WorldWideScience

Sample records for carcinoma cell proliferation

  1. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    International Nuclear Information System (INIS)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang; Zhang, Yi

    2013-01-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients

  2. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  3. Intraepidermal proliferation of Merkel cells within a seborrheic keratosis: Merkel cell carcinoma in situ or Merkel cell hyperplasia?

    Science.gov (United States)

    McFalls, Jeanne; Okon, Lauren; Cannon, Sarah; Lee, Jason B

    2017-05-01

    Intradepidermal proliferation of Merkel cells without any dermal component has been interpreted as either a hyperplastic process secondary to chronic ultraviolet radiation or a neoplastic process, namely Merkel cell carcinoma (MCC) in situ. The recent criteria that have been proffered to diagnose MCC in situ, unfortunately, are identical to those that have been applied to Merkel cell hyperplasia in the past, posing a diagnostic quandary when faced with an intraepidermal proliferation of Merkel cells. Most previously reported cases of MCC in situ have occurred within associated epithelial lesion that includes solar (actinic) keratosis and squamous-cell carcinoma in situ. Similarly, Merkel cell hyperplasia has been reported to occur in association with a variety of epithelial lesions as well as on chronically sun-damaged skin. Herein, a case of an intraepidermal proliferation of Merkel cells within a seborrheic keratosis is presented accompanied by a discussion on whether the proliferation represents another case of Merkel cell carcinoma in situ or an incidental hyperplastic process on chronically sun-damaged skin. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Protease-activated receptor 2 modulates proliferation and invasion of oral squamous cell carcinoma cells.

    Science.gov (United States)

    Al-Eryani, Kamal; Cheng, Jun; Abé, Tatsuya; Maruyama, Satoshi; Yamazaki, Manabu; Babkair, Hamzah; Essa, Ahmed; Saku, Takashi

    2015-07-01

    Based on our previous finding that protease-activated receptor 2 (PAR-2) regulates hemophagocytosis of oral squamous cell carcinoma (SCC) cells, which induces their heme oxygenase 1-dependent keratinization, we have formulated a hypothesis that PAR-2 functions in wider activities of SCC cells. To confirm this hypothesis, we investigated immunohistochemical profiles of PAR-2 in oral SCC tissues and its functional roles in cell proliferation and invasion in SCC cells in culture. The PAR-2 expression modes were determined in 48 surgical tissue specimens of oral SCC. Using oral SCC-derived cell systems, we determined both gene and protein expression levels of PAR-2. SCC cell proliferation and invasive properties were also examined in conditions in which PAR-2 was activated by the synthetic peptide SLIGRL. PAR-2 was immunolocalized in oral SCC and carcinoma in situ cells, especially in those on the periphery of carcinoma cell foci (100% of cases), but not in normal oral epithelia. Its expression at both gene and protein levels was confirmed in 3 oral SCC cell lines including ZK-1. Activation of PAR-2 induced ZK-1 cell proliferation in a dose-dependent manner. PAR-2-activated ZK-1 cells invaded faster than nonactivated ones. The expression of PAR-2 is specific to oral malignancies, and PAR-2 regulates the growth and invasion of oral SCC cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Inhibitory effects of OK-432 (Picibanil) on cellular proliferation and adhesive capacity of breast carcinoma cells.

    Science.gov (United States)

    Horii, Yoshio; Iino, Yuichi; Maemura, Michio; Horiguchi, Jun; Morishita, Yasuo

    2005-02-01

    We investigated the potent inhibitory effects of OK-432 (Picibanil) on both cellular adhesion and cell proliferation of estrogen-dependent (MCF-7) or estrogen-independent (MDA-MB-231) breast carcinoma cells. Cellular proliferation of both MCF-7 and MDA-MB-231 cells was markedly inhibited in a dose-dependent manner, when the carcinoma cells were exposed to OK-432. Cell attachment assay demonstrated that incubation with OK-432 for 24 h reduced integrin-mediated cellular adhesion of both cell types. However, fluorescence activated cell sorter (FACS) analysis revealed that incubation with OK-432 for 24 h did not decrease the cell surface expressions of any integrins. These results suggest that the binding avidity of integrins is reduced by OK-432 without alteration of the integrin expression. We conclude that OK-432 inhibits integrin-mediated cellular adhesion as well as cell proliferation of breast carcinoma cells regardless of estrogen-dependence, and that these actions of OK-432 contribute to prevention or inhibition of breast carcinoma invasion and metastasis.

  6. Fasudil inhibits proliferation and migration of Hep-2 laryngeal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Zhang X

    2018-02-01

    Full Text Available Xiaowen Zhang,1 Nan Wu2 1Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; 2The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital of China Medical University, Shenyang, China Background: Rho-kinase signal pathway is a new target for cancer therapy. Fasudil, a selective Rho-kinase inhibitor, is found to exert antitumor effects on several types of cancer, but whether fasudil has antitumor effects on laryngeal carcinoma is still unknown. The aim of this study was to determine the effects of fasudil on laryngeal carcinoma and explore the underlying molecular mechanisms in this process. Methods: After treatment with fasudil, changes in biological behaviors, including the growth, proliferation, clone formation, apoptosis, and migration of human laryngeal carcinoma cells (Hep-2 cells were observed. The influences on apoptotic protease activity factor-1 (APAF-1-mediated apoptosis pathway and the activities of matrix metalloproteinases (MMP-2 and MMP-9 were measured by Western blotting and gelatin zymography assay. Results: Half-maximal inhibitory concentration of fasudil to Hep-2 cells was ~3.40×103 µM (95% CI: 2.53–4.66×103 µM. Moreover, fasudil treatment significantly decreased the ability of growth, proliferation, clone formation, and migration of Hep-2 cells, while remarkably increased the apoptosis rate. Furthermore, the expressions of APAF-1, caspase-9, and caspase-3 significantly increased in fasudil treatment group. Meanwhile, fasudil led to a remarkable decrease in the expressions and activities of MMP-2 and MMP-9. Conclusion: Our findings first demonstrate that fasudil not only inhibits the proliferation of laryngeal carcinoma cells through activating APAF-1-mediated apoptosis pathway, but also prevents migration by inhibiting the activities of MMP-2 and MMP-9. Therefore, fasudil is an attractive antitumor drug candidate for the treatment of laryngeal carcinoma

  7. Rapamycin enhances the anti-angiogenesis and anti-proliferation ability of YM155 in oral squamous cell carcinoma.

    Science.gov (United States)

    Li, Kong-Liang; Wang, Yu-Fan; Qin, Jia-Ruo; Wang, Feng; Yang, Yong-Tao; Zheng, Li-Wu; Li, Ming-Hua; Kong, Jie; Zhang, Wei; Yang, Hong-Yu

    2017-06-01

    YM155, a small molecule inhibitor of survivin, has been studied in many tumors. It has been shown that YM155 inhibited oral squamous cell carcinoma through promoting apoptosis and autophagy and inhibiting proliferation. It was found that YM155 also inhibited the oral squamous cell carcinoma-mediated angiogenesis through the inactivation of the mammalian target of rapamycin pathway. Rapamycin, a mammalian target of rapamycin inhibitor, played an important role in the proliferation and angiogenesis of oral squamous cell carcinoma cell lines. In our study, cell proliferation assay, transwell assay, tube formation assay, and western blot assay were used to investigate the synergistic effect of rapamycin on YM155 in oral squamous cell carcinoma. Either in vitro or in vivo, rapamycin and YM155 exerted a synergistic effect on the inhibition of survivin and vascular endothelial growth factor through mammalian target of rapamycin pathway. Overall, our results revealed that low-dose rapamycin strongly promoted the sensitivity of oral squamous cell carcinoma cell lines to YM155.

  8. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway.

    Science.gov (United States)

    Yao, Shihua; Wang, Xiaowei; Li, Chunguang; Zhao, Tiejun; Jin, Hai; Fang, Wentao

    2016-08-01

    Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.

  9. miR-367 promotes proliferation and invasion of hepatocellular carcinoma cells by negatively regulating PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: mengxiangruibb2008@163.com [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Fan, Qingxia [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2016-01-29

    MicroRNAs play important roles in the carcinogenesis of many types of cancers by inhibiting gene expression at posttranscriptional level. However, the roles of microRNAs in hepatocellular carcinoma, are still unclear. Here, we identified that miR-367 promotes hepatocellular carcinoma (HCC) cell proliferation by negatively regulates its target gene PTEN. The expression of miR-367 and PTEN are significantly inverse correlated in 35 HCC patients. In HCC cell line, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-367, while miR-367 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-367 mimics significantly promoted the migration and invasion of HCC cells, whereas miR-367 inhibitors significantly reduced cell migration and invasion. Luciferase assays confirmed that miR-367 directly bound to the 3'untranslated region of PTEN, and western blotting showed that miR-367 suppressed the expression of PTEN at the protein levels. This study indicated that miR-367 negatively regulates PTEN and promotes proliferation and invasion of HCC cells. Thus, miR-367 may represent a potential therapeutic target for HCC intervention. - Highlights: • miR-367 mimics promote the proliferation and invasion of HCC cells. • miR-367 inhibitors inhibit the proliferation and invasion of HCC cells. • miR-367 targets 3′UTR of PTEN in HCC cells. • miR-367 negatively regulates PTEN in HCC cells.

  10. Knockdown of TMEM16A suppressed MAPK and inhibited cell proliferation and migration in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Deng L

    2016-01-01

    Full Text Available Liang Deng,1,* Jihong Yang,2,* Hongwu Chen,3 Bo Ma,4 Kangming Pan,1 Caikun Su,1 Fengfeng Xu,1 Jihong Zhang1 1Department of Hepatobiliary Surgery, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 2Department of General Surgery, The Affiliated Hospital of Hebei University, Baoding, 3Department of Emergency, 4Department of Gastroenterology, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China*These authors contributed equally to this workAbstract: TMEM16A plays an important role in cell proliferation in various cancers. However, less was known about the expression and role of TMEM16A in hepatocellular carcinoma. We screened the expression of TMEM16A in patients’ hepatocellular carcinoma tissues, and also analyzed the biological function of hepatocellular carcinoma cells by knockdown of TMEM16A, as well as the expression of MAPK signaling proteins, including p38, p-p38, ERK1/2, p-ERK1/2, JNK, and p-JNK, and cell cycle regulatory protein cyclin D1 in TMEM16A siRNA-transfected SMMC-7721 cells by Western blot. Our results showed that TMEM16A was overexpressed in hepatocellular carcinoma tissues. Inhibition of TMEM16A suppressed the cell proliferation, migration, and invasion, and cell cycle progression but did not influence the cell apoptosis. TMEM16A siRNA-suppressed cancer cell proliferation and tumor growth were accompanied by a reduction of p38 and ERK1/2 activation and cyclin D1 induction, and were not influenced by other tested MAPK signaling proteins. In addition, inhibition of TMEM16A suppressed tumorigenicity in vivo. TMEM16A is overexpressed in hepatocellular carcinoma, and that inhibition of TMEM16A suppressed MAPK and growth of hepatocellular carcinoma. TMEM16A could be a potentially novel therapeutic target for human cancers, including hepatocellular carcinoma.Keywords: TMEM16A, cell cycle, proliferation, apoptosis

  11. In vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine PET

    International Nuclear Information System (INIS)

    Wong, Peter K.; Lee, Sze Ting; Murone, Carmel; Eng, John; Lawrentschuk, Nathan; Berlangieri, Salvatore University; Pathmaraj, Kunthi; O’Keefe, Graeme J.; Sachinidis, John; Byrne, Amanda J.; Bolton, Damien M.; Davis, Ian D.; Scott, Andrew M.

    2014-01-01

    The ability to measure cellular proliferation non-invasively in renal cell carcinoma may allow prediction of tumour aggressiveness and response to therapy. The aim of this study was to evaluate the uptake of 18F-fluorothymidine (FLT) PET in renal cell carcinoma (RCC), and to compare this to 18F-fluorodeoxyglucose (FDG), and to an immunohistochemical measure of cellular proliferation (Ki-67). Twenty seven patients (16 male, 11 females; age 42-77) with newly diagnosed renal cell carcinoma suitable for resection were prospectively enrolled. All patients had preoperative FLT and FDG PET scans. Visual identification of tumour using FLT PET compared to normal kidney was facilitated by the use of a pre-operative contrast enhanced CT scan. After surgery tumour was taken for histologic analysis and immunohistochemical staining by Ki-67. The SUVmax (maximum standardized uptake value) mean±SD for FLT in tumour was 2.59±1.27, compared to normal kidney (2.47±0.34). The mean SUVmax for FDG in tumour was similar to FLT (2.60±1.08). There was a significant correlation between FLT uptake and the immunohistochemical marker Ki-67 (r=0.72, P<0.0001) in RCC. Ki-67 proliferative index was mean ± SD of 13.3%±9.2 (range 2.2% - 36.3%). There is detectable uptake of FLT in primary renal cell carcinoma, which correlates with cellular proliferation as assessed by Ki-67 labelling index. This finding has relevance to the use of FLT PET in molecular imaging studies of renal cell carcinoma biology

  12. Ubiquitin-specific protease 14 regulates cell proliferation and apoptosis in oral squamous cell carcinoma.

    Science.gov (United States)

    Chen, Xiangyun; Wu, Jingjing; Chen, Yitian; Ye, Dongxia; Lei, Hu; Xu, Hanzhang; Yang, Li; Wu, Yingli; Gu, Wenli

    2016-10-01

    Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Elevated YAP and its downstream targets CCN1 and CCN2 in basal cell carcinoma: impact on keratinocyte proliferation and stromal cell activation.

    Science.gov (United States)

    Quan, Taihao; Xu, Yiru; Qin, Zhaoping; Robichaud, Patrick; Betcher, Stephanie; Calderone, Ken; He, Tianyuan; Johnson, Timothy M; Voorhees, John J; Fisher, Gary J

    2014-04-01

    Yes-associated protein (YAP) is a transcriptional co-activator of hippo signaling pathway, which plays an important role in organ size control and tumorigenesis. Here we report that YAP and its downstream transcriptional targets CCN1 and CCN2 are markedly elevated in keratinocytes in human skin basal cell carcinoma tumor islands. In human keratinocytes, knockdown of YAP significantly reduced expression of CCN1 and CCN2, and repressed proliferation and survival. This inhibition of proliferation and survival was rescued by restoration of CCN1 expression, but not by CCN2 expression. In basal cell carcinoma stroma, CCN2-regulated genes type I collagen, fibronectin, and α-smooth muscle actin were highly expressed. Furthermore, atomic force microscopy revealed increased tissue stiffness in basal cell carcinoma stroma compared to normal dermis. These data provide evidence that up-regulation of YAP in basal cell carcinoma impacts both aberrant keratinocyte proliferation, via CCN1, and tumor stroma cell activation and stroma remodeling, via CCN2. Targeting YAP and/or CCN1 and CCN2 may provide clinical benefit in basal cell carcinoma. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  15. In-vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine (FLT) PET

    International Nuclear Information System (INIS)

    Wong, P.; Lee, S. T.; Eng, J.; Berlangieri, S. U.; Pathmaraj, K.; O'Keefe, G. J.; Lawrentschuk, N.

    2009-01-01

    Full text:Background: The ability to measure cellular proliferation non-invasively in renal cell carcinoma may allow prediction of tumour aggressiveness and response to therapy. The aim of this study was to evaluate the uptake of 18F-fluorothymidine (FLT) in renal cell carcinoma, and to compare this to 18F-fluorodeoxyglucose (FDG), and to an immunohistochemical measure of cellular proliferation (Ki-67). Methods: Twenty seven patients (16 men, 11 women; age 42-77) with newly diagnosed renal cell carcinoma suitable for resection were prospectively enrolled. All patients had preoperative FLT and FDG PET scans. After surgery tumour was taken for histologic analysis and immunohistochemical staining by Ki-67. Results: The mean SUVmax (maximum standardized uptake value) ± SD for FLT in tumour was 2.53 ± 1.26, compared to normal kidney (2.47 ± 0.34). The mean SUVmax for FDG in tumour was similar to FLT (2.60 ± 1.08). Visual identification of tumour using FLT PET compared to normal kidney was facilitated by the use of a pre-operative contrast enhanced CT scan. There was a significant correlation between FLT uptake and the immunohistochemical marker Ki-67 (r=0.624, p=0.0008) in RCC. Ki-67 labelling index was mean ± SD of 13.3% ± 9.2 (range 2.2% to 36.3%). Conclusion: There is detectable uptake of FLT in primary renal cell carcinoma, which correlates with cellular proliferation as assessed by Ki-67 labelling index. This finding has relevance to the use of FLT PET in molecular imaging studies of renal cell carcinoma biology.

  16. Correlation of thyroid papillary carcinoma CEUS characteristics with cancer cell proliferation and invasion

    Directory of Open Access Journals (Sweden)

    Jing Wan

    2017-04-01

    Full Text Available Objective: To study the correlation of thyroid papillary carcinoma CEUS characteristics with cancer cell proliferation and invasion. Methods: A total of 128 patients with thyroid papillary carcinoma who received surgical treatment in the hospital between May 2013 and May 2016 were collected, CEUS was used to make clear the peak intensity (PI and area under the curve (AUC of tumor tissue and surrounding normal tissue, and the median of PI and AUC was referred to further divide the patients into high PI group and low PI group as well as high AUC group and low AUC group, 64 cases in each group. Fluorescent quantitative PCR was used to determine proliferation and invasion gene mRNA expression in tumor tissues. Results: PI and AUC levels in tumor tissue were lower than those in surrounding normal tissue; proliferation genes EZH2, Livin, hTERT, HMGA1 and Wip1 mRNA expression of low PI group were higher than those of high PI group, and invasion gene Ki-67 mRNA expression was higher than that of high PI group while P53 and MRP-1 mRNA expression were lower than those of high PI group; proliferation genes EZH2, Livin, hTERT, HMGA1 and Wip1 mRNA expression of low AUC group were higher than those of high AUC group, and invasion gene Ki-67 mRNA expression was higher than that of high AUC group while P53 and MRP-1 mRNA expression were lower than those of high AUC group. Conclusion: Thyroid papillary carcinoma CEUS parameters PI and AUC levels can quantifiably reflect the cancer cell proliferation and invasion activity.

  17. miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang [Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China); Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 (China); Tang, Yanping [Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China); Wang, Jian [Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 (China); Yan, Zhongjie [Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA,The Bayi Clinical Medical Institute of Southern Medical University, Beijing 100700 (China); Xu, Ruxiang, E-mail: RuxiangXu@yahoo.com [Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA,The Bayi Clinical Medical Institute of Southern Medical University, Beijing 100700 (China)

    2013-06-14

    Highlights: •miR-421 is upregulated in nasopharyngeal carcinoma. •miR-421 induces cell proliferation and apoptosis resistance. •FOXO4 is a direct and functional target of miR-421. -- Abstract: microRNAs have been demonstrated to play important roles in cancer development and progression. Hence, identifying functional microRNAs and better understanding of the underlying molecular mechanisms would provide new clues for the development of targeted cancer therapies. Herein, we reported that a microRNA, miR-421 played an oncogenic role in nasopharyngeal carcinoma. Upregulation of miR-421 induced, whereas inhibition of miR-421 repressed cell proliferation and apoptosis resistance. Furthermore, we found that upregulation of miR-421 inhibited forkhead box protein O4 (FOXO4) signaling pathway following downregulation of p21, p27, Bim and FASL expression by directly targeting FOXO4 3′UTR. Additionally, we demonstrated that FOXO4 expression is critical for miR-421-induced cell growth and apoptosis resistance. Taken together, our findings not only suggest that miR-421 promotes nasopharyngeal carcinoma cell proliferation and anti-apoptosis, but also uncover a novel regulatory mechanism for inactivation of FOXO4 in nasopharyngeal carcinoma.

  18. Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana; Sandoval, Alejandro; Monroy, Alma; Felix, Ricardo; Monjaraz, Eduardo

    2010-01-01

    Research highlights: → Ghrelin decreases prostate carcinoma PC-3 cells proliferation. → Ghrelin favors apoptosis in PC-3 cells. → Ghrelin increase in intracellular free Ca 2+ levels in PC-3 cells. → Grelin up-regulates expression of T-type Ca 2+ channels in PC-3 cells. → PC-3 cells express T-channels of the Ca V 3.1 and Ca V 3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca 2+ levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca 2+ channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca 2+ channel expression.

  19. Carvacrol suppresses proliferation and invasion in human oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Dai W

    2016-04-01

    Full Text Available Wei Dai,1,2 Changfu Sun,1,2 Shaohui Huang,1,2 Qing Zhou1,21Department of Oromaxillofacial-Head and Neck Surgery, 2Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People’s Republic of ChinaAbstract: Carvacrol, a component of thyme oil, as a novel antitumor agent, has been implicated in several types of cancer cells. However, the mechanisms underlying the effect of carvacrol in human oral squamous cell carcinoma (OSCC remain unclear. Here, we report that carvacrol significantly inhibits tumor cell proliferation, metastasis and invasion, and induces apoptosis in OSCC. Our results demonstrated that the molecular mechanisms of the effect of carvacrol in Tca-8113 induces G1/S cell cycle arrest through downregulation of CDK regulator CCND1 and CDK4, and upregulation of CDK inhibitor P21. Further analysis demonstrated that carvacrol also inhibited Tca-8113 cells’ clone formation in clonogenic cell survival assay. Student’s t-test (two-tailed was used to compare differences between groups, and the significance level was P<0.01. Then, treatment of Tca-8113 cells with carvacrol resulted in downregulation of Bcl-2, Cox2, and upregulation of Bax. Carvacrol significantly inhibited the migration and invasion of human OSCC cells by blocking the phosphorylation of FAK and MMP-9 and MMP-2, transcription factor ZEB1, and β-catenin proteins’ expression. Taken together, these results provide novel insights into the mechanism of carvacrol and suggest potential therapeutic strategies for human OSCC.Keywords: carvacrol, proliferation, metastasis and invasion, oral squamous cell carcinoma

  20. Molecular mechanisms of radiation-induced cell proliferation in human carcinoma cells

    International Nuclear Information System (INIS)

    Schmidt-Ullrich, R.K.; Mikkelsen, R.; Valerie, K.; Todd, D.; Kavanagh, B.; Contessa, J.; Rorrer, K.; Chen, P.

    1996-01-01

    Purpose: At therapeutically applied ionizing radiation (IR) doses of 0.5 to 5 Gy, a certain proportion of cells will undergoes radiation-induced death while a varied proportion of cells will survive and be able of furnishing adaptive responses. One of these adaptive responses has been experimentally and clinically described as repopulation. Despite description of this phenomenon more than 20 years ago, the mechanisms of this response have remained relatively unknown until modern experimental techniques have been applied to studies on cellular radiation responses. materials and Methods: Human mammary, MCF-7 and MDA-MB-231, and squamous, A431, carcinoma cells (MCC and SCC), expressing epidermal growth factor-receptor (EGF-R) at widely varied levels, have been exposed under defined culture conditions to single and repeated IR at doses between 0.5 and 5 Gy. Cellular IR responses of activation and expression changes of growth regulatory genes and activation of signal transduction pathways were linked to IR-induced proliferation responses. Specifically, EGF-R activation and expression were assessed by levels of Tyr phosphorylation (Y p ) of the receptor protein and mRNA, respectively. Phospholipase (PL-C) activation was quantified by Y p levels and production of inositol-triphosphate (IP 3 ), elevation of cytoplasmic Ca 2+ by video-intensified florescence microscopy after Fura-2 loading. Mitogen-activated protein (MAP) kinase activation was measured by a MBP receptor assay. The EGF-R and signal transduction activation events were correlated with a proliferation response of irradiated cells as quantified by MTT assay. Results: The cell lines tested showed an about 3-fold stimulation of EGF-R Y p levels within 5 min of IR which was associated with a 2.5-fold upregulation of EGF-R after 24 hr. Repeated daily 2 Gy exposures of MCF-7 and MDA-cells resulted in up to 9-fold increases in EGF-R mRNA. EGF-R downstream signal transduction was evidenced by activation of the

  1. Ghrelin inhibits proliferation and increases T-type Ca{sup 2+} channel expression in PC-3 human prostate carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico); Sandoval, Alejandro [School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla (Mexico); Monroy, Alma; Felix, Ricardo [Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City (Mexico); Monjaraz, Eduardo, E-mail: emguzman@siu.buap.mx [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico)

    2010-12-03

    Research highlights: {yields} Ghrelin decreases prostate carcinoma PC-3 cells proliferation. {yields} Ghrelin favors apoptosis in PC-3 cells. {yields} Ghrelin increase in intracellular free Ca{sup 2+} levels in PC-3 cells. {yields} Grelin up-regulates expression of T-type Ca{sup 2+} channels in PC-3 cells. {yields} PC-3 cells express T-channels of the Ca{sub V}3.1 and Ca{sub V}3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca{sup 2+} levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca{sup 2+} channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca{sup 2+} channel expression.

  2. microRNA-188 is downregulated in oral squamous cell carcinoma and inhibits proliferation and invasion by targeting SIX1.

    Science.gov (United States)

    Wang, Lili; Liu, Hongchen

    2016-03-01

    microRNA-188 expression is downregulated in several tumors. However, its function and mechanism in human oral squamous cell carcinoma (OSCC) remains obscure. The present study aims to identify the expression pattern, biological roles, and potential mechanism by which miR-188 dysregulation is associated with oral squamous cell carcinoma. Significant downregulation of miR-188 was observed in OSCC tissues compared with paired normal tissues. In vitro, gain-of-function, loss-of-function experiments were performed to examine the impact of miR-188 on cancer cell proliferation, invasion, and cell cycle progression. Transfection of miR-188 mimics suppressed Detroit 562 cell proliferation, cell cycle progression and invasion, with downregulation of cyclin D1, MMP9, and p-ERK. Transfection of miR-188 inhibitor in FaDu cell line with high endogenous expression exhibited the opposite effects. Using fluorescence reporter assays, we confirmed that SIX1 was a direct target of miR-188 in OSCC cells. Transfection of miR-188 mimics downregulated SIX1 expression. SIX1 siRNA treatment abrogated miR-188 inhibitor-induced cyclin D1 and MMP9 upregulation. In addition, we found that SIX1 was overexpressed in 32 of 80 OSCC tissues. In conclusion, this study indicates that miR-188 downregulation might be associated with oral squamous cell carcinoma progression. miR-188 suppresses proliferation and invasion by targeting SIX1 in oral squamous cell carcinoma cells.

  3. Effect of VEGF-C siRNA and endostatin on ring formation and proliferation of esophageal squamous cell carcinoma lymphatic endothelial cells

    Directory of Open Access Journals (Sweden)

    Zheng YP

    2016-10-01

    Full Text Available Yuping Zheng,1–3,* Miaomiao Sun,4,* Jinyan Chen,1,2 Lulu He,1,2 Na Zhao,1,2 Kuisheng Chen1,2 1Pathology Department, The First Affiliated Hospital of Zhengzhou University, 2Henan Key Laboratory of Tumor Pathology, 3Pathology Department, The Second Hospital of Shandong University, Jinan, 4Pathology Department, Henan Tumor Hospital, Zhengzhou, People’s Republic of China *These authors contributed equally to this work Objective: To study the effects of vascular endothelial growth factor C small interfering RNA and endostatin on esophageal squamous cell carcinoma-related ring formation in vitro and proliferation of lymphatic endothelial cells.Materials and methods: KYSE150 cells were subjected to analysis of cell transfection and endostatin operation. The groups were as follows: negative group, blank group, negative plus endostatin group, endostatin group, SG1 group, SG2 group, SG1 plus endostatin group, and SG2 plus endostatin group. The esophageal cancer-related microlymphatic endothelial cells were three-dimensionally cultured. Cell Counting Kit-8 (CCK-8 assay was employed to detect cell proliferation.Results: The negative group’s three-dimensional culture result was the highest, followed by the blank group, negative plus endostatin group, endostatin group, SG2 group, SG1 group, SG1 plus endostatin group, and SG2 plus endostatin group. The quantity of living cells in the blank group was the highest, followed by the negative control, endostatin, SG2, SG1, negative plus endostatin, SG1 plus endostatin, and SG2 plus endostatin groups. Conclusion: Both vascular endothelial growth factor C small interfering RNA and endostatin could inhibit ring formation in esophageal squamous cell carcinoma and proliferation of lymphatic endothelial cells. Keywords: esophageal squamous carcinoma cells, esophageal cancer-associated lymphatic endothelial cells, VEGF-C, ring formation, proliferation

  4. GLI1 is involved in cell cycle regulation and proliferation of NT2 embryonal carcinoma stem cells

    DEFF Research Database (Denmark)

    Vestergaard, Janni; Lind-Thomsen, Allan; Pedersen, Mikkel W.

    2008-01-01

    of altered HH signaling are interpreted by specific cell types. We have investigated the role of the HH transcription factor glioma-associated oncogene homolog 1 (GLI1) in the human Ntera2=D1 (NT2) embryonal carcinoma stem cell line. The study revealed that expression of GLI1 and its direct transcriptional......1 phase cyclins. In conclusion, our results suggest that GLI1 is involved in cell cycle and proliferation control in the embryonal carcinoma stem cell line NT2....... target Patched (PTCH) is downregulated in the early stages of retinoic acid-induced neuronal differentiation of NT2 cells. To identify transcriptional targets of the HH transcription factor GLI1 in NT2 cells, we performed global expression profiling following GLI1 RNA interference (RNAi). Of the similar...

  5. [Knockdown of NEDD9 inhibits the proliferation, invasion and migration of esophageal carcinoma EC109 cells].

    Science.gov (United States)

    Zhang, Wen; Li, Shaojun; Zhao, Yunlong; Guo, Nannan; Li, Yingjie

    2016-12-01

    Objective To observe the expression of the neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) in esophageal cancer, to investigate the impact of decreased expression of NEDD9 on invasion and migration, and to explicit the function of NEDD9 in EC109 human esophageal cancer cell line. Methods Immunohistochemical staining was used to detect the expression of NEDD9 in human esophageal cancer tissues and paracancerous normal tissues. RNA interfering (RNAi) was used to knockdown NEDD9 in EC109 cells. The interference efficiency was detected by reverse transcription PCR (RT-PCR) and Western blot analysis. Cell proliferation was determined by MTT assay and the invasion and migration abilities of EC109 cells were monitored by Transwell TM assay. The protein levels of proliferating cell nuclear antigen (PCNA), Bax and Bcl-2 were tested by Western blotting. Results The positive expression rate of NEDD9 in esophageal carcinoma tissues was significantly higher compared with that in the paracancerous tissues. After NEDD9 expression was successfully downregulated in EC109 cells by siRNA, the proliferation, invasion and migration rates in transfection group were significantly lower than those in control group; meanwhile, the expression of Bcl-2 was reduced and Bax expression was enhanced. Conclusion The protein expression level of NEDD9 is higher in esophageal carcinoma tissues than that in adjacent normal tissues. Knockdown of NEDD9 expression can restrain the proliferation, invasion and migration of EC109 cells.

  6. Endostatin induces proliferation of oral carcinoma cells but its effect on invasion is modified by the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Alahuhta, Ilkka [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Aikio, Mari [Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu (Finland); Oulu Center for Cell-Matrix Research, University of Oulu (Finland); Väyrynen, Otto; Nurmenniemi, Sini [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Suojanen, Juho [Department of Oral and Maxillo-facial Diseases, University of Helsinki, Helsinki University Central Hospital (Finland); Teppo, Susanna [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Pihlajaniemi, Taina; Heljasvaara, Ritva [Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu (Finland); Oulu Center for Cell-Matrix Research, University of Oulu (Finland); Salo, Tuula [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Department of Oral and Maxillo-facial Diseases, University of Helsinki, Helsinki University Central Hospital (Finland); Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, Sao Paolo (Brazil); Nyberg, Pia, E-mail: pia.nyberg@oulu.fi [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland)

    2015-08-01

    The turnover of extracellular matrix liberates various cryptic molecules with novel biological activities. Endostatin is an endogenous angiogenesis inhibitor that is derived from the non-collagenous domain of collagen XVIII. Although there are a large number of studies on its anti-tumor effects, the molecular mechanisms are not yet completely understood, and the reasons why endostatin has not been successful in clinical trials are unclear. Research has mostly focused on its anti-angiogenic effect in tumors. Here, we aimed to elucidate how endostatin affects the behavior of aggressive tongue HSC-3 carcinoma cells that were transfected to overproduce endostatin. Endostatin inhibited the invasion of HSC-3 cells in a 3D collagen–fibroblast model. However, it had no effect on invasion in a human myoma organotypic model, which lacks vital fibroblasts. Recombinant endostatin was able to reduce the Transwell migration of normal fibroblasts, but had no effect on carcinoma associated fibroblasts. Surprisingly, endostatin increased the proliferation and decreased the apoptosis of cancer cells in organotypic models. Also subcutaneous tumors overproducing endostatin grew bigger, but showed less local invasion in nude mice xenografts. We conclude that endostatin affects directly to HSC-3 cells increasing their proliferation, but its net effect on cancer invasion seem to depend on the cellular composition and interactions of tumor microenvironment. - Highlights: • Endostatin affects not only angiogenesis, but also carcinoma cells and fibroblasts. • Endostatin increased carcinoma cell proliferation, but decreased 3D invasion. • The invasion inhibitory effect was sensitive to the microenvironment composition. • Fibroblasts may be a factor regulating the fluctuating roles of endostatin.

  7. Andrographolide Suppresses Proliferation of Nasopharyngeal Carcinoma Cells via Attenuating NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Tao Peng

    2015-01-01

    Full Text Available Andrographolide (Andro has been reported to have anticancer activity in multiple types of cancer due to its capacity to inactivate NF-κB pathway. Previous studies showed the therapeutic potential of targeting NF-κB pathway in nasopharyngeal carcinoma (NPC. However, the anticancer activity of Andro in NPC has not been reported. In this study, we defined the anticancer effects of Andro in NPC and elucidated its potential mechanisms of action. Our results showed that Andro significantly inhibited the proliferation and invasion of NPC cells (P<0.05, resp.. These anticancer activities were associated with cell apoptosis, cell death and induction of cell cycle arrest, and the downregulation of NF-κB target genes. This work provides evidence that NF-κB pathway is a potential therapeutic target and may also be indispensable in the Andro-mediated anticancer activities in nasopharyngeal carcinoma.

  8. Cyclin-dependent kinase inhibitor 3 is overexpressed in hepatocellular carcinoma and promotes tumor cell proliferation

    International Nuclear Information System (INIS)

    Xing, Chunyang; Xie, Haiyang; Zhou, Lin; Zhou, Wuhua; Zhang, Wu; Ding, Songming; Wei, Bajin; Yu, Xiaobo; Su, Rong; Zheng, Shusen

    2012-01-01

    Highlights: ► CDKN3 is commonly overexpressed in HCC and is associated with poor clinical outcome. ► Overexpression of CDKN3 could stimulate the proliferation of HCC cells by promoting G1/S transition. ► CDKN3 could inhibit the expression of p21 in HCC cells. ► Overexpression of CDKN3 has no effect on apoptosis and invasion of HCC cells. ► We identified 61 genes co-expressed with CDKN3, and BIRC5 was located at the center of the co-expression network. -- Abstract: Cyclin-dependent kinase inhibitor 3 (CDKN3) belongs to the protein phosphatases family and has a dual function in cell cycling. The function of this gene has been studied in several kinds of cancers, but its role in human hepatocellular carcinoma (HCC) remains to be elucidated. In this study, we found that CDKN3 was frequently overexpressed in both HCC cell lines and clinical samples, and this overexpression was correlated with poor tumor differentiation and advanced tumor stage. Functional studies showed that overexpression of CDKN3 could promote cell proliferation by stimulating G1-S transition but has no impact on cell apoptosis and invasion. Microarray-based co-expression analysis identified a total of 61 genes co-expressed with CDKN3, with most of them involved in cell proliferation, and BIRC5 was located at the center of CDKN3 co-expression network. These results suggest that CDKN3 acts as an oncogene in human hepatocellular carcinoma and antagonism of CDKN3 may be of interest for the treatment of HCC.

  9. MiR-223 targeting MAFB suppresses proliferation and migration of nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Yang, Wanyong; Lan, Xi; Li, Dongmin; Li, Tao; Lu, Shemin

    2015-01-01

    Mounting evidence suggests that miRNAs have major functions in tumor pathogenesis, and this study aimed to identify the candidate miRNA and investigate its role in nasopharyngeal carcinoma (NPC). MiRNA and mRNA expressions were screened by microarray assays. The cell proliferation, colony formation and migration ability were measured by MTT, soft agar and wound healing assays, respectively. The tumor growth suppression was evaluated by xenografting in nude mice. The plasma miR-223 levels in NPC patients were detected by TaqMan analysis. Real-time quantitative PCR and Western blotting were used to confirm miR-223 and MAFB expression levels. The targeting relationship between miR-223 and MAFB was verified using dual luciferase reporter assay. The miR-223 expression was decreased in CNE-1, CNE-2 cells as compared with NP69 cells, an immortalized human nasopharyngeal epithelial cell line, and its level also reduced in NPC patients’ plasma as compared with healthy controls. Exogenous expression of miR-223 in CNE-2 cells could inhibit cell proliferation both in vitro and in vivo. Extrogenous miR-223 in CNE-2 cells would decrease the ability of colony formation and migration. MAFB, a transcription factor of Maf family members, was identified as a target gene of miR-223. We found that migration and invasion abilities were inhibited by MAFB silencing. MiR-223 negatively regulates the growth and migration of NPC cells via reducing MAFB expression, and this finding provides a novel insight into understanding miR-223 regulation mechanism in nasopharyngeal carcinoma tumorigenesis

  10. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor suppressor in hepatocellular carcinoma.

    Science.gov (United States)

    Liu, Rui; Zhang, Haiyang; Zhang, Yan; Li, Shuang; Wang, Xinyi; Wang, Xia; Wang, Cheng; Liu, Bin; Zen, Ke; Zhang, Chen-Yu; Zhang, Chunni; Ba, Yi

    2017-04-01

    Peroxisome proliferator-activated receptor gamma coactivator-1 alpha plays a crucial role in regulating the biosynthesis of mitochondria, which is closely linked to the energy metabolism in various tumors. This study investigated the regulatory role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha in the pathogenesis of hepatocellular carcinoma. In this study, the changes of peroxisome proliferator-activated receptor gamma coactivator-1 alpha messenger RNA levels between normal human liver and hepatocellular carcinoma tissue were examined by quantitative reverse transcription polymerase chain reaction. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by RNA interference in the human liver cell line L02, while overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha complementary DNA in the human hepatocarcinoma cell line HepG2. Cellular morphological changes were observed via optical and electron microscopy. Cellular apoptosis was determined by Hoechst 33258 staining. In addition, the expression levels of 21,400 genes in tissues and cells were detected by microarray. It was shown that peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression was significantly downregulated in hepatocellular carcinoma compared with normal liver tissues. After knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression in L02 cells, cells reverted to immature and dedifferentiated morphology exhibiting cancerous tendency. Apoptosis occurred in the HepG2 cells after transfection by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Microarray analysis showed consistent results. The results suggest that peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor

  11. RNA interference targeting CD147 inhibits the proliferation, invasiveness, and metastatic activity of thyroid carcinoma cells by down-regulating glycolysis

    Science.gov (United States)

    Huang, Peng; Chang, Shi; Jiang, Xiaolin; Su, Juan; Dong, Chao; Liu, Xu; Yuan, Zhengtai; Zhang, Zhipeng; Liao, Huijun

    2015-01-01

    A high rate of glycolytic flux, even in the presence of oxygen, is a key metabolic hallmark of cancer cells. Lactate, the end product of glycolysis, decreases the extracellular pH and contributes to the proliferation, invasiveness and metastasis of tumor cells. CD147 play a crucial role in tumorigenicity, invasion and metastasis; and CD147 also interacts strongly and specifically with monocarboxylate transporter1 (MCT1) that mediates the transport of lactate. The objective of this study was to determine whether CD147 is involved, via its association with MCT1 to transport lactate, in glycolysis, contributing to the progression of thyroid carcinoma. The expression levels of CD147 in surgical specimens of normal thyroid, nodular goiter (NG), well-differentiated thyroid carcinoma (WDTC), and undifferentiated thyroid carcinoma (UDTC) were determined using immunohistochemical techniques. The effects of CD147 silencing on cell proliferation, invasiveness, metastasis, co-localization with MCT1, glycolysis rate and extracellular pH of thyroid cancer cells (WRO and FRO cell lines) were measured after CD147 was knocked-down using siRNA targeting CD147. Immunohistochemical analysis of thyroid carcinoma (TC) tissues revealed significant increases in signal for CD147 compared with normal tissue or NG, while UDTC expressed remarkably higher levels of CD147 compared with WDTC. Furthermore, silencing of CD147 in TC cells clearly abrogated the expression of MCT1 and its co-localization with CD147 and dramatically decreased both the glycolysis rate and extracellular pH. Thus, cell proliferation, invasiveness, and metastasis were all significantly decreased by siRNA. These results demonstrate in vitro that the expression of CD147 correlates with the degree of dedifferentiation of thyroid cancer, and show that CD147 interacts with MCT1 to regulate tumor cell glycolysis, resulting in the progression of thyroid carcinoma. PMID:25755717

  12. [miR-25 promotes cell proliferation by targeting RECK in human cervical carcinoma HeLa cells].

    Science.gov (United States)

    Qiu, Gang; Fang, Baoshuan; Xin, Guohong; Wei, Qiang; Yuan, Xiaoye; Wu, Dayong

    2015-01-01

    To investigate the effect of miR-25 on the proliferation of human cervical carcinoma HeLa cells and its association with reversion-inducing cysteine-rich protein with Kazal motifs (RECK). The recombinant plasmids of pcDNATM6.2-GW-pre-miR-25, pmirGLO-RECK-WT, pmirGLO-RECK-MT and anti-miR-25 were constructed, and their transfection efficiencies into HeLa cells were identified by real-time quantitative PCR (qRT-PCR). The potential proliferation-stimulating function of miR-25 was analyzed by MTT assay in HeLa cells. Furthermore, the target effect of miR-25 on the RECK was determined by dual-luciferase reporter assay system, qRT-PCR and Western blotting. Sequence analysis demonstrated that the recombinant plasmids of pcDNATM6.2-GW-pre-miR-25 and pmirGLO-RECK-WT, pmirGLO-RECK-MT were successfully constructed, and qRT-PCR revealed that the transfection efficiencies of pre-miR-25 and anti-miR-25 were desirable in HeLa cells. MTT assay showed that miR-25 over-expression promoted the proliferation of HeLa cells. In addition, the luciferase activity was significantly reduced in HeLa cells cotransfected with pre-miR-25 and RECK-WT. The qRT-PCR and Western blotting indicated that the expression level of RECK was up-regulated in HeLa cells transfected with anti-miR-25 at the transcriptional and posttranscriptional levels. miR-25 could promote cell proliferation by targeting RECK in HeLa cells.

  13. miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A

    International Nuclear Information System (INIS)

    Shao, Mingchen; Geng, Yiwei; Lu, Peng; Xi, Ying; Wei, Sidong; Wang, Liuxing; Fan, Qingxia; Ma, Wang

    2015-01-01

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in anaplastic thyroid carcinoma (ATC), has remained elusive. Here, we identified that miR-4295 promotes ATC cell proliferation by negatively regulates its target gene CDKN1A. In ATC cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-4295, while miR-4295 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-4295 mimics significantly promoted the migration and invasion of ATC cells, whereas miR-4295 inhibitors significantly reduced cell migration and invasion. luciferase assays confirmed that miR-4295 directly bound to the 3'untranslated region of CDKN1A, and western blotting showed that miR-4295 suppressed the expression of CDKN1A at the protein levels. This study indicated that miR-4295 negatively regulates CDKN1A and promotes proliferation and invasion of ATC cell lines. Thus, miR-4295 may represent a potential therapeutic target for ATC intervention. - Highlights: • miR-4295 mimics promote the proliferation and invasion of ATC cells. • miR-4295 inhibitors inhibit the proliferation and invasion of ATC cells. • miR-4295 targets 3′UTR of CDKN1A in ATC cells. • miR-4295 negatively regulates CDKN1A in ATC cells

  14. Apoptosis and cell proliferation in the development of gastric carcinomas: associations with c-myc and p53 protein expression.

    Science.gov (United States)

    Ishii, Hideaki H; Gobé, Glenda C; Pan, Wenshen; Yoneyama, Juichi; Ebihara, Yoshiro

    2002-09-01

    Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P cancers that had either c-myc or p53-positivity. The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. Copyright 2002 Blackwell Publishing Asia Pty Ltd

  15. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  16. Inhibitory effect of all-trans retinoic acid on human hepatocellular carcinoma cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Yun-Feng Piao; Yang Shi; Pu-Jun Gao

    2003-01-01

    AIM: To study the inhibitory effect of all-trans retinoic acid on human hepatocellular carcinoma cell line SMMC-7721and to explore the mechanism of its effect.METHODS: SMMC-7721 cells were divided into two groups, one treated with all-trans retinoic acid (ATRA) for 5 days and the other as a control group. Light microscope and electron microscope were used to observe the morphological changes. Telomerase activity was analyzed with silver-stained telomere repeated assay protocal (TRAP). Expression of Caspase-3 was demonstrated with western blot.RESULTS: ATRA-treated cells showed differentiation features including small and pyknotic nuclei, densely stained chromatin and fewer microvilli. Besides, ATRA could inhibit the activity of telomerase, promote the expression of Caspase-3 and its activation.CONCLUSION: Telomerase activity and Caspase-3expression are changed in human hepatocellular carcinoma cell line SMMC-7721 treated with all-trans retinioc acid.The inhibition of telomerase activity and the activation of Caspase-3 may be the key steps through which ATRA inhibits the proliferation of SMMC-7721 cell line.

  17. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yang CM

    2017-02-01

    Full Text Available Chun-ming Yang,1 Shan Ji,2 Yan Li,3 Li-ye Fu,3 Tao Jiang,3 Fan-dong Meng31Department of Urology, The First Affiliated Hospital, China Medical University, 2Department of Endocrinology, The Fifth People’s Hospital of Shenyang, 3Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, ChinaAbstract: β-Catenin (CTNNB1 gene coding protein is a component of the Wnt signaling pathway that has been shown to play an important role in the formation of certain cancers. Abnormal accumulation of CTNNB1 contributes to most cancers. This research studied the involvement of β-catenin in renal cell carcinoma (RCC cell proliferation, apoptosis, migration, and invasion. Proliferation, cell cycle, and apoptosis were analyzed by using Cell Counting Kit-8 and by flow cytometry. Migration and invasion assays were measured by transwell analysis. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of CTNNB1, ICAM-1, VCAM-1, CXCR4, and CCL18 in RCC cell lines. It was found that CTNNB1 knockdown inhibited cell proliferation, migration, and invasion and induced apoptosis of A-498 cells. CTNNB1 overexpression promoted cell proliferation, migration, and invasion and inhibited apoptosis of 786-O cells. Moreover, knockdown of CTNNB1 decreased the levels of ICAM-1, VCAM-1, CXCR4, and CCL18 expression, but CTNNB1 overexpression increased the expression of ICAM-1, VCAM-1, CXCR4, and CCL18. Further in vivo tumor formation study in nude mice indicated that inhibition of CTNNB1 delayed the progress of tumor formation through inhibiting PCNA and Ki67 expression. These results indicate that CTNNB1 could act as an oncogene and may serve as a promising therapeutic strategy for RCC.Keywords: kidney cancer, oncogene, β-catenin, survival time, tumor migration-related protein

  18. Neural control of colonic cell proliferation.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1980-03-15

    The mitotic rate in rat colonic crypts and in dimethylhydrazine-induced colonic carcinomas was measured using a stathmokinetic technique. In sympathectomized animals cell proliferation was retarded in the crypts but not in the tumors, whereas in animals treated with Metaraminol, a drug which releases norepinephrine from nerve terminals, crypt cell but not tumor cell proliferation was accelerated. Blockade of alpha-adrenoceptors also inhibited crypt cell proliferation. However, stimulation of beta-adrenoceptors inhibited and blockade of beta-adrenoceptors accelerated tumor cell proliferation without influencing crypt cell proliferation. Injection of either serotonin or histamine stimulated tumor but not crypt cell proliferation and blockade or serotonin receptors or histamine H2-receptors inhibited tumor cell proliferation. It is postulated that cell proliferation in the colonic crypts, like that in the jejunal crypts, is under both endocrine and autonomic neural control whereas colonic tumor cell division is subject to endocrine regulation alone.

  19. [Inhibitory effect of 17-AAG combined with paclitaxel on proliferation of esophageal squamous cell carcinoma Eca-109 cells in vitro].

    Science.gov (United States)

    Chen, Size; Chen, Xuemei; Li, Yuqi; Yang, Shu; Mo, Xianyi; Zhang, Fan; Mo, Kailan; Ding, Ying

    2015-06-01

    To investigate the effect of 17-AAG combined with paclitaxel (PTX) on the proliferation and apoptosis of esophageal squamous cell carcinoma cell line Eca-109 in vitro. Eca-109 cells were treated with 17-AAG and PTX either alone or in combination. The proliferation of Eca-109 cells was detected by MTT assay, and the cell cycle changes and cell apoptosis were determined by flow cytometry. Compared with the control group, both 17-AAG and PTX significantly inhibited the proliferation of Eca-109 cells. A combined treatment of the cells with 0.5 µmol/L PTX and 0.625 µmol/L 17-AAG produced an obviously stronger inhibitory effect on the cell proliferation than either of the agents used alone (PAAG and PTX used alone caused Eca-109 cell cycle arrest in G2/M phase and S phase, respectively, and their combined use caused cell cycle arrest in both G2/M and S phases. The cell apoptosis rates of Eca-109 cells treated with 17-AAG, PTX and their combination were 4.52%, 10.91%, and 29.88%, respectively, all significantly higher than that in the control group (1.32%); the combined treatment resulted in a distinct apoptotic peak that was significantly higher than that caused by either of the agents alone. 17-AAG and PTX can inhibit cell proliferation and promote apoptosis of Eca-109 cells, and their combination produces stronger effects in inhibiting cell proliferation and increasing cell apoptosis.

  20. Hepatitis B virus induces cell proliferation via HBx-induced microRNA-21 in hepatocellular carcinoma by targeting programmed cell death protein4 (PDCD4 and phosphatase and tensin homologue (PTEN.

    Directory of Open Access Journals (Sweden)

    Preeti Damania

    Full Text Available Hepatitis B viral infection-induced hepatocellular carcinoma is one of the major problems in the developing countries. One of the HBV proteins, HBx, modulates the host cell machinery via several mechanisms. In this study we hypothesized that HBV enhances cell proliferation via HBx-induced microRNA-21 in hepatocellular carcinoma. HBx gene was over-expressed, and miRNA-21 expression and cell proliferation were measured in Huh 7 and Hep G2 cells. miRNA-21 was over-expressed in these cells, cell proliferation and the target proteins were analyzed. To confirm the role of miRNA-21 in HBx-induced proliferation, Hep G 2.2.1.5 cells (a cell line that expresses HBV stably were used for miRNA-21 inhibition studies. HBx over-expression enhanced proliferation (3.7- and 4.5-fold increase; n = 3; p<0.01 and miRNA-21 expression (24- and 36-fold increase, normalized with 5S rRNA; p<0.001 in Huh 7 and Hep G2 cells respectively. HBx also resulted in the inhibition of miRNA-21 target proteins, PDCD4 and PTEN. miRNA-21 resulted in a significant increase in proliferation (2- and 2.3-fold increase over control cells; p<0.05 in Huh 7 and Hep G2 cells respectively and decreased target proteins, PDCD4 and PTEN expression. Anti-miR-21 resulted in a significant decrease in proliferation (p<0.05 and increased miRNA-21 target protein expression. We conclude that HBV infection enhances cell proliferation, at least in part, via HBx-induced miRNA-21 expression during hepatocellular carcinoma progression.

  1. Suppressive effects of 3-bromopyruvate on the proliferation and the motility of hepatocellular carcinoma cells.

    Science.gov (United States)

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2016-01-01

    The compound 3-bromopyruvate (3BP) is an analogue of pyruvate, which is the final product of glycolysis that enters the citric acid cycle. The present study aimed to investigate the suppressive effects of 3BP on the proliferation and motility of hepatocellular carcinoma (HCC) cells. HLF and PLC/PRF/5 cells were cultured with 3BP and subjected to an MTS assay. Apoptosis was analyzed by hematoxylin and eosin staining. Cell motility was analyzed using a scratch assay. Real-time quantitative polymerase chain reaction (PCR) was performed to determine the expression levels of cyclin D1 and matrix metalloproteinase (MMP)9. Proliferation of both cell lines was significantly suppressed by 3BP at 100 µM (P<0.05). The expression level of cyclin D1 was decreased after 3BP treatment at 100 µM in both cell lines (P<0.05). Pyknotic nuclei were observed in the cells cultured with 3BP at 100 µM. These results revealed that 3BP suppressed cell proliferation, decreased the expression of cyclin D1, and induced apoptosis in HCC cells. 3BP significantly suppressed motility in both cell lines (P<0.05). The expression level of MMP9 was significantly decreased (P<0.05). 3BP suppressed the proliferation and motility of HCC cells by decreasing the expression of cyclin D1 and MMP9.

  2. Comparison of the circadian variation in cell proliferation in normal and neoplastic colonic epithelial cells.

    Science.gov (United States)

    Kennedy, M F; Tutton, P J; Barkla, D H

    1985-09-15

    Circadian variations in cell proliferation in normal tissues have been recognised for many years but comparable phenomena in neoplastic tissues appear not to have been reported. Adenomas and carcinomas were induced in mouse colon by injection of dimethylhydrazine (DMH) and cell proliferation in these tumors was measured stathmokinetically. In normal intestine cell proliferation is fastest at night whereas in both adenomas and carcinomas it was found to be slower at night than in the middle of the day. Chemical sympathectomy was found to abolish the circadian variation in tumor cell proliferation.

  3. MicroRNA-199 suppresses cell proliferation, migration and invasion by downregulating RGS17 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Wei; Qian, Sheng; Yang, Guowei; Zhu, Liang; Zhou, Bo; Wang, Jianhua; Liu, Rong; Yan, Zhiping; Qu, Xudong

    2018-06-15

    Hepatocellular carcinoma (HCC), the most common primary tumor of the liver, has a poor prognosis and shows rapid progression. MicroRNAs (miRNAs) play important roles in carcinogenesis and tumor progression. Regulators of G-protein signaling (RGS) are critical for defining G-protein-dependent signal fidelity. RGS17 plays an important role in the regulation of cancer cell proliferation, migration and invasion. Here, we showed that miR-199 was downregulated in a hepatocarcinoma cell line. Overexpression of miR-199 significantly suppressed HCC cell proliferation, migration, and invasion in vitro. RGS17 overexpression promoted HCC cell proliferation, migration, and invasion, and reversed the miR-199 mediated inhibition of proliferation, migration, and invasion. Dual-fluorescence reporter experiments confirmed that miR-199 downregulated RGS17 by direct interaction with the 3'-UTR of RGS17 mRNA. In vivo studies showed that miR-199 overexpression significantly inhibited the growth of tumors. Taken together, the results suggested that miR-199 inhibited tumor growth and metastasis by targeting RGS17. Published by Elsevier B.V.

  4. Inhibitory effects of epigallocatechin-3-gallate on cell proliferation and the expression of HIF-1α and P-gp in the human pancreatic carcinoma cell line PANC-1.

    Science.gov (United States)

    Zhu, Zhenni; Wang, Yu; Liu, Zhiqing; Wang, Fan; Zhao, Qiu

    2012-05-01

    The aim of this study was to verify the inhibitory effects of epigallocatechin-3-gallate (EGCG) on cell proliferation and the expression of hypoxia-inducible factor 1 (HIF-1α) and multidrug resistance protein 1 (MDR1/P-gp) in the human pancreatic carcinoma cell line PANC-1, thereby, reversing drug resistance of pancreatic carcinoma and improving its sensitivity to cancer chemotherapy. The human pancreatic carcinoma cell line PANC-1 was incubated under hypoxic conditions with different concentrations of epigallocatechin-3-gallate (EGCG) for indicated hours. The effects of EGCG on the mRNA or protein expression of HIF-1α and MDR1 were determined by RT-PCR or western blotting. Cellular proliferation and viability assays were measured using Cell Counting Kit-8. Western blotting revealed that EGCG inhibits the expression of the HIF-1α protein in a dose-dependent manner, while RT-PCR showed that it does not have any effects on HIF-1α mRNA. In addition, EGCG attenuated the mRNA and protein levels of P-gp in a dose-dependent manner, reaching a peak at the highest concentration. Furthermore, EGCG inhibited the proliferation of PANC-1 cells in a concentration- and time-dependent manner. The attenuation of HIF-1α and the consequently reduced P-gp could contribute to the inhibitory effects of EGCG on the proliferation of PANC-1 cells.

  5. Mast cells dysregulate apoptotic and cell cycle genes in mucosal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Davis Paul

    2006-12-01

    Full Text Available Abstract Background Mucosal squamous cell carcinoma of the head and neck is a disease of high mortality and morbidity. Interactions between the squamous cell carcinoma and the host's local immunity, and how the latter contributes to the biological behavior of the tumor are unclear. In vivo studies have demonstrated sequential mast cell infiltration and degranulation during squamous cell carcinogenesis. The degree of mast cell activation correlates closely with distinct phases of hyperkeratosis, dysplasia, carcinoma in-situ and invasive carcinoma. However, the role of mast cells in carcinogenesis is unclear. Aim This study explores the effects of mast cells on the proliferation and gene expression profile of mucosal squamous cell carcinoma using human mast cell line (HMC-1 and human glossal squamous cell carcinoma cell line (SCC25. Methods HMC-1 and SCC25 were co-cultured in a two-compartment chamber, separated by a polycarbonate membrane. HMC-1 was stimulated to degranulate with calcium ionophore A23187. The experiments were done in quadruplicate. Negative controls were established where SCC25 were cultured alone without HMC-1. At 12, 24, 48 and 72 hours, proliferation and viability of SCC25 were assessed with MTT colorimetric assay. cDNA microarray was employed to study differential gene expression between co-cultured and control SCC25. Results HMC-1/SCC25 co-culture resulted in suppression of growth rate for SCC-25 (34% compared with 110% for the control by 72 hours, p Conclusion We show that mast cells have a direct inhibitory effect on the proliferation of mucosal squamous cell carcinoma in vitro by dysregulating key genes in apoptosis and cell cycle control.

  6. Linc-POU3F3 is overexpressed in hepatocellular carcinoma and regulates cell proliferation, migration and invasion.

    Science.gov (United States)

    Li, Yichun; Li, Yannan; Wang, Dan; Meng, Qingdong

    2018-06-12

    Linc-POU3F3 showed an up-regulated tendency and functioned as tumor promoter in glioma, esophageal cancer and colorectal cancer. There was no report about the expression pattern and clinical value of linc-POU3F3 in hepatocellular carcinoma. Thus, the purpose of our study is to explore the clinical significance and biological role of linc-POU3F3 in hepatocellular carcinoma. Our results suggested that levels of linc-POU3F3 were dramatically increased in hepatocellular carcinoma tissues and cell lines compared with paired normal hepatic tissues and normal hepatic cell line, respectively. Levels of linc-POU3F3 were positively correlated with clinical stage, tumor size, vascular invasion and metastasis. Moreover, high-expression of linc-POU3F3 was an independent prognostic factor for hepatocellular carcinoma patients. The gain- and loss-of-function experiments showed that linc-POU3F3 expression significantly promoted tumor cell proliferation, migration and invasion. In addition, linc-POU3F3 expression was negatively correlated with POU3F3 mRNA and protein expressions in hepatocellular carcinoma tissues, and negatively regulated POU3F3 mRNA and protein expressions in hepatocellular carcinoma cells. In conclusion, our study supports the first evidence that linc-POU3F3 plays an oncogenic role in hepatocellular carcinoma, and represents a potential therapeutic strategy for hepatocellular carcinoma patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. IL13Rα2 siRNA inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion in papillary thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Gu MJ

    2018-03-01

    Full Text Available Mingjun Gu Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People’s Republic of China Aim: Papillary thyroid carcinoma (PTC is the most common type of thyroid cancer. Infiltrative growth and metastasis are the two most intractable characteristics of PTC. Interleukin-13 receptor α2 (IL13Rα2 with high affinity for Th2-derived cytokine IL-13 has been reported to be overexpressed in several tumors. In this study, an analysis of IL13Rα2 expression in PTC and matched paracancerous tissues was undertaken, and its biologic functions in PTC were assessed. Methods: IL13Rα2 and vascular endothelial growth factor (VEGF expression were detected by using real-time polymerase chain reaction and immunohistochemistry analyses. Cell proliferation, invasion, apoptosis, and caspase activity were measured with the Cell Counting Kit-8, Transwell, flow cytometry analyses, and biochemistry assay, respectively. Results: Upregulation of IL13Rα2 and VEGF was observed in PTC tissues compared with matched paracancerous tissues. Pearson’s correlation analysis indicated that IL13Rα2 mRNA level in the tested PTC tissues was positively correlated with VEGF mRNA level. Besides, inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion were detected in IL13Rα2-silenced TPC-1 cells. Increased activity of Caspase 3 and Caspase 9, along with elevated cleaved Caspase 3 and poly (ADP-ribose polymerase indicated the signal pathway of cell apoptosis induced by IL13Rα2 siRNA. In addition, downregulated metastasis- and angiogenesis-related proteins VEGF, VEGFR2, MMP2, and MMP9 indicated the decreased number of invading cells after knockdown of IL13Rα2. Conclusion: The results demonstrate that IL13Rα2 plays an important role in the progress of PTC. IL13Rα2 knockdown in PTC cells inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion. These data suggest that IL13Rα2

  8. MicroRNA-200a-3p suppresses tumor proliferation and induces apoptosis by targeting SPAG9 in renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinsheng; Jiang, Fuquan; Song, Haitao; Li, Xu; Xian, Jiantao; Gu, Xinquan, E-mail: guxqprofessor@163.com

    2016-02-12

    Sperm-associated antigen 9(SPAG9), as a well-recognized oncogene protein, has a critical effect on renal cell carcinoma (RCC) progression. Our study tried to explore the mediator of miR-200a-3p, a tumor suppressing miRNA on SPAG9 expression and renal cell proliferation and apoptosis. We found the expression of miR-200a-3p was significantly lower in RCC specimens. Based on in vitro assays, we found miR-200a-3p significantly inhibit cancer cell proliferation by inducing apoptosis. In addition, our study uncovered that miR-200a-3p directly regulates oncogenic SPAG9 in 786-O and ACHN cells. Silencing of SPAG9 resulted in significantly decreased in the growth and the cell cycle of the renal cancer cell lines. Understanding of oncogenic SPAG9 regulated by miR-200a-3p might be beneficial to reveal new therapeutic targets for RCC. - Highlights: • MiR-200a-3p is downregulated in renal cell carcinoma. • MiR-200a-3p regulates cell proliferation through inducing apoptosis. • MiR-200a-3p is involved in cell cycle regulation. • SPAG9 is a potential target of miR-200a-3p.

  9. LEPREL1 Expression in Human Hepatocellular Carcinoma and Its Suppressor Role on Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Jianguo Wang

    2013-01-01

    Full Text Available Background. Hepatocellular carcinoma (HCC is one of the most aggressive malignancies worldwide. It is characterized by its high invasive and metastatic potential. Leprecan-like 1 (LEPREL1 has been demonstrated to be downregulated in the HCC tissues in previous proteomics studies. The present study is aimed at a new understanding of LEPREL1 function in HCC. Methods. Quantitative RT-PCR, immunohistochemical analysis, and western blot analysis were used to evaluate the expression of LEPREL1 between the paired HCC tumor and nontumorous tissues. The biology function of LEPREL1 was investigated by Cell Counting Kit-8 (CCK8 assay and colony formation assay in HepG2 and Bel-7402 cells. Results. The levels of LEPREL1 mRNA and protein were significantly lower in the HCC tissues as compared to those of the nontumorous tissues. Reduced LEPREL1 expression was not associated with conventional clinical parameters of HCC. Overexpression of LEPREL1 in HepG2 and Bel-7402 cells inhibited cell proliferation (P<0.01 and colony formation (P<0.05. LEPREL1 suppressed tumor cell proliferation through regulation of the cell cycle by downregulation of cyclins. Conclusions. Clinical parameters analysis suggested that LEPREL1 was an independent factor in the development of HCC. The biology function experiments showed that LEPREL1 might serve as a potential tumor suppressor gene by inhibiting the HCC cell proliferation.

  10. NOR1 promotes hepatocellular carcinoma cell proliferation and migration through modulating the Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    You, Kun; Sun, Peisheng; Yue, Zhongyi; Li, Jian; Xiong, Wancheng; Wang, Jianguo, E-mail: jianguowangjgw@163.com

    2017-03-15

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Previous studies have reported that the oxidored-nitro domain containing protein 1 (NOR1) is a novel tumor suppressor in several tumors. Recent evidence suggests that NOR1 is strongly expressed in HCC cells. However, its role and mechanism in HCC are unclear. In the current study, Western blot and qPCR detected strong NOR1 mRNA and protein expression in HepG2 and Hep3B cells. After transfection with NOR1 siRNA or pcDNA3.1-myc-his-NOR1, the proliferation and migration of HepG2 and Hep3B cells were analyzed in vitro. HepG2 or Hep3B cells overexpressing NOR1 showed an increased proliferation and migration, whereas siRNA-mediated silencing of NOR1 showed the opposite effect. Furthermore, NOR1 activated the Notch signaling pathway, indicated by increased levels of Notch1, NICD, Hes1, and Hey1 in protein. Importantly, the Notch inhibitor DAPT downregulated Notch activation and further enhanced siNOR1-induced reduction of cell proliferation and migration in HepG2 and Hep3B cells, whereas DAPT reversed the effect of NOR1 overexpression on cell proliferation and migration. In conclusion, these results indicate that NOR1 may be involved in the progression of HCC and thus may be a potential target for the treatment of liver cancer. - Highlights: • NOR1 expression is up-regulated in HCC cells. • NOR1 promotes the proliferation and migration of HCC cells. • NOR1 promotes the progression of HCC cells by activating Notch pathway.

  11. Role of fascin in the proliferation and invasiveness of esophageal carcinoma cells

    International Nuclear Information System (INIS)

    Xie, J.J.; Xu, L.Y.; Zhang, H.H.; Cai, W.J.; Mai, R.Q.; Xie, Y.M.; Yang, Z.M.; Niu, Y.D.; Shen, Z.Y.; Li, E.M.

