WorldWideScience

Sample records for carcinoma cell-derived pluripotent

  1. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  2. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  3. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Galat, Vasiliy; Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J; Iannaccone, Philip M; Hendrix, Mary J C

    2016-07-15

    Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052

  4. Tumorigenicity studies for human pluripotent stem cell-derived products.

    Science.gov (United States)

    Kuroda, Takuya; Yasuda, Satoshi; Sato, Yoji

    2013-01-01

    Human pluripotent stem cells (hPSCs), i.e. human embryonic stem cells and human induced pluripotent stem cells, are able to self-renew and differentiate into multiple cell types. Because of these abilities, numerous attempts have been made to utilize hPSCs in regenerative medicine/cell therapy. hPSCs are, however, also tumorigenic, that is, they can give rise to the progressive growth of tumor nodules in immunologically unresponsive animals. Therefore, assessing and managing the tumorigenicity of all final products is essential in order to prevent ectopic tissue formation, tumor development, and/or malignant transformation elicited by residual pluripotent stem cells after implantation. No detailed guideline for the tumorigenicity testing of hPSC-derived products has yet been issued for regenerative medicine/cell therapy, despite the urgent necessity. Here, we describe the current situations and issues related to the tumorigenicity testing of hPSC-derived products and we review the advantages and disadvantages of several types of tumorigenicity-associated tests. We also refer to important considerations in the execution and design of specific studies to monitor the tumorigenicity of hPSC-derived products. PMID:23370350

  5. Automated Electrophysiological and Pharmacological Evaluation of Human Pluripotent Stem Cell-Derived Cardiomyocytes

    OpenAIRE

    Rajamohan, Divya; Kalra, Spandan; Duc Hoang, Minh; George, Vinoj; Staniforth, Andrew; Russell, Hugh; Yang, Xuebin; Denning, Chris

    2016-01-01

    Automated planar patch clamp systems are widely used in drug evaluation studies because of their ability to provide accurate, reliable, and reproducible data in a high-throughput manner. Typically, CHO and HEK tumorigenic cell lines overexpressing single ion channels are used since they can be harvested as high-density, homogenous, single-cell suspensions. While human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are physiologically more relevant, these cells are fragile, have compl...

  6. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling

    Directory of Open Access Journals (Sweden)

    Daniel R. Bayzigitov

    2016-01-01

    Full Text Available Fundamental studies of molecular and cellular mechanisms of cardiovascular disease pathogenesis are required to create more effective and safer methods of their therapy. The studies can be carried out only when model systems that fully recapitulate pathological phenotype seen in patients are used. Application of laboratory animals for cardiovascular disease modeling is limited because of physiological differences with humans. Since discovery of induced pluripotency generating induced pluripotent stem cells has become a breakthrough technology in human disease modeling. In this review, we discuss a progress that has been made in modeling inherited arrhythmias and cardiomyopathies, studying molecular mechanisms of the diseases, and searching for and testing drug compounds using patient-specific induced pluripotent stem cell-derived cardiomyocytes.

  7. Reduced Immunogenicity of Induced Pluripotent Stem Cells Derived from Sertoli Cells

    OpenAIRE

    Xiaoying Wang; Jie Qin; Robert Chunhua Zhao; Martin Zenke

    2014-01-01

    Sertoli cells constitute the structural framework in testis and provide an immune-privileged environment for germ cells. Induced pluripotent stem cells (iPS cells) resemble embryonic stem cells (ES cells) and are generated from somatic cells by expression of specific reprogramming transcription factors. Here, we used C57BL/6 (B6) Sertoli cells to generate iPS cells (Ser-iPS cells) and compared the immunogenicity of Ser-iPS cells with iPS cells derived from mouse embryonic fibroblast (MEF-iPS ...

  8. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Corinne A Lee-Kubli; Paul Lu

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell ther-apies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.

  9. Comparison of Magnetic Resonance Imaging and Serum Biomarkers for Detection of Human Pluripotent Stem Cell-Derived Teratomas

    OpenAIRE

    Johannes Riegler; Antje Ebert; Xulei Qin; Qi Shen; Mouer Wang; Mohamed Ameen; Kazuki Kodo; Sang-Ging Ong; Won Hee Lee; Grace Lee; Evgenios Neofytou; Joseph D. Gold; Andrew J. Connolly; Joseph C. Wu

    2016-01-01

    Summary The use of cells derived from pluripotent stem cells (PSCs) for regenerative therapies confers a considerable risk for neoplastic growth and teratoma formation. Preclinical and clinical assessment of such therapies will require suitable monitoring strategies to understand and mitigate these risks. Here we generated human-induced pluripotent stem cells (iPSCs), selected clones that continued to express reprogramming factors after differentiation into cardiomyocytes, and transplanted th...

  10. Induced pluripotent stem cell-derived cardiomyocytes: boutique science or valuable arrhythmia model?

    Science.gov (United States)

    Knollmann, Björn C

    2013-03-15

    This article reviews the strengths and limitations of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) as models of cardiac arrhythmias. Specifically, the article attempts to answer the following questions: Which clinical arrhythmias can be modeled by iPSC-CM? How well can iPSC-CM model adult ventricular myocytes? What are the strengths and limitations of published iPSC-CM arrhythmia models? What new mechanistic insight has been gained? What is the evidence that would support using iPSC-CM to personalize antiarrhythmic drug therapy? The review also discusses the pros and cons of using the iPSC-CM technology for modeling specific genetic arrhythmia disorders, such as long QT syndrome, Brugada Syndrome, or Catecholaminergic Polymorphic Ventricular Tachycardia. PMID:23569106

  11. Induced pluripotent stem cell-derived cardiomyocytes: boutique science or valuable arrhythmia model?

    Science.gov (United States)

    Knollmann, Björn C

    2013-03-15

    This article reviews the strengths and limitations of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) as models of cardiac arrhythmias. Specifically, the article attempts to answer the following questions: Which clinical arrhythmias can be modeled by iPSC-CM? How well can iPSC-CM model adult ventricular myocytes? What are the strengths and limitations of published iPSC-CM arrhythmia models? What new mechanistic insight has been gained? What is the evidence that would support using iPSC-CM to personalize antiarrhythmic drug therapy? The review also discusses the pros and cons of using the iPSC-CM technology for modeling specific genetic arrhythmia disorders, such as long QT syndrome, Brugada Syndrome, or Catecholaminergic Polymorphic Ventricular Tachycardia.

  12. Rett syndrome induced pluripotent stem cell-derived neurons reveal novel neurophysiological alterations.

    Science.gov (United States)

    Farra, N; Zhang, W-B; Pasceri, P; Eubanks, J H; Salter, M W; Ellis, J

    2012-12-01

    Rett syndrome (RTT) is a neurodevelopmental autism spectrum disorder caused by mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Here, we describe the first characterization and neuronal differentiation of induced pluripotent stem (iPS) cells derived from Mecp2-deficient mice. Fully reprogrammed wild-type (WT) and heterozygous female iPS cells express endogenous pluripotency markers, reactivate the X-chromosome and differentiate into the three germ layers. We directed iPS cells to produce glutamatergic neurons, which generated action potentials and formed functional excitatory synapses. iPS cell-derived neurons from heterozygous Mecp2(308) mice showed defects in the generation of evoked action potentials and glutamatergic synaptic transmission, as previously reported in brain slices. Further, we examined electrophysiology features not yet studied with the RTT iPS cell system and discovered that MeCP2-deficient neurons fired fewer action potentials, and displayed decreased action potential amplitude, diminished peak inward currents and higher input resistance relative to WT iPS-derived neurons. Deficiencies in action potential firing and inward currents suggest that disturbed Na(+) channel function may contribute to the dysfunctional RTT neuronal network. These phenotypes were additionally confirmed in neurons derived from independent WT and hemizygous mutant iPS cell lines, indicating that these reproducible deficits are attributable to MeCP2 deficiency. Taken together, these results demonstrate that neuronally differentiated MeCP2-deficient iPS cells recapitulate deficits observed previously in primary neurons, and these identified phenotypes further illustrate the requirement of MeCP2 in neuronal development and/or in the maintenance of normal function. By validating the use of iPS cells to delineate mechanisms underlying RTT pathogenesis, we identify deficiencies that can be targeted for in vitro translational screens.

  13. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts.

    Science.gov (United States)

    Liu, Qi; Zhang, Ru-Zhi; Li, Di; Cheng, Sai; Yang, Yu-Hua; Tian, Ting; Pan, Xiao-Ru

    2016-04-01

    A new type of mesenchymal stem cells (MSCs) that expresses stage-specific embryonic antigen 3 (SSEA-3) and the mesenchymal cell marker CD105 are known as multilineage-differentiating stress-enduring (Muse) cells. Studies have shown that stem cells in suspension cultures are more likely to generate embryoid body-like stem cell spheres and maintain an undifferentiated phenotype and pluripotency. We separated Muse cells derived from human dermal fibroblasts by long-term trypsin incubation (LTT) through suspension cultures in methylcellulose. The Muse cells obtained expressed several pluripotency markers, including Nanog, Oct4, Sox2, and SSEA-3, and could differentiate in vitro into cells of the three germ layers, such as hepatocytes (endodermal), neural cells (ectodermal) and adipocytes, and osteocytes (mesodermal cells). These cells showed a low level of DNA methylation and a high nucleo-cytoplasmic ratio. Our study provides an innovative and exciting platform for exploring the potential cell-based therapy of various human diseases using Muse cells as well as their great possibility for regenerative medicine. PMID:27055628

  14. Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing.

    Science.gov (United States)

    Pesl, Martin; Pribyl, Jan; Acimovic, Ivana; Vilotic, Aleksandra; Jelinkova, Sarka; Salykin, Anton; Lacampagne, Alain; Dvorak, Petr; Meli, Albano C; Skladal, Petr; Rotrekl, Vladimir

    2016-11-15

    Cardiomyocyte contraction and relaxation are important parameters of cardiac function altered in many heart pathologies. Biosensing of these parameters represents an important tool in drug development and disease modeling. Human embryonic stem cells and especially patient specific induced pluripotent stem cell-derived cardiomyocytes are well established as cardiac disease model.. Here, a live stem cell derived embryoid body (EB) based cardiac cell syncytium served as a biorecognition element coupled to the microcantilever probe from atomic force microscope thus providing reliable micromechanical cellular biosensor suitable for whole-day testing. The biosensor was optimized regarding the type of cantilever, temperature and exchange of media; in combination with standardized protocol, it allowed testing of compounds and conditions affecting the biomechanical properties of EB. The studied effectors included calcium , drugs modulating the catecholaminergic fight-or-flight stress response such as the beta-adrenergic blocker metoprolol and the beta-adrenergic agonist isoproterenol. Arrhythmogenic effects were studied using caffeine. Furthermore, with EBs originating from patient's stem cells, this biosensor can help to characterize heart diseases such as dystrophies. PMID:27266660

  15. Induced pluripotent stem cell-derived neuron as a human model for testing environmentally induced developmental neurotoxicity

    Science.gov (United States)

    Induced pluripotent stem cell-derived neurons as a human model for testing environmentally induced developmental neurotoxicity Ingrid L. Druwe1, Timothy J. Shafer2, Kathleen Wallace2, Pablo Valdivia3 ,and William R. Mundy2. 1University of North Carolina, Curriculum in Toxicology...

  16. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity.

    Science.gov (United States)

    Schwartz, Michael P; Hou, Zhonggang; Propson, Nicholas E; Zhang, Jue; Engstrom, Collin J; Santos Costa, Vitor; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M; Daly, William; Wang, Yu; Stewart, Ron; Page, C David; Murphy, William L; Thomson, James A

    2015-10-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial.

  17. Stretch Injury of Human Induced Pluripotent Stem Cell Derived Neurons in a 96 Well Format

    Science.gov (United States)

    Sherman, Sydney A.; Phillips, Jack K.; Costa, J. Tighe; Cho, Frances S.; Oungoulian, Sevan R.; Finan, John D.

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity with limited therapeutic options. Traumatic axonal injury (TAI) is an important component of TBI pathology. It is difficult to reproduce TAI in animal models of closed head injury, but in vitro stretch injury models reproduce clinical TAI pathology. Existing in vitro models employ primary rodent neurons or human cancer cell line cells in low throughput formats. This in vitro neuronal stretch injury model employs human induced pluripotent stem cell-derived neurons (hiPSCNs) in a 96 well format. Silicone membranes were attached to 96 well plate tops to create stretchable, culture substrates. A custom-built device was designed and validated to apply repeatable, biofidelic strains and strain rates to these plates. A high content approach was used to measure injury in a hypothesis-free manner. These measurements are shown to provide a sensitive, dose-dependent, multi-modal description of the response to mechanical insult. hiPSCNs transition from healthy to injured phenotype at approximately 35% Lagrangian strain. Continued development of this model may create novel opportunities for drug discovery and exploration of the role of human genotype in TAI pathology. PMID:27671211

  18. Automated Electrophysiological and Pharmacological Evaluation of Human Pluripotent Stem Cell-Derived Cardiomyocytes.

    Science.gov (United States)

    Rajamohan, Divya; Kalra, Spandan; Duc Hoang, Minh; George, Vinoj; Staniforth, Andrew; Russell, Hugh; Yang, Xuebin; Denning, Chris

    2016-03-15

    Automated planar patch clamp systems are widely used in drug evaluation studies because of their ability to provide accurate, reliable, and reproducible data in a high-throughput manner. Typically, CHO and HEK tumorigenic cell lines overexpressing single ion channels are used since they can be harvested as high-density, homogenous, single-cell suspensions. While human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are physiologically more relevant, these cells are fragile, have complex culture requirements, are inherently heterogeneous, and are expensive to produce, which has restricted their use on automated patch clamp (APC) devices. Here, we used high efficiency differentiation protocols to produce cardiomyocytes from six different hPSC lines for analysis on the Patchliner (Nanion Technologies GmbH) APC platform. We developed a two-step cell preparation protocol that yielded cell catch rates and whole-cell breakthroughs of ∼80%, with ∼40% of these cells allowing electrical activity to be recorded. The protocol permitted formation of long-lasting (>15 min), high quality seals (>2 GΩ) in both voltage- and current-clamp modes. This enabled density of sodium, calcium, and potassium currents to be evaluated, along with dose-response curves to their respective channel inhibitors, tetrodotoxin, nifedipine, and E-4031. Thus, we show the feasibility of using the Patchliner platform for automated evaluation of the electrophysiology and pharmacology of hPSC-CMs, which will enable considerable increase in throughput for reliable and efficient drug evaluation. PMID:26906236

  19. Controversies in Cardiovascular Research: Induced pluripotent stem cell-derived cardiomyocytes – boutique science or valuable arrhythmia model?

    OpenAIRE

    Knollmann, Björn C.

    2013-01-01

    As part of the series on Controversies in Cardiovascular Research, the article reviews the strengths and limitations of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) as models of cardiac arrhythmias. Specifically, the article attempts to answer the following questions: Which clinical arrhythmias can be modeled by iPSC-CM? How well can iPSC-CM model adult ventricular myocytes? What are the strengths and limitations of published iPSC-CM arrhythmia models? What new mechanistic i...

  20. Finding the rhythm of sudden cardiac death: new opportunities using induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Sallam, Karim; Li, Yingxin; Sager, Philip T; Houser, Steven R; Wu, Joseph C

    2015-06-01

    Sudden cardiac death is a common cause of death in patients with structural heart disease, genetic mutations, or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with sudden cardiac death. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology, including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single-ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell-derived cardiomyocytes resemble, but are not identical, adult human cardiomyocytes and provide a new platform for studying arrhythmic disorders leading to sudden cardiac death. A variety of platforms exist to phenotype cellular models, including conventional and automated patch clamp, multielectrode array, and computational modeling. Induced pluripotent stem cell-derived cardiomyocytes have been used to study long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy, and other hereditary cardiac disorders. Although induced pluripotent stem cell-derived cardiomyocytes are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of sudden cardiac death. PMID:26044252

  1. Pharmacoelectrophysiology of viral-free induced pluripotent stem cell-derived human cardiomyocytes.

    Science.gov (United States)

    Mehta, Ashish; Chung, YingYing; Sequiera, Glen Lester; Wong, Philip; Liew, Reginald; Shim, Winston

    2013-02-01

    Development of pharmaceutical agents for cardiac indication demands elaborate safety screening in which assessing repolarization of cardiac cells remains a critical path in risk evaluations. An efficient platform for evaluating cardiac repolarization in vitro significantly facilitates drug developmental programs. In a proof of principle study, we examined the effect of antiarrhythmogenic drugs (Vaughan Williams class I-IV) and noncardiac active drugs (terfenadine and cisapride) on the repolarization profile of viral-free human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Extracellular field potential (FP) recording using microelectrode arrays demonstrated significant delayed repolarization as prolonged corrected FP durations (cFPDs) by class I (quinidine and flecainide), class III (sotalol and amiodarone), and class IV (verapamil), whereas class II drugs (propranolol and nadolol) had no effects. Consistent with their sodium channel-blocking ability, class I drugs also significantly reduced FPmin and conduction velocity. Although lidocaine (class IB) had no effects on cFPDs, verapamil shortened cFPD and FPmin by 25 and 50%, respectively. Furthermore, verapamil reduced beating frequencies drastically. Importantly, the examined drugs exhibited dose-response curve on prolongation of cFPDs at an effective range that correlated significantly with therapeutic plasma concentrations achieved clinically. Consistent with clinical outcomes, drug-induced arrhythmia of tachycardia and bigeminy-like waveforms by quinidine, flecainide, and sotalol was demonstrated at supraphysiological concentrations. Furthermore, off-target effects of terfenadine and cisapride on cFPD and Na( + ) channel blockage were similarly revealed. These results suggest that hiPSC-CMs may be useful for safety evaluation of cardioactive and noncardiac acting drugs for personalized medicine.

  2. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harvested immediately after irradiation, and at 1 and 5 days after irradiation. Cell cycle analysis, colony forming ability (CFU-F), differentiation ability, and expression of osteogenic-specific runt-related transcription factor 2 (RUNX2), adipogenic peroxisome proliferator-activated receptor gamma (PPARγ), oxidative stress-specific dismutase-1 (SOD1) and Glutathione peroxidase (GPX1) were analyzed. Irradiation arrested cell cycle progression in BMMSCs and hESMSCs. Colony formation ability of irradiated MSCs decreased in a dose-dependent manner. Irradiated hESMSCs showed higher adipogenic differentiation compared with BMMSCs, together with an increase in the adipogenic PPARγ expression. PPARγ expression was upregulated as early as 4 h after irradiation, along with the expression of SOD1. More than 70% downregulation was found in Wnt3A, Wnt4, Wnt7A, Wnt10A and Wnt11 in BMMSCs, but not in hESMSCs. hESMSCs are highly proliferative but radiosensitive compared with BMMSCs. Increased PPARγ expression relative to RUNX2 and downregulation of Wnt ligands in irradiated MSCs suggest Wnt mediated the fate determination of irradiated MSCs. (author)

  3. Modeling chemotherapeutic neurotoxicity with human induced pluripotent stem cell-derived neuronal cells.

    Directory of Open Access Journals (Sweden)

    Heather E Wheeler

    Full Text Available There are no effective agents to prevent or treat chemotherapy-induced peripheral neuropathy (CIPN, the most common non-hematologic toxicity of chemotherapy. Therefore, we sought to evaluate the utility of human neuron-like cells derived from induced pluripotent stem cells (iPSCs as a means to study CIPN. We used high content imaging measurements of neurite outgrowth phenotypes to compare the changes that occur to iPSC-derived neuronal cells among drugs and among individuals in response to several classes of chemotherapeutics. Upon treatment of these neuronal cells with the neurotoxic drug paclitaxel, vincristine or cisplatin, we identified significant differences in five morphological phenotypes among drugs, including total outgrowth, mean/median/maximum process length, and mean outgrowth intensity (P < 0.05. The differences in damage among drugs reflect differences in their mechanisms of action and clinical CIPN manifestations. We show the potential of the model for gene perturbation studies by demonstrating decreased expression of TUBB2A results in significantly increased sensitivity of neurons to paclitaxel (0.23 ± 0.06 decrease in total neurite outgrowth, P = 0.011. The variance in several neurite outgrowth and apoptotic phenotypes upon treatment with one of the neurotoxic drugs is significantly greater between than within neurons derived from four different individuals (P < 0.05, demonstrating the potential of iPSC-derived neurons as a genetically diverse model for CIPN. The human neuron model will allow both for mechanistic studies of specific genes and genetic variants discovered in clinical studies and for screening of new drugs to prevent or treat CIPN.

  4. Degradation of amyloid beta by human induced pluripotent stem cell-derived macrophages expressing Neprilysin-2

    Directory of Open Access Journals (Sweden)

    Koutaro Takamatsu

    2014-11-01

    Full Text Available The purpose of this study was to evaluate the therapeutic potential of human induced pluripotent stem (iPS cell-derived macrophage-like cells for Alzheimer's disease (AD. In previous studies, we established the technology to generate macrophage-like myeloid lineage cells with proliferating capacity from human iPS cells, and we designated the cells iPS-ML. iPS-ML reduced the level of Aβ added into the culture medium, and the culture supernatant of iPS-ML alleviated the neurotoxicity of Aβ. We generated iPS-ML expressing the Fc-receptor-fused form of a single chain antibody specific to Aβ. In addition, we made iPS-ML expressing Neprilysin-2 (NEP2, which is a protease with Aβ-degrading activity. In vitro, expression of NEP2 but not anti-Aβ scFv enhanced the effect to reduce the level of soluble Aβ oligomer in the culture medium and to alleviate the neurotoxicity of Aβ. To analyze the effect of iPS-ML expressing NEP2 (iPS-ML/NEP2 in vivo, we intracerebrally administered the iPS-ML/NEP2 to 5XFAD mice, which is a mouse model of AD. We observed significant reduction in the level of Aβ in the brain interstitial fluid following administration of iPS-ML/NEP2. These results suggested that iPS-ML/NEP2 may be a potential therapeutic agent in the treatment of AD.

  5. Pluripotent stem cell-derived neural stem cells: From basic research to applications

    Institute of Scientific and Technical Information of China (English)

    Masahiro; Otsu; Takashi; Nakayama; Nobuo; Inoue

    2014-01-01

    Basic research on pluripotent stem cells is designed to enhance understanding of embryogenesis, whereas applied research is designed to develop novel therapies and prevent diseases. Attainment of these goals has been enhanced by the establishment of embryonic stem cell lines, the technological development of genomic reprogramming to generate induced-pluripotent stem cells, and improvements in in vitro techniques to manipulate stem cells. This review summarizes the techniques required to generate neural cells from pluripotent stem cells. In particular, this review describes current research applications of a simple neural differentiation method, the neural stem sphere method, which we developed.

  6. Engineering Adolescence: Maturation of Human Pluripotent Stem Cell-derived Cardiomyocytes

    OpenAIRE

    Yang, Xiulan; Pabon, Lil; Murry, Charles E.

    2014-01-01

    The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has...

  7. Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors.

    Science.gov (United States)

    Avaliani, Natalia; Sørensen, Andreas Toft; Ledri, Marco; Bengzon, Johan; Koch, Philipp; Brüstle, Oliver; Deisseroth, Karl; Andersson, My; Kokaia, Merab

    2014-12-01

    Reprogramming of somatic cells into pluripotency stem cell state has opened new opportunities in cell replacement therapy and disease modeling in a number of neurological disorders. It still remains unknown, however, to what degree the grafted human-induced pluripotent stem cells (hiPSCs) differentiate into a functional neuronal phenotype and if they integrate into the host circuitry. Here, we present a detailed characterization of the functional properties and synaptic integration of hiPSC-derived neurons grafted in an in vitro model of hyperexcitable epileptic tissue, namely organotypic hippocampal slice cultures (OHSCs), and in adult rats in vivo. The hiPSCs were first differentiated into long-term self-renewing neuroepithelial stem (lt-NES) cells, which are known to form primarily GABAergic neurons. When differentiated in OHSCs for 6 weeks, lt-NES cell-derived neurons displayed neuronal properties such as tetrodotoxin-sensitive sodium currents and action potentials (APs), as well as both spontaneous and evoked postsynaptic currents, indicating functional afferent synaptic inputs. The grafted cells had a distinct electrophysiological profile compared to host cells in the OHSCs with higher input resistance, lower resting membrane potential, and APs with lower amplitude and longer duration. To investigate the origin of synaptic afferents to the grafted lt-NES cell-derived neurons, the host neurons were transduced with Channelrhodopsin-2 (ChR2) and optogenetically activated by blue light. Simultaneous recordings of synaptic currents in grafted lt-NES cell-derived neurons using whole-cell patch-clamp technique at 6 weeks after grafting revealed limited synaptic connections from host neurons. Longer differentiation times, up to 24 weeks after grafting in vivo, revealed more mature intrinsic properties and extensive synaptic afferents from host neurons to the lt-NES cell-derived neurons, suggesting that these cells require extended time for differentiation

  8. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3

    DEFF Research Database (Denmark)

    Hansen, Susanne K; Stummann, Tina C; Borland, Helena;

    2016-01-01

    The neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) is caused by a CAG-repeat expansion in the ATXN3 gene. In this study, induced pluripotent stem cell (iPSC) lines were established from two SCA3 patients. Dermal fibroblasts were reprogrammed using an integration-free method...

  9. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo.

    Directory of Open Access Journals (Sweden)

    Binghua Xue

    Full Text Available Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.

  10. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo

    Science.gov (United States)

    Xue, Binghua; Li, Yan; He, Yilong; Wei, Renyue; Sun, Ruizhen; Yin, Zhi; Bou, Gerelchimeg; Liu, Zhonghua

    2016-01-01

    Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs. PMID:26991423

  11. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression

    OpenAIRE

    Shi, Si; Zhang, Qicheng; Xia, Yunfei; You, Bo; Shan, Ying; Bao, Lili; Li, Li; You, Yiwen; Gu, Zhifeng

    2016-01-01

    Mesenchymal stem cells (MSCs), which are capable of differentiating into multiple cell types, are reported to exert multiple effects on tumor development. However, the relationship between MSCs and nasopharyngeal carcinoma (NPC) cells remains unclear. Exosomes are small membrane vesicles that can be released by several cell types, including MSCs. Exosomes, which can carry membrane and cytoplasmic constituents, have been described as participants in a novel mechanism of cell-to-cell communicat...

  12. Techniques of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derivation.

    Science.gov (United States)

    Lewandowski, Jarosław; Kurpisz, Maciej

    2016-10-01

    Developing procedures for the derivation of human pluripotent stem cells (PSCs) gave rise to novel pathways into regenerative medicine research. For many years, stem cells have attracted attention as a potentially unlimited cell source for cellular therapy in neurodegenerative disorders, cardiovascular diseases, and spinal cord injuries, for example. In these studies, adult stem cells were insufficient; therefore, many attempts were made to obtain PSCs by other means. This review discusses key issues concerning the techniques of pluripotent cell acquisition. Technical and ethical issues hindered the medical use of somatic cell nuclear transfer and embryonic stem cells. Therefore, induced PSCs (iPSCs) emerged as a powerful technique with great potential for clinical applications, patient-specific disease modelling and pharmaceutical studies. The replacement of viral vectors or the administration of analogous proteins or chemical compounds during cell reprogramming are modifications designed to reduce tumorigenesis risk and to augment the procedure efficiency. Intensified analysis of new PSC lines revealed other barriers to overcome, such as epigenetic memory, disparity between human and mouse pluripotency, and variable response to differentiation of some iPSC lines. Thus, multidimensional verification must be conducted to fulfil strict clinical-grade requirements. Nevertheless, the first clinical trials in patients with spinal cord injury and macular dystrophy were recently carried out with differentiated iPSCs, encouraging alternative strategies for potential autologous cellular therapies.

  13. Methods for derivation of multipotent neural crest cells derived from human pluripotent stem cells

    Science.gov (United States)

    Avery, John; Dalton, Stephen

    2016-01-01

    Summary Multipotent, neural crest cells (NCCs) produce a wide-range of cell types during embryonic development. This includes melanocytes, peripheral neurons, smooth muscle cells, osteocytes, chondrocytes and adipocytes. The protocol described here allows for highly-efficient differentiation of human pluripotent stem cells to a neural crest fate within 15 days. This is accomplished under feeder-free conditions, using chemically defined medium supplemented with two small molecule inhibitors that block glycogen synthase kinase 3 (GSK3) and bone morphogenic protein (BMP) signaling. This technology is well-suited as a platform to understand in greater detail the pathogenesis of human disease associated with impaired neural crest development/migration. PMID:25986498

  14. Modeling Cardiovascular Diseases with Patient-Specific Human Pluripotent Stem Cell-Derived Cardiomyocytes

    Science.gov (United States)

    Burridge, Paul W.; Diecke, Sebastian; Matsa, Elena; Sharma, Arun; Wu, Haodi; Wu, Joseph C.

    2016-01-01

    The generation of cardiomyocytes from human induced pluripotent stem cells (hiPSCs) provides a source of cells that accurately recapitulate the human cardiac pathophysiology. The application of these cells allows for modeling of cardiovascular diseases, providing a novel understanding of human disease mechanisms and assessment of therapies. Here, we describe a stepwise protocol developed in our laboratory for the generation of hiPSCs from patients with a specific disease phenotype, long-term hiPSC culture and cryopreservation, differentiation of hiPSCs to cardiomyocytes, and assessment of disease phenotypes. Our protocol combines a number of innovative tools that include a codon-optimized mini intronic plasmid (CoMiP), chemically defined culture conditions to achieve high efficiencies of reprogramming and differentiation, and calcium imaging for assessment of cardiomyocyte phenotypes. Thus, this protocol provides a complete guide to use a patient cohort on a testable cardiomyocyte platform for pharmacological drug assessment. PMID:25690476

  15. Efficient Generation of Viral and Integration-Free Human Induced Pluripotent Stem Cell-Derived Oligodendrocytes.

    Science.gov (United States)

    Espinosa-Jeffrey, Araceli; Blanchi, Bruno; Biancotti, Juan Carlos; Kumar, Shalini; Hirose, Megumi; Mandefro, Berhan; Talavera-Adame, Dodanim; Benvenisty, Nissim; de Vellis, Jean

    2016-01-01

    Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs. Our unique culture systems rely on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of OL as they advance from OL progenitors to mature, myelinating cells. We are confident that these protocols bring our field a step closer to efficient autologous cell replacement therapies and disease modeling. © 2016 by John Wiley & Sons, Inc. PMID:27532816

  16. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Maaike eHoekstra

    2012-08-01

    Full Text Available Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models haven been generated, but these also have significant shortcomings, primarily related to species differences.The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human cardiomyocytes can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially characterized.Human iPSC (hiPSC models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia. In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these

  17. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  18. Advances in pluripotent stem cell-derived endothelial cells: from biomaterials to organ regeneration.

    Science.gov (United States)

    Lui, Kathy O

    2014-01-01

    Human embryonic stem cells (ESCs), by virtue of their capability to self-renew and differentiate into a variety of cell types, represent the first type of pluripotent stem cells (PSCs) to be used in clinical transplantation during recent phase-I trials; however, it is still unclear whether hESC-derived tissues can self-organize and form part of the vascularized, functional organ following transplantation. Recently, endothelial cells (ECs) or angiogenic factors such as VEGFA have been demonstrated to support development and regeneration of multiple organ systems, including the heart, pancreas, liver, lung and bone marrow. Therefore, co-transplantation of ECs derived from the same parental PSCs that differentiate into cell types of interest; or overexpression of the inductive angiogenic factors responsible for organ regeneration might be beneficial to support function of hPSC-derived tissues. In this special issue, we discuss how protein kinases (Ng and colleagues); DNA methylation and histone modification (Tsui and colleagues) regulate cellular pluripotency and cell-fate specification of PSCs. In addition, we discuss how ECs and angiogenic factors could contribute to repair and regeneration of organs such as the heart (Yuan and colleagues), the cardiovascular system (Tse and colleagues) and the pancreas (Lui). We also discuss the role of mesenchymal stem cells or paracrine factors secreted by them in tissue repair (Li and colleagues). Lastly, we discuss how to generate self-organized and vascularized tissues derived from PSCs in a 2- or 3-dimensional format by fusing tissue bioengineering approaches with stem cell technology (Chen).

  19. Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes.

    Science.gov (United States)

    De Assuncao, Thiago M; Sun, Yan; Jalan-Sakrikar, Nidhi; Drinane, Mary C; Huang, Bing Q; Li, Ying; Davila, Jaime I; Wang, Ruisi; O'Hara, Steven P; Lomberk, Gwen A; Urrutia, Raul A; Ikeda, Yasuhiro; Huebert, Robert C

    2015-06-01

    Cholangiocytes are the target of a heterogeneous group of liver diseases known as the cholangiopathies. An evolving understanding of the mechanisms driving biliary development provides the theoretical underpinnings for rational development of induced pluripotent stem cell (iPSC)-derived cholangiocytes (iDCs). Therefore, the aims of this study were to develop an approach to generate iDCs and to fully characterize the cells in vitro and in vivo. Human iPSC lines were generated by forced expression of the Yamanaka pluripotency factors. We then pursued a stepwise differentiation strategy toward iDCs, using precise temporal exposure to key biliary morphogens, and we characterized the cells, using a variety of morphologic, molecular, cell biologic, functional, and in vivo approaches. Morphology shows a stepwise phenotypic change toward an epithelial monolayer. Molecular analysis during differentiation shows appropriate enrichment in markers of iPSC, definitive endoderm, hepatic specification, hepatic progenitors, and ultimately cholangiocytes. Immunostaining, western blotting, and flow cytometry demonstrate enrichment of multiple functionally relevant biliary proteins. RNA sequencing reveals that the transcriptome moves progressively toward that of human cholangiocytes. iDCs generate intracellular calcium signaling in response to ATP, form intact primary cilia, and self-assemble into duct-like structures in three-dimensional culture. In vivo, the cells engraft within mouse liver, following retrograde intrabiliary infusion. In summary, we have developed a novel approach to generate mature cholangiocytes from iPSCs. In addition to providing a model of biliary differentiation, iDCs represent a platform for in vitro disease modeling, pharmacologic testing, and individualized, cell-based, regenerative therapies for the cholangiopathies. PMID:25867762

  20. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening.

    Science.gov (United States)

    Sharma, Arun; Wu, Joseph C; Wu, Sean M

    2013-12-24

    Human induced pluripotent stem cells (hiPSCs) have emerged as a novel tool for drug discovery and therapy in cardiovascular medicine. hiPSCs are functionally similar to human embryonic stem cells (hESCs) and can be derived autologously without the ethical challenges associated with hESCs. Given the limited regenerative capacity of the human heart following myocardial injury, cardiomyocytes derived from hiPSCs (hiPSC-CMs) have garnered significant attention from basic and translational scientists as a promising cell source for replacement therapy. However, ongoing issues such as cell immaturity, scale of production, inter-line variability, and cell purity will need to be resolved before human clinical trials can begin. Meanwhile, the use of hiPSCs to explore cellular mechanisms of cardiovascular diseases in vitro has proven to be extremely valuable. For example, hiPSC-CMs have been shown to recapitulate disease phenotypes from patients with monogenic cardiovascular disorders. Furthermore, patient-derived hiPSC-CMs are now providing new insights regarding drug efficacy and toxicity. This review will highlight recent advances in utilizing hiPSC-CMs for cardiac disease modeling in vitro and as a platform for drug validation. The advantages and disadvantages of using hiPSC-CMs for drug screening purposes will be explored as well.

  1. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  2. Pluripotency of adult stem cells derived from human and rat pancreas

    Science.gov (United States)

    Kruse, C.; Birth, M.; Rohwedel, J.; Assmuth, K.; Goepel, A.; Wedel, T.

    Adult stem cells are undifferentiated cells found within fully developed tissues or organs of an adult individuum. Until recently, these cells have been considered to bear less self-renewal ability and differentiation potency compared to embryonic stem cells. In recent studies an undifferentiated cell type was found in primary cultures of isolated acini from exocrine pancreas termed pancreatic stellate cells. Here we show that pancreatic stellate-like cells have the capacity of extended self-renewal and are able to differentiate spontaneously into cell types of all three germ layers expressing markers for smooth muscle cells, neurons, glial cells, epithelial cells, chondrocytes and secretory cells (insulin, amylase). Differentiation and subsequent formation of three-dimensional cellular aggregates (organoid bodies) were induced by merely culturing pancreatic stellate-like cells in hanging drops. These cells were developed into stable, long-term, in vitro cultures of both primary undifferentiated cell lines as well as organoid cultures. Thus, evidence is given that cell lineages of endodermal, mesodermal, and ectodermal origin arise spontaneously from a single adult undifferentiated cell type. Based on the present findings it is assumed that pancreatic stellate-like cells are a new class of lineage uncommitted pluripotent adult stem cells with a remarkable self-renewal ability and differentiation potency. The data emphasize the versatility of adult stem cells and may lead to a reappraisal of their use for the treatment of inherited disorders or acquired degenerative diseases.

  3. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro

    Science.gov (United States)

    Gunewardene, Niliksha; Crombie, Duncan; Dottori, Mirella; Nayagam, Bryony A.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days' coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients. PMID:26966437

  4. Modeling Catecholaminergic Polymorphic Ventricular Tachycardia using Induced Pluripotent Stem Cell-derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Atara Novak

    2012-07-01

    Full Text Available Catecholaminergic polymorphic ventricular tachycardia (CPVT is an inherited arrhythmogenic cardiac disorder characterized by life-threatening arrhythmias induced by physical or emotional stress, in the absence structural heart abnormalities. The arrhythmias may cause syncope or degenerate into cardiac arrest and sudden death which usually occurs during childhood. Recent studies have shown that CPVT is caused by mutations in the cardiac ryanodine receptor type 2 (RyR2 or calsequestrin 2 (CASQ2 genes. Both proteins are key contributors to the intracellular Ca2+ handling process and play a pivotal role in Ca2+ release from the sarcoplasmic reticulum to the cytosol during systole. Although the molecular pathogenesis of CPVT is not entirely clear, it was suggested that the CPVT mutations promote excessive sarcoplasmic reticulum Ca2+ leak, which initiates delayed afterdepolarizations (DADs and triggered arrhythmias in cardiac myocytes. The recent breakthrough discovery of induced pluripotent stem cells (iPSC generated from somatic cells (e.g. fibroblasts, keratinocytes now enables researches to investigate mutated cardiomyocytes generated from the patient’s iPSC. To this end, in the present article we review recent studies on CPVT iPSC-derived cardiomyocytes, thus demonstrating in the mutated cells catecholamine-induced DADs and triggered arrhythmias.

  5. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  6. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells.

    Science.gov (United States)

    Rezania, Alireza; Bruin, Jennifer E; Arora, Payal; Rubin, Allison; Batushansky, Irina; Asadi, Ali; O'Dwyer, Shannon; Quiskamp, Nina; Mojibian, Majid; Albrecht, Tobias; Yang, Yu Hsuan Carol; Johnson, James D; Kieffer, Timothy J

    2014-11-01

    Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.

  7. Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice.

    Science.gov (United States)

    Sun, Yue-Qi; Deng, Meng-Xia; He, Jia; Zeng, Qing-Xiang; Wen, Weiping; Wong, David S H; Tse, Hung-Fat; Xu, Geng; Lian, Qizhou; Shi, Jianbo; Fu, Qing-Ling

    2012-12-01

    We previously found that mesenchymal stem cells (MSCs) derived from human-induced pluripotent stem cells (iPSCs) exerted immunomodulatory effects on Th2-mediated allergic rhinitis in vitro. However, their contribution to the asthma and allergic rhinitis in animal models remains unclear. In this study, we developed a mouse model of ovalbumin (OVA)-induced allergic inflammation in both the upper and lower airways and evaluated the effects of the systemic administration of human iPSC-MSCs and bone marrow-derived MSCs (BM-MSCs) on allergic inflammation. Our results showed that treatments with both the iPSC-MSCs and BM-MSCs before the challenge phase protected the animals from the majority of allergy-specific pathological changes. This protection included an inhibition of inflammatory cell infiltration and mucus production in the lung, a reduction in eosinophil infiltration in the nose, and a decrease in inflammatory cell infiltration in both the bronchoalveolar and nasal lavage fluids. In addition, treatment with iPSC-MSCs or BM-MSCs before the challenge phase resulted in reduced serum levels of Th2 immunoglobulins (e.g., IgE) and decreased levels of Th2 cytokines including interleukin (IL)-4, IL-5, or IL-13 in the bronchoalveolar and/or nasal lavage fluids. Similar therapeutic effects were observed when the animals were pretreated with human iPSC-MSCs before the sensitization phase. These data suggest that iPSC-MSCs may be used as an alternative strategy to adult MSCs in the treatment of asthma and allergic rhinitis. PMID:22987325

  8. Induced Pluripotent Stem Cell-derived Mesenchymal Stem Cell Seeding on Biofunctionalized Calcium Phosphate Cements

    Institute of Scientific and Technical Information of China (English)

    WahWah TheinHan; Jun Liu; Minghui Tang; Wenchuan Chen; Linzhao Cheng; Hockin H. K. Xu

    2013-01-01

    Induced pluripotent stem cells (iPSCs) have great potential due to their proliferation and differentiation capability. The objectives of this study were to generate iPSC-derived mesenchymal stem cells (iPSC-MSCs), and investigate iPSC-MSC proliferation and osteogenic differentiation on calcium phosphate cement (CPC) containing biofunctional agents for the first time. Human iPSCs were derived from marrow CD34+ cells which were reprogrammed by a single episomal vector. iPSCs were cultured to form embryoid bodies (EBs), and MSCs migrated out of EBs. Five biofunctional agents were incorporated into CPC:RGD (Arg-Gly-Asp) peptides, fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and platelet concentrate. iPSC-MSCs were seeded on five biofunctionalized CPCs:CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. iPSC-MSCs on biofunctional CPCs had enhanced proliferation, actin fiber expression, osteogenic differentiation and mineralization, compared to control. Cell proliferation was greatly increased on biofunctional CPCs. iPSC-MSCs underwent osteogenic differentiation with increased alkaline phosphatase, Runx2 and collagen-I expressions. Mineral synthesis by iPSC-MSCs on CPC-Platelets was 3-fold that of CPC control. In conclusion, iPSCs showed high potential for bone engineering. iPSC-MSCs on biofunctionalized CPCs had cell proliferation and bone mineralization that were much better than traditional CPC. iPSC-MSC-CPC constructs are promising to promote bone regeneration in craniofacial/orthopedic repairs.

  9. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  10. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan)

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  11. N-butylidenephthalide attenuates Alzheimer's disease-like cytopathy in Down syndrome induced pluripotent stem cell-derived neurons.

    Science.gov (United States)

    Chang, Chia-Yu; Chen, Sheng-Mei; Lu, Huai-En; Lai, Syu-Ming; Lai, Ping-Shan; Shen, Po-Wen; Chen, Pei-Ying; Shen, Ching-I; Harn, Horng-Jyh; Lin, Shinn-Zong; Hwang, Shiaw-Min; Su, Hong-Lin

    2015-03-04

    Down syndrome (DS) patients with early-onset dementia share similar neurodegenerative features with Alzheimer's disease (AD). To recapitulate the AD cell model, DS induced pluripotent stem cells (DS-iPSCs), reprogrammed from mesenchymal stem cells in amniotic fluid, were directed toward a neuronal lineage. Neuroepithelial precursor cells with high purity and forebrain characteristics were robustly generated on day 10 (D10) of differentiation. Accumulated amyloid deposits, Tau protein hyperphosphorylation and Tau intracellular redistribution emerged rapidly in DS neurons within 45 days but not in normal embryonic stem cell-derived neurons. N-butylidenephthalide (Bdph), a major phthalide ingredient of Angelica sinensis, was emulsified by pluronic F127 to reduce its cellular toxicity and promote canonical Wnt signaling. Interestingly, we found that F127-Bdph showed significant therapeutic effects in reducing secreted Aβ40 deposits, the total Tau level and the hyperphosphorylated status of Tau in DS neurons. Taken together, DS-iPSC derived neural cells can serve as an ideal cellular model of DS and AD and have potential for high-throughput screening of candidate drugs. We also suggest that Bdph may benefit DS or AD treatment by scavenging Aβ aggregates and neurofibrillary tangles.

  12. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue.

  13. Generation and characterization of functional cardiomyocytes derived from human T cell-derived induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Tomohisa Seki

    Full Text Available Induced pluripotent stem cells (iPSCs have been proposed as novel cell sources for genetic disease models and revolutionary clinical therapies. Accordingly, human iPSC-derived cardiomyocytes are potential cell sources for cardiomyocyte transplantation therapy. We previously developed a novel generation method for human peripheral T cell-derived iPSCs (TiPSCs that uses a minimally invasive approach to obtain patient cells. However, it remained unknown whether TiPSCs with genomic rearrangements in the T cell receptor (TCR gene could differentiate into functional cardiomyocyte in vitro. To address this issue, we investigated the morphology, gene expression pattern, and electrophysiological properties of TiPSC-derived cardiomyocytes differentiated by floating culture. RT-PCR analysis and immunohistochemistry showed that the TiPSC-derived cardiomyocytes properly express cardiomyocyte markers and ion channels, and show the typical cardiomyocyte morphology. Multiple electrode arrays with application of ion channel inhibitors also revealed normal electrophysiological responses in the TiPSC-derived cardiomyocytes in terms of beating rate and the field potential waveform. In this report, we showed that TiPSCs successfully differentiated into cardiomyocytes with morphology, gene expression patterns, and electrophysiological features typical of native cardiomyocytes. TiPSCs-derived cardiomyocytes obtained from patients by a minimally invasive technique could therefore become disease models for understanding the mechanisms of cardiac disease and cell sources for revolutionary cardiomyocyte therapies.

  14. Ca(2+)-Currents in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Effects of Two Different Culture Conditions.

    Science.gov (United States)

    Uzun, Ahmet U; Mannhardt, Ingra; Breckwoldt, Kaja; Horváth, András; Johannsen, Silke S; Hansen, Arne; Eschenhagen, Thomas; Christ, Torsten

    2016-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) provide a unique opportunity to study human heart physiology and pharmacology and repair injured hearts. The suitability of hiPSC-CM critically depends on how closely they share physiological properties of human adult cardiomyocytes (CM). Here we investigated whether a 3D engineered heart tissue (EHT) culture format favors maturation and addressed the L-type Ca(2+)-current (ICa,L) as a readout. The results were compared with hiPSC-CM cultured in conventional monolayer (ML) and to our previous data from human adult atrial and ventricular CM obtained when identical patch-clamp protocols were used. HiPSC-CM were two- to three-fold smaller than adult CM, independently of culture format [capacitance ML 45 ± 1 pF (n = 289), EHT 45 ± 1 pF (n = 460), atrial CM 87 ± 3 pF (n = 196), ventricular CM 126 ± 8 pF (n = 50)]. Only 88% of ML cells showed ICa, but all EHT. Basal ICa density was 10 ± 1 pA/pF (n = 207) for ML and 12 ± 1 pA/pF (n = 361) for EHT and was larger than in adult CM [7 ± 1 pA/pF (p human adult CM, but, in contrast, possess robust ICa,T. Increased effects of catecholamines in EHT suggest more efficient maturation. PMID:27672365

  15. The influence of physiological matrix conditions on permanent culture of induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Heras-Bautista, Carlos O; Katsen-Globa, Alisa; Schloerer, Nils E; Dieluweit, Sabine; Abd El Aziz, Osama M; Peinkofer, Gabriel; Attia, Wael A; Khalil, Markus; Brockmeier, Konrad; Hescheler, Jürgen; Pfannkuche, Kurt

    2014-08-01

    Cardiomyocytes (CMs) from induced pluripotent stem (iPS) cells mark an important achievement in the development of in vitro pharmacological, toxicological and developmental assays and in the establishment of protocols for cardiac cell replacement therapy. Using CMs generated from murine embryonic stem cells and iPS cells we found increased cell-matrix interaction and more matured embryoid body (EB) structures in iPS cell-derived EBs. However, neither suspension-culture in form of purified cardiac clusters nor adherence-culture on traditional cell culture plastic allowed for extended culture of CMs. CMs grown for five weeks on polystyrene exhibit signs of massive mechanical stress as indicated by α-smooth muscle actin expression and loss of sarcomere integrity. Hydrogels from polyacrylamide allow adapting of the matrix stiffness to that of cardiac tissue. We were able to eliminate the bottleneck of low cell adhesion using 2,5-Dioxopyrrolidin-1-yl-6-acrylamidohexanoate as a crosslinker to immobilize matrix proteins on the gels surface. Finally we present an easy method to generate polyacrylamide gels with a physiological Young's modulus of 55 kPa and defined surface ligand, facilitating the culture of murine and human iPS-CMs, removing excess mechanical stresses and reducing the risk of tissue culture artifacts exerted by stiff substrates.

  16. A preliminary study for constructing a bioartificial liver device with induced pluripotent stem cell-derived hepatocytes

    Directory of Open Access Journals (Sweden)

    Iwamuro Masaya

    2012-12-01

    Full Text Available Abstract Background Bioartificial liver systems, designed to support patients with liver failure, are composed of bioreactors and functional hepatocytes. Immunological rejection of the embedded hepatocytes by the host immune system is a serious concern that crucially degrades the performance of the device. Induced pluripotent stem (iPS cells are considered a desirable source for bioartificial liver systems, because patient-derived iPS cells are free from immunological rejection. The purpose of this paper was to test the feasibility of a bioartificial liver system with iPS cell-derived hepatocyte-like cells. Methods Mouse iPS cells were differentiated into hepatocyte-like cells by a multi-step differentiation protocol via embryoid bodies and definitive endoderm. Differentiation of iPS cells was evaluated by morphology, PCR assay, and functional assays. iPS cell-derived hepatocyte-like cells were cultured in a bioreactor module with a pore size of 0.2 μm for 7 days. The amount of albumin secreted into the circulating medium was analyzed by ELISA. Additionally, after a 7-day culture in a bioreactor module, cells were observed by a scanning electron microscope. Results At the final stage of the differentiation program, iPS cells changed their morphology to a polygonal shape with two nucleoli and enriched cytoplasmic granules. Transmission electron microscope analysis revealed their polygonal shape, glycogen deposition in the cytoplasm, microvilli on their surfaces, and a duct-like arrangement. PCR analysis showed increased expression of albumin mRNA over the course of the differentiation program. Albumin and urea production was also observed. iPS-Heps culture in bioreactor modules showed the accumulation of albumin in the medium for up to 7 days. Scanning electron microscopy revealed the attachment of cell clusters to the hollow fibers of the module. These results indicated that iPS cells were differentiated into hepatocyte-like cells after culture

  17. Potent Paracrine Effects of human induced Pluripotent Stem Cell-derived Mesenchymal Stem Cells Attenuate Doxorubicin-induced Cardiomyopathy

    Science.gov (United States)

    Zhang, Yuelin; Liang, Xiaoting; Liao, Songyan; Wang, Weixin; Wang, Junwen; Li, Xiang; Ding, Yue; Liang, Yingmin; Gao, Fei; Yang, Mo; Fu, Qingling; Xu, Aimin; Chai, Yuet-Hung; He, Jia; Tse, Hung-Fat; Lian, Qizhou

    2015-01-01

    Transplantation of bone marrow mesenchymal stem cells (BM-MSCs) can protect cardiomyocytes against anthracycline-induced cardiomyopathy (AIC) through paracrine effects. Nonetheless the paracrine effects of human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) on AIC are poorly understood. In vitro studies reveal that doxorubicin (Dox)-induced reactive oxidative stress (ROS) generation and cell apoptosis in neonatal rat cardiomyocytes (NRCMs) are significantly reduced when treated with conditioned medium harvested from BM-MSCs (BM-MSCs-CdM) or iPSC-MSCs (iPSC-MSCs-CdM). Compared with BM-MSCs-CdM, NRCMs treated with iPSC-MSCs-CdM exhibit significantly less ROS and cell apoptosis in a dose-dependent manner. Transplantation of BM-MSCs-CdM or iPSC-MSCs-CdM into mice with AIC remarkably attenuated left ventricular (LV) dysfunction and dilatation. Compared with BM-MSCs-CdM, iPSC-MSCs-CdM treatment showed better alleviation of heart failure, less cardiomyocyte apoptosis and fibrosis. Analysis of common and distinct cytokines revealed that macrophage migration inhibitory factor (MIF) and growth differentiation factor-15 (GDF-15) were uniquely overpresented in iPSC-MSC-CdM. Immunodepletion of MIF and GDF-15 in iPSC-MSCs-CdM dramatically decreased cardioprotection. Injection of GDF-15/MIF cytokines could partially reverse Dox-induced heart dysfunction. We suggest that the potent paracrine effects of iPSC-MSCs provide novel “cell-free” therapeutic cardioprotection against AIC, and that MIF and GDF-15 in iPSC-MSCs-CdM are critical for these enhanced cardioprotective effects. PMID:26057572

  18. Recommended Ethical Safeguards on Fertilization of Human Germ Cells Derived from Pluripotent Stem Cells Solely for Research Purposes.

    Science.gov (United States)

    Mizuno, Hiroshi

    2016-08-01

    Production of human fertilized embryos by using germ cells derived from pluripotent stem cells (PSCs) entails ethical issues that differ fundamentally depending on the aim. If the aim is solely to conduct research, then embryo generation, utilization and destruction must respect for the human embryo as having the innate potential to develop into a human being. If the aim is human reproduction, this technology must never be used to manipulate human life, confuse social order, or negatively affect future generations. Researchers should distinguish the aims and then accordingly establish a consensus on the safeguards needed to proceed with scientifically significant and socially accepted research, or otherwise set a moratorium. Currently, in Japan, germ cell production from human PSCs is permitted, whereas fertilization of these germ cells is not. The Japanese Expert Panel on Bioethics in the Cabinet Office has proposed that all of the following conditions must be met to approve fertilization for research purposes: (1) the research is significant for the life sciences and medicine; (2) the benefits or anticipated benefits are socially accepted; (3) human safety is assured; and (4) safeguards are put in place. If fertilization is ethically approved, I recommend the following safeguards: limitation of the purpose to improving conventional ART as an initial step; permitted culture of human embryos until the appearance of the primitive streak; restriction of the number of embryos produced to the minimum necessary; prohibition of transplantation into a human or animal uterus; and provision of human-derived ova that are not required for ART treatment. PMID:27276914

  19. Cardiomyocyte MEA data analysis (CardioMDA--a novel field potential data analysis software for pluripotent stem cell derived cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Paruthi Pradhapan

    Full Text Available Cardiac safety pharmacology requires in-vitro testing of all drug candidates before clinical trials in order to ensure they are screened for cardio-toxic effects which may result in severe arrhythmias. Micro-electrode arrays (MEA serve as a complement to current in-vitro methods for drug safety testing. However, MEA recordings produce huge volumes of data and manual analysis forms a bottleneck for high-throughput screening. To overcome this issue, we have developed an offline, semi-automatic data analysis software, 'Cardiomyocyte MEA Data Analysis (CardioMDA', equipped with correlation analysis and ensemble averaging techniques to improve the accuracy, reliability and throughput rate of analysing human pluripotent stem cell derived cardiomyocyte (CM field potentials. With the program, true field potential and arrhythmogenic complexes can be distinguished from one another. The averaged field potential complexes, analysed using our software to determine the field potential duration, were compared with the analogous values obtained from manual analysis. The reliability of the correlation analysis algorithm, evaluated using various arrhythmogenic and morphology changing signals, revealed a mean sensitivity and specificity of 99.27% and 94.49% respectively, in determining true field potential complexes. The field potential duration of the averaged waveforms corresponded well to the manually analysed data, thus demonstrating the reliability of the software. The software has also the capability to create overlay plots for signals recorded under different drug concentrations in order to visualize and compare the magnitude of response on different ion channels as a result of drug treatment. Our novel field potential analysis platform will facilitate the analysis of CM MEA signals in semi-automated way and provide a reliable means of efficient and swift analysis for cardiomyocyte drug or disease model studies.

  20. Maximum diastolic potential of human induced pluripotent stem cell-derived cardiomyocytes depends critically on I(Kr).

    Science.gov (United States)

    Doss, Michael Xavier; Di Diego, José M; Goodrow, Robert J; Wu, Yuesheng; Cordeiro, Jonathan M; Nesterenko, Vladislav V; Barajas-Martínez, Héctor; Hu, Dan; Urrutia, Janire; Desai, Mayurika; Treat, Jacqueline A; Sachinidis, Agapios; Antzelevitch, Charles

    2012-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) hold promise for therapeutic applications. To serve these functions, the hiPSC-CM must recapitulate the electrophysiologic properties of native adult cardiomyocytes. This study examines the electrophysiologic characteristics of hiPSC-CM between 11 and 121 days of maturity. Embryoid bodies (EBs) were generated from hiPS cell line reprogrammed with Oct4, Nanog, Lin28 and Sox2. Sharp microelectrodes were used to record action potentials (AP) from spontaneously beating clusters (BC) micro-dissected from the EBs (n = 103; 37°C) and to examine the response to 5 µM E-4031 (n = 21) or BaCl(2) (n = 22). Patch-clamp techniques were used to record I(Kr) and I(K1) from cells enzymatically dissociated from BC (n = 49; 36°C). Spontaneous cycle length (CL) and AP characteristics varied widely among the 103 preparations. E-4031 (5 µM; n = 21) increased Bazett-corrected AP duration from 291.8±81.2 to 426.4±120.2 msec (pKr) in all (11/11). Consistent with the electrophysiological data, RT-PCR and immunohistochemistry studies showed relatively poor mRNA and protein expression of I(K1) in the majority of cells, but robust expression of I(Kr.) In contrast to recently reported studies, our data point to major deficiencies of hiPSC-CM, with remarkable diversity of electrophysiologic phenotypes as well as pharmacologic responsiveness among beating clusters and cells up to 121 days post-differentiation (dpd). The vast majority have a maximum diastolic potential that depends critically on I(Kr) due to the absence of I(K1). Thus, efforts should be directed at producing more specialized and mature hiPSC-CM for future therapeutic applications.

