher in roots as compared to the leaves, and was up-regulated upon YE+ Ag+ treatment. These results could serve as an important to understand the function of the SQS family. In addition, the identification of SmSQS2 is important for further studies of terpenoid and sterol biosynthesis in S. miltiorrhiza Bunge. PMID:27605932

  8. Molecular cloning and characterization of three beta-defensins from canine testes.

    Science.gov (United States)

    Sang, Yongming; Ortega, M Teresa; Blecha, Frank; Prakash, Om; Melgarejo, Tonatiuh

    2005-05-01

    Mammalian beta-defensins are small cationic peptides possessing broad antimicrobial and physiological activities. Because dogs are particularly resilient to sexually transmitted diseases, it has been proposed that their antimicrobial peptide repertoire might provide insight into novel antimicrobial therapeutics and treatment regimens. To investigate this proposal, we cloned the full-length cDNA of three canine beta-defensin isoforms (cBD-1, -2, and -3) from canine testicular tissues. Their predicted peptides share identical N-terminal 65-amino-acid residues, including the beta-defensin consensus six-cysteine motif. The two longer isoforms, cBD-2 and -3, possess 4 and 34 additional amino acids, respectively, at the C terminus. To evaluate the antimicrobial activity of cBD, a 34-amino-acid peptide derived from the shared mature peptide region was synthesized. Canine beta-defensin displayed broad antimicrobial activity against gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus; MICs of 6 and 100 mug/ml, respectively), gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, and Neisseria gonorrhoeae; MICs of 20 to 50, 20, and 50 mug/ml, respectively), and yeast (Candida albicans; MIC of 5 to 50 mug/ml) and lower activity against Ureaplasma urealyticum and U. canigenitalium (MIC of 200 mug/ml). Antimicrobial potency was significantly reduced at salt concentrations higher than 140 mM. All three canine beta-defensins were highly expressed in testis. In situ hybridization indicated that cBD-1 was expressed primarily in Sertoli cells within the seminiferous tubules. In contrast, cBD-2 was located primarily within Leydig cells. The longest isoform, cBD-3, was detected in Sertoli cells and to a lesser extent in the interstitium. The tissue-specific expression and broad antimicrobial activity suggest that canine beta-defensins play an important role in host defense and other physiological functions of the male reproductive system. PMID:15845463

  9. Molecular Cloning and Functional Analysis of Squalene Synthase 2(SQS2) in Salvia miltiorrhiza Bunge.

    Science.gov (United States)

    Rong, Qixian; Jiang, Dan; Chen, Yijun; Shen, Ye; Yuan, Qingjun; Lin, Huixin; Zha, Liangping; Zhang, Yan; Huang, Luqi

    2016-01-01

    Salvia miltiorrhiza Bunge, which is also known as a traditional Chinese herbal medicine, is widely studied for its ability to accumulate the diterpene quinone Tanshinones. In addition to producing a variety of diterpene quinone, S. miltiorrhiza Bunge also accumulates sterol, brassinosteroid and triterpenoids. During their biosynthesis, squalene synthase (SQS, EC 2.5.1.21) converts two molecules of the hydrophilic substrate farnesyl diphosphate (FPP) into a hydrophobic product, squalene. In the present study, cloning and characterization of S. miltiorrhiza Bunge squalene synthase 2 (SmSQS2, Genbank Accession Number: KM408605) cDNA was investigated subsequently followed by its recombinant expression and preliminary enzyme activity. The full-length cDNA of SmSQS2 was 1 597 bp in length, with an open reading frame of 1 245 bp encoding 414 amino acids. The deduced amino acid sequence of SmSQS2 shared high similarity with those of SQSs from other plants. To obtain soluble recombinant enzymes, the truncated SmSQS2 in which 28 amino acids were deleted from the carboxy terminus was expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western Blot analysis, and the resultant bacterial crude extract was incubated with FPP and NADPH. Gas chromatograph-mass spectrometer analysis showed that squalene was detected in the in vitro reaction mixture. The gene expression level was analyzed through Quantitative real-time PCR, and was found to be higher in roots as compared to the leaves, and was up-regulated upon YE+ Ag(+) treatment. These results could serve as an important to understand the function of the SQS family. In addition, the identification of SmSQS2 is important for further studies of terpenoid and sterol biosynthesis in S. miltiorrhiza Bunge. PMID:27605932

  10. Molecular cloning and characterization of taurocyamine kinase from Clonorchis sinensis: a candidate chemotherapeutic target.

    Directory of Open Access Journals (Sweden)

    Jing-Ying Xiao

    2013-11-01

    Full Text Available BACKGROUND: Adult Clonorchis sinensis lives in the bile duct and causes endemic clonorchiasis in East Asian countries. Phosphagen kinases (PK constitute a highly conserved family of enzymes, which play a role in ATP buffering in cells, and are potential targets for chemotherapeutic agents, since variants of PK are found only in invertebrate animals, including helminthic parasites. This work is conducted to characterize a PK from C. sinensis and to address further investigation for future drug development. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] A cDNA clone encoding a putative polypeptide of 717 amino acids was retrieved from a C. sinensis transcriptome. This polypeptide was homologous to taurocyamine kinase (TK of the invertebrate animals and consisted of two contiguous domains. C. sinensis TK (CsTK gene was reported and found consist of 13 exons intercalated with 12 introns. This suggested an evolutionary pathway originating from an arginine kinase gene group, and distinguished annelid TK from the general CK phylogenetic group. CsTK was found not to have a homologous counterpart in sequences analysis of its mammalian hosts from public databases. Individual domains of CsTK, as well as the whole two-domain enzyme, showed enzymatic activity and specificity toward taurocyamine substrate. Of the CsTK residues, R58, I60 and Y84 of domain 1, and H60, I63 and Y87 of domain 2 were found to participate in binding taurocyamine. CsTK expression was distributed in locomotive and reproductive organs of adult C. sinensis. Developmentally, CsTK was stably expressed in both the adult and metacercariae stages. Recombinant CsTK protein was found to have low sensitivity and specificity toward C. sinensis and platyhelminth-infected human sera on ELISA. CONCLUSION: CsTK is a promising anti-C. sinensis drug target since the enzyme is found only in the C. sinensis and has a substrate specificity for taurocyamine, which is different from its mammalian counterpart

  11. Molecular cloning, characterization and expression of cathepsin D from grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Dong, Zhong-dian; Zhang, Jiao; Ji, Xiang-shan; Zhou, Fen-na; Fu, Yong; Chen, Weiyun; Zeng, Yong-qing; Li, Tong-ming; Wang, Hui

    2012-11-01

    Cathepsin D is a lysosomal aspartic proteinase which participates in various degradation functions within the cell. In this current study, we cloned and characterized the complete cDNA of grass carp cathepsin D through 5'- and 3'-RACE. The cathepsin D contained a 56 bp 5' terminal untranslated region (5'-UTR), a 1197 bp open reading frame encoding 398 amino acids, and a 394 bp 3'-UTR. Grass carp cathepsin D shared high similarity with those from other species, and showed the highest amino acid identity of 91% to Danio rerio. Unlike many other organisms, the grass carp cathepsin D contains only one N-glycosylation site closest to the N-terminal. Real-time quantitative RT-PCR demonstrated that Cathepsin D expressed in all twelve tissues (bladder, brain, liver, heart, gill, muscle, fin, eye, intestines, spleen, gonad and head kidney). The relative expression levels of Cathepsin D in gonad and liver were 26.58 and 24.95 times as much as those in fin, respectively. The expression level of Cathepsin D in muscle approximately 16-fold higher, in intestines and spleen were 12-fold higher. The cathepsin D expression showed an upward trend during embryonic development. After challenged with Aeromonas hydrophil, the expression of grass carp cathepsin D gene showed significant changes in the four test tissues (liver, head kidney, spleen and intestines). The fact that the bacterial infection can obviously improve the cathepsin D expression in immune-related organs, may suggest that cathepsin D plays an important role in the innate immune response of grass carp.

  12. Molecular cloning and sexually dimorphic expression of wnt4 in olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Weng, Shenda; You, Feng; Fan, Zhaofei; Wang, Lijuan; Wu, Zhihao; Zou, Yuxia

    2016-08-01

    WNT4 (wingless-type MMTV integration site family, member 4) is regarded as a key regulator of gonad differentiation in mammalians. However, the potential role of wnt4 in teleosts during gonad differentiation and development is still unclear. The full-length cDNA sequence of wnt4 in olive flounder (Paralichthys olivaceus) was obtained using RACE (rapid amplification of cDNA ends) technique. The wnt4 ORF contains 1059 nucleotides, encoding a protein with a signal peptide domain and a wnt family domain. Expression in tissues of adult flounders was analyzed by real-time RT-PCR. The results showed that wnt4 was widely expressed in multiple tissues of flounders, and the expression level was significantly higher in ovary than in testis. Then wnt4 expression pattern was investigated during gonadal differentiation period and at gonadal development stages (I-V). The results showed the expression levels were significantly higher in testis than in ovary during gonadal differentiation. Notably, wnt4 expression had a very significant increase before testis differentiation. At gonad different developmental stages, there was no expression signal at stage I or stage II, and the expression of wnt4 was much stronger in ovary than in testis at stage III and stage IV, followed by a faint expression in stage V in both sexes. Our results imply that cloned wnt4 could be wnt4a. It is a sex-related gene and its expression pattern in gonadal differentiation period of flounder is different from that in mammalians or other teleosts. Flounder wnt4 might play more important role in testis than in ovary during gonadal differentiation. PMID:26920537

  13. Molecular cloning and characterization of four caspases members in Apostichopus japonicus.

    Science.gov (United States)

    Shao, Yina; Li, Chenghua; Zhang, Weiwei; Duan, Xuemei; Li, Ye; Jin, Chunhua; Xiong, Jinbo; Qiu, Qiongfen

    2016-08-01

    The caspase family representing aspartate-specific cysteine proteases have been demonstrated to possess key roles in apoptosis and immune response. We previously demonstrated that LPS challenged Apostichopus japonicus coelomocyte could significantly induced apoptosis in vitro. However, apoptosis related molecules were scarcely investigated in this economic species. In the present work, we cloned and characterized four members caspase family from A. japonicus (designated as Ajcaspase-2, Ajcaspase-3, Ajcaspase-6, and Ajcaspase-8, respectively) by RACE. Multiple sequence alignment and structural analysis revealed that all Ajcaspases contained the conservative CASC domain at C terminal, in which some unique features for each Ajcaspase made them different from each other. These specific domains together with phylogenetic analysis supported that all these four identified proteins belonged to novel members of apoptotic signaling pathway in sea cucumber. Tissue distribution analysis revealed that four Ajcaspase genes were constitutively expressed in all examined tissues. The expression of Ajcaspase-2 was tightly correlated with that of Ajcaspase-8 in each detected tissues. Ajcaspase-3 and Ajcaspase-6 transcripts were both highly expressed in immune tissue of coelomocytes. Furthermore, the Vibrio splendidus challenged sea cucumber coelomocytes could significantly up-regulate the mRNA expressions of four genes. The expression levels of Ajcaspase-2 and Ajcaspase-8 were relative earlier than those of Ajcaspase-6 and Ajcaspase-3, respectively, which could be inferred that Ajcapase-2 might directly modulate Ajcaspase-6, and Ajcaspase-8 initiate the expression of Ajcaspase-3. The induce expressions differed among each Ajcaspase depending upon their roles such as initiator or effector caspase. All our results demonstrated that four Ajcaspases present diversified functions in apoptotic cascade signaling pathway of sea cucumber under immune response. PMID:27245866

  14. Molecular cloning of eucaryotic genes required for excision repair of UV-irradiated DNA: isolation and partial characterization of the RAD3 gene of Saccharomyces cerevisiae.

    OpenAIRE

    Naumovski, L; Friedberg, E C

    1982-01-01

    We describe the molecular cloning of a 6-kilobase (kb) fragment of yeast chromosomal DNA containing the RAD3 gene of Saccharomyces cerevisiae. When present in the autonomously replicating yeast cloning vector YEp24, this fragment transformed two different UV-sensitive, excision repair-defective rad3 mutants of S. cerevisiae to UV resistance. The same result was obtained with a variety of other plasmids containing a 4.5-kb subclone of the 6-kb fragment. The UV sensitivity of mutants defective ...

  15. Molecular cloning and DNA sequence analysis of Escherichia coli priA, the gene encoding the primosomal protein replication factor Y.

    OpenAIRE

    Nurse, P; DiGate, R J; Zavitz, K H; Marians, K J

    1990-01-01

    Escherichia coli replication factor Y (protein n') functions in the assembly of a mobile multiprotein replication-priming complex called the primosome. Although the role of factor Y in primosome assembly during replication in vitro of bacteriophage phi X174 and plasmid pBR322 DNA is clear, its role in E. coli chromosomal replication is not. To address this issue, the gene for factor Y has been cloned molecularly and its DNA sequence has been determined. The cloned fragment of DNA contained an...

  16. Cloning and molecular characterization of the murine macrophage "68-kDa" protein kinase C substrate and its regulation by bacterial lipopolysaccharide.

    OpenAIRE

    Seykora, J T; Ravetch, J V; Aderem, A

    1991-01-01

    We have isolated and characterized a cDNA clone encoding the murine macrophage 68-kDa protein kinase C substrate, which is homologous to the 80- to 87-kDa protein identified by the acronym MARCKS (myristoylated alanine-rich C kinase substrate). The murine MARCKS cDNA clone encodes an acidic protein of 309 amino acids with a calculated molecular weight of 29,661. Transfection of the murine MARCKS gene into TK-L fibroblasts produced a myristoylated protein kinase C substrate that migrated on SD...

  17. Purification, Biological Activities, and Molecular Cloning of a Novel Mannose-Binding Lectin from Bulbs of Zephyranthes candida Herb (Amaryllidaceae)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel mannose-binding agglutinin was purified from bulbs of Zephyranthes candida Herb by extraction,precipitation with 80% (NH4)2SO4, and ion-exchange chromatography on DEAE-Sepharose followed by gel filtration on Sephacryl S-100. The purified Z. candidaagglutinin (ZCA) migrated as a single band of 12 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and non-reducing conditions. The apparent molecular mass of the lectin, as determined by gel filtration chromatography, was 48 kDa. The results indicated that ZCA was composed of four identical subunits of 12 kDa each (homotetrameric nature). The ZCA agglutinated rabbit erythrocytes, Escherichia coli and Saccharomyces cerevisiae cells at concentrations of 0.95, 1.90,and 31.30 μg/mL, respectively. Bioassays indicated that ZCA has a significant effect on wheat aphid survival.Mortality after 7 d was > 90% at 0.26%. A degenerate primer was designed in accordance with the N-terminal partial sequence of purified ZCA. The full-length cDNA was cloned by 3'- and 5'-rapid amplification of cDNA ends.The full-length cDNA had 661 bp and the sequence encoded an open reading frame of 168 amino acids. The mature protein of ZCA includes 109 amino acid residues and the molecular weight of the protein was 12.1 kDa.The result show that the zca gene encodes a protein precursor with a signal peptide, a mature protein, and a Cterminal cleavage amino acids sequence. Molecular modeling of ZCA indicated that its three-dimensional structure strongly resembles that of the snowdrop agglutinin. Blocks' analysis revealed that the deduced amino acid sequence of ZCA has three functional domains specific for agglutination and three carbohydrate binding boxes (QDNY).

  18. Molecular cloning and characterization, and prokaryotic expression of the GnRH1 gene obtained from Jinghai yellow chicken.

    Science.gov (United States)

    Zhang, T; Zhang, G X; Han, K P; Tang, Y; Wang, J Y; Fan, Q C; Chen, X S; Wei, Y; Wang, Y J

    2015-01-01

    The gonadotropin-releasing hormone (GnRH) plays an important role in the control of reproductive functions. Recent studies have reported the occurrence of GnRH molecular variants in numerous species. In this study, the GnRH1 gene from Jinghai yellow chicken was cloned by reverse transcriptase-polymerase chain reaction and transformed into BL21 (DE3) competent cells. The GnRH1 gene and amino acid sequences were subjected to bioinformatic analyses. The GnRH1 gene nucleotide sequence was discovered to be 352 bp long, containing a coding, promoter, and section of the 3'-regions. The GnRH1 gene shared 93, 81, 54, 58, 61, 76, 76, 59, 76, and 66% sequence identity with Meleagris gallopavo, Columba livia, Homo sapiens, Bos taurus, swines, Capra hircus, Ovis aries, Pantholops hodgsonii, Equus caballus, and Rattus norvegicus, respectively. The GnRH1 gene showed conserved domains. The GnRH1 protein was a secreted protein comprising 92 amino acids, with a molecular weight of 10205.6 Da and a theoretical pI of 5.67. Most of the amino acid residues were observed to be hydrophilic, indicating water solubility. The predicted secondary structures of proteins included α-helices (h; 23.08%), β-extensions (e; 10.92%), and random coils (c; 66.0%). The successful construction of prokaryotic expression vector pET32a-GnRH1 was confirmed by restriction and sequence analysis. SDS-PAGE analysis showed the successful expression of recombinant plasmid in Escherichia coli BL21 (molecular weight = 25-28 kDa). Larger quantities of protein were expressed in supernatant, indicating greater expression in soluble form. Western blot analysis confirmed the expression of the target protein. PMID:25867433

  19. The Molecular Cloning and Expression Analysis of a CYP71 Gene in Ginkgo biloba L.

    OpenAIRE

    Liu, Xinliang; Cao, Fuliang; Jinfeng CAI; Wang, Huanli

    2016-01-01

    Cytochrome P450 monooxygenases (CYPs) are a group of redox proteins that catalyze various oxidative reactions in plant secondary metabolism. To explore the function of the CYP71 gene in Ginkgo biloba under biotic and abiotic stresses, a full-length CYP gene, designated GbCYP71, was first isolated and characterized from leaves of G. biloba. It contained a 1512-bp open reading frame (ORF) encoding 503 amino-acid-deduced polypeptide whose theoretical molecular weight was 56.9 kDa. The genomic DN...

  20. Molecular Cloning and Functional Analysis of the Duck TLR4 Gene

    OpenAIRE

    Chunyu Mu; Qi Xu; Guohong Chen; Guanghui Rong; Yang Zhang; Yang Chen; Wenming Zhao; Zhengyang Huang

    2013-01-01

    Toll-like receptor 4 (TLR4) recognizes pathogen-associated molecular patterns in some animals and has been shown to be closely associated with several diseases such as tumors, atherosclerosis, and asthma. However, its function in ducks is not clear. Alternative splicing of the TLR4 gene has been identified in pigs, sheep, mice, and other species, but has not yet been reported in the duck. In this study, alternative splicing of the duck TLR4 gene was investigated using reverse transcription-po...

  1. Molecular cloning, characterization and expression analysis of melanotransferrin from the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Qiu, Xuemei; Li, Dong; Cui, Jun; Liu, Yang; Wang, Xiuli

    2014-06-01

    Melanotransferrin (MTf), a member of the transferrin families, plays an important role in immune response. But the research about MTf in sea cucumber is limited till now. In this study, the Melanotransferrin (Aj-MTf) gene was firstly cloned and characterized from the sea cucumber Apostichoupus japonicus by reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of Aj-MTf is 2,840 bp in length and contains a 2,184 bp open reading frame that encodes a polypeptide of 727 amino acids. An iron-responsive element-like structure is located at the 5'-UTR of Aj-MTf cDNA. Sequence analysis shows that the Aj-MTf contains two conserved domains, and the binding-iron (III) sites, including eight amino acid residues (D81,Y109,Y215,H283,D425,Y454,Y565 and H634) and three N-linked glycosylation sites (N121V122S123,N173A174S175 and N673S674T675). Quantitative real-time polymerase chain reaction (qRT-PCR) analyses suggested that the Aj-MTf expressions in the coelomic fluid, body cavity wall and respiratory trees were significantly changed from 4 to 24 h post lipopolysaccharide (LPS) injection. The mRNA levels of Aj-MTf in coelomic fluid was significantly up-regulated at 12 and 24 h in treatment group, and Aj-MTf shared a similar expression pattern with C-type lectin in coelomic fluid, while both genes appears to gradually increase after 4 h of LPS injection. These results indicate that the Aj-MTf plays a pivotal role in immune responses to the LPS challenge in sea cucumber, and provide new information that it is complementary to the sea cucumber immune genes and initiate new researches concerning the genetic basis of the holothurian immune response. PMID:24535270

  2. Molecular Cloning and Characterization of an Allene Oxide Cyclase Gene Associated with Fiber Strength in Cotton

    Institute of Scientific and Technical Information of China (English)

    WANG Li-man; ZHU You-min; TONG Xiang-chao; HU Wen-jing; CAI Cai-ping; GUO Wang-zhen

    2014-01-01

    Allene oxide cyclase (AOC) is one of the most important enzymes in the biosynthetic pathway of the plant hormone jasmonic acid (JA). AOC catalyzes the conversion of allene oxide into 12-oxo-phytodienoic acid (OPDA), a precursor of JA. Using 28K cotton genome array hybridization, an expressed sequence tag (EST;GenBank accession no. ES792958) was investigated that exhibited signiifcant expression differences between lintless-fuzzless XinWX and linted-fuzzless XinFLM isogenic lines during ifber initiation stages. The EST was used to search the Gossypium EST database (http://www.ncbi.nlm.nih.gov/) for corresponding cDNA sequences encoding full-length open reading frames (ORFs). Identiifed ORFs were conifrmed using transcriptional and genomic data. As a result, a novel gene encoding AOC in cotton (Gossypium hirsutum AOC;GenBank accession no. KF383427) was cloned and characterized. The 741-bp GhAOC gene comprises three exons and two introns and encodes a polypeptide of 246 amino acids. Two homologous copies were identiifed in the tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124, and one copy in the diploid cotton species G. herbaceum and G. raimondii. qRT-PCR showed that the GhAOC transcript was abundant in cotton ifber tissues from 8 to 23 days post anthesis (DPA), and the expression proifles were similar in the two cultivated tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124, with a higher level of transcription in the former. One copy of GhAOC in tetraploid cotton was localized to chromosome 24 (Chr. D8) using the subgenome-speciifc single nucleotide polymorphism (SNP) marker analysis, which co-localized GhAOC to within 10 cM of a ifber strength quantitative trait locus (QTL) reported previously. GhAOC was highly correlated with ifber quality and strength (P=0.014) in an association analysis, suggesting a possible role in cotton ifber development, especially in secondary cell wall thickening.

  3. Molecular cloning, tissue distribution, and pharmacological characterization of melanocortin-4 receptor in spotted scat, Scatophagus argus.