    2005-01-01

    Fascin, an actin-bundling protein, induces membrane protrusions and increases cell motility in various transformed cells. The overexpression of fascin in esophageal squamous cell carcinoma (ESCC) has been described only recently, but the roles and mechanism still remained unclear. Here, by using RNA interference (RNAi), we have stably silenced the expression of the fascin in EC109 cells, an ESCC cell line. Down-regulation of fascin resulted in a suppression of cell proliferation and as well as a decrease in cell invasiveness. Furthermore, we revealed that fascin might have functions in regulating tumor growth in vivo. The effect of fascin on cell invasiveness correlated with the activation of matrix metalloproteases such as MMP-2 and MMP-9. We examined that fascin down-expression also led to a decrease of c-erbB-2 and β-catenin at the protein level. These results suggested that fascin might play crucial roles in regulating neoplasm progression of ESCC

  12. MicroRNA-125a-5p regulates cancer cell proliferation and migration through NAIF1 in prostate carcinoma.

    Science.gov (United States)

    Fu, Yi; Cao, Fuhua

    2015-01-01

    We investigated the functional roles of microRNA-125a-5p in regulating human prostate carcinoma. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to evaluate the gene expression levels of miR-125a-5p in eight prostate cancer cell lines and nine biopsy specimens from patients with prostate cancer. miR-125a-5p was genetically knocked down in prostate cancer cell lines, DU145 and VCaP cells by lentiviral transduction. The effects of miR-125a-5p downregulation on prostate cancer cell proliferation and migration were evaluated by MTT assay and transwell assay, respectively. Direct regulation of miR-125a-5p on its downstream targets, NAIF1, and apoptotic gene caspase-3 were evaluated through dual-luciferase reporter assay, qRT-PCR, and Western blot, respectively. NAIF1 was then ectopically overexpressed in DU145 and VCaP cells to modulate prostate cancer cell proliferation and migration. Finally, the effects of miR-125a-5p downregulation or NAIF1 overexpression on the growth of in vivo prostate cancer xenograft were evaluated. miR-125a-5p was upregulated in prostate cancer cell lines and human prostate carcinomas. Lentivirus induced miR-125a-5p downregulation in DU145 and VCaP cells inhibited prostate cancer cell proliferation or migration. NAIF1 was the direct target of miR-125a-5p, as both gene and protein expression levels of NAIF1, as well as caspase-3 were upregulated by miR-125a-5p. Forced overexpression of NAIF1 had similar antitumor effects as miR-125a-5p downregulation on prostate cancer cell proliferation and migration. In vivo prostate xenograft assay confirmed the tumor-suppressive effect of miR-125a-5p downregulation or NAIF1 overexpression. miR-125a-5p regulates prostate cancer cell proliferation and migration through NAIF1.

  13. Expressão de marcadores de proliferação celular e apoptose em carcinoma basocelular Markers expression of cell proliferation and apoptosis in basal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Marília de Pádua Dornelas Corrêa

    2009-12-01

    Full Text Available FUNDAMENTOS: O carcinoma basocelular é o câncer mais comum em humanos. Estudos que utilizam recursos da biologia molecular e genética, associados à histomorfologia, permitem a identificação de fatores de risco no desenvolvimento de lesões mais recorrentes e agressivas. OBJETIVO: Correlacionar a expressão dos marcadores de apoptose (p53 e Bcl-2 e proliferação celular (Ki-67 e PCNA com os indicadores histológicos de gravidade do tumor. MÉTODOS: Estudaram-se cinco amostras das formas nodular, morfeiforme e superficial, respectivamente, e um grupo-controle com três pacientes livres de lesão. Empregou-se o teste de Mann-Whitney na comparação da expressão desses marcadores com a forma de apresentação do carcinoma basocelular. RESULTADOS: Verificou-se que a marcação do Bcl-2 foi expressiva nos CBCs ditos agressivos (variantes morfeiforme e nodular. Dos tumores estudados, 66,7% (n = 10 indicaram fortemente o p53. Nossos resultados mostram maior expressão do Ki-67 no carcinoma basocelular nodular e superficial, sem expressão nos controles. O PCNA mostrou forte marcação em todos os tipos de tumores e nos controles. CONCLUSÃO: Os achados nos permitem concluir que o Bcl-2 e o p53 apresentam tendência para diagnosticar gravidade do carcinoma basocelular e o Ki-67, por seu comportamento variável, não pode ser considerado como marcador de gravidade, assim como o PCNA, que não foi um bom marcador de proliferação celular.BACKGROUND: - Basal cell carcinoma is the most common form of human cancer. Studies employing molecular and genetic biology techniques, associated with histomorphology, lead to the identification of risk factors in the development of more recurring and aggressive lesions. OBJECTIVE - To correlate markers expression of apoptosis (p53 and bcl-2 and cell proliferation (Ki-67 and PCNA with histological indicators of tumor severity. METHODS - Five samples of the nodular, morpheaform and superficial types of carcinoma

  14. Multiple effects of TRAIL in human carcinoma cells: Induction of apoptosis, senescence, proliferation, and cytokine production

    International Nuclear Information System (INIS)

    Levina, Vera; Marrangoni, Adele M.; DeMarco, Richard; Gorelik, Elieser; Lokshin, Anna E.

    2008-01-01

    TRAIL is a death ligand that induces apoptosis in malignant but not normal cells. Recently the ability of TRAIL to induce proliferation in apoptosis-resistant normal and malignant cells was reported. In this study, we analyzed TRAIL effects in apoptosis sensitive MCF7, OVCAR3 and H460 human tumor cell lines. TRAIL at low concentrations preferentially induced cell proliferation. At 100 ng/ml, apoptotic death was readily observed, however surviving cells acquired higher proliferative capacity. TRAIL-stimulated production of several cytokines, IL-8, RANTES, MCP-1 and bFGF, and activation of caspases 1 and 8 was essential for this effect. Antibodies to IL-8, RANTES, and bFGF blocked TRAIL-induced cell proliferation and further stimulated apoptosis. For the first time, we report that high TRAIL concentrations induced cell senescence as determined by the altered morphology and expression of several senescence markers: SA-β-gal, p21 Waf1/Cip1 , p16 INK4a , and HMGA. Caspase 9 inhibition protected TRAIL-treated cells from senescence, whereas inhibition of caspases 1 and 8 increased the yield of SLP cells. In conclusion, in cultured human carcinoma cells, TRAIL therapy results in three functional outcomes, apoptosis, proliferation and senescence. TRAIL-induced proapoptotic and prosurvival responses correlate with the strength of signaling. TRAIL-induced cytokine production is responsible for its proliferative and prosurvival effects

  15. Overexpression of Zwint predicts poor prognosis and promotes the proliferation of hepatocellular carcinoma by regulating cell-cycle-related proteins

    Directory of Open Access Journals (Sweden)

    Ying H

    2018-02-01

    Full Text Available Hanning Ying,1,2 Zhiyao Xu,3 Mingming Chen,1,2 Senjun Zhou,1,2 Xiao Liang,1,2 Xiujun Cai1,2 1Department of General Surgery, 2Key Laboratory of Endoscopic Technique Research of Zhejiang Province, 3Central Lab of Biomedical Research Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China Introduction: Zwint, a centromere-complex component required for the mitotic spindle checkpoint, has been reported to be overexpressed in different human cancers, but it has not been studied in human hepatocellular carcinoma (HCC.Materials and methods: The role of Zwint in hepatocellular carcinoma cell proliferation capacities was evaluated by using cell counting kit-8 (CCK8, flow cytometry, clone formation and tumor formation assay in nude mice. Western blot analysis and qPCR assay were performed to assess Zwint interacting with cell-cycle-related proteins.Results: We report that ZWINT mRNA and protein expression were upregulated in HCC samples and cell lines. An independent set of 106 HCC-tissue pairs and corresponding noncancerous tissues was evaluated for Zwint expression using immunohistochemistry, and elevated Zwint expression in HCC tissues was significantly correlated with clinicopathological features, such as tumor size and number. Kaplan–Meier survival and Cox regression analysis revealed that high expression of Zwint was correlated with poor overall survival and a greater tendency for tumor recurrence. Ectopic expression of Zwint promoted HCC-cell proliferation, and Zwint expression affected the expression of several cell-cycle proteins, including PCNA, cyclin B1, Cdc25C and CDK1.Conclusion: Our findings suggest that upregulation of Zwint may contribute to the progression of HCC and may be a prognostic biomarker and potential therapeutic target for treating HCC. Keywords: Zwint, hepatocellular carcinoma, HCC, prognosis, cell proliferation, cell cycle

  16. The silencing of Pokemon attenuates the proliferation of hepatocellular carcinoma cells in vitro and in vivo by inhibiting the PI3K/Akt pathway.

    Science.gov (United States)

    Lin, Chan-Chan; Zhou, Jing-Ping; Liu, Yun-Peng; Liu, Jing-Jing; Yang, Xiao-Ning; Jazag, Amarsanaa; Zhang, Zhi-Ping; Guleng, Bayasi; Ren, Jian-Lin

    2012-01-01

    Pokemon (POK erythroid myeloid ontogenic factor), which belongs to the POK protein family, is also called LRF, OCZF and FBI-1. As a transcriptional repressor, Pokemon assumes a critical function in cellular differentiation and oncogenesis. Our study identified an oncogenic role for Pokemon in human hepatocellular carcinoma (HCC). We successfully established human HepG2 and Huh-7 cell lines in which Pokemon was stably knocked down. We demonstrated that Pokemon silencing inhibited cell proliferation and migration. Pokemon knockdown inhibited the PI3K/Akt and c-Raf/MEK/ERK pathways and modulated the expression of various cell cycle regulators in HepG2 and Huh-7 cells. Therefore, Pokemon may also be involved in cell cycle progression in these cells. We confirmed that Pokemon silencing suppresses hepatocellular carcinoma growth in tumor xenograft mice. These results suggest that Pokemon promotes cell proliferation and migration in hepatocellular carcinoma and accelerates tumor development in an Akt- and ERK-signaling-dependent manner.

  17. The silencing of Pokemon attenuates the proliferation of hepatocellular carcinoma cells in vitro and in vivo by inhibiting the PI3K/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Chan-Chan Lin

    Full Text Available Pokemon (POK erythroid myeloid ontogenic factor, which belongs to the POK protein family, is also called LRF, OCZF and FBI-1. As a transcriptional repressor, Pokemon assumes a critical function in cellular differentiation and oncogenesis. Our study identified an oncogenic role for Pokemon in human hepatocellular carcinoma (HCC. We successfully established human HepG2 and Huh-7 cell lines in which Pokemon was stably knocked down. We demonstrated that Pokemon silencing inhibited cell proliferation and migration. Pokemon knockdown inhibited the PI3K/Akt and c-Raf/MEK/ERK pathways and modulated the expression of various cell cycle regulators in HepG2 and Huh-7 cells. Therefore, Pokemon may also be involved in cell cycle progression in these cells. We confirmed that Pokemon silencing suppresses hepatocellular carcinoma growth in tumor xenograft mice. These results suggest that Pokemon promotes cell proliferation and migration in hepatocellular carcinoma and accelerates tumor development in an Akt- and ERK-signaling-dependent manner.

  18. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2010-10-01

    Full Text Available Zhen Zhang, Xiumei Zhang, Wei Xue, Yuna YangYang, Derong Xu, Yunxue Zhao, Haiyan LouSchool of Medicine, Shandong University, Jinan, Republic of ChinaAbstract: This study aims to investigate the inhibitory effects of oridonin nanosuspension on human prostatic carcinoma PC-3 cell line in vitro. The PC-3 cells were incubated with increasing concentrations of oridonin solution and nanosuspensions for 12 hours, 24 hours, and 36 hours. MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay was performed to measure cellular viability and investigate the effect of oridonin on cell growth of PC-3. Annexin V-FITC/PI staining method was used to determine the effect of oridonin by fluorescence microscope and flow cytometry, respectively. Nanosuspension on early apoptosis of PC-3 cells was also evaluated. Oridonin significantly inhibited the growth of PC-3 cells after 12 hours, 24 hours, and 36 hours of treatment in a dose-dependent manner (P < 0.05. Compared with the same concentration of oridonin solution, oridonin nanosuspension enhanced the inhibition ratio of proliferation. The observation of propidium iodide fluorescence staining confirmed the MTT assay results. The cell proportion of PC-3 at the G2/M phase in the nanosuspension treatment group was upregulated compared with that of the control and oridonin solution groups. Both oridonin solution and nanosuspension promoted the early apoptosis of PC-3 cells. Furthermore, while improving the ratio of early apoptosis, oridonin nanosuspensions also enhanced growth suppression, and induced apoptosis of PC-3 cells. This shows great potential in the treatment of androgen-independent carcinoma of prostate by oridonin nanosuspensions.Keywords: oridonin, nanosuspension, carcinoma of prostate, PC-3 cells, cell cycle, apoptosis

  19. Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma

    International Nuclear Information System (INIS)

    Choi, Jieun; Koh, Eunjin; Lee, Yu Shin; Lee, Hyun-Woo; Kang, Hyeok Gu; Yoon, Young Eun; Han, Woong Kyu; Choi, Kyung Hwa; Kim, Kyung-Sup

    2016-01-01

    Clear cell renal carcinoma (RCC), the most common malignancy arising in the adult kidney, exhibits increased aerobic glycolysis and low mitochondrial respiration due to von Hippel-Lindau gene defects and constitutive hypoxia-inducible factor-α expression. Sirt3 is a major mitochondrial deacetylase that mediates various types of energy metabolism. However, the role of Sirt3 as a tumor suppressor or oncogene in cancer depends on cell types. We show increased Sirt3 expression in the mitochondrial fraction of human RCC tissues. Sirt3 depletion by lentiviral short-hairpin RNA, as well as the stable expression of the inactive mutant of Sirt3, inhibited cell proliferation and tumor growth in xenograft nude mice, respectively. Furthermore, mitochondrial pyruvate, which was used for oxidation in RCC, might be derived from glutamine, but not from glucose and cytosolic pyruvate, due to depletion of mitochondrial pyruvate carrier and the relatively high expression of malic enzyme 2. Depletion of Sirt3 suppressed glutamate dehydrogenase activity, leading to impaired mitochondrial oxygen consumption. Our findings suggest that Sirt3 plays a tumor-progressive role in human RCC by regulating glutamine-derived mitochondrial respiration, particularly in cells where mitochondrial usage of cytosolic pyruvate is severely compromised. -- Highlights: •Sirt3 is required for the maintenance of RCC cell proliferation. •Mitochondrial usage of cytosolic pyruvate is severely compromised in RCC. •Sirt3 supports glutamine-dependent oxidation in RCC.

  20. Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jieun; Koh, Eunjin; Lee, Yu Shin; Lee, Hyun-Woo; Kang, Hyeok Gu [Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Yoon, Young Eun; Han, Woong Kyu [Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Choi, Kyung Hwa [Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 463-712 (Korea, Republic of); Kim, Kyung-Sup, E-mail: KYUNGSUP59@yuhs.ac [Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2016-06-03

    Clear cell renal carcinoma (RCC), the most common malignancy arising in the adult kidney, exhibits increased aerobic glycolysis and low mitochondrial respiration due to von Hippel-Lindau gene defects and constitutive hypoxia-inducible factor-α expression. Sirt3 is a major mitochondrial deacetylase that mediates various types of energy metabolism. However, the role of Sirt3 as a tumor suppressor or oncogene in cancer depends on cell types. We show increased Sirt3 expression in the mitochondrial fraction of human RCC tissues. Sirt3 depletion by lentiviral short-hairpin RNA, as well as the stable expression of the inactive mutant of Sirt3, inhibited cell proliferation and tumor growth in xenograft nude mice, respectively. Furthermore, mitochondrial pyruvate, which was used for oxidation in RCC, might be derived from glutamine, but not from glucose and cytosolic pyruvate, due to depletion of mitochondrial pyruvate carrier and the relatively high expression of malic enzyme 2. Depletion of Sirt3 suppressed glutamate dehydrogenase activity, leading to impaired mitochondrial oxygen consumption. Our findings suggest that Sirt3 plays a tumor-progressive role in human RCC by regulating glutamine-derived mitochondrial respiration, particularly in cells where mitochondrial usage of cytosolic pyruvate is severely compromised. -- Highlights: •Sirt3 is required for the maintenance of RCC cell proliferation. •Mitochondrial usage of cytosolic pyruvate is severely compromised in RCC. •Sirt3 supports glutamine-dependent oxidation in RCC.

  1. CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Sweeny, Larissa; Liu, Zhiyong; Bush, Benjamin D.; Hartman, Yolanda; Zhou, Tong; Rosenthal, Eben L.

    2012-01-01

    The signaling pathways facilitating metastasis of head and neck squamous cell carcinoma (HNSCC) cells are not fully understood. CD147 is a transmembrane glycoprotein known to induce cell migration and invasion. AGR2 is a secreted peptide also known to promote cell metastasis. Here we describe their importance in the migration and invasion of HNSCC cells (FADU and OSC-19) in vitro and in vivo. In vitro, knockdown of CD147 or AGR2 decreased cellular proliferation, migration and invasion. In vivo, knockdown of CD147 or AGR2 expression decreased primary tumor growth as well as regional and distant metastasis. -- Highlights: ► We investigated AGR2 in head and neck squamous cell carcinoma for the first time. ► We explored the relationship between AGR2 and CD147 for the first time. ► AGR2 and CD147 appear to co-localize in head and squamous cell carcinoma samples. ► Knockdown of both AGR2 and CD147 reduced migration and invasion in vitro. ► Knockdown of both AGR2 and CD147 decreased metastasis in vivo.

  2. Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Can [Department of Occupational Medicine and Environmental Health, School of Public Health, Soochow University, Suzhou 215123 (China); Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Wang, Lili; Zhu, Lifang [Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhang, Chenping, E-mail: zhang_cping@163.com [Department of Head and Neck Tumors, Shanghai Ninth People’s Hospital Affiliated Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China); Zhou, Jianhua [Department of Occupational Medicine and Environmental Health, School of Public Health, Soochow University, Suzhou 215123 (China)

    2014-11-28

    Highlights: • miR-9 expression level was significantly decreased in OSCC tissues. • Curcumin significantly inhibited SCC-9 cells proliferation. • miR-9 mediates the inhibition of SCC-9 proliferation by curcumin. • Curcumin suppresses Wnt/β-catenin signaling in SCC-9 cells. • miR-9 mediates the suppression of Wnt/β-catenin signaling by curcumin. - Abstract: Curcumin, a phytochemical derived from the rhizome of Curcuma longa, has shown anticancer effects against a variety of tumors. In the present study, we investigated the effects of curcumin on the miR-9 expression in oral squamous cell carcinoma (OSCC) and explored the potential relationships between miR-9 and Wnt/β-catenin pathway in curcumin-mediated OSCC inhibition in vitro. As the results shown, the expression levels of miR-9 were significantly lower in clinical OSCC specimens than those in the adjacent non-tumor tissues. Furthermore, our results indicated that curcumin inhibited OSCC cells (SCC-9 cells) proliferation through up-regulating miR-9 expression, and suppressing Wnt/β-catenin signaling by increasing the expression levels of the GSK-3β, phosphorylated GSK-3β and β-catenin, and decreasing the cyclin D1 level. Additionally, the up-regulation of miR-9 by curcumin in SCC-9 cells was significantly inhibited by delivering anti-miR-9 but not control oligonucleotides. Downregulation of miR-9 by anti-miR-9 not only attenuated the growth-suppressive effects of curcumin on SCC-9 cells, but also re-activated Wnt/β-catenin signaling that was inhibited by curcumin. Therefore, our findings would provide a new insight into the use of curcumin against OSCC in future.

  3. Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression

    International Nuclear Information System (INIS)

    Xiao, Can; Wang, Lili; Zhu, Lifang; Zhang, Chenping; Zhou, Jianhua

    2014-01-01

    Highlights: • miR-9 expression level was significantly decreased in OSCC tissues. • Curcumin significantly inhibited SCC-9 cells proliferation. • miR-9 mediates the inhibition of SCC-9 proliferation by curcumin. • Curcumin suppresses Wnt/β-catenin signaling in SCC-9 cells. • miR-9 mediates the suppression of Wnt/β-catenin signaling by curcumin. - Abstract: Curcumin, a phytochemical derived from the rhizome of Curcuma longa, has shown anticancer effects against a variety of tumors. In the present study, we investigated the effects of curcumin on the miR-9 expression in oral squamous cell carcinoma (OSCC) and explored the potential relationships between miR-9 and Wnt/β-catenin pathway in curcumin-mediated OSCC inhibition in vitro. As the results shown, the expression levels of miR-9 were significantly lower in clinical OSCC specimens than those in the adjacent non-tumor tissues. Furthermore, our results indicated that curcumin inhibited OSCC cells (SCC-9 cells) proliferation through up-regulating miR-9 expression, and suppressing Wnt/β-catenin signaling by increasing the expression levels of the GSK-3β, phosphorylated GSK-3β and β-catenin, and decreasing the cyclin D1 level. Additionally, the up-regulation of miR-9 by curcumin in SCC-9 cells was significantly inhibited by delivering anti-miR-9 but not control oligonucleotides. Downregulation of miR-9 by anti-miR-9 not only attenuated the growth-suppressive effects of curcumin on SCC-9 cells, but also re-activated Wnt/β-catenin signaling that was inhibited by curcumin. Therefore, our findings would provide a new insight into the use of curcumin against OSCC in future

  4. Monocarboxylate transporter 4 facilitates cell proliferation and migration and is associated with poor prognosis in oral squamous cell carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Jiang Zhu

    Full Text Available Monocarboxylate transporter 4 (MCT4 is a cell membrane transporter of lactate. Recent studies have shown that MCT4 is over-expressed in various cancers; however, its role in cancer maintenance and aggressiveness has not been fully demonstrated. This study investigated the role of MCT4 in oral squamous cell carcinoma (OSCC, and found that it is highly expressed in OSCC patients by using immunohistochemistry. Moreover, this over-expression of MCT4 was closely associated with tumor size, TNM classification, lymphatic metastasis, distant metastasis and tumor recurrence, and also poor prognosis. To further study mechanisms of MCT4 in vitro, we used small-interfering RNA to silence its expression in OSCC cell lines. The results showed that knock-down of MCT4 decreased cell proliferation, migration, and invasion. The inhibition of proliferation was associated with down-regulation of p-AKT and p-ERK1/2, while decreased cell migration and invasion may be caused by down-regulation of integrin β4-SRC-FAK and MEK-ERK signaling. Together, these findings provide new insight into the critical role of MCT4 in cell proliferation and metastasis in OSCC.

  5. Holliday junction–recognizing protein promotes cell proliferation and correlates with unfavorable clinical outcome of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Hu B

    2017-05-01

    Full Text Available Baohong Hu,1,2,* Qianli Wang,3,* Yueju Wang,4 Jian Chen,2 Peng Li,2 Mingyong Han1 1Department of Health Care Oncology, East District of Shandong Provincial Hospital of Shandong University, Jinan, 2Department of Medical Oncology, 3Department of Intensive Care Unit, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, 4Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China *These authors contributed equally to this work Aim: To investigate the expression and clinical significance of Holliday junction–recognizing protein (HJURP in hepatocellular carcinoma (HCC. Methods: In this study, we detected the expression of HJURP protein in samples of 164 patients with HCC, and based on this, we divided the patients into two cohorts: high expression of HJURP and low expression of HJURP. We analyzed the correlation between HJURP expression and the clinicopathological factors using chi-square test. Survival significance of HJURP was defined by Kaplan–Meier method and log-rank test, and the independent prognostic factors were identified by Cox regression model. Using function assays of HCC cell lines, we investigated the influence of HJURP on the proliferation of HCC cells. Results: In our study, the proportion of patients with high HJURP expression was 25.6%, which was significantly associated with the tumor size and Barcelona clinic liver cancer stage. Univariate analysis confirmed that high HJURP expression was remarkably associated with poorer overall survival rates (P=0.003, as well as tumor number (P=0.016, tumor differentiation (P=0.047, TNM stage (P=0.005, and Barcelona clinic liver cancer stage (P=0.004. Multivariate analysis confirmed that high HJURP expression (P<0.001 acted as an independent prognostic risk factor of unfavorable prognosis. Real-time polymerase chain reaction analysis revealed that the expression of HJURP was significantly higher in

  6. CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sweeny, Larissa, E-mail: larissasweeny@gmail.com [Department of Surgery, University of Alabama, Division of Otolaryngology-Head and Neck Surgery, 1670 University Boulevard, Volker Hall G082, Birmingham, Alabama (United States); Liu, Zhiyong; Bush, Benjamin D.; Hartman, Yolanda [Department of Surgery, University of Alabama, Division of Otolaryngology-Head and Neck Surgery, 1670 University Boulevard, Volker Hall G082, Birmingham, Alabama (United States); Zhou, Tong [Department of Medicine, Division of Immunology and Rheumatology, 1825 University Boulevard, Shelby Biomedical Research Building 302, Birmingham, Alabama (United States); Rosenthal, Eben L., E-mail: oto@uab.edu [Department of Surgery, University of Alabama, Division of Otolaryngology-Head and Neck Surgery, 1670 University Boulevard, Volker Hall G082, Birmingham, Alabama (United States)

    2012-08-15

    The signaling pathways facilitating metastasis of head and neck squamous cell carcinoma (HNSCC) cells are not fully understood. CD147 is a transmembrane glycoprotein known to induce cell migration and invasion. AGR2 is a secreted peptide also known to promote cell metastasis. Here we describe their importance in the migration and invasion of HNSCC cells (FADU and OSC-19) in vitro and in vivo. In vitro, knockdown of CD147 or AGR2 decreased cellular proliferation, migration and invasion. In vivo, knockdown of CD147 or AGR2 expression decreased primary tumor growth as well as regional and distant metastasis. -- Highlights: Black-Right-Pointing-Pointer We investigated AGR2 in head and neck squamous cell carcinoma for the first time. Black-Right-Pointing-Pointer We explored the relationship between AGR2 and CD147 for the first time. Black-Right-Pointing-Pointer AGR2 and CD147 appear to co-localize in head and squamous cell carcinoma samples. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 reduced migration and invasion in vitro. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 decreased metastasis in vivo.

  7. Role of Dicer1 in thyroid cell proliferation and differentiation.

    Science.gov (United States)

    Penha, Ricardo Cortez Cardoso; Sepe, Romina; De Martino, Marco; Esposito, Francesco; Pellecchia, Simona; Raia, Maddalena; Del Vecchio, Luigi; Decaussin-Petrucci, Myriam; De Vita, Gabriella; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo

    2017-01-01

    DICER1 plays a central role in the biogenesis of microRNAs and it is important for normal development. Altered microRNA expression and DICER1 dysregulation have been described in several types of tumors, including thyroid carcinomas. Recently, our group identified a new somatic mutation (c.5438A>G; E1813G) within DICER1 gene of an unknown function. Herein, we show that DICER1 is overexpressed, at mRNA level, in a significant-relative number of papillary (70%) and anaplastic (42%) thyroid carcinoma samples, whereas is drastically downregulated in all the analyzed human thyroid carcinoma cell lines (TPC-1, BCPAP, FRO and 8505c) in comparison with normal thyroid tissue samples. Conversely, DICER1 is downregulated, at protein level, in PTC in comparison with normal thyroid tissues. Our data also reveals that DICER1 overexpression positively regulates thyroid cell proliferation, whereas its silencing impairs thyroid cell differentiation. The expression of DICER1 gene mutation (c.5438A>G; E1813G) negatively affects the microRNA machinery and cell proliferation as well as upregulates DICER1 protein levels of thyroid cells but has no impact on thyroid differentiation. In conclusion, DICER1 protein is downregulated in papillary thyroid carcinomas and affects thyroid proliferation and differentiation, while DICER1 gene mutation (c.5438A>G; E1813G) compromises the DICER1 wild-type-mediated microRNA processing and cell proliferation.

  8. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  9. Activation of IRE1α-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma

    International Nuclear Information System (INIS)

    Jin, Chun; Jin, Zhao; Chen, Nian-zhao; Lu, Min; Liu, Chang-bao; Hu, Wan-Le; Zheng, Chen-guo

    2016-01-01

    Cell proliferation and tumor metastasis are considered as the main reasons for death in colorectal carcinoma (CRC). IRE1α-XBP1 pathway is the most conserved UPR pathways, which are activated during ER stress caused by the accumulation of unfolded or misfolded protein in the lumen of ER. Here, we demonstrated the critical role of IRE1α-XBP1 pathway and underlying molecular mechanism in cell proliferation and tumor metastasis in CRC. By the use of tissue microarray analysis of samples from 119 patients with CRC, IRE1α was determined to be an independent predictor of overall survival as higher expression of IRE1α in CRC patients showed lower survival rates (p = 0.0041). RNA interference and ectopic expression of IRE1α were applied to determine the molecular effects of IRE1α in CRC cells. The silencing of IRE1α inhibited the proliferation and blocked the invasion of CRC cells in vitro, while ectopic expression of IRE1α in turn promoted cell proliferation and invasion. IRE1α-XBP1 pathway regulated the mitosis of CRC cells through the directly binding of XBP1s to Cyclin D1 promoter to activate Cyclin D1 expression. Our results reveal that IRE1α-XBP1 pathway plays an important role in tumor progression and epithelial-to-mesenchymal transition (EMT), and IRE1α could be employed as a novel prognostic marker and a promising therapeutic target for CRC. - Highlights: • IRE1 was determined to be an independent predictor of overall survival in CRC patient. • IRE1-XBP1 pathway promoted CRC cell proliferation through regulating Cyclin D1 expression. • IRE1-XBP1 pathway played important role in EMT of CRC cells.

  10. Activation of IRE1α-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chun [Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000 (China); Jin, Zhao [Department of Coloproctology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000 (China); Chen, Nian-zhao [Department of Medicine, The Chinese Medicine Hospital of Wenzhou, Wenzhou 325000 (China); Lu, Min; Liu, Chang-bao; Hu, Wan-Le [Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000 (China); Zheng, Chen-guo, E-mail: zhengchenguo80@163.com [Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000 (China)

    2016-01-29

    Cell proliferation and tumor metastasis are considered as the main reasons for death in colorectal carcinoma (CRC). IRE1α-XBP1 pathway is the most conserved UPR pathways, which are activated during ER stress caused by the accumulation of unfolded or misfolded protein in the lumen of ER. Here, we demonstrated the critical role of IRE1α-XBP1 pathway and underlying molecular mechanism in cell proliferation and tumor metastasis in CRC. By the use of tissue microarray analysis of samples from 119 patients with CRC, IRE1α was determined to be an independent predictor of overall survival as higher expression of IRE1α in CRC patients showed lower survival rates (p = 0.0041). RNA interference and ectopic expression of IRE1α were applied to determine the molecular effects of IRE1α in CRC cells. The silencing of IRE1α inhibited the proliferation and blocked the invasion of CRC cells in vitro, while ectopic expression of IRE1α in turn promoted cell proliferation and invasion. IRE1α-XBP1 pathway regulated the mitosis of CRC cells through the directly binding of XBP1s to Cyclin D1 promoter to activate Cyclin D1 expression. Our results reveal that IRE1α-XBP1 pathway plays an important role in tumor progression and epithelial-to-mesenchymal transition (EMT), and IRE1α could be employed as a novel prognostic marker and a promising therapeutic target for CRC. - Highlights: • IRE1 was determined to be an independent predictor of overall survival in CRC patient. • IRE1-XBP1 pathway promoted CRC cell proliferation through regulating Cyclin D1 expression. • IRE1-XBP1 pathway played important role in EMT of CRC cells.

  11. miR-22 regulates cell invasion, migration and proliferation in vitro through inhibiting CD147 expression in tongue squamous cell carcinoma.

    Science.gov (United States)

    Qiu, Kaifeng; Huang, Zixian; Huang, Zhiquan; He, Zhichao; You, Siping

    2016-06-01

    Tongue squamous cell carcinoma (TSCC) is the most common type of head and neck squamous cell carcinoma (HNSCC) in China, and its survival rate remains unsatisfactory. miR-22 has been identified as a tumor suppressor in many human cancers, and high expression of CD147 occurs in many tumors. The aim of the present study was to investigate the expression and function of miR-22 in TSCC and its relationship with the expression of CD147. TCA8113 cells were transiently transfected with a miR-22 mimic/inhibitor. Subsequently, a validation with Real-time RT-PCR was performed to analyze the miR-22 expression level, and a CCK-8 proliferation assay and transwell migration and invasion assays were carried out. Cotransfections using As-miR-22/si-CD147 mRNA or a miR-22/CD147 overexpression vector were applied, and we investigated the biological effects on cotranscribed TCA8113 cells. qRT-PCR confirmed that miR-22 or As-miR-22 were successfully transfected into TCA8113 cells. Suppressing miR-22 resulted in a promotion of cell proliferation and motility and an up-regulation of CD147 in TCA8113 cells in vitro. In contrast, increasing miR-22 inhibited cell proliferation and motility and down-regulated CD147. Furthermore, the reduction or overexpression of CD147 can reverse the promoting or suppressive effects of miR-22, respectively. The down-expression of miR-22 can regulate cell growth and motility in TSCC cells, which indicates that miR-22 acts as a tumor suppressor in TSCC. Additionally, CD147 is subsequently up-regulated when miR-22 inhibited. Taken together, the findings of this research defined a novel relationship between the down-regulation of miR-22 and the up-regulation of CD147 and demonstrated that CD147 is a downstream factor of miR-22. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter

    International Nuclear Information System (INIS)

    Zhang, Xiangning; Liu, Hui; Li, Binbin; Huang, Peichun; Shao, Jianyong; He, Zhiwei

    2012-01-01

    Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK) and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression

  13. RNAi Knockdown of Hypoxia-Inducible Factor-1α Decreased the Proliferation, Migration, and Invasion of Hypoxic Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Chen, ChengShi; Liu, Rong; Wang, JianHua; Yan, ZhiPing; Qian, Sheng; Zhang, Wei

    2015-04-01

    The obstruction of hepatic arterial blood flow results in tumor tissue hypoxia and elevated expression of hypoxia-inducible factor-1alpha (HIF-1α). Our study evaluated whether lentivirus-mediated short interference RNA against HIF-1α inhibits proliferation, invasion, and migration of hepatocellular carcinoma (HCC) cells under hypoxia. RNA interference knockdown of HIF-1α was achieved by HIF-1α-directed lentiviral shRNA, in a rat HCC cell line cultured under hypoxia condition for varying length of times. The expression levels of HIF-1α and vascular endothelial growth factor were examined using reverse transcription polymerase chain reaction and western blot analyses. Cell proliferation, migration, and invasion were measured by cell viability, transwell migration, and invasion assays, respectively. Inhibition of HIF-1α expression by shRNA suppressed vascular endothelial growth factor mRNA and protein levels under both normoxia and hypoxia. It also suppressed cell migration and invasion, which were enhanced under hypoxic conditions. RNAi knockdown of HIF-1α further suppressed hypoxia-mediated inhibition of the cell proliferation. These data suggest that shRNA of HIF-1α could antagonize the hypoxia-mediated increase in hepatic cancer cell migration and invasion, and synergize with hypoxia to inhibit the cell proliferation in HCC cells.

  14. Upregulation of metastasis-associated gene 2 promotes cell proliferation and invasion in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Wu MH

    2016-03-01

    Full Text Available Minhua Wu,1,2,* Xiaoxia Ye,2,* Xubin Deng,3,* Yanxia Wu,4 Xiaofang Li,4 Lin Zhang11Department of Histology and Embryology, Southern Medical University, Guangzhou, 2Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, 3Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University, Guangzhou, 4Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People’s Republic of China*These authors contributed equally to this workAims: Metastasis-associated gene 2 (MTA2 is reported to play an important role in tumor progression, but little is known about the role of MTA2 in nasopharyngeal carcinoma (NPC. The aim of the study was to explore the expression and function of MTA2 in NPC.Methods: Expression of MTA2 in NPC tissues and cell lines was detected by immunohistochemistry and Western blotting. Relationship between MTA2 expression and clinicopathological features was analyzed. Stable MTA2-overexpressing and MTA2-siliencing NPC cells were established by transfection with plasmids encoding MTA2 cDNA and lentivirus-mediated short hairpin RNA, respectively. Cell viability was determined by Cell Counting Kit-8 and colony formation assay. Cell migration ability was evaluated by wound healing and transwell invasion assay. The impact of MTA2 knockdown on growth and metastasis of CNE2 cells in vivo was determined by nude mouse xenograft models. Expression of several Akt pathway proteins was detected by Western blotting.Results: MTA2 was upregulated in NPC tissues and three NPC cell lines detected (CNE1, CNE2, and HNE1. MTA2 expression was related to clinical stage and lymph node metastasis of patients with NPC. MTA2 upregulation promoted proliferation and invasion of CNE1 cells, while MTA2 depletion had opposite effects on CNE2 cells. Moreover, MTA2 depletion suppressed growth and metastasis of CNE2 cells in vivo. MTA2 overexpression

  15. Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells

    Science.gov (United States)

    Chao, Jane C-J; Chiang, Shih-Wen; Wang, Ching-Chiung; Tsai, Ya-Hui; Wu, Ming-Shun

    2006-01-01

    AIM: To investigate the effect of hot water-extracted Lycium barbarum (LBE) and Rehmannia glutinosa (RGE) on cell proliferation and apoptosis in rat and/or human hepatocellular carcinoma (HCC) cells. METHODS: Rat (H-4-II-E) and human HCC (HA22T/VGH) cell lines were incubated with various concentrations (0-10 g/L) of hot water-extracted LBE and RGE. After 6-24 h incubation, cell proliferation (n = 6) was measured by a colorimetric method. The apoptotic cells (n = 6) were detected by flow cytometry. The expression of p53 protein (n = 3) was determined by SDS-PAGE and Western blotting. RESULTS: Crude LBE (2-5 g/L) and RGE (2-10 g/L) dose-dependently inhibited proliferation of H-4-II-E cells by 11% (P < 0.05) to 85% (P < 0.01) after 6-24 h treatment. Crude LBE at a dose of 5 g/L suppressed cell proliferation of H-4-II-E cells more effectively than crude RGE after 6-24 h incubation (P < 0.01). Crude LBE (2-10 g/L) and RGE (2-5 g/L) also dose-dependently inhibited proliferation of HA22T/VGH cells by 14%-43% (P < 0.01) after 24 h. Crude LBE at a dose of 10 g/L inhibited the proliferation of HA22T/VGH cells more effectively than crude RGE (56.8% ± 1.6% vs 70.3% ± 3.1% of control, P = 0.0003 < 0.01). The apoptotic cells significantly increased in H-4-II-E cells after 24 h treatment with higher doses of crude LBE (2-5 g/L) and RGE (5-10 g/L) (P < 0.01). The expression of p53 protein in H-4-II-E cells was 119% and 143% of the control group compared with the LBE-treated (2, 5 g/L) groups, and 110% and 132% of the control group compared with the RGE -treated (5, 10 g/L) groups after 24 h. CONCLUSION: Hot water-extracted crude LBE (2-5 g/L) and RGE (5-10 g/L) inhibit proliferation and stimulate p53-mediated apoptosis in HCC cells. PMID:16874858

  16. [miR-497 suppresses proliferation of human cervical carcinoma HeLa cells by targeting cyclin E1].

    Science.gov (United States)

    Han, Jiming; Huo, Manpeng; Mu, Mingtao; Liu, Junjun; Zhang, Jing

    2014-06-01

    To evaluate the effect of miR-497 on proliferation of human cervical carcinoma HeLa cells and target relationship between miR-497 and cyclin E1 (CCNE1). Pre-miR-497 sequences were synthesized and cloned into pcDNATM6.2-GW to construct recombinant plasmid pcDNATM6.2-GW-pre-miR-497 and identified by real-time quantitative PCR (qRT-PCR). In addition, sequences of the wild-type CCNE1 (WT-CCNE1) and mutant CCNE1 (MT-CCNE1) were respectively cloned into pmirGLO vectors. MTT assay was used to explore the impact of miR-497 on the proliferation of HeLa cells. Furthermore, the target effect of miR-497 on the CCNE1 was identified by dual-luciferase reporter assay system, qRT-PCR and Western blotting. The recombinant plasmids pcDNATM6.2-GW-pre-miR-497 and pmirGLO-WT-CCNE1, pmirGLO-MT-CCNE1 were successfully constructed, and the miR-497 expression level in HeLa cells transfected with pre-miR-497 was significantly higher than that in the neg-miR group (PHeLa cells (PHeLa cells with pre-miR-497 transfection (PHeLa cells transfected with pre-miR-497 (PHeLa cells could suppress cell proliferation by targeting CCNE1.

  17. MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA

    International Nuclear Information System (INIS)

    Lang, Qingbo; Ling, Changquan

    2012-01-01

    Highlights: ► PIK3CA is a novel target of miR-124 in HepG2 cells. ► MiR-124 suppresses cell proliferation by downregulating PIK3CA expression. ► MiR-124 regulates the PI3K/Akt pathway in HepG2 cells. ► MiR-124 overexpression inhibits the tumorigenesis in nude mice. -- Abstract: MicroRNAs (miRNAs) have crucial roles in the development and progression of human cancers, including hepatocellular carcinoma (HCC). Recent studies have shown that microRNA-124 (miR-124) was downregulated in HCC; however, the underlying mechanisms by which miR-124 suppresses tumorigenesis in HCC are largely unknown. In this study, we report that phosphoinositide 3-kinase catalytic subunit alpha (PIK3CA) is a novel target of miR-124 in HepG2 cells. Overexpression of miR-124 resulted in decreased expression of PIK3CA at both mRNA and protein levels. We found that miR-124 overexpression markedly suppressed cell proliferation by inducing G1-phase cell-cycle arrest in vitro. Consistent with the restoring miR-124 expression, PIK3CA knockdown suppressed cell proliferation, whereas overexpression of PIK3CA abolished the suppressive effect of miR-124. Mechanistic studies showed that miR-124-mediated reduction of PIK3CA resulted in suppression of PI3K/Akt pathway. The expressions of Akt and mTOR, key components of the PI3K/Akt pathway, were all downregulated. Moreover, we found overexpressed miR-124 effectively repressed tumor growth in xenograft animal experiments. Taken together, our results demonstrate that miR-124 functions as a growth-suppressive miRNA and plays an important role in inhibiting the tumorigenesis through targeting PIK3CA.

  18. MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Qingbo [Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Ling, Changquan, E-mail: lingchangquan@hotmail.com [Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer PIK3CA is a novel target of miR-124 in HepG2 cells. Black-Right-Pointing-Pointer MiR-124 suppresses cell proliferation by downregulating PIK3CA expression. Black-Right-Pointing-Pointer MiR-124 regulates the PI3K/Akt pathway in HepG2 cells. Black-Right-Pointing-Pointer MiR-124 overexpression inhibits the tumorigenesis in nude mice. -- Abstract: MicroRNAs (miRNAs) have crucial roles in the development and progression of human cancers, including hepatocellular carcinoma (HCC). Recent studies have shown that microRNA-124 (miR-124) was downregulated in HCC; however, the underlying mechanisms by which miR-124 suppresses tumorigenesis in HCC are largely unknown. In this study, we report that phosphoinositide 3-kinase catalytic subunit alpha (PIK3CA) is a novel target of miR-124 in HepG2 cells. Overexpression of miR-124 resulted in decreased expression of PIK3CA at both mRNA and protein levels. We found that miR-124 overexpression markedly suppressed cell proliferation by inducing G1-phase cell-cycle arrest in vitro. Consistent with the restoring miR-124 expression, PIK3CA knockdown suppressed cell proliferation, whereas overexpression of PIK3CA abolished the suppressive effect of miR-124. Mechanistic studies showed that miR-124-mediated reduction of PIK3CA resulted in suppression of PI3K/Akt pathway. The expressions of Akt and mTOR, key components of the PI3K/Akt pathway, were all downregulated. Moreover, we found overexpressed miR-124 effectively repressed tumor growth in xenograft animal experiments. Taken together, our results demonstrate that miR-124 functions as a growth-suppressive miRNA and plays an important role in inhibiting the tumorigenesis through targeting PIK3CA.

  19. Recombinant Escherichia coli Trx-JZTX-III represses the proliferation of mouse hepatocellular carcinoma cells through induction of cell cycle arrest.

    Science.gov (United States)

    Sun, Mei-Na; Zhao, Xue-Jiao; Zhao, Han-Dong; Zhang, Wei-Guang; Li, Feng-Lan; Chen, Ming-Zi; Li, Hui; Li, Guangchao

    2013-06-01

    The aim of the present study was to investigate the effects of recombinant Escherichia coli (E. coli) Trx-jingzhaotoxin (JZTX)-III on cell growth in the mouse hepatocellular carcinoma (HCC) cell line Hepa1-6. The JZTX-III gene sequence was synthesized and cloned into the pET-32a(+) vector to construct the recombinant fusion protein Trx-JZTX-III, which was subsequently purified. Hepa1-6 cells were treated with 0 to 1,000-µg/ml concentrations of Trx-JZTX-III; this was demonstrated to affect cell viability, as determined by the 3-(4,5-dimethylthiazol‑2-yl)-2,5-diphenyltetra-zolium bromide (MTT) assay. The expression of the proliferating cell nuclear antigen (PCNA) protein was investigated using western blot analysis. A colony formation assay was used to determine Hepa1-6 cell proliferation, and the migration ability of cells was determined using a wound‑healing assay. Additionally, flow cytometry was employed to observe changes in the cell cycle. The MTT assay and quantification of PCNA expression indicated that recombinant E. coli Trx-JZTX-III significantly repressed the proliferation of Hepa1-6 cells. Colony formation and the migration of malignant cells was inhibited following treatment with recombinant E. coli Trx-JZTX-III. Flow cytometry showed that recombinant E. coli Trx-JZTX-III induced G0/G1 cell cycle arrest. In conclusion, recombinant E. coli Trx-JZTX-III functions as a tumor suppressor drug in mouse HCC and its underlying mechanism may involve the induction of G0/G1 cell cycle arrest.

  20. [Inhibitory effect and underlying mechanism of total saponins from Paris polyphylla var. yunnanensis on the proliferation of salivary adenoid cystic carcinoma ACC-83 cells].

    Science.gov (United States)

    Qiumin, He; Biao, Xu; Weihong, Wang; Chongyun, Bao; Shaowei, Hu

    2017-06-01

    To investigate the inhibitory effect and underlying mechanism of total saponins from Paris polyphylla var. yunnanensis on the proliferation of salivary adenoid cystic carcinoma ACC-83 cells. In vitro cell culture was performed. The proliferation of ACC-83 cells treated with different concentrations (5, 10, 20, 40, 60, 80, 100 μg·mL⁻¹) of total saponins from Paris polyphylla var. yunnanensis was observed using CCK-8 assay. Meanwhile, the apoptosis of ACC-83 cells treated with different concentrations (25, 50, 100 μg·mL⁻¹) of the total saponins was observed using flow cytometry. The expression levels of macrophage migration inhibitory factor (MIF) and CD74 were measured using Western blot and reverse transcription-polymerase chain reaction. The total saponins from Paris polyphylla var. yunnanensis induced apoptosis and expressed dose-effect relationship. ACC-83 cells expressed MIF and CD74, and the total saponins suppressed MIF and CD74 expression in ACC-83 cells. The total saponins from Paris polyphylla var. yunnanensis can significantly inhibit the proliferation, suppress MIF and CD74 expression, and promote apoptosis in ACC-83 cells. This study provides a theoretical basis for the treatment of salivary adenoid cystic carcinoma using Paris polyphylla var. yunnanensis.
.

  1. Comparison of the value of PCNA and Ki-67 as markers of cell proliferation in ameloblastic tumor

    Science.gov (United States)

    Mosqueda-Taylor, Adalberto; Molina-Frechero, Nelly; Mori-Estevez, Ana D.; Sánchez-Acuña, Guillermo

    2013-01-01

    Objectives: The aim of this study was to compare among PCNAand Ki-67 as the most reliable immunohistochemical marker for evaluating cell proliferation in ameloblastic tumors. Study Design: Observational, retrospective, and descriptive study of a large series of ameloblastic tumors, composed of 161 ameloblastomas and four ameloblastic carcinomas, to determine and compare PCNA and Ki-67 expression using immunohistochemistry techniques. Results: When analyzing Ki-67 positivity, the desmoplastic ameloblastoma demonstrated a significantly lower proliferation rate (1.9%) compared with the solid/multicystic and unicystic ameloblastomas and ameloblastic carcinomas (p<0.05), whereas the ameloblastic carcinomas displayed a significantly higher rate compared with all of the other ameloblastomas (48.7%) (p<0.05). When analyzing cell proliferation with PCNA, we found significant differences only between the ameloblastic carcinomas (93.3%) and the desmoplastic ameloblastomas (p<0.05). When differences between the immunopositivity for PCNA and Ki-67 were compared, the percentages were higher for PCNA in all types of ameloblastomas and ameloblastic carcinomas. In all cases, the percentages were greater than 80%, whereas the immunopositivity for Ki-67 was significantly lower; for example, the ameloblastic carcinoma expressed the highest positivity and only reached 48.7%, compared to 93.3% when we used PCNA. Conclusions: In the present study, when we used the proliferation cell marker Ki-67, the percentages of positivity were more specific and varied among the different types of ameloblastomas, suggesting that Ki-67 is a more specific marker for the proliferation of ameloblastic tumor cells. Key words:Ameloblastomas, ameloblastic carcinoma, PCNA, Ki-67, cell proliferation markers. PMID:23229269

  2. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  3. Inhibitory effects of silibinin on proliferation and lung metastasis of human high metastasis cell line of salivary gland adenoid cystic carcinoma via autophagy induction

    Directory of Open Access Journals (Sweden)

    Jiang C

    2016-10-01

    Full Text Available Canhua Jiang,1 Shufang Jin,1 Zhisheng Jiang,1 Jie Wang2 1Department of Oral and Maxillofacial Surgery, Xiangya Hospital, 2Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China Objective: To investigate the possible mechanisms and effects of silibinin (SIL on the proliferation and lung metastasis of human lung high metastasis cell line of salivary gland adenoid cystic carcinoma (ACC-M.Methods: A methyl thiazolyl tetrazolium assay was performed to detect the inhibitory effects of SIL on the proliferation of ACC-M cells in vitro. Fluorescence microscopy and transmission electron microscopy were used to observe the autophagic process. Western blot was performed to detect the expression of microtube-related protein 1 light-chain 3 (LC3. An experimental adenoid cystic carcinoma (ACC lung metastasis model was established in nude mice to detect the impacts of SIL on lung weight and lung cancer nodules. Immunohistochemistry was used to detect the expressions of LC3 in human ACC samples and normal salivary gland tissue samples.Results: SIL inhibited the proliferation of ACC-M cells in a dose- and time-dependent manner, and inductively increased the autophagic bodies in ACC-M cells. Furthermore, SIL could increase the expression of LC3 in ACC-M cells and promote the conversion of LC3-I into LC3-II in a dose- and time-dependent manner. In the ACC lung metastasis model, the lung weight and left and right lung nodules in the SIL-treated group were significantly less than those in the control group (P<0.05. The expressions of LC3-I and LC3-II as well as the positive expression rate of LC3 (80% significantly increased, but the positive expression of LC3 in human ACC (42.22% reduced significantly.Conclusion: SIL could inhibit the proliferation and lung metastasis of ACC-M cells by possibly inducing tumor cells autophagy. Keywords: silibinin, adenoid cystic carcinoma, ACC-M cells, autophagy

  4. Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway.

    Science.gov (United States)

    Santos, Eliane Macedo Sobrinho; da Rocha, Rogério Gonçalves; Santos, Hércules Otacílio; Guimarães, Talita Antunes; de Carvalho Fraga, Carlos Alberto; da Silveira, Luiz Henrique; Batista, Paulo Ricardo; de Oliveira, Paulo Sérgio Lopes; Melo, Geraldo Aclécio; Santos, Sérgio Henrique; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2018-01-01

    Gallic acid is a polyphenolic compost appointed to interfere with neoplastic cells behavior. Evidence suggests an important role of leptin in carcinogenesis pathways, inducing a proliferative phenotype. We investigated the potential of gallic acid to modulate leptin-induced cell proliferation and migration of oral squamous cell carcinoma cell lines. The gallic acid effect on leptin secretion by oral squamous cell carcinoma cells, as well as the underlying molecular mechanisms, was also assessed. For this, we performed proliferation, migration, immunocytochemical and qPCR assays. The expression levels of cell migration-related genes (MMP2, MMP9, Col1A1, and E-cadherin), angiogenesis (HIF-1α, mir210), leptin signaling (LepR, p44/42 MAPK), apoptosis (casp-3), and secreted leptin levels by oral squamous cell carcinoma cells were also measured. Gallic acid decreased proliferation and migration of leptin-treated oral squamous cell carcinoma cells, and reduced mRNA expression of MMP2, MMP9, Col1A1, mir210, but did not change HIF-1α. Gallic acid decreased levels of leptin secreted by oral squamous cell carcinoma cells, accordingly with downregulation of p44/42 MAPK expression. Thus, gallic acid appears to break down neoplastic phenotype of oral squamous cell carcinoma cells by interfering with leptin pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Membrane microdomain-associated uroplakin IIIa contributes to Src-dependent mechanisms of anti-apoptotic proliferation in human bladder carcinoma cells

    Directory of Open Access Journals (Sweden)

    Shigeru Kihira

    2012-08-01

    Our previous study demonstrated that tyrosine phosphorylation of p145met/β-subunit of hepatocyte growth factor receptor by epidermal growth factor receptor and Src contributes to the anti-apoptotic growth of human bladder carcinoma cell 5637 under serum-starved conditions. Here, we show that some other cell lines of human bladder carcinoma, but not other types of human cancer cells, also exhibit Src-dependent, anti-apoptotic proliferation under serum-starved conditions, and that low-density, detergent-insoluble membrane microdomains (MD serve as a structural platform for signaling events involving p145met, EGFR, and Src. As an MD-associated molecule that may contribute to bladder carcinoma-specific cellular function, we identified uroplakin IIIa (UPIIIa, an urothelium-specific protein. Results obtained so far revealed: 1 UPIIIa undergoes partial proteolysis in serum-starved cells; 2 a specific antibody to the extracellular domain of UPIIIa inhibits the proteolysis of UPIIIa and the activation of Src, and promotes apoptosis in serum-starved cells; and 3 knockdown of UPIIIa by short interfering RNA also promotes apoptosis in serum-starved cells. GM6001, a potent inhibitor of matrix metalloproteinase (MMP, inhibits the proteolysis of UPIIIa and promotes apoptosis in serum-starved cells. Furthermore, serum starvation promotes expression and secretion of the heparin-binding EGF-like growth factor in a manner that depends on the functions of MMP, Src, and UPIIIa. These results highlight a hitherto unknown signaling network involving a subset of MD-associated molecules in the anti-apoptotic mechanisms of human bladder carcinoma cells.

  6. Cell kinetics of irradiated experimental tumors: cell transition from the non-proliferating to the proliferating pool

    International Nuclear Information System (INIS)

    Potmesil, M.; Goldfeder, A.

    1980-01-01

    In murine mammary carcinomas, parenchymal tumor cells with dense nucleoli traverse the cell cycle and divide, thus constituting the proliferating pool. Cells with trabeculate or ring-shaped nucleoli either proceed slowly through G 1 phase or are arrested in it. The role of these non-proliferating, G 1 phase-confined cells in tumor regeneration was studied in vivo after a subcurative dose of X-irradiation in two transplantable tumor lines. Tumor-bearing mice were continuously injected with methyl[ 3 H]thymidine before and after irradiation. Finally, the labeling was discontinued, mice injected with vincristine sulfate and cells arrested in metaphase were accumulated over 10-hrs. Two clearly delineated groups of vincristine-arrested mitoses emerged in autoradiograms prepared from tumor tissue at the time of starting tumor regrowth: one group with the silver-grain counts corresponding to the background level, the other with heavily labeled mitoses. As the only source of unlabeled mitoses was unlabeled G 1 phase-confined cells persisting in the tumor, this indicated cell transition from the non-proliferating to the proliferating pool, which took place in the initial phase of the tumor regrowth. Unlabeled progenitors have apparently remained in G 1 phase for at least 5-12 days after irradiation. (author)

  7. SPECIFICITIES OF ENDOMETRIAL PROLIFERATION/STEM CELL INDEX DISTRIBUTION IN ENDOMETRIOID CARCINOMA OF DIFFERENT GRADE OF MALIGNANCY.

    Science.gov (United States)

    Kikalishvili, N; Beriashvili, R; Muzashvili, T; Burkadze, G

    2018-03-01

    Endometrial neoplasia is the most common malignant tumor of female genital system in developed countries. The incidence of endometrial cancer has increased in the last years and despite advances in diagnosis and treatment, the death rates have steadily been increasing over the past 20 years. Therefore aspects of endometrial cancer development, pathogenesis and effective treatment is especially urgent to this day, as much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Endometrial stem cells take the special place among somatic stem cells of female reproductive system-the detection of them and identification of their location in the complex cellular hierarchy still remains challenging. Further study of endometrial stem cells will clarify their role in gynecologic pathologies associated with hyper-proliferative states of endometrium. The aim of our study was to explore the specificities of endometrial proliferative/stem cell index distribution under endometrioid carcinoma of different grade of malignancy. The study represents a retrospective research. The coded and depersonalized material data from Acad. N. Kipshidze Central University Clinic was used in the study. 3 study groups - 1st study group "Endometrioid Carcinoma Grade 1" (14 cases), 2nd study group "Endometrioid Carcinoma Grade 2" (23 cases) and 3rd study group "Endometrioid Carcinoma Grade 3" were selected from routine histopathology tissue specimens of uterus. Hematoxilyn-eosin technology and immunohistochemistry with proliferation marker ki67 and stem cell marker CD146 was performed. The proliferative/stem cell index was calculated by the ratio of Ki67-positive cell percentage value divided by CD146-positive cell percentage value. The study showed that in the 1st study group labeled as "Endometrioid Carcinoma Grade 1", the proliferative/stem cell index ranges between 21.7 and 25.5. Its mean average value in the age distribution subgroups accounts for: 1

  8. MicroRNAs in Head and Neck Squamous Cell Carcinoma (HNSCC) and Oral Squamous Cell Carcinoma (OSCC)

    International Nuclear Information System (INIS)

    Shiiba, Masashi; Uzawa, Katsuhiro; Tanzawa, Hideki

    2010-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs which regulate cell differentiation, proliferation, development, cell cycle, and apoptosis. Expression profiling of miRNAs has been performed and the data show that some miRNAs are upregulated or downregulated in cancer. Several studies suggest that the expression profiles of miRNAs are associated with clinical outcomes. However, the set of miRNAs with altered expressing differs depending on the type of cancer, suggesting that it is important to understand which miRNAs are related to which cancers. Therefore, this review aimed to discuss potentially crucial miRNAs in head and neck squamous cell carcinoma (HNSCC) and oral squamous cell carcinoma (OSCC)

  9. Homeobox B9 is overexpressed in hepatocellular carcinomas and promotes tumor cell proliferation both in vitro and in vivo

    International Nuclear Information System (INIS)

    Li, Fangyi; Dong, Lei; Xing, Rong; Wang, Li; Luan, Fengming; Yao, Chenhui; Ji, Xuening; Bai, Lizhi

    2014-01-01

    Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC. HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC

  10. Homeobox B9 is overexpressed in hepatocellular carcinomas and promotes tumor cell proliferation both in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangyi [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Dong, Lei, E-mail: dlleidong@126.com [Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Street, Shahekou District, Dalian 116001 (China); Xing, Rong [Department of Pathology and Pathophysiology, Dalian Medical University, No. 9 Lvshunnan Road, Lvshunkou District, Dalian 116044 (China); Wang, Li; Luan, Fengming; Yao, Chenhui [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Ji, Xuening [Department of Oncology, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China); Bai, Lizhi, E-mail: dllizhibai@126.com [Department of Emergency, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China)

    2014-02-07

    Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC. HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC.

  11. Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in ...

    African Journals Online (AJOL)

    Purpose: To demonstrate the role of chloroquinone (CQ) in inducing apoptosis in HONE-1 and HNE-1, nasopharyngeal carcinoma (NPC) cell lines. Methods: Water-soluble tetrazolium salt (WST)-1 assay was used for the determination of cell proliferation while an inverted microscope was employed for the analysis of ...

  12. miR-18a promotes cell proliferation of esophageal squamous cell carcinoma cells by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiguo, E-mail: weiguozhangHU@gmail.com; Lei, Caipeng; Fan, Junli; Wang, Jing

    2016-08-12

    Esophageal squamous cell carcinoma (ESCC) is one of the lethal cancers with a high incidence rate in Asia. Cyclin D1 is overexpressed and plays an important role in the carcinogenesis of ESCC; however the mechanism of the deregulation of Cyclin D1 in ESCC remains to be determined. In the study, we found that miR-18a promotes the expression Cyclin D1 by targeting PTEN in eophageal squamous cell carcinoma TE13 and Eca109 cells. Transfection of miR-18a mimetics increased cyclin D1, while transfection of miR-18a antagomir decreased D1. Moreover, miR-18a-mediated upregulation of cyclin D1 was accompanied with downregulation of PTEN, which is a direct target of miR-18a, and increase of the phosphorylation of AKT and S6K1. In addition, pharmacologic inhibition of AKT or mTOR kinases abolished the increase of cyclinD1 by miR-18a, which was accompanied with decreased phosphorylation of Rb−S780 and inhibition of cell proliferation. Our results demonstrated the upregulation of miR-18a promoted cell proliferation by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis, suggesting that small molecule inhibitors of AKT-mTOR signaling are potential agents for the treatment of ESCC patients with upregulation of miR-17-92 cluster. - Highlights: • miR-18a promotes the proliferation of ESCC cells. • miR-18a increase cyclin D1 expression in ESCC cells. • miR-18a directly targets PTEN in ESCC cells. • Inhibition of AKT-mTOR prevents miR-18a-induced cyclin D1 in ESCC cells. • miR-18a antagomir sensitizes ESCC cells to cisplatin.

  13. The different expression of TRPM7 and MagT1 impacts on the proliferation of colon carcinoma cells sensitive or resistant to doxorubicin.

    Science.gov (United States)

    Cazzaniga, Alessandra; Moscheni, Claudia; Trapani, Valentina; Wolf, Federica I; Farruggia, Giovanna; Sargenti, Azzurra; Iotti, Stefano; Maier, Jeanette A M; Castiglioni, Sara

    2017-01-17

    The processes leading to anticancer drug resistance are not completely unraveled. To get insights into the underlying mechanisms, we compared colon carcinoma cells sensitive to doxorubicin with their resistant counterpart. We found that resistant cells are growth retarded, and show staminal and ultrastructural features profoundly different from sensitive cells. The resistant phenotype is accompanied by the upregulation of the magnesium transporter MagT1 and the downregulation of the ion channel kinase TRPM7. We demonstrate that the different amounts of TRPM7 and MagT1 account for the different proliferation rate of sensitive and resistant colon carcinoma cells. It remains to be verified whether they are also involved in the control of other "staminal" traits.

  14. Downregulation of the long noncoding RNA TUG1 inhibits the proliferation, migration, invasion and promotes apoptosis of renal cell carcinoma.

    Science.gov (United States)

    Zhang, Meng; Lu, Wei; Huang, Yiqiang; Shi, Jizhou; Wu, Xun; Zhang, Xiaolong; Jiang, Runze; Cai, Zhiming; Wu, Song

    2016-08-01

    Long non-coding RNAs, a newly discovered category of noncoding genes, play a leading role in various biological processes, including tumorigenesis. In our study, we aimed to examine the TUG1 expression, and explore the influence of TUG1 silencing on cell proliferation and apoptosis in renal cell carcinoma (RCC) cell lines. The TUG1 expression level was detected using quantitative real-time PCR reverse transcription-polymerase chain reaction in 40 paired clear cell renal cell carcinoma (ccRCC) and adjacent paired normal tissues, as well as four RCC cell lines and one normal human proximal tubule epithelial cell line HK-2. Small interfering RNA was applied to suppress the TUG1 expression in RCC cell lines (A489 and A704). In vitro assays were conducted to further deliberate its potential functions in RCC progression. The relative TUG1 expression was significantly higher in ccRCC tissues compared to the adjacent normal renal tissues. In addition, higher TUG1 expression was equally detected in RCC cell lines (particularly in A498 and A704) compared to HK-2. The ccRCC specimens with higher TUG1 expression had a higher Fuhrman grade and larger tumor size than those with lower TUG1 expression. In vitro assays results suggested that knockdown of TUG1 suppressed RCC cells migration, invasion and proliferation, while the apoptosis process was activated. Our results indicate that TUG1 is identified as a novel oncogene in the morbid state of RCC, which potentially acts as a therapeutic target/biomarker in RCC. The graphic abstract of the present work.

  15. Inflammation and cancer: role of annexin A1 and FPR2/ALX in proliferation and metastasis in human laryngeal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Thaís Santana Gastardelo

    Full Text Available The anti-inflammatory protein annexin A1 (ANXA1 has been associated with cancer progression and metastasis, suggesting its role in regulating tumor cell proliferation. We investigated the mechanism of ANXA1 interaction with formylated peptide receptor 2 (FPR2/ALX in control, peritumoral and tumor larynx tissue samples from 20 patients, to quantitate the neutrophils and mast cells, and to evaluate the protein expression and co-localization of ANXA1/FPR2 in these inflammatory cells and laryngeal squamous cells by immunocytochemistry. In addition, we performed in vitro experiments to further investigate the functional role of ANXA1/FPR2 in the proliferation and metastasis of Hep-2 cells, a cell line from larynx epidermoid carcinoma, after treatment with ANXA1(2-26 (annexin A1 N-terminal-derived peptide, Boc2 (antagonist of FPR and/or dexamethasone. Under these treatments, the level of Hep-2 cell proliferation, pro-inflammatory cytokines, ANXA1/FPR2 co-localization, and the prostaglandin signalling were analyzed using ELISA, immunocytochemistry and real-time PCR. An influx of neutrophils and degranulated mast cells was detected in tumor samples. In these inflammatory cells of peritumoral and tumor samples, ANXA1/FPR2 expression was markedly exacerbated, however, in laryngeal carcinoma cells, this expression was down-regulated. ANXA1(2-26 treatment reduced the proliferation of the Hep-2 cells, an effect that was blocked by Boc2, and up-regulated ANXA1/FPR2 expression. ANXA1(2-26 treatment also reduced the levels of pro-inflammatory cytokines and affected the expression of metalloproteinases and EP receptors, which are involved in the prostaglandin signalling. Overall, this study identified potential roles for the molecular mechanism of the ANXA1/FPR2 interaction in laryngeal cancer, including its relationship with the prostaglandin pathway, providing promising starting points for future research. ANXA1 may contribute to the regulation of tumor growth

  16. EMMPRIN promotes angiogenesis, proliferation, invasion and resistance to sunitinib in renal cell carcinoma, and its level predicts patient outcome.

    Science.gov (United States)

    Sato, Mototaka; Nakai, Yasutomo; Nakata, Wataru; Yoshida, Takahiro; Hatano, Koji; Kawashima, Atsunari; Fujita, Kazutoshi; Uemura, Motohide; Takayama, Hitoshi; Nonomura, Norio

    2013-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC) is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC. EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined. EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA) in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni). EMMPRIN-overexpressing RCC cells were resistant to sunitinib. Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC.

  17. EMMPRIN promotes angiogenesis, proliferation, invasion and resistance to sunitinib in renal cell carcinoma, and its level predicts patient outcome.

    Directory of Open Access Journals (Sweden)

    Mototaka Sato

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC.EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined.EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni. EMMPRIN-overexpressing RCC cells were resistant to sunitinib.Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC.

  18. The relationship between apoptosis and the expression of proliferating cell nuclear antigen and the clinical stages in gastric carcinoma.