  1. Availability of human induced pluripotent stem cell-derived cardiomyocytes in assessment of drug potential for QT prolongation

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Yumiko, E-mail: yumiko-nozaki@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan); Honda, Yayoi, E-mail: yayoi-honda@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan); Tsujimoto, Shinji, E-mail: shinji-tsujimoto@ds-pharma.co.jp [Regenerative and Cellular Medicine Office, Dainippon Sumitomo Pharma. Co., Ltd., Chuo-ku, Tokyo 104-0031 (Japan); Watanabe, Hitoshi, E-mail: hitoshi-1-watanabe@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan); Kunimatsu, Takeshi, E-mail: takeshi-kunimatsu@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan); Funabashi, Hitoshi, E-mail: hitoshi-funabashi@ds-pharma.co.jp [Preclinical Research Laboratories, Dainippon Sumitomo Pharma. Co., Ltd., Suita, Osaka 564-0053 (Japan)

    2014-07-01

    Field potential duration (FPD) in human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), which can express QT interval in an electrocardiogram, is reported to be a useful tool to predict K{sup +} channel and Ca{sup 2+} channel blocker effects on QT interval. However, there is no report showing that this technique can be used to predict multichannel blocker potential for QT prolongation. The aim of this study is to show that FPD from MEA (Multielectrode array) of hiPS-CMs can detect QT prolongation induced by multichannel blockers. hiPS-CMs were seeded onto MEA and FPD was measured for 2 min every 10 min for 30 min after drug exposure for the vehicle and each drug concentration. I{sub Kr} and I{sub Ks} blockers concentration-dependently prolonged corrected FPD (FPDc), whereas Ca{sup 2+} channel blockers concentration-dependently shortened FPDc. Also, the multichannel blockers Amiodarone, Paroxetine, Terfenadine and Citalopram prolonged FPDc in a concentration dependent manner. Finally, the I{sub Kr} blockers, Terfenadine and Citalopram, which are reported to cause Torsade de Pointes (TdP) in clinical practice, produced early afterdepolarization (EAD). hiPS-CMs using MEA system and FPDc can predict the effects of drug candidates on QT interval. This study also shows that this assay can help detect EAD for drugs with TdP potential. - Highlights: • We focused on hiPS-CMs to replace in vitro assays in preclinical screening studies. • hiPS-CMs FPD is useful as an indicator to predict drug potential for QT prolongation. • MEA assay can help detect EAD for drugs with TdP potentials. • MEA assay in hiPS-CMs is useful for accurately predicting drug TdP risk in humans.

  2. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model.

    Science.gov (United States)

    Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu

    2012-05-01

    Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs. PMID:22311724

  3. Overexpression of Polysialylated Neural Cell Adhesion Molecule Improves the Migration Capacity of Induced Pluripotent Stem Cell-Derived Oligodendrocyte Precursors

    NARCIS (Netherlands)

    Czepiel, Marcin; Leicher, Lasse; Becker, Katja; Boddeke, Erik; Copray, Sjef

    2014-01-01

    Cell replacement therapy aiming at the compensation of lost oligodendrocytes and restoration of myelination in acquired or congenital demyelination disorders has gained considerable interest since the discovery of induced pluripotent stem cells (iPSCs). Patient-derived iPSCs provide an inexhaustible

  4. Drug Discovery Models and Toxicity Testing Using Embryonic and Induced Pluripotent Stem-Cell-Derived Cardiac and Neuronal Cells

    OpenAIRE

    Deshmukh, Rahul S.; Kovács, Krisztián A; Dinnyés, András

    2012-01-01

    Development of induced pluripotent stem cells (iPSCs) using forced expression of specific sets of transcription factors has changed the field of stem cell research extensively. Two important limitations for research application of embryonic stem cells (ESCs), namely, ethical and immunological issues, can be circumvented using iPSCs. Since the development of first iPSCs, tremendous effort has been directed to the development of methods to increase the efficiency of the process and to reduce th...

  5. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands

    OpenAIRE

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2016-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1+ pancreatic progenitors, much less is known about the transition toward Ngn3+ p...

  6. Awakened by Cellular Stress: Isolation and Characterization of a Novel Population of Pluripotent Stem Cells Derived from Human Adipose Tissue

    OpenAIRE

    Saleh Heneidi; Simerman, Ariel A; Erica Keller; Prapti Singh; Xinmin Li; Daniel A Dumesic; Gregorio Chazenbalk

    2013-01-01

    Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT) derived pluripotent stem cells, termed Mul...

  7. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy

    OpenAIRE

    Simerman, Ariel A; Daniel A Dumesic; Chazenbalk, Gregorio D.

    2014-01-01

    In 2010, Multilineage Differentiating Stress Enduring (Muse) cells were introduced to the scientific community, offering potential resolution to the issue of teratoma formation that plagues both embryonic stem (ES) and induced pluripotent (iPS) stem cells. Isolated from human bone marrow, dermal fibroblasts, adipose tissue and commercially available adipose stem cells (ASCs) under severe cellular stress conditions, Muse cells self-renew in a controlled manner and do not form teratomas when in...

  8. High-performance beating pattern function of human induced pluripotent stem cell-derived cardiomyocyte-based biosensors for hERG inhibition recognition.

    Science.gov (United States)

    Hu, Ning; Wang, Tianxing; Wang, Qin; Zhou, Jie; Zou, Ling; Su, Kaiqi; Wu, Jieying; Wang, Ping

    2015-05-15

    High-throughput and high clinical relevance methods are demanded to predict the drug-induced cardiotoxicity in pharmaceutical and biotechnology industries to effectively decrease late-stage drug attrition. In this study, human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were integrated into an interdigital impedance sensor array to fabricate a high performance iPSC-CM-based biosensor array with high-throughput and high-consistency beating pattern. Typical withdrawal approved drugs (astemizole, sertindole, cisapride, and droperidol) with hERG inhibition and positive control E-4031 were employed to determine the beating pattern function. From the results, it can be concluded that this iPSC-CM-based biosensor array can specifically differentiate the hERG inhibitors from the non-hERG inhibition compounds through beating pattern function. PMID:25153933

  9. Natural killer (NK cells for cancer immunotherapy: pluripotent stem cells-derived NK cells as an immunotherapeutic perspective

    Directory of Open Access Journals (Sweden)

    Cristina eEguizabal

    2014-09-01

    Full Text Available Natural killer (NK cells play an essential role in the fight against tumor development. Over the last years, the progress made in the NK cell biology field and in deciphering how NK cell function is regulated, is driving efforts to utilize NK cell-based immunotherapy as a promising approach for the treatment of malignant diseases. Therapies involving NK cells may be accomplished by activating and expanding endogenous NK cells by means of cytokine treatment or by transferring exogenous cells by adoptive cell therapy and/or by hematopoietic stem cell transplantation (HSCT. NK cells that are suitable for adoptive cell therapy can be derived from different sources, including ex vivo expansion of autologous NK cells, unstimulated or expanded allogeneic NK cells from peripheral blood, derived from CD34+ hematopoietic progenitors from peripheral blood and umbilical cord blood, and NK cell lines. Besides, genetically modified NK cells expressing chimeric antigen receptors (CARs or cytokines genes may also have a relevant future as therapeutic tools. Recently, it has been described the derivation of large numbers of functional and mature NK cells from pluripotent stem cells (PSCs, both embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, which adds another tool to the expanding NK cell-based cancer immunotherapy arsenal.

  10. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  11. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2015-07-01

    Full Text Available The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs, which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host–pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.

  12. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Saleh Heneidi

    Full Text Available Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal. When compared to adipose stem cells (ASCs, microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell

  13. An Engineered N-Cadherin Substrate for Differentiation, Survival, and Selection of Pluripotent Stem Cell-Derived Neural Progenitors.

    Directory of Open Access Journals (Sweden)

    Amranul Haque

    Full Text Available For stem cell-based treatment of neurodegenerative diseases a better understanding of key developmental signaling pathways and robust techniques for producing neurons with highest homogeneity are required. In this study, we demonstrate a method using N-cadherin-based biomimetic substrate to promote the differentiation of mouse embryonic stem cell (ESC- and induced pluripotent stem cell (iPSC-derived neural progenitor cells (NPCs without exogenous neuro-inductive signals. We showed that substrate-dependent activation of N-cadherin reduces Rho/ROCK activation and β-catenin expression, leading to the stimulation of neurite outgrowth and conversion into cells expressing neural/glial markers. Besides, plating dissociated cells on N-cadherin substrate can significantly increase the differentiation yield via suppression of dissociation-induced Rho/ROCK-mediated apoptosis. Because undifferentiated ESCs and iPSCs have low affinity to N-cadherin, plating dissociated cells on N-cadherin-coated substrate increase the homogeneity of differentiation by purging ESCs and iPSCs (~30% from a mixture of undifferentiated cells with NPCs. Using this label-free cell selection approach we enriched differentiated NPCs plated as monolayer without ROCK inhibitor. Therefore, N-cadherin biomimetic substrate provide a powerful tool for basic study of cell-material interaction in a spatially defined and substrate-dependent manner. Collectively, our approach is efficient, robust and cost effective to produce large quantities of differentiated cells with highest homogeneity and applicable to use with other types of cells.

  14. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno

    2013-01-01

    Full Text Available Background. Although pathological involvements of diabetic polyneuropathy (DPN have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.

  15. SIRT1 Overexpression Maintains Cell Phenotype and Function of Endothelial Cells Derived from Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Jiang, Bin; Jen, Michele; Perrin, Louisiane; Wertheim, Jason A; Ameer, Guillermo A

    2015-12-01

    Endothelial cells (ECs) that are differentiated from induced pluripotent stem cells (iPSCs) can be used in establishing disease models for personalized drug discovery or developing patient-specific vascularized tissues or organoids. However, a number of technical challenges are often associated with iPSC-ECs in culture, including instability of the endothelial phenotype and limited cell proliferative capacity over time. Early senescence is believed to be the primary mechanism underlying these limitations. Sirtuin1 (SIRT1) is an NAD(+)-dependent deacetylase involved in the regulation of cell senescence, redox state, and inflammatory status. We hypothesize that overexpression of the SIRT1 gene in iPSC-ECs will maintain EC phenotype, function, and proliferative capacity by overcoming early cell senescence. SIRT1 gene was packaged into a lentiviral vector (LV-SIRT1) and transduced into iPSC-ECs at passage 4. Beginning with passage 5, iPSC-ECs exhibited a fibroblast-like morphology, whereas iPSC-ECs overexpressing SIRT1 maintained EC cobblestone morphology. SIRT1 overexpressing iPSC-ECs also exhibited a higher percentage of canonical markers of endothelia (LV-SIRT1 61.8% CD31(+) vs. LV-empty 31.7% CD31(+), P cell lifespan, overcoming critical hurdles associated with the use of iPSC-ECs in translational research.

  16. Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor.

    Science.gov (United States)

    Sivarapatna, Amogh; Ghaedi, Mahboobe; Le, Andrew V; Mendez, Julio J; Qyang, Yibing; Niklason, Laura E

    2015-01-01

    Endothelial cells (ECs) exist in different microenvironments in vivo, including under different levels of shear stress in arteries versus veins. Standard stem cell differentiation protocols to derive ECs and EC-subtypes from human induced pluripotent stem cells (hiPSCs) generally use growth factors or other soluble factors in an effort to specify cell fate. In this study, a biomimetic flow bioreactor was used to subject hiPSC-derived ECs (hiPSC-ECs) to shear stress to determine the impacts on phenotype and upregulation of markers associated with an anti-thrombotic, anti-inflammatory, arterial-like phenotype. The in vitro bioreactor system was able to efficiently mature hiPSC-ECs into arterial-like cells in 24 h, as demonstrated by qRT-PCR for arterial markers EphrinB2, CXCR4, Conexin40 and Notch1, as well protein-level expression of Notch1 intracellular domain (NICD). Furthermore, the exogenous addition of soluble factors was not able to fully recapitulate this phenotype that was imparted by shear stress exposure. The induction of these phenotypic changes was biomechanically mediated in the shear stress bioreactor. This biomimetic flow bioreactor is an effective means for the differentiation of hiPSC-ECs toward an arterial-like phenotype, and is amenable to scale-up for culturing large quantities of cells for tissue engineering applications.

  17. Modeling Dengue Virus-Hepatic Cell Interactions Using Human Pluripotent Stem Cell-Derived Hepatocyte-like Cells.

    Science.gov (United States)

    Lang, Jianshe; Vera, Daniel; Cheng, Yichen; Tang, Hengli

    2016-09-13

    The development of dengue antivirals and vaccine has been hampered by the incomplete understanding of molecular mechanisms of dengue virus (DENV) infection and pathology, partly due to the limited suitable cell culture or animal models that can capture the comprehensive cellular changes induced by DENV. In this study, we differentiated human pluripotent stem cells (hPSCs) into hepatocytes, one of the target cells of DENV, to investigate various aspects of DENV-hepatocyte interaction. hPSC-derived hepatocyte-like cells (HLCs) supported persistent and productive DENV infection. The activation of interferon pathways by DENV protected bystander cells from infection and protected the infected cells from massive apoptosis. Furthermore, DENV infection activated the NF-κB pathway, which led to production of proinflammatory cytokines and downregulated many liver-specific genes such as albumin and coagulation factor V. Our study demonstrates the utility of hPSC-derived hepatocytes as an in vitro model for DENV infection and reveals important aspects of DENV-host interactions. PMID:27546535

  18. Engrafted human induced pluripotent stem cell-derived anterior specified neural progenitors protect the rat crushed optic nerve.

    Directory of Open Access Journals (Sweden)

    Leila Satarian

    Full Text Available BACKGROUND: Degeneration of retinal ganglion cells (RGCs is a common occurrence in several eye diseases. This study examined the functional improvement and protection of host RGCs in addition to the survival, integration and neuronal differentiation capabilities of anterior specified neural progenitors (NPs following intravitreal transplantation. METHODOLOGY/PRINCIPAL FINDINGS: NPs were produced under defined conditions from human induced pluripotent stem cells (hiPSCs and transplanted into rats whose optic nerves have been crushed (ONC. hiPSCs were induced to differentiate into anterior specified NPs by the use of Noggin and retinoic acid. The hiPSC-NPs were labeled by green fluorescent protein or a fluorescent tracer 1,1' -dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI and injected two days after induction of ONC in hooded rats. Functional analysis according to visual evoked potential recordings showed significant amplitude recovery in animals transplanted with hiPSC-NPs. Retrograde labeling by an intra-collicular DiI injection showed significantly higher numbers of RGCs and spared axons in ONC rats treated with hiPSC-NPs or their conditioned medium (CM. The analysis of CM of hiPSC-NPs showed the secretion of ciliary neurotrophic factor, basic fibroblast growth factor, and insulin-like growth factor. Optic nerve of cell transplanted groups also had increased GAP43 immunoreactivity and myelin staining by FluoroMyelin™ which imply for protection of axons and myelin. At 60 days post-transplantation hiPSC-NPs were integrated into the ganglion cell layer of the retina and expressed neuronal markers. CONCLUSIONS/SIGNIFICANCE: The transplantation of anterior specified NPs may improve optic nerve injury through neuroprotection and differentiation into neuronal lineages. These NPs possibly provide a promising new therapeutic approach for traumatic optic nerve injuries and loss of RGCs caused by other diseases.

  19. Knowledge gaps in rodent pancreas biology: taking human pluripotent stem cell-derived pancreatic beta cells into our own hands

    Directory of Open Access Journals (Sweden)

    Munirah Mohamad Santosa

    2016-01-01

    Full Text Available In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs. Whilst much has been learnt from rodent pancreas biology in the early steps towards Pdx1+ pancreatic progenitors, much less is known about the transition towards Ngn3+ pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.

  20. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Nihei, Yoshihiro; Ito, Daisuke; Okada, Yohei; Akamatsu, Wado; Yagi, Takuya; Yoshizaki, Takahito; Okano, Hideyuki; Suzuki, Norihiro

    2013-03-22

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.

  1. Precise Correction of Disease Mutations in Induced Pluripotent Stem Cells Derived From Patients With Limb Girdle Muscular Dystrophy.

    Science.gov (United States)

    Turan, Soeren; Farruggio, Alfonso P; Srifa, Waracharee; Day, John W; Calos, Michele P

    2016-04-01

    Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes, respectively. Using patient-derived induced pluripotent stem cells (iPSC), we corrected the dysferlin nonsense mutation c.5713C>T; p.R1905X and the most common alpha-sarcoglycan mutation, missense c.229C>T; p.R77C, by single-stranded oligonucleotide-mediated gene editing, using the CRISPR/Cas9 gene-editing system to enhance the frequency of homology-directed repair. We demonstrated seamless, allele-specific correction at efficiencies of 0.7-1.5%. As an alternative, we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22, using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination, and DICE also utilized site-specific recombinases. With DICE and THRIP, we obtained targeting efficiencies after selection of ~20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization, as shown by immunoblot and immunocytochemistry. In summary, we demonstrate for the first time precise correction of LGMD iPSC and validation of expression, opening the possibility of cell therapy utilizing these corrected iPSC. PMID:26916285

  2. Liensinine- and Neferine-Induced Cardiotoxicity in Primary Neonatal Rat Cardiomyocytes and Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yangyang Yu

    2016-01-01

    Full Text Available Due to drug-induced potential congestive heart failure and irreversible dilated cardiomyopathies, preclinical evaluation of cardiac dysfunction is important to assess the safety of traditional or novel treatments. The embryos of Nelumbo nucifera Gaertner seeds are a homology of traditional Chinese medicine and food. In this study, we applied the real time cellular analysis (RTCA Cardio system, which can real-time monitor the contractility of cardiomyocytes (CMs, to evaluate drug safety in rat neonatal CMs and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs. This study showed detailed biomechanical CM contractility in vitro, and provided insights into the cardiac dysfunctions associated with liensinine and neferine treatment. These effects exhibited dose and time-dependent recovery. Neferine showed stronger blocking effect in rat neonatal CMs than liensinine. In addition, the effects of liensinine and neferine were further evaluated on hiPS-CMs. Our study also indicated that both liensinine and neferine can cause disruption of calcium homeostasis. For the first time, we demonstrated the potential cardiac side effects of liensinine or neferine. While the same inhibition was observed on hiPS-CMs, more importantly, this study introduced an efficient and effective approach to evaluate the cardiotoxicity of the existing and novel drug candidates.

  3. Human induced pluripotent stem cell-derived hepatic cell lines as a new model for host interaction with hepatitis B virus

    Science.gov (United States)

    Kaneko, Shun; Kakinuma, Sei; Asahina, Yasuhiro; Kamiya, Akihide; Miyoshi, Masato; Tsunoda, Tomoyuki; Nitta, Sayuri; Asano, Yu; Nagata, Hiroko; Otani, Satoshi; Kawai-Kitahata, Fukiko; Murakawa, Miyako; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin; Nakauchi, Hiromitsu; Nishitsuji, Hironori; Ujino, Saneyuki; Shimotohno, Kunitada; Iwamoto, Masashi; Watashi, Koichi; Wakita, Takaji; Watanabe, Mamoru

    2016-01-01

    Hepatitis B virus (HBV) is not eradicated by current antiviral therapies due to persistence of HBV covalently closed circular DNA (cccDNA) in host cells, and thus development of novel culture models for productive HBV infection is urgently needed, which will allow the study of HBV cccDNA eradication. To meet this need, we developed culture models of HBV infection using human induced pluripotent stem cell-derived hepatocyte lineages, including immature proliferating hepatic progenitor-like cell lines (iPS-HPCs) and differentiated hepatocyte-like cells (iPS-Heps). These cells were susceptible to HBV infection, produced HBV particles, and maintained innate immune responses. The infection efficiency of HBV in iPS-HPCs predominantly depended on the expression levels of sodium taurocholate cotransporting polypeptide (NTCP), and was low relative to iPS-Heps: however, long-term culture of iPS-Heps was difficult. To provide a model for HBV persistence, iPS-HPCs overexpressing NTCP were established. The long-term persistence of HBV cccDNA was detected in iPS-HPCs overexpressing NTCP, and depended on the inhibition of the Janus-kinase signaling pathway. In conclusion, this study provides evidence that iPS-derived hepatic cell lines can be utilized for novel HBV culture models with genetic variation to investigate the interactions between HBV and host cells and the development of anti-HBV strategies. PMID:27386799

  4. Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs Cultured on an Aligned-Nanofiber Cardiac Patch.

    Directory of Open Access Journals (Sweden)

    Mahmood Khan

    Full Text Available Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates.hiPSC-CMs were cultured on; 1 a highly aligned polylactide-co-glycolide (PLGA nanofiber scaffold (~50 microns thick and 2 on a standard flat culture plate. Scanning electron microscopy (SEM was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43 was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes.SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro.Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic

  5. Avidity-controlled hydrogels for injectable co-delivery of induced pluripotent stem cell-derived endothelial cells and growth factors.

    Science.gov (United States)

    Mulyasasmita, Widya; Cai, Lei; Dewi, Ruby E; Jha, Arshi; Ullmann, Sabrina D; Luong, Richard H; Huang, Ngan F; Heilshorn, Sarah C

    2014-10-10

    To translate recent advances in induced pluripotent stem cell biology to clinical regenerative medicine therapies, new strategies to control the co-delivery of cells and growth factors are needed. Building on our previous work designing Mixing-Induced Two-Component Hydrogels (MITCHs) from engineered proteins, here we develop protein-polyethylene glycol (PEG) hybrid hydrogels, MITCH-PEG, which form physical gels upon mixing for cell and growth factor co-delivery. MITCH-PEG is a mixture of C7, which is a linear, engineered protein containing seven repeats of the CC43 WW peptide domain (C), and 8-arm star-shaped PEG conjugated with either one or two repeats of a proline-rich peptide to each arm (P1 or P2, respectively). Both 20kDa and 40kDa star-shaped PEG variants were investigated, and all four PEG-peptide variants were able to undergo a sol-gel phase transition when mixed with the linear C7 protein at constant physiological conditions due to noncovalent hetero-dimerization between the C and P domains. Due to the dynamic nature of the C-P physical crosslinks, all four gels were observed to be reversibly shear-thinning and self-healing. The P2 variants exhibited higher storage moduli than the P1 variants, demonstrating the ability to tune the hydrogel bulk properties through a biomimetic peptide-avidity strategy. The 20kDa PEG variants exhibited slower release of encapsulated vascular endothelial growth factor (VEGF), due to a decrease in hydrogel mesh size relative to the 40kDa variants. Human induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs) adopted a well-spread morphology within three-dimensional MITCH-PEG cultures, and MITCH-PEG provided significant protection from cell damage during ejection through a fine-gauge syringe needle. In a mouse hindlimb ischemia model of peripheral arterial disease, MITCH-PEG co-delivery of hiPSC-ECs and VEGF was found to reduce inflammation and promote muscle tissue regeneration compared to a saline control. PMID

  6. Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres

    Directory of Open Access Journals (Sweden)

    Aynun N. Begum

    2015-11-01

    Full Text Available Stem cell-based neuronal differentiation has provided a unique opportunity for disease modeling and regenerative medicine. Neurospheres are the most commonly used neuroprogenitors for neuronal differentiation, but they often clump in culture, which has always represented a challenge for neurodifferentiation. In this study, we report a novel method and defined culture conditions for generating sub-type or region-specific neurons from human embryonic and induced pluripotent stem cells derived neurosphere without any genetic manipulation. Round and bright-edged neurospheres were generated in a supplemented knockout serum replacement medium (SKSRM with 10% CO2, which doubled the expression of the NESTIN, PAX6 and FOXG1 genes compared with those cultured with 5% CO2. Furthermore, an additional step (AdSTEP was introduced to fragment the neurospheres and facilitate the formation of a neuroepithelial-type monolayer that we termed the “neurosphederm”. The large neural tube-type rosette (NTTR structure formed from the neurosphederm, and the NTTR expressed higher levels of the PAX6, SOX2 and NESTIN genes compared with the neuroectoderm-derived neuroprogenitors. Different layers of cortical, pyramidal, GABAergic, glutamatergic, cholinergic neurons appeared within 27 days using the neurosphederm, which is a shorter period than in traditional neurodifferentiation-protocols (42–60 days. With additional supplements and timeline dopaminergic and Purkinje neurons were also generated in culture too. Furthermore, our in vivo results indicated that the fragmented neurospheres facilitated significantly better neurogenesis in severe combined immunodeficiency (SCID mouse brains compared with the non-fragmented neurospheres. Therefore, this neurosphere-based neurodifferentiation protocol is a valuable tool for studies of neurodifferentiation, neuronal transplantation and high throughput screening assays.

  7. Defining the optimal window for cranial transplantation of human induced pluripotent stem cell-derived cells to ameliorate radiation-induced cognitive impairment.

    Science.gov (United States)

    Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Riparip, Lara; Strnadel, Jan; Parihar, Vipan K; Limoli, Charles L

    2015-01-01

    Past preclinical studies have demonstrated the capability of using human stem cell transplantation in the irradiated brain to ameliorate radiation-induced cognitive dysfunction. Intrahippocampal transplantation of human embryonic stem cells and human neural stem cells (hNSCs) was found to functionally restore cognition in rats 1 and 4 months after cranial irradiation. To optimize the potential therapeutic benefits of human stem cell transplantation, we have further defined optimal transplantation windows for maximizing cognitive benefits after irradiation and used induced pluripotent stem cell-derived hNSCs (iPSC-hNSCs) that may eventually help minimize graft rejection in the host brain. For these studies, animals given an acute head-only dose of 10 Gy were grafted with iPSC-hNSCs at 2 days, 2 weeks, or 4 weeks following irradiation. Animals receiving stem cell grafts showed improved hippocampal spatial memory and contextual fear-conditioning performance compared with irradiated sham-surgery controls when analyzed 1 month after transplantation surgery. Importantly, superior performance was evident when stem cell grafting was delayed by 4 weeks following irradiation compared with animals grafted at earlier times. Analysis of the 4-week cohort showed that the surviving grafted cells migrated throughout the CA1 and CA3 subfields of the host hippocampus and differentiated into neuronal (∼39%) and astroglial (∼14%) subtypes. Furthermore, radiation-induced inflammation was significantly attenuated across multiple hippocampal subfields in animals receiving iPSC-hNSCs at 4 weeks after irradiation. These studies expand our prior findings to demonstrate that protracted stem cell grafting provides improved cognitive benefits following irradiation that are associated with reduced neuroinflammation.

  8. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, Kimberly R., E-mail: kimberly.doherty@quintiles.com; Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M.; Shell, Scott A.; Bacus, Sarah

    2015-05-15

    Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability. - Highlights: • 24 drugs were tested for cardiac liability using an in vitro multi-parameter screen. • Changes in beating activity were the most sensitive in predicting cardiac risk. • Structural effects add in

  9. C-cell-derived calcitonin-free neuroendocrine carcinoma of the thyroid: the diagnostic importance of CGRP immunoreactivity.

    Science.gov (United States)

    Nakazawa, Tadao; Cameselle-Teijeiro, José; Vinagre, João; Soares, Paula; Rousseau, Emmanuel; Eloy, Catarina; Sobrinho-Simões, Manuel

    2014-09-01

    In the thyroid, primary neuroendocrine tumors encompass medullary thyroid carcinoma (MTC) and, rarely, other tumors such as paragangliomas. MTCs are derived from C-cells and express calcitonin and neuroendocrine markers. Besides classic MTC, some reports have documented thyroid neuroendocrine tumors, which show no calcitonin expression and raise difficult diagnostic problems. A 76-year-old man presented with a mass in the left thyroid with neither serological calcitonin elevation nor familial history. A thorough clinico-laboratorial study did not disclose any other mass elsewhere. A left hemithyroidectomy was performed, and the histological examination revealed a neuroendocrine carcinoma resembling a paraganglioma-like MTC displaying unequivocal signs of vascular invasion. Immunohistochemically, the tumor cells showed reactivity for chromogranin A, synaptophysin, thyroid transcription factor-1 (TTF-1), paired box gene 8 (PAX8), cytokeratins (AE1/AE3 and CK8/18), and calcitonin gene-related peptide (CGRP) and negativity for calcitonin, carcinoembryonic antigen, TTF-2, thyroperoxidase, and thyroglobulin. In situ hybridization showed that the tumor cells lacked expression for calcitonin and thyroglobulin mRNA. Genetic analysis did not disclose any RET mutation. A diagnosis of C-cell-derived primary neuroendocrine carcinoma of the thyroid without calcitonin expression was made, and the patient remains free of metastasis or recurrence 18 months after surgery. PMID:24599901

  10. Pluripotency and its layers of complexity

    Directory of Open Access Journals (Sweden)

    Ooi Jolene

    2012-09-01

    Full Text Available Abstract Pluripotency is depicted by a self-renewing state that can competently differentiate to form the three germ layers. Different stages of early murine development can be captured on a petri dish, delineating a spectrum of pluripotent states, ranging from embryonic stem cells, embryonic germ cells to epiblast stem cells. Anomalous cell populations displaying signs of pluripotency have also been uncovered, from the isolation of embryonic carcinoma cells to the derivation of induced pluripotent stem cells. Gaining insight into the molecular circuitry within these cell types enlightens us about the significance and contribution of each stage, hence deepening our understanding of vertebrate development. In this review, we aim to describe experimental milestones that led to the understanding of embryonic development and the conception of pluripotency. We also discuss attempts at exploring the realm of pluripotency with the identification of pluripotent stem cells within mouse teratocarcinomas and embryos, and the generation of pluripotent cells through nuclear reprogramming. In conclusion, we illustrate pluripotent cells derived from other organisms, including human derivatives, and describe current paradigms in the comprehension of human pluripotency.

  11. Avian prostatic acid phosphatase: estrogen regulation in the oviduct and epithelial cell-derived ovarian carcinomas.

    Science.gov (United States)

    Bae, Hyocheol; Lim, Whasun; Bae, Seung-Min; Bazer, Fuller W; Choi, Youngsok; Song, Gwonhwa

    2014-07-01

    Prostatic acid phosphatase (ACPP) is a glycoprotein that is mainly synthesized and secreted by glandular epithelial cells (GE) of the prostate, and it is well known as a biomarker for prostate cancer. Although ACPP was used as prognostic/diagnostic indicator and studied to elucidate regulatory mechanism(s) during several decades in humans, its role is not clearly understood. Gene profiling data using a chicken DNA microarray revealed that ACPP increased significantly during remodeling and recrudescence of the oviduct in response to estrogen. Thus, in this study, we investigated the expression and hormonal regulation of ACPP gene in the reproductive tracts of chickens. ACPP was specifically detected in the luminal cells (LE) and GE of chicken oviduct, and diethylstilbestrol (a synthetic nonsteroidal estrogen) stimulated its expression during development of the oviduct. In addition, ACPP mRNA and protein were localized to LE and GE during the regeneration phase of the oviduct of laying hens during induced molting. Furthermore, ACPP mRNA and protein were abundant in GE of ovarian carcinoma, but not in normal ovaries. Moreover, strong expression of ACPP protein was detected in epithelial cells of cancerous ovaries from women. Collectively, results of the present study are the first to show that ACPP is a novel estrogen-stimulated gene in the oviductal epithelial cells of the chicken and that its expression increases significantly in epithelial cells of ovarian carcinoma, which indicates that it may be a candidate biomarker for diagnosis of epithelia-derived ovarian cancer in women. PMID:24829029

  12. Application of a Persistent Heparin Treatment Inhibits the Malignant Potential of Oral Squamous Carcinoma Cells Induced by Tumor Cell-Derived Exosomes.

    Science.gov (United States)

    Sento, Shinya; Sasabe, Eri; Yamamoto, Tetsuya

    2016-01-01

    Exosomes are 30-100 nm-sized membranous vesicles, secreted from a variety of cell types into their surrounding extracellular space. Various exosome components including lipids, proteins, and nucleic acids are transferred to recipient cells and affect their function and activity. Numerous studies have showed that tumor cell-derived exosomes play important roles in tumor growth and progression. However, the effect of exosomes released from oral squamous cell carcinoma (OSCC) into the tumor microenvironment remains unclear. In the present study, we isolated exosomes from OSCC cells and investigated the influence of OSCC cell-derived exosomes on the tumor cell behavior associated with tumor development. We demonstrated that OSCC cell-derived exosomes were taken up by OSCC cells themselves and significantly promoted proliferation, migration, and invasion through the activation of the PI3K/Akt, MAPK/ERK, and JNK-1/2 pathways in vitro. These effects of OSCC cell-derived exosomes were obviously attenuated by treatment with PI3K, ERK-1/2, and JNK-1/2 pharmacological inhibitors. Furthermore, the growth rate of tumor xenografts implanted into nude mice was promoted by treatment with OSCC cell-derived exosomes. The uptake of exosomes by OSCC cells and subsequent tumor progression was abrogated in the presence of heparin. Taken together, these data suggest that OSCC cell-derived exosomes might be a novel therapeutic target and the use of heparin to inhibit the uptake of OSCC-derived exosomes by OSCC cells may be useful for treatment.

  13. Comparative pluripotency analysis of mouse embryonic stem cells derived from wild-type and infertile hermaphrodite somatic cell nuclear transfer blastocysts

    Institute of Scientific and Technical Information of China (English)

    FAN Yong; YAO RuQiang; YU Yang; LI ZanDong; WANG Liu; ALICE Jouneau; ZHOU Qi; TONG Man; ZHAO ChunLi; DING ChenHui; HAO Jie; LV Zhuo; DAI XiangPeng; HAI Tang; LI XueMei

    2008-01-01

    Therapeutic cloning, whereby embryonic stem cells (ESCs) are derived from patient-specific cloned blastocysts via somatic cell nuclear transfer (SCNT), holds great promise for treating many human diseases using regenerative medicine. Teratoma formation and germline transmission have been used to confirm the pluripotency of mouse stem cells, but human embryonic stem cells (hESCs) have not been proven to be fully pluripotent owing to the ethical impossibility of testing for germ line transmission, which would be the strongest evidence for full pluripotency. Therefore, formation of differentiated cells from the three somatic germ layers within a teratoma is taken as the best indicator of pluripotency in hESC lines. The possibility that these lines lack full multi- or pluripotency has not yet been evaluated.In this study, we established 16 mouse ESC lines, including 3 genetically defective nuclear transfer-ESC (ntESC) lines derived from SCNT blastocysts of infertile hermaphrodite F1 mice and 13 ntESC lines derived from SCNT blastocysts of normal F1 mice. We found that the defective ntESCs expressed all in vitro markers of pluripotency and could form teratomas that included derivatives from all three germ layers, but could not be transmitted via the germ line, in contrast with normal ntESCs. Our results indicate that teratoma formation assays with hESCs might be an insufficient standard to assess full pluripotency, although they do define multipotency to some degree. More rigorous standards are required to assess the safety of hESCs for therapeutic cloning.

  14. Application of a Persistent Heparin Treatment Inhibits the Malignant Potential of Oral Squamous Carcinoma Cells Induced by Tumor Cell-Derived Exosomes

    OpenAIRE

    Sento, Shinya; Sasabe, Eri; Yamamoto, Tetsuya

    2016-01-01

    Exosomes are 30–100 nm-sized membranous vesicles, secreted from a variety of cell types into their surrounding extracellular space. Various exosome components including lipids, proteins, and nucleic acids are transferred to recipient cells and affect their function and activity. Numerous studies have showed that tumor cell-derived exosomes play important roles in tumor growth and progression. However, the effect of exosomes released from oral squamous cell carcinoma (OSCC) into the tumor micr...

  15. Concise Review: Pluripotent Stem Cell-Derived Cardiac Cells, A Promising Cell Source for Therapy of Heart Failure: Where Do We Stand?

    Science.gov (United States)

    Gouadon, Elodie; Moore-Morris, Thomas; Smit, Nicoline W; Chatenoud, Lucienne; Coronel, Ruben; Harding, Sian E; Jourdon, Philippe; Lambert, Virginie; Rucker-Martin, Catherine; Pucéat, Michel

    2016-01-01

    Heart failure is still a major cause of hospitalization and mortality in developed countries. Many clinical trials have tested the use of multipotent stem cells as a cardiac regenerative medicine. The benefit for the patients of this therapeutic intervention has remained limited. Herein, we review the pluripotent stem cells as a cell source for cardiac regeneration. We more specifically address the various challenges of this cell therapy approach. We question the cell delivery systems, the immune tolerance of allogenic cells, the potential proarrhythmic effects, various drug mediated interventions to facilitate cell grafting and, finally, we describe the pathological conditions that may benefit from such an innovative approach. As members of a transatlantic consortium of excellence of basic science researchers and clinicians, we propose some guidelines to be applied to cell types and modes of delivery in order to translate pluripotent stem cell cardiac derivatives into safe and effective clinical trials.

  16. Impact of preconditioning with retinoic acid during early development on morphological and functional characteristics of human induced pluripotent stem cell-derived neurons

    OpenAIRE

    Sandra Horschitz; Friederike Matthäus; Anja Groß; Jan Rosner; Marta Galach; Wolfgang Greffrath; Rolf-Detlef Treede; Jochen Utikal; Patrick Schloss; Andreas Meyer-Lindenberg

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs) are a suitable tool to study basic molecular and cellular mechanisms of neurodevelopment. The directed differentiation of hiPSCs via the generation of a self-renewable neuronal precursor cell line allows the standardization of defined differentiation protocols. Here, we have investigated whether preconditioning with retinoic acid during early neural induction impacts on morphological and functional characteristics of the neuronal culture after ter...

  17. Development of a pluripotent stem cell derived neuronal model to identify chemically induced pathway perturbations in relation to neurotoxicity: Effects of CREB pathway inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Pistollato, Francesca; Louisse, Jochem; Scelfo, Bibiana; Mennecozzi, Milena [Institute for Health and Consumer Protection (IHCP), JRC, Ispra (Italy); Accordi, Benedetta; Basso, Giuseppe [Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova (Italy); Gaspar, John Antonydas [Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne (Germany); Zagoura, Dimitra; Barilari, Manuela; Palosaari, Taina [Institute for Health and Consumer Protection (IHCP), JRC, Ispra (Italy); Sachinidis, Agapios [Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne (Germany); Bremer-Hoffmann, Susanne, E-mail: susanne.bremer@jrc.ec.europa.eu [Institute for Health and Consumer Protection (IHCP), JRC, Ispra (Italy)

    2014-10-15

    According to the advocated paradigm shift in toxicology, acquisition of knowledge on the mechanisms underlying the toxicity of chemicals, such as perturbations of biological pathways, is of primary interest. Pluripotent stem cells (PSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer a unique opportunity to derive physiologically relevant human cell types to measure molecular and cellular effects of such pathway modulations. Here we compared the neuronal differentiation propensity of hESCs and hiPSCs with the aim to develop novel hiPSC-based tools for measuring pathway perturbation in relation to molecular and cellular effects in vitro. Among other fundamental pathways, also, the cAMP responsive element binding protein (CREB) pathway was activated in our neuronal models and gave us the opportunity to study time-dependent effects elicited by chemical perturbations of the CREB pathway in relation to cellular effects. We show that the inhibition of the CREB pathway, using 2-naphthol-AS-E-phosphate (KG-501), induced an inhibition of neurite outgrowth and synaptogenesis, as well as a decrease of MAP2{sup +} neuronal cells. These data indicate that a CREB pathway inhibition can be related to molecular and cellular effects that may be relevant for neurotoxicity testing, and, thus, qualify the use of our hiPSC-derived neuronal model for studying chemical-induced neurotoxicity resulting from pathway perturbations. - Highlights: • HESCs derived neuronal cells serve as benchmark for iPSC based neuronal toxicity test development. • Comparisons between hESCs and hiPSCs demonstrated variability of the epigenetic state • CREB pathway modulation have been explored in relation to the neurotoxicant exposure KG-501 • hiPSC might be promising tools to translate theoretical AoPs into toxicological in vitro tests.

  18. Development of a pluripotent stem cell derived neuronal model to identify chemically induced pathway perturbations in relation to neurotoxicity: Effects of CREB pathway inhibition

    International Nuclear Information System (INIS)

    According to the advocated paradigm shift in toxicology, acquisition of knowledge on the mechanisms underlying the toxicity of chemicals, such as perturbations of biological pathways, is of primary interest. Pluripotent stem cells (PSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer a unique opportunity to derive physiologically relevant human cell types to measure molecular and cellular effects of such pathway modulations. Here we compared the neuronal differentiation propensity of hESCs and hiPSCs with the aim to develop novel hiPSC-based tools for measuring pathway perturbation in relation to molecular and cellular effects in vitro. Among other fundamental pathways, also, the cAMP responsive element binding protein (CREB) pathway was activated in our neuronal models and gave us the opportunity to study time-dependent effects elicited by chemical perturbations of the CREB pathway in relation to cellular effects. We show that the inhibition of the CREB pathway, using 2-naphthol-AS-E-phosphate (KG-501), induced an inhibition of neurite outgrowth and synaptogenesis, as well as a decrease of MAP2+ neuronal cells. These data indicate that a CREB pathway inhibition can be related to molecular and cellular effects that may be relevant for neurotoxicity testing, and, thus, qualify the use of our hiPSC-derived neuronal model for studying chemical-induced neurotoxicity resulting from pathway perturbations. - Highlights: • HESCs derived neuronal cells serve as benchmark for iPSC based neuronal toxicity test development. • Comparisons between hESCs and hiPSCs demonstrated variability of the epigenetic state • CREB pathway modulation have been explored in relation to the neurotoxicant exposure KG-501 • hiPSC might be promising tools to translate theoretical AoPs into toxicological in vitro tests

  19. Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours

    DEFF Research Database (Denmark)

    Hoei-Hansen, C E; Almstrup, K; Nielsen, J E;

    2005-01-01

    AIMS: NANOG is a key regulator of embryonic stem cell (ESC) self-renewal and pluripotency. Our recent genome-wide gene expression profiling study of the precursor of testicular germ cell tumours, carcinoma in situ testis (CIS), showed close similarity between ESC and CIS, including high NANOG...... earlier than for OCT-4. We detected no expression at the protein level in normal testis. CONCLUSIONS: NANOG is a new marker for testicular CIS and germ cell tumours and the high level of NANOG along with OCT-4 are determinants of the stem cell-like pluripotency of the preinvasive CIS cell. Timing of NANOG......; seminoma and embryonal carcinoma were strongly positive, differentiated somatic elements of teratoma were negative. We provide evidence for the fetal origin of testicular cancer as we detected strong expression of NANOG in fetal gonocytes up to gestational week 20, with subsequent down-regulation occurring...

  20. HIV-1 Resistant CDK2-Knockdown Macrophage-Like Cells Generated from 293T Cell-Derived Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kuan-Teh Jeang

    2012-07-01

    Full Text Available A major challenge in studies of human diseases involving macrophages is low yield and heterogeneity of the primary cells and limited ability of these cells for transfections and genetic manipulations. To address this issue, we developed a simple and efficient three steps method for somatic 293T cells reprogramming into monocytes and macrophage-like cells. First, 293T cells were reprogrammed into induced pluripotent stem cells (iPSCs through a transfection-mediated expression of two factors, Oct-4 and Sox2, resulting in a high yield of iPSC. Second, the obtained iPSC were differentiated into monocytes using IL-3 and M-CSF treatment. And third, monocytes were differentiated into macrophage-like cells in the presence of M-CSF. As an example, we developed HIV-1-resistant macrophage-like cells from 293T cells with knockdown of CDK2, a factor critical for HIV-1 transcription. Our study provides a proof-of-principle approach that can be used to study the role of host cell factors in HIV-1 infection of human macrophages.

  1. Impact of preconditioning with retinoic acid during early development on morphological and functional characteristics of human induced pluripotent stem cell-derived neurons

    Directory of Open Access Journals (Sweden)

    Sandra Horschitz

    2015-07-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs are a suitable tool to study basic molecular and cellular mechanisms of neurodevelopment. The directed differentiation of hiPSCs via the generation of a self-renewable neuronal precursor cell line allows the standardization of defined differentiation protocols. Here, we have investigated whether preconditioning with retinoic acid during early neural induction impacts on morphological and functional characteristics of the neuronal culture after terminal differentiation. For this purpose we have analyzed neuronal and glial cell markers, neuronal outgrowth, soma size, depolarization-induced distal shifts of the axon initial segment as well as glutamate-evoked calcium influx. Retinoic acid preconditioning led to a higher yield of neurons vs. glia cells and longer axons than unconditioned controls. In contrast, glutamatergic activation and depolarization induced structural plasticity were unchanged. Our results show that the treatment of neuroectodermal cells with retinoic acid during early development, i.e. during the neurulation phase, increases the yield of neuronal phenotypes, but does not impact on the functionality of terminally differentiated neuronal cells.

  2. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Science.gov (United States)

    Pilarczyk, Götz; Raulf, Alexandra; Gunkel, Manuel; Fleischmann, Bernd K.; Lemor, Robert; Hausmann, Michael

    2016-01-01

    The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds. PMID:26751484

  3. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  4. Impact of preconditioning with retinoic acid during early development on morphological and functional characteristics of human induced pluripotent stem cell-derived neurons.

    Science.gov (United States)

    Horschitz, Sandra; Matthäus, Friederike; Groß, Anja; Rosner, Jan; Galach, Marta; Greffrath, Wolfgang; Treede, Rolf-Detlef; Utikal, Jochen; Schloss, Patrick; Meyer-Lindenberg, Andreas

    2015-07-01

    Human induced pluripotent stem cells (hiPSCs) are a suitable tool to study basic molecular and cellular mechanisms of neurodevelopment. The directed differentiation of hiPSCs via the generation of a self-renewable neuronal precursor cell line allows the standardization of defined differentiation protocols. Here, we have investigated whether preconditioning with retinoic acid during early neural induction impacts on morphological and functional characteristics of the neuronal culture after terminal differentiation. For this purpose we have analyzed neuronal and glial cell markers, neuronal outgrowth, soma size, depolarization-induced distal shifts of the axon initial segment as well as glutamate-evoked calcium influx. Retinoic acid preconditioning led to a higher yield of neurons vs. glia cells and longer axons than unconditioned controls. In contrast, glutamatergic activation and depolarization induced structural plasticity were unchanged. Our results show that the treatment of neuroectodermal cells with retinoic acid during early development, i.e. during the neurulation phase, increases the yield of neuronal phenotypes, but does not impact on the functionality of terminally differentiated neuronal cells. PMID:26001168

  5. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes.

    Science.gov (United States)

    Pilarczyk, Götz; Raulf, Alexandra; Gunkel, Manuel; Fleischmann, Bernd K; Lemor, Robert; Hausmann, Michael

    2016-01-01

    The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC)-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds. PMID:26751484

  6. Human Pluripotent Stem Cell-Derived Radial Glia Recapitulate Developmental Events and Provide Real-Time Access to Cortical Neurons and Astrocytes

    Science.gov (United States)

    Peng, Chian-Yu; Pan, Liuliu; Kessler, John A.

    2015-01-01

    Studies of human cerebral cortex development are limited by difficulties in accessing and manipulating human neural tissue at specific development stages. We have derived human radial glia (hRG), which are responsible for most cerebral cortex neurogenesis, from human pluripotent stem cells. These hRG display the hallmark morphological, cellular, and molecular features of radial glia in vitro. They can be passaged and generate layer-specific subtypes of cortical neurons in a temporal and passage-dependent fashion. In later passages, they adopt a distinct progenitor phenotype that gives rise to cortical astrocytes and GABAergic interneurons. These hRG are also capable of following developmental cues to engraft, differentiate, migrate, and integrate into the embryonic mouse cortex when injected into E14 lateral ventricles. Moreover, hRG-derived cells can be cryopreserved at specific stages and retain their stage-specific phenotypes and competence when revived. Our study demonstrates that cultured hRG maintain a cell-intrinsic clock that regulates the progressive generation of stage-specific neuronal and glial subtypes. It also describes an easily accessible cell source for studying hRG lineage specification and progression and an on-demand supply of specific cortical neuron subtypes and astrocytes. PMID:25834120

  7. Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34pos Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction

    Directory of Open Access Journals (Sweden)

    Mohsen Moslem

    2015-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs represent a promising cell source for research and therapeutic applications, but their restricted ex vivo propagation capabilities limit putative applications. Substantial self-renewing of stem cells can be achieved by reprogramming cells into induced pluripotent stem cells (iPSCs that can be easily expanded as undifferentiated cells even in mass culture. Here, we investigated a differentiation protocol enabling the generation and selection of human iPSC-derived MSCs exhibiting relevant surface marker expression profiles (CD105 and CD73 and functional characteristics. We generated such iPSC-MSCs from fibroblasts and bone marrow MSCs utilizing two different reprogramming constructs. All such iPSC-MSCs exhibited the characteristics of normal bone marrow-derived (BM MSCs. In direct comparison to BM-MSCs our iPSC-MSCs exhibited a similar surface marker expression profile but shorter doubling times without reaching senescence within 20 passages. Considering functional capabilities, iPSC-MSCs provided supportive feeder layer for CD34+ hematopoietic stem cells’ self-renewal and colony forming capacities. Furthermore, iPSC-MSCs gained immunomodulatory function to suppress CD4+ cell proliferation, reduce proinflammatory cytokines in mixed lymphocyte reaction, and increase regulatory CD4+/CD69+/CD25+ T-lymphocyte population. In conclusion, we generated fully functional MSCs from various iPSC lines irrespective of their starting cell source or reprogramming factor composition and we suggest that such iPSC-MSCs allow repetitive cell applications for advanced therapeutic approaches.

  8. Neural Stem Cell or Human Induced Pluripotent Stem Cell-Derived GABA-ergic Progenitor Cell Grafting in an Animal Model of Chronic Temporal Lobe Epilepsy.

    Science.gov (United States)

    Upadhya, Dinesh; Hattiangady, Bharathi; Shetty, Geetha A; Zanirati, Gabriele; Kodali, Maheedhar; Shetty, Ashok K

    2016-01-01

    Grafting of neural stem cells (NSCs) or GABA-ergic progenitor cells (GPCs) into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts >30% of temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). On the other hand, GPCs could be generated from the medial and lateral ganglionic eminences of the embryonic brain and from hESCs and hiPSCs. To provide comprehensive methodologies involved in testing the efficacy of transplantation of NSCs and GPCs in a rat model of chronic TLE, NSCs derived from the rat medial ganglionic eminence (MGE) and MGE-like GPCs derived from hiPSCs are taken as examples in this unit. The topics comprise description of the required materials, reagents and equipment, methods for obtaining rat MGE-NSCs and hiPSC-derived MGE-like GPCs in culture, generation of chronically epileptic rats, intrahippocampal grafting procedure, post-grafting evaluation of the effects of grafts on spontaneous recurrent seizures and cognitive and mood impairments, analyses of the yield and the fate of graft-derived cells, and the effects of grafts on the host hippocampus. © 2016 by John Wiley & Sons, Inc. PMID:27532817

  9. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture.

    Science.gov (United States)

    Odawara, A; Katoh, H; Matsuda, N; Suzuki, I

    2016-05-18

    The functional network of human induced pluripotent stem cell (hiPSC)-derived neurons is a potentially powerful in vitro model for evaluating disease mechanisms and drug responses. However, the culture time required for the full functional maturation of individual neurons and networks is uncertain. We investigated the development of spontaneous electrophysiological activity and pharmacological responses for over 1 year in culture using multi-electrode arrays (MEAs). The complete maturation of spontaneous firing, evoked responses, and modulation of activity by glutamatergic and GABAergic receptor antagonists/agonists required 20-30 weeks. At this stage, neural networks also demonstrated epileptiform synchronized burst firing (SBF) in response to pro-convulsants and SBF suppression using clinical anti-epilepsy drugs. Our results reveal the feasibility of long-term MEA measurements from hiPSC-derived neuronal networks in vitro for mechanistic analyses and drug screening. However, developmental changes in electrophysiological and pharmacological properties indicate the necessity for the international standardization of culture and evaluation procedures.

  10. A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation.

    Science.gov (United States)

    Broughton, K M; Li, J; Sarmah, E; Warren, C M; Lin, Y-H; Henze, M P; Sanchez-Freire, V; Solaro, R J; Russell, B

    2016-07-01

    We have investigated cardiac myocytes derived from human-induced pluripotent stem cells (iPSC-CMs) from two normal control and two family members expressing a mutant cardiac troponin T (cTnT-R173W) linked to dilated cardiomyopathy (DCM). cTnT is a regulatory protein of the sarcomeric thin filament. The loss of this basic charge, which is strategically located to control tension, has consequences leading to progressive DCM. iPSC-CMs serve as a valuable platform for understanding clinically relevant mutations in sarcomeric proteins; however, there are important questions to be addressed with regard to myocyte adaptation that we model here by plating iPSC-CMs on softer substrates (100 kPa) to create a more physiologic environment during recovery and maturation of iPSC-CMs after thawing from cryopreservation. During the first week of culture of the iPSC-CMs, we have determined structural and functional characteristics as well as actin assembly dynamics. Shortening, actin content, and actin assembly dynamics were depressed in CMs from the severely affected mutant at 1 wk of culture, but by 2 wk differences were less apparent. Sarcomeric troponin and myosin isoform composition were fetal/neonatal. Furthermore, the troponin complex, reconstituted with wild-type cTnT or recombinant cTnT-R173W, depressed the entry of cross-bridges into the force-generating state, which can be reversed by the myosin activator omecamtiv mecarbil. Therapeutic doses of this drug increased both contractility and the content of F-actin in the mutant iPSC-CMs. Collectively, our data suggest the use of a myosin activation reagent to restore function within patient-specific iPSC-CMs may aid in understanding and treating this familial DCM. PMID:27199119

  11. Efficient and Controlled Generation of 2D and 3D Bile Duct Tissue from Human Pluripotent Stem Cell-Derived Spheroids.

    Science.gov (United States)

    Tian, Lipeng; Deshmukh, Abhijeet; Ye, Zhaohui; Jang, Yoon-Young

    2016-08-01

    While in vitro liver tissue engineering has been increasingly studied during the last several years, presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver, but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly, generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions, and has been inefficient so far. Towards generating a fully functional liver containing biliary system, we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver, EpCAM, is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can, not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes), in a 2D differentiation condition, but also form functional ductal structures in a 3D condition. Importantly, this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition, we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues, which may facilitate engineering of complete and functional liver tissue in the future. PMID:27138846

  12. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats

    Science.gov (United States)

    Qi, Xin; Zhang, Jieyuan; Yuan, Hong; Xu, Zhengliang; Li, Qing; Niu, Xin; Hu, Bin; Wang, Yang; Li, Xiaolin

    2016-01-01

    Bone defects caused by trauma, severe infection, tumor resection and skeletal abnormalities are common osteoporotic conditions and major challenges in orthopedic surgery, and there is still no effective solution to this problem. Consequently, new treatments are needed to develop regeneration procedures without side effects. Exosomes secreted by mesenchymal stem cells (MSCs) derived from human induced pluripotent stem cells (hiPSCs, hiPSC-MSC-Exos) incorporate the advantages of both MSCs and iPSCs with no immunogenicity. However, there are no reports on the application of hiPSC-MSC-Exos to enhance angiogenesis and osteogenesis under osteoporotic conditions. HiPSC-MSC-Exos were isolated and identified before use. The effect of hiPSC-MSC-Exos on the proliferation and osteogenic differentiation of bone marrow MSCs derived from ovariectomized (OVX) rats (rBMSCs-OVX) in vitro were investigated. In vivo, hiPSC-MSC-Exos were implanted into critical size bone defects in ovariectomized rats, and bone regeneration and angiogenesis were examined by microcomputed tomography (micro-CT), sequential fluorescent labeling analysis, microfil perfusion and histological and immunohistochemical analysis. The results in vitro showed that hiPSC-MSC-Exos enhanced cell proliferation and alkaline phosphatase (ALP) activity, and up-regulated mRNA and protein expression of osteoblast-related genes in rBMSCs-OVX. In vivo experiments revealed that hiPSC-MSC-Exos dramatically stimulated bone regeneration and angiogenesis in critical-sized calvarial defects in ovariectomized rats. The effect of hiPSC-MSC-Exos increased with increasing concentration. In this study, we showed that hiPSC-MSC-Exos effectively stimulate the proliferation and osteogenic differentiation of rBMSCs-OVX, with the effect increasing with increasing exosome concentration. Further analysis demonstrated that the application of hiPSC-MSC-Exos+β-TCP scaffolds promoted bone regeneration in critical-sized calvarial defects by

  13. MicroRNA Profiling of Neurons Generated Using Induced Pluripotent Stem Cells Derived from Patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del.