    Science.gov (United States)

    Li, Jian-Tao; Yang, Zhao; Chen, Hua-Pu; Zhu, Chun-Hua; Deng, Si-Ping; Li, Guang-Li; Tao, Ya-Xiong

    2016-05-01

    Melanocortin-4 receptor (MC4R) plays an important role in the regulation of food intake and energy expenditure in mammals. The functions of the MC4R in fish have not been investigated extensively. We herein reported on the cloning, tissue distribution, and pharmacological characterization of spotted scat (Scatophagus argus) MC4R (SAMC4R). It consisted of a 984bp open reading frame predicted to encode a protein of 327 amino acids. Sequence analysis revealed that SAMC4R was highly homologous (>80%) at amino acid levels to several teleost MC4Rs. Phylogenetic analyses showed that SAMC4R was closely related to piscine MC4R. Using RT-PCR, we showed that in addition to brain, pituitary, and gonads, mc4r mRNA was also widely expressed in peripheral tissues of spotted scat in sexually divergent pattern. With human MC4R (hMC4R) as a control, several agonists including α-melanocyte stimulating hormone (α-MSH), [Nle(4), D-Phe(7)]-α-MSH (NDP-MSH), adrenocorticotropic hormone (ACTH) and THIQ (N-[(3R)-1,2,3,4-tetrahydroisoquinolinium3-ylcarbonyl]-(1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl)piperidin-1-yl]-2-oxoethylamine), were used to investigate the binding and signaling properties of SAMC4R. The results showed that SAMC4R bound NDP-MSH with the highest affinity followed by ACTH (1-24) and α-MSH. Similar ranking was also found for hMC4R, although SAMC4R had two to five-fold higher affinities for these ligands. THIQ did not displace NDP-MSH from SAMC4R, different from hMC4R. α-MSH, NDP-MSH, and ACTH (1-24) were identified as potent agonists to stimulate cAMP generation followed by THIQ in SAMC4R. The availability of SAMC4R and its pharmacological characteristics will facilitate the investigation of its function in regulating diverse physiological processes in spotted scat. PMID:27080551

  4. Molecular Cloning and Characterization of Human Homeobox Gene Nkx3.1 Promoter

    Institute of Scientific and Technical Information of China (English)

    An-LiJIANG; Jian-YeZHANG; CharlesYOUNG; Xiao-YanHU; Yong-MeiWANG; Zhi-FangLIU; Mei-LanHAO

    2004-01-01

    Nkx3.1 is a prostate-specific homeobox gene related strongly to prostate development and prostate cancer. To study its regulation of transcription, 1.06 kb 5′ flanking region of Nkx3.1 gene and its 5′ deletion mutants (861,617,417 and 238 bp) were obtained by PCR and cloned into pGL3-basic, a promoter-less luciferase reporter vector, to examine their promoter activities driving the reporter gene transcription, pRL-TK, a Renilla luciferase reporter vector was used as internal control, and pGL3-control and pGL3-basic were used as positive and negative control respectively. The promoter activities were determined by dual-luciferase reporter assay 48h after pGL3 constructs were cotransfected with pRL-TK into prostate cancer cell LNCaP. The results showed that dual-luciferase reporter assay (M/M2) of pGL3-1.06kb cotransfection with pRL-TK was 2.7, which was about 1.5-fold higher than that of pGL3-control cotransfection with pRL-TK and 50-fold higher than that of pGL3-basic cotransfection with pRL-TK. The results also showed that the relative activities (M1/M2) were 0.71, 0.84, 0.44 and 2.07 respectively for pGL3-861bp, pGL3-617bp, pGL3-417bp, pGL3-238bp, the last one still had 80% promoter activity compared with pGL3-1.06kb, which showed that deletion from 1.06kb to 238 bp had small effects on promoter activity. The conclusion was that the 238bp fragment containing a TATA box and two CAAT boxes had strong promoter activity. However, the deletion from 1.06kb to 861bp reduced activity 3.8-fold while the deletion from 417bp to 238bp enhanced activity 4.7-fold, which indicated that these deleted sequences might contain some important positive or negative regulatory elements. It will be important to identify the elements within the Nkx3.1 promoter that contribute to regulation of the gene transcription in the future studies.

  5. Molecular Cloning and Characterization of Human Homeobox Gene Nkx3.1 Promoter

    Institute of Scientific and Technical Information of China (English)

    An-Li JIANG; Jian-Ye ZHANG; Charles YOUNG; Xiao-Yan HU; Yong-Mei WANG; Zhi-Fang LIU; Mei-Lan HAO

    2004-01-01

    Nkx3.1 is a prostate-specific homeobox gene related strongly to prostate development andprostate cancer. To study its regulation of transcription, 1.06 kb 5 ′ flanking region of Nkx3.1 gene and its5 ′deletion mutants (861,617, 417 and 238 bp) were obtained by PCR and cloned into pGL3-basic, apromoter-less luciferase reporter vector, to examine their promoter activities driving the reporter genetranscription, pRL-TK, a Renilla luciferase reporter vector was used as internal control, and pGL3-controland pGL3-basic were used as positive and negative control respectively. The promoter activities were deter-mined by dual-luciferase reporter assay 48 h after pGL3 constructs were cotransfected with pRL-TK intoprostate cancer cell LNCaP. The results showed that dual-luciferase reporter assay (M1/M2) of pGL3-1.06 kbcotransfection with pRL-TK was 2.7, which was about 1.5-fold higher than that of pGL3-control cotrans-fection with pRL-TK and 50-fold higher than that of pGL3-basic cotransfection with pRL-TK. The resultsalso showed that the relative activities (M1/M2) were 0.71, 0.84, 0.44 and 2.07 respectively for pGL3-861 bp,pGL3-617 bp, pGL3-417 bp, pGL3-238 bp, the last one still had 80% promoter activity compared with pGL3-1.06 kb, which showed that deletion from 1.06 kb to 238 bp had small effects on promoter activity. Theconclusion was that the 238 bp fragment containing a TATA box and two CAAT boxes had strong promoteractivity. However, the deletion from 1.06 kb to 861 bp reduced activity 3.8-fold while the deletion from 417bp to 238 bp enhanced activity 4.7-fold, which indicated that these deleted sequences might contain someimportant positive or negative regulatory elements. It will be important to identify the elements within theNkx3.1 promoter that contribute to regulation of the gene transcription in the future studies.

  6. Molecular Cloning of Phytase Gene from ASUIA279 and Its Expression in Pichia pastoris System

    Directory of Open Access Journals (Sweden)

    M. H. Mahamad Maifiah

    2011-12-01

    Full Text Available Phytases catalyze the hydrolysis of phytate (myo-inositol hexakisphosphate, one of the major storage form of phosphate in plants, with subsequent release of myo-inositol, phosphate and phytate-bound minerals. Non-ruminant animals such as chicken, swine and fish can't use the organic phosphorus and minerals from their diet because there is no phytase activity in their digestive tract. Phytate degrading enzyme is added to the animal feed diet to improve phosphorus availability from the dietary phytate and at the same time this lessen the phosphate pollution level in areas of intensive animal production as the phosphate would not be excreted out to the environment. ASUIA279, a bacterial strain isolated from Malaysian soil has potentially shown good phytase activity. In the present work, the gene encoding for phytase has been amplified from the plasmid DNA of recombinant ASUIA279(5 obtained from a previous study (unpublished data by a polymerase chain reaction (PCR methodology. The amplified phytase gene was extracted, purified then cloned into the pPICZA plasmid and transformed into Pichia pastorisX-33 strain for enzyme production.ABSTRAK: Fitase pemangkinan hidrolisis fitat (myo-inositol hexakisphosphate, merupakan salah satu cara penyimpanan utama fosfat dalam tumbuhan, dengan pelepasan berturut myo-inositol , fosfat dan galian terikat fitat. Haiwan bukan ruminan seperti ayam, khinzir dan ikan tidak dapat memanfaatkan fosforus organik serta galian yang diperolehi daripada makanan kerana tidak mempunyai aktiviti fitase di dalam saluran pencernaan mereka. Enzim pengecilan fitase dicampurkan ke dalam pemakanan haiwan untuk mempertingkatkan keperolehan fosforus dari fitat diet. Pada masa yang sama ia dapat mengurangkan tahap pencemaran fosfat di kawasan yang terdapat penternakan haiwan secara intensif agar fosfat tidak dikumuhkan ke persekitaran. ASUIA279, satu strain bakteria yang diasingkan daripada tanih di Malaysiamenunjukkan aktiviti fitase

  7. Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans regia.

    Science.gov (United States)

    Xu, Feng; Deng, Guang; Cheng, Shuiyuan; Zhang, Weiwei; Huang, Xiaohua; Li, Linling; Cheng, Hua; Rong, Xiaofeng; Li, Jinbao

    2012-01-01

    Phenylalanine ammonia-lyase (PAL) is the first key enzyme of the phenypropanoid pathway. A full-length cDNA of PAL gene was isolated from Juglans regia for the first time, and designated as JrPAL. The full-length cDNA of the JrPAL gene contained a 1935bp open reading frame encoding a 645-amino-acid protein with a calculated molecular weight of about 70.4 kD and isoelectric point (pI) of 6.7. The deduced JrPAL protein showed high identities with other plant PALs. Molecular modeling of JrPAL showed that the 3D model of JrPAL was similar to that of PAL protein from Petroselinum crispum (PcPAL), implying that JrPAL may have similar functions with PcPAL. Phylogenetic tree analysis revealed that JrPAL shared the same evolutionary ancestor of other PALs and had a closer relationship with other angiosperm species. Transcription analysis revealed that JrPAL was expressed in all tested tissues including roots, stems, and leaves, with the highest transcription level being found in roots. Expression profiling analyses by real-time PCR revealed that JrPAL expression was induced by a variety of abiotic and biotic stresses, including UV-B, wounding, cold, abscisic acid and salicylic acid.

  8. MOLECULAR CLONING AND CHARACTERIZATION OF NOVEL THERMOSTABLE LIPASE FROM SHEWANELLA PUTREFACIENS AND USING ENZYMATIC BIODIESEL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Fahri Akbas

    2015-02-01

    Full Text Available A novel thermostable lipase from Shewanella putrefaciens was identified, expressed in Escherichia coli, characterized and used in biodiesel production. Enzyme characterization was carried out by enzyme assay, SDS-PAGE and other biochemical reactions. The recombinant lipase was found to have a molecular mass of 29 kDa and exhibited lipase activity when Tween 80 was used as the substrate. The purified enzyme showed maximum activity at pH 5.0 and at 80°C. The recombinant lipase was used for the transesterification of canola oil and waste oil. The enzyme retains 50% of its activity at 90°C for 30 minutes. It is also able to retain 20% of its activity even at 100 °C for 20 minutes. These properties of the obtained new recombinant thermostable lipase make it promising as a biocatalyst for industrial processes.

  9. Genetic diversity of clones of acerola assessed by ISSR molecular markers

    Directory of Open Access Journals (Sweden)

    Eveline Nogueira Lima

    2015-07-01

    Full Text Available The Indian cherry (Malpighia emarginata is a tropical fruit originated from American continent. In Brazilian orchards, there was high variability among cultivated genotypes. On the order hand, high variability allows the identification of superior genotypes for cropping industry. This study aimed to evaluate the genetic variability among 56 genotypes using ISSR (Inter Simple Sequence Repeats primers. Leaf samples were collected in Pacajus-CE and taken to the laboratory of Molecular Biology postharvest, in Fortaleza. Altogether, 20 primers were used which yielded 148 polymorphic bands (79.57%, enabling the differentiation within the population study. As a result, this information may be used in future studies on breeding programs, such as choosing best combinations for parental crossings.

  10. Molecular cloning and characterization of alpha - galactosidase gene from Glaciozyma antarctica

    Science.gov (United States)

    Moheer, Reyad Qaed Al; Bakar, Farah Diba Abu; Murad, Abdul Munir Abdul

    2015-09-01

    Psychrophilic enzymes are proteins produced by psychrophilic organisms which recently are the limelight for industrial applications. A gene encoding α-galactosidase from a psychrophilic yeast, Glaciozyma antarctica PI12 which belongs to glycoside hydrolase family 27, was isolated and analyzed using several bioinformatic tools. The cDNA of the gene with the size of 1,404-bp encodes a protein with 467 amino acid residues. Predicted molecular weight of protein was 48.59 kDa and hence we name the gene encoding α-galactosidase as GAL48. We found that the predicted protein sequences possessed signal peptide sequence and are highly conserved among other fungal α-galactosidase.

  11. Molecular Cloning and Yeast Expression of Cinnamate 4-Hydroxylase from Ornithogalum saundersiae Baker

    Directory of Open Access Journals (Sweden)

    Jian-Qiang Kong

    2014-01-01

    Full Text Available OSW-1, isolated from the bulbs of Ornithogalum saundersiae Baker, is a steroidal saponin endowed with considerable antitumor properties. Biosynthesis of the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1 is known to take place biochemically via the phenylpropanoid biosynthetic pathway, but molecular biological characterization of the related genes has been insufficient. Cinnamic acid 4-hydroxylase (C4H, EC 1.14.13.11, catalyzing the hydroxylation of trans-cinnamic acid to p-coumaric acid, plays a key role in the ability of phenylpropanoid metabolism to channel carbon to produce the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1. Molecular isolation and functional characterization of the C4H genes, therefore, is an important step for pathway characterization of 4-methoxybenzoyl group biosynthesis. In this study, a gene coding for C4H, designated as OsaC4H, was isolated according to the transcriptome sequencing results of Ornithogalum saundersiae. The full-length OsaC4H cDNA is 1,608-bp long, with a 1,518-bp open reading frame encoding a protein of 505 amino acids, a 55-bp 5′ non-coding region and a 35-bp 3'-untranslated region. OsaC4H was functionally characterized by expression in Saccharomyces cerevisiae and shown to catalyze the oxidation of trans-cinnamic acid to p-coumaric acid, which was identified by high performance liquid chromatography with diode array detection (HPLC-DAD, HPLC-MS and nuclear magnetic resonance (NMR analysis. The identification of the OsaC4H gene was expected to open the way to clarification of the biosynthetic pathway of OSW-1.

  12. Molecular Cloning, Expression Analysis, and Preliminarily Functional Characterization of the Gene Encoding Protein Disulfide Isomerase from Jatropha curcas.

    Science.gov (United States)

    Wang, Haibo; Zou, Zhurong; Gong, Ming

    2015-05-01

    Reactive oxygen species (ROS) in plants, arising from various environmental stresses, impair the thiol-contained proteins that are susceptible to irregular oxidative formation of disulfide bonds, which might be alleviated by a relatively specific modifier called protein disulfide isomerase (PDI). From our previous data of the transcriptome and digital gene expression of cold-hardened Jatropha curcas, a PDI gene was proposed to be cold-relevant. In this study, its full-length cDNA (JcPDI) was cloned, with the size of 1649 bp containing the entire open reading frame (ORF) of 1515 bp. This ORF encodes a polypeptide of 504 amino acids with theoretical molecular weight of 56.6 kDa and pI value of 4.85. One N-terminal signal peptide (-MASKGSIWSCMFLFSLI VAISAGEG-) and the C-terminal anchoring sequence motif (-KDEL-) specific to the endoplasmic reticulum, as well as two thioredoxin domains (-CGHC-), are also found by predictions. Through semi-quantitative RT-PCR, the expression of JcPDI was characterized to be tissue-differential strongly in leaves and roots, but weakly in stems, and of cold-induced alternations. Furthermore, JcPDI overexpression in yeast could notably enhance the cold resistance of host cells. Conclusively, these results explicitly suggested a considerable association of JcPDI to cold response and a putative application potential for its correlated genetic engineering. PMID:25825250

  13. Molecular cloning and expression in Escherichia coli of an active fused Zea mays L. D-amino acid oxidase.

    Science.gov (United States)

    Gholizadeh, A; Kohnehrouz, B B

    2009-02-01

    D-Amino acid oxidase (DAAO) is an FAD-dependent enzyme that metabolizes D-amino acids in microbes and animals. However, such ability has not been identified in plants so far. We predicted a complete DAAO coding sequence consisting of 1158 bp and encoding a protein of 386 amino acids. We cloned this sequence from the leaf cDNA population of maize plants that could utilize D-alanine as a nitrogen source and grow normally on media containing D-Ala at the concentrations of 100 and 1000 ppm. For more understanding of DAAO ability in maize plant, we produced a recombinant plasmid by the insertion of isolated cDNA into the pMALc2X Escherichia coli expression vector, downstream of the maltose-binding protein coding sequence. The pMALc2X-DAAO vector was used to transform the TB1 strain of E. coli cells. Under normal growth conditions, fused DAAO (with molecular weight of about 78 kDa) was expressed up to 5 mg/liter of bacterial cells. The expressed product was purified by affinity chromatography and subjected to in vitro DAAO activity assay in the presence of five different D-amino acids. Fused DAAO could oxidize D-alanine and D-aspartate, but not D-leucine, D-isoleucine, and D-serine. The cDNA sequence reported in this paper has been submitted to EMBL databases under accession number AM407717. PMID:19267668

  14. Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile Geobacillus sp. EPT9.

    Science.gov (United States)

    Zhu, Yanbing; Li, Hebin; Ni, Hui; Xiao, Anfeng; Li, Lijun; Cai, Huinong

    2015-02-01

    A gene (1,254 bp) encoding a lipase was identified from a deep-sea hydrothermal field thermophile Geobacillus sp. EPT9. The open reading frame of this gene encoded 417 amino acid residues. The gene was cloned, overexpressed in Escherichia coli, and the target protein was purified to homogeneity. The purified recombinant enzyme presented a molecular mass of 44.8 kDa. When p-nitrophenyl palmitate was used as a substrate, the recombinant lipase was optimally active at 55 °C and pH 8.5. The recombinant enzyme retained 44 % residual activity after incubation at 80 °C for 1 h, which indicated that Geobacillus sp. EPT9 lipase was thermostable. Homology modeling of strain EPT9 lipase was developed with the lipase from Bacillus sp. L2 as a template. The core structure exhibits an α/β-hydrolase fold and the typical catalytic triad might consist of Ser142, Asp346, and His387. The enzymatic activity of EPT9 lipase was inhibited by addition of phenylmethylsulfonyl fluoride, indicating that it contains serine residue, which plays an important role in the catalytic mechanism.

  15. Molecular Cloning and Functional Expression of a Δ9- Fatty Acid Desaturase from an Antarctic Pseudomonas sp. A3.

    Science.gov (United States)

    Garba, Lawal; Mohamad Ali, Mohd Shukuri; Oslan, Siti Nurbaya; Rahman, Raja Noor Zaliha Raja Abd

    2016-01-01

    Fatty acid desaturase enzymes play an essential role in the synthesis of unsaturated fatty acids. Pseudomonas sp. A3 was found to produce a large amount of palmitoleic and oleic acids after incubation at low temperatures. Using polymerase Chain Reaction (PCR), a novel Δ9- fatty acid desaturase gene was isolated, cloned, and successfully expressed in Escherichia coli. The gene was designated as PA3FAD9 and has an open reading frame of 1,185 bp which codes for 394 amino acids with a predicted molecular weight of 45 kDa. The activity of the gene product was confirmed via GCMS, which showed a functional putative Δ9-fatty acid desaturase capable of increasing the total amount of cellular unsaturated fatty acids of the E. coli cells expressing the gene. The results demonstrate that the cellular palmitoleic acids have increased two-fold upon expression at 15°C using only 0.1 mM IPTG. Therefore, PA3FAD9 from Pseudomonas sp.A3 codes for a Δ9-fatty acid desaturase-like protein which was actively expressed in E. coli. PMID:27494717

  16. Molecular Cloning and Expression Analysis of a MADS-Box Gene (GbMADS2 from Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Xiaohui WANG

    2015-04-01

    Full Text Available As a kind of transcription factors gene family, MADS-box genes play an important role in plant development processes. To find genes involved in the floral transition of Ginkgo biloba, a MADS-box gene, designated as GbMADS2, was cloned from G. biloba based on EST sequences by RT-PCR. Sequence analysis results showed that the cDNA sequence of GbMADS2 contained a 663 bp length ORF encoding 221 amino acids protein, which displayed typical structure of plant MADS-box protein including MADS, I, and K domains and C terminus. The sequence of GbMADS2 protein was highly homologous to those of MADS-box proteins from other plant species with the highest homologous to AGAMOUS (CyAG from Cycas revoluta. The phylogenetic tree analysis revealed that GbMADS2 belonged to AGAMOUS clade genes. Real-time PCR analysis indicated that expression levels of GbMADS2 gene in female and male flower were significantly higher than those in root, stem, and leaves, and that GbMADS2 expression level increased along with time of flower development. The spatial and time-course expression profile of GbMADS2 implied that GbMADS2 might be involved in development of reproductive organs. The isolation and expression analysis of GbMADS2 provided basis for further studying the molecular mechanism of flower development in G. biloba.

  17. Molecular cloning and expression analysis of GABA(A) receptor-associated protein (GABARAP) from small abalone, Haliotis diversicolor.

    Science.gov (United States)

    Bai, Rongyao; You, Weiwei; Chen, Jun; Huang, Heqing; Ke, Caihuan

    2012-10-01

    GABA(A) receptor-associated protein (GABARAP), a multifunctional protein participating in autophagy process, is evolutionarily conserved and involves in innate immunity in eukaryotic cells, but currently there is no research on the relationship between GABARAP and innate immunity in mollusc. In the present study, the GABARAP full-length cDNA and its genomic DNA were firstly cloned from small abalone (Haliotis diversicolor), which was named as saGABARAP. Its full-length cDNA is 963 bp with a 354 bp open reading frame encoding a protein of 117 aa, a 276 bp 5'-UTR, and a 333 bp 3'-UTR including a poly(A) tail, two typical polyadenylation signals (AATAA) and two RNA instability motifs (ATTTA). The deduced protein has an estimated molecular weight of 13.9 kDa and a predicted PI of 8.73. Its genomic DNA comprises 4352 bp, containing three exons and two introns. Quantitative real-time PCR analysis revealed that saGABARAP was constitutively expressed in all examined tissues, with the highest expression level in hepatopancreas, and was upregulated in hepatopancreas and hemocytes after bacterial challenge. In addition, saGABARAP was ubiquitously expressed at all examined embryonic and larval development stages. These results suggested that saGABARAP could respond to bacteria challenge and may play a vital role in the adult innate immune system against pathogens and the development process of abalone embryo and larvae.

  18. Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1).

    Science.gov (United States)

    Yang, A H; Yeh, K W

    2005-06-01

    A cDNA clone, designated CeCPI, encoding a novel phytocystatin was isolated from taro corms (Colocasia esculenta) using both degenerated primers/RT-PCR amplification and 5'-/3'-RACE extension. The full-length cDNA gene is 1,008 bp in size, encodes 206 amino acid residues, with a deduced molecular weight of 29 kDa. It contains a conserved reactive site motif Gln-Val-Val-Ser-Gly of cysteine protease inhibitors, and another consensus ARFAV sequence for phytocystatin. Sequence analysis revealed that CeCPI is phylogenetically closely related to Eudicots rather than to Monocots, despite taro belonging to Monocot. Recombinant GST-CeCPI fusion protein was overexpressed in Escherichia coli and its inhibitory activity against papain was identified on gelatin/SDS-PAGE. These results confirmed that recombinant CeCPI protein exhibited strong cysteine protease inhibitory activity. Investigation of its antifungal activity clearly revealed a toxic effect on the mycelium growth of phytopathogenic fungi, such as Sclerotium rolfsii Sacc. etc., at a concentration of 80 microg recombinant CeCPI/ ml. Moreover, mycelium growth was completely inhibited and the sclerotia lysed at a concentration of 150-200 microg/ml. Further studies have demonstrated that recombinant CeCPI is capable of acting against the endogenous cysteine proteinase in the fungal mycelium.

  19. Molecular cloning of amphioxus uncoupling protein and assessment of its uncoupling activity using a yeast heterologous expression system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kun [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China); Sun, Guoxun [Department of Hematology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001 (China); Lv, Zhiyuan; Wang, Chen [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China); Jiang, Xueyuan, E-mail: xueyuanjiang@yahoo.com.cn [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China); Li, Donghai, E-mail: lidonghai@gmail.com [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China); Zhang, Chenyu, E-mail: cyzhang@nju.edu.cn [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China)

    2010-10-01

    Research highlights: {yields} Invertebrates, for example amphioxus, do express uncoupling proteins. {yields} Both the sequence and the uncoupling activity of amphioxus UCP resemble UCP2. {yields} UCP1 is the only UCP that can form dimer on yeast mitochondria. -- Abstract: The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functional similarity of amphioxus UCP to mammalian UCP1 and -2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.

  20. Molecular cloning of the heat shock protein 20 gene from Paphia textile and its expression in response to heat shock

    Science.gov (United States)

    Li, Jiakai; Wu, Xiangwei; Tan, Jing; Zhao, Ruixiang; Deng, Lingwei; Liu, Xiande

    2015-07-01

    P. textile is an important aquaculture species in China and is mainly distributed in Fujian, Guangdong, and Guangxi Provinces. In this study, an HSP20 cDNA designated PtHSP20 was cloned from P. textile. The full-length cDNA of PtHSP20 is 1 090 bp long and contains a 5' untranslated region (UTR) of 93 bp, a 3' UTR of 475 bp, and an open reading frame (ORF) of 522 bp. The PtHSP20 cDNA encodes 173 amino acid residues and has a molecular mass of 20.22 kDa and an isoelectric point of 6.2. Its predicted amino acid sequence shows that PtHSP20 contains a typical α-crystallin domain (residues 77-171) and three polyadenylation signal-sequences at the C-terminus. According to an amino acid sequence alignment, PtHSP20 shows moderate homology to other mollusk sHSPs. PtHSP20 mRNA was present in all of the test tissues including the heart, digestive gland, adductor muscle, gonad, gill, and mantle, with the highest concentration found in the gonad. Under the stress of high temperature, the expression of PtHSP20 mRNA was down-regulated in all of the tissues except the adductor muscle and gonad.

  1. Gene cloning and molecular characterization of the Talaromyces thermophilus lipase catalyzed efficient hydrolysis and synthesis of esters.