    Science.gov (United States)

    Tao, K; Chen, D; Tian, Y; Lu, X; Yang, X

    2000-01-01

    The relationship between the apoptosis and the expression of proliferating cell nuclear antigen (PCNA) and the clinical stages in gastric cancers was studied. By using terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) technique and PCNA immunohistochemical staining, the apoptosis and the expression of PCNA in tissue of gastric carcinoma were assayed in situ, the index of apoptosis (AI), index of PCNA (PI) and the rate of AI/PI were calculated. AI and PI in gastric cancer tissues were (6.5 +/- 3.7)% and (49.8 +/- 15.9)% respectively, and the rate of AI/PI was 0.13 +/- 0.05, which were obviously different from those of normal gastric mucosa in paragastric cancer (P stages of gastric carcinoma, the AI was decreased, PI was increased and the rate of AI/PI decreased in gastric carcinoma. There was significant difference in them between the gastric cancer tissues and normal gastric mucosa in pericarcinoma in TNM stage II to IV (P gastric carcinoma. The AI, PI and the rate of AI/PI would become the prognostic factors in advanced gastric carcinoma.

  19. Hydroxysteroid sulfotransferase SULT2B1b promotes hepatocellular carcinoma cells proliferation in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiaoming Yang

    Full Text Available Hydroxysteroid sulfotransferase 2B1b (SULT2B1b is highly selective for the addition of sulfate groups to 3β-hydroxysteroids. Although previous reports have suggested that SULT2B1b is correlated with cell proliferation of hepatocytes, the relationship between SULT2B1b and the malignant phenotype of hepatocarcinoma cells was not clear. In the present study, we found that SULT2B1 was comparatively higher in the human hepatocarcinoma tumorous tissues than their adjacent tissues. Besides, SULT2B1b overexpression promoted the growth of the mouse hepatocarcinoma cell line Hepa1-6, while Lentivirus-mediated SULT2B1b interference inhibited growth as assessed by the CCK-8 assay. Likewise, inhibition of SULT2B1b expression induced cell-cycle arrest and apoptosis in Hepa1-6 cells by upregulating the expression of FAS, downregulating the expression of cyclinB1, BCL2 and MYC in vitro and in vivo at both the transcript and protein levels. Knock-down of SULT2B1b expression significantly suppressed tumor growth in nude mouse xenografts. Moreover, proliferation rates and SULT2B1b expression were highly correlated in the human hepatocarcinoma cell lines Huh-7, Hep3B, SMMC-7721 and BEL-7402 cells. Knock-down of SULT2B1b inhibited cell growth and cyclinB1 levels in human hepatocarcinoma cells and suppressed xenograft growth in vivo. In conclusion, SULT2B1b expression promotes proliferation of hepatocellular carcinoma cells in vitro and in vivo, which may contribute to the progression of HCC.

  20. MicroRNA-424 suppresses estradiol-induced cell proliferation via targeting GPER in endometrial cancer cells.

    Science.gov (United States)

    Zhang, H; Wang, X; Chen, Z; Wang, W

    2015-11-30

    Endometrial carcinoma (EC) is the most common gynecologic malignancy with increasing morbidity in recent years. MicroRNAs (miRNAs), a type of non-coding RNA, have been proven to be critical in the process of tumorigenesis. miR-424 has been reported to play a protective role in various type of cancer including endometrial carcinoma. It has been reported that high levels of estrogen increase morbidity of EC by promoting cell growth ability. The current research was designed to delineate the mechanism of miR-424 in regulating E2 (17β-estradiol)-induced cell proliferation in endometrial cancer. In this study, we confirmed that cell proliferation is increased significantly in E2-treated endometrial cancer cell lines. Moreover, miR-424 overexpression dramatically decreased E2-induced cell proliferation, indicating a pivotal role in endometrial cancer cell growth. In addition, the results suggest that miR-424 up-regulation inactivated the PI3K/AKT signaling, which was mediated by G-protein-coupled estrogen receptor-1 (GPER) in endometrial cancer. Furthermore, the luciferase report confirmed the targeting reaction between miR-424 and GPER. After transfection with the GPER overexpression vector into E2-induced endometrial cancer cells, we found that GPER significantly attenuated the inhibition effect of miR-424 in E2-induced cell growth in EC. Taken together, our study suggests that increased miR-424 suppresses E2-induced cell growth, and providing a potential therapeutic target for estrogen-associated endometrial carcinoma.

  1. In vitro proliferation of adult human beta-cells.

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    Full Text Available A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1 analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells" population were plated on extracellular matrix from rat (804G and human bladder carcinoma cells (HTB9 or bovine corneal endothelial ECM (BCEC. Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted, independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05.These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.

  2. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Manali; Krynetskaia, Natalia [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Mishra, Anurag [Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Krynetskiy, Evgeny, E-mail: ekrynets@temple.edu [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States)

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  3. Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma.

    Science.gov (United States)

    Xu, Youtao; Wang, Jie; Qiu, Mantang; Xu, Lei; Li, Ming; Jiang, Feng; Yin, Rong; Xu, Lin

    2015-03-01

    Esophageal squamous cell carcinoma (ESCC) is one of the prevalent and deadly cancers worldwide, especially in Eastern Asia. The prognosis of ESCC remains poor; thus, it is still necessary to further dissect the underlying mechanisms and explore therapeutic targets of ESCC. Recent studies show that long noncoding RNAs (lncRNAs) have critical roles in diverse biological processes, including tumorigenesis. Some lncRNAs, such as HOTAIR and POU3F3, were reported to play important roles in ESCC. Here, we characterized the expression profile of taurine-upregulated gene 1 (TUG1), a lncRNA recruiting and binding to polycomb repressive complex 2 (PRC2), in ESCC. In a cohort of 62 patients, TUG1 was significantly overexpressed in ESCC tissues compared with paired adjacent normal tissues, and high expression level of TUG1 was associated with family history and upper segment of esophageal cancer (p TUG1 via siRNA inhibited the proliferation and migration of ESCC cells and blocked the progression of cell cycle. Therefore, our study indicates that TUG1 promotes proliferation and migration of ESCC cells and is a potential oncogene of ESCC.

  4. Nevoid Basal Cell Carcinoma Syndrome (Gorlin Syndrome).

    Science.gov (United States)

    Bresler, Scott C; Padwa, Bonnie L; Granter, Scott R

    2016-06-01

    Nevoid basal cell carcinoma syndrome, or basal cell nevus syndrome (Gorlin syndrome), is a rare autosomal dominantly inherited disorder that is characterized by development of basal cell carcinomas from a young age. Other distinguishing clinical features are seen in a majority of patients, and include keratocystic odontogenic tumors (formerly odontogenic keratocysts) as well as dyskeratotic palmar and plantar pitting. A range of skeletal and other developmental abnormalities are also often seen. The disorder is caused by defects in hedgehog signaling which result in constitutive pathway activity and tumor cell proliferation. As sporadic basal cell carcinomas also commonly harbor hedgehog pathway aberrations, therapeutic agents targeting key signaling constituents have been developed and tested against advanced sporadically occurring tumors or syndromic disease, leading in 2013 to FDA approval of the first hedgehog pathway-targeted small molecule, vismodegib. The elucidation of the molecular pathogenesis of nevoid basal cell carcinoma syndrome has resulted in further understanding of the most common human malignancy.

  5. Down-regulation of Transducin-Like Enhancer of Split protein 4 in hepatocellular carcinoma promotes cell proliferation and epithelial-Mesenchymal-Transition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Tai, Yan; Zhang, Qi [Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Yang, Yang, E-mail: yysysu2@163.com [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China)

    2016-08-19

    Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared to matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.

  6. NLRC5 promotes cell proliferation via regulating the AKT/VEGF-A signaling pathway in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    He, Ying-hua; Li, Ming-fang; Zhang, Xing-yan; Meng, Xiao-ming; Huang, Cheng; Li, Jun

    2016-01-01

    NLRC5, a newly found member of the NLR family and the largest member of nucleotide-binding, has been reported to regulate immune responses and is associated with hepatocellular carcinoma (HCC). We investigated the mechanisms and signaling pathways of NLRC5 in HCC progression. Increased expression of NLRC5, vascular endothelial growth factor-A (VEGF-A) were found in human HCC tissue. There was a positive correlation between NLRC5 and VEGF-A expression and cell proliferation were enhanced in NLRC5-overexpressing HepG2 cells, but inhibited in cells with NLRC5 silencing treatment. Interestingly, we found that up-regulation of NLRC5 also coordinated the activation of PI3K/AKT signaling pathway. An AKT inhibitor LY294002 blocked VEGF-A expression and AKT phosphorylation in HepG2 cells and NLRC5-overexpressing HepG2 cells. These results demonstrate that NLRC5 promotes HCC progression via the AKT/VEGF-A signaling pathway.

  7. Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome.

    Directory of Open Access Journals (Sweden)

    Shao-hua Fan

    Full Text Available The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β secretion. Inflammasome activation is mediated by NLR proteins that respond to stimuli. Among NLRs, NLRP3 senses the widest array of stimuli. NLRP3 inflammasome plays an important role in the development of many cancer types. However, Whether NLRP3 inflammasome plays an important role in the process of hepatocellular carcinoma (HCC is still unknown. Here, the anticancer effect of luteoloside, a naturally occurring flavonoid isolated from the medicinal plant Gentiana macrophylla, against HCC cells and the underlying mechanisms were investigated. Luteoloside significantly inhibited the proliferation of HCC cells in vitro and in vivo. Live-cell imaging and transwell assays showed that the migration and invasive capacities of HCC cells, which were treated with luteoloside, were significantly inhibited compared with the control cells. The inhibitory effect of luteoloside on metastasis was also observed in vivo in male BALB/c-nu/nu mouse lung metastasis model. Further studies showed that luteoloside could significantly reduce the intracellular reactive oxygen species (ROS accumulation. The decreased levels of ROS induced by luteoloside was accompanied by decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by luteoloside resulted in inhibition of IL-1β. Thus, luteoloside exerts its inhibitory effect on proliferation, invasion and metastasis of HCC cells through inhibition of NLRP3 inflammasome. Our results indicate that luteoloside can be a potential therapeutic agent not only as an adjuvant therapy for HCC, but also, in the control and prevention of metastatic HCC.

  8. Basal cell carcinoma of the skin with areas of squamous cell carcinoma: a basosquamous cell carcinoma?

    OpenAIRE

    de Faria, J

    1985-01-01

    The diagnosis of basosquamous cell carcinoma is controversial. A review of cases of basal cell carcinoma showed 23 cases that had conspicuous areas of squamous cell carcinoma. This was distinguished from squamous differentiation and keratotic basal cell carcinoma by a comparative study of 40 cases of compact lobular and 40 cases of keratotic basal cell carcinoma. Areas of intermediate tumour differentiation between basal cell and squamous cell carcinoma were found. Basal cell carcinomas with ...

  9. Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression.

    Science.gov (United States)

    Cui, Peilin; Yu, Minghua; Peng, Xingchun; Dong, Lv; Yang, Zhaoxu

    2012-03-01

    Melatonin is an important natural oncostatic agent, and our previous studies have found its inhibitory action on tumor angiogenesis, but the mechanism remains unclear. It is well known that vascular endothelial growth factor (VEGF) plays key roles in tumor angiogenesis and has become an important target for antitumor therapy. Pancreatic cancer is a representative of the most highly vascularized and angiogenic solid tumors, which responds poorly to chemotherapy and radiation. Thus, seeking new treatment strategies targeting which have anti-angiogenic capability is urgent in clinical practice. In this study, a co-culture system between human umbilical vein endothelial cells (HUVECs) and pancreatic carcinoma cells (PANC-1) was used to investigate the direct effect of melatonin on the tumor angiogenesis and its possible action on VEGF expression. We found HUVECs exhibited an increased cell proliferation and cell migration when co-cultured with PANC-1 cells, but the process was prevented when melatonin added to the incubation medium. Melatonin at concentrations of 1 μm and 1 mm inhibited the cell proliferation and migration of HUVECs and also decreased both the VEGF protein secreted to the cultured medium and the protein produced by the PANC-1 cells. In addition, the VEGF mRNA expression was also down-regulated by melatonin. Taken together, our present study shows that melatonin at pharmacological concentrations inhibited the elevated cell proliferation and cell migration of HUVECs stimulated by co-culturing them with PANC-1 cells; this was associated with a suppression of VEGF expression in PANC-1 cells. © 2011 John Wiley & Sons A/S.

  10. miR-208-3p promotes hepatocellular carcinoma cell proliferation and invasion through regulating ARID2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peng; Wu, Dingguo; You, Yu; Sun, Jing; Lu, Lele; Tan, Jiaxing; Bie, Ping, E-mail: bieping2010@163.com

    2015-08-15

    MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at post-transcriptional level. miRNA dysregulation plays a causal role in cancer progression. In this study, miR-208-3p was highly expressed and directly repressed ARID2 expression. As a result, ARID2 expression in hepatocellular carcinoma (HCC) was decreased. In vitro, miR-208-3p down-regulation and ARID2 over-expression elicited similar inhibitory effects on HCC cell proliferation and invasion. In vivo test results revealed that miR-208-3p down-regulation inhibited HCC tumorigenesis in Hep3B cells. Moreover, ARID2 was possibly a downstream element of transforming growth factor beta1 (TGFβ1)/miR-208-3p/ARID2 regulatory pathway. These findings suggested that miR-208-3p up-regulation is associated with HCC cell progression and may provide a new target for liver cancer treatment. - Highlights: • miR-208-3p was highly expressed and directly repressed the expression of ARID2 in HCC. • miR-208-3p contributed to HCC cell progression both in vitro and in vivo. • Over-expression of ARID2 inhibited the HCC cell proliferation and invasion. • Restoration of ARID2 partly reversed the the effect of miR-208-3p down-regulation on HCC cells. • Newly regulatory pathway: miR-208-3p mediated the repression of ARID2 by TGFβ1 in HCC cells.

  11. miR-99 inhibits cervical carcinoma cell proliferation by targeting TRIB2.

    Science.gov (United States)

    Xin, Jia-Xuan; Yue, Zhen; Zhang, Shuai; Jiang, Zhong-Hua; Wang, Ping-Yu; Li, You-Jie; Pang, Min; Xie, Shu-Yang

    2013-10-01

    MicroRNAs (miRNAs) have significant roles in cell processes, including proliferation, apoptosis and stress responses. To investigate the involvement of miR-99 in the inhibition of HeLa cell proliferation, an miR-99 gene expression vector (pU6.1/miR-99), which overexpressed miR-99 in HeLa cells after transient transfection, was constructed. The expression of miR-99 was detected by qPCR. Cell proliferation and apoptosis were analyzed by cell viability, proliferation and apoptosis assays, as well as by electron microscopy. The results showed that overexpression of miR-99 in HeLa cells increased the HeLa cell mortality rate. Moreover, miR-99 overexpression was able to markedly inhibit HeLa cell proliferation according to the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell apoptosis rate was significantly higher in pU6.1/miR-99-treated cells compared with that in the control cultures. Increases in intracellular electron density, as well as the proportion of nuclear plasma, blebbing phenomena and apoptotic bodies were observed in pU6.1/miR-99-treated cells compared with control cultures according to electron microscopy analysis. The Tribbles 2 (TRIB2) 3'-untranslated region was also observed to be targeted by miR-99 and the results further demonstrated that miR-99 was able to negatively regulate TRIB2 expression in HeLa cells The results indicate that miR-99 acts as a tumor suppressor gene in HeLa cells, establishing a theoretical basis for its application in cancer therapeutics.

  12. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Chae-Ok [Department of Bioengineering, College of Engineering, Hanyang University, Seoul (Korea, Republic of); Han, Deok-Jong [Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Young, E-mail: choieun@ulsan.ac.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-12-04

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  13. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon; Yun, Chae-Ok; Han, Deok-Jong; Choi, Eun Young

    2015-01-01

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  14. Enhanced NOLC1 promotes cell senescence and represses hepatocellular carcinoma cell proliferation by disturbing the organization of nucleolus.

    Science.gov (United States)

    Yuan, Fuwen; Zhang, Yu; Ma, Liwei; Cheng, Qian; Li, Guodong; Tong, Tanjun

    2017-08-01

    The nucleolus is a key organelle that is responsible for the synthesis of rRNA and assembly of ribosomal subunits, which is also the center of metabolic control because of the critical role of ribosomes in protein synthesis. Perturbations of rRNA biogenesis are closely related to cell senescence and tumor progression; however, the underlying molecular mechanisms are not well understood. Here, we report that cellular senescence-inhibited gene (CSIG) knockdown up-regulated NOLC1 by stabilizing the 5'UTR of NOLC1 mRNA, and elevated NOLC1 induced the retention of NOG1 in the nucleolus, which is responsible for rRNA processing. Besides, the expression of NOLC1 was negatively correlated with CSIG in the aged mouse tissue and replicative senescent 2BS cells, and the down-regulation of NOLC1 could rescue CSIG knockdown-induced 2BS senescence. Additionally, NOLC1 expression was decreased in human hepatocellular carcinoma (HCC) tissue, and the ectopic expression of NOLC1 repressed the proliferation of HCC cells and tumor growth in a HCC xenograft model. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. Modulation of expression of the nuclear receptor NR0B2 (small heterodimer partner 1 and its impact on proliferation of renal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Prestin K

    2016-08-01

    Full Text Available Katharina Prestin,1,* Maria Olbert,2,* Janine Hussner,1 Tamara L Isenegger,1 Daniel G Gliesche,1 Kerstin Böttcher,2 Uwe Zimmermann,3 Henriette E Meyer zu Schwabedissen1 1Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland; 2Center of Drug Absorption and Transport, Institute of Pharmacology, 3Department of Urology, University Medicine Greifswald, Greifswald, Germany *These authors contributed equally to this work Abstract: Mammalian nuclear receptors (NRs are transcription factors regulating the expression of target genes that play an important role in drug metabolism, transport, and cellular signaling pathways. The orphan and structurally unique receptor small heterodimer partner 1 (syn NR0B2 is not only known for its modulation of drug response, but has also been reported to be involved in hepatocellular carcinogenesis. Indeed, previous studies show that NR0B2 is downregulated in human hepatocellular carcinoma, suggesting that NR0B2 acts as a tumor suppressor via inhibition of cellular growth and activation of apoptosis in this tumor entity. The aim of our study was to elucidate whether NR0B2 may also play a role in other tumor entities. Comparing NR0B2 expression in renal cell carcinoma and adjacent nonmalignant transformed tissue revealed significant downregulation in vivo. Additionally, the impact of heterologous expression of NR0B2 on cell cycle progression and proliferation in cells of renal origin was characterized. Monitoring fluorescence intensity of resazurin turnover in RCC-EW cells revealed no significant differences in metabolic activity in the presence of NR0B2. However, there was a significant decrease of cellular proliferation in cells overexpressing this NR, and NR0B2 was more efficient than currently used antiproliferative agents. Furthermore, flow cytometry analysis showed that heterologous overexpression of NR0B2 significantly reduced the amount of cells passing the G1 phase, while on

  16. Differential senescence capacities in meibomian gland carcinoma and basal cell carcinoma.

    Science.gov (United States)

    Zhang, Leilei; Huang, Xiaolin; Zhu, Xiaowei; Ge, Shengfang; Gilson, Eric; Jia, Renbing; Ye, Jing; Fan, Xianqun

    2016-03-15

    Meibomian gland carcinoma (MGC) and basal cell carcinoma (BCC) are common eyelid carcinomas that exhibit highly dissimilar degrees of proliferation and prognoses. We address here the question of the differential mechanisms between these two eyelid cancers that explain their different outcome. A total of 102 confirmed MGC and 175 diagnosed BCC cases were analyzed. Twenty confirmed MGC and twenty diagnosed BCC cases were collected to determine the telomere length, the presence of senescent cells, and the expression levels of the telomere capping shelterin complex, P53, and the E3 ubiquitin ligase Siah1. Decreased protein levels of the shelterin subunits, shortened telomere length, over-expressed Ki-67, and Bcl2 as well as mutations in P53 were detected both in MGC and BCC. It suggests that the decreased protein levels of the shelterin complex and the shortened telomere length contribute to the tumorigenesis of MGC and BCC. However, several parameters distinguish MGC from BCC samples: (i) the mRNA level of the shelterin subunits decreased in MGC but it increased in BCC; (ii) P53 was more highly mutated in MGC; (iii) Siah1 mRNA was over-expressed in BCC; (iv) BCC samples contain a higher level of senescent cells; (v) Ki-67 and Bcl2 expression were lower in BCC. These results support a model where a preserved P53 checkpoint in BCC leads to cellular senescence and reduced tumor proliferation as compared to MGC. © 2015 UICC.

  17. Arsenic and urinary bladder cell proliferation

    International Nuclear Information System (INIS)

    Luster, Michael I.; Simeonova, Petia P.

    2004-01-01

    Epidemiologic studies have demonstrated that a close association exists between the elevated levels of arsenic in drinking water and the incidence of certain cancers, including transitional cell carcinomas of the urinary bladder. We have employed in vitro and in vivo models to examine the effects of sodium arsenite on the urinary bladder epithelium. Mice exposed to 0.01% sodium arsenite in drinking water demonstrated hyperproliferation of the bladder uroepithelium within 4 weeks after initiating treatment. This occurred in the absence of amorphous precipitates and was accompanied by the accumulation of trivalent arsenite (iAs 3+ ), and to a lesser extent dimethylarsenic (DMA), arsenate (iAs 5+ ), and monomethylarsenic (MMA) in bladder tissue. In contrast to the bladder, urinary secretion was primarily in the form of DMA and MMA. Arsenic-induced cell proliferation in the bladder epithelium was correlated with activation of the MAP kinase pathway, leading to extracellular signal-regulated kinase (ERK) kinase activity, AP-1 activation, and expression of AP-1-associated genes involved in cell proliferation. Activation of the MAP kinase pathway involved both epidermal growth factor (EGF) receptor-dependent and -independent events, the latter involving Src activation. Studies summarized in this review suggest that arsenic accumulates in urinary bladder epithelium causing activation of specific signaling pathways that lead to chronic increased cell proliferation. This may play a non-epigenetic role in carcinogenesis by increasing the proliferation of initiated cells or increasing the mutational rate

  18. Incarvine C suppresses proliferation and vasculogenic mimicry of hepatocellular carcinoma cells via targeting ROCK inhibition

    International Nuclear Information System (INIS)

    Zhang, Ji-Gang; Zhang, Dan-Dan; Wu, Xin; Wang, Yu-Zhu; Gu, Sheng-Ying; Zhu, Guan-Hua; Li, Xiao-Yu; Li, Qin; Liu, Gao-Lin

    2015-01-01

    Studies have described vasculogenic mimicry (VM) as an alternative circulatory system to blood vessels in multiple malignant tumor types, including hepatocellular carcinoma (HCC). In the current study, we aimed to seek novel and more efficient treatment strategies by targeting VM and explore the underlying mechanisms in HCC cells. Cell counting kit-8 (CCK-8) assay and colony survival assay were performed to explore the inhibitory effect of incarvine C (IVC) on human cancer cell proliferation. Flow cytometry was performed to analyze the cell cycle distribution after DNA staining and cell apoptosis by the Annexin V-PE and 7-AAD assay. The effect of IVC on Rho-associated, coiled-coil-containing protein kinase (ROCK) was determined by western blotting and stress fiber formation assay. The inhibitory role of IVC on MHCC97H cell VM formation was determined by formation of tubular network structures on Matrigel in vitro, real time-qPCR, confocal microscopy and western blotting techniques. We explored an anti-metastatic HCC agent, IVC, derived from traditional Chinese medicinal herbs, and found that IVC dose-dependently inhibited the growth of MHCC97H cells. IVC induced MHCC97H cell cycle arrest at G1 transition, which was associated with cyclin-dependent kinase 2 (CDK-2)/cyclin-E1 degradation and p21/p53 up-regulation. In addition, IVC induced apoptotic death of MHCC97H cells. Furthermore, IVC strongly suppressed the phosphorylation of the ROCK substrate myosin phosphatase target subunit-1 (MYPT-1) and ROCK-mediated actin fiber formation. Finally, IVC inhibited cell-dominant tube formation in vitro, which was accompanied with the down-regulation of VM-key factors as detected by real time-qPCR and immunofluorescence. Taken together, the effective inhibitory effect of IVC on MHCC97H cell proliferation and neovascularization was associated with ROCK inhibition, suggesting that IVC may be a new potential drug candidate for the treatment of HCC

  19. Higher proliferation of peritumoral endothelial cells to IL-6/sIL-6R than tumoral endothelial cells in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zhuang, Peng-Yuan; Wang, Jian-Dong; Tang, Zhao-Hui; Zhou, Xue-Ping; Quan, Zhi-Wei; Liu, Ying-Bin; Shen, Jun

    2015-01-01

    This study aimed to explore the responses to the interleukin-6 (IL-6)/soluble interleukin-6 receptor (sIL-6R) complex in peritumoral endothelial cells (PECs) and tumor endothelial cells (TECs), as well as determine the signaling pathways in the angiogenesis of hepatocellular carcinoma (HCC). The expression of IL-6, IL-6R, gp130, CD68, HIF-1α, and microvessel density (MVD) were assessed with an orthotopic xenograft model in nude mice. ECs were incubated under hypoxic conditions to detect IL-6 and gp130. The proliferation of PECs and TECs in the presence of IL-6 and sIL-6R, as well as the expression of gp130, JAK2/STAT3, PI3K/AKT in endothelial cells were measured. Peritumoral IL-6, IL-6R, gp130, CD68, and HIF-1α expression, as well as MVD, gradually increased during tumor growth. Hypoxia could directly induce IL-6 expression, but not gp130 in PECs. The co-culture of IL-6/sIL-6R induced much higher PEC proliferation and gp130 expression, as well as the elevated phosphorylation of JAK2 and STAT3, however not the phosphorylation of PI3K and AKT. PECs exhibited higher proliferation in response to IL-6/sIL-6R co-treatment compared with TECs in HCC via the up-regulation of gp130 /JAK2/STAT3. PEC and its associated peritumoral angiogenesis microenvironment may be a potential novel target for anti-angiogenic treatment. The online version of this article (doi:10.1186/s12885-015-1763-2) contains supplementary material, which is available to authorized users

  20. In Vivo and In Vitro Effects of ATM/ATR Signaling Pathway on Proliferation, Apoptosis, and Radiosensitivity of Nasopharyngeal Carcinoma Cells.

    Science.gov (United States)

    Wang, Ming; Liu, Gang; Shan, Guo-Ping; Wang, Bing-Bing

    2017-08-01

    The study investigated the ability of ataxia-telangiectasia mutated (ATM)/Rad3-related (ATR) signaling pathway to influence the proliferation, apoptosis, and radiosensitivity of nasopharyngeal carcinoma (NPC) cells. NPC tissues and corresponding adjacent normal tissues were collected from 143 NPC patients. The NPC CNE2 cells were assigned into a control group, X-ray group, CGK-733 group, and X-ray+CGK-733 group. The mRNA levels of ATM and ATR were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and the protein levels of ATM and ATR using western blotting. The positive expression of ATM and ATR in tissues and nude mouse tumor tissues was determined by immunohistochemistry. Cell proliferation, migration, invasion, and apoptosis rates were analyzed by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, scratch test, transwell assay, and flow cytometry, respectively. A nude mouse model of NPC was established to observe tumor volume and growth. The mRNA levels of ATR and ATM and the expression of ATR and ATM protein in NPC tissues were significantly higher than those in adjacent normal tissues. The colony formation assay showed that the colony-forming rate decreased, showing radiation dose-dependent and CGK-733 concentration-dependent manners. Expression of ATM, ATR, Chk1, and Chk2 was evidently increased in the X-ray, CGK-733, and X-ray+CGK-733groups compared with the control group, and the aforementioned expression was highest in the X-ray+CGK-733 group among the four groups. The cell proliferation, invasion, and migration were decreased, tumor volume decreased and cell apoptosis increased in the X-ray, CGK-733, and X-ray+CGK-733 groups compared with the control group; the X-ray+CGK-733 group exhibited lowest cell proliferation, invasion and migration, smallest tumor volume, and highest cell apoptosis among the four groups. Inhibition of ATM/ATR signaling pathway reduces proliferation and enhances apoptosis and

  1. Human tumor cell proliferation evaluated using manganese-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Rod D Braun

    Full Text Available Tumor cell proliferation can depend on calcium entry across the cell membrane. As a first step toward the development of a non-invasive test of the extent of tumor cell proliferation in vivo, we tested the hypothesis that tumor cell uptake of a calcium surrogate, Mn(2+ [measured with manganese-enhanced MRI (MEMRI], is linked to proliferation rate in vitro.Proliferation rates were determined in vitro in three different human tumor cell lines: C918 and OCM-1 human uveal melanomas and PC-3 prostate carcinoma. Cells growing at different average proliferation rates were exposed to 1 mM MnCl(2 for one hour and then thoroughly washed. MEMRI R(1 values (longitudinal relaxation rates, which have a positive linear relationship with Mn(2+ concentration, were then determined from cell pellets. Cell cycle distributions were determined using propidium iodide staining and flow cytometry. All three lines showed Mn(2+-induced increases in R(1 compared to cells not exposed to Mn(2+. C918 and PC-3 cells each showed a significant, positive correlation between MEMRI R(1 values and proliferation rate (p≤0.005, while OCM-1 cells showed no significant correlation. Preliminary, general modeling of these positive relationships suggested that pellet R(1 for the PC-3 cells, but not for the C918 cells, could be adequately described by simply accounting for changes in the distribution of the cell cycle-dependent subpopulations in the pellet.These data clearly demonstrate the tumor-cell dependent nature of the relationship between proliferation and calcium influx, and underscore the usefulness of MEMRI as a non-invasive method for investigating this link. MEMRI is applicable to study tumors in vivo, and the present results raise the possibility of evaluating proliferation parameters of some tumor types in vivo using MEMRI.

  2. Fisetin suppresses malignant proliferation in human oral squamous cell carcinoma through inhibition of Met/Src signaling pathways.

    Science.gov (United States)

    Li, Yan-Shu; Qin, Xing-Jun; Dai, Wei

    2017-01-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a dietary flavonoid and has been indicated as a novel anti-cancer agent in several types of cancer cells. However, the mechanisms underlying the effect of fisetin in human oral squamous cell carcinoma (OSCC) remain unclear. Here, we report that fisetin significantly inhibits tumor cell proliferation and induces apoptosis in OSCC (UM-SCC-23 and Tca-8113) cancer cell lines. Further analysis demonstrates that fisetin also inhibits Met/Src signaling pathways using the PathScan ® receptor tyrosine kinases (RTK) Signaling Antibody Array Kit. Fisetin resulted in decreased basal expression of Met and Src protein in UM-SCC-23 cancer cell lines, which validated by western blot. A student's t -test (two-tailed) was used to compare differences between groups. Furthermore, fisetin significantly inhibited the expression of a disintegrin and metalloproteinase 9 (ADAM9) protein in OSCC cells. Taken together, these results provide novel insights into the mechanism of fisetin and suggest potential therapeutic strategies for human OSCC by blocking the Met/Src signaling pathways.

  3. Anticancer Effects of Salvia miltiorrhiza Alcohol Extract on Oral Squamous Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Wen-Hung Wang

    2017-01-01

    Full Text Available Researchers have reported significant effects from Danshen (Salvia miltiorrhiza in terms of inhibiting tumor cell proliferation and promoting apoptosis in breast cancer, hepatocellular carcinomas, promyelocytic leukemia, and clear cell ovary carcinomas. Here we report our data indicating that Danshen extracts, especially alcohol extract, significantly inhibited the proliferation of the human oral squamous carcinoma (OSCC cell lines HSC-3 and OC-2. We also observed that Danshen alcohol extract activated the caspase-3 apoptosis executor by impeding members of the inhibitor of apoptosis (IAP family, but not by regulating the Bcl-2-triggered mitochondrial pathway in OSCC cells. Our data also indicate that the extract exerted promising effects in vivo, with HSC-3 tumor xenograft growth being suppressed by 40% and 69% following treatment with Danshen alcohol extract at 50 and 100 mg/kg, respectively, for 34 days. Combined, our results indicate appreciable anticancer activity and significant potential for Danshen alcohol extract as a natural antioxidant and herbal human oral cancer chemopreventive drug.

  4. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kai, E-mail: gk161@163.com [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Department of Respiration, 161th Hospital, PLA, Wuhan 430015 (China); Jin, Faguang, E-mail: jinfag@fmmu.edu.cn [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  5. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    International Nuclear Information System (INIS)

    Guo, Kai; Jin, Faguang

    2015-01-01

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells

  6. Squamous Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Squamous cell carcinoma Overview Squamous cell carcinoma: This man's skin ... a squamous cell carcinoma on his face. Squamous cell carcinoma: Overview Squamous cell carcinoma (SCC) is a ...

  7. Long non-coding RNA TUG1 promotes cell proliferation and metastasis by negatively regulating miR-300 in gallbladder carcinoma.

    Science.gov (United States)

    Ma, Fei; Wang, Shou-Hua; Cai, Qiang; Jin, Long-Yang; Zhou, Di; Ding, Jun; Quan, Zhi-Wei

    2017-04-01

    As we all know, long non-coding RNAs (lncRNAs) have been reported to play vital roles in various human cancers. In this study, we aimed to explore the role of lncRNA TUG1 in gallbladder carcinoma (GBC) development. Total RNA was extracted from the tissues of thirty GBC patients, four GBC cell lines. We detected the expression levels of TUG1 using quantitative real-time PCR. We performed CCK8, colony formation, transwell invasion and apoptosis assays to study the effects of TUG1 on GBC cell proliferation and invasion. Western blot assay was performed to assess to the expression level of epithelial-mesenchymal transition (EMT) markers in transforming growth factor-β1 (TGF-β1) treated and TUG1 knockdown GBC cell. Lastly, dual-luciferase reporter assay and quantitative real-time PCR were performed to verify the potential target microRNAs (miRNAs) of TUG1. TUG1 expression was significantly overexpressed in GBC tissues. Functionally, this study demonstrated that knockdown of TUG1 significantly inhibited GBC cell proliferation, metastasis. Mechanically, we found that TUG1 is upregulated by TGF-β1, and knockdown of TUG1 inhibited GBC cell EMT. Furthermore, we identified that miR-300, which has been reported as a suppressor in other types of cancer, is negatively regulated by TUG1. LncRNA TUG1 promotes GBC cell proliferation, metastasis and EMT progression by functioning as a miRNA sponge to abrogate the endogenous effect of miR-300. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Indirubin inhibits cell proliferation, migration, invasion and angiogenesis in tumor-derived endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Z

    2018-05-01

    Full Text Available Zhuohong Li, Chaofu Zhu, Baiping An, Yu Chen, Xiuyun He, Lin Qian, Lan Lan, Shijie Li Department of Oncology, The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China Purpose: Hepatocellular carcinoma is one of the most predominant malignancies with high fatality rate and its incidence is rising at an alarming rate because of its resistance to radio- and chemotherapy. Indirubin is the major active anti-tumor ingredient of a traditional Chinese herbal medicine. The present study aimed to analyze the effects of indirubin on cell proliferation, migration, invasion, and angiogenesis of tumor-derived endothelial cells (Td-EC. Methods: Td-EC were derived from human umbilical vein endothelial cells (HUVEC by treating HUVEC with the conditioned medium of human liver cancer cell line HepG2. Cell proliferation, migration, invasion, and angiogenesis were assessed by MTT, wound healing, in vitro cell invasion, and in vitro tube formation assay. Results: Td-EC were successfully obtained from HUVEC cultured with 50% culture supernatant from serum-starved HepG2 cells. Indirubin significantly inhibited Td-EC proliferation in a dose- and time-dependent manner. Indirubin also inhibited Td-EC migration, invasion, and angiogenesis. However, indirubin’s effects were weaker on HUVEC than Td-EC. Conclusion: Indirubin significantly inhibited Td-EC proliferation, migration, invasion, and angiogenesis. Keywords: indirubin, Td-EC, proliferation, migration, invasion, angiogenesis

  9. High mobility group box associated with cell proliferation appears to play an important role in hepatocellular carcinogenesis in rats and humans.

    Science.gov (United States)

    Suzuki, Shugo; Takeshita, Kentaro; Asamoto, Makoto; Takahashi, Satoru; Kandori, Hitoshi; Tsujimura, Kazunari; Saito, Fumiyo; Masuko, Kazuo; Shirai, Tomoyuki

    2009-01-31

    To identify genes important in hepatocellular carcinogenesis, especially processes involved in malignant transformation, we focused on differences in gene expression between adenomas and carcinomas by DNA microarray. Eighty-one genes for which expression was specific in carcinomas were analyzed using Ingenuity Pathway Analysis software and Gene Ontology, and found to be associated with TP53 and regulators of cell proliferation. In the genes associated with TP53, we selected high mobility group box (HMGB) for detailed analysis. Immunohistochemistry revealed expression of HMGBs in carcinomas to be significantly higher than in other lesions among both human and rat liver, and a positive correlation between HMGBs and TP53 was detected in rat carcinomas. Knock-down of HMGB 2 expression in a rat hepatocellular carcinoma cell line by RNAi resulted in inhibition of cell growth, although no effects on invasion were evident in vitro. These results suggest that acquisition of malignant potential in the liver requires specific signaling pathways related to high cell proliferation associated with TP53. In particular, HMGBs appear to have an important role for progression and cell proliferation associated with loss of TP53 function in rat and in human hepatocarcinogenesis.

  10. High mobility group box associated with cell proliferation appears to play an important role in hepatocellular carcinogenesis in rats and humans

    International Nuclear Information System (INIS)

    Suzuki, Shugo; Takeshita, Kentaro; Asamoto, Makoto; Takahashi, Satoru; Kandori, Hitoshi; Tsujimura, Kazunari; Saito, Fumiyo; Masuko, Kazuo; Shirai, Tomoyuki

    2009-01-01

    To identify genes important in hepatocellular carcinogenesis, especially processes involved in malignant transformation, we focused on differences in gene expression between adenomas and carcinomas by DNA microarray. Eighty-one genes for which expression was specific in carcinomas were analyzed using Ingenuity Pathway Analysis software and Gene Ontology, and found to be associated with TP53 and regulators of cell proliferation. In the genes associated with TP53, we selected high mobility group box (HMGB) for detailed analysis. Immunohistochemistry revealed expression of HMGBs in carcinomas to be significantly higher than in other lesions among both human and rat liver, and a positive correlation between HMGBs and TP53 was detected in rat carcinomas. Knock-down of HMGB 2 expression in a rat hepatocellular carcinoma cell line by RNAi resulted in inhibition of cell growth, although no effects on invasion were evident in vitro. These results suggest that acquisition of malignant potential in the liver requires specific signaling pathways related to high cell proliferation associated with TP53. In particular, HMGBs appear to have an important role for progression and cell proliferation associated with loss of TP53 function in rat and in human hepatocarcinogenesis

  11. 5-lipoxygenase mediates docosahexaenoyl ethanolamide and N-arachidonoyl-L-alanine-induced reactive oxygen species production and inhibition of proliferation of head and neck squamous cell carcinoma cells.

    Science.gov (United States)

    Park, Seok-Woo; Hah, J Hun; Oh, Sang-Mi; Jeong, Woo-Jin; Sung, Myung-Whun

    2016-07-13

    Endocannabinoids have recently drawn attention as promising anti-cancer agents. We previously observed that anandamide (AEA), one of the representative endocannabinoids, effectively inhibited the proliferation of head and neck squamous cell carcinoma (HNSCC) cell lines in a receptor-independent manner. In this study, using HNSCC cell lines, we examined the anti-cancer effects and the mechanisms of action of docosahexaenoyl ethanolamide (DHEA) and N-arachidonoyl-L-alanine (NALA), which are polyunsaturated fatty acid (PUFA)-based ethanolamides like AEA. DHEA and NALA were found to effectively inhibit HNSCC cell proliferation. These anti-proliferative effects seemed to be mediated in a cannabinoid receptor-independent manner, since the antagonist of cannabinoid receptor-1 (CB1) and vanilloid receptor-1 (VR1), two endocannabinoid receptors, did not reverse the ability of DHEA and NALA to induce cell death. Instead, we observed an increase in reactive oxygen species (ROS) production and a decrease of phosphorylated Akt as a result of DHEA and NALA treatment. Antioxidants efficiently reversed the inhibition of cell proliferation and the decrease of phosphorylated Akt induced by DHEA and NALA; inhibition of 5-lipoxygenase (5-LO), which is expected to be involved in DHEA- and NALA-degradation pathway, also partially blocked the ability of DHEA and NALA to inhibit cell proliferation and phosphorylated Akt. Interestingly, ROS production as a result of DHEA and NALA treatment was decreased by inhibition of 5-LO. From these findings, we suggest that ROS production induced by the 5-LO pathway mediates the anti-cancer effects of DHEA and NALA on HNSCC cells. Finally, our findings suggest the possibility of a new cancer-specific therapeutic strategy, which utilizes 5-LO activity rather than inhibiting it.

  12. Expressão de marcadores de proliferação celular e apoptose no carcinoma espinocelular de pele e ceratose actínica Expression of cell proliferation and apoptosis biomarkers in skin spinocellular carcinoma and actinic keratose

    Directory of Open Access Journals (Sweden)

    Marilho Tadeu Dornelas

    2009-10-01

    Full Text Available FUNDAMENTOS: O câncer de pele é o mais frequente tipo de câncer humano e mostra aumento de sua incidência. Em muitos casos, antes do surgimento do carcinoma, instala-se uma lesão precursora, ceratose actínica, podendo evoluir para carcinoma espinocelular. Estudos buscam determinar os parâmetros com significado prognóstico na predição daqueles tumores que terão comportamento mais agressivo. OBJETIVO: Avaliar a expressão dos marcadores de proliferação celular (PCNA, Ki-67 e apoptose (p53, Bcl-2, em portadores de carcinoma espinocelular e ceratose actínica. MÉTODO: Foram estudadas amostras de 30 pacientes: sendo dez portadores do carcinoma espinocelular; dez de ceratose actínica e dez indivíduos livres de lesões submetidos à blefaroplastia. RESULTADOS: A proteína p53 foi expressa em todos os casos estudados, embora apresentassem padrões quantitativos diferentes. O Bcl-2 foi expresso em baixa intensidade. Em seis casos de ceratose actínica, nas peles de blefaroplastia, e negativo nos casos de carcinoma espinocelular. O PCNA exibiu expressão intensa, em todas as amostras. O Ki-67 apresentou expressão variável, nos casos de carcinoma e de ceratose, e negativo na pele de pálpebra. CONCLUSÃO: A expressão do Ki-67 e a não-expressão de Bcl-2, no grupo CEC, indica intensificação da atividade proliferativa. Ao passo que, a maior expressão de p53 e Bcl-2, no grupo CA, sugere imortalização celular.BACKGROUND: Skin cancer is the most frequent type of human cancer and has shown an increase in its incidence. In many cases, before the onset of the carcinoma, there might be a precursor lesion - actinic keratosis, which can develop into squamous cell carcinoma. Studies have been carried out in order to etermine the parameters that have prognostic significance in predicting those tumors which have more aggressive behavior. OBJECTIVE: To evaluate the expression of markers of cell proliferation (PCNA, Ki-67 and apoptosis (p53,Bcl-2

  13. Cell proliferation and ageing in mouse colon

    International Nuclear Information System (INIS)

    Hamilton, E.; Franks, L.M.

    1980-01-01

    Cell kinetic parameters in the descending colon of unirradiated mice, 3-30-months-old were compared with those in mice irradiated repeatedly from the age of 6 or 24 months. The latter animals were given 1250 rad local X-irradiation to the colon every 6 weeks. Dose-survival curves showed the colon crypts of 6 and 24-months-old mice were similarly radiosensitive. In unirradiated mice the number of crypts per colon section decreased significantly at 30 months, but no significant age-related changes were seen in crypt size or labelling index (LI). Cell proliferation returned to control levels within 6 weeks of each X-ray dose and remained at this level for 20 weeks after the final dose. Later, cell proliferation in the irradiated colon fell significantly below control. A total of 6 or 7 doses each of 1250 rad produced only 1 colon carcinoma amongst 50 mice kept until they died. (author)

  14. Cytokeratin characterization of human prostatic carcinoma and its derived cell lines.

    Science.gov (United States)

    Nagle, R B; Ahmann, F R; McDaniel, K M; Paquin, M L; Clark, V A; Celniker, A

    1987-01-01

    Two murine monoclonal anti-cytokeratin antibodies with defined specificity were shown to distinguish between basal cells and luminal cells in human prostate tissue. Forty-one biopsies or transurethral resection specimens were characterized using these two antibodies. In cases of benign prostatic hyperplasia, focal loss of the basal cell layer was noted in areas of glandular proliferation. Ten cases of adenocarcinoma of the prostate, varying in Gleason's histological grade from 2 to 4, were also studied. In each case the carcinoma was shown to represent the luminal cell phenotype with no evidence of involvement of the basal cell phenotype. An analysis of three established metastatic prostatic carcinoma cell lines (DU-145, PC-3, and LNCaP) using two-dimensional electrophoresis showed that the cytokeratin complement of each cell line was slightly different but retained the phenotype of the luminal cell. It was concluded that during both hyperplasia and neoplastic transformation of the prostate, the luminal cell phenotype is primarily involved and that the basal cell phenotype does not appear to contribute to either intraluminal proliferation or invasive cell populations.

  15. Investigation of proliferation and migration of tongue squamous cell carcinoma promoted by three chemokines, MIP-3α, MIP-1β, and IP-10

    Directory of Open Access Journals (Sweden)

    Chu H

    2017-08-01

    Full Text Available Hongxing Chu,1,* Bo Jia,1,* Xiaoling Qiu,2 Jie Pan,1 Xiang Sun,1 Zhiping Wang,1 Jianjiang Zhao1 1Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China; 2Department of Endodontology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China *These authors contributed equally to this work Abstract: The aim of this work was to investigate the role of chemokines in proliferation and migration of tongue squamous cell carcinoma (TSCC. Out of the 80 cytokines surveyed by a human cytokine antibody array, three chemokines, macrophage inflammatory protein-3α (MIP-3α, macrophage inflammatory protein-1β (MIP-1β, and interferon gamma-induced protein 10 (IP-10, showed elevated expression in TSCC cells (CAL-27 and UM-1, compared to the oral mucosal epithelial cells. Immunohistochemistry confirmed the high level of expression of MIP-3α in the TSCC tissues, especially in the high clinical stages. Furthermore, Western blot and immunofluorescence staining indicated that C-C chemokine receptor type 5, C-C chemokine receptor type 6, and C-X-C motif chemokine receptor 3, which are the receptors for MIP-3α, MIP-1β, and IP-10, respectively, were expressed in the TSCC cells. Viability assay showed MIP-3α, MIP-1β, and IP-10 led to the proliferation of the CAL-27 cells. Interestingly, MIP-1β and IP-10 also induced apoptosis in the TSCC cells. Transwell invasion assay showed MIP-3α and IP-10 could increase the invasive capability of TSCC cells; consistently, the enzymatic activities of matrix metalloproteinase-2 and matrix metalloproteinase-9 increased in the MIP-3α- and IP-10-treated cells. In summary, our results indicate the expression of MIP-3α, MIP-1β, and IP-10 increased in the TSCC cells. The elevated expression of MIP-3α and IP-10 promoted proliferation and migration of TSCC. These chemokines, along with their receptors, could be potential biomarkers and

  16. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongchao; Yin, Bingde; Zhang, Changcun; Zhou, Libin [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China); Fan, Jie, E-mail: jief67@sina.com [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer This study is the first to test the let-7a/c-myc loop in renal cell carcinoma cell lines. Black-Right-Pointing-Pointer Let-7a down-regulated c-myc in three renal cell carcinoma cell lines. Black-Right-Pointing-Pointer c-myc target genes were down-regulated because of the let-7a-mediated down-regulation of c-myc. Black-Right-Pointing-Pointer The let-7a/c-myc loop has a significant function in renal cell carcinoma cell lines. -- Abstract: Widespread functions of the c-myc pathway play a crucial role in renal cell carcinoma (RCC) carcinogenesis. Thus, we evaluated the connection between proto-oncogenic c-myc and anti-neoplastic hsa-let-7a (let-7a) in RCC cell lines. The levels of c-myc and let-7a in 3 RCC cell lines (769P, Caki-1 and 786O) were measured after transfecting the cells with let-7a mimics or a negative control. The change in c-myc protein level was confirmed by Western blot. The anti-neoplastic function of let-7a was evaluated using cell counting kit-8 (CCK-8) for proliferation analysis and cell flow cytometry for cell cycle analysis. The changes of downstream targets of c-myc were measured using reverse transcription quantitative real-time PCR (qRT-PCR). Our results suggest for the first time that let-7a acts as a tumor suppressor in RCC cell lines by down-regulating c-myc and c-myc target genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and the miR17-92 cluster, which is accompanied by proliferation inhibition and cell cycle arrest.

  17. Basal Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Basal cell carcinoma Overview Basal cell carcinoma: This skin cancer ... that has received years of sun exposure. Basal cell carcinoma: Overview Basal cell carcinoma (BCC) is the ...

  18. Merkel Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Merkel cell carcinoma Overview Merkel cell carcinoma: This rare skin ... hard patch (1) or firm bump (2). Merkel cell carcinoma: Overview What is Merkel cell carcinoma? Merkel ...

  19. Caspase-1 from Human Myeloid-Derived Suppressor Cells Can Promote T Cell-Independent Tumor Proliferation.

    Science.gov (United States)

    Zeng, Qi; Fu, Juan; Korrer, Michael; Gorbounov, Mikhail; Murray, Peter J; Pardoll, Drew; Masica, David L; Kim, Young J

    2018-05-01

    Immunosuppressive myeloid-derived suppressive cells (MDSCs) are characterized by their phenotypic and functional heterogeneity. To better define their T cell-independent functions within the tumor, sorted monocytic CD14 + CD11b + HLA-DR low/- MDSCs (mMDSC) from squamous cell carcinoma patients showed upregulated caspase-1 activity, which was associated with increased IL1β and IL18 expression. In vitro studies demonstrated that mMDSCs promoted caspase-1-dependent proliferation of multiple squamous carcinoma cell lines in both human and murine systems. In vivo , growth rates of B16, MOC1, and Panc02 were significantly blunted in chimeric mice adoptively transferred with caspase-1 null bone marrow cells under T cell-depleted conditions. Adoptive transfer of wild-type Gr-1 + CD11b + MDSCs from tumor-bearing mice reversed this antitumor response, whereas caspase-1 inhibiting thalidomide-treated MDSCs phenocopied the antitumor response found in caspase-1 null mice. We further hypothesized that MDSC caspase-1 activity could promote tumor-intrinsic MyD88-dependent carcinogenesis. In mice with wild-type caspase-1, MyD88-silenced tumors displayed reduced growth rate, but in chimeric mice with caspase-1 null bone marrow cells, MyD88-silenced tumors did not display differential tumor growth rate. When we queried the TCGA database, we found that caspase-1 expression is correlated with overall survival in squamous cell carcinoma patients. Taken together, our findings demonstrated that caspase-1 in MDSCs is a direct T cell-independent mediator of tumor proliferation. Cancer Immunol Res; 6(5); 566-77. ©2018 AACR . ©2018 American Association for Cancer Research.

  20. 5-lipoxygenase mediates docosahexaenoyl ethanolamide and N-arachidonoyl-L-alanine-induced reactive oxygen species production and inhibition of proliferation of head and neck squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Park, Seok-Woo; Hah, J. Hun; Oh, Sang-Mi; Jeong, Woo-Jin; Sung, Myung-Whun

    2016-01-01

    Endocannabinoids have recently drawn attention as promising anti-cancer agents. We previously observed that anandamide (AEA), one of the representative endocannabinoids, effectively inhibited the proliferation of head and neck squamous cell carcinoma (HNSCC) cell lines in a receptor-independent manner. In this study, using HNSCC cell lines, we examined the anti-cancer effects and the mechanisms of action of docosahexaenoyl ethanolamide (DHEA) and N-arachidonoyl-L-alanine (NALA), which are polyunsaturated fatty acid (PUFA)-based ethanolamides like AEA. DHEA and NALA were found to effectively inhibit HNSCC cell proliferation. These anti-proliferative effects seemed to be mediated in a cannabinoid receptor-independent manner, since the antagonist of cannabinoid receptor-1 (CB1) and vanilloid receptor-1 (VR1), two endocannabinoid receptors, did not reverse the ability of DHEA and NALA to induce cell death. Instead, we observed an increase in reactive oxygen species (ROS) production and a decrease of phosphorylated Akt as a result of DHEA and NALA treatment. Antioxidants efficiently reversed the inhibition of cell proliferation and the decrease of phosphorylated Akt induced by DHEA and NALA; inhibition of 5-lipoxygenase (5-LO), which is expected to be involved in DHEA- and NALA-degradation pathway, also partially blocked the ability of DHEA and NALA to inhibit cell proliferation and phosphorylated Akt. Interestingly, ROS production as a result of DHEA and NALA treatment was decreased by inhibition of 5-LO. From these findings, we suggest that ROS production induced by the 5-LO pathway mediates the anti-cancer effects of DHEA and NALA on HNSCC cells. Finally, our findings suggest the possibility of a new cancer-specific therapeutic strategy, which utilizes 5-LO activity rather than inhibiting it. The online version of this article (doi:10.1186/s12885-016-2499-3) contains supplementary material, which is available to authorized users

  1. Expression of heparanase in basal cell carcinoma and squamous cell carcinoma.

    Science.gov (United States)

    Pinhal, Maria Aparecida Silva; Almeida, Maria Carolina Leal; Costa, Alessandra Scorse; Theodoro, Thérèse Rachell; Serrano, Rodrigo Lorenzetti; Machado, Carlos D'Apparecida Santos

    2016-01-01

    Heparanase is an enzyme that cleaves heparan sulfate chains. Oligosaccharides generated by heparanase induce tumor progression. Basal cell carcinoma and squamous cell carcinoma comprise types of nonmelanoma skin cancer. Evaluate the glycosaminoglycans profile and expression of heparanase in two human cell lines established in culture, immortalized skin keratinocyte (HaCaT) and squamous cell carcinoma (A431) and also investigate the expression of heparanase in basal cell carcinoma, squamous cell carcinoma and eyelid skin of individuals not affected by the disease (control). Glycosaminoglycans were quantified by electrophoresis and indirect ELISA method. The heparanase expression was analyzed by quantitative RT-PCR (qRTPCR). The A431 strain showed significant increase in the sulfated glycosaminoglycans, increased heparanase expression and decreased hyaluronic acid, comparing to the HaCaT lineage. The mRNA expression of heparanase was significantly higher in Basal cell carcinoma and squamous cell carcinoma compared with control skin samples. It was also observed increased heparanase expression in squamous cell carcinoma compared to the Basal cell carcinoma. The glycosaminoglycans profile, as well as heparanase expression are different between HaCaT and A431 cell lines. The increased expression of heparanase in Basal cell carcinoma and squamous cell carcinoma suggests that this enzyme could be a marker for the diagnosis of such types of non-melanoma cancers, and may be useful as a target molecule for future alternative treatment.

  2. The inhibitory effect of angiotensin II type 1 receptor blocker combined with radiation on the proliferation and invasion ability of human nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Wang Qiong; Zhao Wei; Li Guiling; Zhang Sheng; Wu Gang

    2008-01-01

    Objective: To investigate the effect of valsartan, an angiotensin II type 1 receptor (AT1 R) blocker, on radiosensitivity, invasive potential and proliferation activity of nasopharyngeal carcinoma cells(CNE-2) in vitro. Methods: Radiosensitization of valsartan on CNE-2 cells in vitro was investigated by colony forming assay. Effect of AT1R blocker combined with radiation on invasive potential of CNE-2 cells was evaluated using 24-well Matrigel invasion chambers (Transwell). Apoptosis-inducing effect of valsartan combined with radiation on apoptosis of CNE-2 was identified by flow cytometry (FCM). Results: When valsartan was given at 10 -9 , 10 -8 and 10 -7 mol/L combined with radiation, sensitivity enhancement ratios (SER) were 1.10, 1.20 and 1.36, and the invasive inhibition rates were 8.11%, 16.49% and 16.77%, respectively. The SER of valsartan on CNE-2 distinctly increased when the exposure time was increased. After 24 h exposure to 10 -8 mol/L valsartan combined with radiation, the apoptosis rate was 1.89% ± 0.09%, which was higher than 1.62% ± 0.06% in radiation alone group (t=4.79, P<0.05). Conclusions: AT1R blocker valsartan combined with radiation can significantly inhibit the proliferation activity of nasopharyngeal carcinoma cells in vitro in a dose- and time-dependent manner. Valsartan combined with radiation can potently inhibit the invasive potential of CNE-2, which may be involved in the mechanism of valsartan treatment in vivo. (authors)

  3. Inhibitory effects of α-pinene on hepatoma carcinoma cell proliferation.

    Science.gov (United States)

    Chen, Wei-Qiang; Xu, Bin; Mao, Jian-Wen; Wei, Feng-Xiang; Li, Ming; Liu, Tao; Jin, Xiao-Bao; Zhang, Li-Rong

    2014-01-01

    Pine needle oil from crude extract of pine needles has anti-tumor effects, but the effective component is not known. In the present study, compounds from a steam distillation extract of pine needles were isolated and characterized. Alpha-pinene was identified as an active anti-proliferative compound on hepatoma carcinoma BEL-7402 cells using the MTT assay. Further experiments showed that α-pinene inhibited BEL-7402 cells by arresting cell growth in the G2/M phase of the cell cycle, downregulating Cdc25C mRNA and protein expression, and reducing cycle dependence on kinase 1(CDK1) activity. Taken together, these findings indicate that α-pinene may be useful as a potential anti-tumor drug.

  4. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    International Nuclear Information System (INIS)

    Garcia-Becerra, Rocio; Diaz, Lorenza; Camacho, Javier; Barrera, David; Ordaz-Rosado, David; Morales, Angelica; Ortiz, Cindy Sharon; Avila, Euclides; Bargallo, Enrique; Arrecillas, Myrna; Halhali, Ali; Larrea, Fernando

    2010-01-01

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  5. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Becerra, Rocio [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Diaz, Lorenza, E-mail: lorenzadiaz@gmail.com [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Camacho, Javier [Department of Pharmacology, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco 07360, Mexico, D.F. (Mexico); Barrera, David; Ordaz-Rosado, David; Morales, Angelica [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Ortiz, Cindy Sharon [Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Avila, Euclides [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Bargallo, Enrique [Department of Breast Tumors, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Arrecillas, Myrna [Department of Pathology, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Halhali, Ali; Larrea, Fernando [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)

    2010-02-01

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  6. ROLE OF THE MORPHOMETRIC PARAMETERS OF INTRATUMORAL MICROVESSELS AND THE PROLIFERATIVE ACTIVITY OF TUMOR CELLS IN RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    N. A. Gorban

    2014-08-01

    Full Text Available Tumor cell proliferation and angiogenesis are essential factors for tumor growth, progression, and metastasis.Objective: to assess the relationship between the values of proliferative activity and the morphometric parameters of intratumoral microvessels in metastatic and localized carcinomas of the kidney.Materials and methods. Surgical specimens taken from 54 patients (32 men and 22 women aged 26 to 69 years (mean age 55 ± 1.5 years with the verified diagnosis of clear-cell renal cell carcinoma (RCC were studied.Conclusion. Proliferative activity and angioarchitectonics are an important biological characteristic of a tumor of unequal clinical value in RCC. Metastatic carcinoma has a higher proliferative activity and a low tumor vascularization than those of localized carcinoma.

  7. A novel splice variant of supervillin, SV5, promotes carcinoma cell proliferation and cell migration

    International Nuclear Information System (INIS)

    Chen, Xueran; Yang, Haoran; Zhang, Shangrong; Wang, Zhen; Ye, Fang; Liang, Chaozhao; Wang, Hongzhi; Fang, Zhiyou

    2017-01-01

    Supervillin is an actin-associated protein that regulates actin dynamics by interacting with Myosin II, F-actin, and Cortactin to promote cell contractility and cell motility. Two splicing variants of human Supervillin (SV1 and SV4) have been reported in non-muscle cells; SV1 lacks 3 exons present in the larger isoform SV4. SV2, also called archvillin, is present in striated muscle; SV3, also called smooth muscle archvillin or SmAV, was cloned from smooth muscle. In the present study, we identify a novel splicing variant of Supervillin (SV5). SV5 contains a new splicing pattern. In the mouse tissues and cell lines examined, SV5 was predominantly expressed in skeletal and cardiac muscles and in proliferating cells, but was virtually undetectable in most normal tissues. Using RNAi and rescue experiments, we show here that SV5 displays altered functional properties in cancer cells, and regulates cell proliferation and cell migration.

  8. miR-935 suppresses gastric signet ring cell carcinoma tumorigenesis by targeting Notch1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chao [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 (China); Yu, Jianchun, E-mail: yu_jchpumch@163.com [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 (China); Kang, Weiming [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 (China); Liu, Yuqin [Cell Culture Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 (China); Ma, Zhiqiang; Zhou, Li [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730 (China)

    2016-01-29

    Gastric signet ring cell carcinoma (GSRCC) is a unique pathological type of gastric carcinoma that is extremely invasive and has a poor prognosis. Expression of microRNAs (miRNAs) has been closely linked to the carcinogenesis of gastric cancer and has been considered as a powerful prognostic marker. The function of miR-935 has never been reported in cancer before. We found, using microRNA array, that expression of miR-935 in GSRCC cell lines is lower than in non-GSRCC cell lines, and enhanced expression of miR-935 in GSRCC cell-lines inhibit cell proliferation, migration and invasion. We also identified Notch1 as a direct target of miR-935. Knockdown of Notch1 reduced proliferation, migration/invasion of GSRCC cells, and overexpression Notch1's activated form (Notch intracellular domain) could rescue miR-935's tumor suppressive effect on GSRCC. Expression of miR-935 was lower in gastric carcinoma tissue than in paired normal tissue samples, and lower in GSRCC than in non-GSRCC. Our results demonstrate the inverse correlation between the expression of miR-935 and Notch1 in gastric tissues. We conclude that miR-935 inhibits gastric carcinoma cell proliferation, migration and invasion by targeting Notch1, suggesting potential applications of the miR-935-Notch1 pathway in gastric cancer clinical diagnosis and therapeutics, especially in gastric signet ring cell carcinoma. - Highlights: • The expression of miR-935 is lower in GC tissue than in paired normal tissue. • The expression of miR-935 is lower in GSRCC tissue than in non-GSRCC. • Enhanced expression of miR-935 suppresses tumorigenesis of GSRCC. • Notch1 is a direct target of miR-935.

  9. Histogram analysis parameters of apparent diffusion coefficient reflect tumor cellularity and proliferation activity in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Surov, Alexey; Meyer, Hans Jonas; Winter, Karsten; Richter, Cindy; Hoehn, Anna-Kathrin

    2018-05-04

    Our purpose was to analyze associations between apparent diffusion coefficient (ADC) histogram analysis parameters and histopathologicalfeatures in head and neck squamous cell carcinoma (HNSCC). The study involved 32 patients with primary HNSCC. For every tumor, the following histogram analysis parameters were calculated: ADCmean, ADCmax, ADC min , ADC median , ADC mode , P10, P25, P75, P90, kurtosis, skewness, and entropy. Furthermore, proliferation index KI 67, cell count, total and average nucleic areas were estimated. Spearman's correlation coefficient (p) was used to analyze associations between investigated parameters. In overall sample, all ADC values showed moderate inverse correlations with KI 67. All ADC values except ADCmax correlated inversely with tumor cellularity. Slightly correlations were identified between total/average nucleic area and ADC mean , ADC min , ADC median , and P25. In G1/2 tumors, only ADCmode correlated well with Ki67. No statistically significant correlations between ADC parameters and cellularity were found. In G3 tumors, Ki 67 correlated with all ADC parameters except ADCmode. Cell count correlated well with all ADC parameters except ADCmax. Total nucleic area correlated inversely with ADC mean , ADC min , ADC median , P25, and P90. ADC histogram parameters reflect proliferation potential and cellularity in HNSCC. The associations between histopathology and imaging depend on tumor grading.

  10. MTA1 regulation of ERβ pathway in salivary gland carcinoma cells

    International Nuclear Information System (INIS)

    Ohshiro, Kazufumi; Kumar, Rakesh

    2015-01-01

    Abstracts: Although Metastatic-tumor antigen 1 (MTA1) is differentially expressed in metastatic cancer and coregulates the status and activity of nuclear receptors, its role upon estrogen receptor β (ERβ) – a potent tumor suppressor, remains poorly understood. Here we investigated whether MTA1 regulates the expression and functions of ERβ, an ER isoform predominantly expressed in salivary gland cancer cells. We found that the depletion of the endogenous MTA1 in the HSG and HSY salivary duct carcinoma cell lines enhances the expression of ERβ while MTA1 overexpression augmented the expression of ERβ in salivary duct carcinoma cells. Furthermore, MTA1 knockdown inhibited the proliferations and invasion of HSG and HSY cells. The noted ERβ downregulation by MTA1 overexpression involves the process of proteasomal degradation, as a proteasome inhibitor could block it. In addition, both MTA1 knockdown and ERβ overexpression attenuated the cell migration and inhibited the ERK1/2 signaling in the both cell lines. These findings imply that MTA1 dysregulation in a subset of salivary gland cancer might promote aggressive phenotypes by compromising the tumor suppressor activity of ERβ, and hence, MTA1-ERβ axis might serve a new therapeutic target for the salivary gland cancer. - Highlights: • MTA1 silencing upregulates ERβ expression in salivary gland carcinoma cells. • MTA1 overexpression downregulates ERβ expression via proteasomal degradation. • Upregulation of ERβ expression inhibits cell migration and ERK signaling. • MTA1 knockdown inhibits cell proliferation and invasion

  11. Opposing function of MYBBP1A in proliferation and migration of head and neck squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Acuña Sanhueza, Gustavo A; Simon, Christian; Hess, Jochen; Faller, Leonie; George, Babitha; Koffler, Jennifer; Misetic, Vinko; Flechtenmacher, Christa; Dyckhoff, Gerhard; Plinkert, Peter P; Angel, Peter

    2012-01-01

    Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent and lethal cancers worldwide and mortality mostly results from loco-regional recurrence and metastasis. Despite its significance, our knowledge on molecular, cellular and environmental mechanisms that drive disease pathogenesis remains largely elusive, and there are limited therapeutic options, with only negligible clinical benefit. We applied global gene expression profiling with samples derived from a recently established mouse model for oral cancer recurrence and identified a list of genes with differential expression between primary and recurrent tumors. One differentially expressed gene codes for Myb-binding protein 1a (MYBBP1A), which is known as a transcriptional co-regulator that physically interacts with nuclear transcription factors, such as NFκB and p53. We confirmed significantly reduced MYBBP1A protein levels on tissue sections of recurrent mouse tumors compared to primary tumors by immunohistochemistry, and found aberrant MYBBP1A protein levels also in tumor samples of HNSCC patients. Interestingly, silencing of MYBBP1A expression in murine SCC7 and in human HNSCC cell lines elicited increased migration but decreased cell growth. We provide experimental evidence that MYBBP1A is an important molecular switch in the regulation of tumor cell proliferation versus migration in HNSCC and it will be a major challenge for the future to proof the concept whether regulation MYBBP1A expression and/or function could serve as a novel option for anti-cancer therapy

  12. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Central Laboratory, Peking University School of Stomatology, Beijing (China); Nan, Xu [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Xuefen [Central Laboratory, Peking University School of Stomatology, Beijing (China); Chen, Yan; Zhang, Jianyun [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China); Sun, Lisha [Central Laboratory, Peking University School of Stomatology, Beijing (China); Han, Wenlin [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Tiejun, E-mail: litiejun22@vip.sina.com [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China)

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  13. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhang, Heyu; Nan, Xu; Li, Xuefen; Chen, Yan; Zhang, Jianyun; Sun, Lisha; Han, Wenlin; Li, Tiejun

    2014-01-01

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma

  14. Δ9-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling

    International Nuclear Information System (INIS)

    Takeda, Shuso; Yamaori, Satoshi; Motoya, Erina; Matsunaga, Tamihide; Kimura, Toshiyuki; Yamamoto, Ikuo; Watanabe, Kazuhito

    2008-01-01

    We recently reported that Δ 9 -tetrahydrocannabinol (Δ 9 -THC) has the ability to stimulate the proliferation of human breast carcinoma MCF-7 cells. However, the mechanism of action remains to be clarified. The present study focused on the relationship between receptor expression and the effects of Δ 9 -THC on cell proliferation. RT-PCR analysis demonstrated that there was no detectable expression of CB receptors in MCF-7 cells. In accordance with this, no effects of cannabinoid 1/2 (CB1/2) receptor antagonists and pertussis toxin on cell proliferation were observed. Although MCF-7 cell proliferation is suggested to be suppressed by Δ 9 -THC in the presence of CB receptors, it was revealed that Δ 9 -THC could exert upregulation of living cells in the absence of the receptors. Interestingly, Δ 9 -THC upregulated human epithelial growth factor receptor type 2 (HER2) expression, which is known to be a predictive factor of human breast cancer and is able to stimulate cancer cells as well as MCF-7 cells. Actinomycin D-treatment interfered with the upregulation of HER2 and cell proliferation by cannabinoid. Taken together, these studies suggest that, in the absence of CB receptors, Δ 9 -THC can stimulate the proliferation of MCF-7 cells by modulating, at least in part, HER2 transcription

  15. Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma

    International Nuclear Information System (INIS)

    Sun, Shiren; Ning, Xiaoxuan; Liu, Jie; Liu, Lili; Chen, Yu; Han, Shuang; Zhang, Yanqi; Liang, Jie; Wu, Kaichun; Fan, Daiming

    2007-01-01

    Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP), a target protein of S100, has been identified as a component of a novel ubiquitinylation complex leading to β-catenin degradation, which was found to be related to the malignant phenotypes of gastric cancer. However, the roles of CacyBP/SIP in renal cell carcinoma still remain unclear. In the present study, we had analyzed the expression of the CacyBP/SIP protein in human renal cancer cells and clinical tissue samples. The possible roles of CacyBP/SIP in regulating the malignant phenotype of renal cancer cells were also investigated. The results demonstrated that the expression of CacyBP/SIP was markedly down-regulated in renal cell carcinoma tissues and cell lines. Ectopic overexpression of CacyBP/SIP in A498 cells inhibited the proliferation of this cell and delayed cell cycle progression significantly, which might be related to the down-regulation of Cyclin D1 through reducing β-catenin protein. CacyBP/SIP also suppressed colony formation in soft agar and its tumorigenicity in nude mice. Taken together, our work showed that CacyBP/SIP, as a novel down-regulated gene in renal cell carcinoma, suppressed proliferation and tumorigenesis of renal cancer cells

  16. MCM - 2 and Ki - 67 as proliferation markers in renal cell carcinoma: A quantitative and semi - quantitative analysis.