    Directory of Open Access Journals (Sweden)

    Dejian Zhao

    Full Text Available We are using induced pluripotent stem cell (iPSC technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del, the most common known schizophrenia (SZ-associated genetic factor. Several genes in the region have been implicated; a promising candidate is DGCR8, which codes for a protein involved in microRNA (miRNA biogenesis. We carried out miRNA expression profiling (miRNA-seq on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del. Using thresholds of p<0.01 for nominal significance and 1.5-fold differences in expression, 45 differentially expressed miRNAs were detected (13 lower in SZ and 32 higher. Of these, 6 were significantly down-regulated in patients after correcting for genome wide significance (FDR<0.05, including 4 miRNAs that map to the 22q11.2 del region. In addition, a nominally significant increase in the expression of several miRNAs was found in the 22q11.2 neurons that were previously found to be differentially expressed in autopsy samples and peripheral blood in SZ and autism spectrum disorders (e.g., miR-34, miR-4449, miR-146b-3p, and miR-23a-5p. Pathway and function analysis of predicted mRNA targets of the differentially expressed miRNAs showed enrichment for genes involved in neurological disease and psychological disorders for both up and down regulated miRNAs. Our findings suggest that: i. neurons with 22q11.2 del recapitulate the miRNA expression patterns expected of 22q11.2 haploinsufficiency, ii. differentially expressed miRNAs previously identified using autopsy samples and peripheral cells, both of which have significant methodological problems, are indeed disrupted in neuropsychiatric disorders and likely have an underlying genetic basis.

  14. Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-à-go-go 1 (hEAG1) potassium channel.

    Science.gov (United States)

    Zhang, Jiao; Chan, Yau-Chi; Ho, Jenny Chung-Yee; Siu, Chung-Wah; Lian, Qizhou; Tse, Hung-Fat

    2012-07-15

    The successful generation of a high yield of mesenchymal stem cells (MSCs) from human induced pluripotent stem cells (iPSCs) may represent an unlimited cell source with superior therapeutic benefits for tissue regeneration to bone marrow (BM)-derived MSCs. We investigated whether the differential expression of ion channels in iPSC-MSCs was responsible for their higher proliferation capacity than BM-MSCs. The expression of ion channels for K(+), Na(+), Ca(2+), and Cl(-) was examined by RT-PCR. The electrophysiological properties of iPSC-MSCs and BM-MSCs were then compared by patch-clamp experiments to verify their functional roles. Significant mRNA expression of ion channel genes including KCa1.1, KCa3.1, KCNH1, Kir2.1, SCN9A, CACNA1C, and Clcn3 was observed in both human iPSC-MSCs and BM-MSCs, whereas Kir2.2 and Kir2.3 were only detected in human iPSC-MSCs. Five types of currents [big-conductance Ca(2+)-activated K(+) current (BK(Ca)), delayed rectifier K(+) current (IK(DR)), inwardly rectifying K(+) current (I(Kir)), Ca(2+)-activated K(+) current (IK(Ca)), and chloride current (I(Cl))] were found in iPSC-MSCs (83%, 47%, 11%, 5%, and 4%, respectively) but only four of them (BK(Ca), IK(DR), I(Kir), and IK(Ca)) were identified in BM-MSCs (76%, 25%, 22%, and 11%, respectively). Cell proliferation was examined with MTT or bromodeoxyuridine assay, and doubling times were 2.66 and 3.72 days for iPSC-MSCs and BM-MSCs, respectively, showing a 1.4-fold discrepancy. Blockade of IK(DR) with short hairpin RNA or human ether-à-go-go 1 (hEAG1) channel blockers, 4-AP and astemizole, significantly reduced the rate of proliferation of human iPSC-MSCs. These treatments also decreased the rate of proliferation of human BM-MSCs albeit to a lesser extent. These findings demonstrate that the hEAG1 channel plays a crucial role in controlling the proliferation rate of human iPSC-MSCs and to a lesser extent in BM-MSCs. PMID:22357737

  15. Transplantation of ovarian granulosa‑like cells derived from human induced pluripotent stem cells for the treatment of murine premature ovarian failure.

    Science.gov (United States)

    Liu, Te; Li, Qiong; Wang, Suwei; Chen, Chuan; Zheng, Jin

    2016-06-01

    Premature ovarian failure (POF) is a common cause of female infertility, for which there are currently no ideal treatments or medications. Furthermore, apoptosis of ovarian granulosa cells (OGCs) is an important mechanism underlying the decline in ovarian reserve and function. In the present study, several cellular growth factors and hormones were used to induce the differentiation of human induced pluripotent stem cells (iPSCs) into ovarian granulosa‑like cells (OGLCs) in vitro. Immunohistochemical staining demonstrated that OGLCs derived from iPSCs strongly expressed granulosa cell markers, including anti‑Müllerian hormone, inhibin α, inhibin β and follicle‑stimulating hormone receptor, but did not express stem cell markers, including octamer‑binding transcription factor 4, SRY (sex determining region Y)-box 2, Nanog and stage-specific embryonic antigen-4 12 days post‑induction. In addition, a mouse model of POF was generated by cyclophosphamide treatment. Subsequently, iPSC‑derived OGLCs were transplanted into the POF mice (OGLCs‑iPSCs‑POF group) in vivo. Results indicated that, compared with the control group (POF mice treated with phosphate‑buffered saline), the growth state of OGLCs was markedly improved, and mature follicles could be detected in the ovarian tissue of the OGLCs‑iPSCs‑POF group. Immunohistochemical staining demonstrated that iPSC‑derived OGLCs transplanted into POF mice not only exhibited substantial growth in murine ovarian tissues, but also strongly expressed OGC markers. Furthermore, enzyme‑linked immunosorbent assays indicated that the levels of the hormone estradiol in peripheral blood samples were significantly enhanced following transplantation of iPSC‑derived OGLCs into POF mice. Furthermore, ovarian tissue weight was significantly higher in the OGLCs‑iPSCs‑POF group compared with in the control group, and the number of atretic follicles in OGLCs‑iPSCs‑POF mice was significantly reduced, as

  16. A promoter polymorphism in human interleukin-32 modulates its expression and influences the risk and the outcome of epithelial cell-derived thyroid carcinoma.

    Science.gov (United States)

    Plantinga, Theo S; Costantini, Irene; Heinhuis, Bas; Huijbers, Angelique; Semango, George; Kusters, Benno; Netea, Mihai G; Hermus, Ad R M M; Smit, Jan W A; Dinarello, Charles A; Joosten, Leo A B; Netea-Maier, Romana T

    2013-07-01

    Interleukin (IL)-32 is an intracellular proinflammatory mediator that strongly modulates the inflammatory reaction. Recent studies have suggested the involvement of IL-32 in the pathogenesis of malignancies. We aimed to assess whether a known germ-line polymorphism in the IL32 promoter modulates IL-32 expression, and whether it influences susceptibility and/or outcome of epithelial cell-derived thyroid carcinoma (TC). In this study, IL32 genotype was assessed in 139 TC patients and 138 healthy controls and was correlated with TC susceptibility and clinical outcome. Furthermore, IL-32 messenger RNA expression and protein were assessed in TC tissues and functional consequences of genetic variants of IL32 were studied in a model of human primary immune cells. Results demonstrate substantial IL-32 expression in TC tumor tissue. Lipopolysaccharide (LPS) stimulation of primary immune cells revealed 2-fold higher expression of IL-32γ, but not IL-32β, in cells homozygous for the ancient T allele. Furthermore, production of LPS-induced cytokines was increased in cells bearing this T allele. Genetic analysis revealed that the ancient T allele was overrepresented in TC patients with odds ratio (95% confidence interval) = 1.71 (1.06-2.75). In addition, the cumulative radioactive iodine (RAI) dose received after total thyroidectomy was significantly higher in TC patients bearing the ancient T allele. In conclusion, individuals bearing genetic variants of IL32 that lead to an increased IL-32γ gene expression and higher production of proinflammatory cytokines have higher risk for developing epithelial cell-derived TC. Subsequently, they require higher dosages of RAI to achieve successful tumor remission. These data suggest an important role of IL-32 in the pathogenesis of TC.

  17. Current protocols in the generation of pluripotent stem cells: theoretical, methodological and clinical considerations

    Directory of Open Access Journals (Sweden)

    Brad B Swelstad

    2009-12-01

    Full Text Available Brad B Swelstad, Candace L KerrInstitute for Cell Engineering, Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MA, USAAbstract: Pluripotent stem cells have been derived from various embryonic, fetal and adult sources. Embryonic stem cells (ESCs and parthenogenic ESCs (pESCs are derived from the embryo proper while embryonic germ cells (EGCs, embryonal carcinoma cells (ECCs, and germ-line stem cells (GSC are produced from germ cells. ECCs were the first pluripotent stem cell lines established from adult testicular tumors while EGCs are generated in vitro from primordial germ cells (PGCs isolated in late embryonic development. More recently, studies have also demonstrated the ability to produce GSCs from adult germ cells, known as spermatogonial stem cells. Unlike ECCs, the source of GSCs are normal, non-cancerous adult tissue. The study of these unique cell lines has provided information that has led to the ability to reprogram somatic cells into an ESC-like state. These cells, called induced pluripotent stem cells (iPSCs, have been derived from a number of human fetal and adult origins. With the promises pluripotent stem cells bring to cell-based therapies there remain several considerations that need to be carefully studied prior to their clinical use. Many of these issues involve understanding key factors regulating their generation, including those which define pluripotency. In this regard, the following article discusses critical aspects of pluripotent stem cell derivation and current issues about their therapeutic potential.Keywords: pluripotency, stem cells, derivation, human

  18. Metastases of Renal Cell Carcinoma to the Thyroid Gland with Synchronous Benign and Malignant Follicular Cell-Derived Neoplasms

    Directory of Open Access Journals (Sweden)

    Carlos Zamarrón

    2013-01-01

    Full Text Available Clear cell renal cell carcinoma (CCRCC is the most common origin for metastasis in the thyroid. A 51-year-old woman was referred to our hospital for a subcarinal lesion. Ten years before, the patient had undergone a nephrectomy for CCRCC. Whole-body fluorodeoxyglucose positron emission tomography revealed elevated values in the thyroid gland, while the mediastinum was normal. An endoscopic ultrasonography-guided fine-needle aspiration biopsy of the mediastinal mass was consistent with CCRCC, and this was confirmed after resection. The thyroidectomy specimen also revealed lymphocytic thyroiditis, nodular hyperplasia, one follicular adenoma, two papillary microcarcinomas, and six foci of metastatic CCRCC involving both thyroid lobes. Curiously two of the six metastatic foci were located inside two adenomatoid nodules (tumor-in-tumor. The metastatic cells were positive for cytokeratins, CD10, epidermal growth factor receptor, and vascular endothelial growth factor receptor 2. No BRAF gene mutations were found in any of the primary and metastatic lesions. The patient was treated with sunitinib and finally died due to CCRCC distant metastases 6 years after the thyroidectomy. In CCRCC patients, a particularly prolonged survival rate may be achieved with the appropriate therapy, in contrast to the ominous prognosis typically found in patients with thyroid metastases from other origins.

  19. Silencing stem cell factor attenuates stemness and inhibits migration of cancer stem cells derived from Lewis lung carcinoma cells.

    Science.gov (United States)

    Wang, Li; Wang, JianTao; Li, Zhixi; Liu, YanYang; Jiang, Ming; Li, Yan; Cao, Dan; Zhao, Maoyuan; Wang, Feng; Luo, Feng

    2016-06-01

    Stem cell factor (SCF) plays an important role in tumor growth and metastasis. However, the function of SCF in regulating stemness and migration of cancer stem cells (CSCs) remains largely undefined. Here, we report that non-adhesive culture system can enrich and expand CSCs derived from Lewis lung carcinoma (LLC) cells and that the expression level of SCF in CSCs was higher than those in LLC cells. Silencing SCF via short hairpin (sh) RNA lentivirus transduction attenuated sphere formation and inhibited expressions of stemness genes, ALDH1, Sox2, and Oct4 of CSCs in vitro and in vivo. Moreover, SCF-silenced CSCs inhibited the migration and epithelial-mesenchymal transition, with decreased expression of N-cadherin, Vimentin, and increased expression of E-cadherin in vitro and in vivo. Finally, SCF-short hairpin RNA (shRNA) lentivirus transduction suppressed tumorigenicity of CSCs. Taken together, our findings unraveled an important role of SCF in CSCs derived from LLC cells. SCF might serve as a novel target for lung cancer therapy. PMID:26666817

  20. Second Intron of Mouse Nestin Gene Directs its Expression in Pluripotent Embryonic Carcinoma Cells through POU Factor Binding Site

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang JIN; Li LIU; Hua ZHONG; Ke-Jing ZHANG; Yong-Feng CHEN; Wei BIAN; Le-Ping CHENG; Nai-He JING

    2006-01-01

    Nestin, an intermediate filament protein, is expressed in the neural stem cells of the developing central nervous system. This tissue-specific expression is driven by the neural stem cell-specific enhancer in the second intron of the nestin gene. In this study, we showed that the mouse nestin gene was expressed in pluripotent embryonic carcinoma (EC) P19 and F9 cells, not in the differentiated cell types. This cell typespecific expression was conferred by the enhancer in the second intron. Mutation of the conserved POU factor-binding site in the enhancer abolished the reporter gene expression in EC cells. Oct4, a Class V POU factor, was found to be coexpressed with nestin in EC cells. Electrophoretic mobility-shift assays and supershift assays showed that a unique protein-DNA complex was formed specifically with nuclear extracts of EC cells, and Oct4 protein was included. Together, these results suggest the functional relevance between the conserved POU factor-binding site and the expression of the nestin gene in pluripotent EC cells.

  1. Aquaporin 3 is regulated by estrogen in the chicken oviduct and is involved in progression of epithelial cell-derived ovarian carcinomas.

    Science.gov (United States)

    Yang, C; Lim, W; Bae, H; Song, G

    2016-04-01

    Aquaporins (AQPs) are membrane proteins that passively deliver water across the plasma membrane to play an important role in maintaining cell shape. Members of the AQP family are distributed in most of the tissues in the human body and perform a variety of functions based on the water homeostasis suitable for each organ. However, there is little known about the expression and regulation of AQP family members in chickens. Therefore, we determined the expression of AQPs in various tissues of chickens. Among 13 isotypes, AQP3 was highly expressed in the chicken oviduct. Expression of AQP3 messenger RNA (mRNA) increased in the magnum (P glandular and luminal epithelia of the magnum and isthmus of oviducts of diethylstilbestrol-treated chicks. In addition, the pattern of expression of AQP3 changed in an estrogen-dependent manner during the molting period. During the regenerative period of the oviduct after molting, expression of AQP3 mRNA increased coordinately with increasing concentrations of estradiol (P < 0.001), whereas expression of AQP3 mRNA decreased as concentrations of estradiol in plasma decreased in response to induced molting (P < 0.001). Also, expression of the AQP3 increased (P < 0.001) in cancerous ovaries of laying hens. In conclusion, AQP3 does not simply function to transport water into and out of cells but also appears to be closely involved in development of the chicken oviduct, which is regulated by estrogens. Furthermore, our results suggest AQP3 as a new diagnostic for early detection and treatment of epithelial cell-derived ovarian carcinomas. PMID:26808975

  2. Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons.

    Directory of Open Access Journals (Sweden)

    Dennis E Coyle

    Full Text Available The NTERA2 cl D1 (NT2 cell line, derived from human teratocarcinoma, exhibits similar properties as embryonic stem (ES cells or very early neuroepithelial progenitors. NT2 cells can be induced to become postmitotic central nervous system neurons (NT2N with retinoic acid. Although neurons derived from pluripotent cells, such as NT2N, have been characterized for their neurotransmitter phenotypes, their potential suitability as a donor source for neural transplantation also depends on their ability to respond to localized environmental cues from a specific region of the CNS. Therefore, our study aimed to characterize the regional transcription factors that define the rostocaudal and dorsoventral identity of NT2N derived from a monolayer differentiation paradigm using quantitative PCR (qPCR. Purified NT2N mainly expressed both GABAergic and glutamatergic phenotypes and were electrically active but did not form functional synapses. The presence of immature astrocytes and possible radial glial cells was noted. The NT2N expressed a regional transcription factor code consistent with forebrain, hindbrain and spinal cord neural progenitors but showed minimal expression of midbrain phenotypes. In the dorsoventral plane NT2N expressed both dorsal and ventral neural progenitors. Of major interest was that even under the influence of retinoic acid, a known caudalization factor, the NT2N population maintained a rostral phenotype subpopulation which expressed cortical regional transcription factors. It is proposed that understanding the regional differentiation bias of neurons derived from pluripotent stem cells will facilitate their successful integration into existing neuronal networks within the CNS.

  3. Pluripotent stem cell lines

    OpenAIRE

    Yu, Junying; Thomson, James A.

    2008-01-01

    The derivation of human embryonic stem cells 10 years ago ignited an explosion of public interest in stem cells, yet this achievement depended on prior decades of research on mouse embryonic carcinoma cells and embryonic stem cells. In turn, the recent derivation of mouse and human induced pluripotent stem cells depended on the prior studies on mouse and human embryonic stem cells. Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in vitro while ma...

  4. Rescue of an In Vitro Neuron Phenotype Identified in Niemann-Pick Disease, Type C1 Induced Pluripotent Stem Cell-Derived Neurons by Modulating the WNT Pathway and Calcium Signaling

    OpenAIRE

    Efthymiou, Anastasia G.; Steiner, Joe; Pavan, William J.; Wincovitch, Stephen; Larson, Denise M.; Porter, Forbes D.; Rao, Mahendra S; Malik, Nasir

    2015-01-01

    This study involved the generation of an induced pluripotent stem cell line from a subject homozygous for the most frequent Niemann-Pick disease, type C1 (NPC1) mutation and the subsequent creation of a stable line of neural stem cells as a disease model for NPC1. The clear readout from these cells makes them ideal candidates for high-throughput screening and is a valuable tool to better understand the development of NPC1 and to develop better therapeutic options.

  5. Integration-free T cell-derived human induced pluripotent stem cells (iPSCs) from a patient with lymphedema-distichiasis syndrome (LDS) carrying an insertion-deletion complex mutation in the FOXC2 gene.

    Science.gov (United States)

    Itoh, Munenari; Kawagoe, Shiho; Okano, Hirotaka James; Nakagawa, Hidemi

    2016-05-01

    Expanded human T cells from a Japanese male with lymphedema-distichiasis syndrome (LDS) were used to generate integration-free induced pluripotent stem cells (iPSCs) by exogenous expression of four reprogramming factors, OCT3/4, SOX2, cMYC, KLF4, using Sendai virus vector (SeVdp). The authenticity of established iPSC line, LDS-iPSC8, was confirmed by the expression of stem cell markers and the differentiation capability into three germ layers. LDS-iPSC8 may be a useful cell resource for the establishment of in vitro LDS modeling and the study for vascular and lymph vessel development. PMID:27346194

  6. Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling.

    Science.gov (United States)

    Efthymiou, Anastasia G; Steiner, Joe; Pavan, William J; Wincovitch, Stephen; Larson, Denise M; Porter, Forbes D; Rao, Mahendra S; Malik, Nasir

    2015-03-01

    Niemann-Pick disease, type C1 (NPC1) is a familial disorder that has devastating consequences on postnatal development with multisystem effects, including neurodegeneration. There is no Food and Drug Administration-approved treatment option for NPC1; however, several potentially therapeutic compounds have been identified in assays using yeast, rodent models, and NPC1 human fibroblasts. Although these discoveries were made in fibroblasts from NPC1 subjects and were in some instances validated in animal models of the disease, testing these drugs on a cell type more relevant for NPC1 neurological disease would greatly facilitate both study of the disease and identification of more relevant therapeutic compounds. Toward this goal, we have generated an induced pluripotent stem cell line from a subject homozygous for the most frequent NPC1 mutation (p.I1061T) and subsequently created a stable line of neural stem cells (NSCs). These NSCs were then used to create neurons as an appropriate disease model. NPC1 neurons display a premature cell death phenotype, and gene expression analysis of these cells suggests dysfunction of important signaling pathways, including calcium and WNT. The clear readout from these cells makes them ideal candidates for high-throughput screening and will be a valuable tool to better understand the development of NPC1 in neural cells, as well as to develop better therapeutic options for NPC1.

  7. Modeling Nonalcoholic Fatty Liver Disease with Human Pluripotent Stem Cell-Derived Immature Hepatocyte-Like Cells Reveals Activation of PLIN2 and Confirms Regulatory Functions of Peroxisome Proliferator-Activated Receptor Alpha

    Science.gov (United States)

    Graffmann, Nina; Ring, Sarah; Kawala, Marie-Ann; Wruck, Wasco; Ncube, Audrey; Trompeter, Hans-Ingo

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD/steatosis) is a metabolic disease characterized by the incorporation of fat into hepatocytes. In this study, we developed an in vitro model for NAFLD based on hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells. We induced fat storage in these HLCs and detected major expression changes of metabolism-associated genes, as well as an overall reduction of liver-related microRNAs. We observed an upregulation of the lipid droplet coating protein Perilipin 2 (PLIN2), as well as of numerous genes of the peroxisome proliferator-activated receptor (PPAR) pathway, which constitutes a regulatory hub for metabolic processes. Interference with PLIN2 and PPARα resulted in major alterations in gene expression, especially affecting lipid, glucose, and purine metabolism. Our model recapitulates many metabolic changes that are characteristic for NAFLD. It permits the dissection of disease-promoting molecular pathways and allows us to investigate the influences of distinct genetic backgrounds on disease progression. PMID:27308945

  8. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: koizumi.akio.5v@kyoto-u.ac.jp [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan)

    2013-08-16

    Highlights: •Angiogenic activities were reduced in iPSECs from MMD patients. •Many mitosis-regulated genes were downregulated in iPSECs from MMD patients. •RNF213 R4810K downregulated Securin and inhibited angiogenic activity. •Securin suppression by siRNA reduced angiogenic activities of iPSECs and HUVECs. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. Induced pluripotent stem cells (iPSCs) were established from unaffected fibroblast donors with wild-type RNF213 alleles, and from carriers/patients with one or two RNF213 R4810K alleles. Angiogenic activities of iPSC-derived vascular endothelial cells (iPSECs) from patients and carriers were lower (49.0 ± 19.4%) than from wild-type subjects (p < 0.01). Gene expression profiles in iPSECs showed that Securin was down-regulated (p < 0.01) in carriers and patients. Overexpression of RNF213 R4810K downregulated Securin, inhibited angiogenic activity (36.0 ± 16.9%) and proliferation of humanumbilical vein endothelial cells (HUVECs) while overexpression of RNF213 wild type did not. Securin expression was downregulated using RNA interference techniques, which reduced the level of tube formation in iPSECs and HUVECs without inhibition of proliferation. RNF213 R4810K reduced angiogenic activities of iPSECs from patients with MMD, suggesting that it is a promising in vitro model for MMD.

  9. Characterization of cancer stem-like cells derived from a side population of a human gallbladder carcinoma cell line, SGC-996

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin-xing [Division of General Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Wang, Jian, E-mail: dr_wangjian@yahoo.com.cn [Division of General Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Wang, Hao-lu; Wang, Wei; Yin, Xiao-bin; Li, Qi-wei [Division of General Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Chen, Yu-ying; Yi, Jing [Department of Biochemistry and Molecular Cell Biology, Key Laboratory of the Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We sorted SP cells from a human gallbladder carcinoma cell lines, SGC-996. Black-Right-Pointing-Pointer SP cells displayed higher proliferation and stronger clonal-generating capability. Black-Right-Pointing-Pointer SP cells showed more migratory and invasive abilities. Black-Right-Pointing-Pointer SP cells were more resistant and tumorigenic than non-SP counterparts. Black-Right-Pointing-Pointer ABCG2 might be a candidate as a marker for SP cells. -- Abstract: The cancer stem cell (CSC) hypothesis proposes that CSCs, which can renew themselves proliferate infinitely, and escape chemotherapy, become the root of recurrence and metastasis. Previous studies have verified that side population (SP) cells, characterized by their ability to efflux lipophilic substrate Hoechst 33342, to share many characteristics of CSCs in multiplying solid tumors. The purpose of this study was to sort SP cells from a human gallbladder carcinoma cell line, SGC-996 and to preliminarily identify the biological characteristics of SP cells from the cell line. Using flow cytometry we effectively sorted SP cells from the cell line SGC-996. SP cells not only displayed higher proliferative, stronger clonal-generating, more migratory and more invasive capacities, but showed stronger resistance. Furthermore, our experiments demonstrated that SP cells were more tumorigenic than non-SP counterparts in vivo. Real-time PCR analysis and immunocytochemistry showed that the expression of ATP-binding cassette subfamily G member 2 (ABCG2) was significantly higher in SP cells. Hence, these results collectively suggest that SP cells are progenitor/stem-like cells and ABCG2 might be a candidate marker for SP cells in human gallbladder cancer.

  10. Characterization of cancer stem-like cells derived from a side population of a human gallbladder carcinoma cell line, SGC-996

    International Nuclear Information System (INIS)

    Highlights: ► We sorted SP cells from a human gallbladder carcinoma cell lines, SGC-996. ► SP cells displayed higher proliferation and stronger clonal-generating capability. ► SP cells showed more migratory and invasive abilities. ► SP cells were more resistant and tumorigenic than non-SP counterparts. ► ABCG2 might be a candidate as a marker for SP cells. -- Abstract: The cancer stem cell (CSC) hypothesis proposes that CSCs, which can renew themselves proliferate infinitely, and escape chemotherapy, become the root of recurrence and metastasis. Previous studies have verified that side population (SP) cells, characterized by their ability to efflux lipophilic substrate Hoechst 33342, to share many characteristics of CSCs in multiplying solid tumors. The purpose of this study was to sort SP cells from a human gallbladder carcinoma cell line, SGC-996 and to preliminarily identify the biological characteristics of SP cells from the cell line. Using flow cytometry we effectively sorted SP cells from the cell line SGC-996. SP cells not only displayed higher proliferative, stronger clonal-generating, more migratory and more invasive capacities, but showed stronger resistance. Furthermore, our experiments demonstrated that SP cells were more tumorigenic than non-SP counterparts in vivo. Real-time PCR analysis and immunocytochemistry showed that the expression of ATP-binding cassette subfamily G member 2 (ABCG2) was significantly higher in SP cells. Hence, these results collectively suggest that SP cells are progenitor/stem-like cells and ABCG2 might be a candidate marker for SP cells in human gallbladder cancer.

  11. Avian SERPINB12 expression in the avian oviduct is regulated by estrogen and up-regulated in epithelial cell-derived ovarian carcinomas of laying hens.

    Directory of Open Access Journals (Sweden)

    Gahee Jo

    Full Text Available Serine protease inhibitors (SERPINs are involved in a variety of biological processes such as blood clotting, angiogenesis, immune system, and embryogenesis. Although, of these, SERPINB12 is identified as the latest member of clade B in humans, little is known of it in chickens. Thus, in this study, we investigated SERPINB12 expression profiles in various tissues of chickens and focused on effects of steroid hormone regulation of its expression. In the chicken oviduct, SERPINB12 mRNA and protein are abundant in the luminal (LE and glandular (GE epithelia of the magnum in response to endogenous or exogenous estrogen. Furthermore, SERPINB12 mRNA and protein increase significantly in GE of cancerous ovaries of laying hens with epithelia-derived ovarian cancer. Collectively, these results indicate that SERPINB12 is a novel estrogen-stimulated gene that is up-regulated by estrogen in epithelial cells of the chicken oviduct and that it is a potential biomarker for early detection of ovarian carcinomas in laying hens and women.

  12. Avian SERPINB12 expression in the avian oviduct is regulated by estrogen and up-regulated in epithelial cell-derived ovarian carcinomas of laying hens.

    Science.gov (United States)

    Jo, Gahee; Lim, Whasun; Bae, Seung-Min; Bazer, Fuller W; Song, Gwonhwa

    2014-01-01

    Serine protease inhibitors (SERPINs) are involved in a variety of biological processes such as blood clotting, angiogenesis, immune system, and embryogenesis. Although, of these, SERPINB12 is identified as the latest member of clade B in humans, little is known of it in chickens. Thus, in this study, we investigated SERPINB12 expression profiles in various tissues of chickens and focused on effects of steroid hormone regulation of its expression. In the chicken oviduct, SERPINB12 mRNA and protein are abundant in the luminal (LE) and glandular (GE) epithelia of the magnum in response to endogenous or exogenous estrogen. Furthermore, SERPINB12 mRNA and protein increase significantly in GE of cancerous ovaries of laying hens with epithelia-derived ovarian cancer. Collectively, these results indicate that SERPINB12 is a novel estrogen-stimulated gene that is up-regulated by estrogen in epithelial cells of the chicken oviduct and that it is a potential biomarker for early detection of ovarian carcinomas in laying hens and women. PMID:25020046

  13. Pluripotent Stamcelleforskning

    OpenAIRE

    Hersing, Daniel Green; Borhani, Pegah

    2009-01-01

    Research aimed at finding the ultimate cure for (until now incurable) diseases, is underway. The ability to cure diseases such as diabetes type 1, Parkinson's disease and others is perhaps in a not so distant future. The solution lies perhaps in pluripotent stem cells, which have the potential to develop into every cell type in the body. This project aims to provide an overview of the procurement methods available for pluripotent stem cells by examining the methods and what opportunities a...

  14. NAC1, a potential stem cell pluripotency factor expression in normal endometrium, endometrial hyperplasia and endometrial carcinoma.

    Science.gov (United States)

    Ishikawa, Masako; Nakayama, Kentaro; Yeasmin, Shamima; Katagiri, Atsuko; Iida, Kouji; Nakayama, Naomi; Miyazaki, Kohji

    2010-05-01

    The purpose of this study was to investigate the role of NAC1 in the development of endometrial cancer. NAC1 expression and localization were assessed with immunohistochemistry in the normal cyclic human endometrium, hyperplastic endometrium, and endometrial cancer. Expression of NAC1 in the glandular cells was significantly higher in the early and mid proliferative phases than in the other menstrual phases, endometrial hyperplasia, and endometrial carcinoma. NAC1 expression was down-regulated during endometrial carcinogenesis. There were significant correlations between positive NAC1 expression and pathological grade (P=0.037). No significant associations were found between NAC1 expression and the other clinicopathological characteristics including patient age, FIGO staging, depth of myometrial invasion, pelvic lymph node metastasis, lymphovascular space invasion, menopause, or body mass index. NAC1 gene knockdown inhibited cell growth and induced apoptosis in Ishikawa, HHUA, and JHEM2 cell lines, all of which overexpressed NAC1. Ectopic overexpression of the NAC1 gene stimulated cell proliferation in the HEC1B, and JHEM1 endometrial cancer cell lines, which have lower endogenous NAC1 expression. Endometrial carcinomas with NAC1 overexpression are clinically aggressive, high-grade carcinomas. Therefore, detection of NAC1 overexpression in endometrial cancers may identify patients who will benefit from NAC1 targeted therapy.

  15. What can pluripotent stem cells teach us about neurodegenerative diseases?

    Science.gov (United States)

    Wichterle, Hynek; Przedborski, Serge

    2010-07-01

    Neurodegenerative diseases represent a growing public health challenge. Current medications treat symptoms, but none halt or retard neurodegeneration. The recent advent of pluripotent cell biology has opened new avenues for neurodegenerative disease research. The greatest potential for induced pluripotent cells derived from affected individuals is likely to be their utility for modeling and understanding the mechanisms underlying neurodegenerative processes, and for searching for new treatments, including cell replacement therapies. However, much work remains to be done before pluripotent cells can be used for preclinical and clinical applications. Here we discuss the challenges of generating specific neural cell subtypes from pluripotent stem cells, the use of pluripotent stem cells to model both cell-autonomous and non-cell-autonomous mechanisms of neurodegeneration, whether adult-onset neurodegeneration can be emulated in short-term cultures and the hurdles of cell replacement therapy. Progress in these four areas will substantially accelerate effective application of pluripotent stem cells.

  16. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals

    OpenAIRE

    Kumar, Dharmendra; Talluri, Thirumala R; Anand, Taruna; Kues, Wilfried A.

    2015-01-01

    Pluripotent stem cells are unspecialized cells with unlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured ...

  17. Epithelial plasticity,stemness and pluripotency

    Institute of Scientific and Technical Information of China (English)

    Oscar H Oca(n)a; M Angela Nieto

    2010-01-01

    @@ Embryonic stem cells derived from the inner cell mass of blastocyst stage embryos(ES cells)are capable of differentiating into any cell type,offering the possibility of their use in cell transplantation therapies.However,the risk of rejection by the immune system and the bioethical issues inherent to the use of embryonic cells prompted the search for a mechanism of obtaining pluripotent cells from adult cells and thus,potentially self tissues.

  18. Uncovering the true identity of naive pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.; Geijsen, N.

    2013-01-01

    Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass (ICM) of blastocyst embryos. Although first characterized over 30 years ago, the ontology of these cells remains elusive. Identifying the in vivo counterpart of murine ESCs will be essential for the derivation of

  19. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    NARCIS (Netherlands)

    Kijlstra, Jan David; Hu, Dongjian; Mittal, Nikhil; Kausel, Eduardo; van der Meer, Peter; Garakani, Arman; Domian, Ibrahim J.

    2015-01-01

    The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) th

  20. Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.D., E-mail: jennifer.cohen@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Babiarz, J.E., E-mail: joshua.babiarz@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Abrams, R.M., E-mail: rory.abrams@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Guo, L., E-mail: liang.guo@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Kameoka, S., E-mail: sei.kameoka@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Chiao, E., E-mail: eric.chiao@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States); Taunton, J., E-mail: taunton@cmp.ucsf.edu [Howard Hughes Medical Institute, Cellular and Molecular Pharmacology, University California San Francisco, San Francisco, CA 94158 (United States); Kolaja, K.L., E-mail: kyle.kolaja@roche.com [Early and Investigative Safety, Nonclinical Safety, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110 (United States)

    2011-11-15

    Sunitinib, an oral tyrosine kinase inhibitor approved to treat advanced renal cell carcinoma and gastrointestinal stroma tumor, is associated with clinical cardiac toxicity. Although the precise mechanism of sunitinib cardiotoxicity is not known, both the key metabolic energy regulator, AMP-activated protein kinase (AMPK), and ribosomal S 6 kinase (RSK) have been hypothesized as causative, albeit based on rodent models. To study the mechanism of sunitinib-mediated cardiotoxicity in a human model, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) having electrophysiological and contractile properties of native cardiac tissue were investigated. Sunitinib was cardiotoxic in a dose-dependent manner with an IC{sub 50} in the low micromolar range, observed by a loss of cellular ATP, an increase in oxidized glutathione, and induction of apoptosis in iPSC-CMs. Pretreatment of iPSC-CMs with AMPK activators AICAR or metformin, increased the phosphorylation of pAMPK-T172 and pACC-S79, but only marginally attenuated sunitinib mediated cell death. Furthermore, additional inhibitors of AMPK were not directly cytotoxic to iPSC-CMs up to 250 {mu}M concentrations. Inhibition of RSK with a highly specific, irreversible, small molecule inhibitor (RSK-FMK-MEA) did not induce cytotoxicity in iPSC-CMs below 250 {mu}M. Extensive electrophysiological analysis of sunitinib and RSK-FMK-MEA mediated conduction effects were performed. Taken together, these findings suggest that inhibition of AMPK and RSK are not a major component of sunitinib-induced cardiotoxicity. Although the exact mechanism of cardiotoxicity of sunitinib is not known, it is likely due to inhibition of multiple kinases simultaneously. These data highlight the utility of human iPSC-CMs in investigating the potential molecular mechanisms underlying drug-induced cardiotoxicity. -- Highlights: Black-Right-Pointing-Pointer Cytoxic effect of sunitinib on human stem cell derived cardiomyocytes Black

  1. Differentiation and Molecular Properties of Mesenchymal Stem Cells Derived from Murine Induced Pluripotent Stem Cells Derived on Gelatin or Collagen.

    Science.gov (United States)

    Obara, Chizuka; Takizawa, Kazuya; Tomiyama, Kenichi; Hazawa, Masaharu; Saotome-Nakamura, Ai; Gotoh, Takaya; Yasuda, Takeshi; Tajima, Katsushi

    2016-01-01

    The generation of induced-pluripotential stem cells- (iPSCs-) derived mesenchymal stem cells (iMSCs) is an attractive and promising approach for preparing large, uniform batches of applicable MSCs that can serve as an alternative cell source of primary MSCs. Appropriate culture surfaces may influence their growth and differentiation potentials during iMSC derivation. The present study compared molecular properties and differentiation potential of derived mouse iPS-MSCs by deriving on gelatin or collagen-coated surfaces. The cells were derived by a one-step method and expressed CD73 and CD90, but CD105 was downregulated in iMSCs cultured only on gelatin-coated plates with increasing numbers of passages. A pairwise scatter analysis revealed similar expression of MSC-specific genes in iMSCs derived on gelatin and on collagen surfaces as well as in primary mouse bone marrow MSCs. Deriving iMSCs on gelatin and collagen dictated their osteogenic and adipose differentiation potentials, respectively. Derived iMSCs on gelatin upregulated Bmp2 and Lif prior to induction of osteogenic or adipose differentiation, while PPARγ was upregulated by deriving on collagen. Our results suggest that extracellular matrix components such as gelatin biases generated iMSC differentiation potential towards adipose or bone tissue in their derivation process via up- or downregulation of these master genes. PMID:27642306

  2. 间充质干细胞源性微囊泡和诱导性多潜能干细胞促进关节软骨修复的进展%Articular cartilage repair using mesenchymal stem cells-derived microvesicles and induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    侯威宇; 程艳伟; 向川

    2015-01-01

    BACKGROUND:Induced pluripotent stem cels and mesenchymal stem cels-derived microvesicles have been confirmed in various tissue repairs, which are expected to become more effective and safe therapy for articular cartilage repair. OBJECTIVE:To overal understand the research progress in the use of induced pluripotent stem cels and mesenchymal stem cels-derived microvesicles in articular cartilage repair. METHODS: A computer-based search of PubMed and CNKI was performed by the first author for articles related to stem cel treatment of osteoarthritis published from 2003 to 2015. The keywords were “articular cartilage injury, bone marrow mesenchymal stem cels” in English and Chinese, respectively. In the same field, articles published recently or in authorized journals were preferred. RESULTS AND CONCLUSION:Articular cartilage injury is stil a difficulty in the orthopedics. Many repair methods have been reported, but they al have limitations. Induced pluripotent stem cels and mesenchymal stem cels-derived microvesicles bring a new hope for patients with articular cartilage injury. However, there are stil many problems to be solved, such as extracting and purifying a large amount of cels, proliferation and differentiation potentials, and mechanism underlying cartilage repair.%背景:间充质干细胞源性微囊泡和诱导性多潜能干细胞在多个领域的组织修复作用已被证实,两者有望成为修复关节软骨损伤更有效、更安全的治疗方法。目的:综述间充质干细胞源性微囊泡和诱导性多潜能干细胞促进软骨修复的研究进展。方法:由第一作者应用计算机检索PubMed、中国期刊全文数据库(CNKI)2003年至2015年8月相关文献,英文检索词为“Articular cartilage injury,Bone marrow mesenchymal stem cels”,中文检索词为“软骨损伤,骨髓间充质干细胞”。选择文章内容与干细胞治疗骨关节炎有关者,同一领域文献则选择近期发表在权威

  3. 多能干细胞分化来源视网膜色素上皮细胞移植治疗视网膜变性研究进展%The research progress toward clinical transplantation of pluripotent stem cell-derived retinal pigmented epithelial cells

    Institute of Scientific and Technical Information of China (English)

    邓雯丽; 向萍; 金子兵

    2014-01-01

    Retinal pigmented epithelial (RPE) cell is essential to maintain retinal function. RPE loss or dysfunction is the leading cause of incurable blindness worldwide. RPE cell replacement has been one of the most promising approaches to restore vision for these patients. With rapid progress of stem cell biology, great efforts have been made to induce functional RPE cells from pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Disease-specific RPE cells differentiated from patient iPS cells are greatly expected to elucidate mechanism of pathogenesis and personalized therapies for retinal degenerative diseases. Additionally, transplantation of induced RPE into subretinal space has shown encouraging remedies in both animal models and clinical trials. In this review, we focus on PSC-derived RPE in field of regenerative medicine and to summarize methods for RPE cell production and delivering .%视网膜色素上皮(RPE)对视觉功能的维持起着至关重要的作用。视网膜变性是全球不可治愈性致盲疾病的重要原因,它由视网膜色素上皮功能失常所引起。因此,视网膜色素上皮移植是视网膜变性患者恢复视力的一种最有前景的手段之一。随着干细胞技术的快速发展,从多能干细胞(PSC)到有功能的视网膜色素上皮细胞的体外分化诱导技术已经成熟,其中包括胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs)等。此外,从患者特异性iPSCs分化而来的RPE更能用于阐明发病机理并有针对性地个体治疗。更值得一提的是,经诱导得到RPE的移植不论在动物模型中,还是在临床试验里都已经得到了可喜的治疗效果。本文回顾PSC来源RPE干预治疗视网膜变性的最新研究进展。

  4. A novel,rapid strategy to form dendritomas from human dendritic cells and hepatocellular carcinoma cell line HCCLM3 cells using mature dendritic cells derived from human peripheral blood CD14+monocytes within 48 hours of in vitro culture

    Institute of Scientific and Technical Information of China (English)

    Xin Guan; Ji-Run Peng; Lan Yuan; Hui Wang; Yu-Hua Wei; Xi-Sheng Leng

    2004-01-01

    AIM: Dendritomas formed by fusing cancer cells to dendritic cells have already been applied to clinical treatment trial of several types of cancers. Dendritic cells for the fusion in most trials and experiments were from blood monocytes in standard 7-d protocol culture, which requires 5-7 d of culture with granulocyte-macrophage-colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), followed by 2-3 d of activation with a combination of proinflammatory mediators such as tumor necrosis factorα (TNFα), interleukin1β (IL-1β), interleukin-6 (IL-6)and prostaglandin E2 (PGE2).One study showed that mature monocyte-derived dendritic cells could be obtained within 48 h ofin vitro culture with the same protocol as standard 7-d culture and referred to as FastDCs. Here we aimed to fuse human hepatocellular carcinoma cell line HCCLM3 cells with mature monocytederived dendritic cells within 48 h ofin vitro culture (FastDC).METHODS: HCCLMl3 cells were cultured in RPMI 1640 with 150 mL/L fetal calf serum (FCS). CD14+monocytes from healthy human peripheral blood were purified with MACS CD14 isolation kit and cultured in six-well plates in fresh complete DC medium containing RPMI-1640, 20 mL/Lheat inactivated human AB serum, 2 mmol/L L-glutamine,100 μg/mL gentamicin, 1000 U/mL GM-CSF and 500 U/mL IL-4 for 24 h, then proinflammatory mediators such as TNFα(1000 U/mL), IL-1β (10 ng/mL), IL-6 (10 ng/mL) and PGE2(1μg/mL) were supplemented for another 24 h, and thus mature FastDCs were generated. HCCLM3 cells and FastDCs were labeled with red fluorescent dye PKH26-GL and green fluorescent dye PKH67-GL respectively. After the red fluorescent-stained HCCLM3 cells were irradiated with 50 Gy, FastDCs and irradiated HCCLM3 cells were fused in 500 mL/L polyethylene glycol(PEG)+100 mL/L dimethyl sulfoxide (DMSO) to generate novel dendritomas. The FastDCs and novel dendritomas were immunostained with antiCD80, anti-CD86, anti-CD83, anti-HLA-DR mAbs and analyzed by fluorescence

  5. Matrix metalloproteinase-3 in odontoblastic cells derived from ips cells: unique proliferation response as odontoblastic cells derived from ES cells.

    Directory of Open Access Journals (Sweden)

    Taiki Hiyama

    Full Text Available We previously reported that matrix metalloproteinase (MMP-3 accelerates wound healing following dental pulp injury. In addition, we reported that a proinflammatory cytokine mixture (tumor necrosis factor-α, interleukin (IL-1β and interferon-γ induced MMP-3 activity in odontoblast-like cells derived from mouse embryonic stem (ES cells, suggesting that MMP-3 plays a potential unique physiological role in wound healing and regeneration of dental pulp in odontoblast-like cells. In this study, we tested the hypothesis that upregulation of MMP-3 activity by IL-1β promotes proliferation and apoptosis of purified odontoblast-like cells derived from induced pluripotent stem (iPS and ES cells. Each odontoblast-like cell was isolated and incubated with different concentrations of IL-1β. MMP-3 mRNA and protein expression were assessed using RT-PCR and western blotting, respectively. MMP-3 activity was measured using immunoprecipitation and a fluorescence substrate. Cell proliferation and apoptosis were determined using ELISA for BrdU and DNA fragmentation, respectively. siRNA was used to reduce MMP-3 transcripts in these cells. Treatment with IL-1β increased MMP-3 mRNA and protein levels, and MMP-3 activity in odontoblast-like cells. Cell proliferation was found to markedly increase with no changes in apoptosis. Endogenous tissue inhibitor of metalloproteinase (TIMP-1 and TIMP-2 were constitutively expressed during all experiments. The exocytosis inhibitor, Exo1, potently suppressed the appearance of MMP-3 in the conditioned medium. Treatment with siRNA against MMP-3 suppressed an IL-1β-induced increase in MMP-3 expression and activity, and also suppressed cell proliferation, but unexpectedly increased apoptosis in these cells (P<0.05. Exogenous MMP-3 was found to induce cell proliferation in odontoblast-like cells derived from iPS cells and ES cells. This siRNA-mediated increase in apoptosis could be reversed with exogenous MMP-3 stimulation (P<0

  6. Dazlin' pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.A.

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) can be isolated from the inner cell mass (ICM) of blastocyst embryos and differentiate into all three germ layers in vitro. However, despite their similar origin, mouse embryonic stem cells represent a more naïve ICM-like pluripotent state whereas human embryo

  7. Stem cell-derived systems in toxicology assessment.

    Science.gov (United States)

    Suter-Dick, Laura; Alves, Paula M; Blaauboer, Bas J; Bremm, Klaus-Dieter; Brito, Catarina; Coecke, Sandra; Flick, Burkhard; Fowler, Paul; Hescheler, Jürgen; Ingelman-Sundberg, Magnus; Jennings, Paul; Kelm, Jens M; Manou, Irene; Mistry, Pratibha; Moretto, Angelo; Roth, Adrian; Stedman, Donald; van de Water, Bob; Beilmann, Mario

    2015-06-01

    Industrial sectors perform toxicological assessments of their potential products to ensure human safety and to fulfill regulatory requirements. These assessments often involve animal testing, but ethical, cost, and time concerns, together with a ban on it in specific sectors, make appropriate in vitro systems indispensable in toxicology. In this study, we summarize the outcome of an EPAA (European Partnership of Alternatives to Animal Testing)-organized workshop on the use of stem cell-derived (SCD) systems in toxicology, with a focus on industrial applications. SCD systems, in particular, induced pluripotent stem cell-derived, provide physiological cell culture systems of easy access and amenable to a variety of assays. They also present the opportunity to apply the vast repository of existing nonclinical data for the understanding of in vitro to in vivo translation. SCD systems from several toxicologically relevant tissues exist; they generally recapitulate many aspects of physiology and respond to toxicological and pharmacological interventions. However, focused research is necessary to accelerate implementation of SCD systems in an industrial setting and subsequent use of such systems by regulatory authorities. Research is required into the phenotypic characterization of the systems, since methods and protocols for generating terminally differentiated SCD cells are still lacking. Organotypical 3D culture systems in bioreactors and microscale tissue engineering technologies should be fostered, as they promote and maintain differentiation and support coculture systems. They need further development and validation for their successful implementation in toxicity testing in industry. Analytical measures also need to be implemented to enable compound exposure and metabolism measurements for in vitro to in vivo extrapolation. The future of SCD toxicological tests will combine advanced cell culture technologies and biokinetic measurements to support regulatory and

  8. Neural tissue engineering using embryonic and induced pluripotent stem cells

    OpenAIRE

    Willerth, Stephanie M.

    2011-01-01

    With the recent start of the first clinical trial evaluating a human embryonic stem cell-derived therapy for the treatment of acute spinal cord injury, it is important to review the current literature examining the use of embryonic stem cells for neural tissue engineering applications with a focus on diseases and disorders that affect the central nervous system. Embryonic stem cells exhibit pluripotency and thus can differentiate into any cell type found in the body, including those found in ...

  9. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors

    DEFF Research Database (Denmark)

    Seminatore, Christine; Polentes, Jerome; Ellman, Ditte;

    2010-01-01

    Risk of tumorigenesis is a major obstacle to human embryonic and induced pluripotent stem cell therapy. Likely linked to the stage of differentiation of the cells at the time of implantation, formation of teratoma/tumors can also be influenced by factors released by the host tissue. We have...... analyzed the relative effects of the stage of differentiation and the postischemic environment on the formation of adverse structures by transplanted human embryonic stem cell-derived neural progenitors....

  10. Calcium signaling in pluripotent stem cells.

    Science.gov (United States)

    Apáti, Ágota; Pászty, Katalin; Erdei, Zsuzsa; Szebényi, Kornélia; Homolya, László; Sarkadi, Balázs

    2012-04-28

    Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.

  11. Uncovering the true identity of naïve pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.; Geijsen, N.

    2013-01-01

    Summary Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass (ICM) of blastocyst embryos. Although first characterized over 30 years ago, the ontology of these cells remains elusive. Identifying the in vivo counterpart of murine ESCs will be essential for the deriv

  12. The Use of a Liposomal Formulation Incorporating an Antimicrobial Peptide from Tilapia as a New Adjuvant to Epirubicin in Human Squamous Cell Carcinoma and Pluripotent Testicular Embryonic Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Li Lo

    2015-09-01

    Full Text Available This study aims to explore the effects and mechanisms of hepcidin, a potential antimicrobial peptide from Tilapia, and epirubicin (Epi, an antineoplastic agent, on the generation of reactive oxygen species (ROS and link the ROS levels to the reversal mechanisms of multidrug resistance (MDR by epirubicin and hepcidin in human squamous cell carcinoma SCC15 and human embryonal carcinoma NT2D1 cells. The cells, pretreated with hepcidin, epirubicin, or a combination of these compounds in PEGylated liposomes, were used to validate the molecular mechanisms involved in inhibiting efflux transporters and inducing apoptosis as evaluated by cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of this combination. We found that hepcidin significantly enhanced the cytotoxicity of epirubicin in liposomes. The co-incubation of epirubicin with hepcidin in liposomes intensified the ROS production, including hydrogen peroxide and superoxide free radicals. Hepcidin significantly increased epirubicin intracellular uptake into NT2D1 and SCC15 cells, as supported by the diminished mRNA expressions of MDR1, MDR-associated protein (MRP 1, and MRP2. Hepcidin and/or epirubicin in liposomes triggered apoptosis, as verified by the reduced mitochondrial membrane potential, increased sub-G1 phase of cell cycle, incremental populations of apoptosis using annexin V/PI assay, and chromatin condensation. As far as we know, this is the first example showing that PEGylated liposomal TH1-5 and epirubicin gives rise to cell death in human squamous carcinoma and testicular embryonic carcinoma cells through the reduced epirubicin efflux via ROS-mediated suppression of P-gp and MRPs and concomitant initiation of mitochondrial apoptosis pathway. Hence, hepcidin in PEGylated liposomes may function as an adjuvant to anticancer drugs, thus demonstrating a novel strategy for reversing MDR.

  13. Induced pluripotent stem cells: Mechanisms, achievementsand perspectives in farm animals

    Institute of Scientific and Technical Information of China (English)

    Dharmendra Kumar; Thirumala R Talluri; Taruna Anand; Wilfried A Kues

    2015-01-01

    Pluripotent stem cells are unspecialized cells withunlimited self-renewal, and they can be triggered todifferentiate into desired specialized cell types. Thesefeatures provide the basis for an unlimited cell sourcefor innovative cell therapies. Pluripotent cells also allowto study developmental pathways, and to employ themor their differentiated cell derivatives in pharmaceuticaltesting and biotechnological applications. Via blastocystcomplementation, pluripotent cells are a favoured toolfor the generation of genetically modified mice. Therecently established technology to generate an inducedpluripotency status by ectopic co-expression of thetranscription factors Oct4, Sox2, Klf4 and c-Myc allowsto extending these applications to farm animal species,for which the derivation of genuine embryonic stemcells was not successful so far. Most induced pluripotentstem (iPS) cells are generated by retroviral or lentiviraltransduction of reprogramming factors. Multiple viralintegrations into the genome may cause insertionalmutagenesis and may increase the risk of tumourformation. Non-integration methods have been reportedto overcome the safety concerns associated withretro and lentiviral-derived iPS cells, such as transientexpression of the reprogramming factors using episomalplasmids, and direct delivery of reprogrammingmRNAs or proteins. In this review, we focus on themechanisms of cellular reprogramming and currentmethods used to induce pluripotency. We also highlightproblems associated with the generation of iPS cells. Anincreased understanding of the fundamental mechanismsunderlying pluripotency and refining the methodology ofiPS cell generation will have a profound impact on futuredevelopment and application in regenerative medicineand reproductive biotechnology of farm animals.

  14. Pluripotent stem cells for the study of CNS development

    Directory of Open Access Journals (Sweden)

    Timothy J. Petros

    2011-10-01

    Full Text Available The mammalian central nervous system is a complex neuronal meshwork consisting of a diverse array of cellular subtypes generated in a precise spatial and temporal pattern throughout development. Achieving a greater understanding of the molecular and genetic mechanisms that direct a relatively uniform population of neuroepithelial progenitors into the diverse neuronal subtypes remains a significant challenge. A firmer knowledge of the fundamental aspects of developmental neuroscience will allow us to better study the vast array of neurodevelopmental diseases. The advent of stem cell technologies has expedited our ability to generate and isolate populations of distinct interneuron subtypes. To date, researchers have successfully developed protocols to derive many types of neural cells from pluripotent stem cells, with varying degrees of efficiencies and reproducibility. The stem cell field is devoted to the potential of stem cell-derived neurons for the treatment of disease, highlighted by the ability to create patient specific induced pluripotent stem cells. However, another application that is often overlooked is the use of stem cell technology for studying normal neural development. This is especially important for human neurodevelopment, since obtaining embryonic tissue presents numerous technical and ethical challenges. In this review, we will explore the use of pluripotent stem cells for the study of neural development. We will review the different classes of pluripotent stem cells and focus on the types of neurodevelopmental questions that stem cell technologies can help address. In addition to covering the different neural cells derived from stem cells to date, we will detail the derivation and characterization of three of the more thoroughly studied cell groups. We hope that this review encourages researchers to develop innovative strategies for using pluripotent stem cells for the study of mammalian, and specifically human

  15. In Vitro Differentiation and Expansion of Human Pluripotent Stem Cell-Derived Pancreatic Progenitors

    OpenAIRE

    Chmielowiec, Jolanta; Borowiak, Malgorzata

    2014-01-01

    Recent progress in understanding stem cell biology has been remarkable, especially in deciphering signals that support differentiation towards tissue-specific lineages. This achievement positions us firmly at the beginning of an era of patient-specific regenerative medicine and human disease modeling. It will be necessary to equip the progress in this era with a reliable source of self-renewing progenitor cells that differentiate into functional target cells. The generation of pancreatic prog...

  16. From fetus towards adult : maturation and functional analysis of pluripotent stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Catarino, Ribeiro M.

    2016-01-01

    This thesis describes research about the differentiation of human stem cells into cardiomyocytes (heart cells). During the differentiation process the stem cells become contractile myocytes that resemble the native heart cells. Nevertheless, the phenotype of these cardiomyocytes is comparable to a s

  17. A strategy to ensure safety of stem cell-derived retinal pigment epithelium cells.

    Science.gov (United States)

    Choudhary, Parul; Whiting, Paul John

    2016-09-02

    Cell replacement and regenerative therapy using embryonic stem cell-derived material holds promise for the treatment of several pathologies. However, the safety of this approach is of prime importance given the teratogenic potential of residual stem cells, if present in the differentiated cell product. Using the example of embryonic stem cell-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration, we present a novel strategy for ensuring the absence of stem cells in the RPE population. Based on an unbiased screening approach, we identify and validate the expression of CD59, a cell surface marker expressed on RPE but absent on stem cells. We further demonstrate that flow sorting on the basis of CD59 expression can effectively purify RPE and deplete stem cells, resulting in a population free from stem cell impurity. This purification helps to ensure removal of stem cells and hence increases the safety of cells that may be used for clinical transplantation. This strategy can potentially be applied to other pluripotent stem cell-derived material and help mitigate concerns of using such cells for therapy.

  18. Functional neuromuscular junctions formed by embryonic stem cell-derived motor neurons.

    Directory of Open Access Journals (Sweden)

    Joy A Umbach

    Full Text Available A key objective of stem cell biology is to create physiologically relevant cells suitable for modeling disease pathologies in vitro. Much progress towards this goal has been made in the area of motor neuron (MN disease through the development of methods to direct spinal MN formation from both embryonic and induced pluripotent stem cells. Previous studies have characterized these neurons with respect to their molecular and intrinsic functional properties. However, the synaptic activity of stem cell-derived MNs remains less well defined. In this study, we report the development of low-density co-culture conditions that encourage the formation of active neuromuscular synapses between stem cell-derived MNs and muscle cells in vitro. Fluorescence microscopy reveals the expression of numerous synaptic proteins at these contacts, while dual patch clamp recording detects both spontaneous and multi-quantal evoked synaptic responses similar to those observed in vivo. Together, these findings demonstrate that stem cell-derived MNs innervate muscle cells in a functionally relevant manner. This dual recording approach further offers a sensitive and quantitative assay platform to probe disorders of synaptic dysfunction associated with MN disease.