    Science.gov (United States)

    Romdhane, Ines Belhaj-Ben; Frikha, Fakher; Maalej-Achouri, Inès; Gargouri, Ali; Belghith, Hafedh

    2012-02-15

    A genomic bank from Talaromyces thermophilus fungus was constructed and screened using a previously isolated fragment lipase gene as probe. From several clones isolated, the nucleotide sequence of the lipase gene (TTL gene) was completed and sequenced. The TTL coding gene consists of an open reading frame (ORF) of 1083bp encoding a protein of 269 Aa with an estimated molecular mass of 30kDa. The TTL belongs to the same gene family as Thermomyces lanuginosus lipase (TLL, Lipolase®), a well known lipase with multiple applications. The promoter sequence of the TTL gene showed the conservation of known consensus sequences PacC, CreA, Hap2-3-4 and the existence of a particular sequence like the binding sites of Oleate Response Element (ORE) and Fatty acids Responsis Element (FARE) which are similar to that already found to be specific of lipolytic genes in Candida and Fusarium, respectively. Northern blot analysis showed that the TTL expression was much higher on wheat bran than on olive oil as sole carbon source. Compared to the Lipolase®, this enzyme was found to be more efficient for the hydrolysis and the synthesis of esters; and its synthetic efficiency even reached 91.6% from Waste Cooking Oil triglycerides.

  2. Purification, characterization, and molecular cloning of a novel amine:pyruvate transaminase from Vibrio fluvialis JS17.

    Science.gov (United States)

    Shin, J-S; Yun, H; Jang, J-W; Park, I; Kim, B-G

    2003-06-01

    A transaminase from Vibrio fluvialis JS17 showing activity toward chiral amines was purified to homogeneity and its enzymatic properties were characterized. The transaminase showed an apparent molecular mass of 100 kDa as determined by gel filtration chromatography and a subunit mass of 50 kDa by MALDI-TOF mass spectrometry, suggesting a dimeric structure. The enzyme had an isoelectric point of 5.4 and its absorption spectrum exhibited maxima at 320 and 405 nm. The optimal pH and temperature for enzyme activity were 9.2 and 37 degrees C, respectively. Pyruvate and pyridoxal 5'-phosphate increased enzyme stability whereas (S)-alpha-methylbenzylamine reversibly inactivated the enzyme. The transaminase gene was cloned from a V. fluvialis JS17 genomic library. The deduced amino acid sequence (453 residues) showed significant homology with omega-amino acid:pyruvate transaminases (omega-APT) from various bacterial strains (80 identical residues with four omega-APTs). However, of 159 conserved residues in the four omega-APTs, 79 were not conserved in the transaminase from V. fluvialis JS17. Taken together with the sequence homology results, and the lack of activity toward beta-alanine (a typical amino donor for the omega-APT), the results suggest that the transaminase is a novel amine:pyruvate transaminase that has not been reported to date. PMID:12687298

  3. Molecular Cloning and Characterization of Pollen Development Related Gene RsMF2 from Raphanus sativus L.

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; CAO Jia-shu

    2005-01-01

    In the paper, the full length cDNA of RsMF2 gene, homologous with the BcMF2 gene encoding pollen-specific polygalacturonase of Chinese cabbage-pak-choi (Brassica campestris L. ssp. chinensis Makino) was cloned from Raphanus sativus L. cv. Yuanbai by PCR, with a pair of primer designed according to the coding sequence of BcMF2. The largest opening reading frame of RsMF2 gene is 1 266 bp in length and encodes a protein of 421 amino acids with a predicted molecular mass of 43.9 kDa. Sequence analysis revealed that it has three potential N-glycosylation sites and one polygalacturonase active position (RVTCGPGHGLSVGS). And the first 32 amino acids of the predicted RsMF2 protein form a N-terminal hydrophobic domain which displays the properties of a signal peptide. The predicted secondary structure composition for the protein has 6.9% helix, 42.0% sheet and 51.1% loop. Four domains which are highly conserved in the whole plant and fungal PGs is present in RsMF2. Phylogenetic analysis showed that RsMF2 falls into the category of clade-C, which includes PGs related to pollen. These results indicate that RsMF2 may act as polygalacturonase related to pollen development.

  4. Purification and molecular cloning of aspartic proteinases from the stomach of adult Japanese fire belly newts, Cynops pyrrhogaster.

    Science.gov (United States)

    Nagasawa, Tatsuki; Sano, Kaori; Kawaguchi, Mari; Kobayashi, Ken-Ichiro; Yasumasu, Shigeki; Inokuchi, Tomofumi

    2016-04-01

    Six aspartic proteinase precursors, a pro-cathepsin E (ProCatE) and five pepsinogens (Pgs), were purified from the stomach of adult newts (Cynops pyrrhogaster). On sodium dodecylsulfate-polyacrylamide gel electrophoresis, the molecular weights of the Pgs and active enzymes were 37-38 kDa and 31-34 kDa, respectively. The purified ProCatE was a dimer whose subunits were connected by a disulphide bond. cDNA cloning by polymerase chain reaction and subsequent phylogenetic analysis revealed that three of the purified Pgs were classified as PgA and the remaining two were classified as PgBC belonging to C-type Pg. Our results suggest that PgBC is one of the major constituents of acid protease in the urodele stomach. We hypothesize that PgBC is an amphibian-specific Pg that diverged during its evolutional lineage. PgBC was purified and characterized for the first time. The purified urodele pepsin A was completely inhibited by equal molar units of pepstatin A. Conversely, the urodele pepsin BC had low sensitivity to pepstatin A. In acidic condition, the activation rates of newt pepsin A and BC were similar to those of mammalian pepsin A and C1, respectively. Our results suggest that the enzymological characters that distinguish A- and C-type pepsins appear to be conserved in mammals and amphibians. PMID:26711235

  5. Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L.

    Science.gov (United States)

    Dong, Ruibin; Formentin, Elide; Losseso, Carmen; Carimi, Francesco; Benedetti, Piero; Terzi, Mario; Schiavo, Fiorella Lo

    2005-12-01

    Pteris vittata L. is a staggeringly efficient arsenic hyperaccumulator that has been shown to be capable of accumulating up to 23,000 microg arsenic g(-1), and thus represents a species that may fully exploit the adaptive potential of plants to toxic metals. However, the molecular mechanisms of adaptation to toxic metal tolerance and hyperaccumulation remain unknown, and P. vittata genes related to metal detoxification have not yet been identified. Here, we report the isolation of a full-length cDNA sequence encoding a phytochelatin synthase (PCS) from P. vittata. The cDNA, designated PvPCS1, predicts a protein of 512 amino acids with a molecular weight of 56.9 kDa. Homology analysis of the PvPCS1 nucleotide sequence revealed that it has low identity with most known plant PCS genes except AyPCS1, and the homology is largely confined to two highly conserved regions near the 5'-end, where the similarity is as high as 85-95%. The amino acid sequence of PvPCS1 contains two Cys-Cys motifs and 12 single Cys, only 4 of which (Cys-56, Cys-90/91, and Cys-109) in the N-terminal half of the protein are conserved in other known PCS polypeptides. When expressed in Saccharomyces cerevisae, PvPCS1 mediated increased Cd tolerance. Cloning of the PCS gene from an arsenic hyperaccumulator may provide information that will help further our understanding of the genetic basis underlying toxic metal tolerance and hyperaccumulation.

  6. Cloning, molecular characterization, and expression analysis of a nucleoporin gene (rgNUP98-96) from Rehmannia glutinosa.

    Science.gov (United States)

    Yang, Y H; Li, M J

    2015-01-01

    Nucleoporin 98 (NUP98) and nucleoporin 96 (NUP96) are essential components of the nuclear pore complex (NPC) in eukaryote cells. However, there is a lack of available information about complete Rehmannia glutinosa NUP98-96 (rgNUP98-96) sequences. Here, the full-length cDNA sequence of rgNUP96-98 was isolated from R. glutinosa using rapid amplification of cDNA ends (RACE) technology, based on a cloned cDNA sequence (GenBank accession No. JZ483329). The identified rgNUP98-96 was 3476 bp, and it encoded a 1041-amino acid peptide. The BLAST search analysis of rgNUP98-96 showed an intermediate degree of similarity (60-79%) to the NUP98-96 protein sequences of 34 other plants, including the dicotyledons Erythranthe guttata, Genlisea aurea, Coffea canephora, Nicotiana benthamiana, Solanum lycopersicum, and Solanum tuberosum. The phylogenetic analysis of NUP96-98 sequences indicated that R. glutinosa and E. guttata sequences shared the closest homology. The calculated molecular mass and predicted isolectric point of the complex protein were 117.6 kDa and 4.99, respectively. The secondary and three-dimensional structure studies illustrated that the rgNUP96-98 protein folded into a channel motif comprised of 34 alpha-helices, nine beta-strands, and several long loops. Using quantitative real-time PCR, the spatio-temporal expression patterns of rgNUP98-96 were analyzed in R. glutinosa, and the results indicated that rgNUP98-96 was highly expressed at the early stage of R. glutinosa tuberous root expansion, which is associated with a higher expression pattern in roots. The study provides a valuable foundation for further investigation of rgNUP96-98 molecular functions in R. glutinosa. PMID:26505455

  7. Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response.

    Science.gov (United States)

    Santa Brígida, Ailton Borges; dos Reis, Sávio Pinho; Costa, Carinne de Nazaré Monteirou; Cardoso, Cristina Michiko Yokoyama; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2014-03-01

    Cassava (Manihot esculenta Crantz) is one of the most important tropical crops showing tolerance to abiotic stress and adaptations to a wide range of environmental conditions. Here, we aimed to isolate and characterize the full-length cDNA and genomic sequences of a cassava translationally controlled tumor protein gene (MeTCTP), and evaluate its potential role in response to salt stress. The MeTCTP full-length cDNA sequence encodes for a deduced protein with 168 amino acid residues, with theoretical isoelectric point and molecular weight of 4.53 and 19 kDa, respectively, containing two putative signatures of TCTP family and one site for myristoylation. The MeTCTP genomic sequence includes four introns and five exons within a 1,643 bp coding region, and a 264 bp partial promoter sequence containing several putative cis-acting regulatory elements, among them, two putative GT-1 motifs, which may be related to response to sodium chloride (NaCl) and pathogen infection. Semi-quantitative RT-PCR assays showed that MeTCTP transcripts were higher in roots than leaves, and were significantly increased in detached leaves treated with NaCl. Furthermore, the recombinant MeTCTP conferred a protective function against salt stress in bacterial cells. We report for the first time the molecular cloning and characterization of a cassava TCTP with potential role in salt-stress response. Since salinity is one the most important abiotic factors affecting the production of crops worldwide, the MeTCTP gene could be a candidate gene for generation of salt tolerant crops.

  8. Full-length cDNA cloning, molecular characterization and differential expression analysis of peroxiredoxin 6 from Ovis aries.

    Science.gov (United States)

    Liu, Nan-Nan; Liu, Zeng-Shan; Lu, Shi-Ying; Hu, Pan; Li, Yan-Song; Feng, Xiao-Li; Zhang, Shou-Yin; Wang, Nan; Meng, Qing-Feng; Yang, Yong-Jie; Tang, Feng; Xu, Yun-Ming; Zhang, Wen-Hui; Guo, Xing; Chen, Xiao-Feng; Zhou, Yu; Ren, Hong-Lin

    2015-04-15

    Peroxiredoxin 6 (Prdx6), an important antioxidant enzyme that can eliminate reactive oxygen species (ROS) to maintain homeostasis, is a bifunctional protein that possesses the activities of both glutathione peroxidase and phospholipase A2. In this study, a novel full-length Prdx6 cDNA (OaPrdx6) was cloned from Sheep (Ovis aries) using rapid amplification of cDNA ends (RACE). The full-length cDNA of OaPrdx6 was 1753bp containing a 5'-untranslated region (UTR) of 93bp, a 3'-UTR of 985bp with a poly(A) tail, and an open reading frame (ORF) of 675bp encoding a protein of 224 amino acid residues with a predicted molecular weight of 25.07kDa. The recombinant protein OaPrdx6 was expressed and purified, and its DNA protection activity was identified. In order to analyze the Prdx6 protein expression in tissues from O. aries, monoclonal antibodies against OaPrdx6 were prepared. Western blotting results indicated that OaPrdx6 protein could be detected in heart, liver, spleen, lung, kidney, stomach, intestine, muscle, lymph node and white blood cells, and the highest expression was found in lung while the lowest expression in muscle. Compared to the normal sheep group, the mRNA transcription level of Prdx6 in buffy coat was up-regulated in the group infected with a virulent field strain of Brucella melitensis, and down-regulated in the group inoculated with a vaccine strain S2 of brucellosis. The results indicated that Prdx6 was likely to be involved in the host immune responses against Brucella infection, and probably regarded as a molecular biomarker for distinguishing between animals infected with virulent Brucella infection and those inoculated with vaccine against brucellosis. PMID:25712755

  9. Molecular Insights on the Transition of Non-invasive DCIS to Invasive ductal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Dihua YU

    2009-01-01

    @@ More than 90% of breast cancer-related deaths are caused by metastasis not primary tumor. To effectively reduce cancer mortality, it is extremely im-portant to predict the risk of, and to intervene in, the critical transition from non-invasive ductal carcinoma in situ (DCIS) to life-threatening invasive ductal carcinoma (IDC).

  10. Molecular cloning, characterization and differential expression of DRK1 in Sporothrix schenckii.

    Science.gov (United States)

    Hou, Binbin; Zhang, Zhenying; Zheng, Fangliang; Liu, Xiaoming

    2013-01-01

    The dimorphism of Sporothrix schenckii (S. schenckii) reflects a developmental switch in morphology and lifestyle that is necessary for virulence. DRK1, a hybrid histidine kinase, functions as a global regulator of dimorphism and virulence in Blastomyces dermatitidis (B. dermatitidis) and Histoplasma capsulatum (H. capsulatum). The partial cDNA sequence of DRK1 of S. schenckii, designated SsDRK1, was obtained using degenerate primers based on the conserved domain of the DRK1 of other fungi. The complete cDNA sequence of SsDRK1 was obtained by 5' and 3' RACE. The full-length cDNA is 4743 bp in size and has an open reading frame (ORF) of 4071 bp, encoding 1356 amino acid residues. The predicted molecular mass of SsDRK1 is 147.3 kDa with an estimated theoretical isoelectric point of 5.46. The deduced amino acid sequence of SsDRK1 shows 65% identity to that of B. dermatitidis. The SsDRK1 was predicted to be a soluble histidine kinase and to contain three parts: sensor domain, linker domain and functional domain. Quantitative real-time RT-PCR revealed that SsDRK1 was more highly expressed in the yeast stage compared with that in the mycelial stage, which indicated that the SsDRK1 may be involved in the dimorphic switch in S. schenckii.

  11. Genetic variability in mutated population of sugarcane clone NIA-98 through molecular markers (rapd and trap)

    International Nuclear Information System (INIS)

    Variability obtained from mutation breeding (gamma rays) was examined through molecular marker techniques (RAPD). A total of 85 loci were amplified, out of which 76.47% were polymorphic and 23.53% were monomorphic. Fragments size ranged from 220bp-2.1kb and fragments produced by various primers ranged from 3-13 with an average of 5 fragments per primer. The highest number of loci (13) was amplified with primer B-07, while the lowest number 3 with primer B-01. Results revealed that mutant P1 (20Gy) contained a specific segment of 2.03kb. Genetically most similar genotypes were P2 (10Gy) and P4 (20Gy) (95.55%) while most dissimilar genotypes were P4 (10Gy) and P3 (20Gy) (63.2%). On the basis of results achieved, the mutants could be divided into four clusters and three groups. Mutants P4 (40 Gy) and P4 (10 Gy) were genetically distinct from other mutants. (author)

  12. Catalase from the white shrimp Penaeus (Litopenaeus) vannamei: molecular cloning and protein detection.

    Science.gov (United States)

    Tavares-Sánchez, Olga L; Gómez-Anduro, Gracia A; Felipe-Ortega, Ximena; Islas-Osuna, Maria A; Sotelo-Mundo, Rogerio R; Barillas-Mury, Carolina; Yepiz-Plascencia, Gloria

    2004-08-01

    Catalase is an antioxidant enzyme that plays a very important role in the protection against oxidative damage by breaking down hydrogen peroxide. It is a very highly conserved enzyme that has been identified from numerous species including bacteria, fungi, plants and animals, but the information about catalase in crustaceans is very limited. A cDNA containing the complete coding sequence for catalase from the shrimp Penaeus (Litopenaeus) vannamei was sequenced and the mRNA was detected by RT-PCR in selected tissues. Catalase was detected in hepatopancreas crude extracts by Western blot analysis with anti-human catalase polyclonal antibodies. The nucleotide sequence is 1692 bp long, including a 72-bp 5'-UTR, a coding sequence of 1515 bp and a 104-bp 3'-UTR. The deduced amino acid sequence corresponds to 505 amino acids with high identity to invertebrate, vertebrate and even bacterial catalases and contains the catalytic residues His71, Asn144, and Tyr354. The predicted protein has a calculated molecular mass of 57 kDa; which coincides with the size of the subunit (approximately 55 kDa) and the tetrameric protein (approximately 230 kDa) detected in hepatopancreas extracts under native conditions. Catalase mRNA level was higher in hepatopancreas, followed by gills and was not detected in muscle. PMID:15325332

  13. Agouti signalling protein (ASIP) gene: molecular cloning, sequence characterisation and tissue distribution in domestic goose.

    Science.gov (United States)

    Zhang, J; Wang, C; Liu, Y; Liu, J; Wang, H Y; Liu, A F; He, D Q

    2016-06-01

    Agouti signalling protein (ASIP) is an endogenous antagonist of melanocortin-1 receptor (MC1R) and is involved in the regulation of pigmentation in mammals. The objective of this study was to identify and characterise the ASIP gene in domestic goose. The goose ASIP cDNA consisted of a 44-nucleotide 5'-terminal untranslated region (UTR), a 390-nucleotide open-reading frame (ORF) and a 45-nucleotide 3'-UTR. The length of goose ASIP genomic DNA was 6176 bp, including three coding exons and two introns. Bioinformatic analysis indicated that the ORF encodes a protein of 130 amino-acid residues with a molecular weight of 14.88 kDa and an isoelectric point of 9.73. Multiple sequence alignments and phylogenetic analysis showed that the amino-acid sequence of ASIP was conserved in vertebrates, especially in the avian species. RT-qPCR showed that the goose ASIP mRNA was differentially expressed in the pigment deposition tissues, including eye, foot, feather follicle, skin of the back, as well as in skin of the abdomen. The expression level of the ASIP gene in skin of the abdomen was higher than that in skin of the back. Those findings will contribute to further understanding the functions of the ASIP gene in geese plumage colouring. PMID:26750999

  14. Molecular cloning, structural analysis, and tissue expression of the TNNT3 gene in Guizhou black goat.

    Science.gov (United States)

    Chen, Haolin; Zhang, Jinhua; Yu, Bo; Li, Liang; Shang, Yishun

    2015-11-15

    The vertebrate fast skeletal troponin T (TNNT3) protein is an important regulatory and structural component of thin filaments in skeletal muscle, which improves meat quality traits of livestock and poultry. In this study, the troponin T isoforms from adult goat (skeletal muscle mRNA) were identified. We isolated the full-length coding sequence of the goat TNNT3 gene (GenBank: KM042888), analyzed its structure, and investigated its expression in different tissues from different aged goats (10, 30, 90, 180, and 360 days old). Real-time quantitative reverse transcription-polymerase chain reaction analyses revealed that Guizhou black goat TNNT3 was highly expressed in the biceps femoris muscle, abdominal muscle, and longissimus dorsi muscle (P0.05). Western blotting confirmed that the TNNT3 protein was expressed in the muscle tissues listed above, with the highest level found in the longissimus dorsi muscle, and the lowest level in the masseter muscle. In the 10 to 360day study period the TNNT3 protein expression level was the highest when the goats were 30 days old. A peptide, ASPPPAEVPEVHEEVH that may contribute to improved goat meat tenderness was identified. This study provides an insight into the molecular structure of the vertebrate TNNT3 gene. PMID:26187066

  15. Molecular Cloning and Characterization of a β-Galactosidase Gene Expressed Preferentially in Cotton Fibers

    Institute of Scientific and Technical Information of China (English)

    Heng-Mu ZHANG; Jin-Yuan LIU

    2005-01-01

    β-galactosidases (EC 3.2.1.23) constitute a widespread family of enzymes in plants that is thought to be involved in metabolism of cell wall polysaccharides. We reported herein the isolation of a fulllength cDNA encoding a typical β-galactosidase protein, designated GhGal1 (Gossypium hirsutum L.galactosidase), of 843 amino acids with a predicted molecular mass of nearly 94.8 kDa. In addition to a glycosyl hydrolase family 35 domain and a putative signal peptide, an unusual characteristic of GhGal 1 is that, at the C-terminus of the enzyme, a domain was found that is structurally related to a sea urchin egg lectin (SUEL-lectin) with D-galactose- and L-rhamnose-binding domains. Based on results from Southern blot, we estimated that there would be two copies of the GhGal1 gene per haploid genome of G. hirsutum.The transcripts of GhGal1 were regulated spatially and temporally and were present in very high abundance at the elongation stage of the cotton fiber. The expression pattern suggests that the GhGal1 gene could be involved in metabolism of the primary cell wall.

  16. Molecular cloning and characterisation of a Rab-binding GDP-dissociation inhibitor from Medicago truncatula.

    Science.gov (United States)

    Yaneva, Ivanka Asparuhova; Niehaus, Karsten

    2005-03-01

    We have isolated and sequenced the full-length cDNA of a GDP-dissociation inhibitor (GDI) from the model legume Medicago truncatula L. The cDNA (MtGDI) contains an open reading frame of 1335 bp, coding for a protein of 444 amino acids with a calculated molecular mass of 49,785 kDa. The deduced amino acid sequence shows significant homology to other plant GDIs, the highest homology being found to GDI from the legume Cicer arietinum (96% identity). The MtGDI was expressed as a N-terminal FLAG-fusion protein in Escherichia coli BL21 (DE3). Its direct interaction with a small G protein of Rab type from Medicago sativa, MsRab11f, was demonstrated in vitro by co-immunoprecipitation using a peptide-specific antibody raised against MtGDI. The dissociation constant of the MtGDI-MsRab11f complex (4 muM) was determined by a surface plasmon resonance (SPR) assay. Real-time RT-PCR and Western blot analyses suggested that MtGDI is ubiquitously expressed in M. truncatula. High levels of MtGDI mRNA were detected in uninfected roots, leaves and root nodules. In etiolated seedlings and cell cultures, the amount of MtGDI mRNA was much lower. In all tissues tested, the peptide-specific anti-MtGDI antibody detected the expected 50 kDa protein in the total protein extracts. MtGDI was found in the cytosol; however, a significant fraction was associated with the intracellular membranes in seedlings and roots indicating a membrane localisation of the protein. A second immunoreactive band was detected in leaves suggesting that more than one GDI isoform exist in M. truncatula. PMID:15854828

  17. Molecular cloning, organellar targeting and developmental expression of mitochondrial chaperone HSP60 in Toxoplasma gondii.

    Science.gov (United States)

    Toursel, C; Dzierszinski, F; Bernigaud, A; Mortuaire, M; Tomavo, S

    2000-12-01

    The obligate intracellular protozoan parasite Toxoplasma gondii has a single tubular mitochondrion. During infection, it recruits the host cell's mitochondria abutting to the intracellular vacuole, that contains the parasites. The respective contribution of host and parasitic mitochondria in the intracellular growth of T. gondii remains unknown. Heat shock protein, HSP60 has been reported in all eukaryotes examined, as an essential chaperone required for the folding and multimeric complex assembly of mitochondrial proteins. Here, we report the isolation and molecular characterization of two cDNAs corresponding to a single T. gondii gene coding for HSP60. Using a model fusion protein, preHSP60-chloramphenicol acetyl transferase (CAT), we demonstrate that the classical 22 amino acid mitochondrial presequence and the adjacent 32 amino acids of the mature protein are both required for the in vivo import into T. gondii mitochondria. The T. gondii HSP60 gene composed of five introns and six exons is transcribed into two related but differently spliced transcripts. Whereas the two transcripts can be detected in both developmental stages within the intermediate host, their levels are significantly increased in bradyzoites when compared to tachyzoites. By immunoblot analysis, the predicted 60-kDa protien corresponding to HSP60 was detected in both tachyzoite and bradyzoite forms. Using immunofluorescence assays. the polyclonal antibodies specific to T. gondii HSP60 recognized the mitochondrion in tachyzoites, as expected. In contrast, these antibodies reacted against two unknown vesicular bodies which are distinct from the classical mitochondrial pattern in bradyzoites. Taken together. these expression patterns of mitochondrial chaperone HSP60 suggests stage-specific induction of the respiratory pathway in the protozoan parasite T. gondii.