    Science.gov (United States)

    Mehdi, Muhammad Zain; Nagi, Abdul Hanan; Naseem, Nadia

    2016-01-01

    Fuhrman nuclear grade is the most important histological parameter to predict prognosis in a patient of renal cell carcinoma (RCC). However, it suffers from inter-observer and intra-observer variation giving rise to need of a parameter that not only correlates with nuclear grade but is also objective and reproducible. Proliferation is the measure of aggressiveness of a tumour and it is strongly correlated with Fuhrman nuclear grade, clinical survival and recurrence in RCC. Ki-67 is conventionally used to assess proliferation. Mini-chromosome maintenance 2 (MCM-2) is a lesser known marker of proliferation and identifies a greater proliferation faction. This study was designed to assess the prognostic significance of MCM-2 by comparing it with Fuhrman nuclear grade and Ki-67. n=50 cases of various ages, stages, histological subtypes and grades of RCC were selected for this study. Immunohistochemical staining using Ki-67(MIB-1, Mouse monoclonal antibody, Dako) and MCM-2 (Mouse monoclonal antibody, Thermo) was performed on the paraffin embedded blocks in the department of Morbid anatomy and Histopathology, University of Health Sciences, Lahore. Labeling indices (LI) were determined by two pathologists independently using quantitative and semi-quantitative analysis. Statistical analysis was carried out using SPSS 20.0. Kruskall-Wallis test was used to determine a correlation of proliferation markers with grade, and Pearson's correlate was used to determine correlation between the two proliferation markers. Labeling index of MCM-2 (median=24.29%) was found to be much higher than Ki-67(median=13.05%). Both markers were significantly related with grade (p=0.00; Kruskall-Wallis test). LI of MCM-2 was found to correlate significantly with LI of Ki-67(r=0.0934;p=0.01 with Pearson's correlate). Results of semi-quantitative analysis correlated well with quantitative analysis. Both Ki-67 and MCM-2 are markers of proliferation which are closely linked to grade. Therefore, they

  17. Insulin-like growth factor-1 signaling in renal cell carcinoma

    International Nuclear Information System (INIS)

    Tracz, Adam F.; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M.

    2016-01-01

    Renal cell carcinoma (RCC) incidence is highest in highly developed countries and it is the seventh most common neoplasm diagnosed. RCC management include nephrectomy and targeted therapies. Type 1 insulin-like growth factor (IGF-1) pathway plays an important role in cell proliferation and apoptosis resistance. IGF-1 and insulin share overlapping downstream signaling pathways in normal and cancer cells. IGF-1 receptor (IGF1R) stimulation may promote malignant transformation promoting cell proliferation, dedifferentiation and inhibiting apoptosis. Clear cell renal cell carcinoma (ccRCC) patients with IGF1R overexpression have 70 % increased risk of death compared to patients who had tumors without IGF1R expression. IGF1R signaling deregulation may results in p53, WT, BRCA1, VHL loss of function. RCC cells with high expression of IGF1R are more resistant to chemotherapy than cells with low expression. Silencing of IGF1R increase the chemosensitivity of ccRCC cells and the effect is greater in VHL mutated cells. Understanding the role of IGF-1 signaling pathway in RCC may result in development of new targeted therapeutic interventions. First preclinical attempts with anti-IGF-1R monoclonal antibodies or fragment antigen-binding (Fab) fragments alone or in combination with an mTOR inhibitor were shown to inhibit in vitro growth and reduced the number of colonies formed by of RCC cells

  18. Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture

    International Nuclear Information System (INIS)

    Sadlonova, Andrea; Novak, Zdenek; Johnson, Martin R; Bowe, Damon B; Gault, Sandra R; Page, Grier P; Thottassery, Jaideep V; Welch, Danny R; Frost, Andra R

    2005-01-01

    Stromal fibroblasts associated with in situ and invasive breast carcinoma differ phenotypically from fibroblasts associated with normal breast epithelium, and these alterations in carcinoma-associated fibroblasts (CAF) may promote breast carcinogenesis and cancer progression. A better understanding of the changes that occur in fibroblasts during carcinogenesis and their influence on epithelial cell growth and behavior could lead to novel strategies for the prevention and treatment of breast cancer. To this end, the effect of CAF and normal breast-associated fibroblasts (NAF) on the growth of epithelial cells representative of pre-neoplastic breast disease was assessed. NAF and CAF were grown with the nontumorigenic MCF10A epithelial cells and their more transformed, tumorigenic derivative, MCF10AT cells, in direct three-dimensional co-cultures on basement membrane material. The proliferation and apoptosis of MCF10A cells and MCF10AT cells were assessed by 5-bromo-2'-deoxyuridine labeling and TUNEL assay, respectively. Additionally, NAF and CAF were compared for expression of insulin-like growth factor II as a potential mediator of their effects on epithelial cell growth, by ELISA and by quantitative, real-time PCR. In relatively low numbers, both NAF and CAF suppressed proliferation of MCF10A cells. However, only NAF and not CAF significantly inhibited proliferation of the more transformed MCF10AT cells. The degree of growth inhibition varied among NAF or CAF from different individuals. In greater numbers, NAF and CAF have less inhibitory effect on epithelial cell growth. The rate of epithelial cell apoptosis was not affected by NAF or CAF. Mean insulin-like growth factor II levels were not significantly different in NAF versus CAF and did not correlate with the fibroblast effect on epithelial cell proliferation. Both NAF and CAF have the ability to inhibit the growth of pre-cancerous breast epithelial cells. NAF have greater inhibitory capacity than CAF

  19. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin

    International Nuclear Information System (INIS)

    Sun, Jian-Yong; Huang, Yi; Li, Ji-Peng; Zhang, Xiang; Wang, Lei; Meng, Yan-Ling; Yan, Bo; Bian, Yong-Qian; Zhao, Jing; Wang, Wei-Zhong

    2012-01-01

    Highlights: ► miR-320a is downregulated in human colorectal carcinoma. ► Overexpression of miR-320a inhibits colon cancer cell proliferation. ► β-Catenin is a direct target of miR-320a in colon cancer cells. ► miR-320a expression inversely correlates with mRNA expression of β-catenin’s target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and β-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and β-catenin’s downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting β-catenin, suggesting its application in prognosis prediction and cancer treatment.

  20. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jian-Yong [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Huang, Yi [Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, 710032 Xi' an (China); Li, Ji-Peng [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Zhang, Xiang; Wang, Lei [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Meng, Yan-Ling [Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Yan, Bo [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Bian, Yong-Qian [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Zhao, Jing [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Wang, Wei-Zhong, E-mail: weichang@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); and others

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer miR-320a is downregulated in human colorectal carcinoma. Black-Right-Pointing-Pointer Overexpression of miR-320a inhibits colon cancer cell proliferation. Black-Right-Pointing-Pointer {beta}-Catenin is a direct target of miR-320a in colon cancer cells. Black-Right-Pointing-Pointer miR-320a expression inversely correlates with mRNA expression of {beta}-catenin's target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and {beta}-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and {beta}-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting {beta}-catenin, suggesting its application in prognosis prediction and cancer treatment.

  1. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K., E-mail: mishima-k@dent.showa-u.ac.jp

    2013-05-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities.

  2. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K.

    2013-01-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities

  3. Hepatitis B virus X protein-induced upregulation of CAT-1 stimulates proliferation and inhibits apoptosis in hepatocellular carcinoma cells.

    Science.gov (United States)

    Dai, Rongjuan; Peng, Feng; Xiao, Xinqiang; Gong, Xing; Jiang, Yongfang; Zhang, Min; Tian, Yi; Xu, Yun; Ma, Jing; Li, Mingming; Luo, Yue; Gong, Guozhong

    2017-09-22

    The HBx protein of hepatitis B virus (HBV) is widely recognized to be a critical oncoprotein contributing to the development of HBV-related hepatocellular carcinoma (HCC). In addition, cationic amino acid transporter 1 (CAT-1) gene is a target of miR-122. In this study, we found that CAT-1 protein levels were higher in HBV-related HCC carcinomatous tissues than in para-cancerous tumor tissues, and that CAT-1 promoted HCC cell growth, proliferation, and metastasis. Moreover, HBx-induced decreases in Gld2 and miR-122 levels that contributed to the upregulation of CAT-1 in HCC. These results indicate that a Gld2/miR-122/CAT-1 pathway regulated by HBx likely participates in HBV-related hepatocellular carcinogenesis.

  4. Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Deepak Bhatia

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer-related death worldwide, and chemoprevention represents a viable approach in lowering the mortality of this disease. Pomegranate fruit, an abundant source of anti-inflammatory phytochemicals, is gaining tremendous attention for its wide-spectrum health benefits. We previously reported that a characterized pomegranate emulsion (PE prevents diethylnitrosamine (DENA-induced rat hepatocarcinogenesis though inhibition of nuclear factor-kappaB (NF-κB. Since NF-κB concurrently induces Wnt/β-catenin signaling implicated in cell proliferation, cell survival, and apoptosis evasion, we examined antiproliferative, apoptosis-inducing and Wnt/β-catenin signaling-modulatory mechanisms of PE during DENA rat hepatocarcinogenesis. PE (1 or 10 g/kg was administered 4 weeks before and 18 weeks following DENA exposure. There was a significant increase in hepatic proliferation (proliferating cell nuclear antigen and alteration in cell cycle progression (cyclin D1 due to DENA treatment, and PE dose dependently reversed these effects. PE substantially induced apoptosis by upregulating proapoptotic protein Bax and downregulating antiapoptotic protein Bcl-2. PE dose dependently reduced hepatic β-catenin and augmented glycogen synthase kinase-3β expression. Our study provides evidence that pomegranate phytochemicals exert chemoprevention of hepatic cancer through antiproliferative and proapoptotic mechanisms by modulating Wnt/β-catenin signaling. PE, thus, targets two interconnected molecular circuits (canonical NF-κB and Wnt/β-catenin pathways to exert chemoprevention of HCC.

  5. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wang, Chun-Mei; Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei; Sun, Wen-Sheng; Liu, Yu-Gang; Jia, Ji-Hui

    2011-01-01

    Highlights: → miR-29c was significantly downregulated in HBV-related HCC. → TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. → Overexpression of miR-29c suppressed TNFAIP3. → miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  6. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Mei [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China); Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Sun, Wen-Sheng [Institute of Immunology, Shandong University School of Medicine, Jinan 250012 (China); Liu, Yu-Gang, E-mail: liu.yugang@sdu.edu.cn [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Jia, Ji-Hui, E-mail: jiajihui@sdu.edu.cn [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China)

    2011-08-05

    Highlights: {yields} miR-29c was significantly downregulated in HBV-related HCC. {yields} TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. {yields} Overexpression of miR-29c suppressed TNFAIP3. {yields} miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  7. A Case of Basal Cell Carcinoma with Outer Hair Follicle Sheath Differentiation

    Directory of Open Access Journals (Sweden)

    Masazumi Onishi

    2015-12-01

    Full Text Available A 70-year-old Japanese man presented at our hospital with an asymptomatic, blackish, irregularly shaped plaque with a gray nodule in the periphery on his left lower leg. The lesion had been present for 10 years and had recently enlarged, associated with bleeding. Histopathologically, the tumor consisted of three distinct parts: The first part showed massive aggregation of basophilic basaloid cells with peripheral palisading and abundant melanin granules, and was diagnosed as solid-type basal cell carcinoma. The second part showed aggregation of clear cells with squamous eddies, and was diagnosed as proliferating trichilemmal tumor. The third part showed reticular aggregation of basaloid cells with infundibular cysts in the papillary dermis, and was diagnosed as infundibulocystic basal cell carcinoma. We diagnosed this tumor as basal cell carcinoma with various forms of hair follicle differentiation, including differentiation into the outer root sheath.

  8. CKLF-Like MARVEL Transmembrane Domain-Containing Member 3 (CMTM3) Inhibits the Proliferation and Tumorigenisis in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Li, Wujun; Zhang, Shaobo

    2017-01-26

    The CKLF-like MARVEL transmembrane domain-containing 3 (CMTM3), a member of the CMTM family, was found in several human tumors and plays an important role in the development and progression of tumors. However, the role of CMTM3 in hepatocellular carcinoma (HCC) remains largely unknown. Thus, in the present study, we explored its expression pattern in human HCC cell lines, as well as its functions in HCC cells. Our results demonstrated that the expression of CMTM3 is lowly expressed in HCC cell lines. In vitro, we found that overexpression of CMTM3 obviously inhibited the proliferation, invasion, and EMT process in HCC cells. Furthermore, overexpression of CMTM3 significantly downregulated the expression levels of phosphorylation of JAK2 and STAT3 in HepG2 cells. In vivo, overexpression of CMTM3 attenuated the tumor growth in Balb/c nude mice. In conclusion, we demonstrated that CMTM3 could play an important role in HCC metastasis by EMT induction via, at least partially, suppressing the JAK2/STAT3 signaling pathway. Therefore, CMTM3 may serve as a potential molecular target in the prevention and/or treatment of HCC invasion and metastasis.

  9. Oral Rigosertib for Squamous Cell Carcinoma

    Science.gov (United States)

    2017-06-22

    Head and Neck Squamous Cell Carcinoma; Anal Squamous Cell Carcinoma; Lung Squamous Cell Carcinoma; Cervical Squamous Cell Carcinoma; Esophageal Squamous Cell Carcinoma; Skin Squamous Cell Carcinoma; Penile Squamous Cell Carcinoma

  10. Crude Flavonoid Extract of Medicinal Herb Zingibar officinale Inhibits Proliferation and Induces Apoptosis in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Elkady, Ayman I; Abu-Zinadah, Osama A; Hussein, Rania Abd El Hamid

    2017-07-05

    There is an urgent need to improve the clinical management of hepatocellular carcinoma (HCC), one of the most common causes of global cancer-related deaths. Zingibar officinale is a medicinal herb used throughout history for both culinary and medicinal purposes. It has antioxidant, anticarcinogenic, and free radical scavenging properties. Previously, we proved that the crude flavonoid extract of Z. officinale (CFEZO) inhibited growth and induced apoptosis in several cancer cell lines. However, the effect of the CFEZO on an HCC cell line has not yet been evaluated. In this study, we explored the anticancer activity of CFEZO against an HCC cell line, HepG2. CFEZO significantly inhibited proliferation and induced apoptosis in HepG2 cells. Typical apoptotic morphological and biochemical changes, including cell shrinkage and detachment, nuclear condensation and fragmentation, DNA degradation, and comet tail formation, were observed after treatments with CFEZO. The apoptogenic activity of CFEZO involved induction of ROS, depletion of GSH, disruption of the mitochondrial membrane potential, activation of caspase 3/9, and an increase in the Bax/Bcl-2 ratio. CFEZO treatments induced upregulation of p53 and p21 expression and downregulation of cyclin D1 and cyclin-dependent kinase-4 expression, which were accompanied by G2/M phase arrest. These findings suggest that CFEZO provides a useful foundation for studying and developing novel chemotherapeutic agents for the treatment of HCC.

  11. PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Arrighetti, Noemi, E-mail: Noemi.Arrighetti@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Cossa, Giacomo, E-mail: Gia.Cossa@gmail.com [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); De Cecco, Loris, E-mail: Loris.Dececco@istitutotumori.mi.it [Functional Genomics and Bioinformatics, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Stucchi, Simone, E-mail: Simone.Stucchi@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Carenini, Nives, E-mail: Nives.Carenini@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Corna, Elisabetta, E-mail: Elisabetta.Corna@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Gandellini, Paolo, E-mail: Paolo.Gandellini@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Zaffaroni, Nadia, E-mail: Nadia.Zaffaroni@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Perego, Paola, E-mail: paola.perego@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy); Gatti, Laura, E-mail: Laura.Gatti@istitutotumori.mi.it [Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133 (Italy)

    2016-11-01

    The occurrence of drug resistance limits the efficacy of platinum compounds in the cure of ovarian carcinoma. Since microRNAs (miRNAs) may contribute to this phenomenon by regulating different aspects of tumor cell response, the aim of this study was to exploit the analysis of expression of miRNAs in platinum sensitive/resistant cells in an attempt to identify potential regulators of drug response. MiR-483-3p, which may participate in apoptosis and cell proliferation regulation, was found up-regulated in 4 platinum resistant variants, particularly in the IGROV-1/Pt1 subline, versus parental cells. Transfection of a synthetic precursor of miR-483-3p in IGROV-1 parental cells elicited a marked up-regulation of the miRNA levels. Growth-inhibition and colony-forming assays indicated that miR-483-3p over-expression reduced cell growth and conferred mild levels of cisplatin resistance in IGROV-1 cells, by interference with their proliferative potential. Predicted targets of miR-483-3p included PRKCA (encoding PKC-alpha), previously reported to be associated to platinum-resistance in ovarian carcinoma. We found that miR-483-3p directly targeted PRKCA in IGROV-1 cells. In keeping with this finding, cisplatin sensitivity of IGROV-1 cells decreased upon molecular/pharmacological inhibition of PKC-alpha. Overall, our results suggest that overexpression of miR-483-3p by ovarian carcinoma platinum-resistant cells may interfere with their proliferation, thus protecting them from DNA damage induced by platinum compounds and ultimately representing a drug-resistance mechanism. The impairment of cell growth may account for low levels of drug resistance that could be relevant in the clinical setting. - Highlights: • miR-483-3p is up-regulated in ovarian carcinoma cells resistant to platinum drugs. • Ectopic expression of miR-483-3p in IGROV-1 confers mild levels of Pt-resistance. • Overexpression of miR-483-3p down-regulates PRKCA levels in ovarian carcinoma cells. • miR 483

  12. More expression of BDNF associates with lung squamous cell carcinoma and is critical to the proliferation and invasion of lung cancer cells

    International Nuclear Information System (INIS)

    Zhang, Si-yang; Hui, Lin-ping; Li, Chun-yan; Gao, Jian; Cui, Ze-shi; Qiu, Xue-shan

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been reported to promote tumorigenesis and progression in several human malignancies. The purpose of this study was to explore the function of BDNF in lung squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The expression of BDNF was examined in 110 samples of lung SCC and ADC by immunohistochemistry. The protein level of BDNF was examined in 25 lung SCC or ADC samples and paired non-tumors by western blot. BDNF expression was also evaluated in human bronchial epithelial cells (HBE) and 4 lung cancer cell lines using western blot. Three BDNF mRNA variants containing exons IV, VI and IX were evaluated in HBE, two SCC (SK, LK2) and two ADC (A549, LTE) cell lines by RT-PCR. The expression and secretion of BDNF were also determined in cells using western blot and ELISA. Then the shRNA specific for BDNF was transfected into LK2 or A549 cells to further elucidate the BDNF knockdown on cell proliferation, apoptosis and invasion, which were confirmed by MTT, flow cytometry and transwell examinations. 71.8 % (79 out of 110) of lung SCC and ADC samples were detected positive BDNF, and high expression of BDNF was significantly correlated with histological type and T stage. Compared with non-tumorous counterparts, BDNF was apparently overexpressed in SCC and ADC tissues. In cell studies, the extensive expression and secretion of BDNF were demonstrated in lung cancer cells compared with HBE cells. Interestingly, the expressions of BDNF mRNA variant IV and VI were identical in all cells examined. However, more expression of BDNF mRNA variant IX was found in SK and LK2 cells. The apoptotic cells were increased, and the cell proliferation and invasion were both attenuated once the expression of BDNF was inhibited. When retreated by rhBDNF, BDNF knockdown cells showed less apoptotic or more proliferative and invasive. Our data show that BDNF probably facilitates the tumorigenesis of lung SCC and ADC. The expression of BDNF m

  13. A case of esophageal so-called carcinosarcoma, which proliferated after radiochemotherapy against squamous cell carcinoma

    International Nuclear Information System (INIS)

    Sasaki, Shozo; Kurosaka, Yoshiyuki; Funaki, Kohziro; Michiwa, Yoshio; Takegawa, Shigeru; Kiriyama, Masato; Kawashima, Atsuhiro; Kojima, Yasuhiko

    2007-01-01

    A 89-year-old woman undergoing fibroptic esophagoscopy elsewhere for dysphagia was found to have an esophageal tumor and was referred to our hospital. Upper gastrointestinal endoscopy showed a type 1 esophageal tumor about 3 cm in diameter in the lower thoracic esophagus pathologically diagnosed as moderately differentiated squamous cell carcinoma from the biopsy specimen. CT and MRI showed metastasis in the right lymph node of cardia. Although we advised an esophagectomy, she did not agree to it due to her high age, so we treated her with radiochemotherapy. She underwent radiotherapy (54 Gy) and chemotherapy (cisplatin and 5-fluorouracil (FU)) concurrently. It was effective and the tumor almost disappeared and the biopsy specimen showed few viable cells. After 12 months, the tumor recurred and the pathological diagnosis was so-called carcinosarcoma. She died 14 months after treatment and pathological autopsy showed the tumor of the esophagus to be so-called carcinosarcoma, but metastasized tissue consisted of squamous cell carcinoma and did not have a sarcoma component. We concluded that metaplastic change of squamous carcinoma cells into spindle cells, occurred due to radiochemotherapy and the tumor recurred as so-called carcinosarcoma. (author)

  14. Stanniocalcin 2 promotes cell proliferation and cisplatin resistance in cervical cancer

    International Nuclear Information System (INIS)

    Wang, Yuxia; Gao, Ying; Cheng, Hairong; Yang, Guichun; Tan, Wenhua

    2015-01-01

    Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2 expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway. - Highlights: • STC2 was upregulated in cervical cancer and promoted cervical cancer cell proliferation. • Cisplatin resistant cells had elevated STC2 levels and enhanced proliferation. • STC2 regulated cisplatin chemosensitivity in cervical cancer cells. • STC2 regulated the activity of the MAPK signaling pathway.

  15. miR-654-5p Targets GRAP to Promote Proliferation, Metastasis, and Chemoresistance of Oral Squamous Cell Carcinoma Through Ras/MAPK Signaling.

    Science.gov (United States)

    Lu, Meng; Wang, Chengyong; Chen, Weihui; Mao, Chuanqing; Wang, Jin

    2018-04-01

    Oral squamous cell carcinoma (OSCC) is characterized by rapid local migration and invasion. This study was aimed at clarifying the effect of miR-654-5p on progression of OSCC. miR-654-5p promoted proliferation, metastasis, and chemoresistance of OSCC in vitro and in vivo. Consistently, miR-654-5p was upregulated in late-stage OSCC and was correlated with poor prognosis of OSCC patients. Furthermore, miR-654-5p was mechanistically verified to target Grb-2-related adaptor protein (GRAP), accompanied by the activation of Ras/MAPK signaling and the facilitation of epithelial-mesenchymal transition in OSCC cells. GRAP was downregulated in T1-2 stage versus T3-4 stage head and neck squamous cell carcinoma (HNSC) and was negatively correlated with tumor-node-metastases (TNM) stage in HNSC patients based on The Cancer Genome Atlas (TCGA) analysis. In addition, GRAP was positively correlated with good prognosis in HNSC patients. Our findings suggest that the miR-654-5p/GRAP/Ras/Erk signaling pathway in OSCC cells might contribute to the underlying mechanism through which miR-654-5p participates in the regulation of OSCC progression. miR-654-5p, as a potential biomarker for the clinical diagnosis and prognosis of OSCC, may be an effective anticancer target for the treatment of OSCC.

  16. CNPY2 promoted the proliferation of renal cell carcinoma cells and increased the expression of TP53

    International Nuclear Information System (INIS)

    Taniguchi, Hidefumi; Ito, Saya; Ueda, Takashi; Morioka, Yukako; Kayukawa, Naruhiro; Ueno, Akihisa; Nakagawa, Hideo; Fujihara, Atsuko; Ushijima, So; Kanazawa, Motohiro; Hongo, Fumiya; Ukimura, Osamu

    2017-01-01

    Renal cell carcinoma (RCC) is the most common type of kidney cancer. However, the mechanisms underlying the progression of the disease are not well understood. The data in this report suggest that canopy FGF signaling regulator 2 (CNPY2) is a promoter of RCC progression. We found that CNPY2 significantly promoted growth of RCC cells and upregulated TP53 gene expression. Although TP53 is widely known as a tumor suppressor, in RCC TP53 promoted tumor cell growth. A typical p53 target gene, CDKN1A, was upregulated by both p53 and CNPY2 in RCC cells, suggesting that CNPY2 increased the expression level of TP53. Consistent with these results, CNPY2 and TP53 expression levels were positively correlated in RCC patients. These findings suggested that CNPY2 promoted cancer cell growth in RCC through regulating TP53 gene expression. - Highlights: • CNPY2 promoted growth of renal cell carcinoma (RCC) cells. • TP53 expression levels were increased by CNPY2 in RCC cells. • Growth of RCC cells was promoted by TP53. • CNPY2 expression positively correlated with TP53 expression in RCC patients.

  17. Isorhynchophylline, a Potent Plant Alkaloid, Induces Apoptotic and Anti-Metastatic Effects in Human Hepatocellular Carcinoma Cells through the Modulation of Diverse Cell Signaling Cascades.

    Science.gov (United States)

    Lee, Hanwool; Baek, Seung Ho; Lee, Jong Hyun; Kim, Chulwon; Ko, Jeong-Hyeon; Lee, Seok-Geun; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Yang, Woong Mo; Um, Jae-Young; Sethi, Gautam; Ahn, Kwang Seok

    2017-05-19

    Isorhynchophylline (Rhy) is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase). This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4), MMP-9 (Matrix metallopeptidase-9), and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells.

  18. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chih-Yeu Fang

    2015-01-01

    Full Text Available (−-Epigallocatechin-3-gallate (EGCG, a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC, yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC.

  19. [Knockdown of ATG5 enhances the sensitivity of human renal carcinoma cells to sunitinib].

    Science.gov (United States)

    Li, Peng; Han, Qi; Tang, Ming; Zhang, Keqin

    2017-03-01

    Objective To investigate the expression levels of autophagy-related gene 5 (ATG5) and microtubule-associated protein 1 light chain 3 (LC3) and their effects on sunitinib resistance in human renal carcinoma cells. Methods After clinic-pathologic feature and survival analysis, 99 renal clear cell carcinoma tissues with different histological grades were used to detect the expression of ATG5 and LC3 by immunohistochemistry. Renal carcinoma cell line A-498 was infected with lentivirus-mediated ATG5 shRNA. Western blot analysis was performed to confirm the efficiency of ATG5 knockdown. Proliferation rate of A-498 cells in control group and ATG5 low expression group was determined by flow cytometry. Finally, the survival rate was detected by MTT assay after A-498 cells were treated with different concentrations of sunitinib. Results The expression levels of ATG5 and LC3 in renal clear cell carcinoma tissues were significantly higher than those in para-tumor tissues. The expression levels of ATG5 and LC3 were associated with classification, histological grade, TNM stage and survival rate, rather than gender, age, location, tumor size. Compared with the control group, the protein expressions of ATG5 and LC3 significantly decreased in A-498 cells with ATG5 low expression. The cell proliferation rate in ATG5 downregulation group was lower than that in the control group. Compared with control group, the survival rate in ATG5 low expression group were significantly reduced in a dose-dependent manner after sunitinib treatment. Conclusion Autophagy is active in renal clear cell carcinoma, and the drug sensitivity to sunitinib in renal cancer cells can be enhanced by the downregulation of ATG5.

  20. Novel Midkine Inhibitor iMDK Inhibits Tumor Growth and Angiogenesis in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Masui, Masanori; Okui, Tatsuo; Shimo, Tsuyoshi; Takabatake, Kiyofumi; Fukazawa, Takuya; Matsumoto, Kenichi; Kurio, Naito; Ibaragi, Soichiro; Naomoto, Yoshio; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-06-01

    Midkine is a heparin-binding growth factor highly expressed in various human malignant tumors. However, its role in the growth of oral squamous cell carcinoma is not well understood. In this study, we analyzed the antitumor effect of a novel midkine inhibitor (iMDK) against oral squamous cell carcinoma. Administration of iMDK induced a robust antitumor response and suppressed cluster of differentiation 31 (CD31) expression in oral squamous cell carcinoma HSC-2 cells and SAS cells xenograft models. iMDK inhibited the proliferation of these cells dose-dependently, as well as the expression of midkine and phospho-extracellular signal-regulated kinase in HSC-2 and SAS cells. Moreover, iMDK significantly inhibited vascular endothelial growth factor and induced tube growth of human umbilical vein endothelial cells in a dose-dependent fashion. These findings suggest that midkine is critically involved in oral squamous cell carcinoma and iMDK can be effectively used for the treatment of oral squamous cell carcinoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Interaction of Stellate Cells with Pancreatic Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Marco Siech

    2010-09-01

    Full Text Available Pancreatic cancer is characterized by its late detection, aggressive growth, intense infiltration into adjacent tissue, early metastasis, resistance to chemo- and radiotherapy and a strong “desmoplastic reaction”. The dense stroma surrounding carcinoma cells is composed of fibroblasts, activated stellate cells (myofibroblast-like cells, various inflammatory cells, proliferating vascular structures, collagens and fibronectin. In particular the cellular components of the stroma produce the tumor microenvironment, which plays a critical role in tumor growth, invasion, spreading, metastasis, angiogenesis, inhibition of anoikis, and chemoresistance. Fibroblasts, myofibroblasts and activated stellate cells produce the extracellular matrix components and are thought to interact actively with tumor cells, thereby promoting cancer progression. In this review, we discuss our current understanding of the role of pancreatic stellate cells (PSC in the desmoplastic response of pancreas cancer and the effects of PSC on tumor progression, metastasis and drug resistance. Finally we present some novel ideas for tumor therapy by interfering with the cancer cell-host interaction.

  2. Serum from Chronic Hepatitis B Patients Promotes Growth and Proliferation via the IGF-II/IGF-IR/MEK/ERK Signaling Pathway in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Ji, Yuanyuan; Wang, Zhidong; Chen, Haiyan; Zhang, Lei; Zhuo, Fei; Yang, Qingqing

    2018-05-09

    Chronic hepatitis B virus (HBV) infection (CHB) plays a central role in the etiology of hepatocellular carcinoma (HCC). Emerging evidence implicates insulin-like growth factor (IGF)-II as a major risk factor for the growth and development of HCC. However, the relationship between HBV infection and IGF-II functions remains to be elucidated. Levels of circulating IGF-II and IGF-I receptor (IGF-IR) in healthy donors (HDs) and CHB patients were tested by ELISA. Human HCC cell lines (HepG-2, SMMC-7721, MHCC97-H) were incubated with serum from HDs and CHB patients at various concentrations for 24, 48, and 72 h. MTT and plate colony formation assays, BrdU ELISA, ELISA, small-interfering RNA (siRNA) transfection, quantitative real-time PCR, and western blot were applied to assess the functional and molecular mechanisms in HCC cell lines. Serum levels of IGF-II and IGF-IR were significantly higher in CHB patients than in HDs. Additionally, serum from CHB patients directly induced cell growth, proliferation, IGF-II secretion, and HDGF-related protein-2 (HRP-2) and nuclear protein 1 (NUPR1) mRNA and protein expression in HCC cells. Moreover, serum from CHB patients increased IGF-II-induced cell growth, proliferation, and HRP-2 and NUPR1 mRNA and protein expression in HCC cells. Blockade of IGF-IR clearly inhibited the above effects. Most importantly, interference with IGF-II function markedly repressed the cell proliferation and HRP-2 and NUPR1 mRNA and protein expression induced by serum from CHB patients. Furthermore, serum from CHB patients induced ERK phosphorylation via IGF-IR, with the MEK inhibitor PD98059 significantly decreasing CHB patient serum-induced IGF-II secretion, cell proliferation, and HRP-2 and NUPR1 mRNA and protein expression. Serum from CHB patients increases cell growth and proliferation and enhances HRP-2 and NUPR1 expression in HCC cells via the IGF-II/IGF-IR/MEK/ERK signaling pathway. These findings help to explain the molecular mechanisms

  3. Giant basal cell carcinoma Carcinoma basocelular gigante

    Directory of Open Access Journals (Sweden)

    Nilton Nasser

    2012-06-01

    Full Text Available The basal cell carcinoma is the most common skin cancer but the giant vegetating basal cell carcinoma reaches less than 0.5 % of all basal cell carcinoma types. The Giant BCC, defined as a lesion with more than 5 cm at its largest diameter, is a rare form of BCC and commonly occurs on the trunk. This patient, male, 42 years old presents a Giant Basal Cell Carcinoma which reaches 180 cm2 on the right shoulder and was negligent in looking for treatment. Surgical treatment was performed and no signs of dissemination or local recurrence have been detected after follow up of five years.O carcinoma basocelular é o tipo mais comum de câncer de pele, mas o carcinoma basocelular gigante vegetante não atinge 0,5% de todos os tipos de carcinomas basocelulares. O Carcinoma Basocelular Gigante, definido como lesão maior que 5 cm no maior diâmetro, é uma forma rara de carcinoma basocelular e comumente ocorre no tronco. Este paciente apresenta um Carcinoma Basocelular Gigante com 180cm² no ombro direito e foi negligente em procurar tratamento. Foi realizado tratamento cirúrgico e nenhum sinal de disseminação ou recorrência local foi detectada após 5 anos.

  4. In Vitro and in Vivo Anticancer Activity of Pardaxin against Proliferation and Growth of Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yifan Han

    2015-12-01

    Full Text Available Pardaxin (H-GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE-OH, a 33-amino-acid polypeptide, is an antimicrobial peptide (AMP isolated from the marine fish species Pardachirus marmoratus. Pardaxin shows antibacterial and antitumor activities. However, pardaxin-induced inhibition of oral cancer and the mechanism of tumor reduction in buccal pouch carcinogenesis after pardaxin painting remain undetermined. Additionally, the toxic effects of pardaxin on normal tissue remain unclear. The present study investigated the anticancer activity of pardaxin in oral squamous cell carcinoma (OSCC cells in the hamster buccal pouch model with or without 7,12-dimethylbenz[a]anthracene (DMBA pretreatment. This is the first study to confirm the effects of pardaxin on normal tissue and its nontoxic effects in vivo. Cell viability assays and colony formation tests in OSCC cell lines (SCC-4 demonstrated that pardaxin reduced cell viability in a dose-dependent manner. Immunofluorescence staining of cleaved caspase-3 in SCC-4 cells revealed that expression of activated caspase-3 in SCC-4 cells significantly increased after 24-h treatment with pardaxin. Additionally, a cell cycle analysis indicated that pardaxin treatment resulted in the cell cycle arrest of SCC-4 cells in the G2/M phase, thereby limiting cell proliferation. Furthermore, pardaxin treatment substantially alleviated carcinogenesis in the DMBA-induced hamster buccal pouch model by lowering prostaglandin E2 levels. These results suggest that pardaxin is a potential marine drug for adjuvant chemotherapy for human OSCC and oral cancer.

  5. Down-regulation of the expression of CCAAT/enhancer binding protein α gene in cervical squamous cell carcinoma

    International Nuclear Information System (INIS)

    Pan, Zemin; Shao, Renfu; Zheng, Weinan; Zhang, Jinli; Gao, Rui; Li, Dongmei; Guo, Xiaoqing; Han, Hu; Li, Feng; Qu, Shen

    2014-01-01

    Cervical carcinoma is the second most common cancer and is an important cause of death in women worldwide. CCAAT/enhancer binding proteins (C/EBPs) are a family of transcription factors that regulate cellular differentiation and proliferation in a variety of tissues. However, the role of C/EBPα gene in cervical cancer is still not clear. We investigated the expression of C/EBPα gene in cervical squamous cell carcinoma. C/EBPα mRNA level was measured by real-time quantitative RT-PCR in cervical cancer tissues and their adjacent normal tissues. C/EBPα protein level was measured by immunohistochemistry. Methylation in the promoter of C/EBPα gene was detected by MALDI TOF MassARRAY. We transfected HeLa cells with C/EBPα expression vector. C/EBPα expression in HeLa cells was examined and HeLa cell proliferation was measured by MTT assay and HeLa cells migration was analyzed by matrigel-coated transwell migration assays. There were significant difference in C/EBPα protein expression between chronic cervicitis and cervical carcinoma (P < 0.001). CEBPα mRNA level was significantly lower in cervical cancer tissues than in normal cervical tissues (P < 0.01). Methylation of the promoter of CEBPα gene in CpG 5, CpG-14.15, CpG-19.20 were significantly higher in cervical cancer than in normal cervical tissues (P < 0.05, P < 0.01, P < 0.05, respectively). CEBPα pcDNA3.1 construct transfected into HeLa cells inhibited cell proliferation and decreased cell migration. Our results indicate that reduced C/EBPα gene expression may play a role in the development of cervical squamous cell carcinoma

  6. Effects of matrix metalloproteinase inhibitor doxycycline and CD147 antagonist peptide-9 on gallbladder carcinoma cell lines.

    Science.gov (United States)

    Wang, Shihang; Liu, Chao; Liu, Xinjiang; He, Yanxin; Shen, Dongfang; Luo, Qiankun; Dong, Yuxi; Dong, Haifeng; Pang, Zhigang

    2017-10-01

    Gallbladder carcinoma is the most common and aggressive malignancy of the biliary tree and highly expresses CD147, which is closely related to disease prognosis in a variety of human cancers. Doxycycline exhibited anti-tumor properties in many cancer cells. CD147 antagonist peptide-9 is a polypeptide and can specifically bind to CD147. The effect of these two drugs on gallbladder cancer cells has not been studied. The aim of this study is to investigate the effect of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells and the possible mechanism of inhibition on cancer cell of doxycycline. To investigate the effects of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells (GBC-SD and SGC-996), cell proliferation, CD147 expression, and early-stage apoptosis rate were measured after treated with doxycycline. Matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were measured after treated with different concentrations of doxycycline, antagonist peptide-9, and their combination. The results demonstrated that doxycycline inhibited cell proliferation, reduced CD147 expression level, and induced an early-stage apoptosis response in GBC-SD and SGC-996 cells. The matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were inhibited by antagonist peptide-9 and doxycycline, and the inhibitory effects were enhanced by combined drugs in gallbladder carcinoma cell lines. Taken together, doxycycline showed inhibitory effects on gallbladder carcinoma cell lines and reduced the expression of CD147, and this may be the mechanism by which doxycycline inhibits cancer cells. This study provides new information and tries to implement the design of adjuvant therapy method for gallbladder carcinoma.

  7. Leptin acts on neoplastic behavior and expression levels of genes related to hypoxia, angiogenesis, and invasiveness in oral squamous cell carcinoma.

    Science.gov (United States)

    Sobrinho Santos, Eliane Macedo; Guimarães, Talita Antunes; Santos, Hércules Otacílio; Cangussu, Lilian Mendes Borborema; de Jesus, Sabrina Ferreira; Fraga, Carlos Alberto de Carvalho; Cardoso, Claudio Marcelo; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Gomez, Ricardo Santiago; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2017-05-01

    Leptin, one of the main hormones controlling energy homeostasis, has been associated with different cancer types. In oral cancer, its effect is not well understood. We investigated, through in vitro and in vivo assays, whether leptin can affect the neoplastic behavior of oral squamous cell carcinoma. Expression of genes possibly linked to the leptin pathway was assessed in leptin-treated oral squamous cell carcinoma cells and also in tissue samples of oral squamous cell carcinoma and oral mucosa, including leptin, leptin receptor, hypoxia-inducible factor 1-alpha, E-cadherin, matrix metalloproteinase-2, matrix metalloproteinase-9, Col1A1, Ki67, and mir-210. Leptin treatment favored higher rates of cell proliferation and migration, and reduced apoptosis. Accordingly, leptin-treated oral squamous cell carcinoma cells show decreased messenger RNA caspase-3 expression, and increased levels of E-cadherin, Col1A1, matrix metalloproteinase-2, matrix metalloproteinase-9, and mir-210. In tissue samples, hypoxia-inducible factor 1-alpha messenger RNA and protein expression of leptin and leptin receptor were high in oral squamous cell carcinoma cases. Serum leptin levels were increased in first clinical stages of the disease. In animal model, oral squamous cell carcinoma-induced mice show higher leptin receptor expression, and serum leptin level was increased in dysplasia group. Our findings suggest that leptin seems to exert an effect on oral squamous cell carcinoma cells behavior and also on molecular markers related to cell proliferation, migration, and tumor angiogenesis.

  8. PRDM14 is expressed in germ cell tumors with constitutive overexpression altering human germline differentiation and proliferation

    Directory of Open Access Journals (Sweden)

    Joanna J. Gell

    2018-03-01

    Full Text Available Germ cell tumors (GCTs are a heterogeneous group of tumors occurring in gonadal and extragonadal locations. GCTs are hypothesized to arise from primordial germ cells (PGCs, which fail to differentiate. One recently identified susceptibility loci for human GCT is PR (PRDI-BF1 and RIZ domain proteins 14 (PRDM14. PRDM14 is expressed in early primate PGCs and is repressed as PGCs differentiate. To examine PRDM14 in human GCTs we profiled human GCT cell lines and patient samples and discovered that PRDM14 is expressed in embryonal carcinoma cell lines, embryonal carcinomas, seminomas, intracranial germinomas and yolk sac tumors, but is not expressed in teratomas. To model constitutive overexpression in human PGCs, we generated PGC-like cells (PGCLCs from human pluripotent stem cells (PSCs and discovered that elevated expression of PRDM14 does not block early PGC formation. Instead, we show that elevated PRDM14 in PGCLCs causes proliferation and differentiation defects in the germline. Keywords: Germ cell tumor, PRDM14, Cell differentiation, Primordial germ cell, Proliferation

  9. Cell Cycle Phase Abnormalities Do Not Account for Disordered Proliferation in Barrett's Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Pierre Lao-Sirieix

    2004-11-01

    Full Text Available Barrett's esophagus (BE epithelium is the precursor lesion for esophageal adenocarcinoma. Cell cycle proteins have been advocated as biomarkers to predict the malignant potential in BE. However, whether disruption of the cell cycle plays a causal role in Barrett's carcinogenesis is not clear. Specimens from the Barrett's dysplasia—carcinoma sequence were immunostained for cell cycle phase markers (cyclin D1 for G1; cyclin A for S, G2, and M; cytoplasmic cyclin B1 for G2; and phosphorylated histone 3 for M phase and expressed as a proportion of proliferating cells. Flow cytometric analysis of the cell cycle phase of prospective biopsies was also performed. The proliferation status of nondysplastic BE was similar to gastric antrum and D2, but the proliferative compartment extended to the luminal surface. In dysplastic samples, the number of proliferating cells correlated with the degree of dysplasia (P < .001. The overall levels of cyclins A and B1 correlated with the degree of dysplasia (P < .001. However, the cell cycle phase distribution measured with both immunostaining and flow cytometry was conserved during all stages of BE, dysplasia, and cancer. Hence, the increased proliferation seen in Barrett's carcinogenesis is due to abnormal cell cycle entry or exit, rather than a primary abnormality within the cell cycle.

  10. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression.

    Science.gov (United States)

    Fang, Zheng; Zhao, Junfang; Xie, Weihong; Sun, Qiang; Wang, Haibin; Qiao, Bin

    2017-12-01

    Chemotherapy resistance has become the main obstacle for the effective treatment of human cancers. Long non-coding RNA urothelial cancer associated 1 (UCA1) is generally regarded as an oncogene in some cancers. However, the function and molecular mechanism of UCA1 implicated in cisplatin (CDDP) chemoresistance of oral squamous cell carcinoma (OSCC) is still not fully established. UCA1 expression in tumor tissues and cells was tested by qRT-PCR. MTT, flow cytometry and caspase-3 activity analysis were explored to evaluate the CDDP sensitivity in OSCC cells. Western blot analysis was used to measure BCL2, Bax and SF1 protein expression. Luciferase reporter assay was conducted to investigate the molecular relationship between UCA1, miR-184, and SF1. Nude mice model was used to confirm the functional role of UCA1 in CDDP resistance in vivo. UCA1 expression was upregulated in OSCC tissues, cell lines, and CDDP resistant OSCC cells. Function analysis revealed that UCA1 facilitated proliferation, enhanced CDDP chemoresistance, and suppressed apoptosis in OSCC cells. Mechanisms investigation indicated that UCA1 could interact with miR-184 to repress its expression. Rescue experiments suggested that downregulation of miR-184 partly reversed the tumor suppression effect and CDDP chemosensitivity of UCA1 knockdown in CDDP-resistant OSCC cells. Moreover, UCA1 could perform as a miR-184 sponge to modulate SF1 expression. The OSCC nude mice model experiments demonstrated that depletion of UCA1 further boosted CDDP-mediated repression effect on tumor growth. UCA1 accelerated proliferation, increased CDDP chemoresistance and restrained apoptosis partly through modulating SF1 via sponging miR-184 in OSCC cells, suggesting that targeting UCA1 may be a potential therapeutic strategy for OSCC patients. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Rosiglitazone Inhibits Adrenocortical Cancer Cell Proliferation by Interfering with the IGF-IR Intracellular Signaling

    Directory of Open Access Journals (Sweden)

    Luconi Michaela

    2008-07-01

    Full Text Available Rosiglitazone (RGZ, a thiazolidinedione ligand of the peroxisome proliferator-activated receptor (PPAR-γ, has been recently described as possessing antitumoral properties. We investigated RGZ effect on cell proliferation in two cell line models (SW13 and H295R of human adrenocortical carcinoma (ACC and its interaction with the signaling pathways of the activated IGF-I receptor (IGF-IR. We demonstrate a high expression of IGF-IR in the two cell lines and in ACC. Cell proliferation is stimulated by IGF-I in a dose- and time-dependent manner and is inhibited by RGZ. The analysis of the main intracellular signaling pathways downstream of the activated IGF-IR, phosphatidyl inositol 3-kinase (PI3K-Akt, and extracellular signal-regulated kinase (ERK1/2 cascades reveals that RGZ rapidly interferes with the Akt and ERK1/2 phosphorylation/activation which mediates IGF-I stimulated proliferation. In conclusion, our results suggest that RGZ exerts an inhibitory effect on human ACC cell proliferation by interfering with the PI3K/Akt and ERK1/2 signaling pathways downstream of the activated IGF-IR.

  12. Inhibition of Epidermal Growth Factor Receptor and PI3K/Akt Signaling Suppresses Cell Proliferation and Survival through Regulation of Stat3 Activation in Human Cutaneous Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Bito, T.; Sumita, N.; Ashida, M.; Budiyanto, A.; Ueda, M.; Ichihashi, M.; Nishigori, C.; Tokura, Y.; Bito, T.

    2011-01-01

    Recent studies have emphasized the important role of Stat3 activation in a number of human tumors from the viewpoint of its oncogenic and anti apoptotic activity. In this study, we examined the role and related signaling molecules of Stat3 in the carcinogenesis of human cutaneous squamous cell carcinoma (SCC). In 35 human cutaneous SCC samples, 86% showed overexpression of phosphorylated (p)-Stat3, and most of those simultaneously over expressed p-EGFR or p-Akt. Constitutive activation of EGFR and Stat3 was observed in three SCC cell lines and four of five SCC tissues. AG1478, an inhibitor of the EGFR, down regulated Stat3 activation in HSC-1 human SCC cells. AG1478 inhibited cell proliferation and induced apoptosis of HSC-1 cells but did not inhibit the growth of normal human epidermal keratinocytes that did not show Stat3 activation. Furthermore, a PI3K inhibitor also suppressed Stat3 activation in HSC-1 cells to some degree. Combined treatment with the PI3K inhibitor and AG1478 strongly suppressed Stat3 activity and dramatically induced apoptosis of HSC-1 cells. These data suggest that Stat3 activation through EGFR and/or PI3K/Akt activation plays a critical role in the proliferation and survival of human cutaneous SCC.

  13. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion.

    Science.gov (United States)

    Xue, Mei; Li, Xu; Li, Zhengkun; Chen, Wei

    2014-07-01

    Urothelial carcinoma associated 1 (UCA1) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in bladder cancer progression and acts as a diagnostic biomarker for bladder carcinoma. Here, we studied the expression and function of lncRNA-UCA1 in the hypoxic microenvironment of bladder cancer. The expression and transcriptional activity of lncRNA-UCA1 were measured by quantitative real-time polymerase chain reaction and luciferase assays. Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry. Cell migration and invasion were detected by wound healing, migration, and invasion assays. The binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the lncRNA-UCA1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. HRE mutations were generated by using a site-directed mutagenesis kit, and HIF-1α knockdown was mediated by small interfering RNA. The effect of HIF-1α inhibition by YC-1 on lncRNA-UCA1 expression was also examined. LncRNA-UCA1 was upregulated by hypoxia in bladder cancer cells. Under hypoxic conditions, lncRNA-UCA1 upregulation increased cell proliferation, migration, and invasion and inhibited apoptosis. The underlying mechanism of hypoxia-upregulated lncRNA-UCA1 expression was that HIF-1α specifically bound to HREs in the lncRNA-UCA1 promoter. Furthermore, HIF-1α knockdown or inhibition could prevent lncRNA-UCA1 upregulation under hypoxia. These findings revealed the mechanism of lncRNA-UCA1 upregulation in hypoxic bladder cancer cells and suggested that effective blocking of lncRNA-UCA1 expression in the hypoxic microenvironment of bladder cancer could be a novel therapeutic strategy.

  14. Alpha-2 Heremans Schmid Glycoprotein (AHSG) Modulates Signaling Pathways in Head and Neck Squamous Cell Carcinoma Cell Line SQ20B

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Pamela D.; Sakwe, Amos [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Koumangoye, Rainelli [Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Yarbrough, Wendell G. [Division of Otolaryngology, Departments of Surgery and Pathology and Yale Cancer Center, Yale University, New Haven, CT 06520 (United States); Ochieng, Josiah [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Marshall, Dana R., E-mail: dmarshall@mmc.edu [Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208 (United States)

    2014-02-15

    This study was performed to identify the potential role of Alpha-2 Heremans Schmid Glycoprotein (AHSG) in Head and Neck Squamous Cell Carcinoma (HNSCC) tumorigenesis using an HNSCC cell line model. HNSCC cell lines are unique among cancer cell lines, in that they produce endogenous AHSG and do not rely, solely, on AHSG derived from serum. To produce our model, we performed a stable transfection to down-regulate AHSG in the HNSCC cell line SQ20B, resulting in three SQ20B sublines, AH50 with 50% AHSG production, AH20 with 20% AHSG production and EV which is the empty vector control expressing wild-type levels of AHSG. Utilizing these sublines, we examined the effect of AHSG depletion on cellular adhesion, proliferation, migration and invasion in a serum-free environment. We demonstrated that sublines EV and AH50 adhered to plastic and laminin significantly faster than the AH20 cell line, supporting the previously reported role of exogenous AHSG in cell adhesion. As for proliferative potential, EV had the greatest amount of proliferation with AH50 proliferation significantly diminished. AH20 cells did not proliferate at all. Depletion of AHSG also diminished cellular migration and invasion. TGF-β was examined to determine whether levels of the TGF-β binding AHSG influenced the effect of TGF-β on cell signaling and proliferation. Whereas higher levels of AHSG blunted TGF-β influenced SMAD and ERK signaling, it did not clearly affect proliferation, suggesting that AHSG influences on adhesion, proliferation, invasion and migration are primarily due to its role in adhesion and cell spreading. The previously reported role of AHSG in potentiating metastasis via protecting MMP-9 from autolysis was also supported in this cell line based model system of endogenous AHSG production in HNSCC. Together, these data show that endogenously produced AHSG in an HNSCC cell line, promotes in vitro cellular properties identified as having a role in tumorigenesis. Highlights: • Head

  15. Alpha-2 Heremans Schmid Glycoprotein (AHSG) Modulates Signaling Pathways in Head and Neck Squamous Cell Carcinoma Cell Line SQ20B

    International Nuclear Information System (INIS)

    Thompson, Pamela D.; Sakwe, Amos; Koumangoye, Rainelli; Yarbrough, Wendell G.; Ochieng, Josiah; Marshall, Dana R.

    2014-01-01

    This study was performed to identify the potential role of Alpha-2 Heremans Schmid Glycoprotein (AHSG) in Head and Neck Squamous Cell Carcinoma (HNSCC) tumorigenesis using an HNSCC cell line model. HNSCC cell lines are unique among cancer cell lines, in that they produce endogenous AHSG and do not rely, solely, on AHSG derived from serum. To produce our model, we performed a stable transfection to down-regulate AHSG in the HNSCC cell line SQ20B, resulting in three SQ20B sublines, AH50 with 50% AHSG production, AH20 with 20% AHSG production and EV which is the empty vector control expressing wild-type levels of AHSG. Utilizing these sublines, we examined the effect of AHSG depletion on cellular adhesion, proliferation, migration and invasion in a serum-free environment. We demonstrated that sublines EV and AH50 adhered to plastic and laminin significantly faster than the AH20 cell line, supporting the previously reported role of exogenous AHSG in cell adhesion. As for proliferative potential, EV had the greatest amount of proliferation with AH50 proliferation significantly diminished. AH20 cells did not proliferate at all. Depletion of AHSG also diminished cellular migration and invasion. TGF-β was examined to determine whether levels of the TGF-β binding AHSG influenced the effect of TGF-β on cell signaling and proliferation. Whereas higher levels of AHSG blunted TGF-β influenced SMAD and ERK signaling, it did not clearly affect proliferation, suggesting that AHSG influences on adhesion, proliferation, invasion and migration are primarily due to its role in adhesion and cell spreading. The previously reported role of AHSG in potentiating metastasis via protecting MMP-9 from autolysis was also supported in this cell line based model system of endogenous AHSG production in HNSCC. Together, these data show that endogenously produced AHSG in an HNSCC cell line, promotes in vitro cellular properties identified as having a role in tumorigenesis. Highlights: • Head

  16. Cutaneous Squamous Cell Carcinoma.

    Science.gov (United States)

    Parekh, Vishwas; Seykora, John T

    2017-09-01

    Cutaneous squamous cell carcinoma (cSCC) is a malignant neoplasm of the skin characterized by an aberrant proliferation of keratinocytes. Cutaneous SCC is the second most common malignancy globally, and usually arises in the chronically sun-damaged skin of elderly white individuals. From a pathologist's perspective, it is important to differentiate cSCC from the benign and reactive squamoproliferative lesions and identify the high-risk features associated with aggressive tumor behavior. In this article, we provide an up-to-date overview of cSCC along with its precursor lesions and important histologic variants, with a particular emphasis on the histopathologic features and molecular pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Prognostic value of proliferating cell nuclear antigen in parotid gland cancer.

    Science.gov (United States)

    Stenner, Markus; Demgensky, Ariane; Molls, Christoph; Hardt, Aline; Luers, Jan C; Grosheva, Maria; Huebbers, Christian U; Klussmann, Jens P

    2012-04-01

    Although cell proliferation is related to tumour aggressiveness and prognosis, there are few studies describing the expression of proliferative markers in salivary gland cancer. Our aim was to assess the long-term prognostic value of the proliferating cell nuclear antigen (PCNA) in a large group of histologically different salivary gland cancers. We analysed the expression of PCNA in 159 patients with parotid gland cancer by means of immunohistochemistry. The mean follow-up time was 56.6 months. A high expression of PCNA showed a significant correlation to the patients' pathological lymph node stage (p = 0.004). A high PCNA expression significantly indicated a poor 5-year disease-free (p = 0.046) and overall survival rate (p = 0.018). The PCNA expression was the only prognostic factor for a worse 5-year disease-free and overall survival in acinic cell carcinomas (p = 0.004, p = 0.022). The correlation between PCNA expression and survival probabilities of salivary gland cancer might make proliferation markers helpful tools in patient follow-up, prognosis and targeted therapy in salivary gland cancer in future.

  18. Basaloid Squamous Cell Carcinoma Involving the Alveolar Ridge, Buccal & Lingual Vestibule - A Case Report

    Directory of Open Access Journals (Sweden)

    Supriya Koshti

    2013-01-01

    Full Text Available Background: Basaloid squamous cell carcinoma of oral mucosa is a rare and aggressive variant of squamous cell carcinoma. They can be differentiated from squamous cell carcinomas by their distinct clinical and histopathological features. Methods: 45 year old female patient presented with extra oral exophytic mass and intra-oral ulcerative lesion on right buccal mucosa and vestibule. The patient was referred for routine blood examination and radiography followed by incisional biopsy. The biopsy specimen was fixed, processed and stained with Hematoxylin and Eosin for further microscopic examination. Results: On microscopic examination basaloid cells were seen proliferating along with dysplastic squamous cells in the connective tissue stroma. Conclusion: Based on the histopathological findings a diagnosis of ′Basaloid squamous cell carcinoma′ was made. The patient was referred to department of Oral and Maxillofacial Surgery for excision of the lesion followed by radiotherapy.

  19. Resveratrol promotes regression of renal carcinoma cells via a renin-angiotensin system suppression-dependent mechanism.

    Science.gov (United States)

    Li, Jianchang; Qiu, Mingning; Chen, Lieqian; Liu, Lei; Tan, Guobin; Liu, Jianjun

    2017-02-01

    The aim of the present study was to investigate the effect of resveratrol on renal carcinoma cells and explore possible renin-angiotensin system-associated mechanisms. Subsequent to resveratrol treatment, the cell viability, apoptosis rate, cytotoxicity levels, caspase 3/7 activity and the levels of angiotensin II (AngII), AngII type 1 receptor (AT1R), vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) were evaluated in renal carcinoma cells. The effects of AngII, AT1R, VEGF and COX-2 on resveratrol-induced cell growth inhibition and apoptosis were also examined. The results indicated that resveratrol treatment may suppress growth, induce apoptosis, and decrease AngII, AT1R, VEGF and COX-2 levels in renal carcinoma ACHN and A498 cells. In addition, resveratrol-induced cell growth suppression and apoptosis were reversed when co-culturing with AT1R or VEGF. Thus, resveratrol may suppress renal carcinoma cell proliferation and induce apoptosis via an AT1R/VEGF pathway.

  20. Small cell type neuroendocrine carcinoma colliding with squamous cell carcinoma at esophagus

    Science.gov (United States)

    Yang, Luoluo; Sun, Xun; Zou, Yabin; Meng, Xiangwei

    2014-01-01

    Collision tumor is an extremely rare tumor which defined as the concrescence of two distinct primaries neoplasms. We report here a case of collision tumor at lower third esophagus composed of small cell type neuroendocrine carcinoma (NEC), which is an very rare, highly aggressive and poorly prognostic carcinoma and squamous cell carcinoma (SqCC). In our case, pathologically, the small cell carcinoma display the characteristic of small, round, ovoid or spindle-shaped tumor cells with scant cytoplasm, which colliding with a moderately differentiated squamous cell carcinoma. Immunohistochemical staining demonstrated positive activities for CD56, synaptophysin, 34βE12, CK 5/6, ki-67 (70%-80%), but negative for CD99, chromogranin A, and TTF-1. Accurate diagnosis was made base on these findings. PMID:24817981

  1. Isorhynchophylline, a Potent Plant Alkaloid, Induces Apoptotic and Anti-Metastatic Effects in Human Hepatocellular Carcinoma Cells through the Modulation of Diverse Cell Signaling Cascades

    Directory of Open Access Journals (Sweden)

    Hanwool Lee

    2017-05-01

    Full Text Available Isorhynchophylline (Rhy is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase. This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4, MMP-9 (Matrix metallopeptidase-9, and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells.

  2. Isorhynchophylline, a Potent Plant Alkaloid, Induces Apoptotic and Anti-Metastatic Effects in Human Hepatocellular Carcinoma Cells through the Modulation of Diverse Cell Signaling Cascades

    Science.gov (United States)

    Lee, Hanwool; Baek, Seung Ho; Lee, Jong Hyun; Kim, Chulwon; Ko, Jeong-Hyeon; Lee, Seok-Geun; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Yang, Woong Mo; Um, Jae-Young; Sethi, Gautam; Ahn, Kwang Seok

    2017-01-01

    Isorhynchophylline (Rhy) is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase). This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4), MMP-9 (Matrix metallopeptidase-9), and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells. PMID:28534824

  3. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Ankit Rai

    Full Text Available Using cell based screening assay, we identified a novel anti-tubulin agent (Z-5-((5-(4-bromo-3-chlorophenylfuran-2-ylmethylene-2-thioxothiazolidin-4-one (BCFMT that inhibited proliferation of human cervical carcinoma (HeLa (IC(50, 7.2 ± 1.8 µM, human breast adenocarcinoma (MCF-7 (IC(50, 10.0 ± 0.5 µM, highly metastatic breast adenocarcinoma (MDA-MB-231 (IC(50, 6.0 ± 1 µM, cisplatin-resistant human ovarian carcinoma (A2780-cis (IC(50, 5.8 ± 0.3 µM and multi-drug resistant mouse mammary tumor (EMT6/AR1 (IC(50, 6.5 ± 1 µM cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM, BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably state by 135% and reduced the dynamicity (dimer exchange per unit time of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 ± 1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K(i of 5.2 ± 1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2 at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug

  4. Changes in cell proliferation and morphology in the large intestine of normal and DMH-treated rats following colostomy.

    Science.gov (United States)

    Barkla, D H; Tutton, P J

    1987-04-01

    Colostomies were formed in the midcolon of normal and DMH-treated rats. Changes in cell proliferation in the mucosa adjacent to the colostomy and in the defunctioned distal segment were measured at seven, 14, 30, and 72 days using a stathmokinetic technique. Animals were given intraperitoneal injections of vinblastine and sacrificed three hours later; counts of mitotic and nonmitotic cells were made in tissue sections, and three-hour accumulated mitotic indexes were estimated. The results show that, except at seven days in DMH-treated rats, cell proliferation was unchanged in the colon proximal to the colostomy. Morphologic evidence of hyperplasia was seen in some animals at seven and 14 days. The defunctioned segment showed rapid atrophy of both mucosa and muscularis and a gradual but progressive decrease in cell proliferation. The morphology of the mucosa adjacent to the suture line in both functioning and defunctioned segments in normal and DMH-treated rats was abnormal in many animals. Abnormalities that were seen included collections of dysplastic epithelial cells in the submucosa, focal adenomatous changes, and intramural carcinoma formation. Aggregates of lymphoid tissue often were associated with carcinomas.

  5. Molecular features of renal cell carcinoma: early diagnostics and perspectives for therapy

    Directory of Open Access Journals (Sweden)

    O. V. Kovaleva

    2014-01-01

    Full Text Available Kidney cancer (renal cell carcinoma is one of the major problems of modern urological oncology. In Russia renal cell carcinoma accountsfor 4.3 % of all cancers. The global incidence of renal cell carcinoma has increased over the past two decades. Worldwide renal cell carcinoma accounts for 3.6 % of all cancers and is 10th frequent malignancy. For some malignancies, for instance tumours of prostate, there are markers known that allowed improved early diagnostics. Kidney cancer, however, remains to be hard to diagnose and to treat, since the symptoms can be detected on advanced stages of the disease. In Russia 75.4 % of renal cell carcinoma cases detected at the stage of local and locally advanced disease. Though there are various target drugs on the market aimed to treat this disease, the results of renal cell carcinoma treatment did not reach any substantial success. Most of existing target drugs for kidney cancer treatment include inhibitors of a single signalingpathway regulated by VHL1, which expression is lost in the vast majority of renal-cell carcinomas. Till now existing drugs did not reach sufficient efficacy. Therefore, it is highly important to search for new signaling pathways, regulating such cellular processes as proliferation, migration and apoptosis. Further, prognostic markers and therapy targets identified so far are not sufficient and poorly specific. Therefore identification and validation of new markers, and especially new specific targets for the treatment of kindey oncopathologies is highly important and timely task.

  6. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    International Nuclear Information System (INIS)

    Lyu, Qing; Tou, Fangfang; Su, Hong; Wu, Xiaoyong; Chen, Xinyi; Zheng, Zhi

    2015-01-01

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway

  7. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Qing [School of Life Sciences, Tsinghua University, Beijing, 100084 (China); Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Tou, Fangfang [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China); Su, Hong; Wu, Xiaoyong [First Affiliated Hospital, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002 (China); Chen, Xinyi [Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, 100029 (China); Zheng, Zhi, E-mail: zheng_sheva@hotmail.com [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China)

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  8. Effects of homeodomain protein CDX2 expression on the proliferation and migration of lovo colon cancer cells.