  19. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    Science.gov (United States)

    Senju, Satoru

    2016-08-01

    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages. PMID:27599426

  20. Progress and bottleneck in induced pluripotency

    Directory of Open Access Journals (Sweden)

    Zhang Zhen-Ning

    2012-07-01

    Full Text Available Abstract With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, induced pluripotent stem cells (iPSCs, reprogrammed from somatic cells of individual patients with defined factors, have unlimited potential in cell therapy and in modeling complex human diseases. Significant progress has been achieved to improve the safety of iPSCs and the reprogramming efficiency. To avoid the cancer risk and spontaneous reactivation of the reprogramming factors associated with the random integration of viral vectors into the genome, several approaches have been established to deliver the reprogramming factors into the somatic cells without inducing genetic modification. In addition, a panel of small molecule compounds, many of which targeting the epigenetic machinery, have been identified to increase the reprogramming efficiency. Despite these progresses, recent studies have identified genetic and epigenetic abnormalities of iPSCs as well as the immunogenicity of some cells derived from iPSCs. In addition, due to the oncogenic potential of the reprogramming factors and the reprogramming-induced DNA damage, the critical tumor suppressor pathways such as p53 and ARF are activated to act as the checkpoints that suppress induced pluripotency. The inactivation of these tumor suppression pathways even transiently during reprogramming processes could have significant adverse impact on the genome integrity. These safety concerns must be resolved to improve the feasibility of the clinic development of iPSCs into human cell therapy.

  1. Present state and future perspectives of using pluripotent stem cells in toxicology research

    OpenAIRE

    Wobus, Anna M.; Löser, Peter

    2011-01-01

    The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, a...

  2. Generation of induced pluripotent stem cells from human mesenchymal stem cells of parotid gland origin

    OpenAIRE

    Yan, Xing; Xu, Nuo; Meng, Cen; Wang, Bianhong; Yuan, Jinghong; Wang, Caiyun; Li, Yang

    2016-01-01

    The technology to reprogram human somatic cells to pluripotent state allows the generation of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine and autologous transplantation. Here we, for the first time, identified mesenchymal stem cells isolated from parotid gland (hPMSCs) as a suitable candidate for iPSC production. In the present study, hPMSCs were isolated from parotid gland specimens in patients with squamous cell carcinoma of th...

  3. MicroRNAs and Induced Pluripotent Stem Cells for Human Disease Mouse Modeling

    Directory of Open Access Journals (Sweden)

    Chingiz Underbayev

    2012-01-01

    Full Text Available Human disease animal models are absolutely invaluable tools for our understanding of mechanisms involved in both physiological and pathological processes. By studying various genetic abnormalities in these organisms we can get a better insight into potential candidate genes responsible for human disease development. To this point a mouse represents one of the most used and convenient species for human disease modeling. Hundreds if not thousands of inbred, congenic, and transgenic mouse models have been created and are now extensively utilized in the research labs worldwide. Importantly, pluripotent stem cells play a significant role in developing new genetically engineered mice with the desired human disease-like phenotype. Induced pluripotent stem (iPS cells which represent reprogramming of somatic cells into pluripotent stem cells represent a significant advancement in research armament. The novel application of microRNA manipulation both in the generation of iPS cells and subsequent lineage-directed differentiation is discussed. Potential applications of induced pluripotent stem cell—a relatively new type of pluripotent stem cells—for human disease modeling by employing human iPS cells derived from normal and diseased somatic cells and iPS cells derived from mouse models of human disease may lead to uncovering of disease mechanisms and novel therapies.

  4. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM deficient blastocysts.

    Directory of Open Access Journals (Sweden)

    Duancheng Wen

    Full Text Available Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs by injection of diploid (2n ESCs into tetraploid (4n blastocysts (ESC-derived mice. This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS cells. However, the underlying mechanism(s of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM. We designate these as type a (presence of ICM at blastocyst stage or type b (absence of ICM. ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.

  5. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM) deficient blastocysts.

    Science.gov (United States)

    Wen, Duancheng; Saiz, Nestor; Rosenwaks, Zev; Hadjantonakis, Anna-Katerina; Rafii, Shahin

    2014-01-01

    Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs) by injection of diploid (2n) ESCs into tetraploid (4n) blastocysts (ESC-derived mice). This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS) cells. However, the underlying mechanism(s) of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM). We designate these as type a (presence of ICM at blastocyst stage) or type b (absence of ICM). ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.

  6. Expression and clinicopathologic significance of PC cell-derived growth factor and vascular endothelial growth factor in elderly males with squamous cell lung carcinoma%畸胎瘤源性生长因子和血管内皮因子在老年男性肺鳞癌中的表达及临床意义

    Institute of Scientific and Technical Information of China (English)

    赵玉泽; 杜毓锋; 钱力; 郝小燕; 刘学军

    2014-01-01

    Objective To explore the significance of PC cell-derived growth factor (PCDGF or progranulin) and vascular endothelial growth factor (VEGF) in oncogenesis, progression and metastasis of squamous cell lung carcinoma (SCLC) in geriatric male patients. Methods Immunohistochemistry assays were applied to detect the differential ex-pression of PCDGF, VEGF in paraffin-embedded tumor specimens of 65 cases derived from geriatric male patients with SCLC, 20 cases of atypical hyperplasia of the lung, 20 cases of squamous metaplasia of the lung, and 20 cases of inflamed lung tissue. The vascular endothelial cells in tumor tissue, labeled by the antibody of CD105, entailed the microvessel density (MVD) count. Results The expression of PCDGF and VEGF were highest in the tissues of in-flamed lungs, followed by squamous metaplasia, atypical hyperplasia and SCLC (P0.05). The level of MVD in tissues with markedly positive expression of PCDGF and VEGF was significantly higher than other groups (P<0.01). The expression level of PCDGF was positively corre-lated with that of VEGF significantly in SCLC (ra=0.861, P<0.01). Conclusion PCDGF could impair tumor basal membrane and promote tumor angiogenesis via regulation of the expression of VEGF, thus playing a role in oncogene-sis, invasion and metastasis. The combination of PCDGF, VEGF and CD150 protein might be potential biomarkers of predicting the biologic behaviors of SCLC in geriatric male patients.%目的:探讨畸胎瘤源性生长因子(PCDGF)和血管内皮因子(VEGF)在老年男性肺鳞癌中的表达与临床病理参数之间的关系。方法以免疫组织化学方法检测65例肺鳞癌标本、20例不典型增生、20例鳞状上皮化生、20例炎症肺组织中PCDGF和VEGF蛋白的表达情况,并以CD105抗体标记肿瘤组织血管内皮细胞,计数微血管密度(MVD)。结果 PCDGF、VEGF在老年肺鳞癌、不典型增生、鳞状上皮化生、炎症肺组织

  7. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure.

    Science.gov (United States)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C; van Meer, Berend; Ward-van Oostwaard, Dorien; Passier, Robert; Tertoolen, Leon G J; Mummery, Christine L; Casini, Simona

    2015-11-27

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation.

  8. In vitro culture and characterization of putative porcine embryonic germ cells derived from domestic breeds and yucatan mini pig embryos at days 20-24 of gestation

    DEFF Research Database (Denmark)

    Petkov, Stoyan Gueorguiev; Marks, Hendrik; Klein, Tino;

    2011-01-01

    -Seq expression profiling showed no expression of the core pluripotency markers OCT4, SOX2, and NANOG, although most other pluripotency genes were expressed at levels comparable to those of mouse embryonic stem cells (ESC). Moreover, germ-specific genes such as BLIMP1 retained their expression. Functional......Embryonic germ cells (EGC) are cultured pluripotent cells derived from primordial germ cells (PGC). This study explored the possibility of establishing porcine EGC from domestic breeds and Yucatan mini pigs using embryos at Days 17-24 of gestation. In vitro culture of PGC from both pooled...... and individual embryos resulted in the successful derivation of putative EGC lines from Days 20 to 24 with high efficiency. RT-PCR showed that gene expression among all 31 obtained cell lines was very similar, and only minor changes were detected during in vitro passaging of the cells. Genome-wide RNA...

  9. Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons

    Directory of Open Access Journals (Sweden)

    Isabella eGarcia

    2012-12-01

    Full Text Available The mammalian brain is anatomically and functionally complex, and prone to diverse forms of injury and neuropathology. Scientists have long strived to develop cell replacement therapies to repair damaged and diseased nervous tissue. However, this goal has remained unrealized for various reasons, including nascent knowledge of neuronal development, the inability to track and manipulate transplanted cells within complex neuronal networks, and host graft rejection. Recent advances in embryonic stem cell (ESC and induced pluripotent stem cell (iPSC technology, alongside novel genetic strategies to mark and manipulate stem cell-derived neurons now provide unprecedented opportunities to investigate complex neuronal circuits in both healthy and diseased brains. Here, we review current technologies aimed at generating and manipulating neurons derived from ESCs and iPSCs towards investigation and manipulation of complex neuronal circuits, ultimately leading to the design and development of novel cell-based therapeutic approaches.

  10. Induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Siddhartha Bhowmik; LI Yong

    2011-01-01

    Induced pluripotent stem (iPS) cells are a recent development which has brought a promise of great therapeutic values. The previous technique of somatic cell nuclear transfer (SCNT) has been ineffective in humans. Recent discoveries show that human fibroblasts can be reprogrammed by a transient over expression of a small number of genes; they can undergo induced pluripotency. iPS were first produced in 2006. By 2008, work was underway to remove the potential oncogenes from their structure. In 2009, protein iPS (piPS) cells were discovered. Surface markers and reporter genes play an important role in stem cell research. Clinical applications include generation of self renewing stem cells, tissue replacement and many more. Stem cell therapy has the ability to dramatically change the treatment of human diseases.

  11. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Tokunori Ikeda

    Full Text Available We herein demonstrate the immune-regulatory effect of embryonic stem cell-derived dendritic cells (ES-DCs using two models of autoimmune disease, namely non-obese diabetic (NOD mice and experimental autoimmune encephalomyelitis (EAE. Treatment of pre-diabetic NOD mice with ES-DCs exerted almost complete suppression of diabetes development during the observation period for more than 40 weeks. The prevention of diabetes by ES-DCs was accompanied with significant reduction of insulitis and decreased number of Th1 and Th17 cells in the spleen. Development of EAE was also inhibited by the treatment with ES-DCs, and the therapeutic effect was obtained even if ES-DCs were administrated after the onset of clinical symptoms. Treatment of EAE-induced mice with ES-DCs reduced the infiltration of inflammatory cells into the spinal cord and suppressed the T cell response to the myelin antigen. Importantly, the ES-DC treatment did not affect T cell response to an exogenous antigen. As the mechanisms underlying the reduction of the number of infiltrating Th1 cells, we observed the inhibition of differentiation and proliferation of Th1 cells by ES-DCs. Furthermore, the expression of VLA-4α on Th1 cells was significantly inhibited by ES-DCs. Considering the recent advances in human induced pluripotent stem cell-related technologies, these results suggest a clinical application for pluripotent stem cell-derived dendritic cells as a therapy for T cell-mediated autoimmune diseases.

  12. Pathogen sensing pathways in human embryonic stem cell derived-endothelial cells: role of NOD1 receptors.

    Directory of Open Access Journals (Sweden)

    Daniel M Reed

    Full Text Available Human embryonic stem cell-derived endothelial cells (hESC-EC, as well as other stem cell derived endothelial cells, have a range of applications in cardiovascular research and disease treatment. Endothelial cells sense Gram-negative bacteria via the pattern recognition receptors (PRR Toll-like receptor (TLR-4 and nucleotide-binding oligomerisation domain-containing protein (NOD-1. These pathways are important in terms of sensing infection, but TLR4 is also associated with vascular inflammation and atherosclerosis. Here, we have compared TLR4 and NOD1 responses in hESC-EC with those of endothelial cells derived from other stem cells and with human umbilical vein endothelial cells (HUVEC. HUVEC, endothelial cells derived from blood progenitors (blood outgrowth endothelial cells; BOEC, and from induced pluripotent stem cells all displayed both a TLR4 and NOD1 response. However, hESC-EC had no TLR4 function, but did have functional NOD1 receptors. In vivo conditioning in nude rats did not confer TLR4 expression in hESC-EC. Despite having no TLR4 function, hESC-EC sensed Gram-negative bacteria, a response that was found to be mediated by NOD1 and the associated RIP2 signalling pathways. Thus, hESC-EC are TLR4 deficient but respond to bacteria via NOD1. This data suggests that hESC-EC may be protected from unwanted TLR4-mediated vascular inflammation, thus offering a potential therapeutic advantage.

  13. Functional Properties of Human Stem Cell-Derived Neurons in Health and Disease

    Directory of Open Access Journals (Sweden)

    Jason P. Weick

    2016-01-01

    Full Text Available Stem cell-derived neurons from various source materials present unique model systems to examine the fundamental properties of central nervous system (CNS development as well as the molecular underpinnings of disease phenotypes. In order to more accurately assess potential therapies for neurological disorders, multiple strategies have been employed in recent years to produce neuronal populations that accurately represent in vivo regional and transmitter phenotypes. These include new technologies such as direct conversion of somatic cell types into neurons and glia which may accelerate maturation and retain genetic hallmarks of aging. In addition, novel forms of genetic manipulations have brought human stem cells nearly on par with those of rodent with respect to gene targeting. For neurons of the CNS, the ultimate phenotypic characterization lies with their ability to recapitulate functional properties such as passive and active membrane characteristics, synaptic activity, and plasticity. These features critically depend on the coordinated expression and localization of hundreds of ion channels and receptors, as well as scaffolding and signaling molecules. In this review I will highlight the current state of knowledge regarding functional properties of human stem cell-derived neurons, with a primary focus on pluripotent stem cells. While significant advances have been made, critical hurdles must be overcome in order for this technology to support progression toward clinical applications.

  14. Teratoma: from spontaneous tumors to the pluripotency/malignancy assay.

    Science.gov (United States)

    Bulic-Jakus, Floriana; Katusic Bojanac, Ana; Juric-Lekic, Gordana; Vlahovic, Maja; Sincic, Nino

    2016-01-01

    A teratoma is a benign tumor containing a mixture of differentiated tissues and organotypic derivatives of the three germ layers, while a teratocarcinoma also contains embryonal carcinoma cells (EC cells). Experimental teratomas and teratocarcinomas have been derived from early mammalian embryos transplanted into the adult animal (ectopic sites). In the rat, the pluripotency of the transplanted epiblast was demonstrated and a quantifiable restriction of developmental potential persisted after subsequent transplantation of chemically defined cultivated postimplantation embryos. The rat is nonpermissive for teratocarcinoma development and rat pluripotent cell lines have been established only recently. Transplantation of mouse embryos, epiblast, or embryonic stem cells (mESCs) gave rise to teratocarcinomas. The pluripotency of reprogrammed human cells has been tested by a 'gold standard' trilaminar teratoma assay in immunocompromised mice in vivo. Human pluripotent stem cells proposed for use in regenerative medicine such as human embryonic stem cell (hESC), human nuclear-transfer/therapeutic cloning embryonic stem cell (NT-ESC), or human induced pluripotent stem cell (hiPSC) lines, once differentiated in vitro to the desired cell type, should be again tested in a long-term animal teratoma assay to exclude their malignancy. Such an approach led to a recently implemented human therapy with retinal pigmented epithelium. For greater biosafety, the teratoma assay should be standardized and complemented by assessments of mutations/epimutations, RNA/protein expression, and possible immunogenicity of autologous pluripotent cells. Furthermore, the standardized teratoma assay should be directed more to the assessment of EC/malignant cell features than of differentiated tissues, especially after a unique case of human therapy with neural stem cells was found to lead to malignancy. For further resources related to this article, please visit the WIREs website. PMID:26698368

  15. Vitamin D Metabolism and Effects on Pluripotency Genes and Cell Differentiation in Testicular Germ Cell Tumors In Vitro and In Vivo12

    OpenAIRE

    Blomberg Jensen, Martin; Jørgensen, Anne; Nielsen, John Erik; Steinmeyer, Andreas; Leffers, Henrik; Juul, Anders; Rajpert-De Meyts, Ewa

    2012-01-01

    Testicular germ cell tumors (TGCTs) are classified as either seminomas or nonseminomas. Both tumors originate from carcinoma in situ (CIS) cells, which are derived from transformed fetal gonocytes. CIS, seminoma, and the undifferentiated embryonal carcinoma (EC) retain an embryonic phenotype and express pluripotency factors (NANOG/OCT4). Vitamin D (VD) is metabolized in the testes, and here, we examined VD metabolism in TGCT differentiation and pluripotency regulation. We estab...

  16. Vitamin D Metabolism and Effects on Pluripotency Genes and Cell Differentiation in Testicular Germ Cell Tumors In Vitro and In Vivo

    OpenAIRE

    Martin Blomberg Jensen; Anne Jørgensen; John Erik Nielsen; Andreas Steinmeyer; Henrik Leffers; Anders Juul; Ewa Rajpert-De Meyts

    2012-01-01

    Testicular germ cell tumors (TGCTs) are classified as either seminomas or nonseminomas. Both tumors originate from carcinoma in situ (CIS) cells, which are derived from transformed fetal gonocytes. CIS, seminoma, and the undifferentiated embryonal carcinoma (EC) retain an embryonic phenotype and express pluripotency factors (NANOG/OCT4). Vitamin D (VD) is metabolized in the testes, and here, we examined VD metabolism in TGCT differentiation and pluripotency regulation. We established that the...

  17. Derivation of Neural Progenitors and Retinal Pigment Epithelium from Common Marmoset and Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Laughing Bear Torrez

    2012-01-01

    Full Text Available Embryonic and induced pluripotent stem cells (IPSCs derived from mammalian species are valuable tools for modeling human disease, including retinal degenerative eye diseases that result in visual loss. Restoration of vision has focused on transplantation of neural progenitor cells (NPCs and retinal pigmented epithelium (RPE to the retina. Here we used transgenic common marmoset (Callithrix jacchus and human pluripotent stem cells carrying the enhanced green fluorescent protein (eGFP reporter as a model system for retinal differentiation. Using suspension and subsequent adherent differentiation cultures, we observed spontaneous in vitro differentiation that included NPCs and cells with pigment granules characteristic of differentiated RPE. Retinal cells derived from human and common marmoset pluripotent stem cells provide potentially unlimited cell sources for testing safety and immune compatibility following autologous or allogeneic transplantation using nonhuman primates in early translational applications.

  18. Phase resolved and coherence gated en face reflection imaging of multilayered embryonal carcinoma cells

    Science.gov (United States)

    Yamauchi, Toyohiko; Fukami, Tadashi; Iwai, Hidenao; Yamashita, Yutaka

    2012-03-01

    Embryonal carcinoma (EC) cells, which are cell lines derived from teratocarcinomas, have characteristics in common with stem cells and differentiate into many kinds of functional cells. Similar to embryonic stem (ES) cells, undifferentiated EC cells form multi-layered spheroids. In order to visualize the three-dimensional structure of multilayered EC cells without labeling, we employed full-field interference microscopy with the aid of a low-coherence quantitative phase microscope, which is a reflection-type interference microscope employing the digital holographic technique with a low-coherent light source. Owing to the low-coherency of the light-source (halogen lamp), only the light reflected from reflective surface at a specific sectioning height generates an interference image on the CCD camera. P19CL6 EC cells, derived from mouse teratocarcinomas, formed spheroids that are about 50 to 200 micrometers in diameter. Since the height of each cell is around 10 micrometers, it is assumed that each spheroid has 5 to 20 cell layers. The P19CL6 spheroids were imaged in an upright configuration and the horizontally sectioned reflection images of the sample were obtained by sequentially and vertically scanning the zero-path-length height. Our results show the threedimensional structure of the spheroids, in which plasma and nuclear membranes were distinguishably imaged. The results imply that our technique is further capable of imaging induced pluripotent stem (iPS) cells for the assessment of cell properties including their pluripotency.

  19. Fishing Pluripotency Mechanisms In Vivo

    Directory of Open Access Journals (Sweden)

    Ana V. Sánchez-Sánchez, Esther Camp, José L. Mullor

    2011-01-01

    Full Text Available To understand the molecular mechanisms that regulate the biology of embryonic stem cells (ESCs it is necessary to study how they behave in vivo in their natural environment. It is particularly important to study the roles and interactions of the different proteins involved in pluripotency and to use this knowledge for therapeutic purposes. The recent description of key pluripotency factors like Oct4 and Nanog in non-mammalian species has introduced other animal models, such as chicken, Xenopus, zebrafish and medaka, to the study of pluripotency in vivo. These animal models complement the mouse model and have provided new insights into the evolution of Oct4 and Nanog and their different functions during embryonic development. Furthermore, other pluripotency factors previously identified in teleost fish such as Klf4, STAT3, Sox2, telomerase and Tcf3 can now be studied in the context of a functional pluripotency network. The many experimental advantages of fish will fuel rapid analysis of the roles of pluripotency factors in fish embryonic development and the identification of new molecules and mechanisms governing pluripotency.

  20. Pluripotent cells in farm animals: state of the art and future perspectives.

    Science.gov (United States)

    Nowak-Imialek, Monika; Niemann, Heiner

    2012-01-01

    Pluripotent cells, such as embryonic stem (ES) cells, embryonic germ cells and embryonic carcinoma cells are a unique type of cell because they remain undifferentiated indefinitely in in vitro culture, show self-renewal and possess the ability to differentiate into derivatives of the three germ layers. These capabilities make them a unique in vitro model for studying development, differentiation and for targeted modification of the genome. True pluripotent ESCs have only been described in the laboratory mouse and rat. However, rodent physiology and anatomy differ substantially from that of humans, detracting from the value of the rodent model for studies of human diseases and the development of cellular therapies in regenerative medicine. Recently, progress in the isolation of pluripotent cells in farm animals has been made and new technologies for reprogramming of somatic cells into a pluripotent state have been developed. Prior to clinical application of therapeutic cells differentiated from pluripotent stem cells in human patients, their survival and the absence of tumourigenic potential must be assessed in suitable preclinical large animal models. The establishment of pluripotent cell lines in farm animals may provide new opportunities for the production of transgenic animals, would facilitate development and validation of large animal models for evaluating ESC-based therapies and would thus contribute to the improvement of human and animal health. This review summarises the recent progress in the derivation of pluripotent and reprogrammed cells from farm animals. We refer to our recent review on this area, to which this article is complementary.

  1. Mass Production of Stem Cell-Derived Progeny in Bioreactors

    OpenAIRE

    Li, Yan; Sart, Sébastien; Agathos, Spiros N.

    2013-01-01

    Stem cells, including mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), have shown great potential for various biomedical applications including drug discovery, disease modeling, and tissue engineering. Especially, the discovery of induced pluripotent stem cells (iPSCs) with similar characteristics to embryonic stem cells (ESCs) opens a new era for stem cell research and transplantations. Bioprocess engineering provides a platform to generate a controlled microenvironment that ...

  2. Modeling human liver biology using stem cell-derived hepatocytes

    OpenAIRE

    Sun, Pingnan; Zhou, XiaoLing; Farnworth, Sarah; Arvind H Patel; Hay, David C.

    2013-01-01

    Stem cell-derived hepatocytes represent promising models to study human liver biology and disease. This concise review discusses the recent progresses in the field, with a focus on human liver disease, drug metabolism and virus infection.

  3. Modeling Human Liver Biology Using Stem Cell-Derived Hepatocytes

    OpenAIRE

    Arvind H Patel; Hay, David C.; Farnworth, Sarah L.; Pingnan Sun; Xiaoling Zhou

    2013-01-01

    Stem cell-derived hepatocytes represent promising models to study human liver biology and disease. This concise review discusses the recent progresses in the field, with a focus on human liver disease, drug metabolism and virus infection.

  4. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Ryuji Morizane

    Full Text Available Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  5. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    Science.gov (United States)

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  6. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells

    DEFF Research Database (Denmark)

    Massumi, Mohammad; Pourasgari, Farzaneh; Nalla, Amarnadh;

    2016-01-01

    developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems......The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have...... positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux...

  7. Engineered Microenvironments for the Maturation and Observation of Human Embryonic Stem Cell Derived Cardiomyocytes

    Science.gov (United States)

    Salick, Max R.

    The human heart is a dynamic system that undergoes substantial changes as it develops and adapts to the body's growing needs. To better understand the physiology of the heart, researchers have begun to produce immature heart muscle cells, or cardiomyocytes, from pluripotent stem cell sources with remarkable efficiency. These stem cell-derived cardiomyocytes hold great potential in the understanding and treatment of heart disease; however, even after prolonged culture, these cells continue to exhibit an immature phenotype, as indicated by poor sarcomere organization and calcium handling, among other features. The lack of maturation that is observed in these cardiomyocytes greatly limits their applicability towards drug screening, disease modeling, and cell therapy applications. The mechanical environment surrounding a cell has been repeatedly shown to have a large impact on that cell's behavior. For this reason, we have implemented micropatterning methods to mimic the level of alignment that occurs in the heart in vivo in order to study how this alignment may help the cells to produce a more mature sarcomere phenotype. It was discovered that the level of sarcomere organization of a cardiomyocyte can be strongly influenced by the micropattern lane geometry on which it adheres. Steps were taken to optimize this micropattern platform, and studies of protein organization, gene expression, and myofibrillogenesis were conducted. Additionally, a set of programs was developed to provide quantitative analysis of the level of sarcomere organization, as well as to assist with several other tissue engineering applications.

  8. Teratomas from pluripotent stem cells: A clinical hurdle.

    Science.gov (United States)

    Fong, Chui-Yee; Gauthaman, Kalamegam; Bongso, Ariff

    2010-11-01

    Although basic research on human embryonic stem cells (hESCs) at the laboratory bench has progressed with enviable speed there has been little head way in terms of its clinical application. A look at the Internet however shows several stem cell clinics worldwide offering direct transplantation of undifferentiated hESCs to patients for the cure of a variety of diseases before bona fide evidence-based results can be demonstrated from large controlled studies. This raises concern because reliable protocols have to be first developed to resolve the three major hurdles delaying clinical trials such as inadequate cell numbers, immunorejection and tumorigenesis. Cell expansion methods using bioreactors, rotary culture and mitotic agents have now been developed to generate stem cell derivatives in large numbers. The problem of immunorejection can now be overcome with the development of indirect and direct reprogramming protocols to personalize tissues to patients (human induced pluripotent stem cells, hiPSCs; nuclear transfer stem cells, NTSCs; induced neuronal cells, iN). However, hESC, hiPSC, and NTSCs being pluripotent have the disadvantage of teratoma formation in vivo which has to be carefully addressed so as to provide safe stem cell based therapies to the patient. This review addresses the issue of tumorigenesis and discusses approaches by which this concern may be overcome and at the same time emphasizes the need to concurrently explore alternative stem cell sources that do not confer the disadvantages of pluripotency but are widely multipotent so as to yield safe desirable tissues for clinical application as soon as possible. PMID:20665544

  9. Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes.

    Science.gov (United States)

    van den Heuvel, Nikki H L; van Veen, Toon A B; Lim, Bing; Jonsson, Malin K B

    2014-02-01

    The ability of human pluripotent stem cells (hPSCs) to differentiate into any cell type of the three germ layers makes them a very promising cell source for multiple purposes, including regenerative medicine, drug discovery, and as a model to study disease mechanisms and progression. One of the first specialized cell types to be generated from hPSC was cardiomyocytes (CM), and differentiation protocols have evolved over the years and now allow for robust and large-scale production of hPSC-CM. Still, scientists are struggling to achieve the same, mainly ventricular, phenotype of the hPSC-CM in vitro as their adult counterpart in vivo. In vitro generated cardiomyocytes are generally described as fetal-like rather than adult. In this review, we compare the in vivo development of cardiomyocytes to the in vitro differentiation of hPSC into CM with focus on electrophysiology, structure and contractility. Furthermore, known epigenetic changes underlying the differences between adult human CM and CM differentiated from pluripotent stem cells are described. This should provide the reader with an extensive overview of the current status of human stem cell-derived cardiomyocyte phenotype and function. Additionally, the reader will gain insight into the underlying signaling pathways and mechanisms responsible for cardiomyocyte development.

  10. The transcriptional regulation of pluripotency

    Institute of Scientific and Technical Information of China (English)

    Jia-Chi Yeo; Huck-Hui Ng

    2013-01-01

    The defining features of embryonic stem cells (ESCs) are their self-renewing and pluripotent capacities.Indeed,the ability to give rise into all cell types within the organism not only allows ESCs to function as an ideal in vitro tool to study embryonic development,but also offers great therapeutic potential within the field of regenerative medicine.However,it is also this same remarkable developmental plasticity that makes the efficient control of ESC differentiation into the desired cell type very difficult.Therefore,in order to harness ESCs for clinical applications,a detailed understanding of the molecular and cellular mechanisms controlling ESC pluripotency and lineage commitment is necessary.In this respect,through a variety of transcriptomic approaches,ESC pluripotency has been found to be regulated by a system of ESC-associated transcription factors; and the external signalling environment also acts as a key factor in modulating the ESC transcriptome.Here in this review,we summarize our current understanding of the transcriptional regulatory network in ESCs,discuss how the control of various signalling pathways could influence pluripotency,and provide a future outlook of ESC research.

  11. Totipotency, Pluripotency and Nuclear Reprogramming

    Science.gov (United States)

    Mitalipov, Shoukhrat; Wolf, Don

    Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.

  12. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Huiqun YIN; Heng WANG; Hongguo CAO; Yunhai ZHANG; Yong TAO; Xiaorong ZHANG

    2009-01-01

    Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells' extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well.In summary,the recent progress in the study of cell reprogramming for the creation of patientspecific pluripotent stem cells, some existing problems, and research perspectives were suggested.

  13. Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Desy S. Lee

    2015-09-01

    Full Text Available Pluripotent-cell-derived cardiomyocytes have great potential for use in research and medicine, but limitations in their maturity currently constrain their usefulness. Here, we report a method for improving features of maturation in murine and human embryonic-stem-cell-derived cardiomyocytes (m/hESC-CMs. We found that coculturing m/hESC-CMs with endothelial cells improves their maturity and upregulates several microRNAs. Delivering four of these microRNAs, miR-125b-5p, miR-199a-5p, miR-221, and miR-222 (miR-combo, to m/hESC-CMs resulted in improved sarcomere alignment and calcium handling, a more negative resting membrane potential, and increased expression of cardiomyocyte maturation markers. Although this could not fully phenocopy all adult cardiomyocyte characteristics, these effects persisted for two months following delivery of miR-combo. A luciferase assay demonstrated that all four miRNAs target ErbB4, and siRNA knockdown of ErbB4 partially recapitulated the effects of miR-combo. In summary, a combination of miRNAs induced via endothelial coculture improved ESC-CM maturity, in part through suppression of ErbB4 signaling.

  14. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (Phospho)Proteomic Profiling.

    Science.gov (United States)

    Singec, Ilyas; Crain, Andrew M; Hou, Junjie; Tobe, Brian T D; Talantova, Maria; Winquist, Alicia A; Doctor, Kutbuddin S; Choy, Jennifer; Huang, Xiayu; La Monaca, Esther; Horn, David M; Wolf, Dieter A; Lipton, Stuart A; Gutierrez, Gustavo J; Brill, Laurence M; Snyder, Evan Y

    2016-09-13

    Controlled differentiation of human embryonic stem cells (hESCs) can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs). This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites) provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families), phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt. PMID:27569059

  15. Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine.

    Science.gov (United States)

    Szkolnicka, Dagmara; Hay, David C

    2016-06-01

    The liver is one of the major organs in the human body. Severe or prolonged exposure of the liver to different factors may cause life-threatening disease, which necessitates donor organ transplantation. While orthotopic liver transplantation can be used to effectively treat liver failure, it is an invasive procedure, which is severely limited by organ donation. Therefore, alternative sources of liver support have been proposed and studied. This includes the use of pluripotent stem cell-derived hepatocytes as a renewable source of cells for therapy. In addition to cell-based therapies, in vitro engineered liver tissue provides powerful models for human drug discovery and disease modeling. This review focuses on the generation of hepatocyte-like cells from pluripotent stem cells and their application in translational medicine. Stem Cells 2016;34:1421-1426.

  16. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (PhosphoProteomic Profiling

    Directory of Open Access Journals (Sweden)

    Ilyas Singec

    2016-09-01

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs. This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families, phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt.

  17. Concise Review: Induced Pluripotent Stem Cells as New Model Systems in Oncology.

    Science.gov (United States)

    Laplane, Lucie; Beke, Allan; Vainchenker, William; Solary, Eric

    2015-10-01

    The demonstration that pluripotent stem cells could be generated by somatic cell reprogramming led to wonder if these so-called induced pluripotent stem (iPS) cells would extend our investigation capabilities in the cancer research field. The first iPS cells derived from cancer cells have now revealed the benefits and potential pitfalls of this new model. iPS cells appear to be an innovative approach to decipher the steps of cell transformation as well as to screen the activity and toxicity of anticancer drugs. A better understanding of the impact of reprogramming on cancer cell-specific features as well as improvements in culture conditions to integrate the role of the microenvironment in their behavior may strengthen the epistemic interest of iPS cells as model systems in oncology. PMID:26179060

  18. Bone Morphogenetic Protein 4 Mediates Human Embryonic Germ Cell Derivation

    OpenAIRE

    Hiller, Marc; Liu, Cyndi; Blumenthal, Paul D; John D Gearhart; Kerr, Candace L.

    2010-01-01

    Human primordial germ cells (PGCs) have proven to be a source of pluripotent stem cells called embryonic germ cells (EGCs). Unlike embryonic stem cells, virtually little is known regarding the factors that regulate EGC survival and maintenance. In mice, the growth factor bone morphogenetic protein 4 (BMP4) has been shown to be required for maintaining mouse embryonic stem cells, and disruptions in this gene lead to defects in mouse PGC specification. Here, we sought to determine whether recom...

  19. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation.

    Science.gov (United States)

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system. PMID:27597941

  20. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair

    NARCIS (Netherlands)

    Dierickx, P.; Doevendans, P.A.; Geijsen, N.; van Laake, L.W.

    2012-01-01

    Cardiovascular disease remains a leading cause of death in Western countries. Many types of cardiovascular diseases are due to a loss of functional cardiomyocytes, which can result in irreversible cardiac failure. Since the adult human heart has limited regenerative potential, cardiac transplantatio

  1. Survival and Functionality of Human Induced Pluripotent Stem Cell-Derived Oligodendrocytes in a Nonhuman Primate Model for Multiple Sclerosis

    NARCIS (Netherlands)

    Thiruvalluvan, Arun; Czepiel, Marcin; Kap, Yolanda A; Mantingh-Otter, Ietje; Vainchtein, Ilia; Kuipers, Jeroen; Bijlard, Marjolein; Baron, Wia; Giepmans, Ben; Brück, Wolfgang; 't Hart, Bert A; Boddeke, Erik; Copray, Sjef

    2016-01-01

    : Fast remyelination by endogenous oligodendrocyte precursor cells (OPCs) is essential to prevent axonal and subsequent retrograde neuronal degeneration in demyelinating lesions in multiple sclerosis (MS). In chronic lesions, however, the remyelination capacity of OPCs becomes insufficient. Cell the

  2. In vitro cardiotoxicity screening of silver and metal oxide nanoparticles using human induced pluripotent stem cell-derived cardiomyocytes

    Science.gov (United States)

    Exposure risk to silver and metal oxide nanoparticles (NPs) continues to increase due to their widespread use in products and applications. In vivo studies have shown Ag, TiO2 and CeO2 NPs translocate to the heart following various routes of exposure. Thus, it is critical to asse...

  3. Β-amyloid 1-42 oligomers impair function of human embryonic stem cell-derived forebrain cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Linn Wicklund

    Full Text Available Cognitive impairment in Alzheimer's disease (AD patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs. Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES cells with nerve growth factor (NGF as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-µM concentrations and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1-40 increased the number of functional neurons, whereas oligomeric Aβ1-42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1-40 and Aβ1-42 induced gliogenesis. These findings indicate that Aβ1-42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ.

  4. Human Cardiac Tissue Engineering: From Pluripotent Stem Cells to Heart Repair

    Science.gov (United States)

    Jackman, Christopher P.; Shadrin, Ilya Y.; Carlson, Aaron L.; Bursac, Nenad

    2014-01-01

    Engineered cardiac tissues hold great promise for use in drug and toxicology screening, in vitro studies of human physiology and disease, and as transplantable tissue grafts for myocardial repair. In this review, we discuss recent progress in cell-based therapy and functional tissue engineering using pluripotent stem cell-derived cardiomyocytes and we describe methods for delivery of cells into the injured heart. While significant hurdles remain, notable advances have been made in the methods to derive large numbers of pure human cardiomyocytes, mature their phenotype, and produce and implant functional cardiac tissues, bringing the field a step closer to widespread in vitro and in vivo applications. PMID:25599018

  5. Investigating the bona fide differentiation capacity of human pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Chien Dominic Heng; Kyle M Loh; Huck-Hui Ng

    2012-01-01

    Human pluripotent stem cells (hPSCs) have been perennially paraded as a source of cells for cell replacement therapies because they can (theoretically) give rise to any single cell type within the human body [1].Hence,they can create in vitro a vast number of any human cell type to replace the diseased cell population that a patient might require — this is a salient goal that regenerative medicine aspires to deliver on [2].However,despite the ever-expanding menagerie of therapeutically relevant differentiated lineages being created from hPSCs,usage of these stem cell-derived progeny for regenerative medicine still remains an uncertainty.

  6. Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury.

    Science.gov (United States)

    Li, Ke; Javed, Elham; Scura, Daniel; Hala, Tamara J; Seetharam, Suneil; Falnikar, Aditi; Richard, Jean-Philippe; Chorath, Ashley; Maragakis, Nicholas J; Wright, Megan C; Lepore, Angelo C

    2015-09-01

    Transplantation-based replacement of lost and/or dysfunctional astrocytes is a promising therapy for spinal cord injury (SCI) that has not been extensively explored, despite the integral roles played by astrocytes in the central nervous system (CNS). Induced pluripotent stem (iPS) cells are a clinically-relevant source of pluripotent cells that both avoid ethical issues of embryonic stem cells and allow for homogeneous derivation of mature cell types in large quantities, potentially in an autologous fashion. Despite their promise, the iPS cell field is in its infancy with respect to evaluating in vivo graft integration and therapeutic efficacy in SCI models. Astrocytes express the major glutamate transporter, GLT1, which is responsible for the vast majority of glutamate uptake in spinal cord. Following SCI, compromised GLT1 expression/function can increase susceptibility to excitotoxicity. We therefore evaluated intraspinal transplantation of human iPS cell-derived astrocytes (hIPSAs) following cervical contusion SCI as a novel strategy for reconstituting GLT1 expression and for protecting diaphragmatic respiratory neural circuitry. Transplant-derived cells showed robust long-term survival post-injection and efficiently differentiated into astrocytes in injured spinal cord of both immunesuppressed mice and rats. However, the majority of transplant-derived astrocytes did not express high levels of GLT1, particularly at early times post-injection. To enhance their ability to modulate extracellular glutamate levels, we engineered hIPSAs with lentivirus to constitutively express GLT1. Overexpression significantly increased GLT1 protein and functional GLT1-mediated glutamate uptake levels in hIPSAs both in vitro and in vivo post-transplantation. Compared to human fibroblast control and unmodified hIPSA transplantation, GLT1-overexpressing hIPSAs reduced (1) lesion size within the injured cervical spinal cord, (2) morphological denervation by respiratory phrenic motor

  7. Reprogrammed Pluripotent Stem Cells from Somatic Cells

    OpenAIRE

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-01-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-li...

  8. Current protocols in the generation of pluripotent stem cells: theoretical, methodological and clinical considerations

    OpenAIRE

    Brad B Swelstad; Kerr, Candace L.

    2009-01-01

    Brad B Swelstad, Candace L KerrInstitute for Cell Engineering, Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MA, USAAbstract: Pluripotent stem cells have been derived from various embryonic, fetal and adult sources. Embryonic stem cells (ESCs) and parthenogenic ESCs (pESCs) are derived from the embryo proper while embryonic germ cells (EGCs), embryonal carcinoma cells (ECCs), and germ-line stem cells (GSC) are produced from germ cells. ECCs were the first pluri...

  9. Stromal cell-derived factors in Duchenne muscular dystrophy

    OpenAIRE

    Abdel-Salam, E.; Ehsan Abdel-Meguid, I.; Shatla, R.; Korraa, S. S.

    2010-01-01

    Duchenne muscular dystrophy (DMD) is characterized by increased muscle damage and an abnormal blood flow after muscle contraction leading to a state of functional ischemia. Abundant evidence suggests that endothelial circulating progenitor cells (EPCs) play an important role in mediating vascular and muscle repair mechanisms and that the stromal cell-derived factor (SDF)-1 α chemokine is responsible for both progenitor cell mobilization from the bone marrow to peripheral blood and homing to t...

  10. Natural Helper cells derive from lymphoid progenitors1

    OpenAIRE

    Yang, Qi; Saenz, Steven A.; Zlotoff, Daniel A.; Artis, David; Bhandoola, Avinash

    2011-01-01

    Natural Helper (NH) cells are recently discovered innate immune cells that confer protective type 2 immunity during helminth infection and mediate influenza induced airway hypersensitivity. Little is known about the ontogeny of NH cells. We now report NH cells derive from bone marrow lymphoid progenitors. Using RAG-1Cre/ROSA26YFP mice, we show that the majority of NH cells are marked with a history of RAG-1 expression, implying lymphoid developmental origin. The development of NH cells depend...

  11. Bone morphogenetic protein 4 mediates human embryonic germ cell derivation.

    Science.gov (United States)

    Hiller, Marc; Liu, Cyndi; Blumenthal, Paul D; Gearhart, John D; Kerr, Candace L

    2011-02-01

    Human primordial germ cells (PGCs) have proven to be a source of pluripotent stem cells called embryonic germ cells (EGCs). Unlike embryonic stem cells, virtually little is known regarding the factors that regulate EGC survival and maintenance. In mice, the growth factor bone morphogenetic protein 4 (BMP4) has been shown to be required for maintaining mouse embryonic stem cells, and disruptions in this gene lead to defects in mouse PGC specification. Here, we sought to determine whether recombinant human BMP4 could influence EGC derivation and/or human PGC survival. We found that the addition of recombinant BMP4 increased the number of human PGCs after 1 week of culture in a dose-responsive manner. The efficiency of EGC derivation and maintenance in culture was also enhanced by the presence of recombinant BMP4 based on alkaline phosphatase and OCT4 staining. In addition, an antagonist of the BMP4 pathway, Noggin, decreased PGC proliferation and led to an increase in cystic embryoid body formation. Quantitative real-time (qRT)-polymerase chain reaction analyses and immunostaining confirmed that the constituents of the BMP4 pathway were upregulated in EGCs versus PGCs. Downstream activators of the BMP4 pathway such as ID1 and phosphorylated SMADs 1 and 5 were also expressed, suggesting a role of this growth factor in EGC pluripotency. PMID:20486775

  12. Neural stem cell-derived exosomes mediate viral entry

    Directory of Open Access Journals (Sweden)

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  13. Functional and phenotypic differences of pure populations of stem cell-derived astrocytes and neuronal precursor cells.

    Science.gov (United States)

    Kleiderman, Susanne; Sá, João V; Teixeira, Ana P; Brito, Catarina; Gutbier, Simon; Evje, Lars G; Hadera, Mussie G; Glaab, Enrico; Henry, Margit; Sachinidis, Agapios; Alves, Paula M; Sonnewald, Ursula; Leist, Marcel

    2016-05-01

    Availability of homogeneous astrocyte populations would facilitate research concerning cell plasticity (metabolic and transcriptional adaptations; innate immune responses) and cell cycle reactivation. Current protocols to prepare astrocyte cultures differ in their final content of immature precursor cells, preactivated cells or entirely different cell types. A new method taking care of all these issues would improve research on astrocyte functions. We found here that the exposure of a defined population of pluripotent stem cell-derived neural stem cells (NSC) to BMP4 results in pure, nonproliferating astrocyte cultures within 24-48 h. These murine astrocytes generated from embryonic stem cells (mAGES) expressed the positive markers GFAP, aquaporin 4 and GLT-1, supported neuronal function, and acquired innate immune functions such as the response to tumor necrosis factor and interleukin 1. The protocol was applicable to several normal or disease-prone pluripotent cell lines, and the corresponding mAGES all exited the cell cycle and lost most of their nestin expression, in contrast to astrocytes generated by serum-addition or obtained as primary cultures. Comparative gene expression analysis of mAGES and NSC allowed quantification of differences between the two cell types and a definition of an improved marker set to define astrocytes. Inclusion of several published data sets in this transcriptome comparison revealed the similarity of mAGES with cortical astrocytes in vivo. Metabolic analysis of homogeneous NSC and astrocyte populations revealed distinct neurochemical features: both cell types synthesized glutamine and citrate, but only mature astrocytes released these metabolites. Thus, the homogeneous cultures allowed an improved definition of NSC and astrocyte features. PMID:26689134

  14. Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening.

    Science.gov (United States)

    Gómez-Lechón, María José; Tolosa, Laia

    2016-09-01

    Drug-induced liver injury (DILI) is a frequent cause of failure in both clinical and post-approval stages of drug development, and poses a key challenge to the pharmaceutical industry. Current animal models offer poor prediction of human DILI. Although several human cell-based models have been proposed for the detection of human DILI, human primary hepatocytes remain the gold standard for preclinical toxicological screening. However, their use is hindered by their limited availability, variability and phenotypic instability. In contrast, pluripotent stem cells, which include embryonic and induced pluripotent stem cells (iPSCs), proliferate extensively in vitro and can be differentiated into hepatocytes by the addition of soluble factors. This provides a stable source of hepatocytes for multiple applications, including early preclinical hepatotoxicity screening. In addition, iPSCs also have the potential to establish genotype-specific cells from different individuals, which would increase the predictivity of toxicity assays allowing more successful clinical trials. Therefore, the generation of human hepatocyte-like cells derived from pluripotent stem cells seems to be promising for overcoming limitations of hepatocyte preparations, and it is expected to have a substantial repercussion in preclinical hepatotoxicity risk assessment in early drug development stages. PMID:27325232

  15. Cutaneous postirradiation sarcoma. Ultrastructural evidence of pluripotential mesenchymal cell derivation

    International Nuclear Information System (INIS)

    A 75-year-old man developed synchronous multicentric cutaneous sarcomas and basal cell carcinoma of the face 57 years after receiving irradiation for acne. During the previous 30 years he had been treated many times for actinic keratoses and basal cell carcinomas. Surgical treatment had included total nasectomy, excision, and replacement of the skin of the upper and lower lips and the chin. Due to the multiplicity of morphologic patterns, it was difficult to subtype the sarcomas. Ultrastructural studies showed histiocyte-like, fibroblast-like and vasoformative cells suggesting an origin from a pluripotential mesenchymal stem cells

  16. Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Angelo H All

    Full Text Available BACKGROUND: Transplantations of human stem cell derivatives have been widely investigated in rodent models for the potential restoration of function of neural pathways after spinal cord injury (SCI. Studies have already demonstrated cells survival following transplantation in SCI. We sought to evaluate survival and potential therapeutic effects of transplanted human embryonic stem (hES cell-derived oligodendrocyte progenitor cells (OPCs in a contusive injury in rats. Bioluminescence imaging was utilized to verify survivability of cells up to 4 weeks, and somatosensory evoked potential (SSEPs were recorded at the cortex to monitor function of sensory pathways throughout the 6-week recovery period. PRINCIPAL FINDINGS: hES cells were transduced with the firefly luciferase gene and differentiated into OPCs. OPCs were transplanted into the lesion epicenter of rat spinal cords 2 hours after inducing a moderate contusive SCI. The hES-treatment group showed improved SSEPs, including increased amplitude and decreased latencies, compared to the control group. The bioluminescence of transplanted OPCs decreased by 97% in the injured spinal cord compared to only 80% when injected into an uninjured spinal cord. Bioluminescence increased in both experimental groups such that by week 3, no statistical difference was detected, signifying that the cells survived and proliferated independent of injury. Post-mortem histology of the spinal cords showed integration of human cells expressing mature oligodendrocyte markers and myelin basic protein without the expression of markers for astrocytes (GFAP or pluripotent cells (OCT4. CONCLUSIONS: hES-derived OPCs transplanted 2 hours after contusive SCI survive and differentiate into OLs that produce MBP. Treated rats demonstrated functional improvements in SSEP amplitudes and latencies compared to controls as early as 1 week post-injury. Finally, the hostile injury microenvironment at 2 hours post-injury initially caused

  17. Reprogrammed pluripotent stem cells from somatic cells.

    Science.gov (United States)

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-06-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction. PMID:24298328

  18. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  19. [The alchemy--epigenetic regulation of pluripotency].

    Science.gov (United States)

    Bem, Joanna; Grabowska, Iwona

    2013-01-01

    Embryonic stem cells (ESCs) self renew their population, also they are pluripotent which means they can differentiate into any given cell type. In specific culture conditions they remain undifferentiated. On the cellular level pluripotency is determined by many transcription factors, e.g. Sox2, Nanog, Klf4, Oct4. Epigenetic regulation is also crucial for both self renewal and pluripotency. This review focuses on epigenetic mechanisms, among them DNA methylation, posttranslational histone modifications, ATP dependent chromatin remodeling and miRNAs interactions. These mechanisms affect embryonic stem cells functions keeping them poised for differentiation. PMID:24044279

  20. TeratoScore: Assessing the Differentiation Potential of Human Pluripotent Stem Cells by Quantitative Expression Analysis of Teratomas

    Directory of Open Access Journals (Sweden)

    Yishai Avior

    2015-06-01

    Full Text Available Teratoma formation is the gold standard assay for testing the capacity of human pluripotent stem cells to differentiate into all embryonic germ layers. Although widely used, little effort has been made to transform this qualitative assay into a quantitative one. Using gene expression data from a wide variety of cells, we created a scorecard representing tissues from all germ layers and extraembryonic tissues. TeratoScore, an online, open-source platform based on this scorecard, distinguishes pluripotent stem cell-derived teratomas from malignant tumors, translating cell potency into a quantitative measure (http://benvenisty.huji.ac.il/teratoscore.php. The teratomas used for the algorithm also allowed us to examine gene expression differences between tumors with a diploid karyotype and those initiated by aneuploid cells. Chromosomally aberrant teratomas show a significantly different gene expression signature from that of teratomas originating from diploid cells, particularly in central nervous system-specific genes, congruent with human chromosomal syndromes.

  1. Pluripotent Stem Cells Models for Huntington's Disease: Prospects and Challenges

    Institute of Scientific and Technical Information of China (English)

    Richard L. Carter; Anthony W.S. Chan

    2012-01-01

    Pluripotent cellular models have shown great promise in the study of a number of neurological disorders.Several advantages of using a stem cell model include the potential for cells to derive disease relevant neuronal cell types,providing a system for researchers to monitor disease progression during neurogenesis,along with serving as a platform for drug discovery.A number of stem cell derived models have been employed to establish in vitro research models of Huntington's disease that can be used to investigate cellular pathology and screen for drug and cell-based therapies.Although some progress has been made,there are a number of challenges and limitations that must be overcome before the true potential of this research strategy is achieved,In this article we review current stem cell models that have been reported,as well as discuss the issues that impair these studies.We also highlight the prospective application of Huntington's disease stem cell models in the development of novel therapeutic strategies and advancement of personalized medicine.

  2. Embryonic Stem Cell-Derived Cardiomyocyte Heterogeneity and the Isolation of Immature and Committed Cells for Cardiac Remodeling and Regeneration

    Directory of Open Access Journals (Sweden)

    Kenneth R. Boheler

    2011-01-01

    Full Text Available Pluripotent stem cells represent one promising source for cell replacement therapy in heart, but differentiating embryonic stem cell-derived cardiomyocytes (ESC-CMs are highly heterogeneous and show a variety of maturation states. In this study, we employed an ESC clonal line that contains a cardiac-restricted ncx1 promoter-driven puromycin resistance cassette together with a mass culture system to isolate ESC-CMs that display traits characteristic of very immature CMs. The cells display properties of proliferation, CM-restricted markers, reduced mitochondrial mass, and hypoxia-resistance. Following transplantation into rodent hearts, bioluminescence imaging revealed that immature cells, but not more mature CMs, survived for at least one month following injection. These data and comparisons with more mature cells lead us to conclude that immature hypoxia resistant ESC-CMs can be isolated in mass in vitro and, following injection into heart, form grafts that may mediate long-term recovery of global and regional myocardial contractile function following infarction.

  3. BMS-708163 and Nilotinib restore synaptic dysfunction in human embryonic stem cell-derived Alzheimer’s disease models

    Science.gov (United States)

    Nishioka, Hisae; Tooi, Norie; Isobe, Takehisa; Nakatsuji, Norio; Aiba, Kazuhiro

    2016-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. Cellular AD models derived from human pluripotent stem cells are promising tools in AD research. We recently developed human embryonic stem cell-derived AD models which overexpress mutant Presenilin1 genes, and which exhibit AD phenotypes, including synaptic dysfunction. In this study, we found that our AD models showed reduced levels of RAB3A and SV2B proteins in the pre-synapses, which is a possible cause of electrophysiological abnormalities. Through the screening of chemical compounds using our AD models, we have identified Aβ peptide inhibitors which decrease the concentration of Aβ in culture supernatant. Among these, BMS-708163 and Nilotinib were found to improve the expression levels of RAB3A and SV2B proteins and to recover the electrophysiological function in our AD models. These results suggest that the AD models we developed are promising materials for the discovery of AD drugs that target the expression of pre-synaptic proteins and synaptic function. PMID:27641902

  4. Coupling primary and stem cell-derived cardiomyocytes in an in vitro model of cardiac cell therapy.

    Science.gov (United States)

    Aratyn-Schaus, Yvonne; Pasqualini, Francesco S; Yuan, Hongyan; McCain, Megan L; Ye, George J C; Sheehy, Sean P; Campbell, Patrick H; Parker, Kevin Kit

    2016-02-15

    The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (μtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell-derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell-cell junction that degrade force transmission between cells. Moreover, we developed a computational model of μtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell-cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes. PMID:26858266

  5. Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy

    Directory of Open Access Journals (Sweden)

    Stephanie Friedrichs

    2015-01-01

    Full Text Available Disease-specific induced pluripotent stem (iPS cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening.

  6. Telomere regulation in pluripotent stem cells

    OpenAIRE

    Huang, Yan; Liang, Puping; Liu, Dan; Huang, Junjiu; Songyang, Zhou

    2014-01-01

    Pluripotent stem cells (PSCs) have the potential to produce any types of cells from all three basic germ layers and the capacity to self-renew and proliferate indefinitely in vitro. The two main types of PSCs, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), share common features such as colony morphology, high expression of Oct4 and Nanog, and strong alkaline phosphatase activity. In recent years, increasing evidences suggest that telomere length represents another imp...

  7. Pluripotent Stem Cells and Gene Therapy

    OpenAIRE

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical s...

  8. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    Science.gov (United States)

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  9. TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs.

    Science.gov (United States)

    Suzuki, Shingo; Sargent, R Geoffrey; Illek, Beate; Fischer, Horst; Esmaeili-Shandiz, Alaleh; Yezzi, Michael J; Lee, Albert; Yang, Yanu; Kim, Soya; Renz, Peter; Qi, Zhongxia; Yu, Jingwei; Muench, Marcus O; Beyer, Ashley I; Guimarães, Alessander O; Ye, Lin; Chang, Judy; Fine, Eli J; Cradick, Thomas J; Bao, Gang; Rahdar, Meghdad; Porteus, Matthew H; Shuto, Tsuyoshi; Kai, Hirofumi; Kan, Yuet W; Gruenert, Dieter C

    2016-01-01

    Cystic fibrosis (CF) is a recessive inherited disease associated with multiorgan damage that compromises epithelial and inflammatory cell function. Induced pluripotent stem cells (iPSCs) have significantly advanced the potential of developing a personalized cell-based therapy for diseases like CF by generating patient-specific stem cells that can be differentiated into cells that repair tissues damaged by disease pathology. The F508del mutation in airway epithelial cell-derived CF-iPSCs was corrected with small/short DNA fragments (SDFs) and sequence-specific TALENs. An allele-specific PCR, cyclic enrichment strategy gave ~100-fold enrichment of the corrected CF-iPSCs after six enrichment cycles that facilitated isolation of corrected clones. The seamless SDF-based gene modification strategy used to correct the CF-iPSCs resulted in pluripotent cells that, when differentiated into endoderm/airway-like epithelial cells showed wild-type (wt) airway epithelial cell cAMP-dependent Cl ion transport or showed the appropriate cell-type characteristics when differentiated along mesoderm/hematopoietic inflammatory cell lineage pathways. PMID:26730810

  10. Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation.

    Directory of Open Access Journals (Sweden)

    Rafaela C Sartore

    Full Text Available The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC cells, embryonic stem (ES cells and induced pluripotent stem (iPS cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal

  11. Enriched retinal ganglion cells derived from human embryonic stem cells.

    Science.gov (United States)

    Gill, Katherine P; Hung, Sandy S C; Sharov, Alexei; Lo, Camden Y; Needham, Karina; Lidgerwood, Grace E; Jackson, Stacey; Crombie, Duncan E; Nayagam, Bryony A; Cook, Anthony L; Hewitt, Alex W; Pébay, Alice; Wong, Raymond C B

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  12. Large-scale generation of cell-derived nanovesicles

    Science.gov (United States)

    Jo, W.; Kim, J.; Yoon, J.; Jeong, D.; Cho, S.; Jeong, H.; Yoon, Y. J.; Kim, S. C.; Gho, Y. S.; Park, J.