  18. Molecular Cloning and Functional Analysis of Three FLOWERING LOCUS T (FT Homologous Genes from Chinese Cymbidium

    Directory of Open Access Journals (Sweden)

    Weiting Huang

    2012-09-01

    Full Text Available The FLOWERING LOCUS T (FT gene plays crucial roles in regulating the transition from the vegetative to reproductive phase. To understand the molecular mechanism of reproduction, three homologous FT genes were isolated and characterized from Cymbidium sinense “Qi Jian Bai Mo”, Cymbidium goeringii and Cymbidium ensifolium “Jin Si Ma Wei”. The three genes contained 618-bp nucleotides with a 531-bp open reading frame (ORF of encoding 176 amino acids (AAs. Alignment of the AA sequences revealed that CsFT, CgFT and CeFT contain a conserved domain, which is characteristic of the PEBP-RKIP superfamily, and which share high identity with FT of other plants in GenBank: 94% with OnFT from Oncidium Gower Ramsey, 79% with Hd3a from Oryza sativa, and 74% with FT from Arabidopsis thaliana. qRT-PCR analysis showed a diurnal expression pattern of CsFT, CgFT and CeFT following both long day (LD, 16-h light/8-h dark and short day (SD, 8-h light/16-h dark treatment. While the transcripts of both CsFT and CeFT under LD were significantly higher than under SD, those of CgFT were higher under SD. Ectopic expression of CgFT in transgenic Arabidopsis plants resulted in early flowering compared to wild-type plants and significant up-regulation of APETALA1 (AP1 expression. Our data indicates that CgFT is a putative phosphatidylethanolamine-binding protein gene in Cymbidium that may regulate the vegetative to reproductive transition in flowers, similar to its Arabidopsis ortholog.

  19. Molecular cloning and characterization of a flavanone 3-Hydroxylase gene from Artemisia annua L.

    Science.gov (United States)

    Xiong, Shuo; Tian, Na; Long, Jinhua; Chen, Yuhong; Qin, Yu; Feng, Jinyu; Xiao, Wenjun; Liu, Shuoqian

    2016-08-01

    Flavonoids were found to synergize anti-malaria and anti-cancer compounds in Artemisia annua, a very important economic crop in China. In order to discover the regulation mechanism of flavonoids in Artemisia annua, the full length cDNA of flavanone 3-hydroxylase (F3H) were isolated from Artemisia annua for the first time by using RACE (rapid amplification of cDNA ends). The completed open read frame of AaF3H was 1095 bp and it encoded a 364-amino acid protein with a predicted molecular mass of 41.18 kDa and a pI of 5.67. The recombinant protein of AaF3H was expressed in E. coli BL21(DE3) as His-tagged protein, purified by Ni-NTA agrose affinity chromatography, and functionally characterized in vitro. The results showed that the His-tagged protein (AaF3H) catalyzed naringenin to dihydrokaempferol in the present of Fe(2+). The Km for naringenin was 218.03 μM. The optimum pH for AaF3H reaction was determined to be pH 8.5, and the optimum temperature was determined to be 35 °C. The AaF3H transcripts were found to be accumulated in the cultivar with higher level of flavonoids than that with lower level of flavonoids, which implied that AaF3H was a potential target for regulation of flavonoids biosynthesis in Artemisia annua through metabolic engineering. PMID:27070290

  20. Molecular cloning and characterization of novel cystatin gene in leaves Cakile maritima halophyte.

    Science.gov (United States)

    Megdiche, Wided; Passaquet, Chantal; Zourrig, Walid; Zuily Fodil, Yasmine; Abdelly, Chedly

    2009-05-01

    Cakile maritima (Brassicaceae) is a halophyte that thrives on dunes along Mediterranean seashores, with high tolerance to salty and dry environments. We have previously shown that there is great morphological and physiological diversity between ecotypes. We investigated the expression of cysteine protease inhibitor (cystatin) genes in the response to hydric and saline constraints, as cystatins are known to participate in the response to environmental constraints in plants. We isolated, from C. maritime, a new cystatin cDNA (CmC) that encodes a 221 amino acid protein with a calculated molecular mass of 25 kDa. It displays a moderate-to-high amino acid sequence similarity with previously reported phytocystatin genes. The predicted protein is hydrophilic, with only one hydrophobic region, just at its N-terminus, and a calculated isoelectric point of 6.7. Sequence analysis revealed a monocystatin structure with one cystatin-like domain. The predicted protein CmC contains the main conserved motifs characteristic of the plant cystatins, and a putative site of phosphorylation by casein kinase II (TPSD). As some cystatins, it contains a C-terminal extension of 106 amino acid residues, with several conserved cystatin motifs. The expression was constitutive in non-stressed plants, with different levels between the ecotypes, and without apparent relation to the climatic area of origin. Augmented expression was observed under severe salinity except in the ecotype from the arid region. Water deficit also increased CmC expression in two ecotypes, with the highest value observed in the ecotype from the humid region. These results indicate that C. maritima responds to high salinity and water deficit by expressing a cystatin gene that is a known component of defense against abiotic constraints or biotic aggression and survival machinery.

  1. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  2. Molecular cloning and characterization of a vacuolar H+₋pyrophosphatase from Dunaliella viridis.

    Science.gov (United States)

    Meng, Xiangzong; Xu, Zhengkai; Song, Rentao

    2011-06-01

    The halotolerant alga Dunaliella adapts to exceptionally high salinity and possesses efficient mechanisms for regulating intracellular Na(+). In plants, sequestration of Na(+) into the vacuole is driven by the electrochemical H(+) gradient generated by H(+) pumps, and this Na(+) sequestration is one mechanism that confers salt tolerance to plants. To investigate the role of vacuolar H(+) pumps in the salt tolerance of Dunaliella, we isolated the cDNA of the vacuolar proton-translocating inorganic pyrophosphatase (V-H(+)-PPase) from Dunaliella viridis. The DvVP cDNA is 2,984 bp in length, codes for a polypeptide of 762 amino acids and has 15 transmembrane domains. The DvVP protein is highly similar to V-H(+)-PPases from other green algae and higher plant species, in terms of its amino acid sequence and its transmembrane model. A phylogenetic analysis of V-H(+)-PPases revealed the close relationship of Dunaliella to green algal species of Charophyceae and land plants. The heterologous expression of DvVP in the yeast mutant G19 (Δena1-4) suppressed Na(+) hypersensitivity, and a GFP-fusion of DvVP localized to the vacuole membranes in yeast, indicating that DvVP encodes a functional V-H(+)-PPase. A northern blot analysis showed a decrease in the transcript abundance of DvVP at higher salinity in D. viridis cells, which is in contrast to the salt-induced upregulation of V-H(+)-PPase in some plants, suggesting that the expression of DvVP under salt stress may be regulated by different mechanisms in Dunaliella. This study not only enriched our knowledge about the biological functions of V-H(+)-PPases in different organisms but also improved our understanding of the molecular mechanism of salt tolerance in Dunaliella. PMID:21086174

  3. Molecular cloning, functional characterization, and evolutionary analysis of vitamin D receptors isolated from basal vertebrates.

    Directory of Open Access Journals (Sweden)

    Erin M Kollitz

    Full Text Available The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus, a 1R jawless fish; the little skate (Leucoraja erinacea, a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus, a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may

  4. Molecular Cloning and Functional Analysis of the Duck TLR4 Gene

    Directory of Open Access Journals (Sweden)

    Chunyu Mu

    2013-09-01

    Full Text Available Toll-like receptor 4 (TLR4 recognizes pathogen-associated molecular patterns in some animals and has been shown to be closely associated with several diseases such as tumors, atherosclerosis, and asthma. However, its function in ducks is not clear. Alternative splicing of the TLR4 gene has been identified in pigs, sheep, mice, and other species, but has not yet been reported in the duck. In this study, alternative splicing of the duck TLR4 gene was investigated using reverse transcription-polymerase chain reaction (RT-PCR. Duck TLR4 gene (duTLR4, accession number: KF278109 was found to consist of 3367 nucleotides of coding sequence. An alternative splice form, TLR4-b, was identified and shown by alignment to retain the intron between exons 1 and 2. Real-time quantitative polymerase chain reaction (qPCR analyses suggested that duTLR4-a (wild-type mRNA is widely expressed in various healthy tissues, whereas TLR4-b is expressed at only low levels. Following stimulation of normal duck embryo fibroblasts with lipopolysaccharide, the expression of both isoforms initially increased and then decreased. Expression of the wild-type isoform subsequently increased again, while that of the variant remained low. The expression levels of wild-type TLR4 were further analyzed by transient transfection of a pcDNA3.1(+-TLR4-a overexpression vector into duck embryo fibroblasts. qRT-PCR analyses showed that after stimulation with LPS and poly(I:C the expression levels of IL-1β, IL6, and MHC II increased with a response-efficacy relationship. Our experimental results indicate that TLR4 plays an important role in resistance to both bacterial and viral infections in the duck.

  5. Molecular cloning and characterization of a flavanone-3-hydroxylase gene from rubus occidentalis L

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Sik; Lee, Eun Mi; An, Byung Chull; Barampuram, Shyamkumar; Kim, Jae Sung; Chung, Jae Sung [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Cho, Jae Young [Dept. of Applied Life Sciences, Chonbuk National University, Jeonju (Korea, Republic of); Lee, In Chul [Senior Industry Cluster Agency, Youngdong University, Youngdong (Korea, Republic of)

    2008-08-15

    Flavanone-3-hydroxylase (F3H) is one of the key enzymes for the biosynthesis of flavonals, anthocyanins, catechins and proanthocyanins. F3H catalyzes the 3β-hydroxylation of (2S)-flavonones to form (2R, 3R)-dihydroflavonols. In this report, we isolated a full-length cDNA of RocF3H from black raspberry (Rubus occidentalis L.) using a reverse transcriptase-PCR and rapid amplification of the cDNA ends (RACE)-PCR. The full-length cDNA of RocF3H contains a 1,098 bp open reading frame (ORF) encoding a 365 amino acid protein with a calculated molecular weight of about 41.1 kDa and isoelectric point (pI) of 5.45. The genomic DNA analysis revealed that the RocF3H gene had three exons and two introns. Comparison of the deduced amino acid sequence of the RocF3H with other F3Hs revealed that the protein is highly homologous with various plant species. The conserved amino acids ligating the ferrous iron and the residues participating in the 2-oxoglutarate binding (R-X-S) were found in RocF3H at the similar positions to other F3Hs. Southern blot analysis indicated that RocF3H exist a multi-gene family. The isolation of RocF3H gene will be helpful to further study the role of F3H gene in the biosynthesis of flavonoids in R. occidnetalis.

  6. Molecular cloning, characterization, and expression analysis of a heat shock protein (HSP) 70 gene from Paphia undulata.

    Science.gov (United States)

    Wu, Xiangwei; Tan, Jing; Cai, Mingyi; Liu, Xiande

    2014-06-15

    In this study, a full-length HSP70 cDNA from Paphia undulata was cloned using reverse transcriptase polymerase chain reaction (RT-PCR) coupled with rapid amplification of cDNA ends (RACE). The full-length cDNA is 2,351 bp, consisting of a 5'-untranslated region (UTR) of 83 bp, a 3'-UTR of 315 bp, and an open reading frame (ORF) of 1,953 bp. This cDNA encodes 650 amino acids with an estimated molecular weight of 71.3 kDa and an isoelectric point of 5.51. Based on the amino acid sequence analysis and phylogenetic analysis, this HSP70 gene was identified as a member of the cytoplasmic HSP70 family, being the constitutive expression, and it was designated as PuHSC70. The distribution of PuHSC70 mRNA in the mantle, digestive gland, adductor muscle, gonad, gill, heart, and hemocytes suggested that PuHSC70 is ubiquitously expressed. The mRNA levels of PuHSC70 under high temperature and high salinity stresses were analyzed by real-time PCR. Under high temperature stress of 32°C, PuHSC70 mRNA in the mantle, digestive gland, gill, and heart was significantly up-regulated at 1h and 2h, and it was then progressively down-regulated. In the adductor muscle, the level of PuHSC70 mRNA gradually increased throughout the study period; the mRNA levels in the gonad and hemocytes increased significantly at 4h and 8h (Padductor muscle, hemocytes, and heart were significantly increased, reaching a maximum at 24h, and then they gradually decreased; moreover, in the heart, the mRNA expression recovered to the pretreatment level at 50h; while in the adductor muscle and hemocytes, the expression level remained higher than that of the control. The cloning and expression analyses of PuHSC70 provide theoretical basis to further study the mechanism of physiological response to thermal and high salinity stresses. PMID:24726551

  7. The role of 5'-adenylylsulfate reductase in the sulfur assimilation pathway of soybean: molecular cloning, kinetic characterization, and gene expression

    Science.gov (United States)

    Soybean seeds are a major source of protein, but contain low levels of sulfur-containing amino acids. With the objective of studying the sulfur assimilation pathway of soybean, a full-length cDNA clone for 5’-adenylylsulfate reductase (APS reductase) was isolated and characterized. The cDNA clone ...

  8. Molecular cloning, characterization and regulation of two different NADH-glutamate synthase cDNAs in bean nodules

    Science.gov (United States)

    NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) is a key enzyme in primary ammonia assimilation in bean (Phaseolus vulgaris L.) nodules. Two different types of cDNA clones of PvNADH-GOGAT were isolated from two independent nodule cDNA libraries. The full-length cDNA clones of PvNADH-GOGA...

  9. Construction of recombinants between molecular clones of murine retrovirus MCF 247 and Akv: determinant of an in vitro host range property that maps in the long terminal repeat.

    OpenAIRE

    Holland, C A; Wozney, J; Chatis, P A; Hopkins, N.; Hartley, J W

    1985-01-01

    The leukemogenic mink cell focus-forming (MCF) retroviruses such as MCF 247 have biological properties distinct from those of their ecotropic progenitors. Nucleotide sequences encoding portions of gp70, Prp15E, and the long terminal repeat differ between the two types of viruses. To investigate the role of each of these genetic elements in determining the biological properties of MCF viruses, we prepared infectious molecular clones of MCF 247 and generated a set of recombinants between these ...

  10. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae.

    OpenAIRE

    Boyd, J.; Oza, M N; Murphy, J. R.

    1990-01-01

    Although the structural gene for diphtheria toxin, tox, is carried by a family of closely related corynebacteriophages, the regulation of tox expression is controlled, to a large extent, by its bacterial host Corynebacterium diphtheriae. Optimal yields of tox gene products are obtained only when iron becomes the growth-rate-limiting substrate. Previous studies suggest that regulation of tox expression is mediated through an iron-binding aporepressor. To facilitate molecular cloning of the tox...

  11. Total and high molecular weight adiponectin and hepatocellular carcinoma with HCV infection.

    Directory of Open Access Journals (Sweden)

    Shuji Sumie

    Full Text Available BACKGROUND: Adiponectin is shown to be inversely associated with development and progression of various cancers. We evaluated whether adiponectin level was associated with the prevalence and histological grade of hepatocellular carcinoma (HCC, and liver fibrosis in patients with hepatitis C virus (HCV infection. METHODS: A case-control study was conducted on 97 HCC patients (cases and 97 patients (controls matched for sex, Child-Pugh grade and platelet count in patients with HCV infection. The serum total and high molecular weight (HMW adiponectin levels were measured by enzyme-linked immunosorbent assays and examined in their association with the prevalence of HCC. In addition, the relationship between these adiponectin levels and body mass index (BMI, progression of liver fibrosis, and histological grade of HCC was also evaluated. Liver fibrosis was assessed using the aspartate aminotransferase to platelet ratio index (APRI. RESULTS: There were no significant differences in the serum total and HMW adiponectin levels between cases and controls. Moreover, there were no inverse associations between serum total and HMW adiponectin levels and BMI in both cases and controls. On the other hand, serum total and HMW adiponectin levels are positively correlated with APRI in both cases (r = 0.491, P<0.001 and r = 0.485, P<0.001, respectively and controls (r = 0.482, P<0.001 and r = 0.476, P<0.001, respectively. Interestingly, lower serum total (OR 11.76, 95% CI: 2.97-46.66 [P<0.001] and HMW (OR 10.24, CI: 2.80-37.40 [P<0.001] adiponectin levels were independent risk factors of worse histological grade of HCC. CONCLUSIONS: Our results suggested that serum total and HMW adiponectin levels were predictors of liver fibrosis, but not prevalence of HCC in patients with HCV infection. Moreover, low these adiponectin levels were significantly associated with worse histological grades.

  12. Positional cloning of ZNF217 and NABC1: genes amplified at 20q13.2 and overexpressed in breast carcinoma.

    Science.gov (United States)

    Collins, C; Rommens, J M; Kowbel, D; Godfrey, T; Tanner, M; Hwang, S I; Polikoff, D; Nonet, G; Cochran, J; Myambo, K; Jay, K E; Froula, J; Cloutier, T; Kuo, W L; Yaswen, P; Dairkee, S; Giovanola, J; Hutchinson, G B; Isola, J; Kallioniemi, O P; Palazzolo, M; Martin, C; Ericsson, C; Pinkel, D; Albertson, D; Li, W B; Gray, J W

    1998-07-21

    We report here the molecular cloning of an approximately 1-Mb region of recurrent amplification at 20q13.2 in breast cancer and other tumors and the delineation of a 260-kb common region of amplification. Analysis of the 1-Mb region produced evidence for five genes, ZNF217, ZNF218, and NABC1, PIC1L (PIC1-like), CYP24, and a pseudogene CRP (Cyclophillin Related Pseudogene). ZNF217 and NABC1 emerged as strong candidate oncogenes and were characterized in detail. NABC1 is predicted to encode a 585-aa protein of unknown function and is overexpressed in most but not all breast cancer cell lines in which it was amplified. ZNF217 is centrally located in the 260-kb common region of amplification, transcribed in multiple normal tissues, and overexpressed in all cell lines and tumors in which it is amplified and in two in which it is not. ZNF217 is predicted to encode alternately spliced, Kruppel-like transcription factors of 1,062 and 1,108 aa, each having a DNA-binding domain (eight C2H2 zinc fingers) and a proline-rich transcription activation domain. PMID:9671742

  13. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Leffers, H;

    1992-01-01

    as MRP 14, L1, or calprotectin; calgranulin A or MRP 8; and cystatin A or stefin A. Here, we have cloned and sequenced the cDNA (clone 1592) encoding a new member of this group of low-molecular-weight proteins [isoelectric focusing (IEF) SSP 3007 in the keratinocyte 2D gel protein database] that we have...

  14. Why Clone?

    Science.gov (United States)

    ... How might cloning be used in medicine? Cloning animal models of disease Much of what researchers learn ... the first place, such as habitat destruction and hunting. But cloning may be one more tool that ...

  15. Molecular Characterization of Methicillin Resistant Staphylococcus aureus Strains Isolated from Intensive Care Units in Iran: ST22-SCCmec IV/t790 Emerges as the Major Clone.

    Directory of Open Access Journals (Sweden)

    Mehdi Goudarzi

    Full Text Available The emergence of methicillin-resistant Staphylococcus aureus (MRSA in different patient populations is a major public health concern. This study determined the prevalence and distribution of circulating molecular types of MRSA in hospitalized patients in ICU of hospitals in Tehran.A total of 70 MRSA isolates were collected from patients in eight hospitals. Antimicrobial resistance patterns were determined using the disk diffusion method. The presence of toxin encoding genes and the vancomycin resistance gene were determined by PCR. The MRSA isolates were further analyzed using multi-locus sequence, spa, SCCmec, and agr typing.The MRSA prevalence was 93.3%. Antimicrobial susceptibility testing revealed a high resistance rate (97.1% to ampicillin and penicillin. The rate of resistance to the majority of antibiotics tested was 30% to 71.4%. Two isolates belonging to the ST22-SCCmec IV/t790 clone (MIC ≥ 8 μg/ml had intermediate resistance to vancomycin. The majority of MRSA isolates (24.3% were associated with the ST22-SCCmec IV/t790 clone; the other MRSA clones were ST859-SCCmec IV/t969 (18.6%, ST239-SCCmec III/t037 (17.1%, and ST291-SCCmec IV/t030 (8.6%.The circulating MRSA strains in Iranian hospitals were genetically diverse with a relatively high prevalence of the ST22-SCCmec IV/t790 clone. These findings support the need for future surveillance studies on MRSA to better elucidate the distribution of existing MRSA clones and detect emergence of new MRSA clones.

  16. Molecular cloning and identification of naturally occurring human antisense angiopoietin-1: Gna-1

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Keman

    2001-01-01

    ., Chromosomal analysis of Nicotiana asymmetric somatic hybrids by dot blotting and in situ hybridization, Mol .Gen. Genet., 1990, 222: 97-103.[12]Buiteveld, J., Suo, Y., van Lookeren Campagne, M. M. et al., Production and characterization of somatic hybrid plants between leek (Allium ampeloprasum L.) and onion (Allium cepa L.), Theor. Appl. Genet., 1998, 96: 765-775.[13]Wolters, A. M. A., Schoenmakers, H. C. H., Kamstra, S. et al., Mitotic and meiotic irregularities in somatic hybrids of Ly-copersicon esculentum and Solanum tuberosum, Genome, 1994, 37: 726-735.[14]Shieder, O., Somatic hybrids or Datura irnoxia Mill + Datura discolor Bernn and of Datiura irnoxia Mill + Datura stra-monium L. var tatula L (I)-- Selection and characterization, Mol. Gen. Genet., 1978, 162: 113-119.[15]Handley, L. W., Nickels, R. L., Cameron, M. W. et al., Somatic hybrid plants between Lycopersicon esculentum and Sola-num lycopersicoides, Theor. Appl. Genet., 1986, 71: 691-697.[16]Preiszner, J., Feher, A., Veisz, O. et al., Characterization of morphological variation and cold resistance in interspecific somatic hybrids between potato (Solanum tuberosum L.) and S. brevidens Phil., Euphytica, 1991, 57: 37-49.[17]Polgar, Z. S., Preiszner, J., Dudits, D. et al., Vigorous growth of fusion products allows highly efficient selection of inter-specific potato somatic hybrids: molecular proofs, Plant Cell Reports, 1993, 12: 399-402.[18]Xia, G. M., Wang, H., Chen, H. M., Plant regeneration from intergeneric asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Russian wildrye (Psathyrostichs juncea (Fisch) Neveski) and couch grass (Agropyron elonga-tum Host Neviski), Chin. Sci. Bull., 1996, 41(15): 1423-1426.

  17. High-resolution mapping, cloning and molecular characterization of the Pi-k ( h ) gene of rice, which confers resistance to Magnaporthe grisea.

    Science.gov (United States)

    Sharma, T R; Madhav, M S; Singh, B K; Shanker, P; Jana, T K; Dalal, V; Pandit, A; Singh, A; Gaikwad, K; Upreti, H C; Singh, N K

    2005-12-01

    In order to understand the molecular mechanisms involved in the gene-for-gene type of pathogen resistance, high-resolution genetic and physical mapping of resistance loci is required to facilitate map-based cloning of resistance genes. Here, we report the molecular mapping and cloning of a dominant gene (Pi-k ( h )) present in the rice line Tetep, which is associated with resistance to rice blast disease caused by Magnaporthe grisea. This gene is effective against M. grisea populations prevalent in the Northwestern Himalayan region of India. Using 178 sequence tagged microsatellite, sequence-tagged site, expressed sequence tag and simple sequence repeat (SSR) markers to genotype a population of 208 F(2) individuals, we mapped the Pi-k ( h ) gene between two SSR markers (TRS26 and TRS33) which are 0.7 and 0.5 cM away, respectively, and can be used in marker-assisted-selection for blast-resistant rice cultivars. We used the markers to identify the homologous region in the genomic sequence of Oryza sativa cv. Nipponbare, and a physical map consisting of two overlapping bacterial artificial chromosome and P1 artificial chromosome clones was assembled, spanning a region of 143,537 bp on the long arm of chromosome 11. Using bioinformatic analyses, we then identified a candidate blast-resistance gene in the region, and cloned the homologous sequence from Tetep. The putative Pi-k ( h ) gene cloned from Tetep is 1.5 kbp long with a single ORF, and belongs to the nucleotide binding site-leucine rich repeat class of disease resistance genes. Structural and expression analysis of the Pi-k ( h ) gene revealed that its expression is pathogen inducible. PMID:16228246

  18. Molecular Genetic Alterations in Renal Cell Carcinomas With Tubulocystic Pattern: Tubulocystic Renal Cell Carcinoma, Tubulocystic Renal Cell Carcinoma With Heterogenous Component and Familial Leiomyomatosis-associated Renal Cell Carcinoma. Clinicopathologic and Molecular Genetic Analysis of 15 Cases.