    Science.gov (United States)

    Zheng, Jian-bao; Sun, Xue-jun; Qi, Jie; Li, Shou-shuai; Wang, Wei; Ren, Hai-liang; Tian, Yong; Lu, Shao-ying; Du, Jun-kai

    2011-09-01

    The homeobox gene, CDX2, plays a major role in development, especially in the gut, and also functions as a tumor suppressor in the adult colon. In the present study, we investigated the effects of CDX2 expression on the proliferation, migration, and apoptosis of the human colon cancer cell line, Lovo. Lovo cells exogenously expressing CDX2 exhibited no significant differences in the percentage of cells in G1- and S-phase or in apoptosis, as determined by flow cytometry. MTT assay also confirmed that CDX2 expression had no effect on proliferation in these cells. Interestingly, conditioned medium collected from CDX2-overexpressing Lovo cells showed a significant decrease in secretion of MMP-2 and the invasive potential of these cells was significantly inhibited. Collectively, these data suggest that CDX2 may play a critical role in the migration and metastasis of colon carcinoma and over-expression of CDX2 in colon cancer cells markedly inhibits invasion. Based on these results, exogenous expression of CDX2 might be a promising option in the treatment of colon carcinoma.

  9. Metformin induces an intracellular reductive state that protects oesophageal squamous cell carcinoma cells against cisplatin but not copper-bis(thiosemicarbazones)

    International Nuclear Information System (INIS)

    Damelin, Leonard Howard; Jivan, Rupal; Veale, Robin Bruce; Rousseau, Amanda Louise; Mavri-Damelin, Demetra

    2014-01-01

    Oesophageal squamous cell carcinoma (OSCC) is a highly aggressive carcinoma with a poor survival rate. One of the most commonly used chemotherapeutic drugs, cisplatin, displays varied and often poor efficacy in vivo. Therefore, alternative, cost-effective and more efficacious treatments are required. Metformin has been previously shown to reduce proliferative rates in various carcinoma cell lines. We report for the first time, the effect of metformin on OSCC cell proliferation and show that it antagonises cisplatin-induced but not copper-bis(thiosemicarbazone)-induced cytotoxicity in OSCC cells. Cell proliferation and stage of the cell cycle were quantified by trypan blue counts and flow cytometry, respectively. All cytotoxicity measurements were made using the tetrazolium based MTT assay. Metabolic alterations to cells were determined as follows: glycolysis via a lactate dehydrogenase assay, reducing equivalents by MTT reduction and reduced intracellular thiols by monobromobimane-thiol fluorescence, and glutathione depletion using buthionine sulfoximine. Inductively coupled plasma mass spectrometry was used to quantify cisplatin-DNA adduct formation. Metformin was found to reduce cell proliferation significantly in all OSCC cell lines, with an accumulation of cells in G0/G1 phase of the cell cycle. However, metformin significantly protected OSCC cells against cisplatin toxicity. Our results indicate that a major mechanism of metformin-induced cisplatin resistance results from a significant increase in glycolysis, intracellular NAD(P)H levels with a concomitant increase in reduced intracellular thiols, leading to decreased cisplatin-DNA adduct formation. The glutathione synthesis inhibitor buthionine sulfoximine significantly ablated the protective effect of metformin. We subsequently show that the copper-bis(thiosemicarbazones), Cu-ATSM and Cu-GTSM, which are trapped in cells under reducing conditions, cause significant OSCC cytotoxicity, both alone and in

  10. [Role of connective tissue growth factor (CTGF) in proliferation and migration of pancreatic cancer cells].

    Science.gov (United States)

    Bai, Yu-chun; Kang, Quan; Luo, Qing; Wu, Dao-qi; Ye, Wei-xia; Lin, Xue-mei; Zhao, Yong

    2011-10-01

    To explore the expression of connective tissue growth factor (CTGF) in pancreatic cancer and its influence on the proliferation and migration of cancer cells. The expression of CTGF in pancreatic cell line PANC-1 cells was analyzed by real-time PCR and in pancreatic carcinoma (50 cases) tissues by immunohistochemistry. The ability of proliferation and migration in vitro of PANC-1 cells was tested by MTT assay, scratch test and Boyden chamber test after the CTGF gene was overexpressed by Ad5-CTGF or silenced with Ad5-siCTGF transfection. CTGF was overexpressed in both pancreatic cancer cells and tissues. Overxpression of CTGF leads to increased proliferation and migration of PANC-1 cells. The CTGF-transfected PANC-1 cells showed apparent stronger proliferation ability and scratch-repair ability than that of empty vector controls. The results of Boyden chamber test showed that there were 34 cells/field (200× magnificantion) of the CTGF-transfected overexpressing cells, much more than the 11 cells/field of the empty vector control cells; and 6 cells/microscopic field of the Ad5-siCTGF-transfected silenced cells, much less than the 15 cells/field of the control cells. CTGF is overexpressed in both pancreatic cancer cells in vitro and in vivo, indicating that it may play an important role in the cell proliferation and migration in pancreatic cancer.

  11. miR-124 suppresses proliferation and invasion of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway by targeting Capn4

    Directory of Open Access Journals (Sweden)

    Hu H

    2017-05-01

    Full Text Available Haili Hu,1,* Guanghui Wang,1,* Congying Li2 1Department of Otorhinolaryngology, Huaihe Hospital of Henan University, 2Department of Otorhinolaryngology, School of Medicine, Kaifeng University, Kaifeng, People’s Republic of China *These authors contributed equally to this work Background: Recent studies have demonstrated that microRNA 124 (miR-124 acts as a tumor suppressor in nasopharyngeal carcinoma (NPC; however, the exact molecular mechanism by which miR-124 exerts tumor suppression has not been well elucidated.Materials and methods: We performed quantitative real-time PCR (qRT-PCR to measure the expression of metastasis associated lung adenocarcinoma transcript 1, miR-124, and calpain small subunit 1 (Capn4 mRNAs in NPC cell lines. We also performed western blot analysis to detect the levels of Capn4. Furthermore, we performed MTT assay and transwell invasion assay to determine the proliferation and invasion ability of two NPC cell lines, namely, HONE1 and CNE2 cells, respectively. The verification of targets of miR-124 was performed using prediction softwares and luciferase reporter analysis.Results: According to our results, the expression of Capn4 was found to be elevated, whereas the expression of miR-124 was lowered in NPC cell lines compared with normal nasopharyngeal cells. When we preformed overexpression of miR-124, it suppressed the proliferation and invasion of NPC cells. Moreover, miR-124 suppressed the expression of Capn4 by targeting Capn4 in HONE1 and CNE2 cells. When we preformed overexpression of Capn4, it reversed the inhibitory effect of miR-124 on the proliferation and invasion of NPC cells. Furthermore, miR-124–Capn4 axis decreased the levels of β-catenin, cyclin D1, and c-Myc, the components of the Wnt/β-catenin signaling pathway.Conclusion: The suppression of proliferation and invasion of NPC cells by miR-124 were achieved by the regulation of Wnt/β-catenin signaling pathway by targeting Capn4. The results of

  12. Aberrant expression of the tight junction molecules claudin-1 and zonula occludens-1 mediates cell growth and invasion in oral squamous cell carcinoma.

    Science.gov (United States)

    Babkair, Hamzah; Yamazaki, Manabu; Uddin, Md Shihab; Maruyama, Satoshi; Abé, Tatsuya; Essa, Ahmed; Sumita, Yoshimasa; Ahsan, Md Shahidul; Swelam, Wael; Cheng, Jun; Saku, Takashi

    2016-11-01

    We reported that altered cell contact mediated by E-cadherin is an initial event in the pathogenesis of oral epithelial malignancies. To assess other effects of cell adhesion, we examined the expression levels of tight junction (TJ) molecules in oral carcinoma in situ (CIS) and squamous cell carcinoma (SCC). To identify changes in the expression of TJ molecules, we conducted an analysis of the immunohistochemical profiles of claudin-1 (CLDN-1) and zonula occludens-1 (ZO-1) in surgical specimens acquired from patients with oral SCC containing foci of epithelial dysplasia or from patients with CIS. We used immunofluorescence, Western blotting, reverse-transcription polymerase chain reaction, and RNA interference to evaluate the functions of CLDN-1 and ZO-1 in cultured oral SCC cells. TJ molecules were not detected in normal oral epithelial tissues but were expressed in SCC/CIS cells. ZO-1 was localized within the nucleus of proliferating cells. When CLDN-1 expression was inhibited by transfecting cells with specific small interference RNAs, SCC cells dissociated, and their ability to proliferate and invade Matrigel was inhibited. In contrast, although RNA interference-mediated inhibition of ZO-1 expression did not affect cell morphology, it inhibited cell proliferation and invasiveness. Our findings indicated that the detection of TJ molecules in the oral epithelia may serve as a marker for the malignant phenotype of cells in which CLDN-1 regulates proliferation and invasion. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer

    Science.gov (United States)

    Yang, Li; Zha, Tian-Qi; He, Xiang; Chen, Liang; Zhu, Quan; Wu, Wei-Bing; Nie, Feng-Qi; Wang, Qian; Zang, Chong-Shuang; Zhang, Mei-Ling; He, Jing; Li, Wei; Jiang, Wen; Lu, Kai-Hua

    2018-01-01

    Pulmonary carcinoma-associated proteins have emerged as crucial players in governing fundamental biological processes such as cell proliferation, apoptosis and metastasis in human cancers. Placenta-specific protein 1 (PLAC1) is a cancer-related protein, which is activated and upregulated in a variety of malignant tissues, including prostate cancer, gastric adenocarcinoma, colorectal, epithelial ovarian and breast cancer. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression are still unknown. In the present study, we found that PLAC1 was significantly upregulated in NSCLC tissues, and its expression level was associated with advanced pathological stage and it was also correlated with shorter progression-free survival of lung cancer patients. Furthermore, knockdown of PLAC1 expression by siRNA inhibited cell proliferation, induced apoptosis and impaired invasive ability in NSCLC cells partly via regulation of epithelial-mesenchymal transition (EMT)-related protein expression. Our findings present that increased PLAC1 could be identified as a negative prognostic biomarker in NSCLC and regulate cell proliferation and invasion. Thus, we conclusively demonstrated that PLAC1 plays a key role in NSCLC development and progression, which may provide novel insights on the function of tumor-related gene-driven tumorigenesis. PMID:29138842

  14. mTOR in squamous cell carcinoma of the oesophagus: a potential target for molecular therapy?

    NARCIS (Netherlands)

    Boone, J.; ten Kate, F. J. W.; Offerhaus, G. J. A.; van Diest, P. J.; Borel Rinkes, I. H. M.; van Hillegersberg, R.

    2008-01-01

    AIMS: The mammalian target of rapamycin (mTOR), an important regulator of protein translation and cell proliferation, is activated in various malignancies. In a randomised controlled trial of advanced renal cell carcinoma patients, targeted therapy to mTOR by means of rapamycin analogues has been

  15. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells

    International Nuclear Information System (INIS)

    Meyer-Siegler, Katherine L; Leifheit, Erica C; Vera, Pedro L

    2004-01-01

    The importance of various inflammatory cytokines in maintaining tumor cell growth and viability is well established. Increased expression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) has previously been associated with various types of adenocarcinoma. MIF IHC was used to localize MIF in human bladder tissue. ELISA and Western blot analysis determined the synthesis and secretion of MIF by human bladder transitional cell carcinoma cells. The effects of MIF inhibitors (high molecular weight hyaluronate (HA), anti-MIF antibody or MIF anti-sense) on cell growth and cytokine expression were analyzed. Human bladder cancer cells (HT-1376) secrete detectable amounts of MIF protein. Treatment with HA, anti-MIF antibody and MIF anti-sense reduced HT-1376 cell proliferation, MIF protein secretion, MIF gene expression and secreted inflammatory cytokines. Our evidence suggests MIF interacts with the invariant chain, CD74 and the major cell surface receptor for HA, CD44. This study is the first to report MIF expression in the human bladder and these findings support a role for MIF in tumor cell proliferation. Since MIF participates in the inflammatory response and bladder cancer is associated with chronic inflammatory conditions, these new findings suggest that neutralizing bladder tumor MIF may serve as a novel therapeutic treatment for bladder carcinoma

  16. The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver.

    Science.gov (United States)

    Meijer, Joost; Zeelenberg, Ingrid S; Sipos, Bence; Roos, Ed

    2006-10-01

    The chemokine receptor CXCR5 is expressed by B cells and certain T cells and controls their migration into and within lymph nodes. Its ligand BCA-1/CXCL13 is present in lymph nodes and spleen and also in the liver. Surprisingly, we detected CXCR5 in several mouse and human carcinoma cell lines. CXCR5 was particularly prominent in pancreatic carcinoma cell lines and was also detected by immunohistochemistry in 7 of 18 human pancreatic carcinoma tissues. Expression in CT26 colon carcinoma was low in vitro, up-regulated in vivo, and rapidly lost when cells were explanted in vitro. CXCL13 strongly promoted proliferation of CXCR5-transfected CT26 cells in vitro. In the liver, after intrasplenic injection, these CXCR5 transfectants initially grew faster than controls, but the growth rate of control tumors accelerated later to become similar to the transfectants, likely due to the up-regulation of CXCR5. Inhibition of CXCR5 function, by trapping CXCR5 in the endoplasmic reticulum using a CXCL13-KDEL "intrakine," had no effect on initial growth of liver foci but later caused a prolonged growth arrest. In contrast, s.c. and lung tumors of CXCR5- and intrakine-transfected cells grew at similar rates as controls. We conclude that expression of CXCR5 on tumor cells promotes the growth of tumor cells in the liver and, at least for CT26 cells, seems to be required for outgrowth to large liver tumors. Given the limited expression on normal cells, CXCR5 may constitute an attractive target for therapy, particularly for pancreatic carcinoma.

  17. DAX-1 Inhibits Hepatocellular Carcinoma Proliferation by Inhibiting β-Catenin Transcriptional Activity

    Directory of Open Access Journals (Sweden)

    Hong-Lei Jiang

    2014-08-01

    Full Text Available Background/Aims: Hepatocellular carcinoma (HCC represents the most common type of liver cancer. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1, an atypical member of the nuclear receptor family due to lack of classical DNA-binding domains, has been known for its fundamental roles in the development, especially in the sex determination and steroidogenesis. Previous studies also showed that DAX-1 played a critical role in endocrine and sex steroid-dependent neoplasms such as adrenocortical, pituitary, endometrial, and ovarian tumors. However, its biological roles in the development of HCC remain largely unexplored. Methods: Real-time PCR and Western blot were used to detect the expression of DAX-1 in HCC tissues and cell lines. Immunoprecipitation (IP assay was used to show the interaction between DAX-1 and β-Catenin. Small interfering RNA (siRNA was used to silence the expression of DAX-1. BrdU incorporation and Cell-cycle assays were used to detect the role of DAX-1 in HCC cells proliferation. Migration and invasion assays were carried out to test the metastasis ability of DAX-1 in HCC cells. Results: In the present study, we found that mRNA and protein levels of DAX-1 were down-regulated in HCC tissues and cell lines. Furthermore, overexpression of DAX-1 could inhibit while its knockdown using small interfering RNA promoted cell proliferation in several HCC cell lines. At the molecular level, we demonstrated that DAX-1 could interact with β-Catenin and attenuate its transcriptional activity. Conclusion: Therefore, our results suggest a previously unknown DAX-1/β-Catenin molecular network controlling HCC development.

  18. Basal cell carcinoma, squamous cell carcinoma and melanoma of the head and face.

    Science.gov (United States)

    Feller, L; Khammissa, R A G; Kramer, B; Altini, M; Lemmer, J

    2016-02-05

    Ultraviolet light (UV) is an important risk factor for cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin. These cancers most commonly affect persons with fair skin and blue eyes who sunburn rather than suntan. However, each of these cancers appears to be associated with a different pattern of UV exposure and to be mediated by different intracellular molecular pathways.Some melanocortin 1 receptor (MC1R) gene variants play a direct role in the pathogenesis of cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma apart from their role in determining a cancer-prone pigmentory phenotype (fair skin, red hair, blue eyes) through their interactions with other genes regulating immuno-inflammatory responses, DNA repair or apoptosis.In this short review we focus on the aetiological role of UV in cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin, and on some associated biopathological events.

  19. [The molecular mechanisms of curcuma wenyujin extract-mediated inhibitory effects on human esophageal carcinoma cells in vitro].

    Science.gov (United States)

    Jing, Zhao; Zou, Hai-Zhou; Xu, Fang

    2012-09-01

    To study the molecular mechanisms of Curcuma Wenyujin extract-mediated inhibitory effects on human esophageal carcinoma cells. The Curcuma Wenyujin extract was obtained by supercritical carbon dioxide extraction. TE-1 cells were divided into 4 groups after adherence. 100 microL RMPI-1640 culture medium containing 0.1% DMSO was added in Group 1 as the control group. 100 microL 25, 50, and 100 mg/L Curcuma Wenyujin extract complete culture medium was respectively added in the rest 3 groups as the low, middle, and high dose Curcuma Wenyujin extract groups. The effects of different doses of Curcuma Wenyujin extract (25, 50, and 100 mg/L) on the proliferation of human esophageal carcinoma cell line TE-1 in vitro were analyzed by MTT assay. The gene expression profile was identified by cDNA microarrays in esophageal carcinoma TE-1 cells exposed to Curcuma Wenyujin extract for 48 h. The differential expression genes were further analyzed by Gene Ontology function analysis. Compared with the control group, MTT results showed that Curcuma Wenyujin extract significantly inhibited the proliferation of TE-1 cells in a dose-dependent manner (PCurcuma Wenyujin extract could inhibit the growth of human esophageal carcinoma cell line TE-1 in vitro. The molecular mechanisms might be associated with regulating genes expressions at multi-levels.

  20. Epithelial cell adhesion molecule - More than a carcinoma marker and adhesion molecule

    NARCIS (Netherlands)

    Trzpis, Monika; McLaughlin, Pamela M. J.; de Leij, Lou M. F. H.; Harmsen, Martin C.

    The epithetial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of similar to 40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally

  1. High MRPS23 expression contributes to hepatocellular carcinoma proliferation and indicates poor survival outcomes.

    Science.gov (United States)

    Pu, Meng; Wang, Jianlin; Huang, Qike; Zhao, Ge; Xia, Congcong; Shang, Runze; Zhang, Zhuochao; Bian, Zhenyuan; Yang, Xishegn; Tao, Kaishan

    2017-07-01

    Hepatocellular carcinoma is one of the most prevalent neoplasms and the leading cause of cancer-related mortality worldwide. Mitochondrial ribosomal protein S23 is encoded by a nuclear gene and participates in mitochondrial protein translation. Mitochondrial ribosomal protein S23 overexpression has been found in many types of cancer. In this study, we explored mitochondrial ribosomal protein S23 expression in primary hepatocellular carcinoma tissues compared with matched adjacent non-tumoral liver tissues using mitochondrial ribosomal protein S23 messenger RNA and protein levels collected from public databases and clinical samples. Immunohistochemistry was performed to analyze the relationship between mitochondrial ribosomal protein S23 and various clinicopathological features. The results indicated that mitochondrial ribosomal protein S23 was significantly overexpressed in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 expression was correlated with the tumor size and tumor-metastasis-node stage. Moreover, patients with high mitochondrial ribosomal protein S23 expression levels presented poorer survival rates. Mitochondrial ribosomal protein S23 was an independent prognostic factor for survival, especially at the early stage of hepatocellular carcinoma. In addition, the downregulation of mitochondrial ribosomal protein S23 decreased the proliferation of hepatocellular carcinoma in vitro and in vivo. In conclusion, we verified for the first time that mitochondrial ribosomal protein S23 expression was upregulated in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 levels can predict poor clinical outcomes in hepatocellular carcinoma, and this protein plays a key role in tumor proliferation. Therefore, mitochondrial ribosomal protein S23 may be a potential therapeutic target for hepatocellular carcinoma.

  2. Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations

    International Nuclear Information System (INIS)

    Preto, Ana; Soares, Paula; Sobrinho-Simões, Manuel; Gonçalves, Joana; Rebocho, Ana P; Figueiredo, Joana; Meireles, Ana M; Rocha, Ana S; Vasconcelos, Helena M; Seca, Hugo; Seruca, Raquel

    2009-01-01

    Thyroid carcinomas show a high prevalence of mutations in the oncogene BRAF which are inversely associated with RAS or RET/PTC oncogenic activation. The possibility of using inhibitors on the BRAF pathway as became an interesting therapeutic approach. In thyroid cancer cells the target molecules, implicated on the cellular effects, mediated by inhibition of BRAF are not well established. In order to fill this lack of knowledge we studied the proliferation and survival pathways and associated molecules induced by BRAF inhibition in thyroid carcinoma cell lines harbouring distinct genetic backgrounds. Suppression of BRAF pathway in thyroid cancer cell lines (8505C, TPC1 and C643) was achieved using RNA interference (RNAi) for BRAF and the kinase inhibitor, sorafenib. Proliferation analysis was performed by BrdU incorporation and apoptosis was accessed by TUNEL assay. Levels of protein expression were analysed by western-blot. Both BRAF RNAi and sorafenib inhibited proliferation in all the cell lines independently of the genetic background, mostly in cells with BRAF V600E mutation. In BRAF V600E mutated cells inhibition of BRAF pathway lead to a decrease in ERK1/2 phosphorylation and cyclin D1 levels and an increase in p27 Kip1 . Specific inhibition of BRAF by RNAi in cells with BRAF V600E mutation had no effect on apoptosis. In the case of sorafenib treatment, cells harbouring BRAF V600E mutation showed increase levels of apoptosis due to a balance of the anti-apoptotic proteins Mcl-1 and Bcl-2. Our results in thyroid cancer cells, namely those harbouring BRAF V600E mutation showed that BRAF signalling pathway provides important proliferation signals. We have shown that in thyroid cancer cells sorafenib induces apoptosis by affecting Mcl-1 and Bcl-2 in BRAF V600E mutated cells which was independent of BRAF. These results suggest that sorafenib may prove useful in the treatment of thyroid carcinomas, particularly those refractory to conventional treatment and

  3. Inhibition of proliferation and differentiation and promotion of apoptosis by cyclin L2 in mouse embryonic carcinoma P19 cells

    International Nuclear Information System (INIS)

    Zhuo, Lili; Gong, Jie; Yang, Rong; Sheng, Yanhui; Zhou, Lei; Kong, Xiangqing; Cao, Kejiang

    2009-01-01

    Cyclin L2 (CCNL2) is a novel member of the cyclin gene family. In a previous study, we demonstrated that CCNL2 expression was upregulated in ventricular septum tissues from patients with ventricular septal defect compared to healthy controls. In the present study, we established a stable CCNL2-overexpressing P19 cell line that can differentiate to myocardial cells when treated with 1% dimethyl sulfoxide (DMSO). Our data showed that stable CCNL2-overexpressing P19 cells were less differentiated after treatment with 1% DMSO and that expression of myocardial cell differentiation-related genes (such as cardiac actin, GATA4, Mef2C, Nkx2.5, and BNP) were reduced compared to vector-only transfected P19. Moreover, P19 cells overexpressing the CCNL2 gene had a reduced growth rate and a remarkably decreased S phase. We also found that these cells underwent apoptosis, as detected by two different apoptosis assays. The anti-apoptotic Bcl-2 protein was also downregulated in these cells. In addition, real-time PCR analysis revealed that expression of Wnt and β-catenin was suppressed and GSK3β was induced in the CCNL2-overexpressing P19 cells. These data suggest that overexpression of CCNL2 inhibited proliferation and differentiation of mouse embryonic carcinoma P19 cells and induced them to undergo apoptosis, possibly through the Wnt signal transduction pathway.

  4. Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra-Soheila; Essmann, Frank; Deezagi, Abdolkhaleg; Engers, Rainer; Goering, Wolfgang; Schulz, Wolfgang A

    2010-08-01

    Many metastatic cancers recapitulate the epithelial-to-mesenchymal transition (EMT) resulting in enhanced cell motility and invasiveness. The EMT is regulated by several transcription factors, including the zinc finger protein SNAI2, also named Slug, which appears to exert additional functions during development and cancer progression. We have studied the function of SNAI2 in prostate cancer cells. Quantitative RT-PCR analysis showed strong SNAI2 expression particularly in the PC-3 and PC3-16 prostate carcinoma cell lines. Knockdown of SNAI2 by specific siRNA induced changes in EMT markers and inhibited invasion of both cell lines into a matrigel matrix. SNAI2 siRNA-treated cells did not tolerate detachment from the culture plates, likely at least in part due to downregulation of integrin alpha6beta4. SNAI2 knockdown disturbed the microtubular and actin cytoskeletons, especially severely in PC-3 cells, resulting in grossly enlarged, flattened, and sometimes multinuclear cells. Knockdown also decreased cell proliferation, with a prominent G0/G1 arrest in PC3-16. Together, our data imply that SNAI2 exerts strong effects on the cytoskeleton and adhesion of those prostate cancer cells that express it and is necessary for their proliferation and invasiveness.

  5. The role of long noncoding RNA-LET in cell proliferation and invasion of nasopharyngeal carcinoma and its mechanism

    Directory of Open Access Journals (Sweden)

    Chen L

    2017-05-01

    Full Text Available Lei Chen,1,* Lingling Sun,1,* Lei Dong,2 Peng Cui,3 Ziwei Xia,4 Chao Li,1 Yu Zhu5 1Department of Otolaryngology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China; 2Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA; 3Department of Multidisciplinary Consultation Center of TCM and Western Medicine, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, 4Department of Clinical Medicine, The Second Clinical Medical School of Tianjin Medical University, 5Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: LncRNA-LET, a recently identified long noncoding RNA, has been shown to act as a tumor suppressor; however, its biological function and mechanism have not been fully investigated. Our research found that there was less expression of LET in nasopharyngeal carcinoma (NPC tissues than normal tissues and that LET might inhibit proliferation, adhesion and invasion of NPC in vitro by enhancing its expression. By contrast, decreased LET expression could promote the proliferation, adhesion and invasion of NPC. In addition, the expression profiles of related genes and MAPK/ERK pathway were also regulated effectively via overexpression or silencing of LET. This result provides comprehensive evidence of LET’s antitumor effect on NPC in vitro, which might provide a new approach for clinical treatment. Keywords: LncRNA-LET, proliferation, invasion, nasopharyngeal carcinoma, MAPK/ERK pathway

  6. Long noncoding RNA NEAT1 promotes cell proliferation and invasion by regulating hnRNP A2 expression in hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Mang YY

    2017-02-01

    Full Text Available Yuanyi Mang, Li Li, Jianghua Ran, Shengning Zhang, Jing Liu, Laibang Li, Yiming Chen, Jian Liu, Yang Gao, Gang Ren Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People’s Republic of China Abstract: Growing evidence demonstrates that long noncoding RNAs (lncRNAs are involved in the progression of various cancers, including hepatocellular carcinoma (HCC. The role of nuclear-enriched abundant transcript 1 (NEAT1, an essential lncRNA for the formation of nuclear body paraspeckles, has not been fully explored in HCC. We aimed to determine the expression, roles and functional mechanisms of NEAT1 in the proliferation and invasion of HCC. Based on real-time polymerase chain reaction data, we suggest that NEAT1 is upregulated in HCC tissues compared with noncancerous liver tissues. The knockdown of NEAT1 altered global gene expression patterns and reduced HCC cell proliferation, invasion and migration. RNA immunoprecipitation and RNA pull-down assays confirmed that U2AF65 binds to NEAT1. Furthermore, the study indicated that NEAT1 regulated hnRNP A2 expression and that this regulation may be associated with the NEAT1–U2AF65 protein complex. Thus, the NEAT1-hnRNP A2 regulation mechanism promotes HCC pathogenesis and may provide a potential target for the prognosis and treatment of HCC. Keywords: long noncoding RNA, NEAT1, RNA-binding protein, HCC

  7. Anti-tumor activity of cabozantinib by FAK down-regulation in human oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Da-Lu Li

    2016-03-01

    Full Text Available Cabozantinib is a tyrosine kinase inhibitor involved in inhibition of cell proliferation and colony formation. We studied anti-cancer properties of cabozantinib in oral squamous cell carcinoma cells. The viability of BHY and HSC-3 cells decreased with increase in cabozantinib concentration and time. The proliferation of cell lines was affected by increasing concentration of cabozantinib from 0.3 to 1.2 μM after 48 hours of treatment. The expression of MET and phosphorylated MET was not affected by cabozantinib treatment. Cabozantinib-treated cells when compared to control, showed concentration-dependent increase in BHY and HSC-3 cells during G2/M phase and decrease in S phase with increase in cabozantinib concentration. Annexin-V/propidium iodide double staining showed that cells with annexin-V increased with the increase in cabozantinib concentration. The expression of apoptosis related proteins cleaved caspase-3 and cleaved-PARP were increased with increase in cabozantinib concentration. It was also found that suppression of FAK activation and expression was dose dependent. The results from this study revealed that cabozantinib can be useful in developing a drug for effective treatment of oral squamous cell carcinoma cells.

  8. Lobaplatin arrests cell cycle progression in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Chen Chang-Jie

    2010-10-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC still is a big burden for China. In recent years, the third-generation platinum compounds have been proposed as potential active agents for HCC. However, more experimental and clinical data are warranted to support the proposal. In the present study, the effect of lobaplatin was assessed in five HCC cell lines and the underlying molecular mechanisms in terms of cell cycle kinetics were explored. Methods Cytotoxicity of lobaplatin to human HCC cell lines was examined using MTT cell proliferation assay. Cell cycle distribution was determined by flow cytometry. Expression of cell cycle-regulated genes was examined at both the mRNA (RT-PCR and protein (Western blot levels. The phosphorylation status of cyclin-dependent kinases (CDKs and retinoblastoma (Rb protein was also examined using Western blot analysis. Results Lobaplatin inhibited proliferation of human HCC cells in a dose-dependent manner. For the most sensitive SMMC-7721 cells, lobaplatin arrested cell cycle progression in G1 and G2/M phases time-dependently which might be associated with the down-regulation of cyclin B, CDK1, CDC25C, phosphorylated CDK1 (pCDK1, pCDK4, Rb, E2F, and pRb, and the up-regulation of p53, p21, and p27. Conclusion Cytotoxicity of lobaplatin in human HCC cells might be due to its ability to arrest cell cycle progression which would contribute to the potential use of lobaplatin for the management of HCC.

  9. Valproic acid sensitizes metformin-resistant human renal cell carcinoma cells by upregulating H3 acetylation and EMT reversal.

    Science.gov (United States)

    Wei, Muyun; Mao, Shaowei; Lu, Guoliang; Li, Liang; Lan, Xiaopeng; Huang, Zhongxian; Chen, Yougen; Zhao, Miaoqing; Zhao, Yueran; Xia, Qinghua

    2018-04-17

    Metformin (Met) is a widely available diabetic drug and shows suppressed effects on renal cell carcinoma (RCC) metabolism and proliferation. Laboratory studies in RCC suggested that metformin has remarkable antitumor activities and seems to be a potential antitumor drug. But the facts that metformin may be not effective in reducing the risk of RCC in cancer clinical trials made it difficult to determine the benefits of metformin in RCC prevention and treatment. The mechanisms underlying the different conclusions between laboratory experiments and clinical analysis remains unclear. The goal of the present study was to determine whether long-term metformin use can induce resistance in RCC, whether metformin resistance could be used to explain the disaccord in laboratory and clinical studies, and whether the drug valproic acid (VPA), which inhibits histone deacetylase, exhibits synergistic cytotoxicity with metformin and can counteract the resistance of metformin in RCC. We performed CCK8, transwell, wound healing assay, flow cytometry and western blotting to detect the regulations of proliferation, migration, cell cycle and apoptosis in 786-O, ACHN and metformin resistance 786-O (786-M-R) cells treated with VPA, metformin or a combination of two drugs. We used TGF-β, SC79, LY294002, Rapamycin, protein kinase B (AKT) inhibitor to treat the 786-O or 786-M-R cells and detected the regulations in TGF-β /pSMAD3 and AMPK/AKT pathways. 786-M-R was refractory to metformin-induced antitumor effects on proliferation, migration, cell cycle and cell apoptosis. AMPK/AKT pathways and TGF-β/SMAD3 pathways showed low sensibilities in 786-M-R. The histone H3 acetylation diminished in the 786-M-R cells. However, the addition of VPA dramatically upregulated histone H3 acetylation, increased the sensibility of AKT and inhibited pSMAD3/SMAD4, letting the combination of VPA and metformin remarkably reappear the anti-tumour effects of metformin in 786-M-R cells. VPA not only exhibits

  10. Immunohistochemical Expression of Survivin in Breast Carcinoma: Relationship with Clinico pathological Parameters, Proliferation and Molecular Classification

    International Nuclear Information System (INIS)

    YOUSSEF, N.S.; HEWEDI, I.H.; ABD RABOH, N.M.

    2008-01-01

    Background and Objective: Survivin is a novel member of the inhibitor of apoptosis (IAP) gene family. It is associated with more aggressive behavior and parameters of poor prognosis in most human cancers including gastric, colorectal and bladder carcinomas. However, conflicting data exist on its prognostic effect in breast cancer. This current study is designed to assess survivin expression in breast carcinoma relating results with clinico pathological parameters, proliferation (MIB-1) and molecular classification. Material and Methods: Our retrospective study com- prised of 65 archived cases of breast carcinoma. Samples from the tumor and the adjacent normal breast tissue were immuno stained for survivin and MIB-1. Nuclear and cytoplasmic survivin expression was evaluated in normal breast tissue and carcinoma regarding both the intensity and the percentage of positive cells. ER, PR, HER2 were used as surrogate markers to classify the cases into four molecular subtypes. Results: Survivin expression was detected in 78.5% of breast carcinomas. The adjacent normal breast tissue was immuno negative. Survivin expression showed significant association with increased tumor size ( p <0.0001), high histologic grade ( p =0.04), lymph node metastases ( p <0.001), advanced tumor stage ( p <0.0001), MIB-1 expression ( p =0.02), negative estrogen receptor status ( p =0.01) and negative progesterone receptor status ( p <0.0001). The subcellular localization of survivin significantly related to histologic grade, stage and lymph node involvement. The percentage of TNP (triple negative phenotype) and HER2+/ER-PR- tumors expressing survivin were significantly higher compared to the Luminal subtypes ( p =0.01). Conclusion: Survivin expression was associated with parameters of poor prognosis in breast cancer. Moreover, the cancer-specific expression of survivin, coupled with its importance in inhibiting cell death and in regulating cell division, makes it a potential target for novel

  11. Regulation of human hepatocellular carcinoma cells by Spred2 and correlative studies on its mechanism

    International Nuclear Information System (INIS)

    Ma, Xiao-Ni; Liu, Xiao-Yun; Yang, Yue-Feng; Xiao, Feng-Jun; Li, Qing-Fang; Yan, Jun; Zhang, Qun-Wei; Wang, Li-Sheng; Li, Xue-Yan; Wang, Hua

    2011-01-01

    Highlights: → Hepatocellular carcinoma is inhibited by Spred2 through as yet unclear mechanisms. → We studied the overexpression of Spred2 in cell line and murine tumor models of HCC. → Spred2 inhibited cell proliferation and migration via attenuating ERK signaling. → Spred2 overexpression induced apoptosis via caspase-3 and downregulated Mcl-1. → A Spred2 knockdown markedly induced tumor growth in vivo. -- Abstract: Members of the Spred gene family are negative regulators of the Ras/Raf-1/ERK pathway, which has been associated with several features of the tumor malignancy. However, the effect of Spred genes on hepatocellular carcinoma (HCC) remains uninvestigated. In the present work, we analyzed the in vitro and in vivo effects of Spred2 expression on the hepatic carcinoma cell line, SMMC-7721. In addition to attenuated ERK activation, which inhibited the proliferation and migration of unstimulated and HGF-stimulated SMMC-7721 cells. Adenovirus-mediated Spred2 overexpression induced the activation of caspase-3 and apoptosis, as well as reduced the expression level of Mcl-1. Most importantly, the knockdown of Spred2 markedly enhanced tumor growth in vivo. In conclusion, these results suggest that Spred2 could qualify as a potential therapeutic target in HCC.

  12. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Leifheit Erica C

    2004-07-01

    Full Text Available Abstract Background The importance of various inflammatory cytokines in maintaining tumor cell growth and viability is well established. Increased expression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF has previously been associated with various types of adenocarcinoma. Methods MIF IHC was used to localize MIF in human bladder tissue. ELISA and Western blot analysis determined the synthesis and secretion of MIF by human bladder transitional cell carcinoma cells. The effects of MIF inhibitors (high molecular weight hyaluronate (HA, anti-MIF antibody or MIF anti-sense on cell growth and cytokine expression were analyzed. Results Human bladder cancer cells (HT-1376 secrete detectable amounts of MIF protein. Treatment with HA, anti-MIF antibody and MIF anti-sense reduced HT-1376 cell proliferation, MIF protein secretion, MIF gene expression and secreted inflammatory cytokines. Our evidence suggests MIF interacts with the invariant chain, CD74 and the major cell surface receptor for HA, CD44. Conclusions This study is the first to report MIF expression in the human bladder and these findings support a role for MIF in tumor cell proliferation. Since MIF participates in the inflammatory response and bladder cancer is associated with chronic inflammatory conditions, these new findings suggest that neutralizing bladder tumor MIF may serve as a novel therapeutic treatment for bladder carcinoma.

  13. Store-Operated Ca2+ Entry Does Not Control Proliferation in Primary Cultures of Human Metastatic Renal Cellular Carcinoma

    Science.gov (United States)

    Turin, Ilaria; Potenza, Duilio Michele; Bottino, Cinzia; Glasnov, Toma N.; Ferulli, Federica; Mosca, Alessandra; Guerra, Germano; Rosti, Vittorio; Luinetti, Ombretta; Porta, Camillo; Pedrazzoli, Paolo

    2014-01-01

    Store-operated Ca2+ entry (SOCE) is activated following depletion of the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pool to regulate proliferation in immortalized cell lines established from either primary or metastatic lesions. The molecular nature of SOCE may involve both Stim1, which senses Ca2+ levels within the endoplasmic reticulum (ER) Ca2+ reservoir, and a number of a Ca2+-permeable channels on the plasma membrane, including Orai1, Orai3, and members of the canonical transient receptor (TRPC1–7) family of ion channels. The present study was undertaken to assess whether SOCE is expressed and controls proliferation in primary cultures isolated from secondary lesions of heavily pretreated metastatic renal cell carcinoma (mRCC) patients. SOCE was induced following pharmacological depletion of the ER Ca2+ store, but not by InsP3-dependent Ca2+ release. Metastatic RCC cells express Stim1-2, Orai1–3, and TRPC1–7 transcripts and proteins. In these cells, SOCE was insensitive to BTP-2, 10 µM Gd3+ and Pyr6, while it was inhibited by 100 µM Gd3+, 2-APB, and carboxyamidotriazole (CAI). Neither Gd3+ nor 2-APB or CAI impaired mRCC cell proliferation. Consistently, no detectable Ca2+ signal was elicited by growth factor stimulation. Therefore, a functional SOCE is expressed but does not control proliferation of mRCC cells isolated from patients resistant to multikinase inhibitors. PMID:25126575

  14. Store-Operated Ca2+ Entry Does Not Control Proliferation in Primary Cultures of Human Metastatic Renal Cellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Silvia Dragoni

    2014-01-01

    Full Text Available Store-operated Ca2+ entry (SOCE is activated following depletion of the inositol-1,4,5-trisphosphate (InsP3-sensitive Ca2+ pool to regulate proliferation in immortalized cell lines established from either primary or metastatic lesions. The molecular nature of SOCE may involve both Stim1, which senses Ca2+ levels within the endoplasmic reticulum (ER Ca2+ reservoir, and a number of a Ca2+-permeable channels on the plasma membrane, including Orai1, Orai3, and members of the canonical transient receptor (TRPC1–7 family of ion channels. The present study was undertaken to assess whether SOCE is expressed and controls proliferation in primary cultures isolated from secondary lesions of heavily pretreated metastatic renal cell carcinoma (mRCC patients. SOCE was induced following pharmacological depletion of the ER Ca2+ store, but not by InsP3-dependent Ca2+ release. Metastatic RCC cells express Stim1-2, Orai1–3, and TRPC1–7 transcripts and proteins. In these cells, SOCE was insensitive to BTP-2, 10 µM Gd3+ and Pyr6, while it was inhibited by 100 µM Gd3+, 2-APB, and carboxyamidotriazole (CAI. Neither Gd3+ nor 2-APB or CAI impaired mRCC cell proliferation. Consistently, no detectable Ca2+ signal was elicited by growth factor stimulation. Therefore, a functional SOCE is expressed but does not control proliferation of mRCC cells isolated from patients resistant to multikinase inhibitors.

  15. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Kwak

    2016-01-01

    Full Text Available Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC. In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin. Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.

  16. Study of P21 Expression in Oral Lichen Planus and Oral Squamous Cell Carcinoma by Immunohistochemical Technique.

    Science.gov (United States)

    Baghaei, Fahimeh; Shojaei, Setareh; Afshar-Moghaddam, Noushin; Zargaran, Massoumeh; Rastin, Verisheh; Nasr, Mohsen; Moghimbeigi, Abbas

    2015-09-01

    Lichen planus is a mucocutaneous disease that is relatively common in middle aged individuals. Some studies have shown that oral lichen planus has a potential to progress to squamous cell carcinoma.p21 is a cyclin-dependent kinase inhibitor that regulates the cell cycle, thus it acts as an inhibitor in cell proliferation. This study was aimed to evaluate and compare the immunostaining of p21 (as a proliferation inhibitory factor) in oral lichen planus (OLP) and oral squamous cell carcinoma (OSCC). In this descriptive cross-sectional study, p21expression was investigated in 24 samples of oral lichen planus (OLP), 24 samples of oral squamous cell carcinoma (OSCC) and 24 samples of oral epithelial hyperplasia (OEH) by employing immunohistochemical staining. The mean percentage of p21-positive cells in OSCC (54.5±6.6) was significantly higher than that in OLP (32.8±6.08) and OEH (9.4±3.8). Moreover, OLP samples expressed p21 significantly higher than the OEH. Kruskal Wallis test revealed a statistically significant difference between the groups regarding the intensity of staining (plichen planus to SCC. Therefore, continuous follow-up periods for OLP are recommended for diagnosis of the malignant transformations in early stages.

  17. Autocrine CSF-1 and CSF-1 Receptor Co-expression Promotes Renal Cell Carcinoma Growth

    Science.gov (United States)

    Menke, Julia; Kriegsmann, Jörg; Schimanski, Carl Christoph; Schwartz, Melvin M.; Schwarting, Andreas; Kelley, Vicki R.

    2011-01-01

    Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Co-expression of the monocytic growth factor CSF-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and anti-apoptosis during regeneration of renal tubules. Here we show that a CSF-1-dependent autocrine pathway is also responsible for the growth of renal cell carcinoma (RCC). CSF-1 and CSF-1R were co-expressed in RCC and TEC proximally adjacent to RCC. CSF-1 engagement of CSF-1R promoted RCC survival and proliferation and reduced apoptosis, in support of the likelihood that CSF-1R effector signals mediate RCC growth. In vivo CSF-1R blockade using a CSF-1R tyrosine kinase inhibitor decreased RCC proliferation and macrophage infiltration in a manner associated with a dramatic reduction in tumor mass. Further mechanistic investigations linked CSF-1 and EGF signaling in RCC. Taken together, our results suggest that budding RCC stimulates the proximal adjacent microenvironment in the kidney to release mediators of CSF-1, CSF-1R and EGF expression in RCC. Further, our findings imply that targeting CSF-1/CSF-1R signaling may be therapeutically effective in RCC. PMID:22052465

  18. Effects of sodium phenylbutyrate on differentiation and induction of the P21WAF1/CIP1 anti-oncogene in human liver carcinoma cell lines.

    Science.gov (United States)

    Meng, Mei; Jiang, Jun Mei; Liu, Hui; In, Cheng Yong; Zhu, Ju Ren

    2005-01-01

    To explore the effects of sodium phenylbutyrate on the proliferation, differentiation, cell cycle arrest and induction of the P(21WAF1/CIP1) anti-oncogene in human liver carcinoma cell lines Bel-7402 and HepG2. Bel-7402 and HepG2 human liver carcinoma cells were treated with sodium phenylbutyrate at different concentrations. Light microscopy was used to observe morphological changes in the carcinoma cells. Effects on the cell cycle were detected by using flow cytometry. P(21WAF1/CIP1) expression was determined by both reverse transcription-polymerase chain reaction and western blotting. Statistical analysis was performed by using one-way anova and Student's t-test. Sodium phenylbutyrate treatment caused time- and dose-dependent growth inhibition of Bel-7402 and HepG2 cells. This treatment also caused a decline in the proportion of S-phase cells and an increase in the proportion of G(0)/G(1) cells. Sodium phenylbutyrate increased the expression of P(21WAF1/CIP1). Sodium phenylbutyrate inhibits the proliferation of human liver carcinoma cells Bel-7402 and HepG2, induces partial differentiation, and increases the expression of P(21WAF1/CIP1).

  19. [Adenovirus-mediated delivery of nm23-H1 gene inhibits growth of colorectal carcinoma cell line Lovo].

    Science.gov (United States)

    Wang, Qi; He, Xueling; Liu, Yan; Yin, Hailin

    2010-12-01

    This experimental study sought to find out the inhibitory effects of Ad-GFP-nm23-H1 on proliferation and metastasis of human colorectal carcinoma cell line Lovo, and, further, to gain an insight into some theoretical and methodical basis for instituting nm23-H1 gene therapy of cancers. MTT assay and Transwell chamber were used to detect the rates of proliferation and invasion as well as the adhesion of Lovo cells in vitro. The results demonstrated that the proliferation inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 84.9% +/- 1.51%, 48.5% +/- 7.23% and 22.5% +/- 5.47%, that the adherence inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 70.3% +/- 2.40%, 60.1% +/- 5.68% and 18.5% +/- 3.61%, and that the invasiveness inhibition rates of Lovo cells treated with Ad-GFP-nm23-H1 of 10(10) PFU/ml, 10(9) PFU/ml and 10(8) PFU/ml were 83.2% +/- 5.71%, 52.2% +/- 6.94% and 28.1% +/- 8.21%. These data suggested that Ad-GFP-nm23-H1 exerted significant inhibitory effects on the proliferation and metastasis of human colorectal carcinoma cell line Lovo in a dose-dependent way.

  20. Mitochondrial fission promotes cell migration by Ca2+ /CaMKII/ERK/FAK pathway in hepatocellular carcinoma.

    Science.gov (United States)

    Sun, Xiacheng; Cao, Haiyan; Zhan, Lei; Yin, Chun; Wang, Gang; Liang, Ping; Li, Jibin; Wang, Zhe; Liu, Bingrong; Huang, Qichao; Xing, Jinliang

    2018-07-01

    Mitochondrial dynamics of fission and fusion plays critical roles in a diverse range of important cellular functions, and its deregulation has been increasingly implicated in human diseases. Previous studies have shown that increased mitochondrial fission significantly promoted the proliferation of hepatocellular carcinoma (HCC) cells. However, how they influence the migration of tumour cells remained largely unknown. In the present study, we further investigated the effect of mitochondrial fission on the migration and metastasis of hepatocellular carcinoma cells. Moreover, the underlying molecular mechanisms and therapeutic application were explored. Our data showed that dynamin-1-like protein expression was strongly increased in distant metastasis of hepatocellular carcinoma when compared to primary hepatocellular carcinoma. In contrast, the mitochondrial fusion protein mitofusin 1 showed an opposite trend. Moreover, the expression of dynamin-1-like protein and mitofusin 1 was significantly associated with the disease-free survival of hepatocellular carcinoma patients. In addition, our data further showed that mitochondrial fission significantly promoted the reprogramming of focal-adhesion dynamics and lamellipodia formation in hepatocellular carcinoma cells mainly by activating typical Ca 2+ /CaMKII/ERK/FAK pathway. Importantly, treatment with mitochondrial division inhibitor-1 significantly decreased calcium signalling in hepatocellular carcinoma cells and had a potential treatment effect for hepatocellular carcinoma metastasis in vivo. Taken together, our findings demonstrate that mitochondrial fission plays a critical role in the regulation of hepatocellular carcinoma cell migration, which provides strong evidence for this process as a drug target in hepatocellular carcinoma metastasis treatment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Pulmonary squamous cell carcinoma following head and neck squamous cell carcinoma: Metastasis or second primary?

    NARCIS (Netherlands)

    Geurts, Tom W.; Nederlof, Petra M.; van den Brekel, Michiel W. M.; van't Veer, Laura J.; de Jong, Daphne; Hart, August A. M.; van Zandwijk, Nico; Klomp, Houke; Balm, Alfons J. M.; van Velthuysen, Marie-Louise F.

    2005-01-01

    Purpose: To distinguish a metastasis from a second primary tumor in patients with a history of head and neck squamous cell carcinoma and subsequent pulmonary squamous cell carcinoma. Experimental Design: For 44 patients with a primary squamous cell carcinoma of the head and neck followed by a

  2. The emerging phenotype of the testicular carcinoma in situ germ cell

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, Ewa; Bartkova, Jirina; Samson, Michel

    2003-01-01

    This review summarises the existing knowledge on the phenotype of the carcinoma in situ (CIS) cell. CIS is a common pre-invasive precursor of testicular germ cell tumours of adolescents and young adults. These tumours display a variety of histological forms. Classical seminoma proliferates along...... of differentiation and pluripotency, CIS cells found in adult patients seem to be predestined for further malignant progression into one or the other of the two main types of overt tumours. A new concept of phenotypic continuity of differentiation of germ cells along germinal lineage with a gradual loss of embryonic...

  3. Galangin suppresses HepG2 cell proliferation by activating the TGF-β receptor/Smad pathway

    International Nuclear Information System (INIS)

    Wang, Yajun; Wu, Jun; Lin, Biyun; Li, Xv; Zhang, Haitao; Ding, Hang; Chen, Xiaoyi; Lan, Liubo; Luo, Hui

    2014-01-01

    Galangin can suppress hepatocellular carcinoma (HCC) cell proliferation. In this study, we demonstrated that galangin induced autophagy by activating the transforming growth factor (TGF)-β receptor/Smad pathway and increased TGF-β receptor I (RI), TGF-βRII, Smad1, Smad2, Smad3 and Smad4 levels but decreased Smad6 and Smad7 levels. Autophagy induced by galangin appears to depend on the TGF-β receptor/Smad signalling pathway because the down-regulation of Smad4 by siRNA or inhibition of TGF-β receptor activation by LY2109761 blocked galangin-induced autophagy. The down-regulation of Beclin1, autophagy-related gene (ATG) 16L, ATG12 and ATG3 restored HepG2 cell proliferation and prevented galangin-induced apoptosis. Our findings indicate a novel mechanism for galangin-induced autophagy via activation of the TGF-β receptor/Smad pathway. The induction of autophagy thus reflects the anti-proliferation effect of galangin on HCC cells

  4. Autoradiographical investigations of the proliferation of gynaecological carcinomas

    International Nuclear Information System (INIS)

    Wehweck, H.

    1981-01-01

    23 biopsies and operation preparations of gynaecological tumours were examined autoradiographically: 8 with an external short-time preirradiation of up to 750 R, one with a curative radiotherapy 1 1/2 years ago. Besides the determination of quantitative parameters of growth kinetics another main concern was to find out the interdependence between the proliferation behaviour of the tumour cells and the histological differentiation of the tumour parenchyma and the topographical location of the malignant cells in the tissue. Possible effects of a previous radiotherapy on the cell proliferation are discussed. (orig./MG) [de

  5. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion

    International Nuclear Information System (INIS)

    Wu Xiaofeng; Fan Jia; Wang Xiaoying; Zhou Jian; Qiu Shuangjian; Yu Yao; Liu Yinkun; Tang Zhaoyou

    2007-01-01

    CC chemokine receptor 1 (CCR1) has an important role in the recruitment of leukocytes to the site of inflammation. The migration and metastasis of tumor cells shares many similarities with leukocyte trafficking, which is mainly regulated by chemokine receptor-ligand interactions. CCR1 is highly expressed in hepatocellular carcinoma (HCC) cells and tissues with unknown functions. In this study, we silenced CCR1 expression in the human HCC cell line HCCLM3 using artificial microRNA (miRNA)-mediated RNA interference (RNAi) and examined the invasiveness and proliferation of CCR1-silenced HCCLM3 cells and the matrix metalloproteinase (MMP) activity. The miRNA-mediated knockdown expression of CCR1 significantly inhibited the invasive ability of HCCLM3 cells, but had only a minor effect on the cellular proliferation rate. Moreover, CCR1 knockdown significantly reduced the secretion of MMP-2. Together, these findings indicate that CCR1 has an important role in HCCLM3 invasion and that CCR1 might be a new target of HCC treatment

  6. Lasiodin inhibits proliferation of human nasopharyngeal carcinoma cells by simultaneous modulation of the Apaf-1/caspase, AKT/MAPK and COX-2/NF-κB signaling pathways.

    Directory of Open Access Journals (Sweden)

    Lianzhu Lin

    Full Text Available Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid. The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.

  7. Donkey milk kefir induces apoptosis and suppresses proliferation of Ehrlich ascites carcinoma by decreasing iNOS in mice.

    Science.gov (United States)

    Esener, Obb; Balkan, B M; Armutak, E I; Uvez, A; Yildiz, G; Hafizoglu, M; Yilmazer, N; Gurel-Gurevin, E

    2018-04-12

    Donkey milk and donkey milk kefir exhibit antiproliferative, antimutagenic and antibacterial effects. We investigated the effects of donkey milk and donkey milk kefir on oxidative stress, apoptosis and proliferation in Ehrlich ascites carcinoma (EAC) in mice. Thirty-four adult male Swiss albino mice were divided into four groups as follows: group 1, administered 0.5 ml water; group 2, administered 0.5 ml water + EAC cells; group 3, administered 0.5 ml donkey milk + EAC cells; group 4, administered 0.5 ml donkey milk kefir + EAC cells. We introduced 2.5 x 10 6 EAC cells into each animal by subcutaneous injection. Tap water, donkey milk and donkey milk kefir were administered by gavage for 10 days. Animals were sacrificed on day 11. After measuring the short and long diameters of the tumors, tissues were processed for histology. To determine oxidative stress, cell death and proliferation iNOS and eNOS, active caspase-3 and proliferating cell nuclear antigen were assessed using immunohistochemistry. A TUNEL assay also was used to detect apoptosis. Tumor volume decreased in the donkey milk kefir group compared to the control and donkey milk groups. Tumor volume increased in the donkey milk group compared to the control group. Proliferating cell nuclear antigen levels were higher in the donkey milk kefir group compared to the control and donkey milk groups. The number of apoptotic cells was less in the donkey milk group, compared to the control, whereas it was highest in the donkey milk kefir group. Donkey milk administration increased eNOS levels and decreased iNOS levels, compared to the control group. In the donkey milk kefir group, iNOS levels were significantly lower than those of the control and donkey milk groups, while eNOS levels were similar to the control group. Donkey milk kefir induced apoptosis, suppressed proliferation and decreased co-expression of iNOS and eNOS. Donkey milk promoted development of the tumors. Therefore, donkey milk kefir appears to

  8. A PAUF-neutralizing antibody targets both carcinoma and endothelial cells to impede pancreatic tumor progression and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Jin [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); New Drug Development Center, Osong Medical Innovation Foundation, Cheongwon, Chungbuk (Korea, Republic of); Chang, Suhwan [Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Yangsoon; Kim, Na Young; Hwang, Yeonsil; Min, Hye Jin; Yoo, Kyung-Sook; Park, Eun Hye; Kim, Seokho [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Chung, Young-Hwa [BK21-plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Koh, Sang Seok, E-mail: sskoh@dau.ac.kr [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Department of Biological Sciences, Dong-A University, Busan (Korea, Republic of)

    2014-11-07

    Highlights: • PMAb83, a human monoclonal antibody against PAUF, impaired tumor progression in vivo. • PMAb83 attenuated aggressiveness of tumor cells and suppressed angiogenesis. • PMAb83 in combination with gemcitabine conferred improved survival of mouse model. - Abstract: Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatment retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31{sup +} vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models.

  9. A PAUF-neutralizing antibody targets both carcinoma and endothelial cells to impede pancreatic tumor progression and metastasis

    International Nuclear Information System (INIS)

    Kim, Su Jin; Chang, Suhwan; Lee, Yangsoon; Kim, Na Young; Hwang, Yeonsil; Min, Hye Jin; Yoo, Kyung-Sook; Park, Eun Hye; Kim, Seokho; Chung, Young-Hwa; Park, Young Woo; Koh, Sang Seok

    2014-01-01

    Highlights: • PMAb83, a human monoclonal antibody against PAUF, impaired tumor progression in vivo. • PMAb83 attenuated aggressiveness of tumor cells and suppressed angiogenesis. • PMAb83 in combination with gemcitabine conferred improved survival of mouse model. - Abstract: Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatment retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31 + vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models

  10. PTENp1, a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma.

    Science.gov (United States)

    Gao, Ling; Ren, Wenhao; Zhang, Linmei; Li, Shaoming; Kong, Xinjuan; Zhang, Hao; Dong, Jianwei; Cai, Guangfeng; Jin, Changxiong; Zheng, Danqing; Zhi, Keqian

    2017-04-01

    PTENp1, non-coding RNA (ncRNA) pseudogene, is involved in oral squamous cell carcinoma (OSCC). The precise effects mediated by PTENp1 transcripts within intricate regulatory networks involving molecular interactions with ancestral gene PTEN and tumorigenicity in OSCC remain unclear. Here, we found that PTENp1 was aberrantly expressed in OSCC. There was a positive correlation between the expression levels of PTENp1 and PTEN. Further, we showed that PTENp1 acted as a competing endogenous RNA that protects PTEN transcripts from being inhibited by miR-21, and consequently inhibited proliferation and colony formation and triggered S-G2/M cell cycle arrest through the AKT pathway. Also, the homogeneous relationship between expression of PTENp1 and PTEN was confirmed in OSCC tumor xenografts. Finally, low expression of PTENp1 and PTEN was negatively associated with histological differentiation and OSCC prognosis. The present work provided the first evidence for the extraordinary crosstalk among PTENp1, PTEN, and miR-21, and rendered a new light on the treatment of OSCC. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Synchronous thyroid carcinoma and squamous cell carcinoma. A case report

    International Nuclear Information System (INIS)

    Lee, Jae Seo

    2006-01-01

    Thyroid carcinoma occurring as a second primary associated with head and neck squamous cell carcinoma (SCC) is unusual. This report presents a synchronous thyroid carcinoma and squamous cell carcinoma in the anterior palate region of a 41-year-old man. The clinical, radiologic, and histologic features are described. At 10-month follow-up after operation, no evidence of recurrence ana metastasis was present

  12. JS-K, a GST-activated nitric oxide donor prodrug, enhances chemo-sensitivity in renal carcinoma cells and prevents cardiac myocytes toxicity induced by Doxorubicin.

    Science.gov (United States)

    Qiu, Mingning; Ke, Longzhi; Zhang, Sai; Zeng, Xin; Fang, Zesong; Liu, Jianjun

    2017-08-01

    Doxorubicin, a highly effective and widely used anthracycline antibiotic in multiple chemotherapy regimens, has been limited by its cardiotoxicity. The aim of this study is to investigate the effect of nitric oxide donor prodrug JS-K on proliferation and apoptosis in renal carcinoma cells and cardiac myocytes toxicity induced by Doxorubicin and to explore possible p53-related mechanism in renal carcinoma cells. The effect of JS-K on anti-cancer activity of Doxorubicin was investigated in renal carcinoma cells via detecting cell proliferation, cytotoxicity, cell death and apoptosis and expressions of apoptotic-related proteins. Effect of p53 on the combination of JS-K and Doxorubicin was determined using p53 inhibitor Pifithrin-α and p53 activator III. Furthermore, the effect of JS-K on cardiac myocytes toxicity of Doxorubicin was investigated in H9c2 (2-1) cardiac myocytes via measuring cell growth, cell death and apoptosis, expressions of proteins involved in apoptosis and intracellular reactive oxygen species. We demonstrated that JS-K could increase Doxorubicin-induced renal carcinoma cell growth suppression and apoptosis and could increase expressions of proteins that are involved in apoptosis. Additionally, Pifithrin-α reversed the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis; conversely, the p53 activator III exacerbated the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis. Furthermore, JS-K protected H9c2 (2-1) cardiac myocytes against Doxorubicin-induced toxicity and decreased Doxorubicin-induced reactive oxygen species production. JS-K enhances the anti-cancer activity of Doxorubicin in renal carcinoma cells by upregulating p53 expression and prevents cardiac myocytes toxicity of Doxorubicin by decreasing oxidative stress.

  13. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China); Wu, Jianguo, E-mail: jwu@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  14. Correlation between egfr expression and accelerated proliferation during radiotherapy of head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Pedicini Piernicola

    2012-08-01

    Full Text Available Abstract Purpose To investigate the correlation between the expression of Epidermal Growth Factor receptor (EGFr and the reduction of the effective doubling time (TD during radiotherapy treatment and also to determine the dose per fraction to be taken into account when the overall treatment time (OTT is reduced in accelerated radiotherapy of head and neck squamous cell carcinoma (HNSCC. Methods A survey of the published papers comparing 3-years of local regional control rate (LCR for a total of 2162 patients treated with conventional and accelerated radiotherapy and with a pretreatment assessment of EGFr expression, was made. Different values of TD were obtained by a model incorporating the overall time corrected biologically effective dose (BED and a 3-year clinical LCR for high and low EGFr groups of patients (HEGFr and LEGFr, respectively. By obtaining the TD from the above analysis and the sub-sites’ potential doubling time (Tpot from flow cytometry and immunohistochemical methods, we were able to estimate the average TD for each sub-site included in the analysis. Moreover, the dose that would be required to offset the modified proliferation occurring in one day (Dprolif, was estimated. Results The averages of TD were 77 (27-9095% days in LEGFr and 8.8 (7.3-11.095% days in HEGFr, if an onset of accelerated proliferation TK at day 21 was assumed. The correspondent HEGFr sub-sites’ TD were 5.9 (6.6, 5.9 (6.6, 4.6 (6.1, 14.3 (12.9 days, with respect to literature immunohistochemical (flow cytometry data of Tpot for Oral-Cavity, Oro-pharynx, Hypo-pharynx, and Larynx respectively. The Dprolif for the HEGFr groups were 0.33 (0.29, 0.33 (0.29, 0.42 (0.31, 0.14 (0.15 Gy/day if α = 0.3 Gy-1 and α/β = 10 Gy were assumed. Conclusions A higher expression of the EGFr leads to enhanced proliferation. This study allowed to quantify the extent of the effect which EGFr expression has in terms of reduced TD and Dprolif for each head and neck

  15. Correlation between egfr expression and accelerated proliferation during radiotherapy of head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Pedicini, Piernicola; Fiorentino, Alba; Improta, Giuseppina; Storto, Giovanni; Benassi, Marcello; Orecchia, Roberto; Salvatore, Marco; Nappi, Antonio; Strigari, Lidia; Alicia Jereczek-Fossa, Barbara; Alterio, Daniela; Cremonesi, Marta; Botta, Francesca; Vischioni, Barbara; Caivano, Rocchina

    2012-01-01

    To investigate the correlation between the expression of Epidermal Growth Factor receptor (EGFr) and the reduction of the effective doubling time (T D ) during radiotherapy treatment and also to determine the dose per fraction to be taken into account when the overall treatment time (OTT) is reduced in accelerated radiotherapy of head and neck squamous cell carcinoma (HNSCC). A survey of the published papers comparing 3-years of local regional control rate (LCR) for a total of 2162 patients treated with conventional and accelerated radiotherapy and with a pretreatment assessment of EGFr expression, was made. Different values of T D were obtained by a model incorporating the overall time corrected biologically effective dose (BED) and a 3-year clinical LCR for high and low EGFr groups of patients (H EGFr and L EGFr ), respectively. By obtaining the T D from the above analysis and the sub-sites’ potential doubling time (T pot ) from flow cytometry and immunohistochemical methods, we were able to estimate the average T D for each sub-site included in the analysis. Moreover, the dose that would be required to offset the modified proliferation occurring in one day (D prolif ), was estimated. The averages of T D were 77 (27-90) 95% days in L EGFr and 8.8 (7.3-11.0) 95% days in H EGFr , if an onset of accelerated proliferation T K at day 21 was assumed. The correspondent H EGFr sub-sites’ T D were 5.9 (6.6), 5.9 (6.6), 4.6 (6.1), 14.3 (12.9) days, with respect to literature immunohistochemical (flow cytometry) data of T pot for Oral-Cavity, Oro-pharynx, Hypo-pharynx, and Larynx respectively. The D prolif for the H EGFr groups were 0.33 (0.29), 0.33 (0.29), 0.42 (0.31), 0.14 (0.15) Gy/day if α = 0.3 Gy -1 and α/β = 10 Gy were assumed. A higher expression of the EGFr leads to enhanced proliferation. This study allowed to quantify the extent of the effect which EGFr expression has in terms of reduced T D and D prolif for each head and neck sub-site

  16. Urinary bladder carcinoma with divergent differentiation featuring small cell carcinoma, sarcomatoid carcinoma, and liposarcomatous component.

    Science.gov (United States)

    Yasui, Mariko; Morikawa, Teppei; Nakagawa, Tohru; Miyakawa, Jimpei; Maeda, Daichi; Homma, Yukio; Fukayama, Masashi

    2016-09-01

    Both small cell carcinoma and sarcomatoid carcinoma of the urinary bladder are highly aggressive tumors, and a concurrence of these tumors is extremely rare. We report a case of urinary bladder cancer with small cell carcinoma as a predominant component, accompanied by sarcomatoid carcinoma and conventional urothelial carcinoma (UC). Although the small cell carcinoma component had resolved on receiving chemoradiotherapy, rapid growth of the residual tumor led to a fatal outcome. A 47-year-old man presented with occasional bladder irritation and had a 2-year history of asymptomatic hematuria. Cystoscopy revealed a huge mass in the urinary bladder, and transurethral resection was performed. Microscopically, small cell carcinoma was detected as the major tumor component. Spindle-shaped sarcomatoid cells were also observed that were intermingled with small cell carcinoma and conventional UC. In addition, a sheet-like growth of the lipoblast-like neoplastic cells was observed focally. Initially, by providing chemoradiotherapy, we achieved a marked tumor regression; however, the tumor rapidly regrew after the completion of chemoradiotherapy, and the patient underwent radical cystectomy. Only conventional UC and sarcomatoid carcinoma were identified in the cystectomy specimen. The patient died of the disease 4 months after cystectomy. Urinary bladder cancer may include a combination of multiple aggressive histologies as in the present case. Because the variation in the tumor components may affect the efficacy of therapy, a correct diagnosis of every tumor component is necessary. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Lycopene inhibits the cell proliferation and invasion of human head and neck squamous cell carcinoma.