    2014-09-01

    Exosomes are enclosed compartments that are released from cells and that can transport biological contents for the purpose of intercellular communications. Research into exosomes is hindered by their rarity. In this article, we introduce a device that uses centrifugal force and a filter with micro-sized pores to generate a large quantity of cell-derived nanovesicles. The device has a simple polycarbonate structure to hold the filter, and operates in a common centrifuge. Nanovesicles are similar in size and membrane structure to exosomes. Nanovesicles contain intracellular RNAs ranging from microRNA to mRNA, intracellular proteins, and plasma membrane proteins. The quantity of nanovesicles produced using the device is 250 times the quantity of naturally secreted exosomes. Also, the quantity of intracellular contents in nanovesicles is twice that in exosomes. Nanovesicles generated from murine embryonic stem cells can transfer RNAs to target cells. Therefore, this novel device and the nanovesicles that it generates are expected to be used in exosome-related research, and can be applied in various applications such as drug delivery and cell-based therapy.

  13. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression.

    Science.gov (United States)

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I; Sarkadi, Balázs; Apáti, Ágota

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFP(high) rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFP(high) rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFP(high) rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications.

  14. Isolation of Multipotent Nestin-Expressing Stem Cells Derived from the Epidermis of Elderly Humans and TAT-VHL Peptide-Mediated Neuronal Differentiation of These Cells

    Directory of Open Access Journals (Sweden)

    Jiro Maegawa

    2013-05-01

    Full Text Available A specialized population of cells residing in the hair follicle is quiescent but shows pluripotency for differentiating into epithelial-mesenchymal lineage cells. Therefore, such cells are hoped to be useful as implantable donor cells for regenerative therapy. Recently, it was reported that intracellular delivery of TAT-VHL peptide induces neuronal differentiation of skin-derived precursors. In the present study, we successfully isolated multipotent stem cells derived from the epidermis of elderly humans, characterized these cells as being capable of sphere formation and strong expression of nestin, fibronectin, and CD34 but not of keratin 15, and identified the niche of these cells as being the outer root sheath of the hair follicles. In addition, we showed that TAT-VHL peptide induced their neuronal differentiation in vitro, and confirmed by fluorescence immunohistochemistry the neuronal differentiation of such peptide-treated cells implanted into rodent brains. These multipotent nestin-expressing stem cells derived from human epidermis are easily accessible and should be useful as donor cells for neuronal regenerative cell therapy.

  15. YAP Induces Human Naive Pluripotency

    Directory of Open Access Journals (Sweden)

    Han Qin

    2016-03-01

    Full Text Available The human naive pluripotent stem cell (PSC state, corresponding to a pre-implantation stage of development, has been difficult to capture and sustain in vitro. We report that the Hippo pathway effector YAP is nuclearly localized in the inner cell mass of human blastocysts. Overexpression of YAP in human embryonic stem cells (ESCs and induced PSCs (iPSCs promotes the generation of naive PSCs. Lysophosphatidic acid (LPA can partially substitute for YAP to generate transgene-free human naive PSCs. YAP- or LPA-induced naive PSCs have a rapid clonal growth rate, a normal karyotype, the ability to form teratomas, transcriptional similarities to human pre-implantation embryos, reduced heterochromatin levels, and other hallmarks of the naive state. YAP/LPA act in part by suppressing differentiation-inducing effects of GSK3 inhibition. CRISPR/Cas9-generated YAP−/− cells have an impaired ability to form colonies in naive but not primed conditions. These results uncover an unexpected role for YAP in the human naive state, with implications for early human embryology.

  16. Anti-Aβ drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Naoki Yahata

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder that causes progressive memory and cognitive decline during middle to late adult life. The AD brain is characterized by deposition of amyloid β peptide (Aβ, which is produced from amyloid precursor protein by β- and γ-secretase (presenilin complex-mediated sequential cleavage. Induced pluripotent stem (iPS cells potentially provide an opportunity to generate a human cell-based model of AD that would be crucial for drug discovery as well as for investigating mechanisms of the disease. METHODOLOGY/PRINCIPAL FINDINGS: We differentiated human iPS (hiPS cells into neuronal cells expressing the forebrain marker, Foxg1, and the neocortical markers, Cux1, Satb2, Ctip2, and Tbr1. The iPS cell-derived neuronal cells also expressed amyloid precursor protein, β-secretase, and γ-secretase components, and were capable of secreting Aβ into the conditioned media. Aβ production was inhibited by β-secretase inhibitor, γ-secretase inhibitor (GSI, and an NSAID; however, there were different susceptibilities to all three drugs between early and late differentiation stages. At the early differentiation stage, GSI treatment caused a fast increase at lower dose (Aβ surge and drastic decline of Aβ production. CONCLUSIONS/SIGNIFICANCE: These results indicate that the hiPS cell-derived neuronal cells express functional β- and γ-secretases involved in Aβ production; however, anti-Aβ drug screening using these hiPS cell-derived neuronal cells requires sufficient neuronal differentiation.

  17. Flk1+ and VE-cadherin+ endothelial cells derived from iPSCs recapitulates vascular development during differentiation and display similar angiogenic potential as ESC-derived cells.

    Directory of Open Access Journals (Sweden)

    Erin E Kohler

    Full Text Available RATIONALE: Induced pluripotent stem (iPS cells have emerged as a source of potentially unlimited supply of autologous endothelial cells (ECs for vascularization. However, the regenerative function of these cells relative to adult ECs and ECs derived from embryonic stem (ES cells is unknown. The objective was to define the differentiation characteristics and vascularization potential of Fetal liver kinase (Flk1(+ and Vascular Endothelial (VE-cadherin(+ ECs derived identically from mouse (mES and miPS cells. METHODS AND RESULTS: Naive mES and miPS cells cultured in type IV collagen (IV Col in defined media for 5 days induced the formation of adherent cell populations, which demonstrated similar expression of Flk1 and VE-cadherin and the emergence of EC progenies. FACS purification resulted in 100% Flk1(+ VE-cadherin(+ cells from both mES and miPS cells. Emergence of Flk1(+VE-cadherin(+ cells entailed expression of the vascular developmental transcription factor Er71, which bound identically to Flk1, VE-cadherin, and CD31 promoters in both populations. Immunostaining with anti-VE-cadherin and anti-CD31 antibodies and microscopy demonstrated the endothelial nature of these cells. Each cell population (unlike mature ECs organized into well-developed vascular structures in vitro and incorporated into CD31(+ neovessels in matrigel plugs implanted in nude mice in vivo. CONCLUSION: Thus, iPS cell-derived Flk1(+VE-cadherin(+ cells expressing the Er71 are as angiogenic as mES cell-derived cells and incorporate into CD31(+ neovessels. Their vessel forming capacity highlights the potential of autologous iPS cells-derived EC progeny for therapeutic angiogenesis.

  18. Dendritic Cell-Derived Exosomes Stimulate Stronger CD8+ CTL Responses and Antitumor Immunity than Tumor Cell-Derived Exosomes

    Institute of Scientific and Technical Information of China (English)

    Siguo Hao; Ou Bai; Jinying Yuan; Mabood Qureshi; Jim Xiang

    2006-01-01

    Exosomes (EXO) derived from dendritic cells (DC) and tumor cells have been used to stimulate antitumor immune responses in animal models and in clinical trials. However, there has been no side-by-side comparison of the stimulatory efficiency of the antitumor immune responses induced by these two commonly used EXO vaccines. In this study, we selected to study the phenotype characteristics of EXO derived from a transfected EG7 tumor cells expressing ovalbumin (OVA) and OVA-pulsed DC by flow cytometry. We compared the stimulatory effect in induction of OVA-specific immune responses between these two types of EXO. We found that OVA protein-pulsed DCovA-derived EXO (EXODC) can more efficiently stimulate naive OVA-specific CD8+ T cell proliferation and differentiation into cytotoxic T lymphocytes in vivo, and induce more efficient antitumor immunity than EG7 tumor cell-derived EXO (EXOEG7). In addition, we elucidated the important role of the host DC in EXO vaccines that the stimulatory effect of EXO is delivered to T cell responses by the host DC. Therefore, DC-derived EXO may represent a more effective EXO-based vaccine in induction of antitumor immunity.

  19. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements

    OpenAIRE

    Chatagnon, Amandine; Veber, Philippe; Morin, Valérie; Bedo, Justin; Triqueneaux, Gérard; Sémon, Marie; Laudet, Vincent; D'Alché-Buc, Florence; Benoit, Gérard

    2015-01-01

    In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated w...

  20. Endothelial cell-derived interleukin-6 regulates tumor growth

    International Nuclear Information System (INIS)

    Endothelial cells play a complex role in the pathobiology of cancer. This role is not limited to the making of blood vessels to allow for influx of oxygen and nutrients required for the high metabolic demands of tumor cells. Indeed, it has been recently shown that tumor-associated endothelial cells secrete molecules that enhance tumor cell survival and cancer stem cell self-renewal. The hypothesis underlying this work is that specific disruption of endothelial cell-initiated signaling inhibits tumor growth. Conditioned medium from primary human dermal microvascular endothelial cells (HDMEC) stably transduced with silencing RNA for IL-6 (or controls) was used to evaluate the role of endothelial-derived IL-6 on the activation of key signaling pathways in tumor cells. In addition, these endothelial cells were co-transplanted with tumor cells into immunodefficient mice to determine the impact of endothelial cell-derived IL-6 on tumor growth and angiogenesis. We observed that tumor cells adjacent to blood vessels show strong phosphorylation of STAT3, a key mediator of tumor progression. In search for a possible mechanism for the activation of the STAT3 signaling pathway, we observed that silencing interleukin (IL)-6 in tumor-associated endothelial cells inhibited STAT3 phosphorylation in tumor cells. Notably, tumors vascularized with IL-6-silenced endothelial cells showed lower intratumoral microvessel density, lower tumor cell proliferation, and slower growth than tumors vascularized with control endothelial cells. Collectively, these results demonstrate that IL-6 secreted by endothelial cells enhance tumor growth, and suggest that cancer patients might benefit from targeted approaches that block signaling events initiated by endothelial cells

  1. New balance in pluripotency: reprogramming with lineage specifiers.

    Science.gov (United States)

    Ben-David, Uri; Nissenbaum, Jonathan; Benvenisty, Nissim

    2013-05-23

    Induction of pluripotency in somatic cells has been achieved by myriad combinations of transcription factors that belong to the core pluripotency circuitry. In this issue, Shu et al. report reprogramming with lineage specifiers, lending support to the view of the pluripotent state as a fine balance between competing differentiation forces.

  2. Modelling Human Channelopathies Using Induced Pluripotent Stem Cells: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Martin Müller

    2013-01-01

    Full Text Available The generation of induced pluripotent stem cells (iPS cells has pioneered the field of regenerative medicine and developmental biology. They can be generated by overexpression of a defined set of transcription factors in somatic cells derived from easily accessible tissues such as skin or plucked hair or even human urine. In case of applying this tool to patients who are classified into a disease group, it enables the generation of a disease- and patient-specific research platform. iPS cells have proven a significant tool to elucidate pathophysiological mechanisms in various diseases such as diabetes, blood disorders, defined neurological disorders, and genetic liver disease. One of the first successfully modelled human diseases was long QT syndrome, an inherited cardiac channelopathy which causes potentially fatal cardiac arrhythmia. This review summarizes the efforts of reprogramming various types of long QT syndrome and discusses the potential underlying mechanisms and their application.

  3. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Masaya Nakamura; Hideyuki Okano

    2013-01-01

    Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon,there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science.While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine,safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells.In this review,the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells,and their safety issues in vivo,are outlined.We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.

  4. Pluripotent Stem Cells and Gene Therapy

    Science.gov (United States)

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical studies have demonstrated correction of disease-causing mutations in a number of hematological, neuronal and muscular disorders. This review aims to summarize these recent advances with a focus on iPSC generation techniques, as well as gene modification methods. We will then further discuss some of the main obstacles remaining to be overcome before successful application of human pluripotent stem cell-based therapy arrives in the clinic and what the future of stem cell research may look like. PMID:23353080

  5. Mitochondrial rejuvenation after induced pluripotency.

    Directory of Open Access Journals (Sweden)

    Steven T Suhr

    Full Text Available BACKGROUND: As stem cells of the early embryo mature and differentiate into all tissues, the mitochondrial complement undergoes dramatic functional improvement. Mitochondrial activity is low to minimize generation of DNA-damaging reactive oxygen species during pre-implantation development and increases following implantation and differentiation to meet higher metabolic demands. It has recently been reported that when the stem cell type known as induced pluripotent stem cells (IPSCs are re-differentiated for several weeks in vitro, the mitochondrial complement progressively re-acquires properties approximating input fibroblasts, suggesting that despite the observation that IPSC conversion "resets" some parameters of cellular aging such as telomere length, it may have little impact on other age-affected cellular systems such as mitochondria in IPSC-derived cells. METHODOLOGY/PRINCIPAL FINDINGS: We have examined the properties of mitochondria in two fibroblast lines, corresponding IPSCs, and fibroblasts re-derived from IPSCs using biochemical methods and electron microscopy, and found a dramatic improvement in the quality and function of the mitochondrial complement of the re-derived fibroblasts compared to input fibroblasts. This observation likely stems from two aspects of our experimental design: 1 that the input cell lines used were of advanced cellular age and contained an inefficient mitochondrial complement, and 2 the re-derived fibroblasts were produced using an extensive differentiation regimen that may more closely mimic the degree of growth and maturation found in a developing mammal. CONCLUSIONS/SIGNIFICANCE: These results - coupled with earlier data from our laboratory - suggest that IPSC conversion not only resets the "biological clock", but can also rejuvenate the energetic capacity of derived cells.

  6. Functional Differences in Engineered Myocardium from Embryonic Stem Cell-Derived versus Neonatal Cardiomyocytes

    NARCIS (Netherlands)

    Feinberg, Adam W.; Ripplinger, Crystal M.; van der Meer, Peter; Sheehy, Sean P.; Domian, Ibrahim; Chien, Kenneth R.; Parker, Kevin Kit

    2013-01-01

    Stem cell-derived cardiomyocytes represent unique tools for cell-and tissue-based regenerative therapies, drug discovery and safety, and studies of fundamental heart-failure mechanisms. However, the degree to which stem cell-derived cardiomyocytes compare to mature cardiomyocytes is often debated. W

  7. Characterization of human pluripotent stem cells.

    Science.gov (United States)

    Gokhale, Paul J; Andrews, Peter W

    2013-12-18

    Human pluripotent stem cells (PSCs), whether embryonic stem cells or induced PSCs, offer enormous opportunities for regenerative medicine and other biomedical applications once we have developed the ability to harness their capacity for extensive differentiation. Central to this is our ability to identify and characterize such PSCs, but this is fraught with potential difficulties that arise from a tension between functional definitions of pluripotency and the more convenient use of 'markers', a problem exacerbated by ethical issues, our lack of knowledge of early human embryonic development, and differences from the mouse paradigm.

  8. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements.

    Science.gov (United States)

    Chatagnon, Amandine; Veber, Philippe; Morin, Valérie; Bedo, Justin; Triqueneaux, Gérard; Sémon, Marie; Laudet, Vincent; d'Alché-Buc, Florence; Benoit, Gérard

    2015-05-26

    In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process. In-depth analysis of RAR/RXR binding sites occupancy dynamics and composition show that in undifferentiated cells, RAR/RXR interact with genomic regions characterized by binding of pluripotency-associated factors and high prevalence of the non-canonical DR0-containing RA response element. By contrast, in differentiated cells, RAR/RXR bound regions are enriched in functional Sox17 binding sites and are characterized with a higher frequency of the canonical DR5 motif. Our data offer an unprecedentedly detailed view on the action of RA in triggering pluripotent cell differentiation and demonstrate that RAR/RXR action is mediated via two different sets of regulatory regions tightly associated with cell differentiation status. PMID:25897113

  9. Potential and limitation of HLA-based banking of human pluripotent stem cells for cell therapy.

    Science.gov (United States)

    de Rham, Casimir; Villard, Jean

    2014-01-01

    Great hopes have been placed on human pluripotent stem (hPS) cells for therapy. Tissues or organs derived from hPS cells could be the best solution to cure many different human diseases, especially those who do not respond to standard medication or drugs, such as neurodegenerative diseases, heart failure, or diabetes. The origin of hPS is critical and the idea of creating a bank of well-characterized hPS cells has emerged, like the one that already exists for cord blood. However, the main obstacle in transplantation is the rejection of tissues or organ by the receiver, due to the three main immunological barriers: the human leukocyte antigen (HLA), the ABO blood group, and minor antigens. The problem could be circumvented by using autologous stem cells, like induced pluripotent stem (iPS) cells, derived directly from the patient. But iPS cells have limitations, especially regarding the disease of the recipient and possible difficulties to handle or prepare autologous iPS cells. Finally, reaching standards of good clinical or manufacturing practices could be challenging. That is why well-characterized and universal hPS cells could be a better solution. In this review, we will discuss the interest and the feasibility to establish hPS cells bank, as well as some economics and ethical issues. PMID:25126584

  10. Disease Modeling and Phenotypic Drug Screening for Diabetic Cardiomyopathy using Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Faye M. Drawnel

    2014-11-01

    Full Text Available Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance.

  11. Potential and Limitation of HLA-Based Banking of Human Pluripotent Stem Cells for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Casimir de Rham

    2014-01-01

    Full Text Available Great hopes have been placed on human pluripotent stem (hPS cells for therapy. Tissues or organs derived from hPS cells could be the best solution to cure many different human diseases, especially those who do not respond to standard medication or drugs, such as neurodegenerative diseases, heart failure, or diabetes. The origin of hPS is critical and the idea of creating a bank of well-characterized hPS cells has emerged, like the one that already exists for cord blood. However, the main obstacle in transplantation is the rejection of tissues or organ by the receiver, due to the three main immunological barriers: the human leukocyte antigen (HLA, the ABO blood group, and minor antigens. The problem could be circumvented by using autologous stem cells, like induced pluripotent stem (iPS cells, derived directly from the patient. But iPS cells have limitations, especially regarding the disease of the recipient and possible difficulties to handle or prepare autologous iPS cells. Finally, reaching standards of good clinical or manufacturing practices could be challenging. That is why well-characterized and universal hPS cells could be a better solution. In this review, we will discuss the interest and the feasibility to establish hPS cells bank, as well as some economics and ethical issues.

  12. Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells.

    Science.gov (United States)

    Maruotti, Julien; Sripathi, Srinivas R; Bharti, Kapil; Fuller, John; Wahlin, Karl J; Ranganathan, Vinod; Sluch, Valentin M; Berlinicke, Cynthia A; Davis, Janine; Kim, Catherine; Zhao, Lijun; Wan, Jun; Qian, Jiang; Corneo, Barbara; Temple, Sally; Dubey, Ramin; Olenyuk, Bogdan Z; Bhutto, Imran; Lutty, Gerard A; Zack, Donald J

    2015-09-01

    Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule-only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE. PMID:26269569

  13. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Gojo, Satoshi [Department of Cardiac Support, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, Osam, E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  14. Bone morphogenetic protein 4 and retinoic acid trigger bovine VASA homolog expression in differentiating bovine induced pluripotent stem cells.

    Science.gov (United States)

    Malaver-Ortega, Luis F; Sumer, Huseyin; Jain, Kanika; Verma, Paul J

    2016-02-01

    Primordial germ cells (PGCs) are the earliest identifiable and completely committed progenitors of female and male gametes. They are obvious targets for genome editing because they assure the transmission of desirable or introduced traits to future generations. PGCs are established at the earliest stages of embryo development and are difficult to propagate in vitro--two characteristics that pose a problem for their practical application. One alternative method to enrich for PGCs in vitro is to differentiate them from pluripotent stem cells derived from adult tissues. Here, we establish a reporter system for germ cell identification in bovine pluripotent stem cells based on green fluorescent protein expression driven by the minimal essential promoter of the bovine Vasa homolog (BVH) gene, whose regulatory elements were identified by orthologous modelling of regulatory units. We then evaluated the potential of bovine induced pluripotent stem cell (biPSC) lines carrying the reporter construct to differentiate toward the germ cell lineage. Our results showed that biPSCs undergo differentiation as embryoid bodies, and a fraction of the differentiating cells expressed BVH. The rate of differentiation towards BVH-positive cells increased up to tenfold in the presence of bone morphogenetic protein 4 or retinoic acid. Finally, we determined that the expression of key PGC genes, such as BVH or SOX2, can be modified by pre-differentiation cell culture conditions, although this increase is not necessarily mirrored by an increase in the rate of differentiation. PMID:26660942

  15. Induced pluripotent stem (iPS) cells offer a powerful new tool for the life sciences.

    Science.gov (United States)

    Nakamura, Y

    2010-01-01

    Stem cell biology started with the analysis of somatic stem cells that function to maintain the adult body. We now know that the body is maintained by regeneration of a wide range of cell types, such as skin cells, blood cells and gastrointestinal mucous cells, from somatic stem cells. This regenerative activity is essential for survival. Regenerative medicine was initiated to identify therapies that support and/or accelerate this natural regenerative ability. For example, bone marrow transplantation is a therapy for reconstituting hematopoiesis from the hematopoietic stem cells present in the donor bone marrow. The successful development of a protocol for obtaining human embryonic stem (ES) cells prompted medical scientists to utilize human ES cells for regenerative medicine. However, use of these cells raises ethical issues as they are derived from human embryos. An alternative approach using ES-like pluripotent stem cells has the considerable advantage that it does not necessitate use of human embryos. Pluripotent stem cells can be induced from terminally differentiated somatic cells by the introduction of only four defined factors. The products of this method are termed "induced pluripotent stem (iPS)" cells. iPS cells have considerable promise as a substitute for ES cells not only for regenerative medicine but also in many other fields. For example, liver and heart cells derived from iPS cells can be used in pharmaceutical research. In addition, iPS cell technology opens new avenues of disease research, for example, by construction of so-called "disease-specific iPS cells" from a patient's somatic cells. PMID:24693054

  16. Induced pluripotent stem (iPS cells offer a powerful new tool for the life sciences

    Directory of Open Access Journals (Sweden)

    Yukio Nakamura

    2010-01-01

    Full Text Available Stem cell biology started with the analysis of somatic stem cells that function to maintain the adult body. We now know that the body is maintained by regeneration of a wide range of cell types, such as skin cells, blood cells and gastrointestinal mucous cells, from somatic stem cells. This regenerative activity is essential for survival. Regenerative medicine was initiated to identify therapies that support and/or accelerate this natural regenerative ability. For example, bone marrow transplantation is a therapy for reconstituting hematopoiesis from the hematopoietic stem cells present in the donor bone marrow. The successful development of a protocol for obtaining human embryonic stem (ES cells prompted medical scientists to utilize human ES cells for regenerative medicine. However, use of these cells raises ethical issues as they are derived from human embryos. An alternative approach using ES-like pluripotent stem cells has the considerable advantage that it does not necessitate use of human embryos. Pluripotent stem cells can be induced from terminally differentiated somatic cells by the introduction of only four defined factors. The products of this method are termed “induced pluripotent stem (iPS" cells. iPS cells have considerable promise as a substitute for ES cells not only for regenerative medicine but also in many other fields. For example, liver and heart cells derived from iPS cells can be used in pharmaceutical research. In addition, iPS cell technology opens new avenues of disease research, for example, by construction of so-called “disease-specific iPS cells” from a patient's somatic cells.

  17. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells.

    Science.gov (United States)

    Grow, Edward J; Flynn, Ryan A; Chavez, Shawn L; Bayless, Nicholas L; Wossidlo, Mark; Wesche, Daniel J; Martin, Lance; Ware, Carol B; Blish, Catherine A; Chang, Howard Y; Pera, Renee A Reijo; Wysocka, Joanna

    2015-06-11

    Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections, and comprise nearly 8% of the human genome. The most recently acquired human ERV is HERVK(HML-2), which repeatedly infected the primate lineage both before and after the divergence of the human and chimpanzee common ancestor. Unlike most other human ERVs, HERVK retained multiple copies of intact open reading frames encoding retroviral proteins. However, HERVK is transcriptionally silenced by the host, with the exception of in certain pathological contexts such as germ-cell tumours, melanoma or human immunodeficiency virus (HIV) infection. Here we demonstrate that DNA hypomethylation at long terminal repeat elements representing the most recent genomic integrations, together with transactivation by OCT4 (also known as POU5F1), synergistically facilitate HERVK expression. Consequently, HERVK is transcribed during normal human embryogenesis, beginning with embryonic genome activation at the eight-cell stage, continuing through the emergence of epiblast cells in preimplantation blastocysts, and ceasing during human embryonic stem cell derivation from blastocyst outgrowths. Remarkably, we detected HERVK viral-like particles and Gag proteins in human blastocysts, indicating that early human development proceeds in the presence of retroviral products. We further show that overexpression of one such product, the HERVK accessory protein Rec, in a pluripotent cell line is sufficient to increase IFITM1 levels on the cell surface and inhibit viral infection, suggesting at least one mechanism through which HERVK can induce viral restriction pathways in early embryonic cells. Moreover, Rec directly binds a subset of cellular RNAs and modulates their ribosome occupancy, indicating that complex interactions between retroviral proteins and host factors can fine-tune pathways of early human development. PMID:25896322

  18. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  19. Epigenetic regulation of pluripotency and differentiation.

    Science.gov (United States)

    Boland, Michael J; Nazor, Kristopher L; Loring, Jeanne F

    2014-07-01

    The precise, temporal order of gene expression during development is critical to ensure proper lineage commitment, cell fate determination, and ultimately, organogenesis. Epigenetic regulation of chromatin structure is fundamental to the activation or repression of genes during embryonic development. In recent years, there has been an explosion of research relating to various modes of epigenetic regulation, such as DNA methylation, post-translational histone tail modifications, noncoding RNA control of chromatin structure, and nucleosome remodeling. Technological advances in genome-wide epigenetic profiling and pluripotent stem cell differentiation have been primary drivers for elucidating the epigenetic control of cellular identity during development and nuclear reprogramming. Not only do epigenetic mechanisms regulate transcriptional states in a cell-type-specific manner but also they establish higher order genomic topology and nuclear architecture. Here, we review the epigenetic control of pluripotency and changes associated with pluripotent stem cell differentiation. We focus on DNA methylation, DNA demethylation, and common histone tail modifications. Finally, we briefly discuss epigenetic heterogeneity among pluripotent stem cell lines and the influence of epigenetic patterns on genome topology.

  20. Vitamin D metabolism and effects on pluripotency genes and cell differentiation in testicular germ cell tumors in vitro and in vivo

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Jørgensen, Anne; Nielsen, John Erik;

    2012-01-01

    ) treatment in vivo. These novel findings show that VD metabolism is involved in the mesodermal transition during differentiation of cancer cells with embryonic stem cell characteristics, which points to a function for VD during early embryonic development and possibly in the pathogenesis of TGCTs.......Testicular germ cell tumors (TGCTs) are classified as either seminomas or nonseminomas. Both tumors originate from carcinoma in situ (CIS) cells, which are derived from transformed fetal gonocytes. CIS, seminoma, and the undifferentiated embryonal carcinoma (EC) retain an embryonic phenotype...... and express pluripotency factors (NANOG/OCT4). Vitamin D (VD) is metabolized in the testes, and here, we examined VD metabolism in TGCT differentiation and pluripotency regulation. We established that the VD receptor (VDR) and VD-metabolizing enzymes are expressed in human fetal germ cells, CIS, and invasive...

  1. Vitamin D metabolism and effects on pluripotency genes and cell differentiation in testicular germ cell tumors in vitro and in vivo

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Jørgensen, Anne; Nielsen, John Erik;

    2012-01-01

    ) treatment in vivo. These novel findings show that VD metabolism is involved in the mesodermal transition during differentiation of cancer cells with embryonic stem cell characteristics, which points to a function for VD during early embryonic development and possibly in the pathogenesis of TGCTs.......Testicular germ cell tumors (TGCTs) are classified as either seminomas or nonseminomas. Both tumors originate from carcinoma in situ (CIS) cells, which are derived from transformed fetal gonocytes. CIS, seminoma, and the undifferentiated embryonal carcinoma (EC) retain an embryonic phenotype and...... express pluripotency factors (NANOG/OCT4). Vitamin D (VD) is metabolized in the testes, and here, we examined VD metabolism in TGCT differentiation and pluripotency regulation. We established that the VD receptor (VDR) and VD-metabolizing enzymes are expressed in human fetal germ cells, CIS, and invasive...

  2. Human pluripotent stem cells in contemporary medicine

    Directory of Open Access Journals (Sweden)

    S. A. Rodin

    2015-01-01

    Full Text Available Human pluripotent stem cells (hPSCs are capable of indefinite proliferation and can be differentiated into any cell type of the human body. Therefore, they are a promising source of cells for treatment of numerous degenerative diseases and injuries. Pluripotent stem cells are also associated with a number of ethical, safety and technological issues. In this review, we describe various types of hPSCs, safety issues that concern all or some types of hPSCs and methods of clinical-grade hPSC line development. Also, we discuss current and past clinical trials involving hPSCs, their outcomes and future perspectives of hPSC-based therapy. 

  3. Vascular Potential of Human Pluripotent Stem Cells

    OpenAIRE

    Iacobas, Ionela; Vats, Archana; Hirschi, Karen K.

    2010-01-01

    Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathologic processes is an essential part of the paradigm in enabling us to achieve a reduction in related deaths. Both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources of cells for c...

  4. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    International Nuclear Information System (INIS)

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially

  5. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2014-10-15

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially.

  6. Differences in the Epigenetic Regulation of Cytochrome P450 Genes between Human Embryonic Stem Cell-Derived Hepatocytes and Primary Hepatocytes.

    Directory of Open Access Journals (Sweden)

    Han-Jin Park

    Full Text Available Human pluripotent stem cell-derived hepatocytes have the potential to provide in vitro model systems for drug discovery and hepatotoxicity testing. However, these cells are currently unsuitable for drug toxicity and efficacy testing because of their limited expression of genes encoding drug-metabolizing enzymes, especially cytochrome P450 (CYP enzymes. Transcript levels of major CYP genes were much lower in human embryonic stem cell-derived hepatocytes (hESC-Hep than in human primary hepatocytes (hPH. To verify the mechanism underlying this reduced expression of CYP genes, including CYP1A1, CYP1A2, CYP1B1, CYP2D6, and CYP2E1, we investigated their epigenetic regulation in terms of DNA methylation and histone modifications in hESC-Hep and hPH. CpG islands of CYP genes were hypermethylated in hESC-Hep, whereas they had an open chromatin structure, as represented by hypomethylation of CpG sites and permissive histone modifications, in hPH. Inhibition of DNA methyltransferases (DNMTs during hepatic maturation induced demethylation of the CpG sites of CYP1A1 and CYP1A2, leading to the up-regulation of their transcription. Combinatorial inhibition of DNMTs and histone deacetylases (HDACs increased the transcript levels of CYP1A1, CYP1A2, CYP1B1, and CYP2D6. Our findings suggest that limited expression of CYP genes in hESC-Hep is modulated by epigenetic regulatory factors such as DNMTs and HDACs.

  7. Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: Focusing on neuroprotective effects of stromal cell-derived factor-1α

    Directory of Open Access Journals (Sweden)

    Tayra Judith

    2010-04-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are pluripotent stem cells derived from bone marrow with secretory functions of various neurotrophic factors. Stromal cell-derived factor-1α (SDF-1α is also reported as one of chemokines released from MSCs. In this research, the therapeutic effects of MSCs through SDF-1α were explored. 6-hydroxydopamine (6-OHDA, 20 μg was injected into the right striatum of female SD rats with subsequent administration of GFP-labeled MSCs, fibroblasts, (i.v., 1 × 107 cells, respectively or PBS at 2 hours after 6-OHDA injection. All rats were evaluated behaviorally with cylinder test and amphetamine-induced rotation test for 1 month with consequent euthanasia for immunohistochemical evaluations. Additionally, to explore the underlying mechanisms, neuroprotective effects of SDF-1α were explored using 6-OHDA-exposed PC12 cells by using dopamine (DA assay and TdT-mediated dUTP-biotin nick-end labeling (TUNEL staining. Results Rats receiving MSC transplantation significantly ameliorated behaviorally both in cylinder test and amphetamine-induced rotation test compared with the control groups. Correspondingly, rats with MSCs displayed significant preservation in the density of tyrosine hydroxylase (TH-positive fibers in the striatum and the number of TH-positive neurons in the substantia nigra pars compacta (SNc compared to that of control rats. In the in vitro study, SDF-1α treatment increased DA release and suppressed cell death induced by 6-OHDA administration compared with the control groups. Conclusions Consequently, MSC transplantation might exert neuroprotection on 6-OHDA-exposed dopaminergic neurons at least partly through anti-apoptotic effects of SDF-1α. The results demonstrate the potentials of intravenous MSC administration for clinical applications, although further explorations are required.

  8. Induced pluripotent stem cells: advances to applications

    Directory of Open Access Journals (Sweden)

    Timothy J Nelson

    2009-12-01

    Full Text Available Timothy J Nelson1, Almudena Martinez-Fernandez1, Satsuki Yamada1, Yasuhiro Ikeda2, Carmen Perez-Terzic1, Andre Terzic11Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA; 2Department of Molecular Medicine; Mayo Clinic, Rochester, Minnesota, USAAbstract: Induced pluripotent stem cell (iPS technology has enriched the armamentarium of regenerative medicine by introducing autologous pluripotent progenitor pools bioengineered from ordinary somatic tissue. Through nuclear reprogramming, patient-specific iPS cells have been derived and validated. Optimizing iPS-based methodology will ensure robust applications across discovery science, offering opportunities for the development of personalized diagnostics and targeted therapeutics. Here, we highlight the process of nuclear reprogramming of somatic tissues that, when forced to ectopically express stemness factors, are converted into bona fide pluripotent stem cells. Bioengineered stem cells acquire the genuine ability to generate replacement tissues for a wide-spectrum of diseased conditions, and have so far demonstrated therapeutic benefit upon transplantation in model systems of sickle cell anemia, Parkinson’s disease, hemophilia A, and ischemic heart disease. The field of regenerative medicine is therefore primed to adopt and incorporate iPS cell-based advancements as a next generation stem cell platforms.Keywords: iPS, regenerative medicine, individualized medicine, stem cell therapy

  9. Rebuilding Pluripotency from Primordial Germ Cells

    Science.gov (United States)

    Leitch, Harry G.; Nichols, Jennifer; Humphreys, Peter; Mulas, Carla; Martello, Graziano; Lee, Caroline; Jones, Ken; Surani, M. Azim; Smith, Austin

    2013-01-01

    Mammalian primordial germ cells (PGCs) are unipotent progenitors of the gametes. Nonetheless, they can give rise directly to pluripotent stem cells in vitro or during teratocarcinogenesis. This conversion is inconsistent, however, and has been difficult to study. Here, we delineate requirements for efficient resetting of pluripotency in culture. We demonstrate that in defined conditions, routinely 20% of PGCs become EG cells. Conversion can occur from the earliest specified PGCs. The entire process can be tracked from single cells. It is driven by leukemia inhibitory factor (LIF) and the downstream transcription factor STAT3. In contrast, LIF signaling is not required during germ cell ontogeny. We surmise that ectopic LIF/STAT3 stimulation reconstructs latent pluripotency and self-renewal. Notably, STAT3 targets are significantly upregulated in germ cell tumors, suggesting that dysregulation of this pathway may underlie teratocarcinogenesis. These findings demonstrate that EG cell formation is a robust experimental system for exploring mechanisms involved in reprogramming and cancer. PMID:24052943

  10. Search for naive human pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Simone Aparecida Siqueira Fonseca; Roberta Montero Costas; Lygia Veiga Pereira

    2015-01-01

    Normal mouse pluripotent stem cells were originallyderived from the inner cell mass (ICM) of blastocystsand shown to be the in vitro equivalent of those preimplantationembryonic cells, and thus were calledembryonic stem cells (ESCs). More than a decade later,pluripotent cells were isolated from the ICM of humanblastocysts. Despite being called human ESCs, thesecells differ significantly from mouse ESCs, includingdifferent morphology and mechanisms of control ofpluripotency, suggesting distinct embryonic originsof ESCs from the two species. Subsequently, mousepluripotent stem cells were established from the ICMderivedepiblast of post-implantation embryos. Thesemouse epiblast stem cells (EpiSCs) are morphologicaland epigenetically more similar to human ESCs. Thisraised the question of whether cells from the humanICM are in a more advanced differentiation stage thantheir murine counterpart, or whether the availableculture conditions were not adequate to maintain thosehuman cells in their in vivo state, leading to a transitioninto EpiSC-like cells in vitro . More recently, novel cultureconditions allowed the conversion of human ESCs intomouse ESC-like cells called naive (or ground state)human ESCs, and the derivation of naive human ESCsfrom blastocysts. Here we will review the characteristicsof each type of pluripotent stem cells, how (andwhether) these relate to different stages of embryonicdevelopment, and discuss the potential implications ofnaive human ESCs in research and therapy.

  11. Parotid carcinoma

    DEFF Research Database (Denmark)

    Sørensen, Kristine Bjørndal; Godballe, Christian; de Stricker, Karin;

    2006-01-01

    OBJECTIVES: Our aim is to investigate the expression of kit protein (KIT) and epidermal growth factor receptor (EGFR) in parotid carcinomas in order to correlate the expression to histology and prognosis. Further we want to perform mutation analysis of KIT-positive adenoid cystic carcinomas....... PATIENTS AND METHODS: Formalin-fixed paraffin-embedded sections from 73 patients with parotid gland carcinomas were used for the study. The sections were stained with both KIT and EGFR polyclonal antibodies. Twelve KIT-positive adenoid cystic carcinomas were examined for c-kit mutation in codon 816....... RESULTS: Of all carcinomas 25% were KIT-positive and 79% were EGFR-positive. Ninety-two percentage of the adenoid cystic carcinomas were KIT-positive. None of the adenoid cystic carcinomas had mutations in codon 816 of the c-kit gene. CONCLUSION: Neither KIT- nor EGFR-expression seem to harbour...

  12. Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors

    OpenAIRE

    de Peppo, Giuseppe Maria; Marolt, Darja

    2013-01-01

    Advances in the fields of stem cell biology, biomaterials, and tissue engineering over the last decades have brought the possibility of constructing tissue substitutes with a broad range of applications in regenerative medicine, disease modeling, and drug discovery. Different types of human stem cells have been used, each presenting a unique set of advantages and limitations with regard to the desired research goals. Whereas adult stem cells are at the frontier of research for tissue and orga...

  13. Predictive lethal proarrhythmic risk evaluation using a closed-loop-circuit cell network with human induced pluripotent stem cells derived cardiomyocytes

    Science.gov (United States)

    Nomura, Fumimasa; Hattori, Akihiro; Terazono, Hideyuki; Kim, Hyonchol; Odaka, Masao; Sugio, Yoshihiro; Yasuda, Kenji

    2016-06-01

    For the prediction of lethal arrhythmia occurrence caused by abnormality of cell-to-cell conduction, we have developed a next-generation in vitro cell-to-cell conduction assay, i.e., a quasi in vivo assay, in which the change in spatial cell-to-cell conduction is quantitatively evaluated from the change in waveforms of the convoluted electrophysiological signals from lined-up cardiomyocytes on a single closed loop of a microelectrode of 1 mm diameter and 20 µm width in a cultivation chip. To evaluate the importance of the closed-loop arrangement of cardiomyocytes for prediction, we compared the change in waveforms of convoluted signals of the responses in the closed-loop circuit arrangement with that of the response of cardiomyocyte clusters using a typical human ether a go-go related gene (hERG) ion channel blocker, E-4031. The results showed that (1) waveform prolongation and fluctuation both in the closed loops and clusters increased depending on the E-4031 concentration increase. However, (2) only the waveform signals in closed loops showed an apparent temporal change in waveforms from ventricular tachycardia (VT) to ventricular fibrillation (VF), which is similar to the most typical cell-to-cell conductance abnormality. The results indicated the usefulness of convoluted waveform signals of a closed-loop cell network for acquiring reproducible results acquisition and more detailed temporal information on cell-to-cell conduction.

  14. Comparison of Human Induced Pluripotent Stem Cell-Derived Neurons and Rat Primary CorticalNeurons as In Vitro Models of Neurite Outgrowth

    Science.gov (United States)

    High-throughput assays that can quantify chemical-induced changes at the cellular and molecular level have been recommended for use in chemical safety assessment. High-throughput, high content imaging assays for the key cellular events of neurodevelopment have been proposed to ra...

  15. Historically aggressive types of follicular cell-derived thyroid cancer often have radioactive avid distant metastases: a study of 314 patients with distant metastases at a single institution

    Energy Technology Data Exchange (ETDEWEB)

    Tala, H.P.; Rondeau, G.; Fagin, J.A.; Tuttle, R.M. [Endocrinology Division, Department of Medicine, Nuclear Medicine Division, Memorial Sloan Kettering Cancer Center, New-York (United States); Ghossein, R.A. [Pathology Department, Nuclear Medecine Division, Memorial Sloan Kettering Cancer Center, New-York (United States); Grewal, R.K.; Larson, S.M. [Radiology Department, Nuclear Medicine Division, Memorial Sloan Kettering Cancer Center, New-York (United States)

    2012-07-01

    Radioactive iodine (RAI) remains one of the primary treatment options for metastatic, follicular cell derived thyroid cancers. The aim of this study was to determine the likelihood that metastatic lesions arising from one of the aggressive thyroid cancer histologies [tall cell variant of papillary thyroid carcinoma (TCV-PTC), poorly differentiated thyroid carcinoma (PDTC) and Hurthle cell carcinoma (HCC)] would demonstrate sufficient RAI avidity for visualization on RAI scanning and therefore could potentially benefit from RAI therapy. The study shows that in patients selected for RAI scanning or therapy at our center, RAI avid lesions can be identified in more than two thirds of the patients with distant metastases arising in the setting of C-PTC, WD-FTC, FV-PTC, TCV-PTC, or PDTC primary tumors. While RAI avidity on a post-therapy scan does not always correlate with clinically significant tumor killing activity, it is likely that some of these patients with RAI avid metastatic disease did obtain a clinical benefit

  16. Meet the inlaws: Embryonic stem cell derivatives meet the immune system

    Institute of Scientific and Technical Information of China (English)

    William B Tabayoyong; Nicholas Zavazava

    2009-01-01

    @@ Since the derivation of embryonic stem (ES) cell lines from human blasto-cysts in 1998 [1], ES cells have emerged as a potential source of cells and tissues that could be used for cell replacement therapy of incurable degenerative diseases. This is due to their remarkable pluripotency, which enables them to differentiate into any adult cell type of the three embryonal germ layers.

  17. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation.

    Science.gov (United States)

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-05-30

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes.

  18. Points to consider for a validation study of iPS cell-derived cardiomyocytes using a multi-electrode array system.

    Science.gov (United States)

    Kanda, Yasunari; Yamazaki, Daiju; Kurokawa, Junko; Inutsuka, Takashi; Sekino, Yuko

    2016-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) provide a novel assay system to assess cardiac safety in drug development to overcome a problem of species difference in non-clinical testing during drug development. Using the multi-electrode array (MEA) platform, electrophysiological activities of iPS-CMs can be recorded easily to assess QT prolongation and proarrhythmic potential of drug candidates. Here we have established a standardized protocol to evaluate the possibility of iPS-CMs, and shared the protocol with an international consortium. To obtain reproducible and reliable experimental data from these cells, we determined the optimal experimental conditions, such as cell density, MEA coating, culture conditions, high-pass filter frequency, definition of early afterdepolarization or triggered activity, and calibration compounds. Based on the protocol, our validation study using 60 compounds is in progress. Thus, MEA-based experiments using iPS-CMs would be a standard testing method to evaluate QT prolongation and proarrhythmic potentials. PMID:27369811

  19. A comparison of computational methods for detecting bursts in neuronal spike trains and their application to human stem cell-derived neuronal networks.

    Science.gov (United States)

    Cotterill, Ellese; Charlesworth, Paul; Thomas, Christopher W; Paulsen, Ole; Eglen, Stephen J

    2016-08-01

    Accurate identification of bursting activity is an essential element in the characterization of neuronal network activity. Despite this, no one technique for identifying bursts in spike trains has been widely adopted. Instead, many methods have been developed for the analysis of bursting activity, often on an ad hoc basis. Here we provide an unbiased assessment of the effectiveness of eight of these methods at detecting bursts in a range of spike trains. We suggest a list of features that an ideal burst detection technique should possess and use synthetic data to assess each method in regard to these properties. We further employ each of the methods to reanalyze microelectrode array (MEA) recordings from mouse retinal ganglion cells and examine their coherence with bursts detected by a human observer. We show that several common burst detection techniques perform poorly at analyzing spike trains with a variety of properties. We identify four promising burst detection techniques, which are then applied to MEA recordings of networks of human induced pluripotent stem cell-derived neurons and used to describe the ontogeny of bursting activity in these networks over several months of development. We conclude that no current method can provide "perfect" burst detection results across a range of spike trains; however, two burst detection techniques, the MaxInterval and logISI methods, outperform compared with others. We provide recommendations for the robust analysis of bursting activity in experimental recordings using current techniques.

  20. The different shades of mammalian pluripotent stem cells

    NARCIS (Netherlands)

    Kuijk, E.W.; Lopes, S.M.; Geijsen, N.; Macklon, N.S.; Roelen, B.A.J.

    2011-01-01

    The different shades of mammalian pluripotent stem cells Abstract BACKGROUND Pluripotent stem cells have been derived from a variety of sources such as from the inner cell mass of preimplantation embryos, from primordial germ cells, from teratocarcinomas and from male germ cells. The recent developm

  1. Generation and Characterization of Erythroid Cells from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells: An Overview

    Directory of Open Access Journals (Sweden)

    Kai-Hsin Chang

    2011-01-01

    Full Text Available Because of the imbalance in the supply and demand of red blood cells (RBCs, especially for alloimmunized patients or patients with rare blood phenotypes, extensive research has been done to generate therapeutic quantities of mature RBCs from hematopoietic stem cells of various sources, such as bone marrow, peripheral blood, and cord blood. Since human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs can be maintained indefinitely in vitro, they represent potentially inexhaustible sources of donor-free RBCs. In contrast to other ex vivo stem-cell-derived cellular therapeutics, tumorigenesis is not a concern, as RBCs can be irradiated without marked adverse effects on in vivo function. Here, we provide a comprehensive review of the recent publications relevant to the generation and characterization of hESC- and iPSC-derived erythroid cells and discuss challenges to be met before the eventual realization of clinical usage of these cells.

  2. Induced Pluripotent Stem Cells Meet Genome Editing.

    Science.gov (United States)

    Hockemeyer, Dirk; Jaenisch, Rudolf

    2016-05-01

    It is extremely rare for a single experiment to be so impactful and timely that it shapes and forecasts the experiments of the next decade. Here, we review how two such experiments-the generation of human induced pluripotent stem cells (iPSCs) and the development of CRISPR/Cas9 technology-have fundamentally reshaped our approach to biomedical research, stem cell biology, and human genetics. We will also highlight the previous knowledge that iPSC and CRISPR/Cas9 technologies were built on as this groundwork demonstrated the need for solutions and the benefits that these technologies provided and set the stage for their success. PMID:27152442

  3. Maturation of Stem Cell-Derived Beta-cells Guided by the Expression of Urocortin 3

    OpenAIRE

    van der Meulen, Talitha; Huising, Mark O.

    2014-01-01

    Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully ge...

  4. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming.

    Science.gov (United States)

    Rony, I K; Baten, A; Bloomfield, J A; Islam, M E; Billah, M M; Islam, K D

    2015-04-01

    Induced pluripotent stem cells (iPSCs) are considered patient-specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c-Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical-grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non-integrating viral and non-viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering.

  5. Nuclear Magnetic Resonance Detects Phosphoinositide 3-Kinase/Akt-Independent Traits Common to Pluripotent Murine Embryonic Stem Cells and Their Malignant Counterparts

    Directory of Open Access Journals (Sweden)

    Hanna M. Romanska

    2009-12-01

    Full Text Available Pluripotent embryonic stem (ES cells, a potential source of somatic precursors for cell therapies, cause tumors after transplantation. Studies of mammalian carcinogenesis using nuclear magnetic resonance (NMR spectroscopy have revealed changes in the choline region, particularly increased phosphocholine (PCho content. High PCho levels in murine ES (mES cells have recently been attributed to cell pluripotency. The phosphoinositide 3-kinase (PI3K/Akt pathway has been implicated in tumor-like properties of mES cells. This study aimed to examine a potential link between the metabolic profile associated with choline metabolism of pluripotent mES cells and PI3K/Akt signaling. We used mES (ES-D3 and murine embryonal carcinoma cells (EC-F9 and compared the metabolic profiles of 1 pluripotent mES (ESD0, 2 differentiated mES (ESD14, and 3 pluripotent F9 cells. Involvement of the PI3K/Akt pathway was assessed using LY294002, a selective PI3K inhibitor. Metabolic profiles were characterized in the extracted polar fraction by 1H NMR spectroscopy. Similarities were found between the levels of choline phospholipid metabolites (PCho/total choline and PCho/glycerophosphocholine [GPCho] in ESD0 and F9 cell spectra and a greater-than five-fold decrease of the PCho/GPCho ratio associated with mES cell differentiation. LY294002 caused no significant change in relative PCho levels but led to a greater-than two-fold increase in PCho/GPCho ratios. These results suggest that the PCho/GPCho ratio is a metabolic trait shared by pluripotent and malignant cells and that PI3K does not underlie its development. It is likely that the signature identified here in a mouse model may be relevant for safe therapeutic applications of human ES cells.

  6. Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hongran Wang

    2016-03-01

    Full Text Available Induced pluripotent stem (iPS cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc, without antibiotic selection or MEF feeders. After the formation of embryoid bodies (EBs, iPS cells spontaneously differentiated into Flk1-positive cardiac progenitors and cardiomyocytes expressing cardiac-specific markers such as alpha sarcomeric actinin (α-actinin, cardiac alpha myosin heavy chain (α-MHC, cardiac troponin T (cTnT, and connexin 43 (CX43, as well as cardiac transcription factors Nk2 homebox 5 (Nkx2.5 and gata binding protein 4 (gata4. The electrophysiological activity of iPS cell-derived cardiomyocytes (iPS-CMs was detected in beating cell clusters with optical mapping and RH237 a voltage-sensitive dye, and in single contracting cells with patch-clamp technology. Incompletely differentiated iPS cells formed teratomas when transplanted into a severe combined immunodeficiency (SCID mouse model of myocardial infarction. Our results show that somatic cells can be reprogrammed into pluripotent stem cells, which in turn spontaneously differentiate into electrophysiologically functional mature cardiomyocytes expressing cardiac-specific makers, and that these cells can potentially be used to repair myocardial infarction (MI in the future.

  7. Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Guangming Wu

    2011-07-01

    Full Text Available Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH⁻/⁻ mice as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH⁻/⁻-induced pluripotent stem cells (iPS cells as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH⁻/⁻ iPS cell lines, we aggregated FAH⁻/⁻-iPS cells with tetraploid embryos and obtained entirely FAH⁻/⁻-iPS cell-derived mice that were viable and exhibited the phenotype of the founding FAH⁻/⁻ mice. Then, we transduced FAH cDNA into the FAH⁻/⁻-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell-derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl-1,3-cyclohexanedione. Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models.

  8. Basisquamous Carcinoma

    Directory of Open Access Journals (Sweden)

    Yesudian Devakar P

    1997-01-01

    Full Text Available A 50 year old woman presented with an ulceroproliferative mass in the value of 4 month duration. Biopsy of the lesion showed features of a basisquamous cell carcinoma. This is a rare tumour showing histopathological features of both basal cell and squamous cell carcinomas. The clinical, histopathological and histogenetic status of this tumour are discussed.

  9. Cardiogenic induction of pluripotent stem cells streamlined through a conserved SDF-1/VEGF/BMP2 integrated network.

    Directory of Open Access Journals (Sweden)

    Anca Chiriac

    Full Text Available BACKGROUND: Pluripotent stem cells produce tissue-specific lineages through programmed acquisition of sequential gene expression patterns that function as a blueprint for organ formation. As embryonic stem cells respond concomitantly to diverse signaling pathways during differentiation, extraction of a pro-cardiogenic network would offer a roadmap to streamline cardiac progenitor output. METHODS AND RESULTS: To resolve gene ontology priorities within precursor transcriptomes, cardiogenic subpopulations were here generated according to either growth factor guidance or stage-specific biomarker sorting. Innate expression profiles were independently delineated through unbiased systems biology mapping, and cross-referenced to filter transcriptional noise unmasking a conserved progenitor motif (55 up- and 233 down-regulated genes. The streamlined pool of 288 genes organized into a core biological network that prioritized the "Cardiovascular Development" function. Recursive in silico deconvolution of the cardiogenic neighborhood and associated canonical signaling pathways identified a combination of integrated axes, CXCR4/SDF-1, Flk-1/VEGF and BMP2r/BMP2, predicted to synchronize cardiac specification. In vitro targeting of the resolved triad in embryoid bodies accelerated expression of Nkx2.5, Mef2C and cardiac-MHC, enhanced beating activity, and augmented cardiogenic yield. CONCLUSIONS: Transcriptome-wide dissection of a conserved progenitor profile thus revealed functional highways that coordinate cardiogenic maturation from a pluripotent ground state. Validating the bioinformatics algorithm established a strategy to rationally modulate cell fate, and optimize stem cell-derived cardiogenesis.

  10. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer's Disease Phenotypes.

    Science.gov (United States)

    Raja, Waseem K; Mungenast, Alison E; Lin, Yuan-Ta; Ko, Tak; Abdurrob, Fatema; Seo, Jinsoo; Tsai, Li-Huei

    2016-01-01

    The dismal success rate of clinical trials for Alzheimer's disease (AD) motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD) patients harboring amyloid precursor protein (APP) duplication or presenilin1 (PSEN1) mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD. PMID:27622770

  11. Human Hepatocyte-Derived Induced Pluripotent Stem Cells: MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues

    Directory of Open Access Journals (Sweden)

    Carmen Unzu

    2016-01-01

    Full Text Available Induced pluripotent stem cells (iPSC are a most promising approach to the development of a hepatocyte transplantable mass sufficient to induce long-term correction of inherited liver metabolic diseases, thus avoiding liver transplantation. Their intrinsic self-renewal ability and potential to differentiate into any of the three germ layers identify iPSC as the most promising cell-based therapeutics, but also as drivers of tumor development. Teratoma development currently represents the gold standard to assess iPSC pluripotency. We analyzed the tumorigenic potential of iPSC generated from human hepatocytes (HEP-iPSC and compared their immunohistochemical profiles to that of tumors developed from fibroblast and hematopoietic stem cell-derived iPSC. HEP-iPSC generated tumors significantly presented more malignant morphological features than reprogrammed fibroblasts or CD34+ iPSC. Moreover, the protooncogene myc showed the strongest expression in HEP-iPSC, compared to only faint expression in the other cell subsets. Random integration of transgenes and the use of potent protooncogenes such as myc might be a risk factor for malignant tumor development if hepatocytes are used for reprogramming. Nonviral vector delivery systems or reprogramming of cells obtained from less invasive harvesting methods would represent interesting options for future developments in stem cell-based approaches for liver metabolic diseases.

  12. An interplay between extracellular signalling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells

    Directory of Open Access Journals (Sweden)

    David A. Turner

    2014-06-01

    Full Text Available Embryonic Stem cells derived from the epiblast tissue of the mammalian blastocyst retain the capability to differentiate into any adult cell type and are able to self-renew indefinitely under appropriate culture conditions. Despite the large amount of knowledge that we have accumulated to date about the regulation and control of self-renewal, efficient directed differentiation into specific tissues remains elusive. In this work, we have analysed in a systematic manner the interaction between the dynamics of loss of pluripotency and Activin/Nodal, BMP4 and Wnt signalling in fate assignment during the early stages of differentiation of mouse ES cells in culture. During the initial period of differentiation, cells exit from pluripotency and enter an Epi-like state. Following this transient stage, and under the influence of Activin/Nodal and BMP signalling, cells face a fate choice between differentiating into neuroectoderm and contributing to Primitive Streak fates. We find that Wnt signalling does not suppress neural development as previously thought and that it aids both fates in a context dependent manner. Our results suggest that as cells exit pluripotency they are endowed with a primary neuroectodermal fate and that the potency to become endomesodermal rises with time. We suggest that this situation translates into a “race for fates” in which the neuroectodermal fate has an advantage.