    Science.gov (United States)

    Ulamec, Monika; Skenderi, Faruk; Zhou, Ming; Krušlin, Božo; Martínek, Petr; Grossmann, Petr; Peckova, Kvetoslava; Alvarado-Cabrero, Isabel; Kalusova, Kristyna; Kokoskova, Bohuslava; Rotterova, Pavla; Hora, Milan; Daum, Ondrej; Dubova, Magdalena; Bauleth, Kevin; Slouka, David; Sperga, Maris; Davidson, Whitney; Rychly, Boris; Perez Montiel, Delia; Michal, Michal; Hes, Ondrej

    2016-08-01

    The characteristic morphologic spectrum of tubulocystic renal cell carcinoma (TC-RCC) may include areas resembling papillary RCC (PRCC). Our study includes 15 RCCs with tubulocystic pattern: 6 TC-RCCs, 1 RCC-high grade with tubulocystic architecture, 5 TC-RCCs with foci of PRCC, 2 with high-grade RCC (HGRCC) not otherwise specified, and 1 with a clear cell papillary RCC/renal angiomyoadenomatous tumor-like component. We analyzed aberrations of chromosomes 7, 17, and Y; mutations of VHL and FH genes; and loss of heterozygosity at chromosome 3p. Genetic analysis was performed separately in areas of classic TC-RCC and in those with other histologic patterns. The TC-RCC component demonstrated disomy of chromosome 7 in 9/15 cases, polysomy of chromosome 17 in 7/15 cases, and loss of Y in 1 case. In the PRCC component, 2/3 analyzable cases showed disomy of chromosome 7 and polysomy of chromosome 17 with normal Y. One case with focal HGRCC exhibited only disomy 7, whereas the case with clear cell papillary RCC/renal angiomyoadenomatous tumor-like pattern showed polysomies of 7 and 17, mutation of VHL, and loss of heterozygosity 3p. FH gene mutation was identified in a single case with an aggressive clinical course and predominant TC-RCC pattern. The following conclusions were drawn: (1) TC-RCC demonstrates variable status of chromosomes 7, 17, and Y even in cases with typical/uniform morphology. (2) The biological nature of PRCC/HGRCC-like areas within TC-RCC remains unclear. Our data suggest that heterogenous TC-RCCs may be associated with an adverse clinical outcome. (3) Hereditary leiomyomatosis-associated RCC can be morphologically indistinguishable from "high-grade" TC-RCC; therefore, in TC-RCC with high-grade features FH gene status should be tested. PMID:26447894

  19. Immunohistochemistry panel segregates molecular types of hepatocellular carcinoma in Brazilian autopsy cases

    Science.gov (United States)

    Felipe-Silva, Aloísio; Wakamatsu, Alda; dos Santos Cirqueira, Cinthya; Alves, Venâncio Avancini Ferreira

    2016-01-01

    AIM: To assess the distribution of proteins coded by genes reported as relevant for the molecular classification of hepatocellular carcinoma (HCC). METHODS: In this retrospective cross-sectional study, the following clinicopathological data were analyzed in 80 autopsied HCC patients: sex, age, ethnicity, alcohol intake, infection with hepatitis B and/or C virus, infection with human immunodeficiency virus, prior treatment, basic and immediate causes of death, liver weight, presence of cirrhosis, number and size of nodules, gross pattern, histological grade and variants, architectural pattern, invasion of large veins, and presence and location of extrahepatic metastases. The protein products of genes known to be involved in molecular pathogenesis of HCC, including epidermal growth factor receptor (EGFR), MET, keratin 19 (K19), vimentin, beta-catenin, mechanistic target of rapamycin (mTOR), extracellular signaling-related kinase (ERK)1, ERK2, Ki67, cyclin D1, caspase 3 and p53, were detected by immunohistochemistry on tissue microarrays. The expression levels were scored and statistically assessed for correlation with HCC parameters. RESULTS: Infection with hepatitis C virus was identified in 49% of the 80 autopsy patients, cirrhosis in 90%, advanced tumors in 95%, and extrahepatic metastases in 38%. Expression of K19, p53 and ERK1 correlated to high-grade lesions. Expression of ERK1, nuclear beta-catenin, cyclin D1 and ERK2 correlated to higher rates of cell proliferation as determined by Ki67. Expression of MET, EGFR (> 0) and caspase 3 correlated with lower histological grades. Expression of EGFR correlated to that of caspase 3, and overexpression of EGFR (≥ 200/300) was observed in low-grade tumors more frequently (grades 1 and 2: 67% vs grade 3: 27% and grade 4: 30%). Expression of ERK1 was associated with that of K19 and vimentin, whereas expression of ERK2 was associated with that of cyclin D1, MET and membrane beta-catenin. Expression of vimentin was

  20. Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity.

    OpenAIRE

    Brickman, T J; Barry, C E; Hackstadt, T

    1993-01-01

    Two DNA-binding proteins with similarity to eukaryotic histone H1 have been described in Chlamydia trachomatis. In addition to the 18-kDa histone H1 homolog Hc1, elementary bodies of C. trachomatis possess an antigenically related histone H1 homolog, which we have termed Hc2, that varies in apparent molecular mass among strains. We report the molecular cloning, expression, and nucleotide sequence of the hctB gene encoding Hc2 and present evidence for in vivo DNA-binding activity of the expres...

  1. Molecular cloning and sequence analysis of factor C cDNA from the Singapore horseshoe crab, Carcinoscorpius rotundicauda.

    Science.gov (United States)

    Ding, J L; Navas, M A; Ho, B

    1995-03-01

    Two forms of Factor C cDNAs: CrFC21 (3448 bp) and CrFC26 (4182 bp) have been cloned into lambda gt22. CrFC26 includes 568 nucleotides of 5' untranslated region (5' UTR) containing seven ATGs before the real initiation site, an open reading frame (ORF) of 3249 nucleotides, a stop codon, and 365 nucleotides of 3' untranslated sequence. There are four polyadenylation signals and six potential glycosylation sites. The ORF codes for a signal peptide of 24 amino acids and a Factor C zymogen of 1059 residues. The CrFC21 lacks most of the 5' UTR, and has some base changes in its ORF. The predicted secondary mRNA structures of the 5' end of CrFC26 showed numerous stem-and-loop structures, thus obscuring its real start codon. In contrast, CrFC21 has a well-exposed AUG start site, and expresses Factor C in transcription-translation reactions in vitro. There is a typical serine protease catalytic triad of Asp-His-Ser, which is structurally like prothrombin, but catalytically more similar to trypsin. Although an overall homology of 97.7% was observed in comparison with the Tachypleus tridentatus Factor C (TtFC) cDNA, there were notable differences in the restriction sites and subtle base substitutions in the CrFC cDNA. The high degree of homology between Factor C from T. tridentatus and C. rotundicauda substantiates, at the molecular level, the proximity of these two species in the course of evolution. This finding contravenes the apparent disparities with respect to their morphology, ecological habitat, and taxonomical classification. PMID:7538401

  2. Molecular cloning and gene expression analysis of cystatin C-like proteins in spinyhead croaker Collichthys lucidus.

    Science.gov (United States)

    Song, W; Jiang, K J; Zhang, F Y; Zhao, M; Ma, L B

    2016-01-01

    Cystatins are natural tight-binding reversible inhibitors of cysteine proteases. In this study, a cDNA library was constructed from Collichthys lucidus using the SMART technique. A complete cDNA sequence with high identity to the conserved sequence of the cystatin C gene was cloned from the library using EST analysis and rapid amplification of cDNA ends (RACE), then subjected to further investigation. The full-length cDNA of cystatin C from C. lucidus (Clcys) was 699 bp long, including a 5'-terminal untranslated region (5'-UTR) of 52 bp, a 3'-UTR of 290 bp, and an open-reading frame of 357 bp. The gene encoded a polypeptide of 118 amino acids, constituting a predicted molecular weight of 12.875 kDa and a theoretical isoelectric point of 8.81. The amino acid sequence of Clcys possessed typical features of type II cystatins and had the highest identity with cystatin C of Pseudosciaena crocea (89%); therefore, it clustered with the cystatin C group in the UPGMA phylogenetic tree. Quantitative real-time reverse transcription analysis revealed that the highest expression was found in the kidney, followed by the liver, heart, and testis, with the lowest expression in muscle. Interestingly, Clcys had relatively low identity with cystatin C genes from other fish and mammals, and its expression pattern did not possess features of a housekeeping gene. Based on these findings, we suspect that the classification of cystatins in fish is somewhat confusing, and the identification of more cystatin gene sequences is needed before a definite conclusion can be drawn. PMID:27050996

  3. PorcineLEM domain-containing 3:Molecular cloning, functional characterization, and polymorphism associated with ear size

    Institute of Scientific and Technical Information of China (English)

    LIANG Jing; SHI Hui-bi; ZHANG Qin; WANGLi-xian; LI Na; ZHANG Long-chao; WANGLi-gang; LIU Xin; ZHAO Ke-bin; YAN Hua; PU Lei; ZHANG Yue-bo

    2016-01-01

    Ear size exhibits remarkable diversity in pig breeds.LEM domain-containing 3 (LEMD3) on chromosome 5 is considered as an important candidate for porcine ear size. This is the ifrst study on cloning and characterization ofLEMD3 cDNA. The complete cDNA contains 4843 bp, including a 2736-bp open reading frame (ORF), a 37-bp 5´-untranslated region (UTR) and a 2070-bp 3´-UTR. The completeLEMD3 gene is 126241-bp and contains 13 exons and 12 introns. The ORF encodes a deduced LEMD3 protein of 911 amino acids, which shares 82–94% nucleic acid and 51–96% amino acid identity with other species. A phylogenetic tree constructed based on the amino acid sequences revealed that the porcine LEMD3 protein was closely related with cattle LEMD3. Resequencing of the ORF and promoter ofLEMD3 from Minzhu pig and Large White revealed three single nucleotide polymorphisms (SNPs): L964C>A in the complete coding region, L4625A>G in the 3´ UTR, and L-394T>C in the promoter region. Genome-wide association study (GWAS) revealed that al of SNPs were shown signiifcant association with ear size in Large White×Minzhu pig intercross population. With conditional GWAS, –log10(P-value) decreased by more than 80% when each of three SNPs was included as a ifxed effect. These results suggested direct involvement ofLEMD3 or close linkage to the causative mutation for ear size. The ifndings of this study might form the basis for understanding the genetic mechanism of ear size variation in pigs and provide potential molecular markers for screening ear size diversity in pig breeds.

  4. Molecular Cloning and Functional Characterization of a Salt Tolerance-Associated Gene IbNFU1 from Sweetpotato

    Institute of Scientific and Technical Information of China (English)

    WANG Lian-jun; HE Shao-zhen; ZHAI Hong; LIU De-gao; WANG Yan-nan; LIU Qing-chang

    2013-01-01

    Iron-sulfur cluster biosynthesis involving the nitrogen fixation (Nif) proteins has been proposed as a general mechanism acting in various organisms. NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses. Based on the EST sequence selected from salt-stressed suppression subtractive hybridization (SSH) cDNA library constructed with a salt-tolerant mutant LM79, a NFU gene, termed IbNFU1, was cloned from sweetpotato (Ipomoea batatas (L.) Lam.) via rapid amplification of cDNA ends (RACE). The cDNA sequence of 1 117 bp contained an 846 bp open reading frame encoding a 281 amino acids polypeptide with a molecular weight of 30.5 kDa and an isoelectric point (pI) of 5.12. IbNFU1 gene contained a conserved Cys-X-X-Cys motif in C-terminal of the iron-sulfur cluster domain. The deduced amino acid sequence had 66.08 to 71.99%sequence identity to NFU genes reported in Arabidopsis thaliana, Eucalyptus grandis and Vitis vinifera. Real-time quantitative PCR analysis revealed that the expression level of IbNFU1 gene was significantly higher in the roots of the mutant LM79 compared to the wild-type Lizixiang. Transgenic tobacco (cv. Wisconsin 38) plants expressing IbNFU1 gene exhibited significantly higher salt tolerance compared to the untransformed control plants. It is proposed that IbNFU1 gene has an important function for salt tolerance of plants.

  5. Molecular cloning, characterization and expression profiling of a ryanodine receptor gene in Asian corn borer, Ostrinia furnacalis (Guenee.

    Directory of Open Access Journals (Sweden)

    Li Cui

    Full Text Available Ryanodine receptor (RyR Ca(2+ release channel is the target of diamide insecticides, which show selective insecticidal activity against lepidopterous insects. To study the molecular mechanisms underlying the species-specific action of diamide insecticides, we have cloned and characterized the entire cDNA sequence of RyR from Ostrinia furnacalis (named as OfRyR. The OfRyR mRNA has an Open Reading Frame of 15324 bp nucleotides and encodes a 5108 amino acid polypeptide that displays 79-97% identity with other insects RyR proteins and shows the greatest identity with Cnaphalocrocis medinalis RyR (97%. Quantitative real-time PCR showed that the OfRyR was expressed at the lowest level in egg and the highest level in adult. The relative expression level of OfRyR in first, third and fifth-instar larva were 1.28, 1.19 and 1.99 times of that in egg. Moreover, two alternative splicing sites were identified in the OfRyR gene. One pair of mutually exclusive exons (a/b were present in the central part of the predicted SPRY domain, and an optional exon (c was located between the third and fourth RyR domains. Diagnostic PCR demonstrated that exons a and b existed in all developmental stages of OfRyR cDNA, but exon c was not detected in the egg cDNA. And the usage frequencies of these exons showed a significant difference between different developmental stages. These results provided the crucial basis for the functional expression of OfRyR and for the discovery of compound with potentially selective insect activtity.

  6. Molecular cloning and gene expression of the gonadotropin-releasing hormone receptor in the orange-spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Hsieh, S L; Chuang, H C; Nan, F H; Ruan, Y H; Kuo, C M

    2007-06-01

    The objective of this study was to investigate the molecular mechanisms of gonadotropin-releasing hormone receptor (GnRH-R) involved in the endocrine regulation of reproduction in the orange-spotted grouper, Epinephelus coioides. The full-length cDNA encoding GnRH-R type I was successfully cloned from the pituitary by reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE) methods in the grouper. The complete GnRH-R type I cDNA is 1607 bp, which includes an open reading frame of 1092 bp encoding a protein of 364 amino acids, a seven-alpha helix transmembrane domain, a N-terminal extracellular domain, and a C-terminal cytoplasmic domain. The expression of GnRH-R type I was found to be highest in the pituitary. An intramuscular injection of various GnRH types in vivo was attempted. The expression of GnRH-R type I was stimulated by a single injection of salmon GnRH, while in the case of chicken GnRH II treatment, the expression of GnRH-R type I was inhibited. This suggests that the action of chick GnRH II is probably enhanced through the GnRH receptor of different forms. Furthermore, none of them were expressed by an injection of seabream GnRH, and this is likely attributed to the injection dose being below the threshold level, and this remains to be further examined. In conclusion, GnRHs of various types are effective in stimulating the expression of gonadotropins through various forms of the GnRH-R, and multiple forms of the receptor gene likely exist in teleosts. PMID:17329139

  7. Full-Length cDNA Cloning, Molecular Characterization and Differential Expression Analysis of Lysophospholipase I from Ovis aries

    Directory of Open Access Journals (Sweden)

    Nan-Nan Liu

    2016-07-01

    Full Text Available Lysophospholipase I (LYPLA1 is an important protein with multiple functions. In this study, the full-length cDNA of the LYPLA1 gene from Ovis aries (OaLypla1 was cloned using primers and rapid amplification of cDNA ends (RACE technology. The full-length OaLypla1 was 2457 bp with a 5′-untranslated region (UTR of 24 bp, a 3′-UTR of 1740 bp with a poly (A tail, and an open reading frame (ORF of 693 bp encoding a protein of 230 amino acid residues with a predicted molecular weight of 24,625.78 Da. Phylogenetic analysis showed that the OaLypla1 protein shared a high amino acid identity with LYPLA1 of Bos taurus. The recombinant OaLypla1 protein was expressed and purified, and its phospholipase activity was identified. Monoclonal antibodies (mAb against OaLypla1 that bound native OaLypla1 were generated. Real-time PCR analysis revealed that OaLypla1 was constitutively expressed in the liver, spleen, lung, kidney, and white blood cells of sheep, with the highest level in the kidney. Additionally, the mRNA levels of OaLypla1 in the buffy coats of sheep challenged with virulent or avirulent Brucella strains were down-regulated compared to untreated sheep. The results suggest that OaLypla1 may have an important physiological role in the host response to bacteria. The function of OaLypla1 in the host response to bacterial infection requires further study in the future.

  8. Full-Length cDNA Cloning, Molecular Characterization and Differential Expression Analysis of Lysophospholipase I from Ovis aries.

    Science.gov (United States)

    Liu, Nan-Nan; Liu, Zeng-Shan; Hu, Pan; Zhang, Ying; Lu, Shi-Ying; Li, Yan-Song; Yang, Yong-Jie; Zhang, Dong-Song; Zhou, Yu; Ren, Hong-Lin

    2016-01-01

    Lysophospholipase I (LYPLA1) is an important protein with multiple functions. In this study, the full-length cDNA of the LYPLA1 gene from Ovis aries (OaLypla1) was cloned using primers and rapid amplification of cDNA ends (RACE) technology. The full-length OaLypla1 was 2457 bp with a 5'-untranslated region (UTR) of 24 bp, a 3'-UTR of 1740 bp with a poly (A) tail, and an open reading frame (ORF) of 693 bp encoding a protein of 230 amino acid residues with a predicted molecular weight of 24,625.78 Da. Phylogenetic analysis showed that the OaLypla1 protein shared a high amino acid identity with LYPLA1 of Bos taurus. The recombinant OaLypla1 protein was expressed and purified, and its phospholipase activity was identified. Monoclonal antibodies (mAb) against OaLypla1 that bound native OaLypla1 were generated. Real-time PCR analysis revealed that OaLypla1 was constitutively expressed in the liver, spleen, lung, kidney, and white blood cells of sheep, with the highest level in the kidney. Additionally, the mRNA levels of OaLypla1 in the buffy coats of sheep challenged with virulent or avirulent Brucella strains were down-regulated compared to untreated sheep. The results suggest that OaLypla1 may have an important physiological role in the host response to bacteria. The function of OaLypla1 in the host response to bacterial infection requires further study in the future. PMID:27483239

  9. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  10. Molecular cloning of cDNA for the B beta subunit of Xenopus fibrinogen, the product of a coordinately-regulated gene family.

    Science.gov (United States)

    Bhattacharya, A; Shepard, A R; Moser, D R; Roberts, L R; Holland, L J

    1991-02-01

    Fibrinogen, the principal blood-clotting protein, is made up of three different subunits synthesized in the liver. In vitro administration of glucocorticoids to liver cells from the frog Xenopus laevis causes a dramatic increase in fibrinogen synthesis. Investigations of molecular mechanisms underlying this hormonal stimulation at the mRNA level require cDNA clones complementary to the mRNAs coding for the three fibrinogen subunits, called A alpha, B beta, and gamma. We describe here the isolation and characterization of cDNA clones for the B beta subunit of Xenopus fibrinogen. cDNA libraries in both plasmid (pBR322) and phage (lambda gt10) cloning vectors were constructed from frog liver mRNA and screened with a rat B beta cDNA. Clones thus isolated hybridized to two Xenopus liver mRNAs 2500 and 1800 bases long, the previously-determined sizes for B beta mRNAs. The identity of the plasmid clone B beta-27 was confirmed by hybridization-selection of complementary mRNA which translated in vitro into the B beta polypeptide, as determined by size and susceptibility to thrombin cleavage. lambda/B beta 10, a clone representing nearly all of the 2500-base B beta mRNA, was isolated from the phage cDNA library. The 3'-end of this clone includes a polyadenylation signal about 20 residues upstream of a stretch of 34 adenosine residues, which probably represents the 3'-poly(A) tail of the messenger RNA. lambda/B beta 10 lacks only 20 nucleotides of full-length B beta mRNA at the 5'-end and there is one major start site of transcription. The 2500-base B beta mRNA has a 700-base extension at the 3'-end that is not present in the 1800-base mRNA. The Xenopus laevis genome contains two or three genes for the B beta fibrinogen subunit. Using the cDNA clone as a probe, B beta mRNA was shown to be induced at least 20-fold by glucocorticoid treatment of purified parenchymal cells of Xenopus liver maintained in primary culture. PMID:2050271

  11. Molecular cloning and expression of gene fragments from corynebacteriophage beta encoding enzymatically active peptides of diphtheria toxin.

    OpenAIRE

    Tweten, R K; Collier, R J

    1983-01-01

    Two restriction fragments from corynebacteriophage beta vir tox+ that encode peptides similar to diphtheria toxin fragment A and the chain termination fragment, CRM45, have been cloned into Escherichia coli in plasmid pBR322. Clones containing the recombinant plasmids produced gene products that were active in catalyzing the ADP ribosylation of elongation factor 2 and were reactive with diphtheria toxin antiserum. Toxin-related peptides were found primarily in the periplasmic compartment and ...

  12. Molecular cloning of complementary DNA from a pneumopathic strain of bovine viral diarrhea virus and its diagnostic application.

    OpenAIRE

    Brock, K V; Brian, D A; Rouse, B T; Potgieter, L N

    1988-01-01

    A pneumopathic strain of bovine viral diarrhea virus was grown in cell culture and purified. Genomic ribonucleic acid was extracted, polyadenylated at the 3' end, and copied into complementary DNA after oligo-dT priming. Complementary DNA was male double stranded and cloned into the pUC9 plasmid. Approximately 200 complementary DNA clones varying in length from 0.5 to 2.5 kilobases were obtained. Hybridization assays indicated that the sequences isolated were specific for bovine viral diarrhe...

  13. Molecular characterization of apocrine carcinoma of the breast: validation of an apocrine protein signature in a well-defined cohort

    DEFF Research Database (Denmark)

    Celis, J.E.; Cabezon, T.; Moreira, José;

    2009-01-01

    1), in addition to a set of categorizing markers that are consistently expressed (AR, CD24) or not expressed (ERalpha, PgR, Bcl-2, and GATA-3) by apocrine metaplasia in benign breast lesions and apocrine sweat glands. This panel was used to analyze a well-defined cohort consisting of 14 apocrine...... that IACs correspond to a distinct, even if heterogeneous, molecular subgroup of breast carcinomas that can be readily identified in an unbiased way using a combination of markers that recapitulate the phenotype of apocrine sweat glands (15-PGDH(+), ACSM1(+), AR(+), CD24(+), ERalpha(-), PgR(-), Bcl-2...

  14. Construction and characterisation of a full-length infectious molecular clone from a fast replicating, X4-tropic HIV-1 CRF02.AG primary isolate

    International Nuclear Information System (INIS)

    Based on our previous analysis of HIV-1 isolates from Cameroon, we constructed a full-length infectious molecular clone from a primary isolate belonging to the CRF02.AG group of recombinant viruses which dominate the HIV-epidemic in West and Central Africa. The virus derived by transfection of the proviral clone pBD6-15 replicated with similar efficiency compared to its parental isolate and used CXCR4 as coreceptor as well. Furthermore, HIV-1 BD6-15 exhibited similar replication properties and virus yield as the reference B-type HIV-1 strain NL4-3. Sequence analysis revealed open reading frames for all structural and accessory genes apart from vpr. Phylogenetic and bootscanning analyses confirmed that BD6-15 clusters with CRF02.AG recombinant strains from West and Central Africa with similar cross-over points as described for the CRF02.AG prototype strain lbNG. Thus, pBD6-15 represents the first non-subtype B infectious molecular clone of a fast replicating, high producer, X4-tropic primary HIV-1 isolate, which had only been briefly passaged in primary cells

  15. Insertional mutagenesis in Neurospora crassa: cloning and molecular analysis of the preg+ gene controlling the activity of the transcriptional activator NUC-1.

    Science.gov (United States)

    Kang, S; Metzenberg, R L

    1993-02-01

    The transcriptional activator NUC-1 controls the transcription of the genes for phosphorus acquisition enzymes, and its activity is regulated by the negative regulatory factors, PREG and PGOV In this report, we describe the cloning and molecular analysis of the preg+ gene. In Neurospora crassa, as in higher eukaryotes, transformation frequently results in nonhomologous integration of transforming DNA. Insertion of transforming DNA into host genes mutates the gene and provides a molecular tag for cloning it. We obtained two mutants that have an insertion in the preg+ and pgov+ genes, respectively, among 2 x 10(5) transformants. The preg+ gene was cloned by screening a Neurospora genomic DNA library with DNA sequences flanking the transforming DNA of the rescued plasmid. Northern analysis showed that the transcription of the preg+ gene is not regulated by phosphate. The carboxy-terminal half of PREG shows strong homology with Saccharomyces cerevisiae PHO80 whose function is analogous to that of PREG. The pregc mutations are located in the well conserved residues which may directly interact with the residues in the regulatory domain of NUC-1.