    Science.gov (United States)

    Ye, Min; Wu, Qundan; Zhang, Min; Huang, Jinbei

    2016-10-01

    Lycopene has been shown to be associated with anticancer effects in numerous tumor types. However, the underlying mechanisms of lycopene in human head and neck squamous cell carcinoma (HNSCC) remain to be determined. The present study aimed to investigate the involvement of lycopene overload and the cytotoxic effects of lycopene on HNSCC cells, and to determine the possible mechanisms involved. Treatment with lycopene at a dose of >10 µM for >24 h inhibited the growth of FaDu and Cal27 cells in a time‑ and dose‑dependent manner. The clearest increase in growth inhibition was due to the apoptotic population being significantly increased. The invasion abilities decreased with 25 µM lycopene exerting significant inhibitory effects (Plycopene induced the upregulation of the pro‑apoptotic protein, B‑cell lymphoma‑associated X protein, and therefore, resulted in the inhibition of the protein kinase B and mitogen‑activated protein kinase signaling pathway. These data provided insights into the antitumor activity of lycopene in HNSCC cells.

  18. Mast cells and eosinophils in invasive breast carcinoma

    International Nuclear Information System (INIS)

    Amini, Rose-Marie; Aaltonen, Kirsimari; Nevanlinna, Heli; Carvalho, Ricardo; Salonen, Laura; Heikkilä, Päivi; Blomqvist, Carl

    2007-01-01

    Inflammatory cells in the tumour stroma has gained increasing interest recently. Thus, we aimed to study the frequency and prognostic impact of stromal mast cells and tumour infiltrating eosinophils in invasive breast carcinomas. Tissue microarrays containing 234 cases of invasive breast cancer were prepared and analysed for the presence of stromal mast cells and eosinophils. Tumour infiltrating eosinophils were counted on hematoxylin-eosin slides. Immunostaining for tryptase was done and the total number of mast cells were counted and correlated to the proliferation marker Ki 67, positivity for estrogen and progesterone receptors, clinical parameters and clinical outcome. Stromal mast cells were found to correlate to low grade tumours and estrogen receptor positivity. There was a total lack of eosinophils in breast cancer tumours. A high number of mast cells in the tumours correlated to low-grade tumours and estrogen receptor positivity. Eosinophils are not tumour infiltrating in breast cancers

  19. NEAR-INFRARED AUTOFLUORESCENCE IN BILATERAL DIFFUSE UVEAL MELANOCYTIC PROLIFERATION ASSOCIATED WITH ESOPHAGEAL CARCINOMA AND CHOROIDAL METASTASIS.

    Science.gov (United States)

    Golshahi, Azadeh; Bornfeld, Norbert; Weinitz, Silke; Kellner, Ulrich

    2016-01-01

    To investigate the advantage of near-infrared autofluorescence (787 nm) for the detection of melanocytic lesions in a patient with bilateral diffuse uveal melanocytic proliferation in association with esophageal carcinoma complicated by most likely unilateral choroidal metastasis. In this retrospective case report, a 55-year-old woman referred for the evaluation of sudden visual loss underwent normal ophthalmological evaluation and, in addition, was examined with near-infrared reflectance, near-infrared autofluorescence, fundus autofluorescence (Heidelberg Retina Angiograph II [HRA2; Heidelberg Engineering]), spectral domain optical coherence tomography (Spectralis OCT; Heidelberg Engineering), and multifocal electroretinography (RetiScan; Roland Consult). The patient had been diagnosed with esophageal carcinoma 3 months before the onset of visual symptoms. The visual acuity was 20/40 in the right eye and 20/20 in the left eye. Bilateral patchy melanocytic proliferation was detected on ophthalmoscopy. The extent of lesions was best detected with near-infrared reflectance and near-infrared autofluorescence, whereas fundus autofluorescence and spectral domain optical coherence tomography did not reveal alterations of the outer retina or retinal pigment epithelium in this early stage of bilateral diffuse uveal melanocytic proliferation. The right eye showed in addition to the findings on the left eye choroidal folds in the fovea and an elevated lesion inferotemporal of the fovea suspicious of a choroidal metastasis. In the B-scan ultrasonography, a homogenous lesion was seen. Spectral domain optical coherence tomography demonstrated a mild accumulation of subretinal fluid adjacent to and over the choroidal metastasis. Transretinal biopsy of this elevated lesion revealed a low differentiated carcinoma of squamous epithelium, compatible with choroidal metastasis of the esophageal carcinoma. The choroidal metastasis increased within 3 months after the first visit. The

  20. Nevoid basal cell carcinoma syndrome

    Science.gov (United States)

    NBCC syndrome; Gorlin-Goltz syndrome; Basal cell nevus syndrome; BCNS; Basal cell cancer - nevoid basal cell carcinoma syndrome ... Nevoid basal cell carcinoma nevus syndrome is a rare genetic ... syndrome is known as PTCH ("patched"). The gene is passed down ...

  1. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    International Nuclear Information System (INIS)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-01-01

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 μM SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: ► Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions ► Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia ► Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia ► Salicylic acid does not influence any of the investigated parameters under hypoxia

  2. Mechano-Signal Transduction in Mesenchymal Stem Cells Induces Prosaposin Secretion to Drive the Proliferation of Breast Cancer Cells.

    Science.gov (United States)

    Ishihara, Seiichiro; Inman, David R; Li, Wan-Ju; Ponik, Suzanne M; Keely, Patricia J

    2017-11-15

    In response to chemical stimuli from cancer cells, mesenchymal stem cells (MSC) can differentiate into cancer-associated fibroblasts (CAF) and promote tumor progression. How mechanical stimuli such as stiffness of the extracellular matrix (ECM) contribute to MSC phenotype in cancer remains poorly understood. Here, we show that ECM stiffness leads to mechano-signal transduction in MSC, which promotes mammary tumor growth in part through secretion of the signaling protein prosaposin. On a stiff matrix, MSC cultured with conditioned media from mammary cancer cells expressed increased levels of α-smooth muscle actin, a marker of CAF, compared with MSC cultured on a soft matrix. By contrast, MSC cultured on a stiff matrix secreted prosaposin that promoted proliferation and survival of mammary carcinoma cells but inhibited metastasis. Our findings suggest that in addition to chemical stimuli, increased stiffness of the ECM in the tumor microenvironment induces differentiation of MSC to CAF, triggering enhanced proliferation and survival of mammary cancer cells. Cancer Res; 77(22); 6179-89. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Hyper-O-GlcNAcylation of YB-1 affects Ser102 phosphorylation and promotes cell proliferation in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingqing [Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qi-xiu Road, Nantong 226001, Jiangsu Province (China); Tao, Tao [Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qi-xiu Road, Nantong 226001, Jiangsu Province (China); Liu, Fang [Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province (China); Ni, Runzhou [Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province (China); Lu, Cuihua, E-mail: lch1516@yeah.net [Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province (China); Shen, Aiguo, E-mail: shag@ntu.edu.cn [Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qi-xiu Road, Nantong 226001, Jiangsu Province (China); Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province (China)

    2016-12-10

    As an essential post-translational modification, O-GlcNAcylation has been thought to be able to modulate various nuclear and cytoplasmic proteins and is emerging as a key regulator of multiple biological processes, such as transcription, cell growth, signal transduction, and cell motility. Recently, authoritative glycomics analyses have reported extensive crosstalk between O-GlcNAcylation and phosphorylation, which always dynamically interplay with each other and regulate signaling, transcription, and other cellular processes. Also, plentiful studies have shown close correlation between YB-1 phosphorylation and tumorigenesis. Therefore, our study aimed to determine whether YB-1 was O-GlcNAc modified and whether such modification could interact with its phosphorylation during the process of HCC development. Western blot and immunohistochemistry were firstly conducted to reveal obvious up-regulation of YB-1, OGT and O-GlcNAc modification in HCC tissues. What is more, not only YB-1 was identified to be O-GlcNAcylated but hyper-O-GlcNAcylation was demonstrated to facilitate HCC cell proliferation in a YB-1 dependent manner. Moreover, we detected four specific O-GlcNAc sites and confirmed T126A to be the most effective mutant in HCC cell proliferation via close O-GlcNAcylation-phosphorylation interaction. Even more interestingly, we discovered that T126A-induced HCC cell retardation and subdued transcriptional activity of YB-1 could be partially reversed by T126A/S102E mutant. From all above, it is not difficult to find that glycosylated-YB-1 mainly enhanced cell proliferation through congenerous actions with YB-1 phosphorylation and thus played indispensable roles in fine-tuning cell proliferation and procession of HCC. - Highlights: • YB-1 and OGT are associated with HCC prognosis. • YB-1 is O-GlcNAc modified in HCC. • Hyper-O-GlcNAcylation promotes HCC cell proliferation in dependent of YB-1. • The proliferating role of O-GlcNAcylation is based on Ser102

  4. Cell kinetics of Ehrlich ascites carcinoma transplanted in mice with different degrees of tumor resistance

    International Nuclear Information System (INIS)

    Brandt, K.L.B.

    1974-01-01

    Cell proliferation kinetics of Ehrlich ascites carcinoma grown in two strains of mice with different degrees of resistance to this tumor were examined. In the first portion of the study, growth of Ehrlich ascites carcinoma in nonresistant Swiss (Iowa) and slightly resistant CF1 mice was examined by measuring animal weight gain and host survival time after intraperitoneal injection of tumor cells. Since it appeared that CF1 mice were inherently more resistant than Swiss mice to the Ehrlich carcinoma, the second part of this investigation involved attempts to immunize CF1 mice against the tumor. Subcutaneous injections of Ehrlich cells previously exposed in vitro to 5000 R of 250 kVp x rays were utilized. One immunizing inoculation of lethally irradiated tumor cells afforded protection against an intraperitoneal challenge of 40 thousand Ehrlich cells. By varying the number and timing of immunizing inoculations it was possible to induce different degrees of tumor resistance in these mice. The most effective immunizing procedure utilized multiple inoculations of lethally irradiated tumor cells (LITC), followed by challenges with viable tumor cells (less than 1 million) which were rejected. These mice could then resist challenge inocula of 4 million viable tumor cells. In a few animals the immunizing procedures were ineffective; these animals, when challenged, developed even larger tumors than control mice. Tumor cell proliferation kinetics in these animals as well as in mice that were rejecting the tumor were examined in the third phase of the project. A shortening of the cell cycle was observed in almost all LITC-treated mice, whether tumor growth was eventually inhibited or stimulated. Decreased duration of the DNA-synthesis phase (S) of the tumor cell cycle was also a consistent finding. The role of the immune response in stimulating mitosis as well as in killing foreign cells was discussed. (U.S.)

  5. Shape-dependent regulation of proliferation in normal and malignant human cells and its alteration by interferon

    International Nuclear Information System (INIS)

    Kulesh, D.A.; Greene, J.J.

    1986-01-01

    The relationship between cell morphology, proliferation, and contact inhibition was studied in normal and malignant human cells which varied in their sensitivity to contact inhibition. Their ability to proliferate was examined under conditions where the cells were constrained into different shapes by plating onto plastic surfaces coated with poly(2-hydroxyethyl methacrylate). Poly(2-hydroxyethyl methacrylate) can precisely vary the shape of cells without toxicity. Cell proliferation was quantitated by cell counts and labeling indices were determined by autoradiography. The normal JHU-1 foreskin fibroblasts and IMR-90 lung fibroblasts exhibited contact-inhibited growth with a saturation density of 2.9 X 10(5) and 2.0 X 10(5) cells/cm2, respectively. These cells also exhibited stringent dependency on cell shape with a mitotic index of less than 3% at poly(2-hydroxyethyl methacrylate) concentrations at which the cells were rounded versus a labeling index of 75-90% when the cells were flat. The malignant bladder carcinoma line RT-4 exhibited partial contact-inhibited growth. Its dependency on cell shape was less stringent than that of normal cells with a mitotic index of 37-40% when rounded and 79% when flat. The malignant fibrosarcoma line, HT1080, was not contact inhibited and was entirely shape independent with a mitotic index of 70-90% regardless of cell shape. Treatment of HT1080 cells with low concentration of human fibroblast interferon (less than 40 units/ml) restored shape-dependent proliferation while having little effect on normal cells. Subantiproliferative doses of interferon were also shown to restore contact-inhibited proliferation control to malignant cells previously lacking it

  6. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-κB pathway in human epidermoid carcinoma A431 cells

    International Nuclear Information System (INIS)

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi; George, Jasmine; Ray, Ratan Singh; Hans, Rajendra K.; Prasad, Sahdeo; Shukla, Yogeshwer

    2009-01-01

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm 2 ) and resveratrol (60 μM) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition of A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-κB) pathway by blocking phosphorylation of serine 536 and inactivating NF-κB and subsequent degradation of IκBα, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.

  7. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-{kappa}B pathway in human epidermoid carcinoma A431 cells

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi; George, Jasmine [Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India); Ray, Ratan Singh; Hans, Rajendra K. [Photobiology Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India); Prasad, Sahdeo [Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India); Shukla, Yogeshwer, E-mail: yogeshwer_shukla@hotmail.com [Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), P.O. Box 80, M.G. Marg, Lucknow 226 001 (India)

    2009-06-26

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm{sup 2}) and resveratrol (60 {mu}M) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition of A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-{kappa}B) pathway by blocking phosphorylation of serine 536 and inactivating NF-{kappa}B and subsequent degradation of I{kappa}B{alpha}, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.

  8. Negative correlation of LIV-1 and E-cadherin expression in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Rongxi Shen

    Full Text Available LIV-1, a zinc transporter, is a mediator downstream of STAT3 both in zebrafish and mammalian cells, and is involved in epithelial-mesenchymal transition (EMT. Despite LIV-1 participates in cancer growth and metastasis, little is known about the association of LIV-1 with human liver cancer development. Therefore, the expression of LIV-1 mRNA was analyzed by reverse transcriptase polymerase chain reaction (RT-PCR in 4 cultured cell lines (3 carcinoma and 1 normal liver cell lines, and the localization of LIV-1 protein was investigated by immunohistochemistry. Expression of LIV-1 protein was analyzed by Western blot both in 4 cultured cell lines and 120 liver tissues (100 carcinoma and 20 histologically normal tissues, and the relationship between its expression and clinicopathological finding was investigated in 100 hepatocellular carcinoma(HCC tissues. Then stable siRNA expressing Hep-G2 cells were generated to assess the function of LIV-1 in liver cancer cells. We found that LIV-1 mRNA was more highly expressed in liver cancer cell lines compared to normal liver cell line. Western blot showed the expression of LIV-1 was higher in 61% liver carcinoma tissues than that in normal liver tissues. Down-regulated LIV-1 cells showed significant inhibition of proliferation in vitro and reduction of tumor growth in vivo. Furthermore, E-cadherin expression increased in LIV-1 siRNA expressing Hep-G2. These findings indicated that LIV-1 may induce the EMT in HCC cells.

  9. TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zanhua [Medical School of Nanchang University (China); The Chest Hospital of Jiangxi Province Department of Respiration (China); Jiang, Xunsheng [Department of Respiration, Medical School of Nanchang University (China); Zhang, Wei, E-mail: weizhangncu@gmail.com [Department of Respiration, The First Affiliated Hospital of Nanchang University (China)

    2016-01-29

    Recent studies suggest that the human trophoblast cell-surface antigen TROP2 is highly expressed in a number of tumours and is correlated with poor prognosis. However, its role in non-small cell lung carcinoma (NSCLC) remains largely unknown. Here we examined TROP2 expression by immunohistochemistry in a series of 68 patients with adenocarcinoma (ADC). We found significantly elevated TROP2 expression in ADC tissues compared with normal lung tissues (P < 0.05), and TROP2 overexpression was significantly associated with TNM (tumour, node, metastasis) stage (P = 0.012), lymph node metastasis (P = 0.038), and histologic grade (P = 0.013). Kaplan–Meier survival analysis revealed that high TROP2 expression correlated with poor prognosis (P = 0.046). Multivariate analysis revealed that TROP2 expression was an independent prognostic marker for overall survival of ADC patients. Moreover, TROP2 overexpression enhanced cell proliferation, migration, and invasion in the NSCLC cell line A549, whereas knockdown of TROP2 induced apoptosis and impaired proliferation, migration, and invasion in the PC-9 cells. Altogether, our data suggest that TROP2 plays an important role in promoting ADC and may represent a novel prognostic biomarker and therapeutic target for the disease.

  10. Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation.

    OpenAIRE

    Kubben, F J; Peeters-Haesevoets, A; Engels, L G; Baeten, C G; Schutte, B; Arends, J W; Stockbrügger, R W; Blijham, G H

    1994-01-01

    Immunohistochemistry of the S phase related proliferating cell nuclear antigen (PCNA) was studied as an alternative to ex-vivo bromodeoxyuridine (BrdU) immunohistochemistry for assessment of human colonic cell proliferation. From 16 subjects without colonic disease biopsy specimens were collected from five different sites along the colorectum and processed for BrdU and PCNA immunohistochemistry. The mean proliferation index of PCNA was significantly higher at 133% of the value obtained with B...

  11. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Xie, Ji-Sheng [Youjiang Medical College for Nationalities, Guangxi 533000 (China); Meng, Xin; Guan, Yifu [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Wang, Hua-Qin, E-mail: wanghq_doctor@hotmail.com [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China)

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2{alpha} (eIF2{alpha}), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2{alpha} inhibitor, or overexpression of dominant negative mutants of PERK or eIF2{alpha}, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2{alpha} branch of UPR in RES-induced inhibition of cell proliferation.

  12. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    International Nuclear Information System (INIS)

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang; Xie, Ji-Sheng; Meng, Xin; Guan, Yifu; Wang, Hua-Qin

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2α (eIF2α), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2α inhibitor, or overexpression of dominant negative mutants of PERK or eIF2α, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2α branch of UPR in RES-induced inhibition of cell proliferation.

  13. Stages of Merkel Cell Carcinoma

    Science.gov (United States)

    ... Genetics of Skin Cancer Skin Cancer Screening Research Merkel Cell Carcinoma Treatment (PDQ®)–Patient Version General Information About Merkel Cell Carcinoma Go to Health Professional Version Key ...

  14. Reversibility of regorafenib effects in hepatocellular carcinoma cells

    Science.gov (United States)

    D’Alessandro, Rosalba; Refolo, Maria G.; Lippolis, Catia; Messa, Caterina; Cavallini, Aldo; Rossi, Roberta; Resta, Leonardo; Di Carlo, Antonio

    2013-01-01

    Purpose Multikinase growth inhibitors inhibit their target kinases with varying potency. Patients often require lower doses or therapy breaks due to drug toxicities. To evaluate the effects of drug withdrawal on hepatocellular carcinoma cells after incubation with growth-inhibitory concentrations of regorafenib, cell growth, migration and invasion, and signaling were examined. Methods Cell proliferation, motility, and invasion were analyzed by MTT, wound healing, and invasion assays, respectively, and MAPK pathway protein markers were analyzed by Western blot. Results After regorafenib removal, cell growth, migration, and invasion recovered. Repeated drug exposure resulted in changes in cell growth patterns. Recovery could be blocked by sub-growth-inhibitory concentrations of either doxorubicin or vitamin K1. Recovery of growth was associated with increased phospho-JNK, phospho-p38, and phospho-STAT3 levels. The recovery of growth, migration, and signaling were blocked by a JNK inhibitor. Conclusions Removal of regorafenib from growth-inhibited cells resulted in a JNK-dependent recovery of growth and migration. PMID:23959464

  15. Nuclear localization of the CK2α-subunit correlates with poor prognosis in Clear Cell Renal Cell Carcinoma

    DEFF Research Database (Denmark)

    Rabjerg, Maj; Guerra, Barbara; Oliván-Viguera, Aida

    2017-01-01

    Protein kinase CK2a, one of the two catalytic isoforms of the protein kinase CK2 has been shown to contribute to tumor development, tumor proliferation and suppression of apoptosis in various malignancies. We conducted this study to investigate CK2 expression in different subtypes of Renal Cell...... Carcinoma (RCC) and in the benign oncocytoma. qRT-PCR, immunohistochemistry and Western blot analyses revealed that CK2a expression was significantly increased at the mRNA and protein levels in clear cell RCC (ccRCC). Also the kinase activity of CK2 was significantly increased in ccRCC compared to normal...... renal cortex. Nuclear protein expression of CK2a correlated in univariate analysis with poor Progression Free Survival (HR = 8.11, p = 0.016). Functional analyses (cell proliferation assay) revealed an inhibitory effect of Caki-2 cell growth following CK2 inhibition with CX-4945. Our results suggest...

  16. Metastatic giant basal cell carcinoma: a case report.

    Science.gov (United States)

    Bellahammou, Khadija; Lakhdissi, Asmaa; Akkar, Othman; Rais, Fadoua; Naoual, Benhmidou; Elghissassi, Ibrahim; M'rabti, Hind; Errihani, Hassan

    2016-01-01

    Basal cell carcinoma is the most common skin cancer, characterised by a slow growing behavior, metastasis are extremely rare, and it occurs in less than 0, 1% of all cases. Giant basal cell carcinoma is a rare form of basal cell carcinoma, more aggressive and defined as a tumor measuring more than 5 cm at its largest diameter. Only 1% of all basal cell carcinoma develops to a giant basal cell carcinoma, resulting of patient's negligence. Giant basal cell carcinoma is associated with higher potential of metastasis and even death, compared to ordinary basal cell carcinoma. We report a case of giant basal cell carcinoma metastaticin lung occurring in a 79 years old male patient, with a fatal evolution after one course of systemic chemotherapy. Giant basal cell carcinoma is a very rare entity, early detection of these tumors could prevent metastasis occurrence and improve the prognosis of this malignancy.

  17. Differential expression of microRNA501-5p affects the aggressiveness of clear cell renal carcinoma

    Science.gov (United States)

    Mangolini, Alessandra; Bonon, Anna; Volinia, Stefano; Lanza, Giovanni; Gambari, Roberto; Pinton, Paolo; Russo, Gian Rosario; del Senno, Laura; Dell’Atti, Lucio; Aguiari, Gianluca

    2014-01-01

    Renal cell carcinoma is a common neoplasia of the adult kidney that accounts for about 3% of adult malignancies. Clear cell renal carcinoma is the most frequent subtype of kidney cancer and 20–40% of patients develop metastases. The absence of appropriate biomarkers complicates diagnosis and prognosis of this disease. In this regard, small noncoding RNAs (microRNAs), which are mutated in several neoplastic diseases including kidney carcinoma, may be optimal candidates as biomarkers for diagnosis and prognosis of this kind of cancer. Here we show that patients with clear cell kidney carcinoma that express low levels of miR501-5p exhibited a good prognosis compared with patients with unchanged or high levels of this microRNA. Consistently, in kidney carcinoma cells the downregulation of miR501-5p induced an increased caspase-3 activity, p53 expression as well as decreased mTOR activation, leading to stimulation of the apoptotic pathway. Conversely, miR501-5p upregulation enhanced the activity of mTOR and promoted both cell proliferation and survival. These biological processes occurred through p53 inactivation by proteasome degradation in a mechanism involving MDM2-mediated p53 ubiquitination. Our results support a role for miR501-5p in balancing apoptosis and cell survival in clear cell renal carcinoma. In particular, the downregulation of microRNA501-5p promotes a good prognosis, while its upregulation contributes to a poor prognosis, in particular, if associated with p53 and MDM2 overexpression and mTOR activation. Thus, the expression of miR501-5p is a possible biomarker for the prognosis of clear cell renal carcinoma. PMID:25426415

  18. Multiple gastrointestinal metastases of Merkel cell carcinoma.

    Science.gov (United States)

    Poškus, Eligijus; Platkevičius, Gediminas; Simanskaitė, Vilma; Rimkevičiūtė, Ernesta; Petrulionis, Marius; Strupas, Kestutis

    2016-01-01

    Merkel cell carcinoma is an aggressive skin malignancy. Primary Merkel cell carcinomas are treated by wide radical excision with or without adjuvant radiotherapy, while benefits of adjuvant chemotherapy remain doubtful. There are only several cases of gastrointestinal metastases of Merkel cell carcinoma reported so far. We report a case of recurrent Merkel cell carcinoma with metastases to the stomach and the small intestines after wide excision of primary Merkel cell carcinoma. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Lung Squamous Cell Carcinoma Stem Cells as Immunotherapy Targets

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0260 TITLE: Lung Squamous Cell Carcinoma Stem Cells as Immunotherapy Targets PRINCIPAL INVESTIGATOR: Carla Kim... Cell Carcinoma Stem Cells as Immunotherapy Targets 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0260 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...SUPPLEMENTARY NOTES 14. ABSTRACT Lung squamous cell carcinoma (SCC) is the second most common type of lung cancer, and immunotherapy is a promising new

  20. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca(2+)-sensitive and Ca(2+)-resistant human colon carcinoma cells.

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-10-08

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological level of extracellular Ca2+ (1.4mM). However, with cells that are resistant to Ca2+ alone, the extract was still able to reduce proliferation and stimulate differentiation.

  1. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells

    Science.gov (United States)

    Nadeem Aslam, Muhammad; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-01-01

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological level of extracellular Ca2+ (1.4 mM). However, with cells that are resistant to Ca2+ alone, the extract was still able to reduce proliferation and stimulate differentiation. PMID:19394137

  2. Metastatic basal cell carcinoma caused by carcinoma misdiagnosed as acne - case report and literature review

    DEFF Research Database (Denmark)

    Aydin, Dogu; Hölmich, Lisbet Rosenkrantz; Jakobsen, Linda Plovmand

    2016-01-01

    Basal cell carcinoma can be misdiagnosed as acne; thus, carcinoma should be considered in treatment-resistant acne. Although rare, neglected basal cell carcinoma increases the risk of metastasis.......Basal cell carcinoma can be misdiagnosed as acne; thus, carcinoma should be considered in treatment-resistant acne. Although rare, neglected basal cell carcinoma increases the risk of metastasis....

  3. Antiproliferative/cytotoxic effects of molecular iodine, povidone-iodine and Lugol's solution in different human carcinoma cell lines.

    Science.gov (United States)

    Rösner, Harald; Möller, Wolfgang; Groebner, Sabine; Torremante, Pompilio

    2016-09-01

    Clinical trials have revealed that molecular iodine (I 2 ) has beneficial effects in fibrocystic breast disease and in cyclic mastalgia. Likewise, povidone-iodine (PVP-I), which is widely used in clinical practice as an antiseptic agent following tumour surgery, has been demonstrated to have cytotoxic effects on colon cancer and ascites tumour cells. Our previous study indicated that the growth of breast cancer and seven other human malignant cell lines was variably diminished by I 2 and iodolactones. With the intention of developing an iodine-based anticancer therapy, the present investigations extended these studies by comparing the cytotoxic capacities of I 2 , potassium iodide (KJ), PVP-I and Lugol's solution on various human carcinoma cell lines. Upon staining the cell nuclei with Hoechst 33342, the cell densities were determined microscopically. While KJ alone did not affect cell proliferation, it enhanced the antiproliferative activity of I 2 . In addition, PVP-I significantly inhibited the proliferation of human MCF-7 breast carcinoma, IPC melanoma, and A549 and H1299 lung carcinoma cells in a concentration corresponding to 20 µM I 2 . Likewise, Lugol's solution in concentrations corresponding to 20-80 µM I 2 were observed to reduce the growth of MCF-7 cells. Experiments with fresh human blood samples revealed that the antiproliferative activity of PVP-I and I 2 is preserved in blood plasma to a high degree. These findings suggest that PVP-I, Lugol's solution, and a combination of iodide and I 2 may be potent agents for use in the development of antitumour strategies.

  4. CT differentiation of renal tumor invading parenchyma and pelvis: renal cell carcinoma vs transitional cell carcinoma

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Cho, Seong Beum; Park, Cheol Min; Cha, In Ho; Chung, Kyoo Byung

    1994-01-01

    The differentiation between renal cell carcinoma(RCC) and transitional cell carcinoma(TCC) is important due to the different methods of treatment and prognosis. But occasionally it is difficult to draw a distinction between the two diseases when renal parenchyma and renal collecting systems are invaded simultaneously. We reviewed CT scans of 37 cases of renal cell carcinoma and 12 cases of transitional cell carcinoma which showed involvement of renal parenchyma and renal sinus fat on CT. Retrospective analysis was performed by 3 abdominal radiologists. Check points were renal contour bulging or reinform shape, location of mass center, intact parenchyma overlying the tumor, cystic change, calcification, LN metastasis, vessel invasion, and perirenal extention. There were renal contour bulging due to the tumor mass in 33 out of 37 cases of renal cell carcinoma, where a and nine of 12 cases of transitional cell carcinoma maintained the reinform appearance. This is significant statiscal difference between the two(P<0.005). Center of all TCCs were located in the renal sinus, and 24 out of 35 cases of RCC were located in the cortex(P<0.005). Thirty-six out of 37 cases of RCC lost the overlying parenchyma, where as 4 out of 9 cases of well enhanced TCC had intact overlying parenchyma(P<0.005) RCC showed uptic change within the tumor mags in 31 cases which was significanity higher than the 4 cases in TCC(P<0.05). CT findings of renal cell carcinoma are contour bulging, peripheral location, obliteration of parenchyma, and cystic change. Findings of transitional cell carcinoma are reinform appearance, central location within the kidney, intact overlying parenchyma, and rare cystic change

  5. GP88 (PC-Cell Derived Growth Factor, progranulin stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells

    Directory of Open Access Journals (Sweden)

    Sabnis Gauri

    2011-06-01

    Full Text Available Abstract Background Aromatase inhibitors (AI that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+ breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88, also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER+ breast cancer cells Methods We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined. Results GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole. Conclusion Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER+ breast cancer.

  6. Bilateral papillary renal cell carcinoma

    International Nuclear Information System (INIS)

    Gossios, K.; Vazakas, P.; Argyropoulou, M.; Stefanaki, S.; Stavropoulos, N.E.

    2001-01-01

    Papillary renal cell carcinoma is a subgroup of malignant renal epithelial neoplasms. We report the clinical and imaging findings of a case with multifocal and bilateral renal cell carcinoma which are nonspecific. (orig.)

  7. Oral squamous cell carcinoma proliferative phenotype is modulated by proanthocyanidins: a potential prevention and treatment alternative for oral cancer

    Directory of Open Access Journals (Sweden)

    Swapp Aaron

    2007-06-01

    Full Text Available Abstract Background Despite the recently reported drop in the overall death rate from cancer, the estimated survival rate and number of deaths from oral cancer remain virtually unchanged. Early detection efforts, in combination with strategies for prevention and risk-reduction, have the potential to dramatically improve clinical outcomes. The identification of non-toxic, effective treatments, including complementary and alternative therapies, is critical if the survival rate is to be improved. Epidemiologic studies have suggested a protective effect from certain plant-derived foods and extracts; however, it has been difficult to isolate and identify the compounds most responsible for these observations. The primary purpose of this study was to investigate the response of human oral squamous cell carcinoma (OSCC to proanthocyanidin (PAC, a plant-derived compound that may inhibit the progression of several other cancers. Methods Using a series of in vitro assays, we sought to quantify the effects of PAC on OSCC, cervical carcinoma, and non-cancerous cell lines, specifically the effects of PAC on cell proliferation. Recent data suggest that infection with the human papillomavirus (HPV may also modulate the proliferative potential of OSCC; therefore, we also measured the effects of PAC administration on HPV-transfected OSCC proliferation. Results Our results demonstrated that PAC administration was sufficient to significantly suppress cellular proliferation of OSCC in a dose-dependent manner. In addition, the increased proliferation of OSCC after transfection with HPV 16 was reduced by the administration of PAC, as was the proliferation of the cervical cancer and non-cancerous cell lines tested. Our results also provide preliminary evidence that PAC administration may induce apoptosis in cervical and oral cancer cell lines, while acting merely to suppress proliferation of the normal cell line control. Conclusion These results signify that PAC may be

  8. Vorinostat enhances the anticancer effect of oxaliplatin on hepatocellular carcinoma cells.

    Science.gov (United States)

    Liao, Bo; Zhang, Yingying; Sun, Quan; Jiang, Ping

    2018-01-01

    Oxaliplatin-based systemic chemotherapy has been proposed to have efficacy in hepatocellular carcinoma (HCC). We investigated the combination of vorinostat and oxaliplatin for possible synergism in HCC cells. SMMC7721, BEL7402, and HepG2 cells were treated with vorinostat and oxaliplatin. Cytotoxicity assay, tumorigenicity assay in vitro, cell cycle analysis, apoptosis analysis, western blot analysis, animal model study, immunohistochemistry, and quantitative PCR were performed. We found that vorinostat and oxaliplatin inhibited the proliferation of SMMC7721, BEL7402, and HepG2 cells. The combination index (CI) values were all vorinostat and oxaliplatin induced G2/M phase arrest, triggered caspase-dependent apoptosis, and decreased tumorigenicity both in vitro and in vivo. Vorinostat suppressed the expression of BRCA1 induced by oxaliplatin. In conclusion, cotreatment with vorinostat and oxaliplatin exhibited synergism in HCC cells. The combination inhibited cell proliferation and tumorigenicity both in vitro and in vivo through induction of cell cycle arrest and apoptosis. Our results predict that a combination of vorinostat and oxaliplatin may be useful in the treatment of advanced HCC. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  9. Basal cell carcinoma-treatment with cryosurgery

    Directory of Open Access Journals (Sweden)

    Kaur S

    2003-03-01

    Full Text Available Basal cell carcinoma is a common cutaneous malignancy, frequently occurring over the face in elderly individuals. Various therapeutic modalities are available to treat these tumors. We describe three patients with basal cell carcinoma successfully treated with cryosurgery and discuss the indications and the use of this treatment modality for basal cell carcinomas.

  10. Merkel cell carcinoma: is this a true carcinoma?

    Science.gov (United States)

    Jankowski, Marek; Kopinski, Piotr; Schwartz, Robert; Czajkowski, Rafal

    2014-11-01

    Recent years have brought an enhanced understanding of Merkel cell carcinoma (MCC) biology, especially with regard to the Merkel cell polyoma virus as a causative agent. Differences between Merkel cell polyomavirus-positive and Merkel cell polyomavirus-negative MCC in morphology; gene expression, miRNA profiles and prognosis have been reported. Origin of MCC is controversial. Presence of neurosecretory granules has suggested that these carcinomas originate from one of the neurocrest derivatives, most probably Merkel cells; the name Merkel cell carcinoma is now widely accepted. Expression of PGP 9.5, chromogranin A and several neuropeptides, initially regarded as specific markers for neural and neuroendocrine cells, has recently been shown in a subset of lymphomas. MCC commonly expresses terminal deoxynucleotidyl transferase and PAX5. Their co-expression under physiologic circumstances is restricted to pro/pre-B cells and pre-B cells. These findings lead to the hypothesis by zur Hausen et al. that MCC originates from early B cells. This review was intended to critically appraise zur Hausen's hypothesis and discuss the possibility that MCC is a heterogenous entity with distinct subtypes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder.

    Science.gov (United States)

    Han, Yonghua; Liu, Yuchen; Gui, Yaoting; Cai, Zhiming

    2013-04-01

    Long intergenic non-coding RNAs (lincRNAs) are a class of non-coding RNAs that regulate gene expression via chromatin reprogramming. Taurine Up-regulated Gene 1 (TUG1) is a lincRNA that is associated with chromatin-modifying complexes and plays roles in gene regulation. In this study, we determined the expression patterns of TUG1 and the cell proliferation inhibition and apoptosis induced by silencing TUG1 in urothelial carcinoma of the bladder. The expression levels of TUG1 were determined using Real-Time qPCR in a total of 44 patients with bladder urothelial carcinomas. Bladder urothelial carcinoma T24 and 5637 cells were transfected with TUG1 siRNA or negative control siRNA. Cell proliferation was evaluated using MTT assay. Apoptosis was determined using ELISA assay. TUG1 was up-regulated in bladder urothelial carcinoma compared to paired normal urothelium. High TUG1 expression levels were associated with high grade and stage carcinomas. Cell proliferation inhibition and apoptosis induction were observed in TUG1 siRNA-transfected bladder urothelial carcinoma T24 and 5637 cells. Our data suggest that lincRNA TUG1 is emerging as a novel player in the disease state of bladder urothelial carcinoma. TUG1 may have potential roles as a biomarker and/or a therapeutic target in bladder urothelial carcinoma. Copyright © 2012 Wiley Periodicals, Inc.

  12. Overexpression of Cullin7 is associated with hepatocellular carcinoma progression and pathogenesis.

    Science.gov (United States)

    An, Jun; Zhang, Zhigang; Liu, Zhiyong; Wang, Ruizhi; Hui, Dayang; Jin, Yi

    2017-12-06

    Overexpression of Cullin7 is associated with some types of malignancies. However, the part of Cullin7 in hepatocellular carcinoma remains unclear. The aim of this study was to investigate the role of Cullin7 in pathogenesis and the progression of hepatocellular carcinoma. In the present study, the expression of Cullin7 in hepatocellular carcinoma cell lines and five surgical hepatocellular carcinoma specimens was detected with quantitative reverse transcription PCR and western blotting. In addition, the protein expression of Cullin7 was examined in 162 cases of archived hepatocellular carcinoma using immunohistochemistry. We found elevated expression of both mRNA and protein levels of Cullin7 in hepatocellular carcinoma cell lines, and Cullin7 protein was significantly upregulated in hepatocellular carcinoma compared with paired normal hepatic tissues. The immunohistochemistry analysis revealed that overexpression of Cullin7 occurred in 69.1% of hepatocellular carcinoma samples, which was a significantly higher rate than that in adjacent normal hepatic tissue (P hepatocellular carcinoma HepG2 cells, we revealed that Cullin7 could significantly enhance cell proliferation, growth, migration and invasion. Conversely, knocking down Cullin7 expression with short hairpin RNAi in hepatocellular carcinoma HepG2 cells inhibited cell proliferation, growth, migration and invasion. Our studies provide evidence that overexpression of Cullin7 plays an important role in the pathogenesis and progression of hepatocellular carcinoma and may be a valuable marker for hepatocellular carcinoma management.

  13. Curcumin Conjugated with PLGA Potentiates Sustainability, Anti-Proliferative Activity and Apoptosis in Human Colon Carcinoma Cells

    Science.gov (United States)

    Waghela, Bhargav N.; Sharma, Anupama; Dhumale, Suhashini; Pandey, Shashibahl M.; Pathak, Chandramani

    2015-01-01

    Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy. PMID:25692854

  14. Basal cell carcinoma arising on the skin with chronic radiation dermatitis

    International Nuclear Information System (INIS)

    Tanaka, Yukiko; Ogusa, Yasuhiro; Tamura, Shinya

    1986-01-01

    In a 86-year-old woman, basal cell carcinoma (BCC) arose on the skin with chronic radiation dermatitis. She, at the age of 46, received irradiation to the abdomen for cancer of the uterine cervix. Radiation source and dose were unknown. A verrucous eruption appeared on the irradiated field of the right abdomen, and gradually expanded. Histological examination showed that proliferation of tumor cells with adenoid and cystose structure extended to the epidermis. Electron microscopic study showed both clear and dark tumor cells, although dark cells were few in number. A review of the literature showed that BCC arising on the skin with chronic radiation dermatitis is uncommon in Japan. (Namekawa, K.)

  15. Nucleotide-binding oligomerization domain 2 (NOD2) activation induces apoptosis of human oral squamous cell carcinoma cells.

    Science.gov (United States)

    Yoon, Hyo-Eun; Ahn, Mee-Young; Kwon, Seong-Min; Kim, Dong-Jae; Lee, Jun; Yoon, Jung-Hoon

    2016-04-01

    Microbial Pattern-recognition receptors (PRRs), such as nucleotide-binding oligomerization domains (NODs), are essential for mammalian innate immune response. This study was designed to determine the effect of NOD1 and NOD2 agonist on innate immune responses and antitumor activity in oral squamous cell carcinoma (OSCC) cells. NODs expression was examined by RT-PCR, and IL-8 production by NODs agonist was examined by ELISA. Western blot analysis was performed to determine the MAPK activation in response to their agonist. Cell proliferation was determined by MTT assay. Flow cytometry and Western blot analysis were performed to determine the MDP-induced cell death. The levels of NODs were apparently expressed in OSCC cells. NODs agonist, Tri-DAP and MDP, led to the production of IL-8 and MAPK activation. NOD2 agonist, MDP, inhibited the proliferation of YD-10B cells in a dose-dependent manner. Also, the ratio of Annexin V-positive cells and cleaved PARP was increased by MDP treatment in YD-10B cells, suggesting that MDP-induced cell death in YD-10B cells may be owing to apoptosis. Our results indicate that NODs are functionally expressed in OSCC cells and can trigger innate immune responses. In addition, NOD2 agonist inhibited cell proliferation and induced apoptosis. These findings provide the potential value of MDP as novel candidates for antitumor agents of OSCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells.

    Science.gov (United States)

    Charles, Saby; Hassan, Rammal; Kevin, Magnien; Emilie, Buache; Sylvie, Brassart-Pasco; Laurence, Van-Gulick; Pierre, Jeannesson; Erik, Maquoi; Hamid, Morjani

    2018-05-07

    Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.

  17. Autoradiographic studies on the cell proliferation of the human chronic gastritis

    Energy Technology Data Exchange (ETDEWEB)

    Yagami, Y. (Nippon Medical School, Tokyo)

    1982-02-01

    Cell proliferation of human gastric mucosa was studied in the cases of chronic gastritis using the in vitro incubation method of /sup 3/H-thymidine autoradiography. The study was carried out using the material consisted of 92 biopsy specimens and 83 stomachs diagnosed as carcinoma, peptic ulcer, duodenal ulcer and chronic gastritis. The labelling index was expressed in a percentage of labelled cells in ratio to the total number of epithelial cells. In the normal gastric mucosae, /sup 3/H-TdR labeled cells were in the neck region of the gastric gland, but did not appear in the surface epithelium. Higher incorporation of /sup 3/H-TdR was observed in the lower part of the neck region of the glands. The average indices, both labeling and mitotic, were generally higher in the antrum than in the pylorus in the cases of chronic gastritis and also higher than normal mucosae. Superficial gastritis showed many labeled cells which were located in the neck region and foveolae. Simple gastitis showed scattered labeled cells in various parts of mucosae. In atrophic and atrophic hyperplastic gastritis, labeled cells were found in the neck and fobeolae of the gastric glands. Metaplastic gastritis showed labeled cells especially in the neck regions. The average labeling index is higher in simple chronic gastritis than in other superficial gastritis, atrophic, atrophic hyperplastic and metaplastic gastritis. Information concerned with cell renewal and proliferation is important for further understanding of the development of disease.

  18. Autoradiographic studies on the cell proliferation of the human chronic gastritis

    International Nuclear Information System (INIS)

    Yagami, Yoshifumi

    1982-01-01

    Cell proliferation of human gastric mucosa was studied in the cases of chronic gastritis using the in vitro incubation method of 3 H-thymidine autoradiography. The study was carried out using the material consisted of 92 biopsy specimens and 83 stomachs diagnosed as carcinoma, peptic ulcer, duodenal ulcer and chronic gastritis. The labelling index was expressed in a percentage of labelled cells in ratio to the total number of epithelial cells. In the normal gastric mucosae, 3 H-TdR labeled cells were in the neck region of the gastric gland, but did not appear in the surface epithelium. Higher incorporation of 3 H-TdR was observed in the lower part of the neck region of the glands. The average indices, both labeling and mitotic, were generally higher in the antrum than in the pylorus in the cases of chronic gastritis and also higher than normal mucosae. Superficial gastritis showed many labeled cells which were located in the neck region and foveolae. Simple gastitis showed scattered labeled cells in various parts of mucosae. In atrophic and atrophic hyperplastic gastritis, labeled cells were found in the neck and fobeolae of the gastric glands. Metaplastic gastritis showed labeled cells especially in the neck regions. The average labeling index is higher in simple chronic gastritis than in other superficial gastritis, atrophic, atrophic hyperplastic and metaplastic gastritis. Information concerned with cell renewal and proliferation is important for further understanding of the development of disease. (J.P.N.)

  19. Red Dot Basal Cell Carcinoma: Report of Cases and Review of This Unique Presentation of Basal Cell Carcinoma.

    Science.gov (United States)

    Cohen, Philip R

    2017-03-22

    Red dot basal cell carcinoma is a unique variant of basal cell carcinoma. Including the three patients described in this report, red dot basal cell carcinoma has only been described in seven individuals. This paper describes the features of two males and one female with red dot basal cell carcinoma and reviews the characteristics of other patients with this clinical subtype of basal cell carcinoma. A 70-year-old male developed a pearly-colored papule with a red dot in the center on his nasal tip. A 71-year-old male developed a red dot surrounded by a flesh-colored papule on his left nostril. Lastly, a 74-year-old female developed a red dot within an area of erythema on her left mid back. Biopsy of the lesions all showed nodular and/or superficial basal cell carcinoma. Correlation of the clinical presentation and pathology established the diagnosis of red dot basal cell carcinoma. The tumors were treated by excision using the Mohs surgical technique. Pubmed was searched with the keyword: basal, cell, cancer, carcinoma, dot, red, and skin. The papers generated by the search and their references were reviewed. Red dot basal cell carcinoma has been described in three females and two males; the gender was not reported in two patients. The tumor was located on the nose (five patients), back (one patient) and thigh (one patient). Cancer presented as a solitary small red macule or papule; often, the carcinoma was surrounded by erythema or a flesh-colored papule. Although basal cell carcinomas usually do not blanch after a glass microscope slide is pressed against them, the red dot basal cell carcinoma blanched after diascopy in two of the patients, resulting in a delay of diagnosis in one of these individuals. Dermoscopy may be a useful non-invasive modality for evaluating skin lesions when the diagnosis of red dot basal cell carcinoma is considered. Mohs surgery is the treatment of choice; in some of the patients, the ratio of the area of the postoperative wound to that

  20. Clinicopathological characteristics of head and neck Merkel cell carcinomas.

    Science.gov (United States)

    Knopf, Andreas; Bas, Murat; Hofauer, Benedikt; Mansour, Naglaa; Stark, Thomas

    2017-01-01

    There are still controversies about the therapeutic strategies and subsequent outcome in head and neck Merkel cell carcinoma. Clinicopathological data of 23 Merkel cell carcinomas, 93 cutaneous head and neck squamous cell carcinomas (HNSCCs), 126 malignant melanomas, and 91 primary parotid gland carcinomas were comprehensively analyzed. Merkel cell carcinomas were cytokeratin 20 (CK20)/neuron-specific enolase (NSE)/chromogranin A (CgA)/synaptophysin (Syn)/thyroid transcription factor-1 (TTF-1)/MIB1 immunostained. All Merkel cell carcinomas underwent wide local excision. Parotidectomy/neck dissection was performed in 40%/33% cutaneous Merkel cell carcinoma and 100%/100% in parotid gland Merkel cell carcinoma. Five-year recurrence-free interval (RFI)/overall survival (OS) was significantly higher in malignant melanoma (81/80%) than in cutaneous Merkel cell carcinoma/HNSCC. Interestingly, 5-year RFI/OS was significantly higher in Merkel cell carcinoma (61%/79%) than in HNSCC (33%/65%; p Merkel cell carcinoma and parotid gland carcinomas, nor in the immunohistochemical profile. Five-year RFI/OS was significantly better in cutaneous Merkel cell carcinoma when compared with TNM classification matched HNSCC. Five-year RFI/OS was comparable in parotid gland Merkel cell carcinoma and other primary parotid gland malignancies. © 2016 Wiley Periodicals, Inc. Head Neck 39: 92-97, 2017. © 2016 Wiley Periodicals, Inc.

  1. RhoE interferes with Rb inactivation and regulates the proliferation and survival of the U87 human glioblastoma cell line

    International Nuclear Information System (INIS)

    Poch, Enric; Minambres, Rebeca; Mocholi, Enric; Ivorra, Carmen; Perez-Arago, Amparo; Guerri, Consuelo; Perez-Roger, Ignacio; Guasch, Rosa M.

    2007-01-01

    Rho GTPases are important regulators of actin cytoskeleton, but they are also involved in cell proliferation, transformation and oncogenesis. One of this proteins, RhoE, inhibits cell proliferation, however the mechanism that regulates this effect remains poorly understood. Therefore, we undertook the present study to determine the role of RhoE in the regulation of cell proliferation. For this purpose we generated an adenovirus system to overexpress RhoE in U87 glioblastoma cells. Our results show that RhoE disrupts actin cytoskeleton organization and inhibits U87 glioblastoma cell proliferation. Importantly, RhoE expressing cells show a reduction in Rb phosphorylation and in cyclin D1 expression. Furthermore, RhoE inhibits ERK activation following serum stimulation of quiescent cells. Based in these findings, we propose that RhoE inhibits ERK activation, thereby decreasing cyclin D1 expression and leading to a reduction in Rb inactivation, and that this mechanism is involved in the RhoE-induced cell growth inhibition. Moreover, we also demonstrate that RhoE induces apoptosis in U87 cells and also in colon carcinoma and melanoma cells. These results indicate that RhoE plays an important role in the regulation of cell proliferation and survival, and suggest that this protein may be considered as an oncosupressor since it is capable to induce apoptosis in several tumor cell lines

  2. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xin; Lyu, Pengwei; Cao, Zhang; Li, Jingruo; Guo, Guangcheng; Xia, Wanjun; Gu, Yuanting, E-mail: zzyuantinggu@126.com

    2015-08-07

    miRNAs, sorting as non-coding RNAs, are differentially expressed in breast tumor and act as tumor promoters or suppressors. miR-206 could suppress the progression of breast cancer, the mechanism of which remains unclear. The study here was aimed to investigate the effect of miR-206 on human breast cancers. We found that miR-206 was down-regulated while one of its predicted targets, 6-Phosphofructo-2-kinase (PFKFB3) was up-regulated in human breast carcinomas. 17β-estradiol dose-dependently decreased miR-206 expression as well as enhanced PFKFB3 mRNA and protein expression in estrogen receptor α (ERα) positive breast cancer cells. Furthermore, we identified that miR-206 directly interacted with 3′-untranslated region (UTR) of PFKFB3 mRNA. miR-206 modulated PFKFB3 expression in MCF-7, T47D and SUM159 cells, which was influenced by 17β-estradiol depending on ERα expression. In addition, miR-206 overexpression impeded fructose-2,6-bisphosphate (F2,6BP) production, diminished lactate generation and reduced cell proliferation and migration in breast cancer cells. In conclusion, our study demonstrated that miR-206 regulated PFKFB3 expression in breast cancer cells, thereby stunting glycolysis, cell proliferation and migration. - Highlights: • miR-206 was down-regulated and PFKFB3 was up-regulated in human breast carcinomas. • 17β-estradiol regulated miR-206 and PFKFB3 expression in ERα+ cancer cells. • miR-206directly interacted with 3′-UTR of PFKFB3 mRNA. • miR-206 fructose-2,6-bisphosphate (F2,6BP) impeded production and lactate generation. • miR-206 reduced cell proliferation and migration in breast cancer cells.

  3. Clear cell carcinoma of the uterine corpus following irradiation therapy for squamous cell carcinoma of the cervix

    International Nuclear Information System (INIS)

    Iwaoki, Yasuhisa; Katsube, Yasuhiro; Nanba, Koji.

    1992-01-01

    A case of clear cell carcinoma of the endometrium following squamous cell carcinoma of the cervix is reported. The patient had had a previous cervical biopsy which revealed squamous cell carcinoma (large cell non-keratinizing type), classified clinically as a stage IIb lesion. She was treated with external pelvic irradiation delivering an estimated tumor dose of approximately 7,000 rads and intracavital radium application delivering 4,995 mg.hr.radiation when she was 51 years old. She complained of post-menopausal bleeding at age 66 and was diagnosed by endometrial cytology as having clear cell carcinoma of the endometrium. Total abdominal hysterectomy, bilateral salpingo-oophorectomy and omentectomy were performed. The clinical stage of the endometrial cancer was Ib. She is alive after 2 years with no evidence of disease. Endometrial cytology revealed several adenocarcinoma cells in small clusters. The shape of the nuclei was somewhat irregular, the chromatin pattern was fine granular, and single or multiple nucleoli were seen. The diameter of these nuclei ranged from 10 to 30 μm. The cytoplasm was pale green or vacuolated. The volume of the cytoplasm varied from scanty to abundant. These findings suggested clear cell carcinoma. Histopathologically, an irregular shaped polypoid tumor, 3 x 1.5 cm in size, was located on the lower anterior wall of the uterine corpus. The tumor was a clear cell carcinoma showing a solid and papillary pattern. A hobnail pattern was not observed. The cytoplasm was clear and abundant, and PAS-positive granules digestible by diastase were seen. These 2 cancers had different pathological features and their immunohistochemical reactivities for CEA and keratin were also different. The patient was regarded as having a rare heterochronous double cancer consisting of squamous cell carcinoma of the cervix and clear cell carcinoma of the endometrium. (author)

  4. Impact of MUC1 mucin downregulation in the phenotypic characteristics of MKN45 gastric carcinoma cell line.

    Directory of Open Access Journals (Sweden)

    Natália R Costa

    Full Text Available BACKGROUND: Gastric carcinoma is the second leading cause of cancer-associated death worldwide. The high mortality associated with this disease is in part due to limited knowledge about gastric carcinogenesis and a lack of available therapeutic and prevention strategies. MUC1 is a high molecular weight transmembrane mucin protein expressed at the apical surface of most glandular epithelial cells and a major component of the mucus layer above gastric mucosa. Overexpression of MUC1 is found in approximately 95% of human adenocarcinomas, where it is associated with oncogenic activity. The role of MUC1 in gastric cancer progression remains to be clarified. METHODOLOGY: We downregulated MUC1 expression in a gastric carcinoma cell line by RNA interference and studied the effects on cellular proliferation (MTT assay, apoptosis (TUNEL assay, migration (migration assay, invasion (invasion assay and aggregation (aggregation assay. Global gene expression was evaluated by microarray analysis to identify alterations that are regulated by MUC1 expression. In vivo assays were also performed in mice, in order to study the tumorigenicity of cells with and without MUC1 downregulation in MKN45 gastric carcinoma cell line. RESULTS: Downregulation of MUC1 expression increased proliferation and apoptosis as compared to controls, whereas cell-cell aggregation was decreased. No significant differences were found in terms of migration and invasion between the downregulated clones and the controls. Expression of TCN1, KLK6, ADAM29, LGAL4, TSPAN8 and SHPS-1 was found to be significantly different between MUC1 downregulated clones and the control cells. In vivo assays have shown that mice injected with MUC1 downregulated cells develop smaller tumours when compared to mice injected with the control cells. CONCLUSIONS: These results indicate that MUC1 downregulation alters the phenotype and tumorigenicity of MKN45 gastric carcinoma cells and also the expression of several

  5. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    Directory of Open Access Journals (Sweden)

    Roberta Lotti

    2016-01-01

    Full Text Available Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC originate from alterations in keratinocyte stem cells (KSC gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD and non-RAD (NRAD cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin, while it increases the level of differentiation markers (K10, involucrin. Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  6. Photodynamic therapy for basal cell carcinoma.

    Science.gov (United States)

    Fargnoli, Maria Concetta; Peris, Ketty

    2015-11-01

    Topical photodynamic therapy is an effective and safe noninvasive treatment for low-risk basal cell carcinoma, with the advantage of an excellent cosmetic outcome. Efficacy of photodynamic therapy in basal cell carcinoma is supported by substantial research and clinical trials. In this article, we review the procedure, indications and clinical evidences for the use of photodynamic therapy in the treatment of basal cell carcinoma.

  7. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  8. FBX8 Acts as an Invasion and Metastasis Suppressor and Correlates with Poor Survival in Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Feifei Wang

    Full Text Available F-box only protein 8 (FBX8, a novel component of F-box proteins, is lost in several cancers and has been associated with invasiveness of cancer cells. However, its expression pattern and role in the progression of hepatocellular carcinoma remain unclear. This study investigated the prognostic significance of FBX8 in hepatocellular carcinoma samples and analyzed FBX8 function in hepatocellular carcinoma cells by gene manipulation.The expression of FBX8 was detected in 120 cases of clinical paraffin-embedded hepatocellular carcinoma tissues, 20 matched pairs of fresh tissues and five hepatocellular carcinoma cell lines by immunohistochemistry with clinicopathological analyses, real-time RT-PCR or Western blot. The correlation of FBX8 expression with cell proliferation and invasion in five HCC cell lines was analyzed. Moreover, loss of function and gain of function assays were performed to evaluate the effect of FBX8 on cell proliferation, motility, invasion in vitro and metastasis in vivo.We found that FBX8 was obviously down-regulated in HCC tissues and cell lines (P<0.05. The FBX8 down-regulation correlated significantly with poor prognosis, and FBX8 status was identified as an independent significant prognostic factor. Over-expression of FBX8 decreased proliferation, migration and invasion in HepG2 and 97H cells, while knock-down of FBX8 in 7721 cells showed the opposite effect. FBX8 negatively correlated with cell proliferation and invasion in 7701, M3, HepG2 and 97H cell lines. In vivo functional assays showed FBX8 suppressed tumor growth and pulmonary metastatic potential in mice. Our results indicate that down-regulation of FBX8 significantly correlates with invasion, metastasis and poor survival in hepatocellular carcinoma patients. It may be a useful biomarker for therapeutic strategy and control in hepatocellular carcinoma treatment.

  9. Clinicopathological and immunohistochemical characterization of papillary proliferation of the endometrium: A single institutional experience.

    Science.gov (United States)

    Park, Cheol Keun; Yoon, Gun; Cho, Yoon Ah; Kim, Hyun-Soo

    2016-06-28

    Papillary proliferation of the endometrium is an unusual lesion that is composed of papillae with fibrovascular stromal cores covered with benign-appearing glandular epithelium. We studied the clinicopathological and immunohistochemical features of four cases of endometrial papillary proliferations. All patients were postmenopausal. Two lesions were incidental findings in hysterectomy specimens, and two lesions were detected in endometrial curettage specimens. Based on the degree of architectural complexity and extent of proliferation, we classified papillary proliferations histopathologically into "simple" or "complex" growth patterns. Three cases were classified as simple papillary proliferation, and one case was classified as complex papillary proliferation. Simple papillary proliferations were characterized by slender papillae with delicate stromal cores. In contrast, complex papillary proliferations had intracystic papillary projections and cellular clusters with frequent branching and occasional cytological atypia. All cases showed coexistent metaplastic epithelial changes, including mucinous metaplasia, eosinophilic cell change, and ciliated cell metaplasia. One patient with simple papillary proliferations had coexistent well-differentiated endometrioid carcinoma. One patient had subsequent hyperplasia without atypia, and another patient had subsequent atypical hyperplasia/endometrioid intraepithelial neoplasia; both patients underwent total hysterectomy within four months. Our observations are consistent with previous data demonstrating that endometrial papillary proliferations coexist with or develop into atypical hyperplasia/endometrioid intraepithelial neoplasia or endometrioid carcinoma. It is very important for pathologists to discriminate papillary proliferations from neoplastic lesions (including atypical hyperplasia/endometrioid intraepithelial neoplasia and well-differentiated endometrioid carcinoma) and benign mimickers (including papillary

  10. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhuang

    Full Text Available Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  11. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells

    International Nuclear Information System (INIS)

    Sun, Qing; Liang, Ying; Zhang, Tianli; Wang, Kun; Yang, Xingsheng

    2017-01-01

    Objective: Estrogen receptor alpha 36 (ER-α36), a truncated variant of ER-α, is different from other nuclear receptors of the ER-α family. Previous findings indicate that ER-α36 might be involved in cell growth, proliferation, and differentiation in carcinomas and primarily mediates non-genomic estrogen signaling. However, studies on ER-α36 and cervical cancer are rare. This study aimed to detect the expression of ER-α36 in cervical cancer; the role of ER-α36 in 17-β-estradiol (E2)-induced invasion, migration and proliferation of cervical cancer; and their probable molecular mechanisms. Methods: Immunohistochemistry and immunofluorescence were used to determine the location of ER-α36 in cervical cancer tissues and cervical cell lines. CaSki and HeLa cell lines were transfected with lentiviruses to establish stable cell lines with knockdown and overexpression of ER-α36. Wound healing assay, transwell invasion assay, and EdU incorporation proliferation assay were performed to evaluate the migration, invasion, and proliferation ability. The phosphorylation levels of mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling molecules were examined with western blot analysis. Results: ER-α36 expression was detected in both cervical cell lines and cervical cancer tissues. Downregulation of ER-α36 significantly inhibited cell invasion, migration, and proliferation. Moreover, upregulation of ER-α36 increased the invasion, migration, and proliferation ability of CaSki and HeLa cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation. Conclusion: ER-α36 is localized on the plasma membrane and cytoplasm in both cervical cancer tissues and cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells. - Highlights: • ER-α36 is expressed on both cervical cell lines and cervical cancer tissues. • ER-α36 mediates estrogen

  12. Sclerodermiform basal cell carcinoma: how much can we rely on dermatoscopy to differentiate from non-aggressive basal cell carcinomas? Analysis of 1256 cases.

    Science.gov (United States)

    Husein-ElAhmed, Husein

    2018-03-01

    The behaviour of each basal cell carcinoma is known to be different according to the histological growth pattern. Among these aggressive lesions, sclerodermiform basal cell carcinomas are the most common type. This is a challenging-to-treat lesion due to its deep tissue invasion, rapid growth, risk of metastasis and overall poor prognosis if not diagnosed in early stages. To investigate if sclerodermiform basal cell carcinomas are diagnosed later compared to non-sclerodermiform basal cell carcinoma Method: All lesions excised from 2000 to 2010 were included. A pathologist classified the lesions in two cohorts: one with specimens of non-aggressive basal cell carcinoma (superficial, nodular and pigmented), and other with sclerodermiform basal cell carcinoma. For each lesion, we collected patient's information from digital medical records regarding: gender, age when first attending the clinic and the tumor location. 1256 lesions were included, out of which 296 (23.6%) corresponded to sclerodermiform basal cell carcinoma, whereas 960 (76.4%) were non-aggressive subtypes of basal cell carcinoma. The age of diagnosis was: 72.78±12.31 years for sclerodermiform basal cell and 69.26±13.87 years for non-aggressive basal cell carcinoma (Pbasal cell carcinomas are diagnosed on average 3.52 years later than non-aggressive basal cell carcinomas. Sclerodermiform basal cell carcinomas were diagnosed 3.40 years and 2.34 years later than non-aggressive basal cell carcinomas in younger and older patients respectively (P=.002 and P=.03, respectively). retrospective design. The diagnostic accuracy and primary clinic conjecture of sclerodermiform basal cell carcinomas is quite low compared to other forms of basal cell carcinoma such as nodular, superficial and pigmented. The dermoscopic vascular patterns, which is the basis for the diagnosis of non-melanocytic nonpigmented skin tumors, may not be particularly useful in identifying sclerodermiform basal cell carcinomas in early stages

  13. Dictyostelium cells bind a secreted autocrine factor that represses cell proliferation

    OpenAIRE

    Choe, Jonathan M; Bakthavatsalam, Deenadayalan; Phillips, Jonathan E; Gomer, Richard H

    2009-01-01

    Abstract Background Dictyostelium cells secrete the proteins AprA and CfaD. Cells lacking either AprA or CfaD proliferate faster than wild type, while AprA or CfaD overexpressor cells proliferate slowly, indicating that AprA and CfaD are autocrine factors that repress proliferation. CfaD interacts with AprA and requires the presence of AprA to slow proliferation. To determine if CfaD is necessary for the ability of AprA to slow proliferation, whether AprA binds to cells, and if so whether the...

  14. Epigenetic inactivation of SPINT2 is associated with tumor suppressive function in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Dongli [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); The Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Fan, Qingxia [The Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Chen, Xinfeng; Li, Feng [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Wang, Liping [The Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Huang, Lan [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Dong, Wenjie; Chen, Xiaoqi [The Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Zhang, Zhen [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Liu, Jinyan; Wang, Fei [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); The School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan (China); Wang, Meng [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); The Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Zhang, Bin [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); The Department of Hematology/Oncology, School of Medicine, Northwestern University, Chicago 60611 (United States); and others

    2014-03-10

    Hepatocyte growth factor activator inhibitor type 2 (SPINT2), a Kunitz-type serine proteinase inhibitor, has been identified as a putative tumor suppressor gene silenced by promoter methylation. We aimed to investigate whether SPINT2 might act as an esophageal squamous cell carcinoma (ESCC) tumor suppressor gene. Four ESCC cell lines, Fifty-two ESCC tissues and twenty-nine neighboring non-cancerous tissues were included in this study. The expression of SPINT2 was monitored by real time PCR. Bisulfite genomic sequencing and methylation-specific PCR were used to analyze methylation status. The effect of SPINT2 on cell proliferation and apoptosis in EC109 and EC9706 cells was observed by CCK-8 assay and flow cytometric analysis. We found that silencing of SPINT2 was associated with promoter methylation in ESCC cell lines. The densely methylated SPINT2 promoter region was confirmed by bisulfite genomic sequencing. Ectopic expression of SPINT2 inhibited cell proliferation through inducing cell apoptosis in vitro. Furthermore, methylation-specific PCR analysis revealed that SPINT2 promoter methylation was prominent in carcinoma tissues (52.08%) compared with neighboring non-cancerous tissues (22.58%). Kaplan–Meier analysis showed that patients with SPINT2 hypermethylation had shorter survival time. The tumor suppressor gene of SPINT2 is commonly silenced by promoter hypermethylation in human ESCC and SPINT2 hypermethylation is correlated with poor overall survival, implicating SPINT2 is an underlying prognostic marker for human ESCC. - Highlights: • We firstly found SPINT2 gene may be transcriptionally repressed by promoter hypermethylation in ESCC cells. • SPINT2 overexpressing cells induced proliferation inhibition through promoting apoptosis. • mRNA expression of SPINT2 was significantly higher in ESCC tissues than in neighboring non-cancerous tissues. • Promoter hypermethylation of SPINT2 is significantly linked to TNM stage and poor overall survival.

  15. A secreted factor represses cell proliferation in Dictyostelium

    OpenAIRE

    Brock, Debra A.; Gomer, Richard H.

    2005-01-01

    Many cells appear to secrete factors called chalones that limit their proliferation, but in most cases the factors have not been identified. We found that growing Dictyostelium cells secrete a 60 kDa protein called AprA for autocrine proliferation repressor. AprA has similarity to putative bacterial proteins of unknown function. Compared with wild-type cells, aprA-null cells proliferate faster, while AprA overexpressing cells proliferate slower. Growing wild-type cells secrete a factor that i...

  16. STAT5A-mediated NOX5-L expression promotes the proliferation and metastasis of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dho, So Hee [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Ji Young; Lee, Kwang-Pyo; Kwon, Eun-Soo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Lim, Jae Cheong [Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Chang-Jin [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Jeong, Dongjun, E-mail: juny1024@sch.ac.kr [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Kwon, Ki-Sun, E-mail: kwonks@kribb.re.kr [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 305-333 (Korea, Republic of)

    2017-02-01

    NADPH oxidase (NOX) generates reactive oxygen species (ROS) and has been suggested to mediate cell proliferation in some cancers. Here, we show that an increase in the expression of NOX5 long form (NOX5-L) is critical for tumor progression in breast tumor tissues. Immunostaining of clinical samples indicated that NOX5 was overexpressed in 41.1% of breast ductal carcinoma samples. NOX5-L depletion consistently suppressed cell proliferation, invasion, and migration in vitro. Antibody-mediated neutralization of NOX5-L attenuated tumor progression in a mouse xenograft model. Promoter analysis revealed that NOX5-L expression is regulated by STAT5A in breast cancer cells. Based on our novel findings, we suggest that inhibition of NOX5-L may be a promising therapeutic strategy that exerts anti-cancer effects via the modulation of ROS-mediated cell signaling. - Highlights: • The ROS-generating protein, NOX5-L, determines cellular proliferation and metastasis in subset of breast tumor. • Tumor growth was attenuated by the treatment of anti-NOX5-L antibody in a xenograft model. • NOX5-L expression is transcriptionally regulated by STAT5A in breast cancer cells.