  13. From pluripotency to distinct cardiomyocyte subtypes.

    Science.gov (United States)

    David, Robert; Franz, Wolfgang-Michael

    2012-06-01

    Differentiated adult cardiomyocytes (CMs) lack significant regenerative potential, which is one reason why degenerative heart diseases are the leading cause of death in the western world. For future cardiac repair, stem cell-based therapeutic strategies may become alternatives to donor heart transplantation. The principle of reprogramming adult terminally differentiated cells (iPSC) had a major impact on stem cell biology. One can now generate autologous pluripotent cells that highly resemble embryonic stem cells (ESC) and that are ethically inoffensive as opposed to human ESC. Yet, due to genetic and epigenetic aberrations arising during the full reprogramming process, it is questionable whether iPSC will enter the clinic in the near future. Therefore, the recent achievement of directly reprogramming fibroblasts into cardiomyocytes via a milder approach, thereby avoiding an initial pluripotent state, may become of great importance. In addition, various clinical scenarios will depend on the availability of specific cardiac cellular subtypes, for which a first step was achieved via our own programming approach to achieve cardiovascular cell subtypes. In this review, we discuss recent progress in the cardiovascular stem cell field addressing the above mentioned aspects. PMID:22689787

  14. Mitochondria in human pluripotent stem cell apoptosis.

    Science.gov (United States)

    TeSlaa, Tara; Setoguchi, Kiyoko; Teitell, Michael A

    2016-04-01

    Human pluripotent stem cells (hPSCs) have great potential in regenerative medicine because they can differentiate into any cell type in the body. Genome integrity is vital for human development and for high fidelity passage of genetic information across generations through the germ line. To ensure genome stability, hPSCs maintain a lower rate of mutation than somatic cells and undergo rapid apoptosis in response to DNA damage and additional cell stresses. Furthermore, cellular metabolism and the cell cycle are also differentially regulated between cells in pluripotent and differentiated states and can aid in protecting hPSCs against DNA damage and damaged cell propagation. Despite these safeguards, clinical use of hPSC derivatives could be compromised by tumorigenic potential and possible malignant transformation from failed to differentiate cells. Since hPSCs and mature cells differentially respond to cell stress, it may be possible to specifically target undifferentiated cells for rapid apoptosis in mixed cell populations to enable safer use of hPSC-differentiated cells in patients. PMID:26828436

  15. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells.

    Science.gov (United States)

    Yoshie, Susumu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Ikeda, Masakazu; Nomoto, Yukio; Wada, Ikuo; Omori, Koichi

    2016-05-01

    Airway epithelial cells derived from induced pluripotent stem (iPS) cells are expected to be a useful source for the regeneration of airway epithelium. Our preliminary study of embryoid body (EB) formation and the air-liquid interface (ALI) method suggested that mouse iPS cells can differentiate into airway epithelial cells. However, whether the cells generated from mouse iPS cells had the character and phenotype of native airway epithelial cells remained uninvestigated. In this study, we generated airway epithelial cells from EBs by culturing them under serum-free conditions supplemented with Activin and bFGF and by the ALI method and characterized the iPS cell-derived airway epithelial cells in terms of their gene expression, immunoreactivity, morphology, and function. Analysis by quantitative real-time reverse transcription-polymerase chain reaction(RT-PCR) revealed that the expression of the undifferentiated cell marker Nanog decreased time-dependently after the induction of differentiation, whereas definitive endoderm markers Foxa2 and Cxcr4 were transiently up-regulated. Thereafter, the expression of airway epithelium markers such as Tubb4a, Muc5ac, and Krt5 was detected by RT-PCR and immunostaining. The formation of tight junctions was also confirmed by immunostaining and permeability assay. Analysis by hematoxylin and eosin staining and scanning electron microscopy indicated that the cells generated from mouse iPS cells formed airway-epithelium-like tissue and had cilia, the movement of which was visualized and observed to be synchronized. These results demonstrate that the airway epithelial cells generated by our method have native characteristics and open new perspectives for the regeneration of injured airway epithelium. PMID:26590823

  16. Analysis of Cell-Derived Microparticles with Highly Precise Nanotechnological Methods

    DEFF Research Database (Denmark)

    Cherré, Solène; Østergaard, Ole; Heegaard, Niels H.H.;

    2014-01-01

    Cell-derived microparticles have gained a broad interest in the past years. Being released by blood cells upon activation or induction of apoptosis, they have a great potential as novel diagnostic markers and their investigation can bring new knowledge into the pathogenesis of various diseases. H...

  17. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles.

    Directory of Open Access Journals (Sweden)

    Anne-lie Ståhl

    2015-02-01

    Full Text Available Shiga toxin (Stx is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS, associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.

  18. Chemokine stromal cell-derived factor 1alpha activates basophils by means of CXCR4

    DEFF Research Database (Denmark)

    Jinquan, T; Jacobi, H H; Jing, C;

    2000-01-01

    The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function o...

  19. Nanog, Oct4 and Tet1 interplay in establishing pluripotency.

    Science.gov (United States)

    Olariu, Victor; Lövkvist, Cecilia; Sneppen, Kim

    2016-01-01

    A few central transcription factors inside mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are believed to control the cells' pluripotency. Characterizations of pluripotent state were put forward on both transcription factor and epigenetic levels. Whereas core players have been identified, it is desirable to map out gene regulatory networks which govern the reprogramming of somatic cells as well as the early developmental decisions. Here we propose a multiple level model where the regulatory network of Oct4, Nanog and Tet1 includes positive feedback loops involving DNA-demethylation around the promoters of Oct4 and Tet1. We put forward a mechanistic understanding of the regulatory dynamics which account for i) Oct4 overexpression is sufficient to induce pluripotency in somatic cell types expressing the other Yamanaka reprogramming factors endogenously; ii) Tet1 can replace Oct4 in reprogramming cocktail; iii) Nanog is not necessary for reprogramming however its over-expression leads to enhanced self-renewal; iv) DNA methylation is the key to the regulation of pluripotency genes; v) Lif withdrawal leads to loss of pluripotency. Overall, our paper proposes a novel framework combining transcription regulation with DNA methylation modifications which, takes into account the multi-layer nature of regulatory mechanisms governing pluripotency acquisition through reprogramming. PMID:27146218

  20. Human embryonic stem cells derived from abnormal blastocyst donated by Marfan syndrome patient

    Directory of Open Access Journals (Sweden)

    Qingqing Yang

    2015-11-01

    Full Text Available Human embryonic stem cell (hESC line was derived from abnormal blastocyst donated by Marfan syndrome patient after preimpantation genetic diagnosis (PGD treatment. DNA sequencing analysis confirmed that the hESC line carried the heterozygous deletion mutation, c.3536delA, of FBN1 gene. Characteristic tests proved that the hESC line presented typical markers of pluripotency and had the capability to form the three germ layers both in vitro and in vivo.

  1. Strategies for enrichment and selection of stem cell-derived tissue precursors

    OpenAIRE

    Bernstein, Harold S.; Hyun, William C.

    2012-01-01

    Human embryonic stem cells have the capacity for self-renewal and pluripotency and thus are a primary candidate for tissue engineering and regenerative therapies. These cells also provide an opportunity to study the development of human tissues ex vivo. To date, numerous human embryonic stem cell lines have been derived and characterized. In this review, we will detail the strategies used to direct tissue-specific differentiation of embryonic stem cells. We also will discuss how these strateg...

  2. NMDA receptor-dependent glutamate excitotoxicity in human embryonic stem cell-derived neurons

    OpenAIRE

    Gupta, K.; Hardingham, G. E.; Chandran, S

    2013-01-01

    Thanks to the development of efficient differentiation strategies, human pluripotent stem cells (HPSC) offer the opportunity for modelling neuronal injury and dysfunction in human neurons in vitro. Critically, the effective use of HPSC-derived neural cells in disease-modelling and potentially cell replacement therapies hinges on an understanding of the biology of these cells, specifically their development, subtype specification and responses to neurotoxic signalling mediators. Here, we gener...

  3. Development of functional human embryonic stem cell-derived neurons in mouse brain

    OpenAIRE

    Muotri, Alysson R.; Nakashima, Kinichi; Toni, Nicolas; Sandler, Vladislav M.; Gage, Fred H

    2005-01-01

    Human embryonic stem cells are pluripotent entities, theoretically capable of generating a whole-body spectrum of distinct cell types. However, differentiation of these cells has been observed only in culture or during teratoma formation. Our results show that human embryonic stem cells implanted in the brain ventricles of embryonic mice can differentiate into functional neural lineages and generate mature, active human neurons that successfully integrate into the adult mouse forebrain. Moreo...

  4. The Proliferation Study of Hips Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold

    OpenAIRE

    Havasi, Parvaneh; Soleimani, Masoud; Morovvati, Hassan; Bakhshandeh, Behnaz; Nabiuni, Mohammad

    2014-01-01

    Introduction The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (derived from human iPSCs) on aligned poly-caprolactone (PCL) nanofibers. Methods Aligned poly-caprolact...

  5. Scalable cultivation of human pluripotent stem cells on chemically-defined surfaces

    Science.gov (United States)

    Hsiung, Michael Chi-Wei

    Human stem cells (SCs) are classified as self-renewing cells possessing great ability in therapeutic applications due of their ability to differentiate along any major cell lineage in the human body. Despite their restorative potential, widespread use of SCs is hampered by strenuous control issues. Along with the need for strict xeno-free environments to sustain growth in culture, current methods for growing human pluripotent stem cells (hPSCs) rely on platforms which impede large-scale cultivation and therapeutic delivery. Hence, any progress towards development of large-scale culture systems is severely hindered. In a concentrated effort to develop a scheme that can serve as a model precursor for large scale SC propagation in clinical use, we have explored methods for cultivating hPSCs on completely defined surfaces. We discuss novel approaches with the potential to go beyond the limitations presented by current methods. In particular, we studied the cultivation of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) on surface which underwent synthetic or chemical modification. Current methods for hPSCs rely on animal-based extracellular matrices (ECMs) such as mouse embryonic fibroblasts (MEFs) or feeders and murine sacoma cell-derived substrates to facilitate their growth. While these layers or coatings can be used to maximize the output of hPSC production, they cannot be considered for clinical use because they risk introducing foreign pathogens into culture. We have identified and developed conditions for a completely defined xeno-free substrate used for culturing hPSCs. By utilizing coupling chemistry, we can functionalize ester groups on a given surface and conjugate synthetic peptides containing the arginine-glycine-aspartic acid (RGD) motif, known for their role in cell adhesion. This method offers advantages over traditional hPSC culture by keeping the modified substrata free of xenogenic response and can be scaled up in

  6. Regulatory insight into the European human pluripotent stem cell registry.

    Science.gov (United States)

    Kurtz, Andreas; Stacey, Glyn; Kidane, Luam; Seriola, Anna; Stachelscheid, Harald; Veiga, Anna

    2014-12-01

    The European pluripotent stem cell registry aims at listing qualified pluripotent stem cell (PSC) lines that are available globally together with relevant information for each cell line. Specific emphasis is being put on documenting ethical procurement of the cells and providing evidence of pluripotency. The report discusses the tasks and challenges for a global PSC registry as an instrument to develop collaboration, to access cells from diverse resources and banks, and to implement standards, and as a means to follow up usage of cells and support adherence to regulatory and scientific standards and transparency for stakeholders. PMID:25457963

  7. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies

    OpenAIRE

    Brouwer, Marinka; Zhou, Huiqing; Nadif Kasri, Nael

    2015-01-01

    The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are concerns in the use of iPSCs, especially in clinical settings. Therefore, reprogramming methods have been under development to generate safer iPSCs with higher efficiency and better quality. Develo...

  8. Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells.

    Science.gov (United States)

    Congras, Annabelle; Barasc, Harmonie; Canale-Tabet, Kamila; Plisson-Petit, Florence; Delcros, Chantal; Feraud, Olivier; Oudrhiri, Noufissa; Hadadi, Eva; Griscelli, Franck; Bennaceur-Griscelli, Annelise; Turhan, Ali; Afanassieff, Marielle; Ferchaud, Stéphane; Pinton, Alain; Yerle-Bouissou, Martine; Acloque, Hervé

    2016-01-01

    The pig is an emerging animal model, complementary to rodents for basic research and for biomedical and agronomical purposes. However despite the progress made on mouse and rat models to produce genuine pluripotent cells, it remains impossible to produce porcine pluripotent cell lines with germline transmission. Reprogramming of pig somatic cells using conventional integrative strategies remains also unsatisfactory. In the present study, we compared the outcome of both integrative and non-integrative reprogramming strategies on pluripotency and chromosome stability during pig somatic cell reprogramming. The porcine cell lines produced with integrative strategies express several pluripotency genes but they do not silence the integrated exogenes and present a high genomic instability upon passaging. In contrast, pig induced pluripotent-like stem cells produced with non-integrative reprogramming system (NI-iPSLCs) exhibit a normal karyotype after more than 12 months in culture and reactivate endogenous pluripotency markers. Despite the persistent expression of exogenous OCT4 and MYC, these cells can differentiate into derivatives expressing markers of the three embryonic germ layers and we propose that these NI-iPSLCs can be used as a model to bring new insights into the molecular factors controlling and maintaining pluripotency in the pig and other non-rodent mammalians. PMID:27245508

  9. Characterization of Induced Pluripotent Stem Cell Microvesicle Genesis, Morphology and Pluripotent Content.

    Science.gov (United States)

    Zhou, Jing; Ghoroghi, Shima; Benito-Martin, Alberto; Wu, Hao; Unachukwu, Uchenna John; Einbond, Linda Saxe; Guariglia, Sara; Peinado, Hector; Redenti, Stephen

    2016-01-22

    Microvesicles (MVs) are lipid bilayer-covered cell fragments that range in diameter from 30 nm-1 uM and are released from all cell types. An increasing number of studies reveal that MVs contain microRNA, mRNA and protein that can be detected in the extracellular space. In this study, we characterized induced pluripotent stem cell (iPSC) MV genesis, content and fusion to retinal progenitor cells (RPCs) in vitro. Nanoparticle tracking revealed that iPSCs released approximately 2200 MVs cell/hour in the first 12 hrs with an average diameter of 122 nm. Electron and light microscopic analysis of iPSCs showed MV release via lipid bilayer budding. The mRNA content of iPSC MVs was characterized and revealed the presence of the transcription factors Oct-3/4, Nanog, Klf4, and C-Myc. The protein content of iPSCs MVs, detected by immunogold electron microscopy, revealed the presence of the Oct-3/4 and Nanog. Isolated iPSC MVs were shown to fuse with RPCs in vitro at multiple points along the plasma membrane. These findings demonstrate that the mRNA and protein cargo in iPSC MVs have established roles in maintenance of pluripotency. Building on this work, iPSC derived MVs may be shown to be involved in maintaining cellular pluripotency and may have application in regenerative strategies for neural tissue.

  10. Sebaceous Carcinoma

    Science.gov (United States)

    ... of the Year Award Arnold P. Gold Foundation Humanism in Medicine Award Diversity Mentorship Program Eugene Van ... What causes sebaceous carcinoma? SC is rare, so scientists still have much to learn, including what causes ...

  11. Messenger RNA- versus retrovirus-based induced pluripotent stem cell reprogramming strategies: analysis of genomic integrity.

    Science.gov (United States)

    Steichen, Clara; Luce, Eléanor; Maluenda, Jérôme; Tosca, Lucie; Moreno-Gimeno, Inmaculada; Desterke, Christophe; Dianat, Noushin; Goulinet-Mainot, Sylvie; Awan-Toor, Sarah; Burks, Deborah; Marie, Joëlle; Weber, Anne; Tachdjian, Gérard; Melki, Judith; Dubart-Kupperschmitt, Anne

    2014-06-01

    The use of synthetic messenger RNAs to generate human induced pluripotent stem cells (iPSCs) is particularly appealing for potential regenerative medicine applications, because it overcomes the common drawbacks of DNA-based or virus-based reprogramming strategies, including transgene integration in particular. We compared the genomic integrity of mRNA-derived iPSCs with that of retrovirus-derived iPSCs generated in strictly comparable conditions, by single-nucleotide polymorphism (SNP) and copy number variation (CNV) analyses. We showed that mRNA-derived iPSCs do not differ significantly from the parental fibroblasts in SNP analysis, whereas retrovirus-derived iPSCs do. We found that the number of CNVs seemed independent of the reprogramming method, instead appearing to be clone-dependent. Furthermore, differentiation studies indicated that mRNA-derived iPSCs differentiated efficiently into hepatoblasts and that these cells did not load additional CNVs during differentiation. The integration-free hepatoblasts that were generated constitute a new tool for the study of diseased hepatocytes derived from patients' iPSCs and their use in the context of stem cell-derived hepatocyte transplantation. Our findings also highlight the need to conduct careful studies on genome integrity for the selection of iPSC lines before using them for further applications.

  12. Technical Challenges in the Derivation of Human Pluripotent Cells

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2011-01-01

    Full Text Available It has long been discovered that human pluripotent cells could be isolated from the blastocyst state of embryos and called human embryonic stem cells (ESCs. These cells can be adapted and propagated indefinitely in culture in an undifferentiated manner as well as differentiated into cell representing the three major germ layers: endoderm, mesoderm, and ectoderm. However, the derivation of human pluripotent cells from donated embryos is limited and restricted by ethical concerns. Therefore, various approaches have been explored and proved their success. Human pluripotent cells can also be derived experimentally by the nuclear reprogramming of somatic cells. These techniques include somatic cell nuclear transfer (SCNT, cell fusion and overexpression of pluripotent genes. In this paper, we discuss the technical challenges of these approaches for nuclear reprogramming, involving their advantages and limitations. We will also highlight the possible applications of these techniques in the study of stem cell biology.

  13. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF - opioid growth factor receptor (OGFr axis

    Directory of Open Access Journals (Sweden)

    Donahue Renee N

    2009-10-01

    Full Text Available Abstract Background Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC is considered more malignant than papillary thyroid carcinoma (PTC, and anaplastic thyroid cancer (ATC is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met5]-enkephalin and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Methods Utilizing human ATC (KAT-18, PTC (KTC-1, and FTC (WRO 82-1 cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX, and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC and WRO 82-1 (FTC tumor cells. Results OGF and OGFr were present in KAT-18 cells. Concentrations of 10-6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival

  14. Adult hematopoietic progenitors are pluripotent in chimeric mice

    OpenAIRE

    Pessac, Bernard; K. Nimmagadda, Vamshi; Makar, Tapas; S. Fishman, Paul; T. Bever Jr., Christopher; Trisler, David

    2012-01-01

    18 pages, 7 figures. Embryonic stem cells (ESCs) and adult somatic cells, induced to pluripotency (iPSCs) by genetic manipulation, display high self-­‐renewal potential and the capacity to differentiate into multiple cell lineages. We asked whether there are in adult mammals natural stem cells that are pluripotent. We previously reported that normal adult mammalian bone marrow contains a sub-­‐population of CD34+ cells, that naturally expresses genes characteristic of ESCs and those requir...

  15. Human pluripotent stem cells: an emerging model in developmental biology

    OpenAIRE

    Zhu, Zengrong; Huangfu, Danwei

    2013-01-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development ‘in a dish’. We also...

  16. Purging and isolating pluripotent cells, "sweet" dreams become true?

    Institute of Scientific and Technical Information of China (English)

    Ignacio Sancho-Martinez; Emmanuel Nivet; Juan Carlos Izpisua Belmonte

    2011-01-01

    The formation of an adult organism could be viewed as a hierarchical process in which the initial totipotent cell,the zygote,progressively loses "potency" by differentiating into pluripotent,multipotent and unipotent states until the final terminally differentiated cells comprising tissues and organs are derived.Such a unidirectional concept trembled when four transcription factors were shown to "revert" the identity of differentiated somatic cells and reprogram them into induced pluripotent stem cells (iPSCs) [1].

  17. Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations.

    Science.gov (United States)

    Santana, Steven M; Antonyak, Marc A; Cerione, Richard A; Kirby, Brian J

    2014-12-01

    Extracellular shed vesicles, including exosomes and microvesicles, are disseminated throughout the body and represent an important conduit of cell communication. Cancer-cell-derived microvesicles have potential as a cancer biomarker as they help shape the tumor microenvironment to promote the growth of the primary tumor and prime the metastatic niche. It is likely that, in cancer cell cultures, the two constituent extracellular shed vesicle subpopulations, observed in dynamic light scattering, represent an exosome population and a cancer-cell-specific microvesicle population and that extracellular shed vesicle size provides information about provenance and cargo. We have designed and implemented a novel microfluidic technology that separates microvesicles, as a function of diameter, from heterogeneous populations of cancer-cell-derived extracellular shed vesicles. We measured cargo carried by the microvesicle subpopulation processed through this microfluidic platform. Such analyses could enable future investigations to more accurately and reliably determine provenance, functional activity, and mechanisms of transformation in cancer. PMID:25342569

  18. Glucose responsive insulin production from human embryonic germ (EG) cell derivatives

    International Nuclear Information System (INIS)

    Type 1 diabetes mellitus subjects millions to a daily burden of disease management, life threatening hypoglycemia and long-term complications such as retinopathy, nephropathy, heart disease, and stroke. Cell transplantation therapies providing a glucose-regulated supply of insulin have been implemented clinically, but are limited by safety, efficacy and supply considerations. Stem cells promise a plentiful and flexible source of cells for transplantation therapies. Here, we show that cells derived from human embryonic germ (EG) cells express markers of definitive endoderm, pancreatic and β-cell development, glucose sensing, and production of mature insulin. These cells integrate functions necessary for glucose responsive regulation of preproinsulin mRNA and expression of insulin C-peptide in vitro. Following transplantation into mice, cells become insulin and C-peptide immunoreactive and produce plasma C-peptide in response to glucose. These findings suggest that EG cell derivatives may eventually serve as a source of insulin producing cells for the treatment of diabetes

  19. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential.

    Science.gov (United States)

    Kittel, A; Falus, A; Buzás, E

    2013-06-01

    Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems.

  20. Cell Pluripotency Levels Associated with Imprinted Genes in Human

    Directory of Open Access Journals (Sweden)

    Liyun Yuan

    2015-01-01

    Full Text Available Pluripotent stem cells are exhibited similarly in the morphology, gene expression, growth properties, and epigenetic modification with embryonic stem cells (ESCs. However, it is still controversial that the pluripotency of induced pluripotent stem cell (iPSC is much inferior to ESC, and the differentiation capacity of iPSC and ESC can also be separated by transcriptome and epigenetics. miRNAs, which act in posttranscriptional regulation of gene expression and are involved in many basic cellular processes, may reveal the answer. In this paper, we focused on identifying the hidden relationship between miRNAs and imprinted genes in cell pluripotency. Total miRNA expression patterns in iPSC and ES cells were comprehensively analysed and linked with human imprinted genes, which show a global picture of their potential function in pluripotent level. A new CPA4-KLF14 region which locates in chromosomal homologous segments (CHSs within mammals and include both imprinted genes and significantly expressed miRNAs was first identified. Molecular network analysis showed genes interacted with imprinted genes closely and enriched in modules such as cancer, cell death and survival, and tumor morphology. This imprinted region may provide a new look for those who are interested in cell pluripotency of hiPSCs and hESCs.

  1. Cell Pluripotency Levels Associated with Imprinted Genes in Human.

    Science.gov (United States)

    Yuan, Liyun; Tang, Xiaoyan; Zhang, Binyan; Ding, Guohui

    2015-01-01

    Pluripotent stem cells are exhibited similarly in the morphology, gene expression, growth properties, and epigenetic modification with embryonic stem cells (ESCs). However, it is still controversial that the pluripotency of induced pluripotent stem cell (iPSC) is much inferior to ESC, and the differentiation capacity of iPSC and ESC can also be separated by transcriptome and epigenetics. miRNAs, which act in posttranscriptional regulation of gene expression and are involved in many basic cellular processes, may reveal the answer. In this paper, we focused on identifying the hidden relationship between miRNAs and imprinted genes in cell pluripotency. Total miRNA expression patterns in iPSC and ES cells were comprehensively analysed and linked with human imprinted genes, which show a global picture of their potential function in pluripotent level. A new CPA4-KLF14 region which locates in chromosomal homologous segments (CHSs) within mammals and include both imprinted genes and significantly expressed miRNAs was first identified. Molecular network analysis showed genes interacted with imprinted genes closely and enriched in modules such as cancer, cell death and survival, and tumor morphology. This imprinted region may provide a new look for those who are interested in cell pluripotency of hiPSCs and hESCs. PMID:26504487

  2. Human Embryonic Stem Cell-Derived Dopaminergic Neurons Reverse Functional Deficit in Parkinsonian Rats

    OpenAIRE

    Yang, Dali; Zhang, Zhi-jian; Oldenburg, Michael; Ayala, Melvin; Zhang, Su-Chun

    2007-01-01

    We show that human embryonic stem cell-derived dopaminergic neurons survived transplantation to the neurotoxin 6-hydroxydopamine-lesioned rat striatum and, in combination with the cells newly differentiated from their progenitors, contributed to locomotive function recovery at 5 months. The animal behavioral improvement was correlated with the dopamine neurons present in the graft. Although the donor cells contained forebrain and midbrain dopamine neurons, the dopamine neurons present in the ...

  3. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells

    OpenAIRE

    Wang, Dachun; Haviland, David L.; Burns, Alan R.; Zsigmond, Eva; Wetsel, Rick A.

    2007-01-01

    Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute ≈60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the ...

  4. Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations

    OpenAIRE

    Santana, Steven M.; Antonyak, Marc A.; Cerione, Richard A.; Kirby, Brian J.

    2014-01-01

    Extracellular shed vesicles, including exosomes and microvesicles, are disseminated throughout the body and represent an important conduit of cell communication. Cancer-cell-derived microvesicles have potential as a cancer biomarker as they help shape the tumor microenvironment to promote the growth of the primary tumor and prime the metastatic niche. It is likely that, in cancer cell cultures, the two constituent extracellular shed vesicle subpopulations, observed in dynamic light scattering...

  5. Towards the Maturation and Characterization of Smooth Muscle Cells Derived from Human Embryonic Stem Cells

    OpenAIRE

    Helena Vazão; Ricardo Pires das Neves; Mário Grãos; Lino Ferreira

    2011-01-01

    In this study we demonstrate that CD34(+) cells derived from human embryonic stem cells (hESCs) have higher smooth muscle cell (SMC) potential than CD34(-) cells. We report that from all inductive signals tested, retinoic acid (RA) and platelet derived growth factor (PDGF(BB)) are the most effective agents in guiding the differentiation of CD34(+) cells into smooth muscle progenitor cells (SMPCs) characterized by the expression of SMC genes and proteins, secretion of SMC-related cytokines, co...

  6. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    OpenAIRE

    Raimondi, L.; De Luca, A.; Amodio, N; Manno, M.; Raccosta, S; Taverna, S; Bellavia, D; Naselli, F; Fontana, S; Schillaci, O.; Giardino, R.; Fini, M.; Tassone, P; A. Santoro; De Leo, G

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs ...

  7. Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics

    OpenAIRE

    John Burke; Ravindra Kolhe; Monte Hunter; Carlos Isales; Mark Hamrick; Sadanand Fulzele

    2016-01-01

    Within the field of regenerative medicine, many have sought to use stem cells as a promising way to heal human tissue; however, in the past few years, exosomes (packaged vesicles released from cells) have shown more exciting promise. Specifically, stem cell-derived exosomes have demonstrated great ability to provide therapeutical benefits. Exosomal products can include miRNA, other genetic products, proteins, and various factors. They are released from cells in a paracrine fashion in order to...

  8. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response.

    Science.gov (United States)

    Koizumi, Keiichi; Hojo, Shozo; Akashi, Takuya; Yasumoto, Kazuo; Saiki, Ikuo

    2007-11-01

    The chemotactic cytokines called chemokines are a superfamily of small secreted cytokines that were initially characterized through their ability to prompt the migration of leukocytes. Attention has been focused on the chemokine receptors expressed on cancer cells because cancer cell migration and metastasis show similarities to leukocyte trafficking. CXC chemokine receptor 4 (CXCR4) was first investigated as a chemokine receptor that is associated with lung metastasis of breast cancers. Recently, CXCR4 was reported to be a key molecule in the formation of peritoneal carcinomatosis in gastric cancer. In the present review, we highlight current knowledge about the role of CXCR4 in cancer metastases. In contrast to chemokine receptors expressed on cancer cells, little is known about the roles of cancer cell-derived chemokines. Cancer tissue consists of both cancer cells and various stromal cells, and leukocytes that infiltrate into cancer are of particular importance in cancer progression. Although colorectal cancer invasion is regulated by the chemokine CCL9-induced infiltration of immature myeloid cells into cancer, high-level expression of cancer cell-derived chemokine CXCL16 increases infiltrating CD8(+) and CD4(+) T cells into cancer tissues, and correlates with a good prognosis. We discuss the conflicting biological effects of cancer cell-derived chemokines on cancer progression, using CCL9 and CXCL16 as examples. PMID:17894551

  9. Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics

    Directory of Open Access Journals (Sweden)

    John Burke

    2016-01-01

    Full Text Available Within the field of regenerative medicine, many have sought to use stem cells as a promising way to heal human tissue; however, in the past few years, exosomes (packaged vesicles released from cells have shown more exciting promise. Specifically, stem cell-derived exosomes have demonstrated great ability to provide therapeutical benefits. Exosomal products can include miRNA, other genetic products, proteins, and various factors. They are released from cells in a paracrine fashion in order to combat local cellular stress. Because of this, there are vast benefits that medicine can obtain from stem cell-derived exosomes. If exosomes could be extracted from stem cells in an efficient manner and packaged with particular regenerative products, then diseases such as rheumatoid arthritis, osteoarthritis, bone fractures, and other maladies could be treated with cell-free regenerative medicine via exosomes. Many advances must be made to get to this point, and the following review highlights the current advances of stem cell-derived exosomes with particular attention to regenerative medicine in orthopaedics.

  10. A lack of commitment for over 500 million years: conserved animal stem cell pluripotency.

    Science.gov (United States)

    Aboobaker, A Aziz; Kao, Damian

    2012-06-13

    Stem cells, both adult and germline, are the key cells underpinning animal evolution. Yet, surprisingly little is known about the evolution of their shared key feature: pluripotency. Now using genome-wide expression profiling of pluripotent planarian adult stem cells (pASCs), Önal et al (2012) present evidence for deep molecular conservation of pluripotency. They characterise the expression profile of pASCs and identify conserved expression profiles and functions for genes required for mammalian pluripotency. Their analyses suggest that molecular pluripotency mechanisms may be conserved, and tantalisingly that pluripotency in germ stem cells (GSCs) and somatic stem cells (SSCs) may have had shared common evolutionary origins.

  11. Analysis of Embryoid Bodies Derived from Human Induced Pluripotent Stem Cells as a Means to Assess Pluripotency

    Directory of Open Access Journals (Sweden)

    Steven D. Sheridan

    2012-01-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs have core properties of unlimited self-renewal and differentiation potential and have emerged as exciting cell sources for applications in regenerative medicine, drug discovery, understanding of development, and disease etiology. Key among numerous criteria to assess pluripotency includes the in vivo teratoma assay that has been widely proposed as a standard functional assay to demonstrate the pluripotency of hiPSCs. Yet, the lack of reliability across methodologies, lack of definitive clinical significance, and associated expenses bring into question use of the teratoma assay as the “gold standard” for determining pluripotency. We propose use of the in vitro embryoid body (EB assay as an important alternative to the teratoma assay. This paper summarizes the methodologies for creating EBs from hiPSCs and the subsequent analyses to assess pluripotency and proposes its use as a cost-effective, controlled, and reproducible approach that can easily be adopted to determine pluripotency of generated hiPSCs.

  12. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue

    OpenAIRE

    Ranera Beatriz; Remacha Ana; Álvarez-Arguedas Samuel; Romero Antonio; Vázquez Francisco; Zaragoza Pilar; Martín-Burriel Inmaculada; Rodellar Clementina

    2012-01-01

    Abstract Background Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2). This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of c...

  13. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

    Directory of Open Access Journals (Sweden)

    Siebler Mario

    2009-08-01

    Full Text Available Abstract Background The present work was performed to investigate the ability of two different embryonic stem (ES cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs, progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. Results While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2, only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2–4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated

  14. Dominant-Negative Effects of Adult-Onset Huntingtin Mutations Alter the Division of Human Embryonic Stem Cells-Derived Neural Cells

    Science.gov (United States)

    Lopes, Carla; Aubert, Sophie; Bourgois-Rocha, Fany; Barnat, Monia; Rego, Ana Cristina; Déglon, Nicole

    2016-01-01

    Mutations of the huntingtin protein (HTT) gene underlie both adult-onset and juvenile forms of Huntington’s disease (HD). HTT modulates mitotic spindle orientation and cell fate in mouse cortical progenitors from the ventricular zone. Using human embryonic stem cells (hESC) characterized as carrying mutations associated with adult-onset disease during pre-implantation genetic diagnosis, we investigated the influence of human HTT and of an adult-onset HD mutation on mitotic spindle orientation in human neural stem cells (NSCs) derived from hESCs. The RNAi-mediated silencing of both HTT alleles in neural stem cells derived from hESCs disrupted spindle orientation and led to the mislocalization of dynein, the p150Glued subunit of dynactin and the large nuclear mitotic apparatus (NuMA) protein. We also investigated the effect of the adult-onset HD mutation on the role of HTT during spindle orientation in NSCs derived from HD-hESCs. By combining SNP-targeting allele-specific silencing and gain-of-function approaches, we showed that a 46-glutamine expansion in human HTT was sufficient for a dominant-negative effect on spindle orientation and changes in the distribution within the spindle pole and the cell cortex of dynein, p150Glued and NuMA in neural cells. Thus, neural derivatives of disease-specific human pluripotent stem cells constitute a relevant biological resource for exploring the impact of adult-onset HD mutations of the HTT gene on the division of neural progenitors, with potential applications in HD drug discovery targeting HTT-dynein-p150Glued complex interactions. PMID:26863614

  15. Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Nicola L. Beer

    2016-07-01

    Full Text Available Type 2 diabetes (T2D is a disease of pandemic proportions, one defined by a complex aetiological mix of genetic, epigenetic, environmental, and lifestyle risk factors. Whilst the last decade of T2D genetic research has identified more than 100 loci showing strong statistical association with disease susceptibility, our inability to capitalise upon these signals reflects, in part, a lack of appropriate human cell models for study. This review discusses the impact of two complementary, state-of-the-art technologies on T2D genetic research: the generation of stem cell-derived, endocrine pancreas-lineage cells and the editing of their genomes. Such models facilitate investigation of diabetes-associated genomic perturbations in a physiologically representative cell context and allow the role of both developmental and adult islet dysfunction in T2D pathogenesis to be investigated. Accordingly, we interrogate the role that patient-derived induced pluripotent stem cell models are playing in understanding cellular dysfunction in monogenic diabetes, and how site-specific nucleases such as the clustered regularly interspaced short palindromic repeats (CRISPR-Cas9 system are helping to confirm genes crucial to human endocrine pancreas development. We also highlight the novel biology gleaned in the absence of patient lines, including an ability to model the whole phenotypic spectrum of diabetes phenotypes occurring both in utero and in adult cells, interrogating the non-coding ‘islet regulome’ for disease-causing perturbations, and understanding the role of other islet cell types in aberrant glycaemia. This article aims to reinforce the importance of investigating T2D signals in cell models reflecting appropriate species, genomic context, developmental time point, and tissue type.

  16. Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology

    Science.gov (United States)

    Beer, Nicola L.; Gloyn, Anna L.

    2016-01-01

    Type 2 diabetes (T2D) is a disease of pandemic proportions, one defined by a complex aetiological mix of genetic, epigenetic, environmental, and lifestyle risk factors. Whilst the last decade of T2D genetic research has identified more than 100 loci showing strong statistical association with disease susceptibility, our inability to capitalise upon these signals reflects, in part, a lack of appropriate human cell models for study. This review discusses the impact of two complementary, state-of-the-art technologies on T2D genetic research: the generation of stem cell-derived, endocrine pancreas-lineage cells and the editing of their genomes. Such models facilitate investigation of diabetes-associated genomic perturbations in a physiologically representative cell context and allow the role of both developmental and adult islet dysfunction in T2D pathogenesis to be investigated. Accordingly, we interrogate the role that patient-derived induced pluripotent stem cell models are playing in understanding cellular dysfunction in monogenic diabetes, and how site-specific nucleases such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system are helping to confirm genes crucial to human endocrine pancreas development. We also highlight the novel biology gleaned in the absence of patient lines, including an ability to model the whole phenotypic spectrum of diabetes phenotypes occurring both in utero and in adult cells, interrogating the non-coding ‘islet regulome’ for disease-causing perturbations, and understanding the role of other islet cell types in aberrant glycaemia. This article aims to reinforce the importance of investigating T2D signals in cell models reflecting appropriate species, genomic context, developmental time point, and tissue type. PMID:27508066

  17. Dominant-Negative Effects of Adult-Onset Huntingtin Mutations Alter the Division of Human Embryonic Stem Cells-Derived Neural Cells.

    Science.gov (United States)

    Lopes, Carla; Aubert, Sophie; Bourgois-Rocha, Fany; Barnat, Monia; Rego, Ana Cristina; Déglon, Nicole; Perrier, Anselme L; Humbert, Sandrine

    2016-01-01

    Mutations of the huntingtin protein (HTT) gene underlie both adult-onset and juvenile forms of Huntington's disease (HD). HTT modulates mitotic spindle orientation and cell fate in mouse cortical progenitors from the ventricular zone. Using human embryonic stem cells (hESC) characterized as carrying mutations associated with adult-onset disease during pre-implantation genetic diagnosis, we investigated the influence of human HTT and of an adult-onset HD mutation on mitotic spindle orientation in human neural stem cells (NSCs) derived from hESCs. The RNAi-mediated silencing of both HTT alleles in neural stem cells derived from hESCs disrupted spindle orientation and led to the mislocalization of dynein, the p150Glued subunit of dynactin and the large nuclear mitotic apparatus (NuMA) protein. We also investigated the effect of the adult-onset HD mutation on the role of HTT during spindle orientation in NSCs derived from HD-hESCs. By combining SNP-targeting allele-specific silencing and gain-of-function approaches, we showed that a 46-glutamine expansion in human HTT was sufficient for a dominant-negative effect on spindle orientation and changes in the distribution within the spindle pole and the cell cortex of dynein, p150Glued and NuMA in neural cells. Thus, neural derivatives of disease-specific human pluripotent stem cells constitute a relevant biological resource for exploring the impact of adult-onset HD mutations of the HTT gene on the division of neural progenitors, with potential applications in HD drug discovery targeting HTT-dynein-p150Glued complex interactions.

  18. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker.

    Directory of Open Access Journals (Sweden)

    Yukihiro Saito

    to ivabradine, an If inhibitor, and to isoproterenol, a beta-adrenergic receptor agonist. Co-culture of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs with aggregates composed of mESC-CMs resulted in synchronized contraction of the cells. The beating rate of hiPSC-CMs co-cultured with aggregates of HCN4-overexpressing mESC-CMs was significantly higher than that of non-treated hiPSC-CMs and that of hiPSC-CMs co-cultured with aggregates of non-overexpressing mESC-CMs.We generated HCN4-overexpresssing mESC-CMs expressing genes required for impulse conduction, showing rapid spontaneous beating, responding to an If inhibitor and beta-adrenergic receptor agonist, and having pacing ability in an in vitro co-culture system with other excitable cells. The results indicated that these cells could be applied to a biological pacemaker.

  19. The molecular mechanism of embryonic stem cell pluripotency maintenance

    Institute of Scientific and Technical Information of China (English)

    WANG Qingzhong; LIU Yixun; HAN Chunsheng

    2005-01-01

    In vitro cultured embryonic stem (ES) cells are derived from the inner cell mass (ICM) of pre-implantation embryos, and are capable of giving rise to all cell and tissue types of the three germ layers upon being injected back into blastocysts. These cells are therefore said to possess pluripotency that can be maintained infinitely in culture under optimal conditions. Such pluripotency maintenance is believed to be due to the symmetrical cleavage of the cells in an undifferentiated state. The pluripotency of ES cells is the basis for their various practical and potential applications. ES cells can be used as donor cells to generate knockout or transgenic animals, as in vitro models of mammalian development, and as cell resources for cell therapy in regenerative medicine. The further success in these applications, particularly in the last two, is dependent on the establishment of a culture system with components in the medium clearly defined and the subsequent procedures for controlled differentiation of the cells into specific lineages. In turn, elucidating the molecular mechanism for pluripotency maintenance of ES cells is the prerequisite. This paper summarizes the recent progresses in this area, focusing mainly on the LIF/STAT3, BMPs/Smads, canonical Wnt, TGFβ/activin/nodal, PI3K and FGF signaling pathways and the genes such as oct4, nanog that are crucial in ES cell pluripotency maintenance. The regulatory systems of pluripotency maintenance in both mouse and human ES cells are also discussed. We believe that the cross-talkings between these signaling pathways, as well as the regulatory system underlying pluripotency maintenance will be the main focus in the area of ES cell researches in the future.

  20. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells

    OpenAIRE

    Wu, Yuxin; Zhang, Jinghan; Ben, Xiaoming

    2013-01-01

    Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were separated and cultured using the “pour-off” method. Non-adherent bone marrow cell-derived mesenchymal stem cells developed colony-forming unit-fibroblasts, and could be expanded by supplementation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor ex...

  1. Induced pluripotent stem cells and neurodegenerative diseases.

    Science.gov (United States)

    Chen, Chao; Xiao, Shi-Fu

    2011-04-01

    Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

  2. Genome Editing in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Smith, Cory; Ye, Zhaohui; Cheng, Linzhao

    2016-01-01

    Pluripotent stem cells (PSCs), defined by their capacity for self-renewal and differentiation into all cell types, are an integral tool for basic biological research and disease modeling. However, full use of PSCs for research and regenerative medicine requires the ability to precisely edit their DNA to correct disease-causing mutations and for functional analysis of genetic variations. Recent advances in DNA editing of human stem cells (including PSCs) have benefited from the use of designer nucleases capable of making double-strand breaks (DSBs) at specific sequences that stimulate endogenous DNA repair. The clustered, regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has become the preferred designer nuclease for genome editing in human PSCs and other cell types. Here we describe the principles for designing a single guide RNA to uniquely target a gene of interest and describe strategies for disrupting, inserting, or replacing a specific DNA sequence in human PSCs. The improvements in efficiency and ease provided by these techniques allow individuals to precisely engineer PSCs in a way previously limited to large institutes and core facilities. PMID:27037079

  3. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Marianne; Rasmussen, Mikkel Aabech;

    2012-01-01

    Porcine induced pluripotent stem cells (piPSCs) have the capacity to differentiate in vitro and in vivo and form chimeras. However, the lack of transgene silencing of exogenous DNA integrated into the genome and the inability of cells to proliferate in the absence of transgene expression are unde......Porcine induced pluripotent stem cells (piPSCs) have the capacity to differentiate in vitro and in vivo and form chimeras. However, the lack of transgene silencing of exogenous DNA integrated into the genome and the inability of cells to proliferate in the absence of transgene expression...... are underlying reported problems, suggesting that reprogramming is not complete. The aim of the present study was to evaluate reprogramming events using a partially reprogrammed piPSC-like line expressing hOCT4, hNANOG, and hcMYC under tetracycline-regulated control to investigate the effects of these particular....... Despite the ability for some endogenous genes to be expressed in these lines, the piPSC-like cells still cannot be maintained without doxycycline, indicating that the culture system of piPSCs may not be optimal or that the reprogramming factor combination used may not currently be optimal for maintaining...

  4. Chaotic expression dynamics implies pluripotency: when theory and experiment meet

    Directory of Open Access Journals (Sweden)

    Furusawa Chikara

    2009-05-01

    Full Text Available Abstract Background During normal development, cells undergo a unidirectional course of differentiation that progressively decreases the number of cell types they can potentially become. Pluripotent stem cells can differentiate into several types of cells, but terminally differentiated cells cannot differentiate any further. A fundamental problem in stem cell biology is the characterization of the difference in cellular states, e.g., gene expression profiles, between pluripotent stem cells and terminally differentiated cells. Presentation of the hypothesis To address the problem, we developed a dynamical systems model of cells with intracellular protein expression dynamics and interactions with each other. According to extensive simulations, cells with irregular (chaotic oscillations in gene expression dynamics have the potential to differentiate into other cell types. During development, such complex oscillations are lost successively, leading to a loss of pluripotency. These simulation results, together with recent single-cell-level measurements in stem cells, led us to the following hypothesis regarding pluripotency: Chaotic oscillation in the expression of some genes leads to cell pluripotency and affords cellular state heterogeneity, which is supported by itinerancy over quasi-stable states. Differentiation stabilizes these states, leading to a loss of pluripotency. Testing the hypothesis To test the hypothesis, it is crucial to measure the time course of gene expression levels at the single-cell level by fluorescence microscopy and fluorescence-activated cell sorting (FACS analysis. By analyzing the time series of single-cell-level expression data, one can distinguish whether the variation in protein expression level over time is due only to stochasticity in expression dynamics or originates from the chaotic dynamics inherent to cells, as our hypothesis predicts. By further analyzing the expression in differentiated cell types, one can

  5. Association of mast cell-derived VEGF and proteases in Dengue shock syndrome.

    Directory of Open Access Journals (Sweden)

    Takahisa Furuta

    Full Text Available BACKGROUND: Recent in-vitro studies have suggested that mast cells are involved in Dengue virus infection. To clarify the role of mast cells in the development of clinical Dengue fever, we compared the plasma levels of several mast cell-derived mediators (vascular endothelial cell growth factor [VEGF], soluble VEGF receptors [sVEGFRs], tryptase, and chymase and -related cytokines (IL-4, -9, and -17 between patients with differing severity of Dengue fever and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: The study was performed at Children's Hospital No. 2, Ho Chi Minh City, and Vinh Long Province Hospital, Vietnam from 2002 to 2005. Study patients included 103 with Dengue fever (DF, Dengue hemorrhagic fever (DHF, and Dengue shock syndrome (DSS, as diagnosed by the World Health Organization criteria. There were 189 healthy subjects, and 19 febrile illness patients of the same Kinh ethnicity. The levels of mast cell-derived mediators and -related cytokines in plasma were measured by ELISA. VEGF and sVEGFR-1 levels were significantly increased in DHF and DSS compared with those of DF and controls, whereas sVEGFR-2 levels were significantly decreased in DHF and DSS. Significant increases in tryptase and chymase levels, which were accompanied by high IL-9 and -17 concentrations, were detected in DHF and DSS patients. By day 4 of admission, VEGF, sVEGFRs, and proteases levels had returned to similar levels as DF and controls. In-vitro VEGF production by mast cells was examined in KU812 and HMC-1 cells, and was found to be highest when the cells were inoculated with Dengue virus and human Dengue virus-immune serum in the presence of IL-9. CONCLUSIONS: As mast cells are an important source of VEGF, tryptase, and chymase, our findings suggest that mast cell activation and mast cell-derived mediators participate in the development of DHF. The two proteases, particularly chymase, might serve as good predictive markers of Dengue disease severity.

  6. Deterministic direct reprogramming of somatic cells to pluripotency.

    Science.gov (United States)

    Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H

    2013-10-01

    Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution. PMID:24048479

  7. Deterministic direct reprogramming of somatic cells to pluripotency.

    Science.gov (United States)

    Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H

    2013-10-01

    Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.

  8. Carcinoma vulvar

    Directory of Open Access Journals (Sweden)

    Yamit Peñas Zayas

    2015-11-01

    Full Text Available El carcinoma de la vulva tiene una incidencia de aproximadamente un 3-5% dentro de todas las enfermedades ginecológicas malignas. El 90% de los tumores malignos de la vulva está constituido por carcinoma epidermoide, el resto son adenocarcinomas, carcinomas de células basales y melanomas. Se realiza la presentación de un caso de una paciente femenina de 25 años de edad con antecedentes  de Diabetes Mellitus tipo II y trombopatia, que ingresa en el servicio de ginecología con un cuadro cutáneo polimorfo, localizado en labios mayores y menores, dado por lesiones eritematoerosivas y vegetante, sospechándose clínicamente el diagnóstico  de un carcinoma epidermoide, corroborándose el mismo histológicamente al realizarse biopsia de piel. Se indicó tratamiento con quimioterapia. Por la edad de la paciente y ser menos frecuente en mucosa que en la piel,  motivo la presentación del caso.

  9. Parathyroid carcinoma

    DEFF Research Database (Denmark)

    Qvist, N; Krøll, L; Ladefoged, C;

    1986-01-01

    Parathyroid carcinoma is a slow growing tumor, and the patients most often die from complications to the hypercalcemia. Therefore, any attempt should be made to remove local recurrence and metastasis surgically, as medical treatment is disappointing. A case treated with extensive vascular surgery...

  10. Chemotherapy and anti-angiogenic drugs affect composition and coagulant phenotype of cell-derived vesicles in cancer patients

    NARCIS (Netherlands)

    Kleinjan, A.; Verhoeff, J.; Berckmans, R.; Kunst, P.; Van Doormaal, F.; Di Nisio, M.; Richel, D.; Kamphuisen, P.W.; Büller, H.R.; Nieuwland, R.

    2013-01-01

    Background: The relationship between chemotherapy and circulating microparticles in patients with cancer is complex. First, release of cancer cell-derived microparticles may contribute to resistance of cancer cells to chemotherapy. Second, chemotherapy and angiogenesis inhibiting agents promote a pr

  11. Effects of lamivudine on the function of dendritic cells derived from patients with chronic hepatitis B virus infection

    OpenAIRE

    Zheng, Peng-Yuan; Zhang, Dong-Yun; Lu, Gao-Feng; Yang, Ping-Chang; Qi, Yuan-Ming; Wang, Bai-Sheng

    2007-01-01

    AIM: To investigate if the nucleoside analogue lamivudine (LAM), a potent inhibitor of HBV replication, could restore the function of dendritic cells derived from patients with chronic hepatitis B (CHB) in an Asian population.

  12. An ES-Like pluripotent state in FGF-dependent murine iPS cells

    NARCIS (Netherlands)

    B. di Stefano (Bruno); C. Buecker (Christa); F. Ungaro (Federica); A. Prigione (Alessandro); H.H. Chen; M. Welling (Maaike); M. Eijpe (Maureen); G. Mostoslavsky (Gustavo); P. Tesar (Paul); J. Adjaye (James); N. Geijsen (Niels); V. Broccoli (Vania)

    2010-01-01

    textabstractRecent data demonstrates that stem cells can exist in two morphologically, molecularly and functionally distinct pluripotent states; a naïve LIF-dependent pluripotent state which is represented by murine embryonic stem cells (mESCs) and an FGFdependent primed pluripotent state represente

  13. Activity-dependent long-term plasticity of afferent synapses on grafted stem/progenitor cell-derived neurons.

    OpenAIRE

    Toft Sörensen, Andreas; Rogelius, Nina; Lundberg, Cecilia; Kokaia, Merab

    2011-01-01

    Stem cell-based cell replacement therapies aiming at restoring injured or diseased brain function ultimately rely on the capability of transplanted cells to promote functional recovery. The mechanisms by which stem cell-based therapies for neurological conditions can lead to functional recovery are uncertain, but structural and functional repair appears to depend on integration of transplanted cell-derived neurons into neuronal circuitries. The nature by which stem/progenitor cell-derived neu...

  14. Sex-Dependent Gene Expression in Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Daniel Ronen

    2014-08-01

    Full Text Available Males and females have a variety of sexually dimorphic traits, most of which result from hormonal differences. However, differences between male and female embryos initiate very early in development, before hormonal influence begins, suggesting the presence of genetically driven sexual dimorphisms. By comparing the gene expression profiles of male and X-inactivated female human pluripotent stem cells, we detected Y-chromosome-driven effects. We discovered that the sex-determining gene SRY is expressed in human male pluripotent stem cells and is induced by reprogramming. In addition, we detected more than 200 differentially expressed autosomal genes in male and female embryonic stem cells. Some of these genes are involved in steroid metabolism pathways and lead to sex-dependent differentiation in response to the estrogen precursor estrone. Thus, we propose that the presence of the Y chromosome and specifically SRY may drive sex-specific differences in the growth and differentiation of pluripotent stem cells.

  15. Initial embryology and pluripotent stem cells in the pig

    DEFF Research Database (Denmark)

    Secher, Jan Ole Bertelsen; Callesen, Henrik; Freude, Kristine;

    2016-01-01

    to produce genetically modified mice since the mid-80s. However, no convincing reports on the generation of bona fide porcine embryonic stem cells or embryonic germ cells resulted from these activities, and with the advent of somatic cell nuclear transfer during the late 90s, alternative methods for creating......The quest for porcine pluripotent stem cells (PSCs) was initiated in the early 90s. Initially, it was the intention to benefit from these cells for production of genetically modified pigs using homologous recombination followed by derivation of chimeric offspring; a technology that has been used...... genetically modified pigs emerged. Over the past years, renewed interest in porcine PSCs has sparked activities in deriving in particular porcine induced pluripotent stem cells to develop the pig as a faithful model for studying the potentials and risks associated with induced pluripotent stem cell...

  16. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Hall, Vanessa J.

    2016-01-01

    Neurodegenerative diseases are being modelled in-vitro using human patient-specific, induced pluripotent stem cells and transgenic embryonic stem cells to determine more about disease mechanisms, as well as to discover new treatments for patients. Current research in modelling Alzheimer’s disease......, frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... that includes studying more complex 3D cell cultures, as well as accelerating aging of the neurons, may help to yield stronger phenotypes in the cultured cells. Thus, the use and application of pluripotent stem cells for modelling disease have already shown to be a powerful approach for discovering more about...

  17. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Science.gov (United States)

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  18. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells.

    Science.gov (United States)

    Wang, Dachun; Haviland, David L; Burns, Alan R; Zsigmond, Eva; Wetsel, Rick A

    2007-03-13

    Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute approximately 60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the differentiation of hES cells into an essentially pure (>99%) population of ATII cells (hES-ATII). Purity, as well as biological features and morphological characteristics of normal ATII cells, was demonstrated for the hES-ATII cells, including lamellar body formation, expression of surfactant proteins A, B, and C, alpha-1-antitrypsin, and the cystic fibrosis transmembrane conductance receptor, as well as the synthesis and secretion of complement proteins C3 and C5. Collectively, these data document the successful generation of a pure population of ATII cells derived from hES cells, providing a practical source of ATII cells to explore in disease models their potential in the regeneration and repair of the injured alveolus and in the therapeutic treatment of genetic diseases affecting the lung. PMID:17360544

  19. Functions of Müller cell-derived vascular endothelial growthfactor in diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Müller cells are macroglia and play many essentialroles as supporting cells in the retina. To respond topathological changes in diabetic retinopathy (DR), amajor complication in the eye of diabetic patients,retinal Müller glia produce a high level of vascularendothelial growth factor (VEGF or VEGF-A). As VEGFis expressed by multiple retinal cell-types and Müllerglia comprise only a small portion of cells in the retina,it has been a great challenge to reveal the function ofVEGF or other globally expressed proteins produced byMüller cells. With the development of conditional genetargeting tools, it is now possible to dissect the functionof Müller cell-derived VEGF in vivo . By using conditionalgene targeting approach, we demonstrate that Müllerglia are a major source of retinal VEGF in diabetic miceand Müller cell-derived VEGF plays a significant role inthe alteration of protein expression and peroxynitration,which leads to retinal inflammation, neovascularization,vascular leakage, and vascular lesion, key pathologicalchanges in DR. Therefore, Müller glia are a potentialcellular target for the treatment of DR, a leading causeof blindness.

  20. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    International Nuclear Information System (INIS)

    Highlights: → Adipocyte dedifferentiation is evident in a significant decrease in typical genes. → Cell proliferation is strongly related to adipocyte dedifferentiation. → Dedifferentiated adipocytes express several lineage-specific genes. → Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  1. Data on importance of hematopoietic cell derived Lipocalin 2 against gut inflammation.

    Science.gov (United States)

    Saha, Piu; Singh, Vishal; Xiao, Xia; Yeoh, Beng San; Vijay-Kumar, Matam

    2016-09-01

    The data herein is related to the research article entitled "Microbiota-inducible innate immune siderophore binding protein Lipocalin 2 is critical for intestinal homeostasis" (Singh et al., 2016) [1]. In the present article, we monitored dextran sodium sulfate (DSS)-induced colitis development upon Lipocalin 2 (Lcn2) neutralization, and examined the survival of Lcn2 deficient (Lcn2KO) mice and their WT littermates upon DSS challenge. To dissect the relative contribution of immune and non-immune cells-derived Lcn2 in mediating protection against gut inflammation, we generated respective bone marrow chimera and evaluated their susceptibility to IL-10 receptor neutralization-induced chronic colitis. Neutralization of Lcn2 in WT mice resulted in exacerbated DSS-induced colitis. Notably, mice lacking Lcn2 exhibited 100% mortality whereas only 20% mortality was observed in WT mice upon DSS challenge. Further, data from bone marrow chimera showed that immune cell-derived Lcn2 is the major contributor in conferring protection against colitis. PMID:27500193

  2. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Hiromasa [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Oki, Yoshinao [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Bono, Hidemasa [Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kano, Koichiro, E-mail: kkano@brs.nihon-u.ac.jp [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan)

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  3. Identification of Pluripotency Genes in the Fish Medaka

    Directory of Open Access Journals (Sweden)

    Danke Wang, Dwarakanath Manali, Tiansu Wang, Narayani Bhat, Ni Hong, Zhendong Li, Li Wang, Yan Yan, Rong Liu, Yunhan Hong

    2011-01-01

    Full Text Available Stem cell cultures can be derived directly from early developing embryos and indirectly from differentiated cells by forced expression of pluripotency transcription factors. Pluripotency genes are routinely used to characterize mammalian stem cell cultures at the molecular level. However, such genes have remained unknown in lower vertebrates. In this regard, the laboratory fish medaka is uniquely suited because it has embryonic stem (ES cells and genome sequence data. We identified seven medaka pluripotency genes by homology search and expression in vivo and in vitro. By RT-PCR analysis, the seven genes fall into three groups of expression pattern. Group I includes nanog and oct4 showing gonad-specific expression; Group II contains sall4 and zfp281 displaying gonad-preferential expression; Group III has klf4, ronin and tcf3 exhibiting expression also in several somatic tissues apart from the gonads. The transcripts of the seven genes are maternally supplied and persist at a high level during early embryogenesis. We made use of early embryos and adult gonads to examine expression in stem cells and differentiated derivatives by in situ hybridization. Strikingly, nanog and oct4 are highly expressed in pluripotent blastomeres of 16-cell embryos. In the adult testis, nanog expression was specific to spermatogonia, the germ stem cells, whereas tcf3 expression occurred in spermatogonia and differentiated cells. Most importantly, all the seven genes are pluripotency markers in vitro, because they have high expression in undifferentiated ES cells but dramatic down-regulation upon differentiation. Therefore, these genes have conserved their pluripotency-specific expression in vitro from mammals to lower vertebrates.