  16. Molecular profiling of cutaneous squamous cell carcinomas and actinic keratoses from organ transplant recipients

    International Nuclear Information System (INIS)

    The risk of developing cutaneous squamous cell carcinoma (SCC) is markedly increased in organ transplant recipients (OTRs) compared to the normal population. Next to sun exposure, the immunosuppressive regimen is an important risk factor for the development of SCC in OTRs. Various gene mutations (e.g. TP53) and genetic alterations (e.g. loss of CDKN2A, amplification of RAS) have been found in SCCs. The aim of this genome-wide study was to identify pathways and genomic alterations that are consistently involved in the formation of SCCs and their precursor lesions, actinic keratoses (AKs). To perform the analysis in an isogenic background, RNA and DNA were isolated from SCC, AK and normal (unexposed) epidermis (NS) from each of 13 OTRs. Samples were subjected to genome-wide expression analysis and genome SNP analysis using Illumina’s HumanWG-6 BeadChips and Infinium II HumanHap550 Genotyping BeadChips, respectively. mRNA expression results were verified by quantitative PCR. Hierarchical cluster analysis of mRNA expression profiles showed SCC, AK and NS samples to separate into three distinct groups. Several thousand genes were differentially expressed between epidermis, AK and SCC; most upregulated in SCCs were hyperproliferation related genes and stress markers, such as keratin 6 (KRT6), KRT16 and KRT17. Matching to oncogenic pathways revealed activation of downstream targets of RAS and cMYC in SCCs and of NFκB and TNF already in AKs. In contrast to what has been reported previously, genome-wide SNP analysis showed very few copy number variations in AKs and SCCs, and these variations had no apparent relationship with observed changes in mRNA expression profiles. Vast differences in gene expression profiles exist between SCC, AK and NS from immunosuppressed OTRs. Moreover, several pathways activated in SCCs were already activated in AKs, confirming the assumption that AKs are the precursor lesions of SCCs. Since the drastic changes in gene expression appeared

  17. Molecular and Biological Characterization of an Isolate of Cucumber mosaic virus from Glycine soja by Generating its Infectious Full-genome cDNA Clones

    Directory of Open Access Journals (Sweden)

    Mi Sa Vo Phan

    2014-06-01

    Full Text Available Molecular and biological characteristics of an isolate of Cucumber mosaic virus (CMV from Glycine soja (wild soybean, named as CMV-209, was examined in this study. Comparison of nucleotide sequences and phylogenetic analyses of CMV-209 with the other CMV strains revealed that CMV-209 belonged to CMV subgroup I. However, CMV-209 showed some genetic distance from the CMV strains assigned to subgroup IA or subgroup IB. Infectious full-genome cDNA clones of CMV-209 were generated under the control of the Cauliflower mosaic virus 35S promoter. Infectivity of the CMV-209 clones was evaluated in Nicotiana benthamiana and various legume species. Our assays revealed that CMV-209 could systemically infect Glycine soja (wild soybean and Pisum sativum (pea as well as N. benthamiana, but not the other legume species.

  18. Molecular cloning, characterization and expression analysis of two members of the Pht1 family of phosphate transporters in Glycine max.

    Directory of Open Access Journals (Sweden)

    Zhaoyun Wu

    Full Text Available BACKGROUND: Phosphorus is one of the macronutrients essential for plant growth and development. The acquisition and translocation of phosphate are pivotal processes of plant growth. In a large number of plants, phosphate uptake by roots and translocation within the plant are presumed to occur via a phosphate/proton cotransport mechanism. PRINCIPAL FINDINGS: We cloned two cDNAs from soybean (Glycine max, GmPT1 and GmPT2, which show homology to the phosphate/proton cotransporter PHO84 from the budding yeast Saccharomyces cerevisiae. The amino acid sequence of the products predicted from GmPT1 and GmPT2 share 61% and 63% identity, respectively, with the PHO84 in amino acid sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass values are ∼58.7 kDa for GmPT1 and ∼58.6 kDa for GmPT2. Transiently expressed GFP-protein fusions provide direct evidence that the two Pi transporters are located in the plasma membrane. Uptake of radioactive orthophosphate by the yeast mutant MB192 showed that GmPT1 and GmPT2 are dependent on pH and uptake is reduced by the addition of uncouplers of oxidative phosphorylation. The K(m for phosphate uptake by GmPT1 and GmPT2 is 6.65 mM and 6.63 mM, respectively. A quantitative real time RT-PCR assay indicated that these two genes are expressed in the roots and shoots of seedlings whether they are phosphate-deficient or not. Deficiency of phosphorus caused a slight change of the expression levels of GmPT1 and GmPT2. CONCLUSIONS: The results of our experiments show that the two phosphate transporters have low affinity and the corresponding genes are constitutively expressed. Thereby, the two phosphate transporters can perform translocation of phosphate within the plant.

  19. Molecular Biologic Approach to the Diagnosis of Pancreatic Carcinoma Using Specimens Obtained by EUS-Guided Fine Needle Aspiration

    Directory of Open Access Journals (Sweden)

    Kiyohito Kato

    2012-01-01

    Full Text Available We review the utility of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA, a rapid, safe, cost-effective, and accurate diagnostic modality for evaluating pancreatic tumors. EUS-FNA is currently used for the diagnosis and staging of pancreatic tumors. The sensitivity of EUS-FNA for pancreatic malignancy ranges from 75% to 94%, and its specificity approaches 100% in most studies. However, EUS-FNA has some limitations in the diagnosis of well-differentiated or early-stage cancers. Recent evidence suggests that molecular biological analysis using specimens obtained by EUS-FNA improves diagnostic sensitivity and specificity, especially in borderline cytological cases. It was also reported that additional information regarding patient response to chemotherapy, surgical resectability, time to metastasis, and overall survival was acquired from the genetic analysis of specimens obtained by EUS-FNA. Other studies have revealed that the analysis of KRAS, MUC, p53, p16, S100P, SMAD4, and microRNAs is helpful in making the diagnosis of pancreatic carcinoma. In this paper, we describe the present state of genetic diagnostic techniques for use with EUS-FNA samples in pancreatic diseases. We also discuss the role of molecular biological analyses for the diagnosis of pancreatic carcinoma.

  20. Integrative genome-wide expression profiling identifies three distinct molecular subgroups of renal cell carcinoma with different patient outcome

    International Nuclear Information System (INIS)

    Renal cell carcinoma (RCC) is characterized by a number of diverse molecular aberrations that differ among individuals. Recent approaches to molecularly classify RCC were based on clinical, pathological as well as on single molecular parameters. As a consequence, gene expression patterns reflecting the sum of genetic aberrations in individual tumors may not have been recognized. In an attempt to uncover such molecular features in RCC, we used a novel, unbiased and integrative approach. We integrated gene expression data from 97 primary RCC of different pathologic parameters, 15 RCC metastases as well as 34 cancer cell lines for two-way nonsupervised hierarchical clustering using gene groups suggested by the PANTHER Classification System. We depicted the genomic landscape of the resulted tumor groups by means of Single Nuclear Polymorphism (SNP) technology. Finally, the achieved results were immunohistochemically analyzed using a tissue microarray (TMA) composed of 254 RCC. We found robust, genome wide expression signatures, which split RCC into three distinct molecular subgroups. These groups remained stable even if randomly selected gene sets were clustered. Notably, the pattern obtained from RCC cell lines was clearly distinguishable from that of primary tumors. SNP array analysis demonstrated differing frequencies of chromosomal copy number alterations among RCC subgroups. TMA analysis with group-specific markers showed a prognostic significance of the different groups. We propose the existence of characteristic and histologically independent genome-wide expression outputs in RCC with potential biological and clinical relevance

  1. Molecular cloning and characterization of a GH11 endoxylanase from Chaetomium globosum, and its use in enzymatic pretreatment of biomass

    DEFF Research Database (Denmark)

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Kim, Dongwook;

    2013-01-01

    An endo-1,4-β-xylanase gene, xylcg, was cloned from Chaetomium globosum and successfully expressed in Escherichia coli. The complete gene of 675 bp was amplified, cloned into the pET 28(a) vector, and expressed. The optimal conditions for the highest activity of the purified recombinant XylCg were......Cg belongs to the GH11 family. Rice straw pretreated with XylCg showed 30 % higher conversion yield than the rice straw pretreated with a commercial xylanase. Although xylanases have been characterized from fungal and bacterial sources, C. globosum XylCg is distinguished from other xylanases by its high...

  2. MOLECULAR GENE CLONING OF NICOTINE-DEHIDROGENASE FROM THE pAO1 MEGAPLASMID OF ARTHROBACTER NICOTINOVORANS

    Directory of Open Access Journals (Sweden)

    Andreea Andrei

    2013-10-01

    Full Text Available 6-hydroxi-L-nicotine (6HNic has an important potential as a drug for neuro-degenerative disorders and a  suitable simple and reliable method for obtaining contaminant-free 6HNic preparations is required. Here, we envision the in-vitro production of 6HNic by using purified nicotine-dehydrogenase (NDH followed by HPLC or capillary electrophoresis techniques and we focus on the isolation and cloning of the three genes coding the NDH enzyme.  A PCR protocol was established for easy amplification and the DNA fragment containing the ndhLSM genes was directionally cloned into the pART2 vector.

  3. Molecular cloning and characterization of the structural gene for protein I, the major outer membrane protein of Neisseria gonorrhoeae.

    OpenAIRE

    Carbonetti, N H; Sparling, P F

    1987-01-01

    Protein I (P.I) is the major outer membrane protein of Neisseria gonorrhoeae and serves as a porin. By using oligonucleotide probes derived from the known amino-terminal sequence of the mature protein, we have cloned the gene encoding the P.I of gonococcal strain FA19 in three overlapping fragments and determined the DNA sequence. The gene sequence predicts a protein with characteristics typical of the porins of other Gram-negative bacteria. A clone expressing P.I in Escherichia coli was obta...

  4. Molecular cloning of bacterial DNA in vivo using a transposable R6K ori and a P1vir phage.

    OpenAIRE

    Stojiljkovic, I; Bozja, J; Salaj-Smic, E

    1994-01-01

    A new method of cloning in vivo using the P1vir phage and transposon Tn5-rpsL oriR6K was developed. The method relies upon recircularization of transducing DNA containing a transposon insertion in a recombination-deficient strain of Escherichia coli K-12 and subsequent stable replication of the recircularized DNA. Using this method, we were able to clone in vivo the chromosomal region located between approximately 7.1 and 9.2 min on the E. coli K-12 map in a 95-kb plasmid.

  5. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea.

    OpenAIRE

    Staskawicz, B; Dahlbeck, D; Keen, N; Napoli, C.

    1987-01-01

    A wide-host-range cosmid cloning vector, pLAFR3, was constructed and used to make cosmid libraries of partially digested Sau3A DNA from race 0 and race 1 of Pseudomonas syringae pv. glycinea. Two avirulence genes, avrB0 and avrC, cloned from race 0, elicited the hypersensitivity reaction (HR) on specific cultivars of soybean. Race 4 transconjugants containing avrB0 induced a dark brown necrotic HR within 24 h on the soybean cultivars Harosoy and Norchief, whereas race 4 transconjugants contai...

  6. Molecular epidemiology of methicillin-resistant Staphylococcus aureus in Switzerland: sampling only invasive isolates does not allow a representative description of the local diversity of clones.

    Science.gov (United States)

    Senn, L; Basset, P; Greub, G; Prod'hom, G; Frei, R; Zbinden, R; Gaia, V; Balmelli, C; Pfyffer, G E; Mühlemann, K; Zanetti, G; Blanc, D S

    2013-07-01

    We conducted a molecular study of MRSA isolated in Swiss hospitals, including the first five consecutive isolates recovered from blood cultures and the first ten isolates recovered from other sites in newly identified carriers. Among 73 MRSA isolates, 44 different double locus sequence typing (DLST) types and 32 spa types were observed. Most isolates belonged to the NewYork/Japan, the UK-EMRSA-15, the South German and the Berlin clones. In a country with a low to moderate MRSA incidence, inclusion of non-invasive isolates allowed a more accurate description of the diversity. PMID:23458418

  7. Molecular cloning and characterization of the gene encoding the adenine methyltransferase M.CviRI from Chlorella virus XZ-6E.

    OpenAIRE

    Stefan, C; Xia, Y N; Van Etten, J L

    1991-01-01

    The gene encoding the DNA methyltransferase M.CviRI from Chlorella virus XZ-6E was cloned and expressed in Escherichia coli. M.CviRI methylates adenine in TGCA sequences. DNA containing the M.CviRI gene was sequenced and a single open reading frame of 1137 bp was identified which could code for a polypeptide of 379 amino acids with a predicted molecular weight of 42,814. Comparison of the M.CviRI predicted amino acid sequence with another Chlorella virus and 14 bacterial adenine methyltransfe...

  8. Molecular cloning, characterization and enzymatic properties of a novel βeta-agarase from a marine isolate Psudoalteromonas SP. AG52

    OpenAIRE

    Chulhong Oh; Chamilani Nikapitiya; Youngdeuk Lee; Ilson Whang; Do-Hyung Kang; Soo-Jin Heo; Young-Ung Choi; Jehee Lee

    2010-01-01

    An agar-degrading Pseudoalteromonas sp. AG52 bacterial strain was identified from the red seaweed Gelidium amansii collected from Jeju Island, Korea. A β-agarase gene which has 96.8% nucleotide identity to Aeromonas β-agarase was cloned from this strain, and was designated as agaA. The coding region is 870 bp, encoding 290 amino acids and possesses characteristic features of the glycoside hydrolase family (GHF)-16. The predicted molecular mass of the mature protein was 32 kDa. The r...

  9. Molecular cloning and tissue distribution of cholecystokinin-1 receptor (CCK-1R) in yellowtail Seriola quinqueradiata and its response to feeding and in vitro CCK treatment.

    Science.gov (United States)

    Furutani, Takahiro; Masumoto, Toshiro; Fukada, Haruhisa

    2013-06-01

    In vertebrates, the peptide cholecystokinin (CCK) is one of the most important neuroregulatory digestive hormones. CCK acts via CCK receptors that are classified into two subtypes, CCK-1 receptor (CCK-1R; formally CCK-A) and CCK-2 receptor (formally CCK-B). In particular, the CCK-1R is involved in digestion and is regulated by CCK. However, very little information is known about CCK-1R in fish. Therefore, we performed molecular cloning of CCK-1R cDNA from the digestive tract of yellowtail Seriola quinqueradiata. Phylogenetic tree analysis showed a high sequence identity between the cloned yellowtail CCK receptor cDNA and CCK-1R, which belongs to the CCK-1R cluster. Furthermore, the expression of yellowtail CCK receptor mRNA was observed in gallbladder, pyloric caeca, and intestines, similarly to CCK-1R mRNA expression in mammals, suggesting that the cloned cDNA is of CCK-1R from yellowtail. In in vivo experiments, the CCK-1R mRNA levels increased in the gallbladder and pyloric caeca after feeding, whereas in vitro, mRNA levels of CCK-1R and digestive enzymes in cultured pyloric caeca increased by the addition of CCK. These results suggest that CCK-1R plays an important role in digestion stimulated by CCK in yellowtail. PMID:23467070

  10. Molecular cloning of a Bangladeshi strain of very virulent infectious bursal disease virus of chickens and its adaptation in tissue culture by site-directed mutagenesis

    International Nuclear Information System (INIS)

    Full-length cDNA of both genome segments of a Bangladeshi strain of very virulent infectious bursal disease virus (BD 3/99) were cloned in plasmid vectors along with the T7 promoter tagged to the 5'-ends. Mutations were introduced in the cloned cDNA to bring about two amino acid exchanges (Q253H and A284T) in the capsid protein VP2. Transfection of primary chicken embryo fibroblast cells with RNA transcribed in vitro from the full-length cDNA resulted in the formation of mutant infectious virus particles that grow in tissue culture. The pathogenicity of this molecularly-cloned, tissue-culture- adapted virus (BD-3tc) was tested in commercial chickens. The parental wild-type strain, BD 3/99, was included for comparison. The subclinical course of the disease and delayed bursal atrophy in BD-3tc-inoculated birds suggested that these amino acid substitutions made BD-3tc partially attenuated. (author)

  11. Stage-dependent prognostic impact of molecular signatures in clear cell renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Weber T

    2014-05-01

    Full Text Available Thomas Weber,1,2 Matthias Meinhardt,3 Stefan Zastrow,1 Andreas Wienke,4 Kati Erdmann,1 Jörg Hofmann,1 Susanne Fuessel,1 Manfred P Wirth11Department of Urology, Technische Universität Dresden, Dresden, Germany; 2Department of Oncology and Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale, Germany; 3Institute of Pathology, Technische Universität Dresden, Dresden, Germany; 4Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale, GermanyPurpose: To enhance prognostic information of protein biomarkers for clear cell renal cell carcinomas (ccRCCs, we analyzed them within prognostic groups of ccRCC harboring different tumor characteristics of this clinically and molecularly heterogeneous tumor entity.Methods: Tissue microarrays from 145 patients with primary ccRCC were immunohistochemically analyzed for VHL (von Hippel-Lindau tumor suppressor, Ki67 (marker of proliferation 1, p53 (tumor protein p53, p21 (cyclin-dependent kinase inhibitor 1A, survivin (baculoviral IAP repeat containing 5, and UEA-1 (ulex europaeus agglutinin I to assess microvessel-density.Results: When analyzing all patients, nuclear staining of Ki67 (hazard ratio [HR] 1.08, 95% confidence interval [CI] 1.04–1.12 and nuclear survivin (nS; HR 1.04, 95% CI 1.01–1.08 were significantly associated with disease-specific survival (DSS. In the cohort of patients with advanced localized or metastasized ccRCC, high staining of Ki67, p53 and nS predicted shorter DSS (Ki67: HR 1.07, 95% CI 1.02–1.11; p53: HR 1.05, 95% CI 1.01–1.09; nS: HR 1.08, 95% CI 1.02–1.14. In organ-confined ccRCC, patients with high p21-staining had a longer DSS (HR 0.96, 95% CI 0.92–0.99. In a multivariate model with stepwise backward elimination, tumor size and p21-staining showed a significant association with DSS in patients with "organ-confined" ccRCCs. The p21-staining increased the concordance index of tumor size from

  12. Aromatic hexamerin subunit from adult female cockroaches (Blaberus discoidalis) : Molecular cloning, suppression by juvenile hormone, and evolutionary perspectives

    NARCIS (Netherlands)

    Jamroz, RC; Beintema, JJ; Stam, WT; Bradfield, JY

    1996-01-01

    In an effort to identify several polypeptides that are strongly suppressed by juvenile hormone (JH) in fat body of adult female Blaberus discoidalis cockroaches, we have cloned a cDNA representing a polypeptide member of the hexamerin family of arthropod serum proteins. The deduced primary translati

  13. Molecular cloning and functional characterisation of a cathepsin L-like proteinases from the fish kinetoplastid parasite Trypanosoma carassii

    NARCIS (Netherlands)

    Ruszczyk, A.; Forlenza, M.; Savelkoul, H.F.J.; Wiegertjes, G.F.

    2008-01-01

    Trypanosoma carassii is a fish kinetoplastid parasite that belongs to the family Trypanosomatida. In the present study we cloned a cathepsin L-like proteinase from T. carassii. The nucleotide sequence of 1371 bp translated into a preproprotein of 456 amino acids. The preproprotein contained the oxya

  14. Molecular cloning and partial characterization of a plant VAP33 homologue with a major sperm protein domain

    NARCIS (Netherlands)

    Laurent, F.; Labesse, G.; Wit, de P.

    2000-01-01

    In a search for proteins interacting with the resistance protein Cf9 from tomato, a new cDNA was cloned and characterized. Protein sequence database searches suggested that the 120 residue-N terminal domain of the encoded protein (named VAP27) is highly similar to the VAP33 protein family from anima

  15. Molecular cloning and functional analysis of an ethylene receptor gene from sugarcane (Saccharum spp.) by hormone and environmental stresses

    Science.gov (United States)

    Ethylene receptor (ethylene response sensor, ERS) is the primary component involving in the ethylene biosynthesis and ethylene signal transduction pathway. In the present study, a GZ-ERS gene encoding ERS was cloned from a sugarcane cv. YL17 (Saccharum spp.) using RT-PCR and ligation-mediated PCR wi...

  16. Reproductive cloning : can cloning harm the clone?

    OpenAIRE

    Pattinson, S.D.

    2002-01-01

    Since the creation of Dolly the sheep was reported in February 1997, the possibility of a cloned child has elicited powerful declarations of condemnation. A widely held view is that cloning a human being would be immoral and ought to be prohibited by legislation. This paper outlines the regulatory approaches taken in the EU countries (with particular reference to the UK), Canada and the US, before examining the claim that creating a clone would be a wrong to the resultant clone. It is argued ...

  17. Molecular cloning, gene structure and expression profile of two mouse peroxisomal 3-ketoacyl-CoA thiolase genes

    Directory of Open Access Journals (Sweden)

    Latruffe Norbert

    2004-03-01

    Full Text Available Abstract Background In rats, two peroxisomal 3-ketoacyl-CoA thiolase genes (A and B have been cloned, whereas only one thiolase gene is found in humans. The aim of this study was thus to clone the different mouse thiolase genes in order to study both their tissue expression and their associated enzymatic activity. Results In this study, we cloned and characterized two mouse peroxisomal 3-ketoacyl-CoA thiolase genes (termed thiolase A and B. Both thiolase A and B genes contain 12 exons and 11 introns. Using RNA extracted from mouse liver, we cloned the two corresponding cDNAs. Thiolase A and B cDNAs possess an open reading frame of 1272 nucleotides encoding a protein of 424 amino acids. In the coding sequence, the two thiolase genes exhibited ≈97% nucleotide sequence identity and ≈96% identity at the amino acid level. The tissue-specific expression of the two peroxisomal 3-ketoacyl-CoA thiolase genes was studied in mice. Thiolase A mRNA was mainly expressed in liver and intestine, while thiolase B mRNA essentially exhibited hepatic expression and weaker levels in kidney, intestine and white adipose tissue. Thiolase A and B expressions in the other tissues such as brain or muscle were very low though these tissues were chiefly involved in peroxisomal disorders. At the enzymatic level, thiolase activity was detected in liver, kidney, intestine and white adipose tissue but no significant difference was observed between these four tissues. Moreover, thiolase A and B genes were differently induced in liver of mice treated with fenofibrate. Conclusion Two mouse thiolase genes and cDNAs were cloned. Their corresponding transcripts are mostly expressed in the liver of mice and are differently induced by fenofibrate.

  18. Molecular characterization of resistance to Rifampicin in an emerging hospital-associated Methicillin-resistant Staphylococcus aureus clone ST228, Spain

    Directory of Open Access Journals (Sweden)

    Liñares Josefina

    2010-03-01

    Full Text Available Abstract Background Methicillin-resistant S. aureus (MRSA has been endemic in Hospital Universitari de Bellvitge, Barcelona, since 1990. During the 1990-95 period the Iberian clone (ST-247; SCCmec-I was dominant. Isolates of clonal complex 5 (ST-125; SCCmec-IV gradually replaced the Iberian clone from 1996 to 2003. A new multiresistant MRSA phenotype showing rifampicin resistance emerged in 2004 and rapidly increased from 25% in 2004 to 45% in 2006. The aims of this study were i the molecular characterisation of rifampicin resistant MRSA isolates, ii the study of the rifampicin resistance expression by disk diffusion, microdilution and E-test, and iii the analysis of the rpoB gene mutations involved in rifampicin resistance. Results A sample of representative 108 rifampicin-resistant MRSA isolates belonged to a single PFGE genotype, ST-228, SCCmec type I and spa type t041. Of 108 isolates, 104 (96% had a low-level rifampicin resistance (MICs, 2 to 4 mg/L and 4 a high-level rifampicin resistance (MICs, 128 - ≥ 256 mg/L. Disk diffusion and E-test methods failed to identify a low-level rifampicin resistance in 20 and 12 isolates, respectively. A low-level rifampicin resistance was associated with amino acid substitution 481His/Asn in the beta-subunit of RNA polymerase. Isolates with a high-level rifampicin resistance carried additional mutations in the rpoB gene. Conclusions The emergence of MRSA clone ST228-SCCmecI, related to the Southern Germany clone, involved a therapeutical challenge for treating serious MRSA infections. Decreased susceptibility to rifampicin in MRSA strains of ST228-SCCmecI was associated with one or two specific mutations in the rpoB gene. One fifth of isolates with low-level rifampicin-resistance were missed by the diffusion methods.