  17. General Information about Merkel Cell Carcinoma

    Science.gov (United States)

    ... Genetics of Skin Cancer Skin Cancer Screening Research Merkel Cell Carcinoma Treatment (PDQ®)–Patient Version General Information About Merkel Cell Carcinoma Go to Health Professional Version Key ...

  18. Knockdown of Pokemon protein expression inhibits hepatocellular carcinoma cell proliferation by suppression of AKT activity.

    Science.gov (United States)

    Zhu, Xiaosan; Dai, Yichen; Chen, Zhangxin; Xie, Junpei; Zeng, Wei; Lin, Yuanyuan

    2013-01-01

    Overexpression of Pokemon, which is an erythroid myeloid ontogenic factor protein, occurs in different cancers, including hepatocellular carcinoma (HCC). Pokemon is also reported to have an oncogenic activity in various human cancers. This study investigated the effect of Pokemon knockdown on the regulation of HCC growth. POK shRNA suppressed the expression of Pokemon protein in HepG2 cells compared to the negative control vector-transfected HCC cells. Pokemon knockdown also reduced HCC cell viability and enhanced cisplatin-induced apoptosis in HCC cells. AKT activation and the expression of various cell cycle-related genes were inhibited following Pokemon knockdown. These data demonstrate that Pokemon may play a role in HCC progression, suggesting that inhibition of Pokemon expression using Pokemon shRNA should be further evaluated as a novel target for the control of HCC.

  19. Dictyostelium cells bind a secreted autocrine factor that represses cell proliferation.

    Science.gov (United States)

    Choe, Jonathan M; Bakthavatsalam, Deenadayalan; Phillips, Jonathan E; Gomer, Richard H

    2009-02-02

    Dictyostelium cells secrete the proteins AprA and CfaD. Cells lacking either AprA or CfaD proliferate faster than wild type, while AprA or CfaD overexpressor cells proliferate slowly, indicating that AprA and CfaD are autocrine factors that repress proliferation. CfaD interacts with AprA and requires the presence of AprA to slow proliferation. To determine if CfaD is necessary for the ability of AprA to slow proliferation, whether AprA binds to cells, and if so whether the binding requires the presence of CfaD, we examined the binding and effect on proliferation of recombinant AprA. We find that the extracellular accumulation of AprA increases with cell density and reaches a concentration of 0.3 microg/ml near a stationary cell density. When added to wild-type or aprA- cells, recombinant AprA (rAprA) significantly slows proliferation at 0.1 microg/ml and higher concentrations. From 4 to 64 microg/ml, the effect of rAprA is at a plateau, slowing but not stopping proliferation. The proliferation-inhibiting activity of rAprA is roughly the same as that of native AprA in conditioned growth medium. Proliferating aprA- cells show saturable binding of rAprA to 92,000 +/- 11,000 cell-surface receptors with a KD of 0.03 +/- 0.02 microg/ml. There appears to be one class of binding site, and no apparent cooperativity. Native AprA inhibits the binding of rAprA to aprA- cells with a Ki of 0.03 mug/ml, suggesting that the binding kinetics of rAprA are similar to those of native AprA. The proliferation of cells lacking CrlA, a cAMP receptor-like protein, or cells lacking CfaD are not affected by rAprA. Surprisingly, both cell types still bind rAprA. Together, the data suggest that AprA functions as an autocrine proliferation-inhibiting factor by binding to cell surface receptors. Although AprA requires CfaD for activity, it does not require CfaD to bind to cells, suggesting the possibility that cells have an AprA receptor and a CfaD receptor, and activation of both receptors is

  20. PKI-587 and sorafenib alone and in combination on inhibition of liver cancer stem cell proliferation.

    Science.gov (United States)

    Gedaly, Roberto; Galuppo, Roberto; Musgrave, Yolanda; Angulo, Paul; Hundley, Jonathan; Shah, Malay; Daily, Michael F; Chen, Changguo; Cohen, Donald A; Spear, Brett T; Evers, B Mark

    2013-11-01

    Deregulated Ras/Raf/mitogen-activated protein kinase and PI3 K/AKT/mTOR signaling pathways are significant in hepatocellular carcinoma proliferation (HCC). In this study we evaluated differences in the antiproliferative effect of dual PI3 K/Akt/mTOR and Ras/Raf/mitogen-activated protein kinase inhibition of non liver cancer stem cell lines (PLC and HuH7) and liver cancer stem cell (LCSC) lines (CD133, CD44, CD24, and aldehyde dehydrogenase 1-positive cells). Flow cytometry was performed on the resulting tumors to identify the LCSC markers CD133, CD44, CD24, and aldehyde dehydrogenase 1. Methylthiazol tetrazolium assay was used to assess cellular proliferation. Finally, a Western blot assay was used to evaluate for inhibition of specific enzymes in these two signaling pathways. Using flow cytometry, we found that LCSC contain 64.4% CD133 + cells, 83.2% CD44 + cells, and 96.4% CD24 + cells. PKI-587 and sorafenib caused inhibiton of LCSC and HCC cell proliferation. PLC cells were more sensitive to PKI-587 than LCSC or Huh7 (P PKI-587 and sorafenib caused significantly more inhibition than monotherapy in HuH7, PLC, and LCSC. Using the methylthiazol tetrazolium assay, we found that the LCSC proliferation was inhibited with sorafenib monotherapy 39% at 5 μM (P PKI-587 at 0.1 μM (P = 0.002, n = 12) compared with control. The combination of PKI-587 and sorafenib, however, synergistically inhibited LCSC proliferation by 86% (P = 0.002; n = 12). LCSC (CD133+, CD44+, CD24+) were able to develop very aggressive tumors with low cell concentrations at 4 to 6 wk. Cells CD133+, CD44+, CD24+, which demonstrated at least moderate resistance to therapy in vitro. The combination of PKI-587 and sorafenib was better than either drug alone at inhibiting of LCSC and on HCC cell proliferation. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. SOX4 expression is associated with treatment failure and chemoradioresistance in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Yoon, Tae Mi; Kim, Sun-Ae; Cho, Wan Seok; Lee, Dong Hoon; Lee, Joon Kyoo; Park, Young-Lan; Lee, Kyung-Hwa; Lee, Jae Hyuk; Kweon, Sun-Seog; Chung, Ik-Joo; Lim, Sang Chul; Joo, Young-Eun

    2015-01-01

    In humans, sex-determining region-Y (SRY) related high-mobility-group box 4 (SOX4) is linked to development and tumorigenesis. SOX4 is over-expressed in several cancers and has prognostic significance. This study evaluated whether SOX4 affects oncogenic behavior and chemoradiotherapy response in head and neck squamous cell carcinoma (HNSCC) cells, and documented the relationship between its expression and prognosis in oral squamous cell carcinoma (OSCC). We used small interfering RNA in HNSCC cells to evaluate the effect of SOX4 on cell proliferation, apoptosis, chemoradiation-induced apoptosis, invasion, and migration. SOX4 expression in OSCC tissues was investigated by immunohistochemistry. SOX4 knockdown (KO) decreased cell proliferation and induced apoptosis by activating caspases-3 and −7, and poly-ADP ribose polymerase and suppressing X-linked inhibitor of apoptosis protein in HNSCC cells; it also enhanced radiation/cisplatin-induced apoptosis; and suppressed tumor cell invasion and migration. Immunostaining showed SOX4 protein was significantly increased in OSCC tissues compared with adjacent normal mucosa. SOX4 expression was observed in 51.8 % of 85 OSCC tissues, and was significantly correlated with treatment failure (P = 0.032) and shorter overall survival (P = 0.036) in patients with OSCC. SOX4 may contribute to oncogenic phenotypes of HNSCC cells by promoting cell survival and causing chemoradioresistance. It could be a potential prognostic marker for OSCC. The online version of this article (doi:10.1186/s12885-015-1875-8) contains supplementary material, which is available to authorized users

  2. A secreted factor represses cell proliferation in Dictyostelium.

    Science.gov (United States)

    Brock, Debra A; Gomer, Richard H

    2005-10-01

    Many cells appear to secrete factors called chalones that limit their proliferation, but in most cases the factors have not been identified. We found that growing Dictyostelium cells secrete a 60 kDa protein called AprA for autocrine proliferation repressor. AprA has similarity to putative bacterial proteins of unknown function. Compared with wild-type cells, aprA-null cells proliferate faster, while AprA overexpressing cells proliferate slower. Growing wild-type cells secrete a factor that inhibits the proliferation of wild-type and aprA- cells; this activity is not secreted by aprA- cells. AprA purified by immunoprecipitation also slows the proliferation of wild-type and aprA- cells. Compared with wild type, there is a higher percentage of multinucleate cells in the aprA- population, and when starved, aprA- cells form abnormal structures that contain fewer spores. AprA may thus decrease the number of multinucleate cells and increase spore production. Together, the data suggest that AprA functions as part of a Dictyostelium chalone.

  3. Triclosan treatment decreased the antitumor effect of sorafenib on hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Wu M

    2018-05-01

    Full Text Available Man Wu,1,2 Guanren Zhao,2 Xiaomei Zhuang,1 Tianhong Zhang,1 Ce Zhang,2 Wenpeng Zhang,1 Zhenqing Zhang1 1State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China; 2Department of Pharmacy, The 309th Hospital of PLA, Beijing, China Background: Triclosan is a widely applied antimicrobial agent which affects the endocrine system and homeostasis; it may also promote the cirrhosis and hepatocellular carcinoma (HCC growth in a mice model. The exact roles of triclosan in regulating human hepatocellular carcinoma development and treatment remain unknown. Methods: MHCC97-H, a highly aggressive HCC cell line, was treated with indicated concentration of triclosan or sorafenib. The expression of drug-resistance genes was examined by qPCR. The clearance or metabolism of sorafenib was determined by liquid chromatograph-mass spectrometer/mass spectrometer (LC-MS/MS. MTT assay was used to examine the MHCC97-H cell proliferation. Nude mice were used to exam the anti-tumor effect of sorafenib on subcutaneous and intrahepatic growth of MHCC97-H cells. Results: In the present study, triclosan could induce the expression of drug-resistance genes in MHCC97-H cells (a highly aggressive HCC cell line, accelerate the clearance of sorafenib, and attenuate the anti-proliferation effect of this molecular targeted agent in MHCC97-H cells. Triclosan decreased the antitumor effect of sorafenib on subcutaneous and intrahepatic growth of MHCC97-H in nude mice. Conclusion: By discovering the fact that triclosan treatment enhances sorafenib resistance in HCC cells, this work suggests exposure of triclosan is detrimental to HCC patients during chemotherapy. Keywords: HCC, triclosan, sorafenib resistance, drug clearance 

  4. Curcumin Inhibits Growth of Human NCI-H292 Lung Squamous Cell Carcinoma Cells by Increasing FOXA2 Expression

    Directory of Open Access Journals (Sweden)

    Lingling Tang

    2018-02-01

    Full Text Available Lung squamous cell carcinoma (LSCC is a common histological lung cancer subtype, but unlike lung adenocarcinoma, limited therapeutic options are available for treatment. Curcumin, a natural compound, may have anticancer effects in various cancer cells, but how it may be used to treat LSCC has not been well studied. Here, we applied curcumin to a human NCI-H292 LSCC cell line to test anticancer effects and explored underlying potential mechanisms of action. Curcumin treatment inhibited NCI-H292 cell growth and increased FOXA2 expression in a time-dependent manner. FOXA2 expression was decreased in LSCC tissues compared with adjacent normal tissues and knockdown of FOXA2 increased NCI-H292 cells proliferation. Inhibition of cell proliferation by curcumin was attenuated by FOXA2 knockdown. Moreover inhibition of STAT3 pathways by curcumin increased FOXA2 expression in NCI-H292 cells whereas a STAT3 activator (IL-6 significantly inhibited curcumin-induced FOXA2 expression. Also, SOCS1 and SOCS3, negative regulators of STAT3 activity, were upregulated by curcumin treatment. Thus, curcumin inhibited human NCI-H292 cells growth by increasing FOXA2 expression via regulation of STAT3 signaling pathways.

  5. HOXA1 is overexpressed in oral squamous cell carcinomas and its expression is correlated with poor prognosis

    Directory of Open Access Journals (Sweden)

    Bitu Carolina

    2012-04-01

    Full Text Available Abstract Background HOX genes encode homeodomain-containing transcription factors involved in the regulation of cellular proliferation and differentiation during embryogenesis. However, members of this family demonstrated oncogenic properties in some malignancies. The present study investigated whether genes of the HOXA cluster play a role in oral cancer. Methods In order to identify differentially expressed HOXA genes, duplex RT-PCR in oral samples from healthy mucosa and squamous cell carcinoma was used. The effects of HOXA1 on proliferation, apoptosis, adhesion, invasion, epithelial-mesenchymal transition (EMT and anchorage-independent growth were assessed in cells with up- and down-regulation of HOXA1. Immunohistochemical analysis using a tissue microarray (TMA containing 127 oral squamous cell carcinomas (OSCC was performed to determine the prognostic role of HOXA1 expression. Results We showed that transcripts of HOXA genes are more abundant in OSCC than in healthy oral mucosa. In particular, HOXA1, which has been described as one of the HOX members that plays an important role in tumorigenesis, was significantly more expressed in OSCCs compared to healthy oral mucosas. Further analysis demonstrated that overexpression of HOXA1 in HaCAT human epithelial cells promotes proliferation, whereas downregulation of HOXA1 in human OSCC cells (SCC9 cells decreases it. Enforced HOXA1 expression in HaCAT cells was not capable of modulating other events related to tumorigenesis, including apoptosis, adhesion, invasion, EMT and anchorage-independent growth. A high number of HOXA1-positive cells was significantly associated with T stage, N stage, tumor differentiation and proliferative potential of the tumors, and was predictive of poor survival. In multivariate analysis, HOXA1 was an independent prognostic factor for OSCC patients (HR: 2.68; 95% CI: 1.59-2.97; p = 0.026. Conclusion Our findings indicate that HOXA1 may contribute to oral carcinogenesis

  6. HOXA1 is overexpressed in oral squamous cell carcinomas and its expression is correlated with poor prognosis

    International Nuclear Information System (INIS)

    Bitu, Carolina Cavalcante; Destro, Maria Fernanda de Souza Setúbal; Carrera, Manoela; Silva, Sabrina Daniela da; Graner, Edgard; Kowalski, Luiz Paulo; Soares, Fernando Augusto; Coletta, Ricardo D

    2012-01-01

    HOX genes encode homeodomain-containing transcription factors involved in the regulation of cellular proliferation and differentiation during embryogenesis. However, members of this family demonstrated oncogenic properties in some malignancies. The present study investigated whether genes of the HOXA cluster play a role in oral cancer. In order to identify differentially expressed HOXA genes, duplex RT-PCR in oral samples from healthy mucosa and squamous cell carcinoma was used. The effects of HOXA1 on proliferation, apoptosis, adhesion, invasion, epithelial-mesenchymal transition (EMT) and anchorage-independent growth were assessed in cells with up- and down-regulation of HOXA1. Immunohistochemical analysis using a tissue microarray (TMA) containing 127 oral squamous cell carcinomas (OSCC) was performed to determine the prognostic role of HOXA1 expression. We showed that transcripts of HOXA genes are more abundant in OSCC than in healthy oral mucosa. In particular, HOXA1, which has been described as one of the HOX members that plays an important role in tumorigenesis, was significantly more expressed in OSCCs compared to healthy oral mucosas. Further analysis demonstrated that overexpression of HOXA1 in HaCAT human epithelial cells promotes proliferation, whereas downregulation of HOXA1 in human OSCC cells (SCC9 cells) decreases it. Enforced HOXA1 expression in HaCAT cells was not capable of modulating other events related to tumorigenesis, including apoptosis, adhesion, invasion, EMT and anchorage-independent growth. A high number of HOXA1-positive cells was significantly associated with T stage, N stage, tumor differentiation and proliferative potential of the tumors, and was predictive of poor survival. In multivariate analysis, HOXA1 was an independent prognostic factor for OSCC patients (HR: 2.68; 95% CI: 1.59-2.97; p = 0.026). Our findings indicate that HOXA1 may contribute to oral carcinogenesis by increasing tumor cell proliferation, and suggest that HOXA1

  7. Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Gopalan, Vinod; Islam, Farhadul; Pillai, Suja; Tang, Johnny Cheuk-On; Tong, Daniel King-Hung; Law, Simon; Chan, Kwok-Wah; Lam, Alfred King-Yin

    2016-01-01

    Purpose: This study aims to examine the expression profiles miR-1288 in oesophageal squamous cell carcinoma (ESCC). The cellular implications and target interactions of ESCC cells following miR-1288 overexpression was also examined. Methods: In total, 120 oesophageal tissues (90 primary ESCCs and 30 non-neoplastic tissues) were recruited for miR-1288 expression analysis using qRT-PCR. An exogenous miR-1288 mimic and its inhibitor were used to explore the in-vitro effects of miR-1288 on ESCC cells by performing cell proliferation, colony formation, cell invasion and migration assays. Localisation and modulatory changes of various miR-1288 regulated proteins such as FOXO1, p53, TAB3, BCL2 and kRAS was examined using immunofluorescence and western blot. Results: Overexpression of miR-1288 was more often noted in ESCC tissues when compared to non-neoplastic oesophageal tissues. High expression was often noted in high grade carcinomas and with metastases. Patients with high levels of miR-1288 expression showed a slightly better survival compared to patients with low miR-1288 levels. Furthermore, overexpression of miR-1288 showed increased cell proliferation and colony formation, improved cell migration and enhanced cell invasion properties in ESCC cells. In addition, miR-1288 overexpression in ESCC cells showed repression of cytoplasmic tumour suppressor FOXO1 protein expression. Inversely, inhibition of miR-1288 expression exhibited remarkable upregulation of FOXO1 protein, while expressions of other tested proteins remain unchanged. Conclusions: Up regulation of miR-1288 expression in ESCC tissues and miR-1288 induced oncogenic features of ESCC cells in-vitro indicates the oncogenic roles of miR-1288 in ESCCs. Overexpression of miR-1288 play a key role in the pathogenesis of ESCCs and its modulation may have potential therapeutic value in patients with ESCC. - Highlights: • miR-1288 was more often noted in neoplastic than non-neoplastic tissue. • miR-1288

  8. Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Vinod; Islam, Farhadul; Pillai, Suja [Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast (Australia); Tang, Johnny Cheuk-On [State Key Laboratory of Chirosciences, Lo Ka Chung Centre for Natural Anti-cancer Drug Development, Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University (Hong Kong); Tong, Daniel King-Hung; Law, Simon [Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital (Hong Kong); Chan, Kwok-Wah [Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital (Hong Kong); Lam, Alfred King-Yin, E-mail: a.lam@griffith.edu.au [Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast (Australia)

    2016-11-01

    Purpose: This study aims to examine the expression profiles miR-1288 in oesophageal squamous cell carcinoma (ESCC). The cellular implications and target interactions of ESCC cells following miR-1288 overexpression was also examined. Methods: In total, 120 oesophageal tissues (90 primary ESCCs and 30 non-neoplastic tissues) were recruited for miR-1288 expression analysis using qRT-PCR. An exogenous miR-1288 mimic and its inhibitor were used to explore the in-vitro effects of miR-1288 on ESCC cells by performing cell proliferation, colony formation, cell invasion and migration assays. Localisation and modulatory changes of various miR-1288 regulated proteins such as FOXO1, p53, TAB3, BCL2 and kRAS was examined using immunofluorescence and western blot. Results: Overexpression of miR-1288 was more often noted in ESCC tissues when compared to non-neoplastic oesophageal tissues. High expression was often noted in high grade carcinomas and with metastases. Patients with high levels of miR-1288 expression showed a slightly better survival compared to patients with low miR-1288 levels. Furthermore, overexpression of miR-1288 showed increased cell proliferation and colony formation, improved cell migration and enhanced cell invasion properties in ESCC cells. In addition, miR-1288 overexpression in ESCC cells showed repression of cytoplasmic tumour suppressor FOXO1 protein expression. Inversely, inhibition of miR-1288 expression exhibited remarkable upregulation of FOXO1 protein, while expressions of other tested proteins remain unchanged. Conclusions: Up regulation of miR-1288 expression in ESCC tissues and miR-1288 induced oncogenic features of ESCC cells in-vitro indicates the oncogenic roles of miR-1288 in ESCCs. Overexpression of miR-1288 play a key role in the pathogenesis of ESCCs and its modulation may have potential therapeutic value in patients with ESCC. - Highlights: • miR-1288 was more often noted in neoplastic than non-neoplastic tissue. • miR-1288

  9. Spontaneous regression of metastatic Merkel cell carcinoma.

    LENUS (Irish Health Repository)

    Hassan, S J

    2010-01-01

    Merkel cell carcinoma is a rare aggressive neuroendocrine carcinoma of the skin predominantly affecting elderly Caucasians. It has a high rate of local recurrence and regional lymph node metastases. It is associated with a poor prognosis. Complete spontaneous regression of Merkel cell carcinoma has been reported but is a poorly understood phenomenon. Here we present a case of complete spontaneous regression of metastatic Merkel cell carcinoma demonstrating a markedly different pattern of events from those previously published.

  10. The Concerted Action of Type 2 and Type 3 Deiodinases Regulates the Cell Cycle and Survival of Basal Cell Carcinoma Cells.

    Science.gov (United States)

    Miro, Caterina; Ambrosio, Raffaele; De Stefano, Maria Angela; Di Girolamo, Daniela; Di Cicco, Emery; Cicatiello, Annunziata Gaetana; Mancino, Giuseppina; Porcelli, Tommaso; Raia, Maddalena; Del Vecchio, Luigi; Salvatore, Domenico; Dentice, Monica

    2017-04-01

    Thyroid hormones (THs) mediate pleiotropic cellular processes involved in metabolism, cellular proliferation, and differentiation. The intracellular hormonal environment can be tailored by the type 1 and 2 deiodinase enzymes D2 and D3, which catalyze TH activation and inactivation respectively. In many cellular systems, THs exert well-documented stimulatory or inhibitory effects on cell proliferation; however, the molecular mechanisms by which they control rates of cell cycle progression have not yet been entirely clarified. We previously showed that D3 depletion or TH treatment influences the proliferation and survival of basal cell carcinoma (BCC) cells. Surprisingly, we also found that BCC cells express not only sustained levels of D3 but also robust levels of D2. The aim of the present study was to dissect the contribution of D2 to TH metabolism in the BCC context, and to identify the molecular changes associated with cell proliferation and survival induced by TH and mediated by D2 and D3. We used the CRISPR/Cas9 technology to genetically deplete D2 and D3 in BCC cells and studied the consequences of depletion on cell cycle progression and on cell death. Cell cycle progression was analyzed by fluorescence activated cell sorting analysis of synchronized cells, and the apoptosis rate by annexin V incorporation. Mechanistic investigations revealed that D2 inactivation accelerates cell cycle progression thereby enhancing the proportion of S-phase cells and cyclin D1 expression. Conversely, D3 mutagenesis drastically suppressed cell proliferation and enhanced apoptosis of BCC cells. Furthermore, the basal apoptotic rate was oppositely regulated in D2- and D3-depleted cells. Our results indicate that BCC cells constitute an example in which the TH signal is finely tuned by the concerted expression of opposite-acting deiodinases. The dual regulation of D2 and D3 expression plays a critical role in cell cycle progression and cell death by influencing cyclin D1-mediated

  11. Differential immunohistochemical expression profiles of perlecan-binding growth factors in epithelial dysplasia, carcinoma in situ, and squamous cell carcinoma of the oral mucosa.

    Science.gov (United States)

    Hasegawa, Mayumi; Cheng, Jun; Maruyama, Satoshi; Yamazaki, Manabu; Abé, Tatsuya; Babkair, Hamzah; Saito, Chikara; Saku, Takashi

    2016-05-01

    The intercellular deposit of perlecan, a basement-membrane type heparan sulfate proteoglycan, is considered to function as a growth factor reservoir and is enhanced in oral epithelial dysplasia and carcinoma in situ (CIS). However, it remains unknown which types of growth factors function in these perlecan-enriched epithelial conditions. The aim of this study was to determine immunohistochemically which growth factors were associated with perlecan in normal oral epithelia and in different epithelial lesions from dysplasia and CIS to squamous cell carcinoma (SCC). Eighty-one surgical tissue specimens of oral SCC containing different precancerous stages, along with ten of normal mucosa, were examined by immunohistochemistry for growth factors. In normal epithelia, perlecan and growth factors were not definitely expressed. In epithelial dysplasia, VEGF, SHH, KGF, Flt-1, and Flk-1were localized in the lower half of rete ridges (in concordance with perlecan, 33-100%), in which Ki-67 positive cells were densely packed. In CIS, perlecan and those growth factors/receptors were more strongly expressed in the cell proliferating zone (63-100%). In SCC, perlecan and KGF disappeared from carcinoma cells but emerged in the stromal space (65-100%), while VEGF, SHH, and VEGF receptors remained positive in SCC cells (0%). Immunofluorescence showed that the four growth factors were shown to be produced by three oral SCC cell lines and that their signals were partially overlapped with perlecan signals. The results indicate that perlecan and its binding growth factors are differentially expressed and function in specific manners before (dysplasia/CIS) and after (SCC) invasion of dysplasia/carcinoma cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1–RAGE and AKT pathways

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ping; Dai, Weiqi; Wang, Fan; Lu, Jie; Shen, Miao; Chen, Kan; Li, Jingjing; Zhang, Yan; Wang, Chengfen; Yang, Jing; Zhu, Rong; Zhang, Huawei; Zheng, Yuanyuan; Guo, Chuan-Yong, E-mail: guochuanyong@hotmail.com; Xu, Ling, E-mail: xuling606@sina.com

    2014-01-24

    Highlights: • Ethyl pyruvate inhibits liver cancer. • Promotes apoptosis. • Decreased the expression of HMGB1, p-Akt. - Abstract: Ethyl pyruvate (EP) was recently identified as a stable lipophilic derivative of pyruvic acid with significant antineoplastic activities. The high mobility group box-B1 (HMGB1)–receptor for advanced glycation end-products (RAGE) and the protein kinase B (Akt) pathways play a crucial role in tumorigenesis and development of many malignant tumors. We tried to observe the effects of ethyl pyruvate on liver cancer growth and explored its effects in hepatocellular carcinoma model. In this study, three hepatocellular carcinoma cell lines were treated with ethyl pyruvate. An MTT colorimetric assay was used to assess the effects of EP on cell proliferation. Flow cytometry and TUNEL assays were used to analyze apoptosis. Real-time PCR, Western blotting and immunofluorescence demonstrated ethyl pyruvate reduced the HMGB1–RAGE and AKT pathways. The results of hepatoma orthotopic tumor model verified the antitumor effects of ethyl pyruvate in vivo. EP could induce apoptosis and slow the growth of liver cancer. Moreover, EP decreased the expression of HMGB1, RAGE, p-AKT and matrix metallopeptidase-9 (MMP9) and increased the Bax/Bcl-2 ratio. In conclusion, this study demonstrates that ethyl pyruvate induces apoptosis and cell-cycle arrest in G phase in hepatocellular carcinoma cells, plays a critical role in the treatment of cancer.

  13. [Influence and mechanism of PinX1 gene on the chemotherapy sensitivity of nasopharyngeal carcinoma cells in response to Cisplatin].

    Science.gov (United States)

    Shen, Congxiang; Liu, Yanhui; Wen, Zhong; Yang, Keke; Li, Guanxue; Zhang, Shenhua; Zhang, Xinyu

    2015-06-23

    To explore the influence and mechanism of PinX1 gene on the chemotherapy sensitivity of nasopharyngeal carcinoma cells in response to Cisplatin. Transfected nasopharyngeal carcinoma 5-8F cell lines with pCDH-CMV-PinX1-copGFP vector constructed by lentivirus to generate Lenti-PinX1-5-8F cells containing PinX1 gene, using Lenti-Ctrl-5-8F cell (blank vector without PinX1 gene was used to transfect 5-8F cell lines) and 5-8F cell as controls. Expression of PinX1 gene, telomerase activity, the inhibition of cancer cells proliferation, combined anticancer effect with Cisplatin and the expression of lung resistance protein (LRP) and Bcl-2 were detected with fluorescent quantitation polymerase chain reaction (PCR), flow cytometry, thiazolyl blue (MTT) method, areole test, Western blot and drug sensitivity test, respectively, in four groups (Lenti-PinX1-5-8F cell + Cisplatin, Lenti-PinX1-5-8F cell, Cisplatin and 5-8F cell) so as to explore the influence and mechanism of PinX1 gene on the chemotherapy sensitivity of nasopharyngeal carcinoma cells in response to Cisplatin. The telomerase activity in Lenti-PinX1-5-8F cell (0.146 ± 0.004) was lower than those in the other two control cells (Lenti-Ctrl-5-8F cell: 0.967 ± 0.016, 5-8F cell: 1.000 ± 0.034, both P Cisplatin after lower level telomerase activity induced by PinX1 gene. Proliferation index (PI) (%) in Lenti-PinX1-5-8F cell + Cisplatin (14.39 ± 3.66) was also less than the other groups (Lenti-PinX1-5-8F cell, Cisplatin and 5-8F cell groups, 32.97 ± 3.00, 31.18 ± 4.24 and 47.19 ± 4.19, all P Cisplatin, which may be mediated by the down-regulation of telomerase activity and the inhibition of LRP and Bcl-2 gene in nasopharyngeal carcinoma cells.

  14. Watermelon stomach, hemorrhagic pericarditis, small cell carcinoma of the lung and synchronous squamous cell carcinoma of the tongue base

    Directory of Open Access Journals (Sweden)

    A. Murinello

    2010-07-01

    Full Text Available Based on a case of gastric antral vascular ectasia (watermelon stomach that was associated with hemorrhagic pericarditis, small cell lung carcinoma with mediastinal lymph node metastases and a synchronous squamous cell carcinoma of the base of the tongue, the authors made a review of the clinical, endoscopic and histopathological aspects of this type of gastropathy, and its association with other diseases, and of the results of its endoscopic therapy. The causes of hemorrhagic pericarditis are considered, emphasizing the necessity to know if the effusion has a malignant etiology. To the best of our knowledge the association of watermelon stomach to small cell lung carcinoma and squamous cell carcinoma of the base of the tongue has not yet been described. Extensive metastases to mediastal lymph nodes are common to small cell lung carcinoma. Resumo: Baseados num caso de gastropatia antral com ectasia vascular (estômago em melancia associado a pericardite hemorrágica e a um carcinoma de pequenas células do pulmão com metástases ganglionares ao longo do mediastino e a um carcinoma pavimentocelular síncrono da base da língua, os autores fazem uma revisão dos aspectos clínicos, endoscópicos e histopatológicos deste tipo de gastropatia, da sua associação a outras doenças e das possibilidades terapêuticas actuais por via endoscópica. Referem-se igualmente as causas mais frequentes de pericardite hemorrágica, salientando-se a necessidade de esclarecer se o derrame é ou não de origem neoplásica. Não está referida na literatura a associação deste tipo de gastropatia ao carcinoma de pequenas células do pulmão nem ao carcinoma pavimento-celular da base da língua. A invasão extensa dos gânglios mediastínicos pelo carcinoma de pequenas células do pulmão é ocorrência frequente. Key-words: Gastric antral vascular ectasia, watermelon stomach, small cell lung carcinoma, oat cell lung carcinoma, squamous cell carcinoma of the base

  15. Antitumour and antiangiogenic activities of [Pt(O,O'-acac)(γ-acac)(DMS)] in a xenograft model of human renal cell carcinoma.

    Science.gov (United States)

    Muscella, A; Vetrugno, C; Biagioni, F; Calabriso, N; Calierno, M T; Fornai, F; De Pascali, S A; Marsigliante, S; Fanizzi, F P

    2016-09-01

    It is thought that the mechanism of action of anticancer chemotherapeutic agents is mainly due to a direct inhibition of tumour cell proliferation. In tumour specimens, the endothelial cell proliferation rate increases, suggesting that the therapeutic effects of anticancer agents could also be attributed to inhibition of tumour angiogenesis. Hence, we investigated the potential effects of [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(DMS)]), a new platinum drug for non-genomic targets, on human renal carcinoma and compared them with those of the well-established anticancer drug, cisplatin. Tumour growth, tumour cell proliferation and microvessel density were investigated in a xenograft model of renal cell carcinoma, developed by injecting Caki-1 cells into BALB/c nude mice. The antiangiogenic potential of compounds was also investigated using HUVECs. Treatment of the Caki-1 cells with cisplatin or [Pt(DMS)] resulted in a dose-dependent inhibition of cell survival, but the cytotoxicity of [Pt(DMS)] was approximately fivefold greater than that of cisplatin. [Pt(DMS)] was much more effective than cisplatin at inhibiting tumour growth, proliferation and angiogenesis in vivo, as well as migration, tube formation and MMP1, MMP2 and MMP9 secretion of endothelial cells in vitro. Whereas, cisplatin exerted a greater cytotoxic effect on HUVECs, but did not affect tube formation or the migration of endothelial cells. In addition, treatment of the xenograft mice with [Pt(DMS)] decreased VEGF, MMP1 and MMP2 expressions in tumours. The antiangiogenic and antitumour activities of [Pt(DMS)] provide a solid starting point for its validation as a suitable candidate for further pharmacological testing. © 2016 The British Pharmacological Society.

  16. Dictyostelium cells bind a secreted autocrine factor that represses cell proliferation

    Directory of Open Access Journals (Sweden)

    Phillips Jonathan E

    2009-02-01

    Full Text Available Abstract Background Dictyostelium cells secrete the proteins AprA and CfaD. Cells lacking either AprA or CfaD proliferate faster than wild type, while AprA or CfaD overexpressor cells proliferate slowly, indicating that AprA and CfaD are autocrine factors that repress proliferation. CfaD interacts with AprA and requires the presence of AprA to slow proliferation. To determine if CfaD is necessary for the ability of AprA to slow proliferation, whether AprA binds to cells, and if so whether the binding requires the presence of CfaD, we examined the binding and effect on proliferation of recombinant AprA. Results We find that the extracellular accumulation of AprA increases with cell density and reaches a concentration of 0.3 μg/ml near a stationary cell density. When added to wild-type or aprA- cells, recombinant AprA (rAprA significantly slows proliferation at 0.1 μg/ml and higher concentrations. From 4 to 64 μg/ml, the effect of rAprA is at a plateau, slowing but not stopping proliferation. The proliferation-inhibiting activity of rAprA is roughly the same as that of native AprA in conditioned growth medium. Proliferating aprA- cells show saturable binding of rAprA to 92,000 ± 11,000 cell-surface receptors with a KD of 0.03 ± 0.02 μg/ml. There appears to be one class of binding site, and no apparent cooperativity. Native AprA inhibits the binding of rAprA to aprA- cells with a Ki of 0.03 μg/ml, suggesting that the binding kinetics of rAprA are similar to those of native AprA. The proliferation of cells lacking CrlA, a cAMP receptor-like protein, or cells lacking CfaD are not affected by rAprA. Surprisingly, both cell types still bind rAprA. Conclusion Together, the data suggest that AprA functions as an autocrine proliferation-inhibiting factor by binding to cell surface receptors. Although AprA requires CfaD for activity, it does not require CfaD to bind to cells, suggesting the possibility that cells have an AprA receptor and a Cfa

  17. The pathological significance of Notch1 in oral squamous cell carcinoma.

    Science.gov (United States)

    Yoshida, Ryoji; Nagata, Masashi; Nakayama, Hideki; Niimori-Kita, Kanako; Hassan, Wael; Tanaka, Takuji; Shinohara, Masanori; Ito, Takaaki

    2013-10-01

    Notch signaling has been reported to be involved in several types of malignant tumors; however, the role and activation mechanism of Notch signaling in oral squamous cell carcinoma (OSCC) remains poorly characterized. The purpose of this study was to elucidate the pathological significance of Notch signaling and its activation mechanism in the development and progression of OSCC. In this study, we showed that the expression of Notch1 and intracellular Notch domain (NICD) are upregulated in OSCCs. In addition, Notch1 and NICD were found to be characteristically localized at the invasive tumor front. TNF-α, a major inflammatory cytokine, significantly activated Notch signaling in vitro. In a clinicopathological analysis, Notch1 expression correlated with both the T-stage and the clinical stage. Furthermore, loss of Notch1 expression correlated with the inhibition of cell proliferation and TNF-α-dependent invasiveness in an OSCC cell line. In addition, γ-secretase inhibitor (GSI) prevented cell proliferation and TNF-α-dependent invasion of OSCC cells in vitro. These results indicate that altered expression of Notch1 is associated with increased cancer progression and that Notch1 regulates the steps involved in cell metastasis in OSCC. Moreover, inactivating Notch signaling with GSI could therefore be a useful approach for treating patients with OSCC.

  18. Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells.

    Science.gov (United States)

    Schwertheim, Suzan; Wein, Frederik; Lennartz, Klaus; Worm, Karl; Schmid, Kurt Werner; Sheu-Grabellus, Sien-Yi

    2017-07-01

    The therapy of unresectable advanced thyroid carcinomas shows unfavorable outcome. Constitutive nuclear factor-κB (NF-κB) activation in thyroid carcinomas frequently contributes to therapeutic resistance; the radioiodine therapy often fails due to the loss of differentiated functions in advanced thyroid carcinomas. Curcumin is known for its anticancer properties in a series of cancers, but only few studies have focused on thyroid cancer. Our aim was to evaluate curcumin's molecular mechanisms and to estimate if curcumin could be a new therapeutic option in advanced thyroid cancer. Human thyroid cancer cell lines TPC-1 (papillary), FTC-133 (follicular), and BHT-101 (anaplastic) were treated with curcumin. Using real-time PCR analysis, we investigated microRNA (miRNA) and mRNA expression levels. Cell cycle, Annexin V/PI staining, and caspase-3 activity analysis were performed to detect apoptosis. NF-κB p65 activity and cell proliferation were analyzed using appropriate ELISA-based colorimetric assay kits. Treatment with 50 μM curcumin significantly increased the mRNA expression of the differentiation genes thyroglobulin (TG) and sodium iodide symporter (NIS) in all three cell lines and induced inhibition of cell proliferation, apoptosis, and decrease of NF-κB p65 activity. The miRNA expression analyses showed a significant deregulation of miRNA-200c, -21, -let7c, -26a, and -125b, known to regulate cell differentiation and tumor progression. Curcumin arrested cell growth at the G2/M phase. Curcumin increases the expression of redifferentiation markers and induces G2/M arrest, apoptosis, and downregulation of NF-κB activity in thyroid carcinoma cells. Thus, curcumin appears to be a promising agent to overcome resistance to the conventional cancer therapy.

  19. Cranberry and Grape Seed Extracts Inhibit the Proliferative Phenotype of Oral Squamous Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Kourt Chatelain

    2011-01-01

    Full Text Available Proanthocyanidins, compounds highly concentrated in dietary fruits, such as cranberries and grapes, demonstrate significant cancer prevention potential against many types of cancer. The objective of this study was to evaluate cranberry and grape seed extracts to quantitate and compare their anti-proliferative effects on the most common type of oral cancer, oral squamous cell carcinoma. Using two well-characterized oral squamous cell carcinoma cell lines, CAL27 and SCC25, assays were performed to evaluate the effects of cranberry and grape seed extract on phenotypic behaviors of these oral cancers. The proliferation of both oral cancer cell lines was significantly inhibited by the administration of cranberry and grape seed extracts, in a dose-dependent manner. In addition, key regulators of apoptosis, caspase-2 and caspase-8, were concomitantly up-regulated by these treatments. However, cranberry and grape seed extracts elicited differential effects on cell adhesion, cell morphology, and cell cycle regulatory pathways. This study represents one of the first comparative investigations of cranberry and grape seed extracts and their anti-proliferative effects on oral cancers. Previous findings using purified proanthocyanidin from grape seed extract demonstrated more prominent growth inhibition, as well as apoptosis-inducing, properties on CAL27 cells. These observations provide evidence that cranberry and grape seed extracts not only inhibit oral cancer proliferation but also that the mechanism of this inhibition may function by triggering key apoptotic regulators in these cell lines. This information will be of benefit to researchers interested in elucidating which dietary components are central to mechanisms involved in the mediation of oral carcinogenesis and progression.

  20. New structural analogues of curcumin exhibit potent growth suppressive activity in human colorectal carcinoma cells

    International Nuclear Information System (INIS)

    Cen, Ling; Hutzen, Brian; Ball, Sarah; DeAngelis, Stephanie; Chen, Chun-Liang; Fuchs, James R; Li, Chenglong; Li, Pui-Kai; Lin, Jiayuh

    2009-01-01

    Colorectal carcinoma is one of the major causes of morbidity and mortality in the Western World. Novel therapeutic approaches are needed for colorectal carcinoma. Curcumin, the active component and yellow pigment of turmeric, has been reported to have several anti-cancer activities including anti-proliferation, anti-invasion, and anti-angiogenesis. Clinical trials have suggested that curcumin may serve as a potential preventive or therapeutic agent for colorectal cancer. We compared the inhibitory effects of curcumin and novel structural analogues, GO-Y030, FLLL-11, and FLLL-12, in three independent human colorectal cancer cell lines, SW480, HT-29, and HCT116. MTT cell viability assay was used to examine the cell viability/proliferation and western blots were used to determine the level of PARP cleavages. Half-Maximal inhibitory concentrations (IC 50 ) were calculated using Sigma Plot 9.0 software. Curcumin inhibited cell viability in all three of the human colorectal cancer cell lines studied with IC 50 values ranging between 10.26 μM and 13.31 μM. GO-Y030, FLLL-11, and FLLL-12 were more potent than curcumin in the inhibition of cell viability in these three human colorectal cancer cell lines with IC 50 values ranging between 0.51 μM and 4.48 μM. In addition, FLLL-11 and FLLL-12 exhibit low toxicity to WI-38 normal human lung fibroblasts with an IC-50 value greater than 1,000 μM. GO-Y030, FLLL-11, and FLLL-12 are also more potent than curcumin in the induction of apoptosis, as evidenced by cleaved PARP and cleaved caspase-3 in all three human colorectal cancer cell lines studied. The results indicate that the three curcumin analogues studied exhibit more potent inhibitory activity than curcumin in human colorectal cancer cells. Thus, they may have translational potential as chemopreventive or therapeutic agents for colorectal carcinoma

  1. Basal Cell Carcinoma Arising in a Tattooed Eyebrow

    Science.gov (United States)

    Lee, Jong-Sun; Park, Jin; Kim, Seong-Min; Kim, Han-Uk

    2009-01-01

    Malignant skin tumors, including squamous cell carcinoma and malignant melanoma, have occurred in tattoos. Seven documented cases of basal cell carcinoma associated with tattoos have also been reported in the medical literature. We encountered a patient with basal cell carcinoma in a tattooed eyebrow. We report on this case as the eighth reported case of a patient with basal cell carcinoma arising in a tattooed area. PMID:20523804

  2. Merkel cell carcinoma in an immunosuppressed patient.

    Science.gov (United States)

    Góes, Heliana Freitas de Oliveira; Lima, Caren Dos Santos; Issa, Maria Cláudia de Almeida; Luz, Flávio Barbosa; Pantaleão, Luciana; Paixão, José Gabriel Miranda da

    2017-01-01

    Merkel cell carcinoma is an uncommon neuroendocrine carcinoma with a rising incidence and an aggressive behavior. It predominantly occurs in older patients, with onset occurring at a mean age of 75-80 years. Recognized risk factors are ultraviolet sunlight exposure, immunosuppression, and, more recently, Merkel cell polyomavirus. We report a case of Merkel cell carcinoma in a young HIV positive patient with Merkel Cell polyomavirus detected in the tumor.

  3. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    Science.gov (United States)

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  4. Hes1 Directly Controls Cell Proliferation through the Transcriptional Repression of p27Kip1

    Science.gov (United States)

    Murata, Kaoru; Hattori, Masakazu; Hirai, Norihito; Shinozuka, Yoriko; Hirata, Hiromi; Kageyama, Ryoichiro; Sakai, Toshiyuki; Minato, Nagahiro

    2005-01-01

    A transcriptional regulator, Hes1, plays crucial roles in the control of differentiation and proliferation of neuronal, endocrine, and T-lymphocyte progenitors during development. Mechanisms for the regulation of cell proliferation by Hes1, however, remain to be verified. In embryonic carcinoma cells, endogenous Hes1 expression was repressed by retinoic acid in concord with enhanced p27Kip1 expression and cell cycle arrest. Conversely, conditional expression of a moderate but not maximal level of Hes1 in HeLa cells by a tetracycline-inducible system resulted in reduced p27Kip1 expression, which was attributed to decreased basal transcript rather than enhanced proteasomal degradation, with concomitant increases in the growth rate and saturation density. Hes1 induction repressed the promoter activity of a 5′ flanking basal enhancer region of p27Kip1 gene in a manner dependent on Hes1 expression levels, and this was mediated by its binding to class C sites in the promoter region. Finally, hypoplastic fetal thymi, as well as livers and brains of Hes1-deficient mice, showed significantly increased p27Kip1 transcripts compared with those of control littermates. These results have suggested that Hes1 directly contributes to the promotion of progenitor cell proliferation through transcriptional repression of a cyclin-dependent kinase inhibitor, p27Kip1. PMID:15870295

  5. SnoN/SKIL modulates proliferation through control of hsa-miR-720 transcription in esophageal cancer cells

    International Nuclear Information System (INIS)

    Shinozuka, Eriko; Miyashita, Masao; Mizuguchi, Yoshiaki; Akagi, Ichiro; Kikuchi, Kunio; Makino, Hiroshi; Matsutani, Takeshi; Hagiwara, Nobutoshi; Nomura, Tsutomu; Uchida, Eiji; Takizawa, Toshihiro

    2013-01-01

    Highlights: ► SnoN modulated miR-720, miR-1274A, and miR-1274B expression levels in TE-1 cells. ► miR-720 and miR-1274A suppressed the expression of target proteins p63 and ADAM9. ► Silencing of SnoN significantly upregulated cell proliferation in TE-1 cells. ► Esophageal cancer tissues have lower SnoN expression levels than normal tissues. ► Esophageal cancer tissues have higher miR-720 expression levels than normal tissues. -- Abstract: It is now evident that changes in microRNA are involved in cancer progression, but the mechanisms of transcriptional regulation of miRNAs remain unknown. Ski-related novel gene (SnoN/SKIL), a transcription co-factor, acts as a potential key regulator within a complex network of p53 transcriptional repressors. SnoN has pro- and anti-oncogenic functions in the regulation of cell proliferation, senescence, apoptosis, and differentiation. We characterized the roles of SnoN in miRNA transcriptional regulation and its effects on cell proliferation using esophageal squamous cell carcinoma (ESCC) cells. Silencing of SnoN altered a set of miRNA expression profiles in TE-1cells, and the expression levels of miR-720, miR-1274A, and miR-1274B were modulated by SnoN. The expression of these miRNAs resulted in changes to the target protein p63 and a disintegrin and metalloproteinase domain 9 (ADAM9). Furthermore, silencing of SnoN significantly upregulated cell proliferation in TE-1 cells, indicating a potential anti-oncogenic function. These results support our observation that cancer tissues have lower expression levels of SnoN, miR-720, and miR-1274A compared to adjacent normal tissues from ESCC patients. These data demonstrate a novel mechanism of miRNA regulation, leading to changes in cell proliferation.

  6. Surgical Management of Advanced and Metastatic Renal Cell Carcinoma: A Multidisciplinary Approach

    Directory of Open Access Journals (Sweden)

    Brian M. Shinder

    2017-05-01

    Full Text Available The past decade has seen a rapid proliferation in the number and types of systemic therapies available for renal cell carcinoma. However, surgery remains an integral component of the therapeutic armamentarium for advanced and metastatic kidney cancer. Cytoreductive surgery followed by adjuvant cytokine-based immunotherapy (predominantly high-dose interleukin 2 has largely given way to systemic-targeted therapies. Metastasectomy also has a role in carefully selected patients. Additionally, neoadjuvant systemic therapy may increase the feasibility of resecting the primary tumor, which may be beneficial for patients with locally advanced or metastatic disease. Several prospective trials examining the role of adjuvant therapy are underway. Lastly, the first immune checkpoint inhibitor was approved for metastatic renal cell carcinoma (mRCC in 2015, providing a new treatment mechanism and new opportunities for combining systemic therapy with surgery. This review discusses current and historical literature regarding the surgical management of patients with advanced and mRCC and explores approaches for optimizing patient selection.

  7. Low-grade salivary duct carcinoma or low-grade intraductal carcinoma? Review of the literature.

    Science.gov (United States)

    Kuo, Ying-Ju; Weinreb, Ilan; Perez-Ordonez, Bayardo

    2013-07-01

    Low-grade salivary duct carcinoma (LG-SDC) is a rare neoplasm characterized by predominant intraductal growth, luminal ductal phenotype, bland microscopic features, and favorable clinical behavior with an appearance reminiscent of florid to atypical ductal hyperplasia to low grade intraductal breast carcinoma. LG-SDC is composed of multiple cysts, cribriform architecture with "Roman Bridges", "pseudocribriform" proliferations with floppy fenestrations or irregular slits, micropapillae with epithelial tufts, fibrovascular cores, and solid areas. Most of the tumor cells are small to medium sized with pale eosinophilic cytoplasm, and round to oval nuclei, which may contain finely dispersed or dark condensed chromatin. Foci of intermediate to high grade atypia, and invasive carcinoma or micro-invasion have been reported in up to 23 % of cases. The neoplastic cells have a ductal phenotype with coexpression of keratins and S100 protein and are surrounded by a layer of myoepithelial cells in non-invasive cases. The main differential diagnosis of LG-SDC includes cystadenoma, cystadenocarcinoma, sclerosing polycystic adenosis, salivary duct carcinoma in situ/high-grade intraductal carcinoma, and papillary-cystic variant of acinic cell carcinoma. There is no published data supporting the continuous classification of LG-SDC as a variant of cystadenocarcinoma. Given that most LG-SDC are non-invasive neoplasms; the terms "cribriform cystadenocarcinoma" and LG-SDC should be replaced by "low-grade intraductal carcinoma" (LG-IDC) of salivary gland or "low-grade intraductal carcinoma with areas of invasive carcinoma" in those cases with evidence of invasive carcinoma.

  8. Autophagy‑mediated adaptation of hepatocellular carcinoma cells to hypoxia‑mimicking conditions constitutes an attractive therapeutic target.

    Science.gov (United States)

    Owada, Satoshi; Endo, Hitoshi; Shida, Yukari; Okada, Chisa; Ito, Kanako; Nezu, Takahiro; Tatemichi, Masayuki

    2018-04-01

    Hepatocellular carcinoma has extremely poor prognosis. In cancerous liver tissues, aberrant proliferation of cancer cells leads to the creation of an area where an immature vascular network is formed. Since oxygen is supplied to cancer tissues through the bloodstream, a part of the tumor is exposed to hypoxic conditions. As hypoxia is known to severely reduce the effectiveness of existing anticancer agents, novel valid therapeutic targets must be identified for the treatment of hepatocellular carcinoma. Generally, autophagy has been reported to play an important role in the adaptation of cancer cells to hypoxia. However, the exact role and significance of this process vary depending on the cancer type, requiring detailed analysis in individual primary tumors and cell lines. In the present study, we examined autophagy induced by cobalt chloride, a hypoxia‑mimicking agent, in hepatocellular carcinoma cells with the aim to evaluate the validity of this process as a potential therapeutic target. We observed that treatment with cobalt chloride induced autophagy, including the intracellular quality control mechanism, in an AMPK‑dependent manner. Furthermore, treatment with autophagy inhibitors (bafilomycin and LY294002) resulted in significant, highly‑selective cytotoxicity and apoptosis activation under hypoxia‑mimicking conditions. The knockdown of AMPK also revealed significant cytotoxicity in hypoxia‑mimicking conditions. These results clearly demonstrated that autophagy, especially mitophagy, was induced by the AMPK pathway when hepatocellular carcinoma cells were subjected to hypoxic conditions and played an important role in the adaptation of these cells to such conditions. Thus, autophagy may constitute an attractive therapeutic target for the treatment of hepatocellular carcinoma.

  9. Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Yafei; Zhang, Bicheng; Zhang, Anran; Zhao, Yong; Zhao, Jie; Liu, Jian; Gao, Jianfei; Fang, Dianchun; Rao, Zhiguo

    2012-09-01

    Sorafenib is an oral multikinase inhibitor that has been proven effective as a single-agent therapy in hepatocellular carcinoma, and there is a strong rationale for investigating its use in combination with other agents. Vitamin K2 is nearly non-toxic to humans and has been shown to inhibit the growth of hepatocellular carcinoma. In this study, we evaluated the effects of a combination of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Flow cytometry, 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) and nude mouse xenograft assays were used to examine the effects of sorafenib and vitamin K2 on the growth of hepatocellular carcinoma cells. Western blotting was used to elucidate the possible mechanisms underlying these effects. Assays for 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide) revealed a strong synergistic growth-inhibitory effect between sorafenib and vitamin K2. Flow cytometry showed an increase in cell cycle arrest and apoptosis after treatment with a combination of these two drugs at low concentrations. Sorafenib-mediated inhibition of extracellular signal-regulated kinase phosphorylation was promoted by vitamin K2, and downregulation of Mcl-1, which is required for sorafenib-induced apoptosis, was observed after combined treatment. Vitamin K2 also attenuated the downregulation of p21 expression induced by sorafenib, which may represent the mechanism by which vitamin K2 promotes the inhibitory effects of sorafenib on cell proliferation. Moreover, the combination of sorafenib and vitamin K2 significantly inhibited the growth of hepatocellular carcinoma xenografts in nude mice. Our results determined that combined treatment with sorafenib and vitamin K2 can work synergistically to inhibit the growth of hepatocellular carcinoma cells. This finding raises the possibility that this combined treatment strategy might be promising as a new therapy against hepatocellular carcinoma, especially for patients

  10. Scoulerine affects microtubule structure, inhibits proliferation, arrests cell cycle and thus culminates in the apoptotic death of cancer cells.

    Science.gov (United States)

    Habartova, Klara; Havelek, Radim; Seifrtova, Martina; Kralovec, Karel; Cahlikova, Lucie; Chlebek, Jakub; Cermakova, Eva; Mazankova, Nadezda; Marikova, Jana; Kunes, Jiri; Novakova, Lucie; Rezacova, Martina

    2018-03-19

    Scoulerine is an isoquinoline alkaloid, which indicated promising suppression of cancer cells growth. However, the mode of action (MOA) remained unclear. Cytotoxic and antiproliferative properties were determined in this study. Scoulerine reduces the mitochondrial dehydrogenases activity of the evaluated leukemic cells with IC 50 values ranging from 2.7 to 6.5 µM. The xCELLigence system revealed that scoulerine exerted potent antiproliferative activity in lung, ovarian and breast carcinoma cell lines. Jurkat and MOLT-4 leukemic cells treated with scoulerine were decreased in proliferation and viability. Scoulerine acted to inhibit proliferation through inducing G2 or M-phase cell cycle arrest, which correlates well with the observed breakdown of the microtubule network, increased Chk1 Ser345, Chk2 Thr68 and mitotic H3 Ser10 phosphorylation. Scoulerine was able to activate apoptosis, as determined by p53 upregulation, increase caspase activity, Annexin V and TUNEL labeling. Results highlight the potent antiproliferative and proapoptotic function of scoulerine in cancer cells caused by its ability to interfere with the microtubule elements of the cytoskeleton, checkpoint kinase signaling and p53 proteins. This is the first study of the mechanism of scoulerine at cellular and molecular level. Scoulerine is a potent antimitotic compound and that it merits further investigation as an anticancer drug.

  11. Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling.

    Science.gov (United States)

    Han, Bing; Yu, Yi-Qun; Yang, Qi-Lian; Shen, Chun-Ying; Wang, Xiao-Juan

    2017-10-17

    In the present study, we demonstrate that Kaempferol inhibited survival and proliferation of established human hepatocellular carcinoma (HCC) cell lines (HepG2, Huh-7, BEL7402, and SMMC) and primary human HCC cells. Kaempferol treatment in HCC cells induced profound AMP-activated protein kinase (AMPK) activation, which led to Ulk1 phosphorylation, mTOR complex 1 inhibition and cell autophagy. Autophagy induction was reflected by Beclin-1/autophagy gene 5 upregulation and p62 degradation as well as light chain 3B (LC3B)-I to LC3B-II conversion and LC3B puncta formation. Inhibition of AMPK, via AMPKα1 shRNA or dominant negative mutation, reversed above signaling changes. AMPK inhibition also largely inhibited Kaempferol-induced cytotoxicity in HCC cells. Autophagy inhibition, by 3-methyaldenine or Beclin-1 shRNA, also protected HCC cells from Kaempferol. Kaempferol downregulated melanoma antigen 6, the AMPK ubiquitin ligase, causing AMPKα1 stabilization and accumulation. We conclude that Kaempferol inhibits human HCC cells via activating AMPK signaling.

  12. Squamous cell carcinoma arising in an odontogenic cyst

    International Nuclear Information System (INIS)

    Yu, Jae Jung; Hwang, Eui Hwan; Lee, Sang Rae; Choi, Jeong Hee

    2003-01-01

    Squamous cell carcinoma arising in an odontogenic cyst is uncommon. The diagnosis of carcinoma arising in a cyst requires that there must be an area of microscopic transition from the benign epithelial cyst lining to the invasive squamous cell carcinoma. We report a histopathologically proven case of squamous cell carcinoma arising in a residual mandibular cyst in a 54-year-old woman.

  13. Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma.

    Science.gov (United States)

    Dumble, Melissa L; Croager, Emma J; Yeoh, George C T; Quail, Elizabeth A

    2002-03-01

    Oval cells are bipotential liver stem cells able to differentiate into hepatocytes and bile duct epithelia. In normal adult liver oval cells are quiescent, existing in low numbers around the periportal region, and proliferate following severe, prolonged liver trauma. There is evidence implicating oval cells in the development of hepatocellular carcinoma, and hence the availability of an immortalized oval cell line would be invaluable for the study of liver cell lineage differentiation and carcinogenesis. A novel approach in the generation of cell lines is the use of the p53 knockout mouse. Absence of p53 allows a cell to cycle past the normal Hayflick limit, rendering it immortalized, although subsequent genetic alterations are thought necessary for transformation. p53 knockout mice were fed a choline-deficient, ethionine-supplemented diet, previously shown to increase oval cell numbers in wild-type mice. The oval cells were isolated by centrifugal elutriation and maintained in culture. Colonies of hepatic cells were isolated and characterized with respect to phenotype, growth characteristics and tumorigenicity. Analysis of gene expression by Northern blotting and immunocytochemistry suggests they are oval-like cells by virtue of albumin and transferrin expression, as well as the oval cell markers alpha fetoprotein, M(2)-pyruvate kinase and A6. Injection into athymic nude mice shows the cell lines are capable of forming tumors which phenotypically resemble hepatocellular carcinoma. Thus, the use of p53 null hepatic cells successfully generated immortalized and tumorigenic hepatic stem cell lines. The results presented support the idea that deleting p53 allows immortalization and contributes to the transformation of the oval-like cell lines. Further, the tumorigenic status of the cell lines is direct evidence for the participation of oval cells in the formation of hepatocellular carcinoma.

  14. PGK1 Drives Hepatocellular Carcinoma Metastasis by Enhancing Metabolic Process.

    Science.gov (United States)

    Xie, Huijun; Tong, Guihui; Zhang, Yupei; Liang, Shu; Tang, Kairui; Yang, Qinhe

    2017-07-27

    During the proliferation and metastasis, the tumor cells prefer glycolysis (Warburg effect), but its exact mechanism remains largely unknown. In this study, we demonstrated that phosphoglycerate kinase 1 (PGK1) is an important enzyme in the pathway of metabolic glycolysis. We observed a significant overexpression of PGK1 in hepatocellular carcinoma tissues, and a correlation between PGK1 expression and poor survival of hepatocellular carcinoma patients. Also, the depletion of PGK1 dramatically reduced cancer cell proliferation and metastasis, indicating an oncogenic role of PGK1 in liver cancer progression. Further experiments showed that PGK1 played an important role in MYC -induced metabolic reprogramming, which led to an enhanced Warburg effect. Our results revealed a new effect of PGK1, which can provide a new treatment strategy for hepatocellular carcinoma, as PGK1 is used to indicate the prognosis of hepatocellular carcinoma (HCC).

  15. Scalp squamous cell carcinoma in xeroderma pigmentosum.

    Science.gov (United States)

    Awan, Basim A; Alzanbagi, Hanadi; Samargandi, Osama A; Ammar, Hossam

    2014-02-01

    Xeroderma pigmentosum is a rare autosomal-recessive disorder that appears in early childhood. Squamous cell carcinoma is not uncommon in patients with xeroderma pigmentosum and mostly involving the face, head, neck, and scalp. However, squamous cell carcinoma of the scalp may exhibit an aggressive course. Here, we present a huge squamous cell carcinoma of the scalp in a three-years-old child with xeroderma pigmentosum. In addition, we illustrate the challenges of a child with xeroderma pigmentosum who grows up in a sunny environment where the possibility of early onset of squamous cell carcinoma is extremely high in any suspected skin lesion. In xeroderma pigmentosum patients, squamous cell carcinoma of the scalp can present early and tends to be unusually aggressive. In sunny areas, proper education to the patient and their parents about ultra-violet light protection and early recognition of any suspicious lesion could be life-saving.

  16. Chemokine-mediated distribution of dendritic cell subsets in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Meyer Werner

    2010-10-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC represents one of the most immunoresponsive cancers. Antigen-specific vaccination with dendritic cells (DCs in patients with metastatic RCC has been shown to induce cytotoxic T-cell responses associated with objective clinical responses. Thus, clinical trials utilizing DCs for immunotherapy of advanced RCCs appear to be promising; however, detailed analyses concerning the distribution and function of DC subsets in RCCs are lacking. Methods We characterized the distribution of the different immature and mature myeloid DC subsets in RCC tumour tissue and the corresponding normal kidney tissues. In further analyses, the expression of various chemokines and chemokine receptors controlling the migration of DC subsets was investigated. Results The highest numbers of immature CD1a+ DCs were found within RCC tumour tissue. In contrast, the accumulation of mature CD83+/DC-LAMP+ DCs were restricted to the invasive margin of the RCCs. The mature DCs formed clusters with proliferating T-cells. Furthermore, a close association was observed between MIP-3α-producing tumour cells and immature CCR6+ DC recruitment to the tumour bed. Conversely, MIP-3β and SLC expression was only detected at the tumour border, where CCR7-expressing T-cells and mature DCs formed clusters. Conclusion Increased numbers of immature DCs were observed within the tumour tissue of RCCs, whereas mature DCs were found in increased numbers at the tumour margin. Our results strongly implicate that the distribution of DC subsets is controlled by local lymphoid chemokine expression. Thus, increased expression of MIP-3α favours recruitment of immature DCs to the tumour bed, whereas de novo local expression of SLC and MIP-3β induces accumulation of mature DCs at the tumour margin forming clusters with proliferating T-cells reflecting a local anti-tumour immune response.

  17. Chemokine-mediated distribution of dendritic cell subsets in renal cell carcinoma

    International Nuclear Information System (INIS)

    Middel, Peter; Brauneck, Sven; Meyer, Werner; Radzun, Heinz-Joachim

    2010-01-01

    Renal cell carcinoma (RCC) represents one of the most immunoresponsive cancers. Antigen-specific vaccination with dendritic cells (DCs) in patients with metastatic RCC has been shown to induce cytotoxic T-cell responses associated with objective clinical responses. Thus, clinical trials utilizing DCs for immunotherapy of advanced RCCs appear to be promising; however, detailed analyses concerning the distribution and function of DC subsets in RCCs are lacking. We characterized the distribution of the different immature and mature myeloid DC subsets in RCC tumour tissue and the corresponding normal kidney tissues. In further analyses, the expression of various chemokines and chemokine receptors controlling the migration of DC subsets was investigated. The highest numbers of immature CD1a+ DCs were found within RCC tumour tissue. In contrast, the accumulation of mature CD83+/DC-LAMP+ DCs were restricted to the invasive margin of the RCCs. The mature DCs formed clusters with proliferating T-cells. Furthermore, a close association was observed between MIP-3α-producing tumour cells and immature CCR6+ DC recruitment to the tumour bed. Conversely, MIP-3β and SLC expression was only detected at the tumour border, where CCR7-expressing T-cells and mature DCs formed clusters. Increased numbers of immature DCs were observed within the tumour tissue of RCCs, whereas mature DCs were found in increased numbers at the tumour margin. Our results strongly implicate that the distribution of DC subsets is controlled by local lymphoid chemokine expression. Thus, increased expression of MIP-3α favours recruitment of immature DCs to the tumour bed, whereas de novo local expression of SLC and MIP-3β induces accumulation of mature DCs at the tumour margin forming clusters with proliferating T-cells reflecting a local anti-tumour immune response

  18. The NF-kappa B inhibitor, celastrol, could enhance the anti-cancer effect of gambogic acid on oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    He, Di; Chen, Wantao; Xu, Qin; Yan, Ming; Zhang, Ping; Zhou, Xiaojian; Zhang, Zhiyuan; Duan, Wenhu; Zhong, Laiping; Ye, Dongxia

    2009-01-01

    Gambogic acid (GA) is a major active ingredient of gamboge, a widely used traditional Chinese medicine that has been reported to be a potent cytotoxic agent against some malignant tumors. Many studies have shown that the NF-kappa B signaling pathway plays an important role in anti-apoptosis and the drug resistance of tumor cells during chemotherapy. In this study, the effects and mechanisms of GA and the NF-kappa B inhibitor celastrol on oral cancer cells were investigated. Three human oral squamous cell carcinoma cell lines, Tca8113, TSCC and NT, were treated with GA alone, celastrol alone or GA plus celastrol. Cytotoxicity was assessed by MTT assay. The rate of apoptosis was examined with annexin V/PI staining as well as transmission electronic microscopy in Tca8113 cells. The level of constitutive NF-kappa B activity in oral squamous cell carcinoma cell lines was determined by immunofluorescence assays and nuclear extracts and electrophoretic mobility shift assays (EMSAs) in vitro. To further investigate the role of NF-kappa B activity in GA and celastrol treatment in oral squamous cell carcinoma, we used the dominant negative mutant SR-IκBα to inhibit NF-kappa B activity and to observe its influence on the effect of GA. The results showed that GA could inhibit the proliferation and induce the apoptosis of the oral squamous cell carcinoma cell lines and that the NF-kappa B pathway was simultaneously activated by GA treatment. The minimal cytotoxic dose of celastrol was able to effectively suppress the GA-induced NF-kappa B pathway activation. Following the combined treatment with GA and the minimal cytotoxic dose of celastrol or the dominant negative mutant SR-IκBα, proliferation was significantly inhibited, and the apoptotic rate of Tca8113 cells was significantly increased. The combination of GA and celastrol has a synergistic antitumor effect. The effect can be primarily attributed to apoptosis induced by a decrease in NF-kappa B pathway activation. The

  19. Reevaluation and reclassification of resected lung carcinomas originally diagnosed as squamous cell carcinoma using immunohistochemical analysis

    Science.gov (United States)

    Kadota, Kyuichi; Nitadori, Jun-ichi; Rekhtman, Natasha; Jones, David R.; Adusumilli, Prasad S.; Travis, William D.