  4. Engineered human embryonic stem cell-derived lymphocytes to study in vivo trafficking and immunotherapy.

    Science.gov (United States)

    Knorr, David A; Bock, Allison; Brentjens, Renier J; Kaufman, Dan S

    2013-07-01

    Human embryonic stem cell (hESC)-derived natural killer (NK) cells are a promising source of antitumor lymphocytes for immunotherapeutics. They also provide a genetically tractable platform well suited for the study of antitumor immunotherapies in preclinical models. We have previously demonstrated the potency of hESC-derived NK cells in vivo. Here we use both bioluminescent and fluorescent imaging to demonstrate trafficking of hESC-derived NK cells to tumors in vivo. Our dual-imaging approach allowed us to more specifically define the kinetics of NK cell trafficking to tumor sites. NK cell persistence and trafficking were further evaluated by flow cytometry and immunohistochemistry. This integrated approach provides a unique system to apply the use of human pluripotent stem cells to study the kinetics and biodistribution of adoptively transferred lymphocytes, advances broadly applicable to the field of immunotherapy.

  5. Canine pluripotent stem cells: Are they ready for clinical applications?

    Directory of Open Access Journals (Sweden)

    Dean Harvey Betts

    2015-10-01

    Full Text Available The derivation of canine embryonic stem cells and generation of canine induced pluripotent stem cells are significant achievements that have unlocked the potential for developing novel cell-based disease models, drug discovery platforms and transplantation therapies in the dog. A progression from concept to cure in this clinically relevant companion animal will not only help our canine patients but also help advance human regenerative medicine. Nevertheless, many issues remain to be resolved before pluripotent cells can be used clinically in a safe and reproducible manner.

  6. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae; Jeon, Ryoung-Hoon; Jang, Si-Jung; Lee, Yeon-Mi [Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Park, Bong-Wook; Byun, June-Ho [Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju 660-702 (Korea, Republic of); Ahn, Chun-Seob; Kim, Jae-Won [Department of Microbiology, Division of Life Sciences, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Rho, Gyu-Jin, E-mail: jinrho@gnu.ac.kr [Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2014-01-01

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.

  7. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    International Nuclear Information System (INIS)

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs

  8. Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles.

    Directory of Open Access Journals (Sweden)

    Gnanaratnam Giritharan

    Full Text Available We have derived hESC from biopsied blastomeres of cleavage stage embryos under virtually the same conditions we used for the derivation of hESC lines from inner cell mass of blastocyst stage embryos. Blastomere-derived hESC lines exhibited all the standard characteristics of hESC including undifferentiated proliferation, genomic stability, expression of pluripotency markers and the ability to differentiate into the cells of all three germ layers both in vitro and in vivo. To examine whether hESC lines derived from two developmental stages of the embryo differ in gene expression, we have subjected three blastomere-derived hESC lines and two ICM-derived hESC lines grown under identical culture conditions to transcriptome analysis using gene expression arrays. Unlike previously reported comparisons of hESC lines which demonstrated, apart from core hESC-associated pluripotency signature, significant variations in gene expression profiles of different lines, our data show that hESC lines derived and grown under well-controlled defined culture conditions adopt nearly identical gene expression profiles. Moreover, blastomere-derived and ICM-derived hESC exhibited very similar transcriptional profiles independent of the developmental stage of the embryo from which they originated. Furthermore, this profile was evident in very early passages of the cells and did not appear to be affected by extensive passaging. These results suggest that during derivation process cells which give rise to hESC acquire virtually identical stable phenotype and are not affected by the developmental stage of the starting cell population.

  9. Derivation of transgene-free human induced pluripotent stem cells from human peripheral T cells in defined culture conditions.

    Directory of Open Access Journals (Sweden)

    Yoshikazu Kishino

    Full Text Available Recently, induced pluripotent stem cells (iPSCs were established as promising cell sources for revolutionary regenerative therapies. The initial culture system used for iPSC generation needed fetal calf serum in the culture medium and mouse embryonic fibroblast as a feeder layer, both of which could possibly transfer unknown exogenous antigens and pathogens into the iPSC population. Therefore, the development of culture systems designed to minimize such potential risks has become increasingly vital for future applications of iPSCs for clinical use. On another front, although donor cell types for generating iPSCs are wide-ranging, T cells have attracted attention as unique cell sources for iPSCs generation because T cell-derived iPSCs (TiPSCs have a unique monoclonal T cell receptor genomic rearrangement that enables their differentiation into antigen-specific T cells, which can be applied to novel immunotherapies. In the present study, we generated transgene-free human TiPSCs using a combination of activated human T cells and Sendai virus under defined culture conditions. These TiPSCs expressed pluripotent markers by quantitative PCR and immunostaining, had a normal karyotype, and were capable of differentiating into cells from all three germ layers. This method of TiPSCs generation is more suitable for the therapeutic application of iPSC technology because it lowers the risks associated with the presence of undefined, animal-derived feeder cells and serum. Therefore this work will lead to establishment of safer iPSCs and extended clinical application.

  10. Thyroid cancer - medullary carcinoma

    Science.gov (United States)

    Thyroid - medullary carcinoma; Cancer - thyroid (medullary carcinoma); MTC; Thyroid nodule - medullary ... The cause of medullary carcinoma of the thyroid (MTC) is unknown. MTC is very rare. It can occur in children and adults. Unlike other types ...

  11. Basal Cell Carcinoma (BCC)

    Science.gov (United States)

    ... epithelioma, is the most common form of skin cancer. Basal cell carcinoma usually occurs on sun-damaged skin, especially ... other health issues. Infiltrating or morpheaform basal cell carcinomas: Infiltrating basal cell carcinomas can be more aggressive and locally destructive ...

  12. Kidney Specific Protein-Positive Cells Derived from Embryonic Stem Cells Reproduce Tubular Structures In Vitro and Differentiate into Renal Tubular Cells

    OpenAIRE

    Ryuji Morizane; Toshiaki Monkawa; Shizuka Fujii; Shintaro Yamaguchi; Koichiro Homma; Yumi Matsuzaki; Hideyuki Okano; Hiroshi Itoh

    2013-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be...

  13. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies.

    Science.gov (United States)

    Brouwer, Marinka; Zhou, Huiqing; Nadif Kasri, Nael

    2016-02-01

    The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are concerns in the use of iPSCs, especially in clinical settings. Therefore, reprogramming methods have been under development to generate safer iPSCs with higher efficiency and better quality. Developments have mainly focused on the somatic cell source, the cocktail of reprogramming factors, the delivery method used to introduce reprogramming factors and culture conditions to maintain the generated iPSCs. This review discusses the developments on these topics and briefly discusses pros and cons of iPSCs in comparison with human embryonic stem cells generated from somatic cell nuclear transfer. PMID:26424535

  14. Carcinoma verrugoso

    Directory of Open Access Journals (Sweden)

    Esteban Quesada Jiménez

    2004-09-01

    Full Text Available Se presenta el caso de un paciente masculino de 76 años, vecino de Turrialba, agricultor, que consultó por una lesión de 3 años de evolución, localizada en la palma de la mano derecha a nivel palmar y compromiso de los dedos de la misma mano, caracterizada como una neoformación exofítica verrugosa de 5 por 11 cm. aproximadamente, con material caseoso entre sus crestas. La lesión ha estado creciendo de forma acelerada en los últimos 3 meses, causándole dolor y que le imposibilita ellaborar. Se le realizaron exámenes y se descartaron varias causas infecciosas, y concluyendo luego de varias biopsias con el diagnóstico de un carcinoma verrugoso. El paciente fue tratado mediante una amputación parcial de la mano. Este tumor es una variante del carcinoma epidermoide y presentamos su clasificación, patogénesis, histopatología, manifestaciones clínicas más frecuentes y diagnóstico diferencial.A 76 year old farmer from Turrialba (Cartago, presented with a 3 year old lesion of his right pal and proximal fingers. It was exophitic, wart like, and it measured 5x11 cm, draining caseous material from its crests. The lesion had grows quickly for the last 3 months and it became tender to the point of making impossible for him to work. A series of tests were done to rule out other possible infections causes, after several biopsies the diagnosis of verrocous carcinoma was made. The patient underwent a partial amputation of his hand. This tumor is considered a from of squamous cell carcinoma, we present here its classification, pathogenesis, histopathology, clinical manifestations and diferential diagnosis.

  15. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter.

    Directory of Open Access Journals (Sweden)

    Bin-Bin Xie

    Full Text Available The neural retina is a critical component of the visual system, which provides the majority of sensory input in humans. Various retinal degenerative diseases can result in the permanent loss of retinal neurons, especially the light-sensing photoreceptors and the centrally projecting retinal ganglion cells (RGCs. The replenishment of lost RGCs and the repair of optic nerve damage are particularly challenging, as both RGC specification and their subsequent axonal growth and projection involve complex and precise regulation. To explore the developmental potential of pluripotent stem cell-derived neural progenitors, we have established mouse iPS cells that allow cell lineage tracing of progenitors that have expressed Atoh7/Math5, a bHLH transcription factor required for RGC production. These Atoh7 lineage reporter iPS cells encode Cre to replace one copy of the endogenous Atoh7 gene and a Cre-dependent YFP reporter in the ROSA locus. In addition, they express pluripotent markers and are capable of generating teratomas in vivo. Under anterior neural induction and neurogenic conditions in vitro, the Atoh7-Cre/ROSA-YFP iPS cells differentiate into neurons that co-express various RGC markers and YFP, indicating that these neurons are derived from Atoh7-expressing progenitors. Consistent with previous in vivo cell lineage studies, the Atoh7-Cre/ROSA-YFP iPS cells also give rise to a subset of Crx-positive photoreceptor precursors. Furthermore, inhibition of Notch signaling in the iPSC cultures results in a significant increase of YFP-positive RGCs and photoreceptor precursors. Together, these results show that Atoh7-Cre/ROSA-YFP iPS cells can be used to monitor the development and survival of RGCs and photoreceptors from pluripotent stem cells.

  16. Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα.

    Science.gov (United States)

    Bueno, C; Sardina, J L; Di Stefano, B; Romero-Moya, D; Muñoz-López, A; Ariza, L; Chillón, M C; Balanzategui, A; Castaño, J; Herreros, A; Fraga, M F; Fernández, A; Granada, I; Quintana-Bustamante, O; Segovia, J C; Nishimura, K; Ohtaka, M; Nakanishi, M; Graf, T; Menendez, P

    2016-03-01

    B cells have been shown to be refractory to reprogramming and B-cell-derived induced pluripotent stem cells (iPSC) have only been generated from murine B cells engineered to carry doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) cassette in every tissue and from EBV/SV40LT-immortalized lymphoblastoid cell lines. Here, we show for the first time that freshly isolated non-cultured human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20+ B cells can be reprogrammed to iPSCs carrying complete VDJH immunoglobulin (Ig) gene monoclonal rearrangements using non-integrative tetracistronic, but not monocistronic, OSKM-expressing Sendai Virus. Co-expression of C/EBPα with OSKM facilitates iPSC generation from both CB- and PB-derived B cells. We also demonstrate that myeloid cells are much easier to reprogram than B and T lymphocytes. Differentiation potential back into the cell type of their origin of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is not skewed, suggesting that their differentiation does not seem influenced by 'epigenetic memory'. Our data reflect the actual cell-autonomous reprogramming capacity of human primary B cells because biased reprogramming was avoided by using freshly isolated primary cells, not exposed to cytokine cocktails favoring proliferation, differentiation or survival. The ability to reprogram CB/PB-derived primary human B cells offers an unprecedented opportunity for studying developmental B lymphopoiesis and modeling B-cell malignancies. PMID:26500142

  17. Generation of Human Induced Pluripotent Stem Cells from Extraembryonic Tissues of Fetuses Affected by Monogenic Diseases.

    Science.gov (United States)

    Spitalieri, Paola; Talarico, Rosa V; Botta, Annalisa; Murdocca, Michela; D'Apice, Maria Rosaria; Orlandi, Augusto; Giardina, Emiliano; Santoro, Massimo; Brancati, Francesco; Novelli, Giuseppe; Sangiuolo, Federica

    2015-08-01

    The generation of human induced pluripotent stem cells (hiPSCs) derived from an autologous extraembryonic fetal source is an innovative personalized regenerative technology that can transform own-self cells into embryonic stem-like ones. These cells are regarded as a promising candidate for cell-based therapy, as well as an ideal target for disease modeling and drug discovery. Thus, hiPSCs enable researchers to undertake studies for treating diseases or for future applications of in utero therapy. We used a polycistronic lentiviral vector (hSTEMCCA-loxP) encoding OCT4, SOX2, KLF4, and cMYC genes and containing loxP sites, excisible by Cre recombinase, to reprogram patient-specific fetal cells derived from prenatal diagnosis for several genetic disorders, such as myotonic dystrophy type 1 (DM1), β-thalassemia (β-Thal), lymphedema-distichiasis syndrome (LDS), spinal muscular atrophy (SMA), cystic fibrosis (CF), as well as from wild-type (WT) fetal cells. Because cell types tested to create hiPSCs influence both the reprogramming process efficiency and the kinetics, we used chorionic villus (CV) and amniotic fluid (AF) cells, demonstrating how they represent an ideal cell resource for a more efficient generation of hiPSCs. The successful reprogramming of both CV and AF cells into hiPSCs was confirmed by specific morphological, molecular, and immunocytochemical markers and also by their teratogenic potential when inoculated in vivo. We further demonstrated the stability of reprogrammed cells over 10 and more passages and their capability to differentiate into the three embryonic germ layers, as well as into neural cells. These data suggest that hiPSCs-CV/AF can be considered a valid cellular model to accomplish pathogenesis studies and therapeutic applications. PMID:26474030

  18. EXPRESSION OF PLURIPOTENCY MARKERS IN REPROGRAMMING WITH TRANSPOSON SYSTEM MURINE FIBROBLASTS

    Directory of Open Access Journals (Sweden)

    S. V. Malysheva

    2013-10-01

    Full Text Available The search for effective and safe methods to generate induced pluripotent stem cells is especially urgent. In the paper murine embryonic fibro blasts were reprogrammed towards actively proliferating colonies with typical induced pluripotent stem cells morphology by means of Sleeping beauty transposon-based vector system. The obtained clones were checked for the expression of various pluripotency markers: alkaline phosphatase, Oct4 and Sox2 genes, SSEA-1 expression in various clones was evaluated. Also the reactivation of endogenous pluripotency factors Nanog and Rex1 was indicated. The data obtained is analyzed and compared to the established pluripotent stem cell line. It is shown that somatic cells are reprogrammed towards pluripotency by means of Sleeping beauty transposon system. Therefore, the system is a new perspective biotechnological tool to generate pluripotent cells.

  19. NF-κB Regulates B-Cell-Derived Nerve Growth Factor Expression

    Institute of Scientific and Technical Information of China (English)

    Klaus Heese; Noriko Inoue; Tohru Sawada

    2006-01-01

    In the mammalian brain, four neurotrophins have been identified: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5). NGF exerts an important role in the development and functions of the central and peripheral nervous system. However, it has recently been documented that several types of immune cells, such as mast cells, lymphocytes, basophils and eosinophils, produce,store and release NGF. Accumulating preclinical and clinical data indicate that dysfunctions of NGF and the other neurotrophins may contribute to impaired immune responses and concentration of NGF frequently correlates with disease severity. Thus, the aim of this study was to elucidate the potential signaling mechanisms of cytokineneurotrophins interactions contributing to increased NGF levels. Our data show that the transcription factorNF-κB plays a pivotal role in regulating B-cell-derived NGF expression.

  20. Effect of purine alkaloids on the proliferation of lettuce cells derived from protoplasts.

    Science.gov (United States)

    Sasamoto, Hamako; Fujii, Yoshiharu; Ashihara, Hiroshi

    2015-05-01

    To investigate the ecological role of caffeine, theobromine, theophylline and paraxanthine, which are released from purine alkaloid forming plants, the effects of these purine alkaloids on the division and colony formation of lettuce cells were assessed at concentrations up to 1 mM. Five days after treatment with 500 μM caffeine, theophylline and paraxanthine, division of isolated protoplasts was significantly inhibited. Thirteen days treatment with > 250 μM caffeine had a marked inhibitory effect on the colony formation of cells derived from the protoplasts. Other purine alkaloids also acted as inhibitors. The order of the inhibition was caffeine > theophylline > paraxanthine > theobromine. These observations suggest that a relatively low concentration of caffeine is toxic for proliferation of plant cells. In contrast, theobromine is a weak inhibitor of proliferation. Possible allelopathic roles of purine alkaloids in natural ecosystems are discussed.

  1. Pathways in pluripotency and differentiation of embryonic cells

    NARCIS (Netherlands)

    du Puy, L.

    2010-01-01

    Pluripotency - the potential to differentiate into derivatives of the three embryonic germ layers endoderm, ectoderm and mesoderm - is the main characteristic of embryonic stem (ES) cells. ES cells are derived from the inner cell mass (ICM) of a pre-implantation blastocyst and can self-renew indefin

  2. Differentiation of Induced Pluripotent Stem Cells Into Functional Oligodendrocytes

    NARCIS (Netherlands)

    Czepiel, Marcin; Balasubramaniyan, Veerakumar; Schaafsma, Wandert; Stancic, Mirjana; Mikkers, Harald; Huisman, Christian; Boddeke, Erik; Copray, Sjef

    2011-01-01

    The technology to generate autologous pluripotent stem cells (iPS cells) from almost any somatic cell type has brought various cell replacement therapies within clinical research. Besides the challenge to optimize iPS protocols to appropriate safety and GMP levels, procedures need to be developed to

  3. Genome-wide characterization of the routes to pluripotency

    NARCIS (Netherlands)

    Hussein, Samer M I; Puri, Mira C; Tonge, Peter D; Benevento, Marco; Corso, Andrew J; Clancy, Jennifer L; Mosbergen, Rowland; Li, Mira; Lee, Dong-Sung; Cloonan, Nicole; Wood, David L A; Munoz, Javier; Middleton, Robert; Korn, Othmar; Patel, Hardip R; White, Carl A; Shin, Jong-Yeon; Gauthier, Maely E; Lê Cao, Kim-Anh; Kim, Jong-Il; Mar, Jessica C; Shakiba, Nika; Ritchie, William; Rasko, John E J; Grimmond, Sean M; Zandstra, Peter W; Wells, Christine A; Preiss, Thomas; Seo, Jeong-Sun; Heck, Albert J R; Rogers, Ian M; Nagy, Andras

    2014-01-01

    Somatic cell reprogramming to a pluripotent state continues to challenge many of our assumptions about cellular specification, and despite major efforts, we lack a complete molecular characterization of the reprograming process. To address this gap in knowledge, we generated extensive transcriptomic

  4. The Secret Lives of Pluripotent Cells: There and Back Again

    Directory of Open Access Journals (Sweden)

    Paolo Cinelli

    2010-03-01

    Full Text Available Embryonic stem cells (ESCs and induced pluripotent stem cells (IPSCs hold great promise for the therapeutic treatment of human diseases, but their functional similarity, their stability and especially the mechanism underlying their derivation are not yet clearly explained. [...

  5. Germ cells and the origins of mammalian pluripotent cells

    NARCIS (Netherlands)

    Kuijk, E.W.

    2009-01-01

    Mammalian embryonic stem (ES) cells originate from preimplantation embryos and can be propagated indefinitely without loss of pluripotency; i.e. the potential to develop into any embryonic cell type. ES cells have been described for mouse, rhesus monkey, and human. There is considerable interest in

  6. Oct4: the final frontier, differentiation defining pluripotency

    DEFF Research Database (Denmark)

    Livigni, Alessandra; Brickman, Joshua M

    2013-01-01

    The transcription factor OCT4 is a cornerstone of pluripotency, and yet OCT4 has also been associated with differentiation in a number of contexts. Reporting in this issue of Developmental Cell, Frum et al. (2013) show that OCT4's major early activity in the blastocyst is to support primitive...

  7. A central role for TFIID in the pluripotent transcription circuitry

    NARCIS (Netherlands)

    Pijnappel, W.W.M.P.; Esch, D.; Baltissen, M.P.A.; Wu, G.; Mischerikow, N.; Bergsma, A.J.; Wal, E. van de; Han, D.W.; Bruch, H.; Moritz, S.; Lijnzaad, P.; Altelaar, A.F.; Sameith, K.; Zaehres, H.; Heck, A.J.R. van; Holstege, F.C.; Scholer, H.R.; Timmers, H.T.M.

    2013-01-01

    Embryonic stem (ES) cells are pluripotent and characterized by open chromatin and high transcription levels, achieved through auto-regulatory and feed-forward transcription factor loops. ES-cell identity is maintained by a core of factors including Oct4 (also known as Pou5f1), Sox2, Klf4, c-Myc (OSK

  8. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle signatures in joint diseases.

    Directory of Open Access Journals (Sweden)

    Bence György

    Full Text Available INTRODUCTION: Microvesicles (MVs, earlier referred to as microparticles, represent a major type of extracellular vesicles currently considered as novel biomarkers in various clinical settings such as autoimmune disorders. However, the analysis of MVs in body fluids has not been fully standardized yet, and there are numerous pitfalls that hinder the correct assessment of these structures. METHODS: In this study, we analyzed synovial fluid (SF samples of patients with osteoarthritis (OA, rheumatoid arthritis (RA and juvenile idiopathic arthritis (JIA. To assess factors that may confound MV detection in joint diseases, we used electron microscopy (EM, Nanoparticle Tracking Analysis (NTA and mass spectrometry (MS. For flow cytometry, a method commonly used for phenotyping and enumeration of MVs, we combined recent advances in the field, and used a novel approach of differential detergent lysis for the exclusion of MV-mimicking non-vesicular signals. RESULTS: EM and NTA showed that substantial amounts of particles other than MVs were present in SF samples. Beyond known MV-associated proteins, MS analysis also revealed abundant plasma- and immune complex-related proteins in MV preparations. Applying improved flow cytometric analysis, we demonstrate for the first time that CD3(+ and CD8(+ T-cell derived SF MVs are highly elevated in patients with RA compared to OA patients (p=0.027 and p=0.009, respectively, after Bonferroni corrections. In JIA, we identified reduced numbers of B cell-derived MVs (p=0.009, after Bonferroni correction. CONCLUSIONS: Our results suggest that improved flow cytometric assessment of MVs facilitates the detection of previously unrecognized disease-associated vesicular signatures.

  9. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes.

    Directory of Open Access Journals (Sweden)

    Laura Camacho

    Full Text Available Exosomes are small membrane vesicles released by most cell types including tumor cells. The intercellular exchange of proteins and genetic material via exosomes is a potentially effective approach for cell-to-cell communication and it may perform multiple functions aiding to tumor survival and metastasis. We investigated microRNA and protein profiles of brain metastatic (BM versus non-brain metastatic (non-BM cell-derived exosomes. We studied the cargo of exosomes isolated from brain-tropic 70W, MDA-MB-231BR, and circulating tumor cell brain metastasis-selected markers (CTC1BMSM variants, and compared them with parental non-BM MeWo, MDA-MB-231P and CTC1P cells, respectively. By performing microRNA PCR array we identified one up-regulated (miR-210 and two down-regulated miRNAs (miR-19a and miR-29c in BM versus non-BM exosomes. Second, we analyzed the proteomic content of cells and exosomes isolated from these six cell lines, and detected high expression of proteins implicated in cell communication, cell cycle, and in key cancer invasion and metastasis pathways. Third, we show that BM cell-derived exosomes can be internalized by non-BM cells and that they effectively transport their cargo into cells, resulting in increased cell adhesive and invasive potencies. These results provide a strong rationale for additional investigations of exosomal proteins and miRNAs towards more profound understandings of exosome roles in brain metastasis biogenesis, and for the discovery and application of non-invasive biomarkers for new therapies combating brain metastasis.

  10. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip.

    Science.gov (United States)

    Cheng, Yu-Heng; Chen, Yu-Chih; Brien, Riley; Yoon, Euisik

    2016-10-01

    Recent research suggests that cancer stem-like cells (CSCs) are the key subpopulation for tumor relapse and metastasis. Due to cancer plasticity in surface antigen and enzymatic activity markers, functional tumorsphere assays are promising alternatives for CSC identification. To reliably quantify rare CSCs (1-5%), thousands of single-cell suspension cultures are required. While microfluidics is a powerful tool in handling single cells, previous works provide limited throughput and lack automatic data analysis capability required for high-throughput studies. In this study, we present the scaling and automation of high-throughput single-cell-derived tumor sphere assay chips, facilitating the tracking of up to ∼10 000 cells on a chip with ∼76.5% capture rate. The presented cell capture scheme guarantees sampling a representative population from the bulk cells. To analyze thousands of single-cells with a variety of fluorescent intensities, a highly adaptable analysis program was developed for cell/sphere counting and size measurement. Using a Pluronic® F108 (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) coating on polydimethylsiloxane (PDMS), a suspension culture environment was created to test a controversial hypothesis: whether larger or smaller cells are more stem-like defined by the capability to form single-cell-derived spheres. Different cell lines showed different correlations between sphere formation rate and initial cell size, suggesting heterogeneity in pathway regulation among breast cancer cell lines. More interestingly, by monitoring hundreds of spheres, we identified heterogeneity in sphere growth dynamics, indicating the cellular heterogeneity even within CSCs. These preliminary results highlight the power of unprecedented high-throughput and automation in CSC studies.

  11. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  12. Effects of tacrolimus on morphology, proliferation and differentiation of mesenchymal stem cells derived from gingiva tissue

    Science.gov (United States)

    HA, DONG-HO; YONG, CHUL SOON; KIM, JONG OH; JEONG, JEE-HEON; PARK, JUN-BEOM

    2016-01-01

    Tacrolimus is a 23-membered macrolide lactone with potent immunosuppressive activity that is effective in the prophylaxis of organ rejection following kidney, heart and liver transplantation. Tacrolimus also exerts a variety of actions on bone metabolism. The aim of the present study was to evaluate the effects of different concentrations of tacrolimus on the morphology and viability of human stem cells derived from the gingiva. Gingival-derived stem cells were grown in the presence of tacrolimus at final concentrations ranging from 0.001 to 100 µg/ml. The morphology of the cells was viewed under an inverted microscope and the cell viability was analyzed using Cell Counting kit-8 (CCK-8) on days 1, 3, 5 and 7. Alizarin Red S staining was used to assess mineralization of treated cells. The control group showed spindle-shaped, fibroblast-like morphology and the shapes of the cells in 0.001, 0.01, 0.1, 1 and 10 µg/ml tacrolimus were similar to those of the control group. All groups except the 100 µg/ml group showed increased cell proliferation over time. Cultures grown in the presence of tacrolimus at 0.001, 0.01, 0.1, 1 and 10 µg/ml were not identified to be significantly different compared with the control at days 1, 3 and 5 using the CCK-8 assays. Increased mineralized deposits were noted with increased incubation time. Treatment with tacrolimus from 0.001 to 1 µg/ml led to an increase in mineralization compared with the control group. Within the limits of this study, tacrolimus at the tested concentrations (ranging from 0.001 to 10 µg/ml) did not result in differences in the viability of stem cells derived from gingiva; however it did enhance osteogenic differentiation of the stem cells. PMID:27177273

  13. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  14. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  15. Vitamin D Metabolism and Effects on Pluripotency Genes and Cell Differentiation in Testicular Germ Cell Tumors In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Martin Blomberg Jensen

    2012-10-01

    Full Text Available Testicular germ cell tumors (TGCTs are classified as either seminomas or nonseminomas. Both tumors originate from carcinoma in situ (CIS cells, which are derived from transformed fetal gonocytes. CIS, seminoma, and the undifferentiated embryonal carcinoma (EC retain an embryonic phenotype and express pluripotency factors (NANOG/OCT4. Vitamin D (VD is metabolized in the testes, and here, we examined VD metabolism in TGCT differentiation and pluripotency regulation. We established that the VD receptor (VDR and VD-metabolizing enzymes are expressed in human fetal germ cells, CIS, and invasive TGCTs. VD metabolism diminished markedly during the malignant transformation from CIS to EC but was reestablished in differentiated components of nonseminomas, distinguished by coexpression of mesodermal markers and loss of OCT4. Subsequent in vitro studies confirmed that 1,25(OH2D3 (active VD downregulated NANOG and OCT4 through genomic VDR activation in EC-derived NTera2 cells and, to a lesser extent, in seminoma-derived TCam-2 cells, and up-regulated brachyury, SNAI1, osteocalcin, osteopontin, and fibroblast growth factor 23. To test for a possible therapeutic effect in vivo, NTera2 cells were xenografted into nude mice and treated with 1,25(OH2D3, which induced down-regulation of pluripotency factors but caused no significant reduction of tumor growth. During NTera2 tumor formation, down-regulation of VDR was observed, resulting in limited responsiveness to cholecalciferol and 1,25(OH2D3 treatment in vivo. These novel findings show that VD metabolism is involved in the mesodermal transition during differentiation of cancer cells with embryonic stem cell characteristics, which points to a function for VD during early embryonic development and possibly in the pathogenesis of TGCTs.

  16. Ovarian dysgerminomas are characterised by frequent KIT mutations and abundant expression of pluripotency markers

    Directory of Open Access Journals (Sweden)

    Kærn Janne

    2007-02-01

    Full Text Available Abstract Background Ovarian germ cell tumours (OGCTs typically arise in young females and their pathogenesis remains poorly understood. We investigated the origin of malignant OGCTs and underlying molecular events in the development of the various histological subtypes of this neoplasia. Results We examined in situ expression of stem cell-related (NANOG, OCT-3/4, KIT, AP-2γ and germ cell-specific proteins (MAGE-A4, NY-ESO-1, TSPY using a tissue microarray consisting of 60 OGCT tissue samples and eight ovarian small cell carcinoma samples. Developmental pattern of expression of NANOG, TSPY, NY-ESO-1 and MAGE-A4 was determined in foetal ovaries (gestational weeks 13–40. The molecular genetic part of our study included search for the presence of Y-chromosome material by fluorescence in situ hybridisation (FISH, and mutational analysis of the KIT oncogene (exon 17, codon 816, which is often mutated in testicular GCTs, in a subset of tumour DNA samples. We detected a high expression of transcription factors related to the embryonic stem cell-like pluripotency and undifferentiated state in OGCTs, but not in small cell carcinomas, supporting the view that the latter do not arise from a germ cell progenitor. Bilateral OGCTs expressed more stem cell markers than unilateral cases. However, KIT was mutated in 5/13 unilateral dysgerminomas, whereas all bilateral dysgerminomas (n = 4 and all other histological types (n = 22 showed a wild type sequence. Furthermore, tissue from five phenotypic female patients harbouring combined dysgerminoma/gonadoblastoma expressed TSPY and contained Y-chromosome material as confirmed by FISH. Conclusion This study provides new data supporting two distinct but overlapping pathways in OGCT development; one involving spontaneous KIT mutation(s leading to increased survival and proliferation of undifferentiated oogonia, the other related to presence of Y chromosome material and ensuing gonadal dysgenesis in phenotypic

  17. Target-cell-derived tRNA-like primers for reverse transcription support retroviral infection at low efficiency

    DEFF Research Database (Denmark)

    Schmitz, Alexander; Lund, Anders H; Hansen, Anette C;

    2002-01-01

    Reverse transcription of a retroviral genome takes place in the cytoplasm of an infected cell by a process primed by a producer-cell-derived tRNA annealed to an 18-nucleotide primer-binding site (PBS). By an assay involving primer complementation of PBS-mutated vectors we analyzed whether t......RNA primers derived from the target cell can sustain reverse transcription during murine leukemia virus (MLV) infection. Transduction efficiencies were 4-5 orders of magnitude below those of comparable producer-cell complementations. However, successful usage of a target-cell-derived tRNA primer was proven by...... cases of correction of single mismatches between Akv-MLV vectors and complementary tRNA primers toward the primer sequence in the integrated vector. Thus, target-cell-derived tRNA-like primers are able to initiate first-strand cDNA synthesis and plus-strand transfer leading to a complete provirus...

  18. Generation of male germ cells from induced pluripotent stem cells (iPS cells): an in vitro and in vivo study

    Institute of Scientific and Technical Information of China (English)

    Yong Zhu; Xi-Zhi Guo; Zhan-Ping Shi; Zheng Li; Zuping He; Hong-Liang Hu; Peng Li; Shi Yang; Wei Zhang; Hui Ding; Ru-Hui Tian; Ye Ning; Ling-Ling Zhang

    2012-01-01

    Recent studies have reported that induced pluripotent stem (iPS) cells from mice and humans can differentiate into primordial germ cells.However,whether iPS cells am capable of producing male germ cells is not known.The objective of this study was to investigate the differentiation potential of mouse iPS cells into spermatogonial stem cells and late.stage male germ cells.We used an approach that combines in vitro differentiation and in vivotransplantation.Embryoid bodies (EBs) were obtained from iPS cells using leukaemia inhibitor factor (LIF)-free medium.Quantitative PCR revealed a decrease in Oct4 expression and an increase in Stra8and Vasa mRNA in the EBs derived from iPS cells.iPS cell-derived EBs were induced by retinoic acid to differentiate into spermatogonial stem cells (SSCs),as evidenced by their expression of VASA,as well as CDH 1 and GFRα 1,which are markers of SSCs.Furthermore,these germ cells derived from iPS cells were transplanted into recipient testes of mice that had been pre-treated with busulfan.Notably,iPS cell-derived SSCs were able to differentiate into male germ cells ranging from spermatogonia to round spermatids,as shown by VASA and SCP3 expression.This study demonstrates that iPS cells have the potential to differentiate into late-stage male germ cells.The derivation of male germ cells from iPS cells has potential applications in the treatment of male infertility and provides a model for uncovering the molecular mechanisms underlying male germ cell development.

  19. Embryonic stem-like cells derived from in vitro produced bovine blastocysts

    Directory of Open Access Journals (Sweden)

    Erika Regina Leal de Freitas

    2011-06-01

    Full Text Available The aim of this work was to study the derivation of bovine embryonic stem-like (ES-like cells from the inner cell mass (ICM of in vitro produced blastocysts. The ICMs were mechanically isolated and six out of seventeen (35% ICMs could attach to a monolayer of murine embryonic fibroblasts (MEF. Ten days after, primary outgrowths were mechanically dissected into several small clumps and transferred to a new MEF layer. Cells were further propagated and passaged by physical dissociation over a 60 days period. The pluripotency of the bovine ES-like cells was confirmed by RT-PCR of Oct-4 and STAT-3 gene markers. The colonies were weakly stained for alkaline phosphatase and the mesoderm and endoderm differentiation gene markers such as GATA-4 and Flk-1, respectively, were not expressed. Embryoid bodies were spontaneously formed at the seventh passage. Results showed that bovine ES-like cells could be obtained and passaged by mechanical procedures from the fresh in vitro produced blastocysts.

  20. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    Science.gov (United States)

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.

  1. New miRNAs network in human mesenchymal stem cells derived from skin and amniotic fluid.

    Science.gov (United States)

    Lazzarini, R; Sorgentoni, G; Caffarini, M; Sayeed, M A; Olivieri, F; Di Primio, R; Orciani, M

    2016-09-01

    Mesenchymal stem cells (MSCs), isolated from different adult sources, have great appeal for therapeutic applications due to their simple isolation, extensive expansion potential, and high differentiative potential.In our previous studies we isolated MSCs form amniotic fluid (AF-MSCs) and skin (S-MSCs) and characterized them according to their phenotype, pluripotency, and mRNA/microRNAs (miRNAs) profiling using Card A from Life Technologies.Here, we enlarge the profiling of AF-MCSs and S-MSCs to the more recently discovered miRNAs (Card B by Life Technologies) to identify the miRNAs putative target genes and the relative signaling pathways. Card B, in fact, contains miRNAs whose role and target are not yet elucidated.The expression of the analyzed miRNAs is changing between S-MSCs and AF-MSCs, indicating that these two types of MSCs show differences potentially related to their source. Interestingly, the pathways targeted by the miRNAS deriving from Card B are the same found during the analysis of miRNAs from Card A.This result confirms the key role played by WNT and TGF-β pathways in stem cell fate, underlining as other miRNAs partially ignored up to now deserve to be reconsidered. In addition, this analysis allows including Adherens junction pathways among the mechanisms finely regulated in stem cell behavior. PMID:26684628

  2. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    Science.gov (United States)

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy. PMID:22683799

  3. Carcinoma verrugoso

    Directory of Open Access Journals (Sweden)

    Esteban Quesada Jiménez

    2004-09-01

    Full Text Available Se presenta el caso de un paciente masculino de 76 años, vecino de Turrialba, agricultor, que consultó por una lesión de 3 años de evolución, localizada en la palma de la mano derecha a nivel palmar y compromiso de los dedos de la misma mano, caracterizada como una neoformación exofítica verrugosa de 5 por 11 cm. aproximadamente, con material caseoso entre sus crestas. La lesión ha estado creciendo de forma acelerada en los últimos 3 meses, causándole dolor y que le imposibilita ellaborar. Se le realizaron exámenes y se descartaron varias causas infecciosas, y concluyendo luego de varias biopsias con el diagnóstico de un carcinoma verrugoso. El paciente fue tratado mediante una amputación parcial de la mano. Este tumor es una variante del carcinoma epidermoide y presentamos su clasificación, patogénesis, histopatología, manifestaciones clínicas más frecuentes y diagnóstico diferencial.

  4. Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Naoki Ichiyanagi

    2016-04-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a late-onset motor neuron disorder. Although its neuropathology is well understood, the cellular and molecular mechanisms are yet to be elucidated due to limitations in the currently available human genetic data. In this study, we generated induced pluripotent stem cells (iPSC from two familial ALS (FALS patients with a missense mutation in the fused-in sarcoma (FUS gene carrying the heterozygous FUS H517D mutation, and isogenic iPSCs with the homozygous FUS H517D mutation by genome editing technology. These cell-derived motor neurons mimicked several neurodegenerative phenotypes including mis-localization of FUS into cytosolic and stress granules under stress conditions, and cellular vulnerability. Moreover, exon array analysis using motor neuron precursor cells (MPCs combined with CLIP-seq datasets revealed aberrant gene expression and/or splicing pattern in FALS MPCs. These results suggest that iPSC-derived motor neurons are a useful tool for analyzing the pathogenesis of human motor neuron disorders.

  5. [Induced pluripotent stem (iPS) cell-based cell therapy for muscular dystrophy: current progress and future prospects].

    Science.gov (United States)

    Nishiyama, Takashi; Takeda, Shin'ichi

    2012-01-01

    Duchenne muscular dystrophy (DMD) is a devastating muscle disorder caused by mutations in the dystrophin gene. There is currently no effective treatment for DMD. Muscle satellite cells are tissue-specific stem cells found in the skeletal muscle; these cells play a central role in postnatal muscle growth and regeneration, and are, therefore, a potential source for stem cell therapy for DMD. However, transplantation of satellite cell-derived myoblasts has not yet been successful in humans. Patient-specific induced pluripotent stem (iPS) cells are expected to be a source for autologous cell transplantation therapy for DMD, because iPS cells can proliferate vigorously in vitro and can differentiate into multiple cell lineages both in vitro and in vivo. Here, we discuss the strategies to generate muscle stem cells from iPS cells. So far, the most promising method for generating muscle stem cells from iPS cells is the conditional overexpression of Pax3 or Pax7 in the differentiating mouse embryoid bodies. However, induction methods for human iPS cells have not yet been developed. Thus, iPS cells are expected to serve as an in vitro disease model system, which will enable us to determine the pathology of muscle diseases and develop pharmaceutical treatments. PMID:22223500

  6. Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination.

    Directory of Open Access Journals (Sweden)

    Alireza Pouya

    Full Text Available BACKGROUND: This study aims to differentiate human induced pluripotent stem cells (hiPSCs into oligodendrocyte precursors and assess their recovery potential in a demyelinated optic chiasm model in rats. METHODOLOGY/PRINCIPAL FINDINGS: We generated a cell population of oligodendrocyte progenitors from hiPSCs by using embryoid body formation in a defined medium supplemented with a combination of factors, positive selection and mechanical enrichment. Real-time polymerase chain reaction and immunofluorescence analyses showed that stage-specific markers, Olig2, Sox10, NG2, PDGFRα, O4, A2B5, GalC, and MBP were expressed following the differentiation procedure, and enrichment of the oligodendrocyte lineage. These results are comparable with the expression of stage-specific markers in human embryonic stem cell-derived oligodendrocyte lineage cells. Transplantation of hiPSC-derived oligodendrocyte progenitors into the lysolecithin-induced demyelinated optic chiasm of the rat model resulted in recovery from symptoms, and integration and differentiation into oligodendrocytes were detected by immunohistofluorescence staining against PLP and MBP, and measurements of the visual evoked potentials. CONCLUSIONS/SIGNIFICANCE: These results showed that oligodendrocyte progenitors generated efficiently from hiPSCs can be used in future biomedical studies once safety issues have been overcome.

  7. Heterozygous and homozygous JAK2(V617F states modeled by induced pluripotent stem cells from myeloproliferative neoplasm patients.

    Directory of Open Access Journals (Sweden)

    Joseph Saliba

    Full Text Available JAK2(V617F is the predominant mutation in myeloproliferative neoplasms (MPN. Modeling MPN in a human context might be helpful for the screening of molecules targeting JAK2 and its intracellular signaling. We describe here the derivation of induced pluripotent stem (iPS cell lines from 2 polycythemia vera patients carrying a heterozygous and a homozygous mutated JAK2(V617F, respectively. In the patient with homozygous JAK2(V617F, additional ASXL1 mutation and chromosome 20 allowed partial delineation of the clonal architecture and assignation of the cellular origin of the derived iPS cell lines. The marked difference in the response to erythropoietin (EPO between homozygous and heterozygous cell lines correlated with the constitutive activation level of signaling pathways. Strikingly, heterozygous iPS cells showed thrombopoietin (TPO-independent formation of megakaryocytic colonies, but not EPO-independent erythroid colony formation. JAK2, PI3K and HSP90 inhibitors were able to block spontaneous and EPO-induced growth of erythroid colonies from GPA(+CD41(+ cells derived from iPS cells. Altogether, this study brings the proof of concept that iPS can be used for studying MPN pathogenesis, clonal architecture, and drug efficacy.

  8. Vulvar carcinoma

    International Nuclear Information System (INIS)

    Purpose: Controversies exist regarding the use of radiation therapy in the treatment of vulvar carcinoma. A retrospective review was performed to evaluate our institution's experience with surgery and radiation for this disease. Methods and Materials: The medical records of 47 patients treated for squamous cell carcinoma of the vulva at our institution (1974-1992) were reviewed for TNM stage (AJCC criteria), treatment modality, and associated 5-year local control and survival based on Kaplan-Meier analysis. Results: Twenty-eight patients (60%) presented with Stage I and II disease and their 5-year survival was 69%. Stage III patients accounted for 12 (25%) of the patients and their 5-year survival was 73%. Seven patients presented with Stage IV disease and five died within 13 months of diagnosis after predominantly palliative therapy. The 40 patients with Stages I, II, and III disease were treated aggressively and were further evaluated for treatment-modality-associated survival and local control. Radiation therapy was used as primary treatment in nine patients, of whom seven were treated with radiation alone and two were treated postoperatively after wide excision. Surgery alone was performed in 31 patients consisting of either radical vulvectomy (20 patients) or wide excision (11 patients). When comparing outcomes of radical vulvectomy vs. radiation therapy, we noted that the 5-year actuarial survivals were comparable (74% for either modality), despite the presence of more favorable prognostic factors in the group treated with radical vulvectomy. Patients treated with wide excision alone had a trend for a poorer 5-year actuarial survival (51%) and local control (50%). Conclusions: Radical vulvectomy offers good locoregional control and survival. This retrospective review further supports the use of radiation therapy with conservative surgery as an alternative treatment option for patients with vulvar carcinoma treated with curative intent. In contrast, the use of

  9. Co-regulation of pluripotency and genetic integrity at the genomic level

    Directory of Open Access Journals (Sweden)

    Daniel J. Cooper

    2014-11-01

    Full Text Available The Disposable Soma Theory holds that genetic integrity will be maintained at more pristine levels in germ cells than in somatic cells because of the unique role germ cells play in perpetuating the species. We tested the hypothesis that the same concept applies to pluripotent cells compared to differentiated cells. Analyses of transcriptome and cistrome databases, along with canonical pathway analysis and chromatin immunoprecipitation confirmed differential expression of DNA repair and cell death genes in embryonic stem cells and induced pluripotent stem cells relative to fibroblasts, and predicted extensive direct and indirect interactions between the pluripotency and genetic integrity gene networks in pluripotent cells. These data suggest that enhanced maintenance of genetic integrity is fundamentally linked to the epigenetic state of pluripotency at the genomic level. In addition, these findings demonstrate how a small number of key pluripotency factors can regulate large numbers of downstream genes in a pathway-specific manner.

  10. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche

    Directory of Open Access Journals (Sweden)

    Alejandro Luarte

    2016-01-01

    Full Text Available Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer’s Disease, Parkinson’s Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future.

  11. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche

    Science.gov (United States)

    Luarte, Alejandro; Bátiz, Luis Federico; Wyneken, Ursula; Lafourcade, Carlos

    2016-01-01

    Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future. PMID:27195011

  12. Importance of being Nernst: Synaptic activity andfunctional relevance in stem cell-derived neurons

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Functional synaptogenesis and network emergence aresignature endpoints of neurogenesis. These behaviorsprovide higher-order confirmation that biochemicaland cellular processes necessary for neurotransmitterrelease, post-synaptic detection and network propagation of neuronal activity have been properly expressed andcoordinated among cells. The development of synapticneurotransmission can therefore be considered a definingproperty of neurons. Although dissociated primaryneuron cultures readily form functioning synapsesand network behaviors in vitro , continuously culturedneurogenic cell lines have historically failed to meet thesecriteria. Therefore, in vitro -derived neuron models thatdevelop synaptic transmission are critically needed for awide array of studies, including molecular neuroscience,developmental neurogenesis, disease research andneurotoxicology. Over the last decade, neurons derivedfrom various stem cell lines have shown varying ability todevelop into functionally mature neurons. In this review,we will discuss the neurogenic potential of various stemcells populations, addressing strengths and weaknessesof each, with particular attention to the emergenceof functional behaviors. We will propose methods tofunctionally characterize new stem cell-derived neuron(SCN) platforms to improve their reliability as physiologicalrelevant models. Finally, we will review howsynaptically active SCNs can be applied to accelerateresearch in a variety of areas. Ultimately, emphasizingthe critical importance of synaptic activity and networkresponses as a marker of neuronal maturation is anticipatedto result in in vitro findings that better translateto efficacious clinical treatments.

  13. Appearance of differentiated cells derived from polar body nuclei in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Hiroki eSakai

    2013-09-01

    Full Text Available AbstractIn Bombyx mori, polar body nuclei are observed until 9h after egg lying, however, the fate of polar body nuclei remains unclear. To examine the fate of polar body nuclei, we employed a mutation of serosal cell pigmentation, pink-eyed white egg (pe. The heterozygous pe/+pe females produced black serosal cells in white eggs, while pe/pe females did not produce black serosal cells in white eggs. These results suggest that the appearance of black serosal cells in white eggs depends on the genotype (pe/ +pe of the mother. Because the polar body nuclei had +pe genes in the white eggs laid by a pe/ +pe female, polar body nuclei participate in development and differentiate into functional cell (serosal cells. Analyses of serosal cells pigmentation indicated that approximately 30% of the eggs contained polar-body-nucleus-derived cells. These results demonstrate that polar-body-nucleus-derived cells appeared at a high frequency under natural conditions. Approximately 80% of polar-body-nucleus-derived cells appeared near the anterior pole and the dorsal side, which is opposite to where embryogenesis occurs. The number of cells derived from the polar body nuclei was very low. Approximately 26 % of these eggs contained only one black serosal cell. PCR-based analysis revealed that the polar-body-nucleus-derived cells disappeared in late embryonic stages (stage 25. Overall, polar-body-nuclei-derived cells were unlikely to contribute to embryos.

  14. Stem cell-derived exosomes as a therapeutic tool for cardiovascular disease

    Science.gov (United States)

    Suzuki, Etsu; Fujita, Daishi; Takahashi, Masao; Oba, Shigeyoshi; Nishimatsu, Hiroaki

    2016-01-01

    Mesenchymal stem cells (MSCs) have been used to treat patients suffering from acute myocardial infarction (AMI) and subsequent heart failure. Although it was originally assumed that MSCs differentiated into heart cells such as cardiomyocytes, recent evidence suggests that the differentiation capacity of MSCs is minimal and that injected MSCs restore cardiac function via the secretion of paracrine factors. MSCs secrete paracrine factors in not only naked forms but also membrane vesicles including exosomes containing bioactive substances such as proteins, messenger RNAs, and microRNAs. Although the details remain unclear, these bioactive molecules are selectively sorted in exosomes that are then released from donor cells in a regulated manner. Furthermore, exosomes are specifically internalized by recipient cells via ligand-receptor interactions. Thus, exosomes are promising natural vehicles that stably and specifically transport bioactive molecules to recipient cells. Indeed, stem cell-derived exosomes have been successfully used to treat cardiovascular disease (CVD), such as AMI, stroke, and pulmonary hypertension, in animal models, and their efficacy has been demonstrated. Therefore, exosome administration may be a promising strategy for the treatment of CVD. Furthermore, modifications of exosomal contents may enhance their therapeutic effects. Future clinical studies are required to confirm the efficacy of exosome treatment for CVD. PMID:27679686

  15. Puerarin Facilitates T-Tubule Development of Murine Embryonic Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2014-07-01

    Full Text Available Aims: The embryonic stem cell-derived cardiomyocytes (ES-CM is one of the promising cell sources for repopulation of damaged myocardium. However, ES-CMs present immature structure, which impairs their integration with host tissue and functional regeneration. This study used murine ES-CMs as an in vitro model of cardiomyogenesis to elucidate the effect of puerarin, the main compound found in the traditional Chinese medicine the herb Radix puerariae, on t-tubule development of murine ES-CMs. Methods: Electron microscope was employed to examine the ultrastructure. The investigation of transverse-tubules (t-tubules was performed by Di-8-ANEPPS staining. Quantitative real-time PCR was utilized to study the transcript level of genes related to t-tubule development. Results: We found that long-term application of puerarin throughout cardiac differentiation improved myofibril array and sarcomeres formation, and significantly facilitated t-tubules development of ES-CMs. The transcript levels of caveolin-3, amphiphysin-2 and junctophinlin-2, which are crucial for the formation and development of t-tubules, were significantly upregulated by puerarin treatment. Furthermore, puerarin repressed the expression of miR-22, which targets to caveolin-3. Conclusion: Our data showed that puerarin facilitates t-tubule development of murine ES-CMs. This might be related to the repression of miR-22 by puerarin and upregulation of Cav3, Bin1 and JP2 transcripts.

  16. "Kill" the messenger: Targeting of cell-derived microparticles in lupus nephritis.

    Science.gov (United States)

    Nielsen, Christoffer T; Rasmussen, Niclas S; Heegaard, Niels H H; Jacobsen, Søren

    2016-07-01

    Immune complex (IC) deposition in the glomerular basement membrane (GBM) is a key early pathogenic event in lupus nephritis (LN). The clarification of the mechanisms behind IC deposition will enable targeted therapy in the future. Circulating cell-derived microparticles (MPs) have been proposed as major sources of extracellular autoantigens and ICs and triggers of autoimmunity in LN. The overabundance of galectin-3-binding protein (G3BP) along with immunoglobulins and a few other proteins specifically distinguish circulating MPs in patients with systemic lupus erythematosus (SLE), and this is most pronounced in patients with active LN. G3BP co-localizes with deposited ICs in renal biopsies from LN patients supporting a significant presence of MPs in the IC deposits. G3BP binds strongly to glomerular basement membrane proteins and integrins. Accordingly, MP surface proteins, especially G3BP, may be essential for the deposition of ICs in kidneys and thus for the ensuing formation of MP-derived electron dense structures in the GBM, and immune activation in LN. This review focuses on the notion of targeting surface molecules on MPs as an entirely novel treatment strategy in LN. By targeting MPs, a double hit may be achieved by attenuating both the autoantigenic fueling of immune complexes and the triggering of the adaptive immune system. Thereby, early pathogenic events may be blocked in contrast to current treatment strategies that primarily target and modulate later events in the cellular and humoral immune response.

  17. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  18. Functional differentiation of stem cell-derived neurons from different murine backgrounds

    Directory of Open Access Journals (Sweden)

    Lydia eBarth

    2014-02-01

    Full Text Available Murine stem cell derived-neurons have been used to study a wide variety of neuropsychiatric diseases with a hereditary component, ranging from autism to Alzheimer’s. While a significant amount of data on their molecular biology has been generated, there is little data on the physiology of these cultures. Different mouse strains show clear differences in behavioural and other neurobiologically relevant readouts. We have studied the physiology of early differentiation and network formation in neuronal cultures derived from three different mouse embryonic stem cell lines. We have found largely overlapping patterns with some significant differences in the timing of the functional milestones. Neurons from R1 showed the fastest development of intrinsic excitability, while E14Tg2a and J1 were slower. This was also reflected in an earlier appearance of synaptic activity in R1 cultures, while E14Tg2a and J1 were delayed by up to two days. In conclusion, stem cells from all backgrounds could be successfully differentiated into functioning neural networks with similar developmental patterns. Differences in the timing of specific milestones, suggest that control cell lines and time-points should be carefully chosen when investigating genetic alterations that lead to subtle deficits in neuronal function.

  19. Low antigenicity of hematopoietic progenitor cells derived from human ES cells

    Directory of Open Access Journals (Sweden)

    Eun-Mi Kim

    2010-02-01

    Full Text Available Eun-Mi Kim1, Nicholas Zavazava1,21Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa, USA; 2Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USAAbstract: Human embryonic stem (hES cells are essential for improved understanding of diseases and our ability to probe new therapies for use in humans. Currently, bone marrow cells and cord blood cells are used for transplantation into patients with hematopoietic malignancies, immunodeficiencies and in some cases for the treatment of autoimmune diseases. However, due to the high immunogenicity of these hematopoietic cells, toxic regimens of drugs are required for preconditioning and prevention of rejection. Here, we investigated the efficiency of deriving hematopoietic progenitor cells (HPCs from the hES cell line H13, after co-culturing with the murine stromal cell line OP9. We show that HPCs derived from the H13 ES cells poorly express major histocompatibility complex (MHC class I and no detectable class II antigens (HLA-DR. These characteristics make hES cell-derived hematopoietic cells (HPCs ideal candidates for transplantation across MHC barriers under minimal immunosuppression.Keywords: human embryonic stem cells, H13, hematopoiesis, OP9 stromal cells, immunogenicity

  20. Process Extension from Embryonic Stem Cell-Derived Motor Neurons through Synthetic Extracellular Matrix Mimics

    Science.gov (United States)

    McKinnon, Daniel Devaud

    This thesis focuses on studying the extension of motor axons through synthetic poly(ethylene glycol) PEG hydrogels that have been modified with biochemical functionalities to render them more biologically relevant. Specifically, the research strategy is to encapsulate embryonic stem cell-derived motor neurons (ESMNs) in synthetic PEG hydrogels crosslinked through three different chemistries providing three mechanisms for dynamically tuning material properties. First, a covalently crosslinked, enzymatically degradable hydrogel is developed and exploited to study the biophysical dynamics of axon extension and matrix remodeling. It is demonstrated that dispersed motor neurons require a battery of adhesive peptides and growth factors to maintain viability and extend axons while those in contact with supportive neuroglial cells do not. Additionally, cell-degradable crosslinker peptides and a soft modulus mimicking that of the spinal cord are requirements for axon extension. However, because local degradation of the hydrogel results in a cellular environment significantly different than that of the bulk, enzymatically degradable peptide crosslinkers were replaced with reversible covalent hydrazone bonds to study the effect of hydrogel modulus on axon extension. This material is characterized in detail and used to measure forces involved in axon extension. Finally, a hydrogel with photocleavable linkers incorporated into the network structure is exploited to explore motor axon response to physical channels. This system is used to direct the growth of motor axons towards co-cultured myotubes, resulting in the formation of an in vitro neural circuit.

  1. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy.

    Science.gov (United States)

    Tello, Marta; Spenlé, Caroline; Hemmerlé, Joseph; Mercier, Luc; Fabre, Roxane; Allio, Guillaume; Simon-Assmann, Patricia; Goetz, Jacky G

    2016-02-01

    Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.