  19. Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention

    OpenAIRE

    Nagini, Siddavaram

    2012-01-01

    Carcinoma of the stomach is still the second most common cause of cancer death worldwide, although the incidence and mortality have fallen dramatically over the last 50 years in many regions. The incidence of gastric cancer varies in different parts of the world and among various ethnic groups. Despite advances in diagnosis and treatment, the 5-year survival rate of stomach cancer is only 20 per cent. Stomach cancer can be classified into intestinal and diffuse types based on epidemiological ...

  20. Molecular mechanisms of medullary thyroid carcinoma, current approaches in diagnosis and treatment

    OpenAIRE

    Boikos, S. A.; Stratakis, C.A.

    2008-01-01

    Medullary thyroid carcinoma is the most common cause of death among patients with multiple endocrine neoplasia (MEN) 2. Dominant-activating mutations in the RET proto-oncogene have been shown to have a central role in the development of MEN 2 and sporadic medullary thyroid cancer (MTC): about half of sporadic MTCs are caused by somatic genetic changes of the RET oncogene. Inactivating mutations of the same gene lead to Hirschprung disease and other developmental def...

  1. A biologia molecular no prognóstico do carcinoma da tireóide Molecular biology in the prognosis of thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Aluizio Soares de Souza Rodrigues

    2003-12-01

    Full Text Available This overview examines some selected genetic mechanisms of cancer development. Strong evidence has been accumulated suggesting that alteration in either the struture or activity of proto-oncogene contributes to the development and for the maintenance of the malignant phenotype. Many factors are known to interfere with both normal and pathological controls of growth and differentiation of thyroid cells. Among them, some are oncogenes, like those encoding g-proteins (ras, gsp, TSH-R, encoding thyrosino kinases receptors (RET, trk, c-met, c-erb, BRAF and encoding nuclear proteins (c-myc, e-fós. Others are anti-oncogenes (p53, p15, RB, by loss of the growth suppression ativity of the suppressive gene. Cancer cell invasion and metastasis are the major causes of morbidity and mortality in cancer patients. Many genes are involved in the mechanism of invasion and metastasis of thyroid tumors, like Nis, b-catenina, E-caderina, galectina-3, GLUT, telomerase, VEGT, nm-23. All these oncogenes, antioncogenes and tumor invasion and metastasis-related genes are analysed. Several clinical and prognostic factors have been proposed to identify patients at risk for the development of metastasis and death. The role of molecular genetics in this issue is discussed. However, other studies are needed to validate molecular alterations as an independent prognostic factor in thyroid cancer.

  2. Molecular Cloning, Expression Pattern, and 3D Structural Prediction of the Cold Inducible RNA - Binding Protein (CIRP) in Japanese Flounder (Paralichthys olivaceus)

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao; WANG Zhigang; ZHANG Quanqi; GAO Jinning; MA Liman; LI Zan; WANG Wenji; WANG Zhongkai; YU Haiyang; QI Jie; WANG Xubo

    2015-01-01

    Cold-inducible RNA-binding protein (CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this study, the PoCIRP gene of the Japanese flounder was cloned and sequenced. The genomic sequence consists of seven exons and six introns. The putative PoCIRP protein of flounder was 198 amino acid residues long containing the RNA recognition motif (RRM). Phylogenetic analysis showed that the flounder PoCIRP is highly conserved with other teleost CIRPs. The 5’ flanking sequence was cloned by genome walking and many transcription factor binding sites were iden-tified. There is a CpGs region located in promoter and exon I region and the methylation state is low. Quantitative real-time PCR analysis uncovered that PoCIRP gene was widely expressed in adult tissues with the highest expression level in the ovary. The mRNA of the PoCIRP was maternally deposited and the expression level of the gene was regulated up during the gastrula and neu-rula stages. In order to gain the information how the protein interacts with mRNA, we performed the modeling of the 3D structure of the flounder PoCIRP. The results showed a cleft existing the surface of the molecular. Taken together, the results indicate that the CIRP is a multifunctional molecular in teleosts and the findings about the structure provide valuable information for understanding the basis of this protein’s function.

  3. Molecular cloning, expression pattern, and 3D structural prediction of the cold inducible RNA-binding protein (CIRP) in Japanese flounder ( Paralichthys olivaceus)

    Science.gov (United States)

    Yang, Xiao; Gao, Jinning; Ma, Liman; Li, Zan; Wang, Wenji; Wang, Zhongkai; Yu, Haiyang; Qi, Jie; Wang, Xubo; Wang, Zhigang; Zhang, Quanqi

    2015-02-01

    Cold-inducible RNA-binding protein (CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this study, the Po CIRP gene of the Japanese flounder was cloned and sequenced. The genomic sequence consists of seven exons and six introns. The putative PoCIRP protein of flounder was 198 amino acid residues long containing the RNA recognition motif (RRM). Phylogenetic analysis showed that the flounder PoCIRP is highly conserved with other teleost CIRPs. The 5' flanking sequence was cloned by genome walking and many transcription factor binding sites were identified. There is a CpGs region located in promoter and exon I region and the methylation state is low. Quantitative real-time PCR analysis uncovered that Po CIRP gene was widely expressed in adult tissues with the highest expression level in the ovary. The mRNA of the Po CIRP was maternally deposited and the expression level of the gene was regulated up during the gastrula and neurula stages. In order to gain the information how the protein interacts with mRNA, we performed the modeling of the 3D structure of the flounder PoCIRP. The results showed a cleft existing the surface of the molecular. Taken together, the results indicate that the CIRP is a multifunctional molecular in teleosts and the findings about the structure provide valuable information for understanding the basis of this protein's function.

  4. Molecular cloning, characterization, and overexpression of a novel [Fe]-hydrogenase isolated from a high rate of hydrogen producing Enterobacter cloacae IIT-BT 08

    International Nuclear Information System (INIS)

    Degenerate primers were designed from the conserved zone of hydA structural gene encoding for catalytic subunit of [Fe]-hydrogenase of different hydrogen producing bacteria. A 750 bp of PCR product was amplified by using the above-mentioned degenerate primers and genomic DNA of Enterobacter cloacae IIT-BT 08 as template. The amplified PCR product was cloned and sequenced. The sequence showed the presence of an ORF of 450 bp with significant similarity (40%) with C-terminal end of the conserved zone (H-cluster) of [Fe]- hydrogenase. hydA ORF was then amplified and cloned in-frame with GST in pGEX4T-1 and overexpressed in a non-hydrogen producing Escherichia coli BL-21 to produce a GST-fusion protein of a calculated molecular mass of about 42.1 kDa. Recombinant protein was purified and specifically recognized by anti-GST monoclonal antibody through Western blot. Southern hybridization confirmed the presence of this gene in E. cloacae IIT-BT 08 genome. In vitro hydrogenase assay with the overexpressed hydrogenase enzyme showed that it is catalytically active upon anaerobic adaptation. In vivo hydrogenase assay confirmed the presence of H2 gas in the gas mixture obtained from the batch culture of recombinant E. coli BL-21. A tentative molecular mechanism has been proposed about the transfer of electron from electron donor to H-cluster without the mediation of the F-cluster

  5. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system

    International Nuclear Information System (INIS)

    CD28 (Tp44) is a human T-cell-specific homodimer surface protein that may participate in T-cell activation. The authors have isolated a cDNA clone encoding CD28 by a simple and highly efficient cloning strategy based on transient expression in COS cells. Central to this strategy is the use of an efficient method to prepare large plasmid cDNA libraries. The libraries are introduced into COS cells, where transient expression of surface antigen allows the isolation of cDNAs by way of monoclonal antibody binding. The CD28 cDNA encodes a highly glycosylated membrane protein with homology to the immunoglobulin superfamily and directs the production of a homodimer in transfected COS cells

  6. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum

    International Nuclear Information System (INIS)

    For isolation of the gene responsible for xeroderma pigmentosum (XP) complementation group A, plasmid pSV2gpt and genomic DNA from a mouse embryo were cotransfected into XP2OSSV cells, a group-A XP cell line. Two primary UV-resistant XP transfectants were isolated from about 1.6 X 10(5) pSV2gpt-transformed XP colonies. pSV2gpt and genomic DNA from the primary transfectants were again cotransfected into XP2OSSV cells and a secondary UV-resistant XP transfectant was obtained by screening about 4.8 X 10(5) pSV2gpt-transformed XP colonies. The secondary transfectant retained fewer mouse repetitive sequences. A mouse gene that complements the defect of XP2OSSV cells was cloned into an EMBL3 vector from the genome of a secondary transfectant. Transfections of the cloned DNA also conferred UV resistance on another group-A XP cell line but not on XP cell lines of group C, D, F, or G. Northern blot analysis of poly(A)+ RNA with a subfragment of cloned mouse DNA repair gene as the probe revealed that an approximately 1.0 kilobase mRNA was transcribed in the donor mouse embryo and secondary transfectant, and approximately 1.0- and approximately 1.3-kilobase mRNAs were transcribed in normal human cells, but none of these mRNAs was detected in three strains of group-A XP cells. These results suggest that the cloned DNA repair gene is specific for group-A XP and may be the mouse homologue of the group-A XP human gene

  7. Human α-endosulfine, a possible regulator of sulfonylurea-sensitive KATP channel: Molecular cloning, expression and biological properties

    OpenAIRE

    Heron, Lisa; Virsolvy, Anne; Peyrollier, Karine; Gribble, Fiona M.; Le Cam, Alphonse; Ashcroft, Frances M.; Bataille, Dominique

    1998-01-01

    Sulfonylureas are a class of drugs commonly used in the management of non-insulin-dependent diabetes mellitus. Their therapeutic action results primarily from their ability to inhibit ATP-sensitive potassium (KATP) channels in the plasma membrane of pancreatic β cells and thereby stimulate insulin release. A key question is whether an endogenous ligand for the KATP channel exists that is able to mimic the inhibitory effects of sulfonylureas. We describe here the cloning of the cDNA encoding h...

  8. Molecular cloning and characterization of the aklavinone 11-hydroxylase gene of Streptomyces peucetius subsp. caesius ATCC 27952.

    OpenAIRE

    Hong, Y S; Hwang, C K; Hong, S. K.; Kim, Y.H.(Center for Underground Physics, Institute for Basic Science (IBS), Daejon, 305-811, Korea); Lee, J. J.

    1994-01-01

    The gene encoding aklavinone 11-hydroxylase of Streptomyces peucetius subsp. caesius ATCC 27952 was cloned and sequenced. The deduced amino acid sequence of the gene contains at least two common motifs of well-conserved amino acid sequences of several flavin-type bacterial hydroxylases. The hydroxylase gene is apparently transcribed from a single transcriptional start point. The phenotype of a dnrF mutant generated by gene disruption supports the idea that the dnrF gene encodes aklavinone 11-...

  9. Toward a Molecular Cytogenetic Map for Cultivated Sunflower (Helianthus annuus L.) by Landed BAC/BIBAC Clones

    OpenAIRE

    Feng, Jiuhuan; Liu, Zhao; Cai, Xiwen; Jan, Chao-Chien

    2013-01-01

    Conventional karyotypes and various genetic linkage maps have been established in sunflower (Helianthus annuus L., 2n = 34). However, the relationship between linkage groups and individual chromosomes of sunflower remains unknown and has considerable relevance for the sunflower research community. Recently, a set of linkage group-specific bacterial /binary bacterial artificial chromosome (BAC/BIBAC) clones was identified from two complementary BAC and BIBAC libraries constructed for cultivate...

  10. Molecular cloning, nucleotide sequence, and expression of a carboxypeptidase-encoding gene from the archaebacterium Sulfolobus solfataricus.

    OpenAIRE

    Colombo, S.; G. Toietta; Zecca, L.; Vanoni, M; Tortora, P.

    1995-01-01

    Mammalian metallocarboxypeptidases play key roles in major biological processes, such as digestive-protein degradation and specific proteolytic processing. A Sulfolobus solfataricus gene (cpsA) encoding a recently described zinc carboxypeptidase with an unusually broad substrate specificity was cloned, sequenced, and expressed in Escherichia coli. Despite the lack of overall sequence homology with known carboxypeptidases, seven homology blocks, including the Zn-coordinating and catalytic resi...

  11. Molecular cloning, expression and the adjuvant effects of interleukin-8 of channel catfish (Ictalurus Punctatus) against Streptococcus iniae

    OpenAIRE

    Erlong Wang; Jun Wang; Bo Long; Kaiyu Wang; Yang He; Qian Yang; Defang Chen; Yi Geng; Xiaoli Huang; Ping Ouyang; Weimin Lai

    2016-01-01

    Interleukin-8 (IL-8) as an important cytokine involving in inflammatory and immune response, has been studied as effective adjuvants for vaccines in mammals. However, there are fewer reports about the characterization and adjuvant effects of IL-8 in fish. In this study, cloning and sequence analysis of IL-8 coding region of channel catfish (Ictalurus punctatus) were conducted, mature IL-8(rtIL-8) was expressed and evaluated for its adjuvant effects on the immunoprotection of subunit vaccine e...

  12. Molecular cloning, nucleotide sequence, and characterization of lppB, encoding an antigenic 40-kilodalton lipoprotein of Haemophilus somnus.

    OpenAIRE

    Theisen, M.; Rioux, C R; Potter, A A

    1993-01-01

    Haemophilus somnus is a facultative intracellular pathogen which causes a wide range of diseases in cattle. To identify putative virulence determinants, a genomic library of H. somnus in Escherichia coli was screened for Congo red binding, a property associated with virulence in pathogenic bacteria, and subsequently with bovine hyperimmune sera raised against H. somnus HS25. A Congo red-binding clone carrying a 1.8-kb DNA insert was found to encode a strongly seroreactive LppB protein with an...

  13. Cloning of a peroxidase gene from cassava with potential as a molecular marker for resistance to bacterial blight

    OpenAIRE

    Luiz Filipe Pereira; Goodwin, Paul H.; Larry Erickson

    2003-01-01

    Cassava bacterial blight (CBB), caused by Xanthomonas axonopodis pv. manihotis, is considered one of the most important bacterial diseases of cassava (Manihot esculenta Crantz). In order to characterize the cassava genes involved in resistance to this disease, a genomic clone of a cationic peroxidase gene, MEPX1, was isolated by PCR from cassava cultivar MCOL 22. The DNA sequence of MEPX1 showed high homology with other plant peroxidase genes and contained a large intron typical of peroxidase...

  14. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought

    International Nuclear Information System (INIS)

    Many plants, as well as other organisms, accumulate betaine (N,N,N-trimethylglycine) as a nontoxic or protective osmolyte under saline or dry conditions. In plants, the last step in betaine synthesis is catalyzed by betaine-aldehyde dehydrogenase, a nuclear-encoded chloroplastic enzyme. A cDNA clone for BADH (1812 base pairs) was selected from a λgt10 cDNA library derived from leaves of salt-stressed spinach (Spinacia oleracea L.). The library was screened with oligonucleotide probes corresponding to amino acid sequences of two peptides prepared from purified BADH. The authenticity of the clone was confirmed by nucleotide sequence analysis; this analysis demonstrated the presence of a 1491-base-pair open reading frame that contained sequences encoding 12 peptide fragments of BADH. The clone hybridized to a 1.9-kilobase mRNA from spinach leaves; this mRNA was more abundant in salt-stressed plants, consistent with the known salt induction of BADH activity. The amino acid sequence deduced for the BADH cDNA sequence showed substantial similarities to those for nonspecific aldehyde dehydrogenases from several sources, including absolute conservation of a decapeptide in the probable active site. Comparison of deduced and determined amino acid sequences indicated that the transit peptide may comprise only 7 or 8 residues, which is atypically short for precursors to stromal proteins

  15. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought.

    Science.gov (United States)

    Weretilnyk, E A; Hanson, A D

    1990-04-01

    Many plants, as well as other organisms, accumulate betaine (N,N,N-trimethylglycine) as a nontoxic or protective osmolyte under saline or dry conditions. In plants, the last step in betaine synthesis is catalyzed by betaine-aldehyde dehydrogenase (BADH, EC 1.2.1.8), a nuclear-encoded chloroplastic enzyme. A cDNA clone for BADH (1812 base pairs) was selected from a lambda gt10 cDNA library derived from leaves of salt-stressed spinach (Spinacia oleracea L.). The library was screened with oligonucleotide probes corresponding to amino acid sequences of two peptides prepared from purified BADH. The authenticity of the clone was confirmed by nucleotide sequence analysis; this analysis demonstrated the presence of a 1491-base-pair open reading frame that contained sequences encoding 12 peptide fragments of BADH. The clone hybridized to a 1.9-kilobase mRNA from spinach leaves; this mRNA was more abundant in salt-stressed plants, consistent with the known salt induction of BADH activity. The amino acid sequence deduced from the BADH cDNA sequence showed substantial similarities to those for nonspecific aldehyde dehydrogenases (EC 1.2.1.3 and EC 1.2.1.5) from several sources, including absolute conservation of a decapeptide in the probable active site. Comparison of deduced and determined amino acid sequences indicated that the transit peptide may comprise only 7 or 8 residues, which is atypically short for precursors to stromal proteins. PMID:2320587

  16. Pathobiological behavior and molecular mechanism of signet ring cell carcinoma and mucinous adenocarcinoma of the stomach:A comparative study

    Institute of Scientific and Technical Information of China (English)

    Xue-Fei Yang; Lin Yang; Xiao-Yun Mao; Dong-Ying Wu; Su-Min Zhang; Yan Xin

    2004-01-01

    AIM: To elucidate the distinctive pathobiological behavior between signet ring cell carcinoma (SRC) and mucinous adenocarcinoma of the stomach.METHODS: Based on the histological growth patterns and cell-functional differentiation classifications of stomach carcinoma, we conducted a series of comparative studies.All paraffin-embedded and frozen blocks were collected from the files of Cancer Institute of China Medical University. On the basis of histopathological observation, we applied enzymatic and mucous histochemistry, immunohistochemistry,flow cytometry (FCM) and molecular biology to compare these two categories of gastric cancers in terms of the DNA ploidy, proliferative kinetics, the expression of gastric carcinoma associated gene product and instabilities of mitochondrial DNA (mtDNA).RESULTS: Gastric SRC was commonly seen in females below 45 years, mostly presenting diffuse growth and ovary or uterine cervix metastasis. The majority of SRC were absorptive and mucus-producing functional differentiation type (AMlPFDT), which growth relied on estrogen. Meanwhile,stomach mucinous adenocarcinomas were mostly observed in males over 50 years, prone to massive growth or nest growth and extensive peritoneal infiltration, showing two categories of cell-functional differentiation types: AMPFDT and mucus-secreting functional differentiation type (MSFDT).Expressions of ER, enzyme c-PDE and 67kDaLN-R in SRC were evidently higher than that in mucinous adenocarcinoma,while expressions of LN, CN-IV, CD44v6, and PTEN protein were obviously lower in SRC than that in mucinous adenocarcinoma (P<0.05). There was no statistic significance in VEGF, ECD and instabilities of mtDNA (P>0.05) between the above two gastric carcinomas.CONCLUSION: Though SRC and mucinous adenocarcinoma were both characterized by abundant mucus-secretion, they were quite different in morphology, ultrastructure, cellfunctional differentiation and protein expression, indicating different mechanisms of

  17. MOLECULAR GENETIC DISORDERS IN THE VHL GENE AND METHYLATION OF SOME SUPPRESSOR GENES IN SPORADIC CLEAR-CELL RENAL CARCINOMAS

    Directory of Open Access Journals (Sweden)

    D. S. Mikhailenko

    2014-07-01

    Full Text Available Renal carcinoma (RC is one of ten most common malignancies in adults and an urgent problem of modern oncology. The purpose of the study was to make a molecular genetic analysis of a number of suppressor genes in RC, which was aimed at searching for and characterizing the potential markers of the disease. Two hundred and nine RC samples were examined, of them there were 192 clear-cell carcinomas. VHL gene mutations were detected by single-strand conformation polymorphism and sequence analyses while the methylation of suppressor genes was by the methylation-sensitive polymerase chain reaction. Somatic VHL mutations were determined in 35.4% of cases of clear-cell RC (CCRC. VHL gene disorders were found in 53.7% of patients with Stage 1, which counts in favor of VHL inactivation in early-stage CCRC. The methylation of the VHL, RASSF1, FHIT, and CDH1 genes was identified in 12, 56, 58.4, and 46.4% of primary tumors, respectively; that of at least one gene was in 84.1% of the samples. The hypermethylation of the RASSF1 gene was associated with late stages (p = 0.015 and the presence of metastases (p = 0.036; that of the CDH1 gene was related to the progression, invasion, and dissemination of primary tumors (p = 0.009, 0.039, and 0.002, respectively. The findings show it possible to use an analysis of abnormalities in the VHL gene and the methylation of the RASSF1 and CDH1 genes to develop a system of molecular genetic markers of RC.

  18. Molecular cloning of a cDNA for a putative choline co-transporter from Limulus CNS.

    Science.gov (United States)

    Wang, Y; Cao, Z; Newkirk, R F; Ivy, M T; Townsel, J G

    2001-05-01

    It is well documented that the sodium dependent, hemicholinium-3 sensitive, high affinity choline co-transporter is rate limiting in the biosynthesis of acetylcholine and is essential to cholinergic transmission. Until recently this transporter had eluded cloning. Okuda et al. (2000. Nature Neurosci. 3, 120-125) recently reported the successful cloning of the choline co-transporter in Caenorhabditis elegans (CHO-1) and rat (CHT1). We report herein the cloning of the choline co-transporter in the horseshoe crab, Limulus polyphemus. Through the use of a series of degenerate primers selected from consensus sequences of CHO-1 and CHT1, we generated two probes that were used to search a Limulus cDNA library produced from central nervous system (CNS) tissue. The full length nucleotide sequence of the Limulus homolog consists of 3368 bp which includes an open reading frame (ORF) that predicts a protein of 579 amino acids and two non-translation regions (NTR), one at the 3' end and the other at the 5' end. The amino acid sequence has 46% identity with rat CHT1 and 50% identity with both CHO-1 in C. elegans and the recently cloned human co-transporter (hCHT; Apparsundaram et al., 2000. Biochem. Biophys. Res. Commun. 276, 862-867; Okuda and Haga, 2000. FEBS Lett. 484, 92-97). Hydropathy plot analysis predicts the Limulus choline co-transporter (LChCoT) to have thirteen transmembrane domains (TMD), with the N-terminus oriented extracellularly and the C-terminus oriented intracellularly. Northern blot analyses using cDNA probes designed from LChCoT cDNA sequences revealed its distribution specifically in central nervous system structures. On the other hand it was not found in non-nervous tissues. The successful cloning of LChCoT, which was shown to be a member of the sodium-dependent glucose transporter family (SLGT), should prove useful in the determination of its physiological regulation, including its intracellular trafficking. PMID:11368908

  19. Molecular cloning of a novel bioH gene from an environmental metagenome encoding a carboxylesterase with exceptional tolerance to organic solvents

    Directory of Open Access Journals (Sweden)

    Shi Yuping

    2013-02-01

    Full Text Available Abstract Background BioH is one of the key enzymes to produce the precursor pimeloyl-ACP to initiate biotin biosynthesis de novo in bacteria. To date, very few bioH genes have been characterized. In this study, we cloned and identified a novel bioH gene, bioHx, from an environmental metagenome by a functional metagenomic approach. The bioHx gene, encoding an enzyme that is capable of hydrolysis of p-nitrophenyl esters of fatty acids, was expressed in Escherichia coli BL21 using the pET expression system. The biochemical property of the purified BioHx protein was also investigated. Results Screening of an unamplified metagenomic library with a tributyrin-containing medium led to the isolation of a clone exhibiting lipolytic activity. This clone carried a 4,570-bp DNA fragment encoding for six genes, designated bioF, bioHx, fabG, bioC, orf5 and sdh, four of which were implicated in the de novo biotin biosynthesis. The bioHx gene encodes a protein of 259 aa with a calculated molecular mass of 28.60 kDa, displaying 24-39% amino acid sequence identity to a few characterized bacterial BioH enzymes. It contains a pentapeptide motif (Gly76-Trp77-Ser78-Met79-Gly80 and a catalytic triad (Ser78-His230-Asp202, both of which are characteristic for lipolytic enzymes. BioHx was expressed as a recombinant protein and characterized. The purified BioHx protein displayed carboxylesterase activity, and it was most active on p-nitrophenyl esters of fatty acids substrate with a short acyl chain (C4. Comparing BioHx with other known BioH proteins revealed interesting diversity in their sensitivity to ionic and nonionic detergents and organic solvents, and BioHx exhibited exceptional resistance to organic solvents, being the most tolerant one amongst all known BioH enzymes. This ascribed BioHx as a novel carboxylesterase with a strong potential in industrial applications. Conclusions This study constituted the first investigation of a novel bioHx gene in a biotin

  20. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Granito A

    2015-04-01

    Full Text Available Alessandro Granito,1 Elena Guidetti,1 Laura Gramantieri2,3 1Dipartimento di Scienze Mediche e Chirurgiche Università di Bologna, Bologna, Italy; 2Dipartimento dell'Apparato Digerente, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; 3Centro di Ricerca Biomedica Applicata (CRBA, Azienda Ospedaliero-Universitaria Policlinico S Orsola-Malpighi e Università di Bologna, Bologna, Italy Abstract: c-MET is the membrane receptor for hepatocyte growth factor (HGF, also known as scatter factor or tumor cytotoxic factor, a mitogenic growth factor for hepatocytes. HGF is mainly produced by cells of mesenchymal origin and it mainly acts on neighboring epidermal and endothelial cells, regulating epithelial growth and morphogenesis. HGF/MET signaling has been identified among the drivers of tumorigenesis in human cancers. As such, c-MET is a recognized druggable target, and against it, targeted agents are currently under clinical investigation. c-MET overexpression is a common event in a wide range of human malignancies, including gastric, lung, breast, ovary, colon, kidney, thyroid, and liver carcinomas. Despite c-MET overexpression being reported by a large majority of studies, no evidence for a c-MET oncogenic addiction exists in hepatocellular carcinoma (HCC. In particular, c-MET amplification is a rare event, accounting for 4%–5% of cases while no mutation has been identified in c-MET oncogene in HCC. Thus, the selection of patient subgroups more likely to benefit from c-MET inhibition is challenging. Notwithstanding, c-MET overexpression was reported to be associated with increased metastatic potential and poor prognosis in patients with HCC, providing a rationale for its therapeutic inhibition. Here we summarize the role of activated HGF/MET signaling in HCC, its prognostic relevance, and the implications for therapeutic approaches in HCC. Keywords: hepatocellular carcinoma, c-MET, clinical trials

  1. Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis

    International Nuclear Information System (INIS)

    The present is an overview of recent data that describes the genetic underpinnings of the suppression of cancer metastasis. Despite the explosion of new information about the genetics of cancer, only six human genes have thus far been shown to suppress metastasis functionally. Not all have been shown to be functional in breast carcinoma. Several additional genes inhibit various steps of the metastatic cascade, but do not necessarily block metastasis when tested using in vivo assays. The implications of this are discussed. Two recently discovered metastasis suppressor genes block proliferation of tumor cells at a secondary site, offering a new target for therapeutic intervention

  2. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations.

    Science.gov (United States)

    Ashkani, S; Rafii, M Y; Shabanimofrad, M; Ghasemzadeh, A; Ravanfar, S A; Latif, M A

    2016-01-01

    Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (∼500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ∼22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.

  3. Cloning, purification, crystallization and preliminary X-ray analysis of two low-molecular-weight protein tyrosine phosphatases from Vibrio cholerae

    International Nuclear Information System (INIS)

    Two protein tyrosine phosphatases, namely VcLMWPTP-1 and VcLMWPTP-2, from V. cholerae have been cloned, expressed, purified and crystallized. Low-molecular-weight protein tyrosine phosphatases (LMWPTPs) are small cytoplasmic enzymes of molecular weight ∼18 kDa that belong to the large family of protein tyrosine phosphatases (PTPs). Despite their wide distribution in both prokaryotes and eukaryotes, their exact biological role in bacterial systems is not yet clear. Two low-molecular-weight protein tyrosine phosphatases (VcLMWPTP-1 and VcLMWPTP-2) from the Gram-negative bacterium Vibrio cholerae have been cloned, overexpressed, purified by Ni2+–NTA affinity chromatography followed by gel filtration and used for crystallization. Crystals of VcLMWPTP-1 were grown in the presence of ammonium sulfate and glycerol and diffracted to a resolution of 1.6 Å. VcLMWPTP-2 crystals were grown in PEG 4000 and diffracted to a resolution of 2.7 Å. Analysis of the diffraction data showed that the VcLMWPTP-1 crystals had symmetry consistent with space group P31 and that the VcLMWPTP-2 crystals had the symmetry of space group C2. Assuming the presence of four molecules in the asymmetric unit, the Matthews coefficient for the VcLMWPTP-1 crystals was estimated to be 1.97 Å3 Da−1, corresponding to a solvent content of 37.4%. The corresponding values for the VcLMWPTP-2 crystals, assuming the presence of two molecules in the asymmetric unit, were 2.77 Å3 Da−1 and 55.62%, respectively

  4. Molecular cloning of the uvrD gene of Escherichia coli that controls ultraviolet sensitivity and spontaneous mutation frequency

    Energy Technology Data Exchange (ETDEWEB)

    Oeda, K.; Horiuchi, T.; Sekiguchi, M.

    1981-12-01

    The uvrD gene of Escherichia coli that controls UV sensitivity and spontaneous mutation frequency has been cloned with phage lambda as vector. The increased sensitivity to ultraviolet light (UV) of uvrD3, uvrE502, recL152, and pdeB41 mutants, high mutability of uvrD3 and pdeB41 mutants, and conditional lethality of strain TS41 that carried pdeB41, polA1, and sup126 mutations were all suppressed by lysogenization of the mutant cells with lambdavrD/sup +/. These results were consistent with the idea that the uvrD, uvrE, recL, and pdeB mutations are alleles of the uvrD gene. In addition to the uvrD gene, lambdavrD/sup +/ carried the corA gene that controls transport of Mg/sup + +/, Mn/sup + +/, and Co/sup + +/ through the cell membrane. Hybrid plasmids carrying both uvrD and corA genes were also constructed by using pKY2289 as a cloning vehicle. Orientational isomers that carried the same 12.0 kb fragment in the opposite direction were equally efficient in complementing the UvrD/sup -/ as well as CorA/sup -/ defects of the transformed host cells, suggesting that the DNA insert contains all the genetic signals needed to express the two gene products. Insertion of the ..gamma..delta sequence into recombinant plasmids was performed to generate appropriate restriction endonuclease target sites in the cloned DNA fragments.

  5. Molecular cloning of the uvrD gene of Escherichia coli that controls ultraviolet sensitivity and spontaneous mutation frequency

    International Nuclear Information System (INIS)

    The uvrD gene of Escherichia coli that controls UV sensitivity and spontaneous mutation frequency has been cloned with phage lambda as vector. The increased sensitivity to ultraviolet light (UV) of uvrD3, uvrE502, recL152, and pdeB41 mutants, high mutability of uvrD3 and pdeB41 mutants, and conditional lethality of strain TS41 that carried pdeB41, polA1, and sup126 mutations were all suppressed by lysogenization of the mutant cells with lambdavrD+. These results were consistent with the idea that the uvrD, uvrE, recL, and pdeB mutations are alleles of the uvrD gene. In addition to the uvrD gene, lambdavrD+ carried the corA gene that controls transport of Mg++, Mn++, and Co++ through the cell membrane. Hybrid plasmids carrying both uvrD and corA genes were also constructed by using pKY2289 as a cloning vehicle. Orientational isomers that carried the same 12.0 kb fragment in the opposite direction were equally efficient in complementing the UvrD- as well as CorA- defects of the transformed host cells, suggesting that the DNA insert contains all the genetic signals needed to express the two gene products. Insertion of the γdelta sequence into recombinant plasmids was performed to generate appropriate restriction endonuclease target sites in the cloned DNA fragments. (orig.)

  6. Molecular cloning, expression and immunological characterisation of Pas n 1, the major allergen of Bahia grass Paspalum notatum pollen.

    Science.gov (United States)

    Davies, Janet M; Mittag, Diana; Dang, Thanh D; Symons, Karen; Voskamp, Astrid; Rolland, Jennifer M; O'Hehir, Robyn E

    2008-12-01

    Bahia grass, Paspalum notatum, is a clinically important subtropical grass with a prolonged pollination season from spring to autumn. We aimed to clone and characterise the major Bahia grass pollen allergen, Pas n 1. Grass pollen-allergic patients presenting to a tertiary hospital allergy clinic were tested for IgE reactivity with Bahia grass pollen extract by skin prick testing, ImmunoCAP, ELISA and immunoblotting. Using primers deduced from the N-terminal peptide sequence of a group 1 allergen of Bahia grass pollen extract separated by two-dimensional gel electrophoresis, the complete Pas n 1 cDNA was obtained by rapid amplification of cDNA ends and cloned. Biological relevance of recombinant Pas n 1 expressed in Escherichia coli was assessed by serum IgE reactivity and basophil activation. Twenty-nine of 34 (85%) consecutive patients presenting with grass pollen allergy were skin prick test positive to Bahia grass pollen. The Pas n 1 cDNA has sequence homology with the beta-expansin 1 glycoprotein family and is more closely related to the maize pollen group 1 allergen (85% identity) than to ryegrass Lol p 1 or Timothy grass Phl p 1 (64 and 66% identity, respectively). rPas n 1 reacted with serum IgE in 47 of 55 (85%) Bahia grass pollen-allergic patients, activated basophils and inhibited serum IgE reactivity with the 29 kDa band of Bahia grass pollen extract. In conclusion the cDNA for the major group 1 allergen of the subtropical Bahia grass pollen, Pas n 1, was identified and cloned. rPas n 1 is immunologically active and is a valuable reagent for diagnosis and specific immunotherapy of grass pollen allergy. PMID:18817975

  7. Evolution of the major histocompatibility complex: Molecular cloning of major histocompatibility complex class I from the amphibian Xenopus

    International Nuclear Information System (INIS)

    Class I major histocopatibility complex (MHC) cDNA clones have been isolated from an expression library derived from mRNA of an MHC homozygous Xenopus laevis. The nucleotide and predicted amino acid sequences show definite similarity to MHC class I molecules of higher vertebrates. The immunoglobulin-likeα-3 domain is more similar to the immunoglobulin-like domains of mammalian class II β chains than to those of mammalian class I molecules, and a tree based on nucleotide sequences of representative MHC genes is presented

  8. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought.

    OpenAIRE

    Weretilnyk, E A; Hanson, A D

    1990-01-01

    Many plants, as well as other organisms, accumulate betaine (N,N,N-trimethylglycine) as a nontoxic or protective osmolyte under saline or dry conditions. In plants, the last step in betaine synthesis is catalyzed by betaine-aldehyde dehydrogenase (BADH, EC 1.2.1.8), a nuclear-encoded chloroplastic enzyme. A cDNA clone for BADH (1812 base pairs) was selected from a lambda gt10 cDNA library derived from leaves of salt-stressed spinach (Spinacia oleracea L.). The library was screened with oligon...

  9. Human interleukin 7: molecular cloning and growth factor activity on human and murine B-lineage cells.

    OpenAIRE

    Goodwin, R G; Lupton, S; Schmierer, A; Hjerrild, K J; Jerzy, R; Clevenger, W; Gillis, S; Cosman, D; Namen, A E

    1989-01-01

    A cDNA encoding biologically active human interleukin 7 was isolated by hybridization with the homologous murine clone. Nucleotide sequence analysis indicated that this cDNA was capable of encoding a protein of 177 amino acids with a signal sequence of 25 amino acids and a calculated mass of 17.4 kDa for the mature protein. Recombinant human interleukin 7 stimulated the proliferation of murine pre-B cells and was active on cells harvested from human bone marrow that are enriched for B-lineage...

  10. Molecular cloning, nucleotide sequence, and expression of a carboxypeptidase-encoding gene from the archaebacterium Sulfolobus solfataricus.

    Science.gov (United States)

    Colombo, S; Toietta, G; Zecca, L; Vanoni, M; Tortora, P

    1995-10-01

    Mammalian metallocarboxypeptidases play key roles in major biological processes, such as digestive-protein degradation and specific proteolytic processing. A Sulfolobus solfataricus gene (cpsA) encoding a recently described zinc carboxypeptidase with an unusually broad substrate specificity was cloned, sequenced, and expressed in Escherichia coli. Despite the lack of overall sequence homology with known carboxypeptidases, seven homology blocks, including the Zn-coordinating and catalytic residues, were identified by multiple alignment with carboxypeptidases A, B, and T. S. solfataricus carboxypeptidase expressed in E. coli was found to be enzymatically active, and both its substrate specificity and thermostability were comparable to those of the purified S. solfataricus enzyme. PMID:7559343

  11. Molecular cloning, sequencing, and overexpression of the structural gene encoding the delta subunit of Escherichia coli DNA polymerase III holoenzyme.

    OpenAIRE

    J.R. Carter; Franden, M A; Aebersold, R.; McHenry, C S

    1992-01-01

    Using an oligonucleotide hybridization probe, we have mapped the structural gene for the delta subunit of Escherichia coli DNA polymerase III holoenzyme to 14.6 centisomes of the chromosome. This gene, designated holA, was cloned and sequenced. The sequence of holA matches precisely four amino acid sequences obtained for the amino terminus of delta and three internal tryptic peptides. A holA-overproducing plasmid that directs the expression of delta up to 4% of the soluble protein was constru...

  12. Molecular cloning and expression of the Bacillus anthracis edema factor toxin gene: a calmodulin-dependent adenylate cyclase.

    OpenAIRE

    Tippetts, M T; Robertson, D L

    1988-01-01

    The Bacillus anthracis exotoxin is composed of a lethal factor, a protective antigen, and an edema factor (EF). EF is a calmodulin-dependent adenylate cyclase which elevates cyclic AMP levels within cells. The entire EF gene (cya) has been cloned in Escherichia coli, but EF gene expression by its own B. anthracis promoter could not be detected in E. coli. However, when the EF gene was placed downstream from the lac or the T7 promoter, enzymatically active EF was produced. The EF gene, like th...

  13. Molecular cloning of gyrA and gyrB genes of mycobacterium tuberculosis: analysis of nucleotide sequence

    OpenAIRE

    Madhusudan, K.; Ramesh, V.; Nagaraja, V

    1994-01-01

    We have recently reported the cloning of gyrA and gyrB genes from Mycobacterium tuberculosis H37Ra [Curr. Science, (1994) 66, 664-667). Here, we present the complete nucleotide sequence of gyrB gene from M.tuberculosis H37Ra along with the flanking regions. The gyrA gene has been located 34 nucleotides downstream of gyrB and has been partially sequenced; both the genes seem to be transcribed from the promoter elements located upstream of gyrB coding sequence. The gyrB gene encodes a polypepti...

  14. Molecular Cloning and Expression Analysis of IgD in Nile Tilapia (Oreochromis niloticus) in Response to Streptococcus agalactiae Stimulus

    OpenAIRE

    Bei Wang; Pei Wang; Zao-He Wu; Yi-Shan Lu; Zhong-Liang Wang; Ji-Chang Jian

    2016-01-01

    IgD is considered to be a recently-evolved Ig and a puzzling molecule, being previously found in all vertebrate taxa, except for birds. Although IgD likely plays an important role in vertebrate immune responses, the function of IgD in Nile tilapia (Oreochromis niloticus) is virtually unknown. In the present study, a membrane form of IgD (mIgD) heavy chains were cloned from the GIFT strain of Nile tilapia (designated On-mIgD). The On-mIgD heavy chain’s cDNA is composed of 3347 bp with a 31 bp ...

  15. Xmrk, kras and myc transgenic zebrafish liver cancer models share molecular signatures with subsets of human hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiling Zheng

    Full Text Available Previously three oncogene transgenic zebrafish lines with inducible expression of xmrk, kras or Myc in the liver have been generated and these transgenic lines develop oncogene-addicted liver tumors upon chemical induction. In the current study, comparative transcriptomic approaches were used to examine the correlation of the three induced transgenic liver cancers with human liver cancers. RNA profiles from the three zebrafish tumors indicated relatively small overlaps of significantly deregulated genes and biological pathways. Nevertheless, the three transgenic tumor signatures all showed significant correlation with advanced or very advanced human hepatocellular carcinoma (HCC. Interestingly, molecular signature from each oncogene-induced zebrafish liver tumor correlated with only a small subset of human HCC samples (24-29% and there were conserved up-regulated pathways between the zebrafish and correlated human HCC subgroup. The three zebrafish liver cancer models together represented nearly half (47.2% of human HCCs while some human HCCs showed significant correlation with more than one signature defined from the three oncogene-addicted zebrafish tumors. In contrast, commonly deregulated genes (21 up and 16 down in the three zebrafish tumor models generally showed accordant deregulation in the majority of human HCCs, suggesting that these genes might be more consistently deregulated in a broad range of human HCCs with different molecular mechanisms and thus serve as common diagnosis markers and therapeutic targets. Thus, these transgenic zebrafish models with well-defined oncogene-induced tumors are valuable tools for molecular classification of human HCCs and for understanding of molecular drivers in hepatocarcinogenesis in each human HCC subgroup.

  16. Construction of an infectious molecular clone of Japanese encephalitis virus genotype V and its derivative subgenomic replicon capable of expressing a foreign gene.

    Science.gov (United States)

    Ishikawa, Tomohiro; Abe, Makoto; Masuda, Michiaki

    2015-01-01

    Japanese encephalitis virus (JEV) genotype V was originally isolated in Malaysia in 1952 and has long been restricted to the area. In 2009, sudden emergence of the genotype V in China and Korea was reported, suggesting expansion of its geographical distribution. Although studies on the genotype V are becoming more important, they have been limited partly due to lack of its infectious molecular clone. In this study, a plasmid carrying cDNA corresponding to the entire genome of JEV Muar strain, which belongs to genotype V, in the downstream of T7 promoter was constructed. Electroporation of viral RNA transcribed by T7 RNA polymerase (T7RNAP) in vitro from the plasmid led to production of progeny viruses both in mammalian and mosquito cells. Also, transfection of the infectious clone plasmid into mammalian cells expressing T7RNAP transiently or stably was demonstrated to generate infectious progenies. When the viral structural protein genes were partially deleted from the full-length cDNA, the subgenomic RNA transcribed in vitro from the modified plasmid was shown to replicate itself in mammalian cells as a replicon. The replicon carrying the firefly luciferase gene in place of the deleted structural protein genes was also shown to efficiently replicate itself and express luciferase in mammalian cells. Compared with the replicon derived from JEV genotype III (Nakayama strain), the genotype V-derived replicon appeared to be more tolerant to introduction of a foreign gene. The infectious clone and the replicons constructed in this study may serve as useful tools for characterizing JEV genotype V. PMID:25451067

  17. Expressed sequence tags and molecular cloning and characterization of gene encoding pinoresinol/lariciresinol reductase from Podophyllum hexandrum.

    Science.gov (United States)

    Wankhede, Dhammaprakash Pandhari; Biswas, Dipul Kumar; Rajkumar, Subramani; Sinha, Alok Krishna

    2013-12-01

    Podophyllotoxin, an aryltetralin lignan, is the source of important anticancer drugs etoposide, teniposide, and etopophos. Roots/rhizome of Podophyllum hexandrum form one of the most important sources of podophyllotoxin. In order to understand genes involved in podophyllotoxin biosynthesis, two suppression subtractive hybridization libraries were synthesized, one each from root/rhizome and leaves using high and low podophyllotoxin-producing plants of P. hexandrum. Sequencing of clones identified a total of 1,141 Expressed Sequence Tags (ESTs) resulting in 354 unique ESTs. Several unique ESTs showed sequence similarity to the genes involved in metabolism, stress/defense responses, and signalling pathways. A few ESTs also showed high sequence similarity with genes which were shown to be involved in podophyllotoxin biosynthesis in other plant species such as pinoresinol/lariciresinol reductase. A full length coding sequence of pinoresinol/lariciresinol reductase (PLR) has been cloned from P. hexandrum which was found to encode protein with 311 amino acids and show sequence similarity with PLR from Forsythia intermedia and Linum spp. Spatial and stress-inducible expression pattern of PhPLR and other known genes of podophyllotoxin biosynthesis, secoisolariciresinol dehydrogenase (PhSDH), and dirigent protein oxidase (PhDPO) have been studied. All the three genes showed wounding and methyl jasmonate-inducible expression pattern. The present work would form a basis for further studies to understand genomics of podophyllotoxin biosynthesis in P. hexandrum.

  18. Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger.

    Science.gov (United States)

    Matsuda, J; Okabe, S; Hashimoto, T; Yamada, Y

    1991-05-25

    Roots of several solanaceous plants produce anticholinergic alkaloids, hyoscyamine and scopolamine. Hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.11), catalyzes hydroxylation of hyoscyamine in the biosynthetic pathway leading to scopolamine. We report here on the isolation of cDNA clones encoding the hydroxylase from a cDNA library made from mRNA of the cultured roots of Hyoscyamus niger. The library was screened with three synthetic oligonucleotides that encode amino acid sequences of internal peptide fragments of the purified hydroxylase. Nucleotide sequence analysis of the cloned cDNA revealed an open reading frame that encodes 344 amino acids (Mr = 38,999). All 12 internal peptide fragments determined in the purified enzyme were found in the amino acid sequence deduced from the cDNA. With computer-aided comparison to other proteins we found that the hydroxylase is homologous to two synthases involved in the biosynthesis of beta-lactam antibiotics in some microorganisms and the gene products of tomato pTOM13 cDNA and maize A2 locus which had been proposed to catalyze oxidative reactions in the biosynthesis of ethylene and anthocyan, respectively. RNA blotting hybridization showed that mRNA of the hydroxylase is abundant in cultured roots and present in plant roots, but absent in leaves, stems, and cultured cells of H. niger. PMID:2033047

  19. Molecular cloning and long terminal repeat sequences of human endogenous retrovirus genes related to types A and B retrovirus genes

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M.

    1986-06-01

    By using a DNA fragment primarily encoding the reverse transcriptase (pol) region of the Syrian hamster intracisternal A particle (IAP; type A retrovirus) gene as a probe, human endogenous retrovirus genes, tentatively termed HERV-K genes, were cloned from a fetal human liver gene library. Typical HERV-K genes were 9.1 or 9.4 kilobases in length, having long terminal repeats (LTRs) of ca. 970 base pairs. Many structural features commonly observed on the retrovirus LTRs, such as the TATAA box, polyadenylation signal, and terminal inverted repeats, were present on each LTR, and a lysine (K) tRNA having a CUU anticodon was identified as a presumed primer tRNA. The HERV-K LTR, however, had little sequence homology to either the IAP LTR or other typical oncovirus LTRs. By filter hybridization, the number of HERV-K genes was estimated to be ca. 50 copies per haploid human genome. The cloned mouse mammary tumor virus (type B) gene was found to hybridize with both the HERV-K and IAP genes to essentially the same extent.

  20. Molecular cloning and heterologous expression in Pichia pastoris of X-prolyl-dipeptidyl aminopeptidase from basidiomycete Ustilago maydis.

    Science.gov (United States)

    Juárez-Montiel, Margarita; Ibarra, J Antonio; Chávez-Camarillo, Griselda; Hernández-Rodríguez, César; Villa-Tanaca, Lourdes

    2014-03-01

    Dipeptidyl aminopeptidases are enzymes involved in the posttranslational control of bioactive peptides. Here we identified the gene dapUm in Ustilago maydis by homology with other fungal dipeptidyl aminopeptidases. Analysis of the dapUm-deduced amino acid sequence indicated that it encodes for membrane-type serine protease with a characteristic prolyl oligopeptidase catalytic motif triad: Ser, Asp, His. In order to overexpress the DapUm, the gene encoding for it was cloned and transformed into Pichia. Using this system, we observed a ∼ 125-kDa recombinant protein with an optimal enzymatic activity at pH 6.0 and at 40 °C for the Ala-Pro-p-nitroanilide substrate and an experimental pH of 6.9. U. maydis DapUm was specifically inhibited by phenylmethylsulfonyl fluoride and Pefabloc, confirming the presence of a serine residue in the active site. To our knowledge, this study is the first report on the cloning and expression of a DPP IV dipeptidyl aminopeptidase from a basidiomycete organism. Moreover, the use of recombinant DapUm will allow us to further study and characterize this enzyme, in addition to testing chemical compounds for pharmaceutical purposes.