  2. Nitric oxide regulates cell behavior on an interactive cell-derived extracellular matrix scaffold.

    Science.gov (United States)

    Xing, Qi; Zhang, Lijun; Redman, Travis; Qi, Shaohai; Zhao, Feng

    2015-12-01

    During tissue injury and wound healing process, there are dynamic reciprocal interactions among cells, extracellular matrix (ECM), and mediating molecules which are crucial for functional tissue repair. Nitric oxide (NO) is one of the key mediating molecules that can positively regulate various biological activities involved in wound healing. Various ECM components serve as binding sites for cells and mediating molecules, and the interactions further stimulate cellular activities. Human mesenchymal stem cells (hMSCs) can migrate to the wound site and contribute to tissue regeneration through differentiation and paracrine signaling. The objective of this work was to investigate the regulatory effect of NO on hMSCs in an interactive ECM-rich microenvironment. In order to mimic the in vivo stromal environment in wound site, a cell-derived ECM scaffold that was able to release NO within the range of in vivo wound fluid NO level was fabricated. Results showed that the micro-molar level of NO released from the ECM scaffold had an inhibitory effect on cellular activities of hMSCs. The NO impaired cell growth, altered cell morphology, disrupted the F-actin organization, also decreased the expression of focal adhesion related molecules integrin α5 and paxillin. These results may contribute to the elucidation of how NO acts on hMSCs in wound healing process.

  3. Mast cell-derived neurotrophin 4 mediates allergen-induced airway hyperinnervation in early life

    Science.gov (United States)

    Patel, Kruti R.; Aven, Linh; Shao, Fengzhi; Krishnamoorthy, Nandini; Duvall, Melody G.; Levy, Bruce D.; Ai, Xingbin

    2016-01-01

    Asthma often progresses from early episodes of insults. How early life events connect to long-term airway dysfunction remains poorly understood. We demonstrated previously that increased neurotrophin 4 (NT4) levels following early life allergen exposure cause persistent changes in airway smooth muscle (ASM) innervation and airway hyper-reactivity (AHR) in mice. Herein, we identify pulmonary mast cells as a key source of aberrant NT4 expression following early insults. NT4 is selectively expressed by ASM and mast cells in mice, nonhuman primates and humans. We show in mice that mast cell-derived NT4 is dispensable for ASM innervation during development. However, upon insults, mast cells expand in number and degranulate to release NT4 and thus become the major source of NT4 under pathological condition. Adoptive transfer of wild type mast cells, but not NT4−/− mast cells restores ASM hyperinnervation and AHR in KitW-sh/W-sh mice following early life insults. Notably, an infant nonhuman primate model of asthma also exhibits ASM hyperinnervation associated with the expansion and degranulation of mast cells. Together, these findings identify an essential role of mast cells in mediating ASM hyperinnervation following early life insults by producing NT4. This role may be evolutionarily conserved in linking early insults to long-term airway dysfunction. PMID:26860818

  4. Stem cell-derived exosomes as a therapeutic tool for cardiovascular disease

    Science.gov (United States)

    Suzuki, Etsu; Fujita, Daishi; Takahashi, Masao; Oba, Shigeyoshi; Nishimatsu, Hiroaki

    2016-01-01

    Mesenchymal stem cells (MSCs) have been used to treat patients suffering from acute myocardial infarction (AMI) and subsequent heart failure. Although it was originally assumed that MSCs differentiated into heart cells such as cardiomyocytes, recent evidence suggests that the differentiation capacity of MSCs is minimal and that injected MSCs restore cardiac function via the secretion of paracrine factors. MSCs secrete paracrine factors in not only naked forms but also membrane vesicles including exosomes containing bioactive substances such as proteins, messenger RNAs, and microRNAs. Although the details remain unclear, these bioactive molecules are selectively sorted in exosomes that are then released from donor cells in a regulated manner. Furthermore, exosomes are specifically internalized by recipient cells via ligand-receptor interactions. Thus, exosomes are promising natural vehicles that stably and specifically transport bioactive molecules to recipient cells. Indeed, stem cell-derived exosomes have been successfully used to treat cardiovascular disease (CVD), such as AMI, stroke, and pulmonary hypertension, in animal models, and their efficacy has been demonstrated. Therefore, exosome administration may be a promising strategy for the treatment of CVD. Furthermore, modifications of exosomal contents may enhance their therapeutic effects. Future clinical studies are required to confirm the efficacy of exosome treatment for CVD.

  5. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.

    Science.gov (United States)

    Heikkilä, Teemu J; Ylä-Outinen, Laura; Tanskanen, Jarno M A; Lappalainen, Riikka S; Skottman, Heli; Suuronen, Riitta; Mikkonen, Jarno E; Hyttinen, Jari A K; Narkilahti, Susanna

    2009-07-01

    The production of functional human embryonic stem cell (hESC)-derived neuronal cells is critical for the application of hESCs in treating neurodegenerative disorders. To study the potential functionality of hESC-derived neurons, we cultured and monitored the development of hESC-derived neuronal networks on microelectrode arrays. Immunocytochemical studies revealed that these networks were positive for the neuronal marker proteins beta-tubulin(III) and microtubule-associated protein 2 (MAP-2). The hESC-derived neuronal networks were spontaneously active and exhibited a multitude of electrical impulse firing patterns. Synchronous bursts of electrical activity similar to those reported for hippocampal neurons and rodent embryonic stem cell-derived neuronal networks were recorded from the differentiated cultures until up to 4 months. The dependence of the observed neuronal network activity on sodium ion channels was examined using tetrodotoxin (TTX). Antagonists for the glutamate receptors NMDA [D(-)-2-amino-5-phosphonopentanoic acid] and AMPA/kainate [6-cyano-7-nitroquinoxaline-2,3-dione], and for GABAA receptors [(-)-bicuculline methiodide] modulated the spontaneous electrical activity, indicating that pharmacologically susceptible neuronal networks with functional synapses had been generated. The findings indicate that hESC-derived neuronal cells can generate spontaneously active networks with synchronous communication in vitro, and are therefore suitable for use in developmental and drug screening studies, as well as for regenerative medicine.

  6. Prostata carcinomas

    International Nuclear Information System (INIS)

    Pre-operative staging, using transrectal prostatic sonography and CT, was carried out in 30 patients with cytologically confirmed carcinomas of the prostate and the results compared with the clinical findings. All patients underwent radical prostatectomy and the pre-operative findings could be verified histologically. Transrectal prostatic sonography is better than CT or clinical examination for determining local tumour spread or penetration of the capsule. A high proportion of enlarged pelvic lymphnodes shown by CT had non-specific changes; failure to demonstrate enlarged nodes excludes lymph node metastases with considerable certainty. Transrectal prostatic sonography provides a higher degree of information regarding local tumour spread, whereas CT indicates the presence or absence of lymph node metastases. (orig.)

  7. The GPR 55 agonist, L-α-lysophosphatidylinositol, mediates ovarian carcinoma cell-induced angiogenesis

    OpenAIRE

    Nicole A. Hofmann; Yang, Jiang; Trauger, Sunia A.; Nakayama, Hironao; Huang, Lan; Strunk, Dirk; Moses, Marsha A.; Klagsbrun, Michael; Bischoff, Joyce; Graier, Wolfgang F

    2015-01-01

    Background and Purpose Highly vascularized ovarian carcinoma secretes the putative endocannabinoid and GPR55 agonist, L-α-lysophosphatidylinositol (LPI), into the circulation. We aimed to assess the involvement of this agonist and its receptor in ovarian cancer angiogenesis. Experimental Approach Secretion of LPI by three ovarian cancer cell lines (OVCAR-3, OVCAR-5 and COV-362) was tested by mass spectrometry. Involvement of cancer cell-derived LPI on angiogenesis was tested in the in vivo ch...

  8. In vitro regeneration of kidney from pluripotent stem cells

    International Nuclear Information System (INIS)

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.

  9. In vitro regeneration of kidney from pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Osafune, Kenji, E-mail: osafu@cira.kyoto-u.ac.jp [Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); JST Yamanaka iPS Cell Special Project, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2010-10-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.

  10. Site-Specific Genome Engineering in Human Pluripotent Stem Cells

    Science.gov (United States)

    Merkert, Sylvia; Martin, Ulrich

    2016-01-01

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies. PMID:27347935

  11. Advances in the study on induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Shuang; DUAN EnKui

    2008-01-01

    Recently, the study on "induced pluripotent stem cells" (iPS cells) has made a great breakthrough, and it is considered as a new milestone in the history of life science. This progress has updated our traditional concepts about pluripotency control, and provided people with a brand-new strategy for somatic cell nuclear reprogramming. In virtue of its availability and stability, this method holds great potential in both biological and clinical research. In order to introduce this rising field of study, this paper starts with an overview of the development of iPS cell establishment, describes the key steps in generating iPS cells, elaborates several relevant scientific issues, and evaluates its current restrictions and promises in future research.

  12. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2016-01-01

    , frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... that includes studying more complex 3D cell cultures, as well as accelerating aging of the neurons, may help to yield stronger phenotypes in the cultured cells. Thus, the use and application of pluripotent stem cells for modelling disease have already shown to be a powerful approach for discovering more about...... these diseases, but will lead to even more findings in the future as gene and cell culture technology continues to develop....

  13. Trefoil factor 3 (TFF3): a promising indicator for diagnosing thyroid follicular carcinoma.

    Science.gov (United States)

    Takano, Toru; Yamada, Hiroya

    2009-01-01

    Since the introduction of fine needle aspiration biopsy (FNAB) in the 1970's, a preoperative diagnostic technique for thyroid follicular carcinoma has long been awaited. Many markers that distinguish follicular carcinomas from adenomas have been reported; however, most of them have not been confirmed to be beneficial for clinical use. Trefoil factor 3 (TFF3) is a relatively new family of peptides that bears the three-loop trefoil domain. Several groups have reported that the suppression of TFF3 mRNA expression is related to malignant characteristics of thyroid follicular cell-derived tumors and the expression level of TFF3 mRNA is the most promising indicator for diagnosing follicular carcinoma. Development of TFF3-based diagnostic methods is now ongoing and it may not be long before thyroid follicular carcinoma can be diagnosed preoperatively using an aspirated sample from the tumor.

  14. Stromal cell-derived factor-1α promotes angiogenesis in the peri-infarct region in adults with cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    凌莉

    2014-01-01

    Objective To investigate the possible effects of exogenous stromal cell-derived factor-1α(SDF-1α)on cell proliferation and angiogenesis in the ipsilateral thalamic ventroposterior nucleus(VPN)in adult rats with focal cortical infarction.Methods Thirty-six hypertensive rats with focal cortical infarction were divided randomly into the SDF-1αgroup,vehicle

  15. Nevoid Basal Cell Carcinoma Syndrome

    Science.gov (United States)

    ... Nevoid Basal Cell Carcinoma Syndrome Request Permissions Nevoid Basal Cell Carcinoma Syndrome Approved by the Cancer.Net Editorial Board , 04/2016 What is Nevoid Basal Cell Carcinoma Syndrome? Nevoid Basal Cell Carcinoma Syndrome (NBCCS) is ...

  16. Amelioration of streptozotocin-induced diabetes in mice with cells derived from human marrow stromal cells.

    Directory of Open Access Journals (Sweden)

    Min Zhao

    Full Text Available BACKGROUND: Pluri-potent bone marrow stromal cells (MSCs provide an attractive opportunity to generate unlimited glucose-responsive insulin-producing cells for the treatment of diabetes. We explored the potential for human MSCs (hMSCs to be differentiated into glucose-responsive cells through a non-viral genetic reprogramming approach. METHODS AND FINDINGS: Two HMSC lines were transfected with three genes: PDX-1, NeuroD1 and Ngn3 without subsequent selection, followed by differentiation induction in vitro and transplantation into diabetic mice. Human MSCs expressed mRNAs of the archetypal stem cell markers: Sox2, Oct4, Nanog and CD34, and the endocrine cell markers: PDX-1, NeuroD1, Ngn3, and Nkx6.1. Following gene transfection and differentiation induction, hMSCs expressed insulin in vitro, but were not glucose regulated. After transplantation, hMSCs differentiated further and approximately 12.5% of the grafted cells expressed insulin. The graft bearing kidneys contained mRNA of insulin and other key genes required for the functions of beta cells. Mice transplanted with manipulated hMSCs showed reduced blood glucose levels (from 18.9+/-0.75 to 7.63+/-1.63 mM. 13 of the 16 mice became normoglycaemic (6.9+/-0.64 mM, despite the failure to detect the expression of SUR1, a K(+-ATP channel component required for regulation of insulin secretion. CONCLUSIONS: Our data confirm that hMSCs can be induced to express insulin sufficient to reduce blood glucose in a diabetic mouse model. Our triple gene approach has created cells that seem less glucose responsive in vitro but which become more efficient after transplantation. The maturation process requires further study, particularly the in vivo factors influencing the differentiation, in order to scale up for clinical purposes.

  17. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    Science.gov (United States)

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  18. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells

    Science.gov (United States)

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    2016-01-01

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  19. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids.

    Science.gov (United States)

    Finkbeiner, Stacy R; Freeman, Jennifer J; Wieck, Minna M; El-Nachef, Wael; Altheim, Christopher H; Tsai, Yu-Hwai; Huang, Sha; Dyal, Rachel; White, Eric S; Grikscheit, Tracy C; Teitelbaum, Daniel H; Spence, Jason R

    2015-10-12

    Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue.

  20. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells

    OpenAIRE

    Patsch, Christoph; Challet-Meylan, Ludivine; Eva C Thoma; Urich, Eduard; Heckel, Tobias; O’Sullivan, John F.; Grainger, Stephanie J.; Kapp, Friedrich G.; Sun, Lin; Christensen, Klaus; Xia, Yulei; Florido, Mary H. C.; He, Wei; Pan, Wei; Prummer, Michael

    2015-01-01

    The use of human pluripotent stem cells for in vitro disease modeling and clinical applications requires protocols that convert these cells into relevant adult cell types. Here, we report the rapid and efficient differentiation of human pluripotent stem cells into vascular endothelial and smooth muscle cells. We found that GSK3 inhibition and BMP4 treatment rapidly committed pluripotent cells to a mesodermal fate and subsequent exposure to VEGF or PDGF-BB resulted in the differentiation of ei...

  1. Generation of Induced Pluripotent Stem (iPS) Cells by Nuclear Reprogramming

    OpenAIRE

    Evans, Gregory R.D.; Dilip Dey

    2011-01-01

    During embryonic development pluripotency is progressively lost irreversibly by cell division, differentiation, migration and organ formation. Terminally differentiated cells do not generate other kinds of cells. Pluripotent stem cells are a great source of varying cell types that are used for tissue regeneration or repair of damaged tissue. The pluripotent stem cells can be derived from inner cell mass of blastocyte but its application is limited due to ethical concerns. The recent discovery...

  2. Derivation of Myogenic Progenitors Directly From Human Pluripotent Stem Cells Using a Sphere-Based Culture

    OpenAIRE

    Hosoyama, Tohru; McGivern, Jered V.; Van Dyke, Jonathan M.; Allison D Ebert; Suzuki, Masatoshi

    2014-01-01

    The authors present a novel protocol for deriving myogenic progenitors from human embryonic stem cells and induced pluripotent stem cells using free-floating spherical culture. Results show that sphere-based cultures of human pluripotent stem cells, expanded in medium containing high concentrations of fibroblast growth factor and epidermal growth factor, can propagate myogenic progenitors from human embryonic stem cells and healthy and disease-specific induced pluripotent stem cells.

  3. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  4. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation

    OpenAIRE

    Salomonis, Nathan; Schlieve, Christopher R.; Pereira, Laura; Wahlquist, Christine; Colas, Alexandre; Zambon, Alexander C.; Vranizan, Karen; Spindler, Matthew J.; Alexander R Pico; Cline, Melissa S; Tyson A Clark; Williams, Alan; John E Blume; Samal, Eva; Mercola, Mark

    2010-01-01

    Two major goals of regenerative medicine are to reproducibly transform adult somatic cells into a pluripotent state and to control their differentiation into specific cell fates. Progress toward these goals would be greatly helped by obtaining a complete picture of the RNA isoforms produced by these cells due to alternative splicing (AS) and alternative promoter selection (APS). To investigate the roles of AS and APS, reciprocal exon–exon junctions were interrogated on a genome-wide scale in ...

  5. Origination of the Protein Fold Repertoire from Oily Pluripotent Peptides

    OpenAIRE

    Mannige, Ranjan V.

    2014-01-01

    While the repertoire of protein folds that exists today underlies most of life’s capabilities, our mechanistic picture of protein fold origination is incomplete. This paper discusses a hypothetical mechanism for the emergence of the protein fold repertoire from highly dynamic and collapsed peptides, exemplified by peptides with high oil content or hydrophobicity. These peptides are called pluripotent to emphasize their capacity to evolve into numerous folds transiently available to them. As e...

  6. Citrullination regulates pluripotency and histone H1 binding to chromatin

    Science.gov (United States)

    Christophorou, Maria A.; Castelo-Branco, Gonçalo; Halley-Stott, Richard P.; Oliveira, Clara Slade; Loos, Remco; Radzisheuskaya, Aliaksandra; Mowen, Kerri A.; Bertone, Paul; Silva, José C. R.; Zernicka-Goetz, Magdalena; Nielsen, Michael L.; Gurdon, John B.; Kouzarides, Tony

    2014-03-01

    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

  7. Cell signalling pathways underlying induced pluripotent stem cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Kate; Hawkins; Shona; Joy; Tristan; Mc; Kay

    2014-01-01

    Induced pluripotent stem(i PS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3 K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and c Myc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few "stabilisation competent" cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-i PS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, i PS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As i PS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon.

  8. Human Vascular Endothelium from Induced Pluripotent Stem Cells

    OpenAIRE

    Adams, William James

    2013-01-01

    The vascular endothelium is a dynamic cellular interface that displays a unique phenotypic plasticity. This plasticity is critical for vascular function and when dysregulated is pathogenic in several diseases. The development of new human endothelial genotype-phenotype studies, personalized vascular medicine efforts and cell based regenerative therapies are limited by the unavailability of patient-specific endothelial cells. Induced pluripotent stem cells (iPSC) offer great promise as a new p...

  9. Pathways in pluripotency and differentiation of embryonic cells

    OpenAIRE

    du Puy, L.

    2010-01-01

    Pluripotency - the potential to differentiate into derivatives of the three embryonic germ layers endoderm, ectoderm and mesoderm - is the main characteristic of embryonic stem (ES) cells. ES cells are derived from the inner cell mass (ICM) of a pre-implantation blastocyst and can self-renew indefinitely in culture. Because of their differentiation capabilities, ES cells can potentially be used in cell-based therapies in human medicine as well as for toxicology screening and drug testing. Mor...

  10. Induced Pluripotent Stem Cells for Neural Tissue Engineering

    OpenAIRE

    Wang, Aijun; Tang, Zhenyu; Park, In-Hyun; Zhu, Yiqian; Patel, Shyam; Daley, George Q.; Song, Li

    2011-01-01

    Induced pluripotent stem cells (iPSCs) hold great promise for cell therapies and tissue engineering. Neural crest stem cells (NCSCs) are multipotent and represent a valuable system to investigate iPSC differentiation and therapeutic potential. Here we derived NCSCs from human iPSCs and embryonic stem cells (ESCs), and investigated the potential of NCSCs for neural tissue engineering. The differentiation of iPSCs and the expansion of derived NCSCs varied in different cell lines, but all NCSC l...

  11. Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis

    OpenAIRE

    Manuela Völkner; Marlen Zschätzsch; Maria Rostovskaya; Rupert W. Overall; Volker Busskamp; Konstantinos Anastassiadis; Mike O. Karl

    2016-01-01

    Summary The plasticity of pluripotent stem cells provides new possibilities for studying development, degeneration, and regeneration. Protocols for the differentiation of retinal organoids from embryonic stem cells have been developed, which either recapitulate complete eyecup morphogenesis or maximize photoreceptor genesis. Here, we have developed a protocol for the efficient generation of large, 3D-stratified retinal organoids that does not require evagination of optic-vesicle-like structur...

  12. Modelling familial dysautonomia in human induced pluripotent stem cells

    OpenAIRE

    Lee, Gabsang; Studer, Lorenz

    2011-01-01

    Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of...

  13. Single cell derived murine embryonic stem cell clones stably express Rex1-specific green fluorescent protein and their differentiation study

    International Nuclear Information System (INIS)

    Embryonic stem cells (ESCs) often display high rates of apoptosis and spontaneous differentiation in routine culture, thus bring the proliferation of these cells highly inefficient. Moreover, little is known about the factors that are indispensable for sustaining self-renewal. To surmount these issues, we established transgenic mES cell lines expressing the enhanced green fluorescent protein (EGFP) under the control of the Rex1 promoter which is a key regulator of pluripotency in ES cells. In addition, we provided a simplified and improved protocol to derive transgenic mESCs from single cell. Finally, we showed that embryoid body (EB) development was faster than adherent differentiation in terms of differentiation ratio by real-time tracking of the EGFP expression. Therefore, these cell lines can be tracked and selected both in vitro and in vivo and should be invaluable for studying the factors that are indispensable for maintaining pluripotency

  14. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yohei Hayashi

    2016-01-01

    Full Text Available In recent years, as human pluripotent stem cells (hPSCs have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK, which transmits ECM-integrin signaling to AKT (also known as protein kinase B, has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.

  15. Epigenetics of induced pluripotency, the seven-headed dragon.

    Science.gov (United States)

    Djuric, Ugljesa; Ellis, James

    2010-01-01

    Induction of pluripotency from somatic cells by exogenous transcription factors is made possible by a variety of epigenetic changes that take place during the reprogramming process. The derivation of fully reprogrammed induced pluripotent stem (iPS) cells is achieved through establishment of embryonic stem cell (ESC)-like epigenetic architecture permitting the reactivation of key endogenous pluripotency-related genes, establishment of appropriate bivalent chromatin domains and DNA hypomethylation of genomic heterochromatic regions. Restructuring of the epigenetic landscape, however, is a very inefficient process and the vast majority of the induced cells fail to complete the reprogramming process. Optimal ESC-like epigenetic reorganization is necessary for all reliable downstream uses of iPS cells, including in vitro modeling of disease and clinical applications. Here, we discuss the key advancements in the understanding of dynamic epigenetic changes taking place over the course of the reprogramming process and how aberrant epigenetic remodeling may impact downstream applications of iPS cell technology. PMID:20504284

  16. Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4

    Directory of Open Access Journals (Sweden)

    Glenn Marsboom

    2016-07-01

    Full Text Available The molecular mechanisms underlying the regulation of pluripotency by cellular metabolism in human embryonic stem cells (hESCs are not fully understood. We found that high levels of glutamine metabolism are essential to prevent degradation of OCT4, a key transcription factor regulating hESC pluripotency. Glutamine withdrawal depletes the endogenous antioxidant glutathione (GSH, which results in the oxidation of OCT4 cysteine residues required for its DNA binding and enhanced OCT4 degradation. The emergence of the OCT4lo cell population following glutamine withdrawal did not result in greater propensity for cell death. Instead, glutamine withdrawal during vascular differentiation of hESCs generated cells with greater angiogenic capacity, thus indicating that modulating glutamine metabolism enhances the differentiation and functional maturation of cells. These findings demonstrate that the pluripotency transcription factor OCT4 can serve as a metabolic-redox sensor in hESCs and that metabolic cues can act in concert with growth factor signaling to orchestrate stem cell differentiation.

  17. Advances in culture and manipulation of human pluripotent stem cells.

    Science.gov (United States)

    Qian, X; Villa-Diaz, L G; Krebsbach, P H

    2013-11-01

    Recent advances in the understanding of pluripotent stem cell biology and emerging technologies to reprogram somatic cells to a stem cell-like state are helping bring stem cell therapies for a range of human disorders closer to clinical reality. Human pluripotent stem cells (hPSCs) have become a promising resource for regenerative medicine and research into early development because these cells are able to self-renew indefinitely and are capable of differentiation into specialized cell types of all 3 germ layers and trophoectoderm. Human PSCs include embryonic stem cells (hESCs) derived from the inner cell mass of blastocyst-stage embryos and induced pluripotent stem cells (hiPSCs) generated via the reprogramming of somatic cells by the overexpression of key transcription factors. The application of hiPSCs and the finding that somatic cells can be directly reprogrammed into different cell types will likely have a significant impact on regenerative medicine. However, a major limitation for successful therapeutic application of hPSCs and their derivatives is the potential xenogeneic contamination and instability of current culture conditions. This review summarizes recent advances in hPSC culture and methods to induce controlled lineage differentiation through regulation of cell-signaling pathways and manipulation of gene expression as well as new trends in direct reprogramming of somatic cells.

  18. Expression Patterns of Cancer-Testis Antigens in Human Embryonic Stem Cells and Their Cell Derivatives Indicate Lineage Tracks

    OpenAIRE

    Olga Gordeeva; Tatyana Yakovleva; Galina Poljanskaya; Tatyana Krylova; Anna Koltsova; Nadya Lifantseva

    2011-01-01

    Pluripotent stem cells can differentiate into various lineages but undergo genetic and epigenetic changes during long-term cultivation and, therefore, require regular monitoring. The expression patterns of cancer-testis antigens (CTAs) MAGE-A2, -A3, -A4, -A6, -A8, -B2, and GAGE were examined in undifferentiated human embryonic stem (hES) cells, their differentiated derivatives, teratocarcinoma (hEC) cells, and cancer cell lines of neuroectodermal and mesodermal origin. Undifferentiated hES ce...

  19. The Use of Pluripotent Stem Cell for Personalized Cell Therapies against Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Hye-Yeong Ha

    2011-01-01

    Full Text Available Although there are a number of weaknesses for clinical use, pluripotent stem cells are valuable sources for patient-specific cell therapies against various diseases. Backed-up by a huge number of basic researches, neuronal differentiation mechanism is well established and pluripotent stem cell therapies against neurological disorders are getting closer to clinical application. However, there are increasing needs for standardization of the sourcing pluripotent stem cells by establishing stem cell registries and banking. Global harmonization will accelerate practical use of personalized therapies using pluripotent stem cells.

  20. Equivalency of buffalo (Bubalus bubalis) embryonic stem cells derived from fertilized, parthenogenetic, and hand-made cloned embryos.

    Science.gov (United States)

    Muzaffar, Musharifa; Selokar, Naresh L; Singh, Karn P; Zandi, Mohammad; Singh, Manoj K; Shah, Riaz A; Chauhan, Manmohan S; Singla, Suresh K; Palta, Prabhat; Manik, Radheysham

    2012-06-01

    This study was aimed at establishing buffalo embryonic stem cells (ESCs) from in vitro fertilized (IVF), parthenogenetic, and hand-made cloned (HMC) embryos and to check their equivalency in terms of stem cell marker expression, longevity, proliferation, and differentiation pattern. ESCs derived from all three sources were found by immunofluorescence to express the pluripotency markers SSEA-4, TRA-1-60, TRA-1-81, OCT4, and SOX2 and were able to form embryoid bodies containing cells expressing genes specific to endoderm (AFP, HNF4, and GATA4), mesoderm (MSX1, BMP4, and ASA), and ectoderm (cytokeratin 8 and NF68). Reverse transcriptase PCR (RT-PCR) showed cells from all sources to be positive for pluripotency markers OCT4, SOX2, NANOG, STAT3, REX1, FOXD3, NUCLEOSTEMIN, and TELOMERASE. Pluripotency markers OCT4, SOX2, NANOG, and c-MYC were also analyzed by real-time PCR. No significant differences were observed among ESCs from all three sources for all these genes except NANOG, whose expression was higher (pcloning, chimera formation, and transgenic animal production.

  1. Exposure to phthalates affects calcium handling and intercellular connectivity of human stem cell-derived cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Nikki Gillum Posnack

    Full Text Available The pervasive nature of plastics has raised concerns about the impact of continuous exposure to plastic additives on human health. Of particular concern is the use of phthalates in the production of flexible polyvinyl chloride (PVC products. Di-2-ethylhexyl-phthalate (DEHP is a commonly used phthalate ester plasticizer that imparts flexibility and elasticity to PVC products. Recent epidemiological studies have reported correlations between urinary phthalate concentrations and cardiovascular disease, including an increased risk of high blood pressure and coronary risk. Yet, there is little direct evidence linking phthalate exposure to adverse effects in human cells, including cardiomyocytes.The effect of DEHP on calcium handling was examined using monolayers of gCAMP3 human embryonic stem cell-derived cardiomyocytes, which contain an endogenous calcium sensor. Cardiomyocytes were exposed to DEHP (5 - 50 μg/mL, and calcium transients were recorded using a Zeiss confocal imaging system. DEHP exposure (24 - 72 hr had a negative chronotropic and inotropic effect on cardiomyocytes, increased the minimum threshold voltage required for external pacing, and modified connexin-43 expression. Application of Wy-14,643 (100 μM, an agonist for the peroxisome proliferator-activated receptor alpha, did not replicate DEHP's effects on calcium transient morphology or spontaneous beating rate.Phthalates can affect the normal physiology of human cardiomyocytes, including DEHP elicited perturbations in cardiac calcium handling and intercellular connectivity. Our findings call for additional studies to clarify the extent by which phthalate exposure can alter cardiac function, particularly in vulnerable patient populations who are at risk for high phthalate exposure.

  2. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); School of Life Science, Southwest University, Chongqing 400715 (China); Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); College of Pharmacy, Jinan University, Guangzhou 510632 (China); Yu, Shuhui [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Library of Southwest University, Chongqing 400715 (China); Jiang, Jiahuan; Yan, Xiaoqing [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Zhang, Haoxing [School of Life Science, Southwest University, Chongqing 400715 (China); Liu, Lan [Department of Laboratory of Medicine, Children' s Hospital of Chongqin Medical University, Chongqing 400014 (China); Liu, Qun [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Du, Jun [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China); Cai, Shaohui [College of Pharmacy, Jinan University, Guangzhou 510632 (China); Sung, K.L. Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412 (United States)

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  3. Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Katsunari Makino

    Full Text Available Endothelin (ET-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF-α and connective tissue growth factor (CTGF were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach.

  4. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  5. Expression of stromal cell-derived factor-1 in diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling-yan; ZHUO Ye-hong; LI Yong-hao; HUANG Xin-hua; ZHANG Jing-lin; LI Shi-yi; WANG Xiang-gui; L(U) Lin

    2010-01-01

    Background Neovascularization can cause vision loss in proliferative diabetic retinopathy (PDR) and may be affected by many factors. Stromal cell-derived factor-1 (SDF-1) is a potent stimulator of angiogenesis. The study was aimed to investigate the expression of SDF-1 and its correlation with vascular endothelial growth factor (VEGF) in the eyes with diabetic retinopathy.Methods The levels of SDF-1 and VEGF were measured by enzyme-linked immunosorbent assay in the vitreous of 41 eyes of 41 patients with PDR and 12 eyes of 12 patients with idiopathic macular hole (IMH). Vitreous fluid samples and fibrovascular preretinal membranes were obtained at vitrectomy. SDF-1 and VEGF were localized using immunohistochemistry.Results The vitreous concentration of VEGF was significantly higher in eyes with PDR ((2143.7±1685.21) pg/ml) than in eyes with IMH ((142.42±72.83) pg/ml, P<0.001). The vitreous level of SDF-1 was also significantly higher in eyes with PDR ((306.37±134.25) pg/ml) than in eyes with IMH ((86.91±55.05) pg/ml, P<0.001). The concentrations of both VEGF and SDF-1 were higher in eyes with active PDR than in eyes with inactive PDR. Panretinal photocoagulation (PRP) could decrease the SDF-1 levels in the vitreous of PDR patients. The vitreous concentration of SDF-1 correlated with that of VEGF in eyes with PDR (n=0.61, P <0.001). The costaining of SDF-1 and VEGF was confined to the vascular components in preretinal membranes.Conclusions SDF-1 protein is highly expressed in both the vitreous and preretinal membranes of PDR patients; SDF-1 may be correlated with VEGF in angiogenesis in PDR.

  6. Liver cancer - hepatocellular carcinoma

    Science.gov (United States)

    Primary liver cell carcinoma; Tumor - liver; Cancer - liver; Hepatoma ... Hepatocellular carcinoma accounts for most liver cancers. This type of cancer occurs more often in men than women. It is usually diagnosed in people age 50 or older. ...

  7. Thyroid cancer - papillary carcinoma

    Science.gov (United States)

    Papillary carcinoma of the thyroid ... About 80% of all thyroid cancers diagnosed in the United States are the papillary carcinoma type. It is more common in women than in men. It may occur in childhood, but is most often seen ...

  8. Undifferentiated salivary gland carcinomas

    DEFF Research Database (Denmark)

    Herbst, H.; Hamilton-Dutoit, S.; Jakel, K.T.;

    2004-01-01

    Undifferentiated salivary gland carcinomas may be divided into small cell and large cell types. Among large cell undifferentiated carcinomas, lymphoepithelial carcinomas have to be distinguished, the latter of which are endemic in the Arctic regions and southern China where virtually all cases...... of these tumors are associated with the Epstein-Barr virus (EBV). Association with EBV may also be observed in sporadic cases, and detection of EBV gene products may aid their diagnosis. Immunohistology may be employed to resolve the differential diagnosis of undifferentiated salivary gland carcinomas, comprising...... malignant lymphomas, amelanotic melanomas, Merkel cell carcinomas, and adenoid cystic carcinomas, in particular in small biopsy materials. Because of the rarity of undifferentiated salivary gland carcinomas, the differential diagnosis should always include metastases of undifferentiated carcinomas arising...

  9. Production of hemizygous and homozygous embryonic stem cell-derived neural progenitor cells from the transgenic alszheimer göttingen minipis

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Jacobsen, J.; Gunnarsson, A.;

    2011-01-01

    Production of hemizygous and homozygous embryonic stem cell-derived neural progenitor cells from the transgenic alszheimer göttingen minipis......Production of hemizygous and homozygous embryonic stem cell-derived neural progenitor cells from the transgenic alszheimer göttingen minipis...

  10. Potential application of induced pluripotent stem cells in cell replacement therapy for Parkinson's disease.

    Science.gov (United States)

    Chen, L W; Kuang, F; Wei, L C; Ding, Y X; Yung, K K L; Chan, Y S

    2011-06-01

    Parkinson's disease (PD), a common degenerative disease in humans, is known to result from loss of dopamine neurons in the substantia nigra and is characterized by severe motor symptoms of tremor, rigidity, bradykinsia and postural instability. Although levodopa administration, surgical neural lesion, and deep brain stimulation have been shown to be effective in improving parkinsonian symptoms, cell replacement therapy such as transplantation of dopamine neurons or neural stem cells has shed new light on an alternative treatment strategy for PD. While the difficulty in securing donor dopamine neurons and the immuno-rejection of neural transplants largely hinder application of neural transplants in clinical treatment, induced pluripotent stem cells (iPS cells) derived from somatic cells may represent a powerful tool for studying the pathogenesis of PD and provide a source for replacement therapies in this neurodegenerative disease. Yamanaka et al. [2006, 2007] first succeeded in generating iPS cells by reprogramming fibroblasts with four transcription factors, Oct4, Sox2, Klf4, and c-Myc in both mouse and human. Animal studies have further shown that iPS cells from fibroblasts could be induced into dopamine neurons and transplantation of these cells within the central nervous system improved motor symptoms in the 6-OHDA model of PD. More interestingly, neural stem cells or fibroblasts from patients can be efficiently reprogrammed and subsequently differentiated into dopamine neurons. Derivation of patient-specific iPS cells and subsequent differentiation into dopamine neurons would provide a disease-specific in vitro model for disease pathology, drug screening and personalized stem cell therapy for PD. This review summarizes current methods and modifications in producing iPS cells from somatic cells as well as safety concerns of reprogramming procedures. Novel reprogramming strategies that deter abnormal permanent genetic and epigenetic alterations are essential for

  11. Hepatocellular carcinoma.

    Science.gov (United States)

    Edwards, J T; Macdonald, G A

    2000-05-01

    The incidence of hepatocellular carcinoma (HCC) appears to be declining in Taiwan and potentially in other high-prevalence areas as a consequence of vaccination for hepatitis B virus (HBV). However, there is evidence that the incidence of HCC is increasing in North America and Europe. This appears to be related to the increasing prevalence and duration of hepatitis C virus (HCV) infection in these countries. There is also growing evidence to support an increase in the risk of HCC in patients with HCV who are coinfected with occult HBV (patients who have lost HBV surface antigen but still have detectable HBV DNA either in blood or liver). Occult HBV infection in patients with HCV may be more common than previously thought, and HCC that occurs in this setting appears to have a worse prognosis. There is continuing interest in the effect of interferon therapy on the incidence of HCC in patients with HCV. Several studies from Japan have shown a benefit in patients without cirrhosis, although there are a number of potentially confounding variables that may partly explain these results. Prospective randomized studies are needed to investigate this important question. The molecular biology of HCC and the events of malignant transformation in the liver continue to be areas of intense study. Recently, there has been considerable interest in telomeres, the repeat units on the ends of chromosomes, and the enzyme that maintains these, telomerase. Telomeres shorten with each cell division and can be used to determine the number of divisions a cell has undergone. Eventually they reach a critical length, with further loss resulting in cellular senescence. Telomerase restores telomere length and may help malignant cells escape senescence. Nearly all HCCs have telomerase activity and assessments of telomeres and telomerase may be clinically useful. PMID:17023886

  12. Apoptotic Susceptibility to DNA Damage of Pluripotent Stem Cells Facilitates Pharmacologic Purging of Teratoma Risk

    OpenAIRE

    Smith, Alyson J.; Nelson, Natalie G.; Oommen, Saji; Hartjes, Katherine A.; Folmes, Clifford D.; Terzic, Andre; Nelson, Timothy J.

    2012-01-01

    The pluripotent cell-purging assay validated herein demonstrates that pluripotent cells are selectively hypersensitive to DNA damage-induced apoptosis as a function of the specific apoptotic inducer protein Puma. Risk of dysregulated growth is decreased and the safety profile of transplant-ready, bioengineered progenitor cells is augmented.

  13. Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency

    DEFF Research Database (Denmark)

    Hammachi, Fella; Morrison, Gillian M; Sharov, Alexei A;

    2012-01-01

    Oct4 is an essential regulator of pluripotency in vivo and in vitro in embryonic stem cells, as well as a key mediator of the reprogramming of somatic cells into induced pluripotent stem cells. It is not known whether activation and/or repression of specific genes by Oct4 is relevant to these fun...

  14. Co-expression network analysis to identify pluripotency biomarkers in bovine and porcine embryos

    DEFF Research Database (Denmark)

    Mazzoni, Gianluca; Freude, Karla Kristine; Hall, Vanessa Jane;

    Differentiated somatic cells can be reprogrammed in induced pluripotent stem cells (iPSCs); a cell type with great potentials in regenerative medicine and in vitro disease modeling. In the pig, we have developed iPSCs, but proper culture conditions for maintaining pluripotency over time are still...

  15. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Kues, Wilfried A.; Herrmann, Doris; Barg-Kues, Brigitte;

    2013-01-01

    the nonviral Sleeping Beauty transposon system to deliver the reprogramming factors Oct4, Sox2, Klf4, and cMyc. Successful reprogramming to a pluripotent state was indicated by changes in cell morphology and reactivation of the Oct4-EGFP reporter. The transposon-reprogrammed induced pluripotent stem (i...

  16. Successful generation of cloned mice using nuclear transfer from induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Shuya Zhou; Chunjing Feng; Tang Hai; Liu Wang; Qi Zhou; Chenhui Ding; Xiaoyang Zhao; Eryao Wang; Xiangpeng Dai; Lei Liu; Wei Li; Zichuan Liu; Haifeng Wan

    2010-01-01

    Dear Editor, It is now well known that somatic cells can be efficiently reprogrammed into induced pluripotent stem cells (iPSCs) by forced expression of defined factors [1-3]. These cells, like embryonic stem cells (ESCs), have true pluripotency as shown by the live, fertile mice that can be generated through the tetraploid complementation assay using these iPSCs [4, 5].

  17. “Mouse Clone Model” for evaluating the immunogenicity and tumorigenicity of pluripotent stem cells

    OpenAIRE

    Zhang, Gang; Zhang, Yi

    2015-01-01

    To investigate the immune-rejection and tumor-formation potentials of induced pluripotent stem cells and other stem cells, we devised a model—designated the “Mouse Clone Model”—which combined the theory of somatic animal cloning, tetraploid complementation, and induced pluripotent stem cells to demonstrate the applicability of stem cells for transplantation therapy.

  18. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells

    NARCIS (Netherlands)

    C. Buecker (Christa); H.H. Chen; J.M. Polo; L. Daheron (Laurence); L. Bu (Lei); T.S. Barakat (Tahsin Stefan); P. Okwieka (Patricia); A. Porter (Andrew); J.H. Gribnau (Joost); K. Hochedlinger (Konrad); N. Geijsen (Niels)

    2010-01-01

    textabstractMurine pluripotent stem cells can exist in two functionally distinct states, LIF-dependent embryonic stem cells (ESCs) and bFGF-dependent epiblast stem cells (EpiSCs). However, human pluripotent cells so far seemed to assume only an epiblast-like state. Here we demonstrate that human iPS

  19. A Murine ESC-like State Facilitates Transgenesis and Homologous Recombination in Human Pluripotent Stem Cells

    NARCIS (Netherlands)

    Buecker, Christa; Chen, Hsu-Hsin; Polo, Jose Maria; Daheron, Laurence; Bu, Lei; Barakat, Tahsin Stefan; Okwieka, Patricia; Porter, Andrew; Gribnau, Joost; Hochedlinger, Konrad; Geijsen, Niels

    2010-01-01

    Murine pluripotent stem cells can exist in two functionally distinct states, LIF-dependent embryonic stem cells (ESCs) and bFGF-dependent epiblast stem cells (EpiSCs). However, human pluripotent cells so far seemed to assume only an epiblast-like state. Here we demonstrate that human iPSC reprogramm

  20. The Molecular Mechanism of Induced Pluripotency : A Two-Stage Switch

    NARCIS (Netherlands)

    Scheper, Wouter; Copray, Sjef

    2009-01-01

    Pluripotent stem cells are basic cells with an indefinite self-renewal capacity and the potential to generate all the cell types of the three germinal layers. So far, the major source for pluripotent stem cells is the inner cell mass of the blastocysts: embryonic stem (ES) cells. Potential clinical

  1. CD24 tracks divergent pluripotent states in mouse and human cells

    NARCIS (Netherlands)

    Shakiba, Nika; White, Carl A; Lipsitz, Yonatan Y; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M I; Puri, Mira C; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz Peralta, Javier; Benevento, Marco; Rogers, Ian M; Hanna, Jacob H; Heck, Albert J R; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W

    2015-01-01

    Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we

  2. Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Somi

    2005-09-01

    Full Text Available IntroductionHepatocellular carcinoma (HCC is one of the most common malignant tumors worldwide(1, with over four hundred thousand new cases and almost as many deaths each year(2. The incidence ranges from <10 cases per 100,000 population in North America and Western Europe to 50-150 cases per 100,000 population in parts of Africa and Asia where HCC is responsible for a large proportion of cancer deaths. Studies from the USA, UK, mainland Europe and Australia have shown a rising incidence of HCC(3-6, which probably relates to the increasing prevalence of hepatitis B and C due to immigration(7. Improved care for individuals with cirrhosis has resulted in prolonged and a relatively greater opportunity for malignant changes to develop. HCC is a disease of multifactorial etiology; the development of a carcinoma in a given individual is a multi-step process and the result of an accumulation of risks. It is estimated that persistent infection with hepatotrophic viruses account for well over 80% of the world's liver cancer(8. Hepatocellular carcinoma is the major cause of death in cirrhotic patients in Europe(9,10,11. Once cirrhosis is present, up to 20% of patients will develop HCC over 10 years(12. Genetic alterations are fundamental to the development of HCC by resulting in uncontrolled cellular proliferation and de-differentiation. Without treatment, the prognosis is dismal, with only a few months survival(13. Several surgical and non-surgical therapeutic modalities have been used for the treatment of HCC. Surgical resection, liver transplantation and local ablation therapies demonstrate potentially curative treatment options that should always be considered when the tumor is restricted to liver.EpidemiologyThe incidence of HCC varies widely by geographic location. The distribution of HCC also differs among ethnic groups and regions within the same country(14. High incidence regions (more than 15 cases per 100,000 populations per year include sub

  3. Presumed pluripotency markers UTF-1 and REX-1 are expressed in human adult testes and germ cell neoplasms

    DEFF Research Database (Denmark)

    Kristensen, David M; Nielsen, John E; Skakkebaek, Niels E;

    2008-01-01

    UTF-1 and REX-1/ZFP42 are transcription factors involved in pluripotency. Because of phenotypic similarities between pluripotent embryonic stem cells and testicular germ cell tumours (TGCT) and the derivation of pluripotent cells from testes, we investigated the expression of UTF-1 and REX-1 duri...

  4. Role of mast cell-derived mediators for leukocyte/endothelium-interactions and microvascular mechanisms in inflammation and in anaphylaxis.

    OpenAIRE

    Guo, Yancai

    2003-01-01

    The overall objective of this thesis was to study the roles of mast cell-derived mediators for leukocyte/endothelium interactions and microvascular mechanisms in inflammation and in anaphylaxis, using mast cell-deficient Ws/Ws rats and their wild-type +/+ littermates. The efflux of endogenous histamine and edema formation evoked by subplantar injection of compound 48/80 in rat hindpaws was dose-dependent in +/+ rats, and was essentially lacking in Ws/Ws rats. These findings...

  5. Time-lapse Imaging of Primary Preneoplastic Mammary Epithelial Cells Derived from Genetically Engineered Mouse Models of Breast Cancer

    OpenAIRE

    Nakles, Rebecca E.; Millman, Sarah L.; Cabrera, M. Carla; Johnson, Peter; Mueller, Susette; Hoppe, Philipp S.; Schroeder, Timm; Furth, Priscilla A.

    2013-01-01

    Time-lapse imaging can be used to compare behavior of cultured primary preneoplastic mammary epithelial cells derived from different genetically engineered mouse models of breast cancer. For example, time between cell divisions (cell lifetimes), apoptotic cell numbers, evolution of morphological changes, and mechanism of colony formation can be quantified and compared in cells carrying specific genetic lesions. Primary mammary epithelial cell cultures are generated from mammary glands without...

  6. Human B Cell-Derived Lymphoblastoid Cell Lines Constitutively Produce Fas Ligand and Secrete MHCII+FasL+ Killer Exosomes

    OpenAIRE

    Klinker, Matthew W.; Lizzio, Vincent; Reed, Tamra J.; Fox, David A.; Lundy, Steven K.

    2014-01-01

    Immune suppression mediated by exosomes is an emerging concept with potentially immense utility for immunotherapy in a variety of inflammatory contexts, including allogeneic transplantation. Exosomes containing the apoptosis-inducing molecule Fas ligand (FasL) have demonstrated efficacy in inhibiting antigen-specific immune responses upon adoptive transfer in animal models. We report here that a very high frequency of human B cell-derived lymphoblastoid cell lines (LCL) constitutively produce...

  7. Cryotherapy for hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Awad, Tahany; Thorlund, Kristian; Gluud, Christian

    2009-01-01

    BACKGROUND: Hepatocellular carcinoma is the most common primary malignant cancer of the liver. Evidence for the role of cryotherapy in the treatment of hepatocellular carcinoma is controversial. OBJECTIVES: The aim of this review is to evaluate the potential benefits and harms of cryotherapy for...... the treatment of hepatocellular carcinoma. SEARCH STRATEGY: We searched The Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, and LILACS until June 2009. We identified further studies by...... hepatocellular carcinoma. Randomised clinical trials with low-risk of bias may help in defining the role of cryotherapy in the treatment of hepatocellular carcinoma....

  8. Autocrine regulation of pulmonary inflammation by effector T-cell derived IL-10 during infection with respiratory syncytial virus.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2011-08-01

    Full Text Available Respiratory syncytial virus (RSV infection is the leading viral cause of severe lower respiratory tract illness in young infants. Clinical studies have documented that certain polymorphisms in the gene encoding the regulatory cytokine IL-10 are associated with the development of severe bronchiolitis in RSV infected infants. Here, we examined the role of IL-10 in a murine model of primary RSV infection and found that high levels of IL-10 are produced in the respiratory tract by anti-viral effector T cells at the onset of the adaptive immune response. We demonstrated that the function of the effector T cell -derived IL-10 in vivo is to limit the excess pulmonary inflammation and thereby to maintain critical lung function. We further identify a novel mechanism by which effector T cell-derived IL-10 controls excess inflammation by feedback inhibition through engagement of the IL-10 receptor on the antiviral effector T cells. Our findings suggest a potentially critical role of effector T cell-derived IL-10 in controlling disease severity in clinical RSV infection.

  9. Nano-zymography Using Laser-Scanning Confocal Microscopy Unmasks Proteolytic Activity of Cell-Derived Microparticles

    Science.gov (United States)

    Briens, Aurélien; Gauberti, Maxime; Parcq, Jérôme; Montaner, Joan; Vivien, Denis; Martinez de Lizarrondo, Sara

    2016-01-01

    Cell-derived microparticles (MPs) are nano-sized vesicles released by activated cells in the extracellular milieu. They act as vectors of biological activity by carrying membrane-anchored and cytoplasmic constituents of the parental cells. Although detection and characterization of cell-derived MPs may be of high diagnostic and prognostic values in a number of human diseases, reliable measurement of their size, number and biological activity still remains challenging using currently available methods. In the present study, we developed a protocol to directly image and functionally characterize MPs using high-resolution laser-scanning confocal microscopy. Once trapped on annexin-V coated micro-wells, we developed several assays using fluorescent reporters to measure their size, detect membrane antigens and evaluate proteolytic activity (nano-zymography). In particular, we demonstrated the applicability and specificity of this method to detect antigens and proteolytic activities of tissue-type plasminogen activator (tPA), urokinase and plasmin at the surface of engineered MPs from transfected cell-lines. Furthermore, we were able to identify a subset of tPA-bearing fibrinolytic MPs using plasma samples from a cohort of ischemic stroke patients who received thrombolytic therapy and in an experimental model of thrombin-induced ischemic stroke in mice. Overall, this method is promising for functional characterization of cell-derived MPs. PMID:27022410

  10. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model.

    Directory of Open Access Journals (Sweden)

    Jan Tønnesen

    Full Text Available Intrastriatal grafts of stem cell-derived dopamine (DA neurons induce behavioral recovery in animal models of Parkinson's disease (PD, but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D₂ autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2 and halorhodopsin (NpHR, respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.

  11. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model.

    Science.gov (United States)

    Tønnesen, Jan; Parish, Clare L; Sørensen, Andreas T; Andersson, Angelica; Lundberg, Cecilia; Deisseroth, Karl; Arenas, Ernest; Lindvall, Olle; Kokaia, Merab

    2011-03-04

    Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson's disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D₂ autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.

  12. Sox2, a key factor in the regulation of pluripotency and neural differentiation

    Institute of Scientific and Technical Information of China (English)

    Shuchen; Zhang; Wei; Cui

    2014-01-01

    Sex determining region Y-box 2(Sox2), a member of the SoxB1 transcription factor family, is an important transcriptional regulator in pluripotent stem cells(PSCs). Together with octamer-binding transcription factor 4 and Nanog, they co-operatively control gene expression in PSCs and maintain their pluripotency. Furthermore, Sox2 plays an essential role in somatic cell reprogram-ming, reversing the epigenetic configuration of differ-entiated cells back to a pluripotent embryonic state. In addition to its role in regulation of pluripotency, Sox2 is also a critical factor for directing the differentiation of PSCs to neural progenitors and for maintaining the properties of neural progenitor stem cells. Here, we review recent findings concerning the involvement of Sox2 in pluripotency, somatic cell reprogramming and neural differentiation as well as the molecular mecha-nisms underlying these roles.

  13. Production of Induced Pluripotent Stem Cells by Reprogramming of Blood Cells

    Directory of Open Access Journals (Sweden)

    Sadia Zia

    2011-06-01

    Full Text Available Blood cells are the simple, efficient and economical source for the production of induced pluripotent cells. The discovery of induced pluripotent cells was not novel; it was pedestal on the scientific principals and technologies which have been developed over last six decades. These are nuclear transfer and the cloning of Animals, Pluripotent cell lines and fusion hybrids and Transcription Factors and lineage switching. The use of human embryonic stem cells in regenerative medicines was a breakthrough but make use of these cells arise ethical issues as they are obtained from human embryos. An alternative advancement using induced pluripotent stem cells, which mimics the embryonic stem cells has the significant gain that they replaced the embryonic stem cells. The pluripotent cells can be induced from terminally differentiated somatic cells by the Induction of only four defined factors including c-Myc, klf4, Oct4 and Sox2 which are enough to alter the fate of cell.

  14. Defining the nature of human pluripotent stem cell progeny

    Institute of Scientific and Technical Information of China (English)

    Michaela Patterson; David N Chan; Iris Ha; Dana Case; Yongyan Cui; Ben Van Handel; Hanna KA Mikkola; William E Lowry

    2012-01-01

    While it is clear that human pluripotent stem cells (hPSCs) can differentiate to generate a panoply of various cell types,it is unknown how closely in vitro development mirrors that which occurs in vivo.To determine whether human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) make equivalent progeny,and whether either makes cells that are analogous to tissue-derived cells,we performed comprehensive transcriptome profiling of purified PSC derivatives and their tissue-derived counterparts.Expression profiling demonstrated that hESCs and hiPSCs make nearly identical progeny for the neural,hepatic,and mesenchymal lineages,and an absence of re-expression from exogenous reprogramming factors in hiPSC progeny.However,when compared to a tissuederived counterpart,the progeny of both hESCs and hiPSCs maintained expression of a subset of genes normally associated with early mammalian development,regardless of the type of cell generated.While pluripotent genes (OCT4,SOX2,REX1,and NANOG) appeared to be silenced immediately upon differentiation from hPSCs,genes normally unique to early embryos (LIN28A,LIN28B,DPPA4,and others) were not fully silenced in hPSC derivatives.These data and evidence from expression patterns in early human fetal tissue (3-16 weeks of development) suggest that the differentiated progeny of hPSCs are reflective of very early human development (< 6 weeks).These findings provide support for the idea that hPSCs can serve as useful in vitro models of early human development,but also raise important issues for disease modeling and the clinical application of hPSC derivatives.

  15. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    OpenAIRE

    Sanal, Madhusudana Girija

    2014-01-01

    Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC), we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT) made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence e...

  16. Human pluripotent stem cells: applications and challenges in neurological diseases

    Directory of Open Access Journals (Sweden)

    Youssef eHIBAOUI

    2012-07-01

    Full Text Available The ability to generate human pluripotent stem cells (hPSCs holds great promise for the understanding and the treatment of human neurological diseases in modern medicine. The hPSCs are considered for their in vitro use as research tools to provide relevant cellular model for human diseases, drug discovery and toxicity assays and for their in vivo use in regenerative medicine applications. In this review, we highlight recent progress, promises and challenges of hPSC applications in human neurological disease modelling and therapies.

  17. Methods of induced pluripotent stem cells for clinicalapplication

    Institute of Scientific and Technical Information of China (English)

    Tomohisa Seki; Keiichi Fukuda

    2015-01-01

    Reprograming somatic cells using exogenetic geneexpression represents a groundbreaking step inregenerative medicine. Induced pluripotent stem cells(iPSCs) are expected to yield novel therapies withthe potential to solve many issues involving incurablediseases. In particular, applying iPSCs clinically holds thepromise of addressing the problems of immune rejectionand ethics that have hampered the clinical applicationsof embryonic stem cells. However, as iPSC research hasprogressed, new problems have emerged that need tobe solved before the routine clinical application of iPSCscan become established. In this review, we discuss thecurrent technologies and future problems of human iPSCgeneration methods for clinical use.

  18. Human pluripotent stem cell models of Fragile X syndrome.

    Science.gov (United States)

    Bhattacharyya, Anita; Zhao, Xinyu

    2016-06-01

    Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism. The causal mutation in FXS is a trinucleotide CGG repeat expansion in the FMR1 gene that leads to human specific epigenetic silencing and loss of Fragile X Mental Retardation Protein (FMRP) expression. Human pluripotent stem cells (PSCs), including human embryonic stem cells (ESCs) and particularly induced PSCs (iPSCs), offer a model system to reveal cellular and molecular events underlying human neuronal development and function in FXS. Human FXS PSCs have been established and have provided insight into the epigenetic silencing of the FMR1 gene as well as aspects of neuronal development. PMID:26640241

  19. Analysis of LINE-1 expression in human pluripotent cells.

    Science.gov (United States)

    Muñoz-Lopez, Martin; Garcia-Cañadas, Marta; Macia, Angela; Morell, Santiago; Garcia-Perez, Jose L

    2012-01-01

    Half of the human genome is composed of repeated DNA, and some types are mobile within our genome (transposons and retrotransposons). Despite their abundance, only a small fraction of them are currently active in our genome (Long Interspersed Element-1 (LINE-1), Alu, and SVA elements). LINE-1 or L1 elements are a family of active non-LTR retrotransposons, the ongoing mobilization of which still impacts our genome. As selfish DNA elements, L1 activity is more prominent in early human development, where new insertions would be transmitted to the progeny. Here, we describe the conventional methods aimed to determine the expression level of LINE-1 elements in pluripotent human cells.

  20. Basal cell carcinoma of the skin with areas of squamous cell carcinoma: a basosquamous cell carcinoma?

    OpenAIRE

    Faria, J.

    1985-01-01

    The diagnosis of basosquamous cell carcinoma is controversial. A review of cases of basal cell carcinoma showed 23 cases that had conspicuous areas of squamous cell carcinoma. This was distinguished from squamous differentiation and keratotic basal cell carcinoma by a comparative study of 40 cases of compact lobular and 40 cases of keratotic basal cell carcinoma. Areas of intermediate tumour differentiation between basal cell and squamous cell carcinoma were found. Basal cell carcinomas with ...