    2015-01-01

    Currently, non-small cell lung carcinomas are primarily classified by light microscopy. However, recent studies have shown that poorly-differentiated tumors are more accurately classified by immunohistochemistry. In this study, we investigated the use of immunohistochemical analysis in reclassifying lung carcinomas that were originally diagnosed as squamous cell carcinoma. Tumor slides and blocks were available for histologic evaluation, and tissue microarrays were constructed from 480 patients with resected lung carcinomas originally diagnosed as squamous cell carcinoma between 1999 and 2009. Immunohistochemistry for p40, p63, thyroid transcription factor-1 (TTF-1; clone SPT24 and 8G7G3/1), Napsin A, Chromogranin A, Synaptophysin, and CD56 were performed. Staining intensity (weak, moderate, or strong) and distribution (focal or diffuse) were also recorded. Of all, 449 (93.5%) patients were confirmed as having squamous cell carcinomas; the cases were mostly diffusely positive for p40 and negative for TTF-1 (8G7G3/1). Twenty cases (4.2%) were reclassified as adenocarcinoma since they were positive for TTF-1 (8G7G3/1 or SPT24) with either no or focal p40 expression, and all of them were poorly-differentiated with squamoid morphology. In addition, 1 case was reclassified as adenosquamous carcinoma, 4 cases as large cell carcinoma, 4 cases as large cell neuroendocrine carcinoma, and 2 cases as small cell carcinoma. In poorly-differentiated non-small cell lung carcinomas, an accurate distinction between squamous cell carcinoma and adenocarcinoma cannot be reliably determined by morphology alone and requires immunohistochemical analysis, even in resected specimens. Our findings suggest that TTF-1 8G7G3/1 may be better suited as the primary antibody in differentiating adenocarcinoma from squamous cell carcinoma. PMID:25871623

  20. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    International Nuclear Information System (INIS)

    Yu, Lingling; Zhao, Yingmin; Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin; Gu, Jian; Yu, Duonan

    2016-01-01

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  1. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingling [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Zhao, Yingmin [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin [Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Gu, Jian [Department of Hematology, Yangzhou University School of Clinical Medicine, Yangzhou 225001 (China); Yu, Duonan, E-mail: duonan@yahoo.com [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou 225001 (China); Institute of Comparative Medicine, Yangzhou University, Yangzhou 225001 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225001 (China)

    2016-06-10

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  2. Metastatic Basal Cell Carcinoma Accompanying Gorlin Syndrome

    Directory of Open Access Journals (Sweden)

    Yeliz Bilir

    2014-01-01

    Full Text Available Gorlin-Goltz syndrome or basal cell nevus syndrome is an autosomal dominant syndrome characterized by skeletal anomalies, numerous cysts observed in the jaw, and multiple basal cell carcinoma of the skin, which may be accompanied by falx cerebri calcification. Basal cell carcinoma is the most commonly skin tumor with slow clinical course and low metastatic potential. Its concomitance with Gorlin syndrome, resulting from a mutation in a tumor suppressor gene, may substantially change morbidity and mortality. A 66-year-old male patient with a history of recurrent basal cell carcinoma was presented with exophthalmus in the left eye and the lesions localized in the left lateral orbita and left zygomatic area. His physical examination revealed hearing loss, gapped teeth, highly arched palate, and frontal prominence. Left orbital mass, cystic masses at frontal and ethmoidal sinuses, and multiple pulmonary nodules were detected at CT scans. Basal cell carcinoma was diagnosed from biopsy of ethmoid sinus. Based on the clinical and typical radiological characteristics (falx cerebri calcification, bifid costa, and odontogenic cysts, the patient was diagnosed with metastatic skin basal cell carcinoma accompanied by Gorlin syndrome. Our case is a basal cell carcinoma with aggressive course accompanying a rarely seen syndrome.

  3. Axillary basal cell carcinoma in patients with Goltz-Gorlin syndrome: report of basal cell carcinoma in both axilla of a woman with basal cell nevus syndrome and literature review.

    Science.gov (United States)

    Cohen, Philip R

    2014-08-17

    Basal cell carcinoma of the axilla, an area that is not usually exposed to the sun, is rare. Individuals with basal cell nevus syndrome, a disorder associated with a mutation in the patch 1 (PTCH1) gene, develop numerous basal cell carcinomas. To describe a woman with basal cell nevus syndrome who developed a pigmented basal cell carcinoma in each of her axilla and to review the features of axillary basal cell carcinoma patients with Goltz-Gorlin syndrome. Pubmed was used to search the following terms: axillary basal cell carcinoma and basal cell nevus syndrome. The papers and their citations were evaluated. Basal cell nevus syndrome patients with basal cell carcinoma of the axilla were observed in two women; this represents 2.5% (2 of 79) of the patients with axillary basal cell carcinoma. Both women had pigmented tumors that were histologically nonaggressive. The cancers did not recur after curettage or excision. Basal cell carcinoma of the axilla has only been described in 79 individuals; two of the patients were women with pigmented tumors who had basal cell nevus syndrome. Similar to other patients with axillary basal cell carcinoma, the tumors were histologically nonaggressive and did not recur following treatment. Whether PTCH1 gene mutation predisposes basal cell nevus patients to develop axillary basal cell carcinomas remains to be determined.

  4. Metastatic Renal Cell Carcinoma to the Pancreas: A Review.

    Science.gov (United States)

    Cheng, Shaun Kian Hong; Chuah, Khoon Leong

    2016-06-01

    The pancreas is an unusual site for tumor metastasis, accounting for only 2% to 5% of all malignancies affecting the pancreas. The more common metastases affecting the pancreas include renal cell carcinomas, melanomas, colorectal carcinomas, breast carcinomas, and sarcomas. Although pancreatic involvement by nonrenal malignancies indicates widespread systemic disease, metastatic renal cell carcinoma to the pancreas often represents an isolated event and is thus amenable to surgical resection, which is associated with long-term survival. As such, it is important to accurately diagnose pancreatic involvement by metastatic renal cell carcinoma on histology, especially given that renal cell carcinoma metastasis may manifest more than a decade after its initial presentation and diagnosis. In this review, we discuss the clinicopathologic findings of isolated renal cell carcinoma metastases of the pancreas, with special emphasis on separating metastatic renal cell carcinoma and its various differential diagnoses in the pancreas.

  5. Podoplanin expression in the development and progression of laryngeal squamous cell carcinomas

    Science.gov (United States)

    2010-01-01

    Background Podoplanin expression is attracting interest as a marker for cancer diagnosis and prognosis. We therefore investigated the expression pattern and clinical significance of podoplanin during the development and progression of laryngeal carcinomas. Results Podoplanin expression was determined by immunohistochemistry in paraffin-embedded tissue specimens from 84 patients with laryngeal premalignancies and 53 patients with laryngeal squamous cell carcinomas. We found podoplanin expression extending from the basal to the suprabasal layer of the epithelium in 37 (44%) of 84 dysplastic lesions, whereas normal epithelium showed negligible expression. Patients carrying podoplanin-positive lesions had a higher laryngeal cancer incidence than those with negative expression reaching borderline statistical significance (51% versus 30%, P = 0.071). Podoplanin expression in laryngeal carcinomas exhibited two distinct patterns. 20 (38%) cases showed diffuse expression in most tumour cells and 33 (62%) focal expression at the proliferating periphery of tumour nests. High podoplanin expression was inversely correlated with T classification (P = 0.033), disease stage (P = 0.006), and pathological grade (P = 0.04). There was a trend, although not significant, towards reduced disease-specific survival for patients with low podoplanin levels (P = 0.31) and diffuse expression pattern (P = 0.08). Conclusions Podoplanin expression increases in the early stages of laryngeal tumourigenesis and it seems to be associated with a higher laryngeal cancer risk. Podoplanin expression in laryngeal squamous cell carcinomas, however, diminishes during tumour progression. Taken together, these data support a role for podoplanin expression in the initiation but not in the progression of laryngeal cancers. PMID:20196862

  6. Podoplanin expression in the development and progression of laryngeal squamous cell carcinomas

    Directory of Open Access Journals (Sweden)

    Fresno Manuel F

    2010-03-01

    Full Text Available Abstract Background Podoplanin expression is attracting interest as a marker for cancer diagnosis and prognosis. We therefore investigated the expression pattern and clinical significance of podoplanin during the development and progression of laryngeal carcinomas. Results Podoplanin expression was determined by immunohistochemistry in paraffin-embedded tissue specimens from 84 patients with laryngeal premalignancies and 53 patients with laryngeal squamous cell carcinomas. We found podoplanin expression extending from the basal to the suprabasal layer of the epithelium in 37 (44% of 84 dysplastic lesions, whereas normal epithelium showed negligible expression. Patients carrying podoplanin-positive lesions had a higher laryngeal cancer incidence than those with negative expression reaching borderline statistical significance (51% versus 30%, P = 0.071. Podoplanin expression in laryngeal carcinomas exhibited two distinct patterns. 20 (38% cases showed diffuse expression in most tumour cells and 33 (62% focal expression at the proliferating periphery of tumour nests. High podoplanin expression was inversely correlated with T classification (P = 0.033, disease stage (P = 0.006, and pathological grade (P = 0.04. There was a trend, although not significant, towards reduced disease-specific survival for patients with low podoplanin levels (P = 0.31 and diffuse expression pattern (P = 0.08. Conclusions Podoplanin expression increases in the early stages of laryngeal tumourigenesis and it seems to be associated with a higher laryngeal cancer risk. Podoplanin expression in laryngeal squamous cell carcinomas, however, diminishes during tumour progression. Taken together, these data support a role for podoplanin expression in the initiation but not in the progression of laryngeal cancers.

  7. Stat3 induces oncogenic Skp2 expression in human cervical carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hanhui [Shanghai Medical College of Fudan University, Shanghai 200032 (China); Zhao, Wenrong [Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011 (China); Yang, Dan, E-mail: yangdandr@gmail.com [Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 200040 (China)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Upregulation of Skp2 by IL-6 or Stat3 activation. Black-Right-Pointing-Pointer Stat3 activates Skp2 expression through bound to its promoter region. Black-Right-Pointing-Pointer Stat3 activates Skp2 expression through recruitment of P300. Black-Right-Pointing-Pointer Stat3 activation decreases the P27 stability. -- Abstract: Dysregulated Skp2 function promotes cell proliferation, which is consistent with observations of Skp2 over-expression in many types of human cancers, including cervical carcinoma (CC). However, the molecular mechanisms underlying elevated Skp2 expression have not been fully explored. Interleukin-6 (IL-6) induced Stat3 activation is viewed as crucial for multiple tumor growth and metastasis. Here, we demonstrate that Skp2 is a direct transcriptional target of Stat3 in the human cervical carcinoma cells. Our data show that IL-6 administration or transfection of a constitutively activated Stat3 in HeLa cells activates Skp2 mRNA transcription. Using luciferase reporter and ChIP assays, we show that Stat3 binds to the promoter region of Skp2 and promotes its activity through recruiting P300. As a result of the increase of Skp2 expression, endogenous p27 protein levels are markedly decreased. Thus, our results suggest a previously unknown Stat3-Skp2 molecular network controlling cervical carcinoma development.

  8. BC047440 antisense eukaryotic expression vectors inhibited HepG2 cell proliferation and suppressed xenograft tumorigenicity

    International Nuclear Information System (INIS)

    Lu, Zheng; Ping, Liang; JianBo, Zhou; XiaoBing, Huang; Yu, Wen; Zheng, Wang; Jing, Li

    2012-01-01

    The biological functions of the BC047440 gene highly expressed by hepatocellular carcinoma (HCC) are unknown. The objective of this study was to reconstruct antisense eukaryotic expression vectors of the gene for inhibiting HepG 2 cell proliferation and suppressing their xenograft tumorigenicity. The full-length BC047440 cDNA was cloned from human primary HCC by RT-PCR. BC047440 gene fragments were ligated with pMD18-T simple vectors and subsequent pcDNA3.1(+) plasmids to construct the recombinant antisense eukaryotic vector pcDNA3.1(+)BC047440AS. The endogenous BC047440 mRNA abundance in target gene-transfected, vector-transfected and naive HepG 2 cells was semiquantitatively analyzed by RT-PCR and cell proliferation was measured by the MTT assay. Cell cycle distribution and apoptosis were profiled by flow cytometry. The in vivo xenograft experiment was performed on nude mice to examine the effects of antisense vector on tumorigenicity. BC047440 cDNA fragments were reversely inserted into pcDNA3.1(+) plasmids. The antisense vector significantly reduced the endogenous BC047440 mRNA abundance by 41% in HepG 2 cells and inhibited their proliferation in vitro (P < 0.01). More cells were arrested by the antisense vector at the G 1 phase in an apoptosis-independent manner (P = 0.014). Additionally, transfection with pcDNA3.1(+) BC047440AS significantly reduced the xenograft tumorigenicity in nude mice. As a novel cell cycle regulator associated with HCC, the BC047440 gene was involved in cell proliferation in vitro and xenograft tumorigenicity in vivo through apoptosis-independent mechanisms

  9. Anti-tumor effect of cisplatin in human oral squamous cell carcinoma was enhanced by andrographolide via upregulation of phospho-p53 in vitro and in vivo.

    Science.gov (United States)

    Chen, Songjie; Hu, Hui; Miao, Shushu; Zheng, Jiayong; Xie, Zhijian; Zhao, Hui

    2017-05-01

    Oral squamous cell carcinoma is one of the most common neoplasm in the world. Despite the improvements in diagnosis and treatment, the outcome is still poor now. Thus, the development of novel therapeuticapproaches is needed. The aim of this study is to assess the synergistic anti-tumor effect of andrographolide with cisplatin (DDP) in oral squamous cell carcinoma CAL-27 cells in vitro and in vivo. We performed Cell Counting Kit-8 proliferation assay, apoptosis assay, and western blotting on CAL-27 cells treated with andrographolide, DDP or the combination in vitro. In vivo, we also treated CAL-27 xenografts with andrographolide or the combination, and performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay and immunohistochemical analysis of Ki-67. The results showed the combination of andrographolide and DDP synergistically inhibited CAL-27 cell proliferation in vitro and caused tumor regression in vivo in the CAL-27 xenografts. In addition, the synergistic anti-tumor effect of andrographolide with synergistic was due to an enhanced apoptosis. Moreover, the combination therapy upregulated the expression level of p-p53 in vitro and decreased Ki-67 expression in vivo. Our data indicate that the combination treatment of andrographolide and DDP results in synergistic anti-tumor growth activity against oral squamous cell carcinoma CAL-27 in vitro and in vivo. These results demonstrated that combination of andrographolide with DDP was likely to represent a potential therapeutic strategy for oral squamous cell carcinoma.

  10. Squamous Cell Carcinoma In Situ Overlying Merkel Cell Carcinoma.

    Science.gov (United States)

    McGowan, Maria A; Helm, Matthew F; Tarbox, Michelle B

    2016-11-01

    Merkel cell carcinoma (MCC) is a rare and aggressive cutaneous neoplasm that has exhibited an exponential increase in incidence in the past 3 decades. Combined MCC and cutaneous squamous cell carcinoma (SCC/MCC) is an uncommon variant of MCC that exhibits worse prognosis than pure MCC. To describe the clinical presentation, dermoscopy, and histology of an unusual subtype of combined SCC/MCC. A 73-year-old white woman presented with an ulcerated and violaceous 10-mm plaque on her right jawline that had been present for 2 to 3 months. On dermoscopy, the lesion was predominantly milky pink to red with peripheral crusting and large-caliber polymorphous vessels. Histology revealed SCC in situ above and adjacent to MCC. The tumor was excised with clear margins, and sentinel lymph node scintography was negative for nodal involvement. © The Author(s) 2016.

  11. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Federica; Wurth, Roberto [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Thellung, Stefano [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Daga, Antonio [Laboratory of Translational Oncology, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Cilli, Michele [Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Ferrari, Angelo [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Florio, Tullio, E-mail: tullio.florio@unige.it [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy)

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  12. Pokemon/miR-137 auto-regulatory circuit promotes the progression of renal carcinoma.

    Science.gov (United States)

    Wang, Lihui; Li, Qi; Ye, Zhuo; Qiao, Baoping

    2018-04-19

    Renal carcinoma greatly threatens human health, but the involved molecular mechanisms are far from complete understanding. As a master oncogene driving the initiation of many other cancers, Pokemon has not been established to be associated with renal cancer. Our data revealed that Pokemon is highly expressed in renal carcinoma specimen and cell lines, compared with normal cells. The silencing of Pokemon suppressed the proliferation and invasion of renal cancer cells. Pokemon overexpression rendered normal cells with higher proliferation rates and invasiveness. Animal study further confirmed the role of Pokemon in the growth of renal carcinoma. Moreover, miR-137 was identified to negatively regulate the expression of Pokemon, and its abundance is inversely correlated with that of Pokemon in renal carcinoma specimen and cell lines. Pokemon overexpression may be induced by miR-137 downregulation. Interestingly, Pokemon can also suppress miR-137 expression by binding to its recognition site within miR-137 promoter region. Taken together, we identified an autoregulatory loop consisting of Pokemon and miR-137 in gastric cancers, and targeting this pathway may be an effective strategy for renal carcinoma cancer therapy.

  13. Black cohosh inhibits 17β-estradiol-induced cell proliferation of endometrial adenocarcinoma cells.

    Science.gov (United States)

    Park, So Yun; Kim, Hee Ja; Lee, Sa Ra; Choi, Youn-Hee; Jeong, Kyungah; Chung, Hyewon

    2016-10-01

    This study was conducted to investigate the effect of black cohosh (BC) extract on the proliferation and apoptosis of Ishikawa cells. Ishikawa human endometrial adenocarcinoma cells were treated with or without BC (1, 5, 10 and 25 μM) and cell proliferation and cytotoxicity were measured by CCK-8 assays and flow cytometry analysis. Additionally, Ishikawa cells were treated with 17β-estradiol (E2), E2 + progesterone and E2 + BC (5 and 10 μM) and the effect of BC and progesterone on E2-induced cell proliferation was analyzed. BC decreased the proliferation of Ishikawa cells at a dose-dependent rate compared with the control group (p < 0.05). The proliferation of Ishikawa cells increased in the presence of E2, whereas the subsequent addition of progesterone or BC decreased proliferation to the level of the control group (p < 0.05). The inhibitory effect of BC on E2-induced cell proliferation was greater than the inhibitory effect of progesterone. In conclusion, BC induces apoptosis in Ishikawa cells and suppresses E2-induced cell proliferation in Ishikawa cells. BC could be considered a candidate co-treatment agent of estrogen-dependent tumors, especially those involving endometrial cells.

  14. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    International Nuclear Information System (INIS)

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina; Thellung, Stefano; Daga, Antonio; Cilli, Michele; Ferrari, Angelo; Florio, Tullio

    2012-01-01

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell–like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: ► Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 ► These grow as spheres in serum-free medium and self-renew ► Isolated stem-like cancer cells initiate tumor in immunodeficient mice ► Xenografted tumors are phenotypically similar to the original tumor ► Upon differentiation, cells grow as monolayers, loosing the tumorigenic potential

  15. Cetuximab & Nivolumab in Patients With Recurrent/Metastatic Head & Neck Squamous Cell Carcinoma

    Science.gov (United States)

    2018-04-10

    Squamous Cell Carcinoma of the Oropharynx; Squamous Cell Carcinoma of the Larynx; Squamous Cell Carcinoma of the Oral Cavity; Squamous Cell Carcinoma of the Hypopharynx; Squamous Cell Carcinoma of the Paranasal Sinus; Head and Neck Squamous Cell Carcinoma; Squamous Cell Cancer; Head and Neck Carcinoma

  16. Neglected Giant Scalp Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Anne Kristine Larsen, MD

    2014-03-01

    Full Text Available Summary: Rarely, basal cell carcinoma grows to a giant size, invading the underlying deep tissue and complicating the treatment and reconstruction modalities. A giant basal cell carcinoma on the scalp is in some cases treated with a combination of surgery and radiation therapy, resulting in local control, a satisfactory long-term cosmetic and functional result. We present a case with a neglected basal cell scalp carcinoma, treated with wide excision and postoperative radiotherapy, reconstructed with a free latissimus dorsi flap. The cosmetic result is acceptable and there is no sign of recurrence 1 year postoperatively.

  17. The evaluation of p,p'-DDT exposure on cell adhesion of hepatocellular carcinoma.

    Science.gov (United States)

    Jin, Xiaoting; Chen, Meilan; Song, Li; Li, Hanqing; Li, Zhuoyu

    2014-08-01

    Many studies have found a positive association between the progression of hepatocellular carcinoma and DDT exposure. These studies mainly focus on the effect of DDT exposure on cell proliferation and epithelial to mesenchymal transition (EMT) promotion. However, the influence of DDT on cell adhesion of hepatocellular carcinoma remains to be unclear. The aim of our study was to determine the effect of p,p'-DDT on cell adhesion of hepatocellular carcinoma in vitro and in vivo. The data showed that p,p'-DDT, exposing HepG2 cells for 6 days, decreased cell-cell adhesion and elevated cell-matrix adhesion. Strikingly, p,p'-DDT increased reactive oxygen species (ROS) content, and this was accompanied by the activation of JAK/STAT3 pathway. Moreover, ROS inhibitor supplement reversed these effects significantly. However, the addition of ER inhibitor, ICI, had no effect on the p,p'-DDT-induced effects. p,p'-DDT altered the mRNA levels of related adhesion molecules, including inhibition of E-cadherin and promotion of N-cadherin along with CD29. Interestingly, the p,p'-DDT-altered adhesion molecules could be reversed with JAK inhibitor or STAT3 inhibitor. Likewise, p,p'-DDT stimulated the JAK/STAT3 pathway in nude mice, as well as altered the mRNA levels of E-cadherin, N-cadherin, and CD29. Taken together, these results indicate that p,p'-DDT profoundly promotes the adhesion process by decreasing cell-cell adhesion and inducing cell-matrix adhesion via the ROS-mediated JAK/STAT3 pathway. All these events account for the carcinogenic potential of p,p'-DDT in liver. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Pathway of deoxynivalenol-induced apoptosis in human colon carcinoma cells

    International Nuclear Information System (INIS)

    Bensassi, Fatma; El Golli-Bennour, Emna; Abid-Essefi, Salwa; Bouaziz, Chayma; Hajlaoui, Mohamed Rabeh; Bacha, Hassen

    2009-01-01

    The mycotoxin, deoxynivalenol (DON), is generally detected in cereal grains and grain-based food products worldwide. Therefore, DON has numerous toxicological effects on animals and humans. The present investigation was conducted to determine the molecular aspects of DON toxicity on human colon carcinoma cells (HT 29). To this aim, we have monitored the effects of DON on (i) cell viability, (ii) Heat shock protein expressions as a parameter of protective and adaptive response, (iii) oxidative damage and (iv) cell death signalling pathway. Our results clearly showed that DON treatment inhibits cell proliferation, did not induce Hsp 70 protein expression and reactive oxygen species generation. We have also demonstrated that this toxin induced a DNA fragmentation followed by p53 and caspase-3 activations. Finally, our findings suggested that oxidative damage is not the major contributor to DON toxicity. This mycotoxin induces direct DNA lesions and could be considered by this fact as a genotoxic agent inducing cell death via an apoptotic process.

  19. Cell proliferation studies in rodent hepatocytes during 1,4-dichlorobenzene administration

    International Nuclear Information System (INIS)

    Eldridge, S.R.; Tilbury, L.F.; Randall, H.; Goldsworthy, T.L.; Butterworth, B.E.

    1990-01-01

    In the NTP bioassay, 1,4-dichlorobenzene (DCB) induced hepatocellular carcinomas in mice, but not in rats. Because DCB is not DNA reactive, a cell proliferation study under conditions of the bioassay was undertaken to determine whether increased cell proliferation might play a role in DCB-induced hepatocarcinogenicity. DCB was administered in corn oil by gavage at the highest bioassay dose to male B6C3F1 mice (600 mg/kg) and male F344 rats (300 mg/kg) for five consecutive days. Cell proliferation was detected by labeling hepatocytes with either 5-bromo-2'-deoxyuridine (BRDU) or 3 H-thymidine delivered during the entire treatment period by subcutaneously implanted osmotic pumps. An increase in liver weight as a percentage of body weight was observed in treated mice (6.7±0.6 vs. 5.9±0.2) and rats (4.7±0.1 vs. 4.0±0.2) compared to controls. No significant elevations in plasma enzymes were found in either treated species, indicating a lack of overt hepatotoxicity. Histopathological evaluation revealed no evidence of hepatotoxicity in either species. The percentage of hepatocytes in S-phase was increased approximately 10-fold in both treated mice and rats compared to the respective control animals. Mice exhibited a centrilobular pattern of labeled hepatocytes, whereas rat hepatocytes were labeled hepatocytes, whereas rat hepatocytes were labeled throughout the lobules. These data demonstrate the hepatic mitogenic activity of DCB in mice and rats. However, this response dose not correlate with DCB-induced hepatocarcinogenicity. Further studies are required to examine the extent, duration and nature of the proliferative response in order to understand the species-specific effects of DCB

  20. Metastatic renal cell carcinoma management

    Directory of Open Access Journals (Sweden)

    Flavio L. Heldwein

    2009-06-01

    Full Text Available PURPOSE: To assess the current treatment of metastatic renal cell carcinoma, focusing on medical treatment options. MATERIAL AND METHODS: The most important recent publications have been selected after a literature search employing PubMed using the search terms: advanced and metastatic renal cell carcinoma, anti-angiogenesis drugs and systemic therapy; also significant meeting abstracts were consulted. RESULTS: Progress in understanding the molecular basis of renal cell carcinoma, especially related to genetics and angiogenesis, has been achieved mainly through of the study of von Hippel-Lindau disease. A great variety of active agents have been developed and tested in metastatic renal cell carcinoma (mRCC patients. New specific molecular therapies in metastatic disease are discussed. Sunitinib, Sorafenib and Bevacizumab increase the progression-free survival when compared to therapy with cytokines. Temsirolimus increases overall survival in high-risk patients. Growth factors and regulatory enzymes, such as carbonic anhydrase IX may be targets for future therapies. CONCLUSIONS: A broader knowledge of clear cell carcinoma molecular biology has permitted the beginning of a new era in mRCC therapy. Benefits of these novel agents in terms of progression-free and overall survival have been observed in patients with mRCC, and, in many cases, have become the standard of care. Sunitinib is now considered the new reference first-line treatment for mRCC. Despite all the progress in recent years, complete responses are still very rare. Currently, many important issues regarding the use of these agents in the management of metastatic renal cancer still need to be properly addressed.

  1. Cytokeratin 20-negative Merkel cell carcinoma is infrequently associated with the Merkel cell polyomavirus.

    Science.gov (United States)

    Miner, Andrew G; Patel, Rajiv M; Wilson, Deborah A; Procop, Gary W; Minca, Eugen C; Fullen, Douglas R; Harms, Paul W; Billings, Steven D

    2015-04-01

    Merkel cell carcinoma is a rare, highly aggressive cutaneous neuroendocrine carcinoma most commonly seen in sun-damaged skin. Histologically, the tumor consists of primitive round cells with fine chromatin and numerous mitoses. Immunohistochemical stains demonstrate expression of neuroendocrine markers. In addition, cytokeratin 20 (CK20) is expressed in ∼95% of cases. In 2008, Merkel cell carcinoma was shown to be associated with a virus now known as Merkel cell polyomavirus in ∼80% of cases. Prognostic and mechanistic differences between Merkel cell polyomavirus-positive and Merkel cell polyomavirus-negative Merkel cell carcinoma may exist. There has been the suggestion that CK20-negative Merkel cell carcinomas less frequently harbor Merkel cell polyomavirus, but a systematic investigation for Merkel cell polyomavirus incidence in CK20-negative Merkel cell carcinoma has not been done. To test the hypothesis that Merkel cell polyomavirus is less frequently associated with CK20-negative Merkel cell carcinoma, we investigated 13 CK20-negative Merkel cell carcinomas from the files of the Cleveland Clinic and the University of Michigan for the virus. The presence or absence of Merkel cell polyomavirus was determined by quantitative PCR performed for Large T and small T antigens, with sequencing of PCR products to confirm the presence of Merkel cell polyomavirus. Ten of these (77%) were negative for Merkel cell polyomavirus and three (23%) were positive for Merkel cell polyomavirus. Merkel cell polyomavirus is less common in CK20-negative Merkel cell carcinoma. Larger series and clinical follow-up may help to determine whether CK20-negative Merkel cell carcinoma is mechanistically and prognostically unique.

  2. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Florian M. Corvinus

    2005-06-01

    Full Text Available Colorectal carcinoma (CRC is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRCderived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth.

  3. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    Science.gov (United States)

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (Pepithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  4. Clear cell carcinoma of the uterine corpus following irradiation therapy for squamous cell carcinoma of the cervix; A case report

    Energy Technology Data Exchange (ETDEWEB)

    Iwaoki, Yasuhisa; Katsube, Yasuhiro (Kure Kyosai Hospital, Hiroshima (Japan)); Nanba, Koji

    1992-01-01

    A case of clear cell carcinoma of the endometrium following squamous cell carcinoma of the cervix is reported. The patient had had a previous cervical biopsy which revealed squamous cell carcinoma (large cell non-keratinizing type), classified clinically as a stage IIb lesion. She was treated with external pelvic irradiation delivering an estimated tumor dose of approximately 7,000 rads and intracavital radium application delivering 4,995 mg.hr.radiation when she was 51 years old. She complained of post-menopausal bleeding at age 66 and was diagnosed by endometrial cytology as having clear cell carcinoma of the endometrium. Total abdominal hysterectomy, bilateral salpingo-oophorectomy and omentectomy were performed. The clinical stage of the endometrial cancer was Ib. She is alive after 2 years with no evidence of disease. Endometrial cytology revealed several adenocarcinoma cells in small clusters. The shape of the nuclei was somewhat irregular, the chromatin pattern was fine granular, and single or multiple nucleoli were seen. The diameter of these nuclei ranged from 10 to 30 {mu}m. The cytoplasm was pale green or vacuolated. The volume of the cytoplasm varied from scanty to abundant. These findings suggested clear cell carcinoma. Histopathologically, an irregular shaped polypoid tumor, 3 x 1.5 cm in size, was located on the lower anterior wall of the uterine corpus. The tumor was a clear cell carcinoma showing a solid and papillary pattern. A hobnail pattern was not observed. The cytoplasm was clear and abundant, and PAS-positive granules digestible by diastase were seen. These 2 cancers had different pathological features and their immunohistochemical reactivities for CEA and keratin were also different. The patient was regarded as having a rare heterochronous double cancer consisting of squamous cell carcinoma of the cervix and clear cell carcinoma of the endometrium. (author).

  5. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    Energy Technology Data Exchange (ETDEWEB)

    Kurundkar, Deepali; Srivastava, Ritesh K.; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Kopelovich, Levy [Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd., Suite 2114, Bethesda, MD 20892 (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States)

    2013-01-15

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.

  6. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    International Nuclear Information System (INIS)

    Kurundkar, Deepali; Srivastava, Ritesh K.; Chaudhary, Sandeep C.; Ballestas, Mary E.; Kopelovich, Levy; Elmets, Craig A.; Athar, Mohammad

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.

  7. Gingival squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Amit Walvekar

    2017-01-01

    Full Text Available Oral squamous cell carcinoma (OSCC is the most common epithelial malignancy affecting the oral cavity. The most common sites for the development are lateral surface of tongue and floor of mouth; the least common sites are soft palate, gingiva, and buccal mucosa. Gingival squamous cell carcinoma can mimic a multitude of oral lesions and enlargements, especially those of inflammatory origin. In addition, predisposing and presenting factors are different from those of other OSCCs. Careful examination as well as routine biopsy are crucial for accurate diagnosis.

  8. Alterations to the protein profile of bladder carcinoma cell lines induced by plant extract MINA-05 in vitro.

    Science.gov (United States)

    Nguyen-Khuong, Terry; White, Melanie Y; Hung, Tzong-Tyng; Seeto, Shona; Thomas, Melissa L; Fitzgerald, Anna M; Martucci, Carlos E; Luk, Sharon; Pang, Shiu-Fu; Russell, Pamela J; Walsh, Bradley J

    2009-04-01

    Bladder cancer (BLCa) is a severe urological cancer of both men and women that commonly recurs and once invasive, is difficult to treat. MINA-05 (CK Life Sciences Int'l, Hong Kong) is a derivative of complex botanical extracts, shown to reduce cellular proliferation of bladder and prostate carcinomas. We tested the effects of MINA-05 against human BLCa cell sublines, B8, B8-RSP-GCK, B8-RSP-LN and C3, from a transitional cell carcinoma, grade IV, to determine the molecular targets of treatment by observing the cellular protein profile. Cells were acclimatised for 48 h then treated for 72 h with concentrations of MINA-05 reflecting 1/2 IC(50), IC(50) and 2 x IC(50) (n = 3) or with vehicle, (0.5% DMSO). Dose-dependant changes in protein abundance were detected and characterised using 2-dimensional electrophoresis and MS. We identified 10 proteins that underwent changes in abundance, pI and/or molecular mass in response to treatment. MINA-05 was shown to influence proteins across numerous functional classes including cytoskeletal proteins, energy metabolism proteins, protein degradation proteins and tumour suppressors, suggesting a global impact on these cell lines. This study implies that the ability of MINA-05 to retard cellular proliferation is attributed to its ability to alter cell cycling, metabolism, protein degradation and the cancer cell environment.

  9. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  10. Antitumour and antiangiogenic activities of [Pt(O,O′‐acac)(γ‐acac)(DMS)] in a xenograft model of human renal cell carcinoma

    Science.gov (United States)

    Vetrugno, C; Biagioni, F; Calabriso, N; Calierno, M T; Fornai, F; De Pascali, S A; Marsigliante, S; Fanizzi, F P

    2016-01-01

    Background and Purpose It is thought that the mechanism of action of anticancer chemotherapeutic agents is mainly due to a direct inhibition of tumour cell proliferation. In tumour specimens, the endothelial cell proliferation rate increases, suggesting that the therapeutic effects of anticancer agents could also be attributed to inhibition of tumour angiogenesis. Hence, we investigated the potential effects of [Pt(O,O′‐acac)(γ‐acac)(DMS)] ([Pt(DMS)]), a new platinum drug for non‐genomic targets, on human renal carcinoma and compared them with those of the well‐established anticancer drug, cisplatin. Experimental Approach Tumour growth, tumour cell proliferation and microvessel density were investigated in a xenograft model of renal cell carcinoma, developed by injecting Caki‐1 cells into BALB/c nude mice. The antiangiogenic potential of compounds was also investigated using HUVECs. Key Results Treatment of the Caki‐1 cells with cisplatin or [Pt(DMS)] resulted in a dose‐dependent inhibition of cell survival, but the cytotoxicity of [Pt(DMS)] was approximately fivefold greater than that of cisplatin. [Pt(DMS)] was much more effective than cisplatin at inhibiting tumour growth, proliferation and angiogenesis in vivo, as well as migration, tube formation and MMP1, MMP2 and MMP9 secretion of endothelial cells in vitro. Whereas, cisplatin exerted a greater cytotoxic effect on HUVECs, but did not affect tube formation or the migration of endothelial cells. In addition, treatment of the xenograft mice with [Pt(DMS)] decreased VEGF, MMP1 and MMP2 expressions in tumours. Conclusions and Implications The antiangiogenic and antitumour activities of [Pt(DMS)] provide a solid starting point for its validation as a suitable candidate for further pharmacological testing. PMID:27351124

  11. α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Jing Song

    2018-03-01

    Full Text Available A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG, a precursor for glutamine synthesis, is sufficient for enabling glutamine-independent cell proliferation. We have demonstrated that αKG contributes to the large-scale proliferation of pancreatic progenitor-like cells that can provide an ample amount of clinically relevant β cells. We compared the mRNA expression of a subset of genes, the abundance of ATP, reactive oxide species, mitochondrial number, and the colony-forming frequency between mouse pancreatic CD133+ and CD133− cells. We employed Real-Time PCR, immunostaining and passage assays to investigate self-renewal and proliferation of pancreatic progenitor-like cells in a 3D culture system in the presence and absence of αKG. The energy metabolism of CD133+ cells was more prone to oxidative phosphorylation. However, in the 3D culture system, when αKG was supplemented to the culture medium, the proliferation of the pancreatic progenitor-like cells was significantly elevated. We confirmed that the presence of αKG correlated with the up-regulation of Ten-Eleven Translocation (Tet. αKG can promote the proliferation of pancreatic progenitor-like cells via the up-regulation of Tet.

  12. α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation.

    Science.gov (United States)

    Song, Jing; Ma, Dongshen; Xing, Yun; Tang, Shanshan; Alahdal, Murad; Guo, Jiamin; Pan, Yi; Zhang, Yanfeng; Shen, Yumeng; Wu, Qiong; Lu, Zhou; Jin, Liang

    2018-03-22

    A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG), a precursor for glutamine synthesis, is sufficient for enabling glutamine-independent cell proliferation. We have demonstrated that αKG contributes to the large-scale proliferation of pancreatic progenitor-like cells that can provide an ample amount of clinically relevant β cells. We compared the mRNA expression of a subset of genes, the abundance of ATP, reactive oxide species, mitochondrial number, and the colony-forming frequency between mouse pancreatic CD133⁺ and CD133 - cells. We employed Real-Time PCR, immunostaining and passage assays to investigate self-renewal and proliferation of pancreatic progenitor-like cells in a 3D culture system in the presence and absence of αKG. The energy metabolism of CD133⁺ cells was more prone to oxidative phosphorylation. However, in the 3D culture system, when αKG was supplemented to the culture medium, the proliferation of the pancreatic progenitor-like cells was significantly elevated. We confirmed that the presence of αKG correlated with the up-regulation of Ten-Eleven Translocation (Tet). αKG can promote the proliferation of pancreatic progenitor-like cells via the up-regulation of Tet.

  13. Carcinoma fusocelular de cavidad oral: Revisión de 9 casos Spindle cell carcinoma of the oral cavity: A review of 9 cases

    Directory of Open Access Journals (Sweden)

    G. Gómez Oliveira

    2006-02-01

    Full Text Available El carcinoma fusocelular es una variedad maligna y poco frecuente del carcinoma de células escamosas. Es una tumoración constituida por una doble proliferación celular: una sarcomatosa de células fusocelulares y otra carcinomatosa de células epiteliales. Aunque puede afectar a cualquier parte del organismo, es más frecuente encontrarla en vías aerodigestivas superiores. Afecta con mayor frecuencia a varones entre la 6ª y 7ª décadas de la vida. Tiene un comportamiento agresivo con tendencia a la recurrencia. El alcohol y tabaco han sido identificados como los factores de riesgo más importantes. Su diagnóstico histológico es complicado y muchas veces es necesario recurrir a técnicas de inmunohistoquímica y al uso del microscopio electrónico. En la actualidad, se le atribuye un origen epitelial. El objetivo de este trabajo es presentar una revisión de 9 casos de carcinoma fusocelular localizados en cavidad oral recogidos en nuestro servicio entre los años 1985 a 2004, describiendo su comportamiento clínico y tratando de comprender la patogenia de esta controvertida estirpe tumoral.Spindle cell carcinoma is a malignant and rare variant of squamous cell carcinoma. The histological pattern is composed of a double cell proliferation: a sarcomatous component made up of spindle-shaped cells and a carcinomatous component made up of epithelial cells. Nearly all the anatomy of the body can be affected by these tumors although the most common location is the upper aerodigestive tract. With regard to sex distribution, it is more frequent in males than in females in their sixth and seventh decades of life. Its behavior is aggressive and it tends to recur after treatment. The most important risk factors are alcohol and tobacco. The histological diagnosis is complicated, so immunohistochemical techniques and the use of electron microscopy are usually necessary. Nowadays, its epithelial origin is accepted. The aim of this article is to report a

  14. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells

    OpenAIRE

    Nadeem Aslam, Muhammad; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-01-01

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological lev...

  15. Delta(9)-tetrahydrocannabinol inhibits 17beta-estradiol-induced proliferation and fails to activate androgen and estrogen receptors in MCF7 human breast cancer cells.

    Science.gov (United States)

    von Bueren, A O; Schlumpf, M; Lichtensteiger, W

    2008-01-01

    Delta(9)-tetrahydrocannabinol (THC) exerts palliative effects in cancer patients, but produces adverse effects on the endocrine and reproductive systems. Experimental evidence concerning such effects is controversial. Whether THC exhibits estrogenic or androgenic activity in vitro was investigated. Estrogenic effects of THC were analyzed in vitro by measuring the proliferation of estrogen-sensitive MCF7 cells. Androgenic activity was investigated by the A-Screen assay that measures androgen-dependent inhibition of proliferation of the androgen receptor (AR)-positive human mammary carcinoma cell line, MCF7-AR1. In contrast to 17beta-estradiol, included as positive control with an EC50 value (concentration required for 50% of maximal 17beta-estradiol-induced proliferation) of 1.00 x 10(-12) M, THC failed to induce cell proliferation in the MCF7 cell line at concentrations between 10(-13) and 10(-4) M. THC inhibited 17beta-estradiol-induced proliferation in wild-type MCF7 and MCF7-AR1 cells, with an IC50 value of 2.6 x 10(-5) M and 9 x 10(-6) M, respectively. THC failed to act as an estrogen, but antagonized 17beta-estradiol-induced proliferation. This effect was independent of the AR expression level.

  16. Comparative transcriptional profiling of human Merkel cells and Merkel cell carcinoma.

    Science.gov (United States)

    Mouchet, Nicolas; Coquart, Nolwenn; Lebonvallet, Nicolas; Le Gall-Ianotto, Christelle; Mogha, Ariane; Fautrel, Alain; Boulais, Nicholas; Dréno, Brigitte; Martin, Ludovic; Hu, Weiguo; Galibert, Marie-Dominique; Misery, Laurent

    2014-12-01

    Merkel cell carcinoma is believed to be derived from Merkel cells after infection by Merkel cell polyomavirus (MCPyV) and other poorly understood events. Transcriptional profiling using cDNA microarrays was performed on cells from MCPy-negative and MCPy-positive Merkel cell carcinomas and isolated normal Merkel cells. This microarray revealed numerous significantly upregulated genes and some downregulated genes. The extensive list of genes that were identified in these experiments provides a large body of potentially valuable information of Merkel cell carcinoma carcinogenesis and could represent a source of potential targets for cancer therapy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A; Bielenberg, Diane R

    2016-04-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Squamous cell carcinoma of the breast: a case report

    Directory of Open Access Journals (Sweden)

    Hofstee Mans

    2008-12-01

    Full Text Available Abstract Background Squamous cells are normally not found inside the breast, so a primary squamous cell carcinoma of the breast is an exceptional phenomenon. There is a possible explanation for these findings. Case presentation A 72-year-old woman presented with a breast abnormality suspected for breast carcinoma. After the operation the pathological examination revealed a primary squamous cell carcinoma of the breast. Conclusion The presentation of squamous cell carcinoma could be similar to that of an adenocarcinoma. However, a squamous cell carcinoma of the breast could also develop from a complicated breast cyst or abscess. Therefore, pathological examination of these apparent benign abnormalities is mandatory.

  19. Genetics Home Reference: head and neck squamous cell carcinoma

    Science.gov (United States)

    ... and neck squamous cell carcinoma Head and neck squamous cell carcinoma Printable PDF Open All Close All Enable Javascript ... Consumer Version: Overview of Mouth, Nose, and Throat Cancers Orphanet: Squamous cell carcinoma of head and neck University of Michigan ...

  20. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    OpenAIRE

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting f...

  1. Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells.

    Science.gov (United States)

    Wang, Xinyu; Ren, Yanli; Wang, Zhiqiong; Xiong, Xiangyu; Han, Sichong; Pan, Wenting; Chen, Hongwei; Zhou, Liqing; Zhou, Changchun; Yuan, Qipeng; Yang, Ming

    2015-12-21

    5S rRNA plays an important part in ribosome biology and is over-expression in multiple cancers. In this study, we found that 5S rRNA is a direct target of miR-150 and miR-383 in esophageal squamous cell carcinoma (ESCC). Overexpression of miR-150 and miR-383 inhibited ESCC cell proliferation in vitro and in vivo. Moreover, 5S rRNA silencing by miR-150 and miR-383 might intensify rpL11-c-Myc interaction, which attenuated role of c-Myc as an oncogenic transcriptional factor and dysregulation of multiple c-Myc target genes. Taken together, our results highlight the involvement of miRNAs in ribosomal regulation during tumorigenesis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Potential targets for lung squamous cell carcinoma

    Science.gov (United States)

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  3. Neglected basal cell carcinoma on scalp

    Directory of Open Access Journals (Sweden)

    Sudip Sarkar

    2016-01-01

    Full Text Available Giant basal cell carcinoma (BCC is a very rare entity. Usually, they occur due to the negligence of the patient. Local or distant metastasis is present in most cases. Here, we present a case of giant BCC that clinically resembled squamous cell carcinoma and demonstrated no metastasis at presentation.

  4. Carcinoma basocelular em localizações incomuns Basal cell carcinoma in unusual locations

    Directory of Open Access Journals (Sweden)

    Ane Beatriz Mautari Niwa

    2006-10-01

    Full Text Available Os autores apresentam cinco pacientes que desenvolveram carcinomas basocelulares em locais incomuns de ocorrência desse tumor. O objetivo é relatar a raridade topográfica da neoplasia cutânea e discutir o conceito de localização incomum para o carcinoma basocelular.The authors present five patients who develop basal cell carcinomas in sites this tumor rarely occurs. The aim is to report the rare location of this frequent cutaneous malignancy and to briefly discuss the concept of unusual location of basal cell carcinoma.

  5. Expression of hsa_circ_PVT1 in human hepatocellular carcinoma and its clinical significance

    Directory of Open Access Journals (Sweden)

    Yuan-xin ZHU

    2018-03-01

    Full Text Available Objective To determine the expression and clinical significance of circ-PVT1 in human hepatocellular carcinoma (HCC and its effect on HCC cell proliferation. Methods The expressions of circ-PVT1 in hepatocellular carcinoma and the matched tumor-adjacent tissues were detected by RT-qPCR and the relationship between pathological indexes and the expression level was analyzed in 46 patients. The expressions of circ-PVT1 in human normal liver cell line (L02 and hepatocellular carcinoma cell lines (HepG2, SMMC-7721, MHCC-97H, MHCC-97L, HCC-LM3 were detected by RT-qPCR and were compared thereafter. With knocking down the expression of circ-PVT1, si-circPVT1 was transfected into HepG2 and SMMC-7721 cells by using lipofectamine technique in vitro, with the si-NC being taken as negative control. After interfering the expression of circ-PVT1, the effect on the proliferation of hepatocellular carcinoma cells was detected by CCK-8 and EDU experiments and flow cytometry was conducted to observe the effect of circ-PVT1 on cell cycle. Results The expression level of circ-PVT1 was significantly higher in HCC tissues than in adjacent tissues (P<0.01, and its high expression level was significantly correlated with tumor size, TNM stage and differentiation degree. Similarly, in human hepatocellular carcinoma cell lines (HepG2, SMMC-7721, MHCC-97H, MHCC-97L, HCC-LM3, the expression level of circ-PVT1 was also higher than that in human normal liver cell line L02 (P<0.05. Compared with the negative control group, silencing of circ-PVT1 resulted in remarkable reduction in cell proliferation of HepG2 and SMMC-7721. Conclusion circ-PVT1 may act as a potential biomarker for HCC diagnosis and may become a novel proliferation factor. DOI: 10.11855/j.issn.0577-7402.2018.03.06

  6. miRNA array analysis determines miR-205 is overexpressed in head and neck squamous cell carcinoma and enhances cellular proliferation

    Directory of Open Access Journals (Sweden)

    Howard JD

    2013-08-01

    Full Text Available MicroRNAs (miRNAs play a critical role in cell cycle and pro-survival signal regulation. Consequently, their deregulation can enhance tumorigenesis and cancer progression. In the current investigation, we determined whether cancer- or human papillomavirus (HPV-specific miRNA deregulation could further elucidate signal transduction events unique to head and neck squamous cell carcinoma (HNSCC. Twenty-nine newly diagnosed HNSCC tumors (HPV-positive: 14, HPV-negative: 15 and four normal mucosa samples were analyzed for global miRNA expression. Differential miRNA expression analysis concluded HNSCC is characterized by a general upregulation of miRNAs compared to normal mucosa. Additionally, miR-449a and miR-129-3p were statistically significant miRNAs differentially expressed between HPV-positive and HPV-negative HNSCC. The upregulation of miR-449a was also validated within an independent dataset obtained from TCGA containing 279 HNSCCs and 39 normal adjacent mucosa samples. To gain a better understanding of miRNA-mediated cell cycle deregulation in HNSCC, we functionally evaluated miR-205, a transcript upregulated in our cancer-specific analysis and a putative regulator of E2F1. Modulation of miR-205 with a miRNA mimic and inhibitor revealed miR-205 is capable of regulating E2F1 expression in HNSCC and overexpression of this transcript enhances proliferation. This study demonstrates miRNA expression is highly deregulated in HNSCC and functional evaluations of these miRNAs may reveal novel HPV context dependent mechanisms in this disease.

  7. Long non-coding RNA MEG3 inhibits the proliferation and metastasis of oral squamous cell carcinoma by regulating the WNT/β-catenin signaling pathway.

    Science.gov (United States)

    Liu, Zongxiang; Wu, Cui; Xie, Nina; Wang, Penglai

    2017-10-01

    This study aimed to investigate how long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) inhibits the growth and metastasis of oral squamous cell carcinoma (OSCC) by regulating WNT/β-catenin signaling pathway in order to explore the antitumor effect of MEG3 and to provide a potential molecular target for the treatment of OSCC. The RT-qPCR technique was used to quantitatively analyze the expression of MEG3 in cancer and adjacent tissues collected from the patients after surgery. Using the Lipofectamine method, the MEG3 overexpression vector and the siRNA interference vector were constructed and transfected into SCC15 and Cal27 cells, respectively, followed by cell proliferation, apoptosis and metastasis analyses. The semi-quantitative analysis of the expression of the β-catenin protein in transfected cells was performed by the western blot analysis, and the activity of the WNT/β-catenin signaling pathway was analyzed using the TOP/FOP flash reporters. In addition, the cells were treated with decitabine to investigate the correlation between the MEG3 expression and the DNA methylation. Results showed that the expression level of MEG3 was significantly decreased in OSCC (psuppressor by inhibiting the WNT/β-catenin signaling pathway. In addition, the expression of the MEG3 was significantly affected by the degree of DNA methylation. It was concluded that the lncRNA MEG3 can inhibit the growth and metastasis of OSCC by negatively regulating the WNT/β-catenin signaling pathway.

  8. Cancer stem cell markers in patterning differentiation and in prognosis of oral squamous cell carcinoma.

    Science.gov (United States)

    Mohanta, Simple; Siddappa, Gangotri; Valiyaveedan, Sindhu Govindan; Dodda Thimmasandra Ramanjanappa, Ravindra; Das, Debashish; Pandian, Ramanan; Khora, Samanta Sekhar; Kuriakose, Moni Abraham; Suresh, Amritha

    2017-06-01

    Differentiation is a major histological parameter determining tumor aggressiveness and prognosis of the patient; cancer stem cells with their slow dividing and undifferentiated nature might be one of the factors determining the same. This study aims to correlate cancer stem cell markers (CD44 and CD147) with tumor differentiation and evaluate their subsequent effect on prognosis. Immunohistochemical analysis in treatment naïve oral cancer patients (n = 53) indicated that the expression of CD147 was associated with poorly differentiated squamous cell carcinoma and moderately differentiated squamous cell carcinoma (p squamous cell carcinoma and poorly differentiated squamous cell carcinoma patients were CD44 high /CD147 high as compared to only 10% of patients with well-differentiated squamous cell carcinoma. A three-way analysis indicated that differentiation correlated with recurrence and survival (p oral squamous cell carcinoma cell lines originating from different grades of oral cancer. Flowcytometry-based analysis indicated an increase in CD44 + /CD147 + cells in cell lines of poorly differentiated squamous cell carcinoma (94.35 ± 1.14%, p squamous cell carcinoma origin (93.49 ± 0.47%, p squamous cell carcinoma origin (23.12% ± 0.49%). Expression profiling indicated higher expression of cancer stem cell and epithelial-mesenchymal transition markers in SCC029B (poorly differentiated squamous cell carcinoma originated; p ≤ 0.001), which was further translated into increased spheroid formation, migration, and invasion (p squamous cell carcinoma origin. This study suggests that CD44 and CD147 together improve the prognostic efficacy of tumor differentiation; in vitro results further point out that these markers might be determinant of differentiation characteristics, imparting properties of increased self-renewal, migration, and invasion.

  9. Epstein-Barr Virus (EBV)-associated Gastric Carcinoma

    Science.gov (United States)

    Iizasa, Hisashi; Nanbo, Asuka; Nishikawa, Jun; Jinushi, Masahisa; Yoshiyama, Hironori

    2012-01-01

    The ubiquitous Epstein-Barr virus (EBV) is associated with several human tumors, which include lymphoid and epithelial malignancies. It is known that EBV persistently infects the memory B cell pool of healthy individuals by activating growth and survival signaling pathways that can contribute to B cell lymphomagenesis. Although the monoclonal proliferation of EBV-infected cells can be observed in epithelial tumors, such as nasopharyngeal carcinoma and EBV-associated gastric carcinoma, the precise role of EBV in the carcinogenic progress is not fully understood. This review features characteristics and current understanding of EBV-associated gastric carcinoma. EBV-associated gastric carcinoma comprises almost 10% of all gastric carcinoma cases and expresses restricted EBV latent genes (Latency I). Firstly, definition, epidemiology, and clinical features are discussed. Then, the route of infection and carcinogenic role of viral genes are presented. Of particular interest, the association with frequent genomic CpG methylation and role of miRNA for carcinogenesis are topically discussed. Finally, the possibility of therapies targeting EBV-associated gastric carcinoma is proposed. PMID:23342366

  10. Epstein-Barr Virus (EBV-associated Gastric Carcinoma

    Directory of Open Access Journals (Sweden)

    Hironori Yoshiyama

    2012-11-01

    Full Text Available The ubiquitous Epstein-Barr virus (EBV is associated with several human tumors, which include lymphoid and epithelial malignancies. It is known that EBV persistently infects the memory B cell pool of healthy individuals by activating growth and survival signaling pathways that can contribute to B cell lymphomagenesis.  Although the monoclonal proliferation of EBV-infected cells can be observed in epithelial tumors, such as nasopharyngeal carcinoma and EBV-associated gastric carcinoma, the precise role of EBV in the carcinogenic progress is not fully understood. This review features characteristics and current understanding of EBV-associated gastric carcinoma. EBV-associated gastric carcinoma comprises almost 10% of all gastric carcinoma cases and expresses restricted EBV latent genes (Latency I. Firstly, definition, epidemiology, and clinical features are discussed. Then, the route of infection and carcinogenic role of viral genes are presented.  Of particular interest, the association with frequent genomic CpG methylation and role of miRNA for carcinogenesis are topically discussed. Finally, the possibility of therapies targeting EBV-associated gastric carcinoma is proposed. 

  11. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuefeng [The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Zhu, Xiaolan; Xu, Wenlin [The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Wang, Dongqing [The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Yan, Jinchuan, E-mail: jiangdalyf2009@126.com [The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China)

    2013-02-15

    Highlights: ► miR-330 was inversely correlated with Cdc42 in colorectal cancer cells. ► Elevated miR-330 suppressed cell proliferation in vivo and in vitro. ► Elevated miR-330 mimicked the effect of Cdc42 knockdown. ► Restoration of Cdc42 could partially attenuate the effects of miR-330. -- Abstract: MicroRNAs are small non-coding RNA molecules that play important roles in the multistep process of colorectal carcinoma (CRC) development. However, the miRNA–mRNA regulatory network is far from being fully understood. The objective of this study was to investigate the expression and the biological roles of miR-330 in colorectal cancer cells. Cdc42, one of the best characterized members of the Rho GTPase family, was found to be up-regulated in several types of human tumors including CRC and has been implicated in cancer initiation and progression. In the present study, we identified miR-330, as a potential regulator of Cdc42, was found to be inversely correlated with Cdc42 expression in colorectal cancer cell lines. Ectopic expression of miR-330 down-regulated Cdc42 expression at both protein and mRNA level, mimicked the effect of Cdc42 knockdown in inhibiting proliferation, inducing G1 cell cycle arrest and apoptosis of the colorectal cancer cells, whereas restoration of Cdc42 could partially attenuate the effects of miR-330. In addition, elevated expression of miR-330 could suppress the immediate downstream effectors of Cdc42 and inhibit the growth of colorectal cancer cells in vivo. To sum up, our results establish a role of miR-330 in negatively regulating Cdc42 expression and colorectal cancer cell proliferation. They suggest that manipulating the expression level of Cdc42 by miR-330 has the potential to influence colorectal cancer progression.

  12. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42

    International Nuclear Information System (INIS)

    Li, Yuefeng; Zhu, Xiaolan; Xu, Wenlin; Wang, Dongqing; Yan, Jinchuan

    2013-01-01

    Highlights: ► miR-330 was inversely correlated with Cdc42 in colorectal cancer cells. ► Elevated miR-330 suppressed cell proliferation in vivo and in vitro. ► Elevated miR-330 mimicked the effect of Cdc42 knockdown. ► Restoration of Cdc42 could partially attenuate the effects of miR-330. -- Abstract: MicroRNAs are small non-coding RNA molecules that play important roles in the multistep process of colorectal carcinoma (CRC) development. However, the miRNA–mRNA regulatory network is far from being fully understood. The objective of this study was to investigate the expression and the biological roles of miR-330 in colorectal cancer cells. Cdc42, one of the best characterized members of the Rho GTPase family, was found to be up-regulated in several types of human tumors including CRC and has been implicated in cancer initiation and progression. In the present study, we identified miR-330, as a potential regulator of Cdc42, was found to be inversely correlated with Cdc42 expression in colorectal cancer cell lines. Ectopic expression of miR-330 down-regulated Cdc42 expression at both protein and mRNA level, mimicked the effect of Cdc42 knockdown in inhibiting proliferation, inducing G1 cell cycle arrest and apoptosis of the colorectal cancer cells, whereas restoration of Cdc42 could partially attenuate the effects of miR-330. In addition, elevated expression of miR-330 could suppress the immediate downstream effectors of Cdc42 and inhibit the growth of colorectal cancer cells in vivo. To sum up, our results establish a role of miR-330 in negatively regulating Cdc42 expression and colorectal cancer cell proliferation. They suggest that manipulating the expression level of Cdc42 by miR-330 has the potential to influence colorectal cancer progression

  13. Comprehensive Molecular Characterization of Papillary Renal Cell Carcinoma

    Science.gov (United States)

    Linehan, W. Marston; Spellman, Paul T.; Ricketts, Christopher J.; Creighton, Chad J.; Fei, Suzanne S.; Davis, Caleb; Wheeler, David A.; Murray, Bradley A.; Schmidt, Laura; Vocke, Cathy D.; Peto, Myron; Al Mamun, Abu Amar M.; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W. Kimryn; Brooks, Angela N.; Hoadley, Katherine A.; Robertson, A. Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J.; Bootwalla, Moiz; Baylin, Stephen B.; Laird, Peter W.; Cherniack, Andrew D.; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B.; Akbani, Rehan; Leiserson, Mark D.M.; Raphael, Benjamin J.; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K.; Czerniak, Bogdan; Godwin, Andrew K.; Hakimi, A. Ari; Ho, Thai; Hsieh, James; Ittmann, Michael; Kim, William Y.; Krishnan, Bhavani; Merino, Maria J.; Mills Shaw, Kenna R.; Reuter, Victor E.; Reznik, Ed; Shelley, Carl Simon; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D.; Penny, Robert J.; Shelton, Candace; Shelton, W. Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T.; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A.; Felau, Ina; Hutter, Carolyn M.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S.N.; Carlsen, Rebecca; Carter, Scott L.; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R.; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, HarshaVardhan; Drummond, Jennifer; Gabriel, Stacey B.; Gibbs, Richard A.; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D. Neil; Holt, Robert A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Steven J.M.; Jones, Corbin D.; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Moore, Richard A.; Morton, Donna; Mose, Lisle E.; Mungall, Andrew J.; Muzny, Donna; Parker, Joel S.; Perou, Charles M.; Roach, Jeffrey; Schein, Jacqueline E.; Schumacher, Steven E.; Shi, Yan; Simons, Janae V.; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G.; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D.; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N.; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J. Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L.; Boice, Lori; Bollag, Roni J.; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C.; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K.; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L.; Slaton, Joel; Stanton, Melissa; Thompson, R. Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M.; Winemiller, Cythnia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-01

    Background Papillary renal cell carcinoma, accounting for 15% of renal cell carcinoma, is a heterogeneous disease consisting of different types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal cell carcinoma; no effective forms of therapy for advanced disease exist. Methods We performed comprehensive molecular characterization utilizing whole-exome sequencing, copy number, mRNA, microRNA, methylation and proteomic analyses of 161 primary papillary renal cell carcinomas. Results Type 1 and Type 2 papillary renal cell carcinomas were found to be different types of renal cancer characterized by specific genetic alterations, with Type 2 further classified into three individual subgroups based on molecular differences that influenced patient survival. MET alterations were associated with Type 1 tumors, whereas Type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-ARE pathway. A CpG island methylator phenotype (CIMP) was found in a distinct subset of Type 2 papillary renal cell carcinoma characterized by poor survival and mutation of the fumarate hydratase (FH) gene. Conclusions Type 1 and Type 2 papillary renal cell carcinomas are clinically and biologically distinct. Alterations in the MET pathway are associated with Type 1 and activation of the NRF2-ARE pathway with Type 2; CDKN2A loss and CIMP in Type 2 convey a poor prognosis. Furthermore, Type 2 papillary renal cell carcinoma consists of at least 3 subtypes based upon molecular and phenotypic features. PMID:26536169

  14. Epstein-Barr Virus in Gastric Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Jun, E-mail: junnis@yamaguchi-u.ac.jp [Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505 (Japan); Yoshiyama, Hironori; Iizasa, Hisashi; Kanehiro, Yuichi [Department of Microbiology, Shimane University Faculty of Medicine, 89-1 Enyacho, Izumo City, Shimane 693-8501 (Japan); Nakamura, Munetaka; Nishimura, Junichi; Saito, Mari; Okamoto, Takeshi [Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505 (Japan); Sakai, Kouhei; Suehiro, Yutaka; Yamasaki, Takahiro [Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505 (Japan); Oga, Atsunori [Department of Pathology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505 (Japan); Yanai, Hideo [Department of Clinical Research, National Hospital Organization Kanmon Medical Center, 1-1 Sotoura, Chofu, Shimonoseki, Yamaguchi 752-8510 (Japan); Sakaida, Isao [Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505 (Japan)

    2014-11-07

    The Epstein-Barr virus (EBV) is detected in about 10% of gastric carcinoma cases throughout the world. In EBV-associated gastric carcinoma, all tumor cells harbor the clonal EBV genome. Gastric carcinoma associated with EBV has distinct clinicopathological features, occurs predominately in men and in younger-aged individuals, and presents a generally diffuse histological type. Most cases of EBV-associated gastric carcinoma exhibit a histology rich in lymphocyte infiltration. The immunological reactiveness in the host may represent a relatively preferable prognosis in EBV-positive cases. This fact highlights the important role of EBV in the development of EBV-associated gastric carcinoma. We have clearly proved direct infection of human gastric epithelialcells by EBV. The infection was achieved by using a recombinant EBV. Promotion of growth by EBV infection was observed in the cells. Considerable data suggest that EBV may directly contribute to the development of EBV-associated GC. This tumor-promoting effect seems to involve multiple mechanisms, because EBV affects several host proteins and pathways that normally promote apoptosis and regulate cell proliferation.

  15. Epstein-Barr Virus in Gastric Carcinoma

    International Nuclear Information System (INIS)

    Nishikawa, Jun; Yoshiyama, Hironori; Iizasa, Hisashi; Kanehiro, Yuichi; Nakamura, Munetaka; Nishimura, Junichi; Saito, Mari; Okamoto, Takeshi; Sakai, Kouhei; Suehiro, Yutaka; Yamasaki, Takahiro; Oga, Atsunori; Yanai, Hideo; Sakaida, Isao

    2014-01-01

    The Epstein-Barr virus (EBV) is detected in about 10% of gastric carcinoma cases throughout the world. In EBV-associated gastric carcinoma, all tumor cells harbor the clonal EBV genome. Gastric carcinoma associated with EBV has distinct clinicopathological features, occurs predominately in men and in younger-aged individuals, and presents a generally diffuse histological type. Most cases of EBV-associated gastric carcinoma exhibit a histology rich in lymphocyte infiltration. The immunological reactiveness in the host may represent a relatively preferable prognosis in EBV-positive cases. This fact highlights the important role of EBV in the development of EBV-associated gastric carcinoma. We have clearly proved direct infection of human gastric epithelialcells by EBV. The infection was achieved by using a recombinant EBV. Promotion of growth by EBV infection was observed in the cells. Considerable data suggest that EBV may directly contribute to the development of EBV-associated GC. This tumor-promoting effect seems to involve multiple mechanisms, because EBV affects several host proteins and pathways that normally promote apoptosis and regulate cell proliferation

  16. The Janus-faced roles of Krüppel-like factor 4 in oral squamous cell carcinoma cells.

    Science.gov (United States)

    Li, Wenwen; Liu, Man; Su, Ying; Zhou, Xinying; Liu, Yao; Zhang, Xinyan

    2015-12-29

    Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor that regulates many essential processes, including development and cell differentiation, proliferation, and apoptosis. Along with these roles in normal cells and tissues, KLF4 has important tumor suppressive and oncogenic functions in some malignancies. However, the roles of KLF4 in oral squamous cell carcinoma remain unclear. This study investigated the epigenetic alterations and possible roles of KLF4 in oral cancer carcinogenesis. Notably, KLF4 expression was significantly decreased in human oral cancer tissues compared with healthy controls, and KLF4 promoter hypermethylation contributed to the suppression of KLF4 expression. KLF4 expression was associated with tumor grade. Its expression was much lower in poorly differentiated oral cancers than in well-differentiated cancer cells. KLF4 exerted its antitumor activity in vitro and/or in vivo by inhibiting cell proliferation, cell cycle progression, cell colony formation and by inducing apoptosis. In addition, KLF4 over-expression promoted oral cancer cell migration and invasion in vitro. Knockdown of KLF4 promoted oral cancer cells growth and colony formation, and simultaneously inhibited cell migration and invasion. Mechanistic studies revealed that MMP-9 might contribute to KLF4-mediated cell migration and invasion. These results provide evidence that KLF4 might play Janus-faced roles in oral cancer carcinogenesis, acting both as a tumor suppressor and as an oncogene.

  17. Effects of miR-424 on Proliferation and Migration Abilities in Non-small Cell Lung Cancer A549 Cells and Its Molecular Mechanism

    Directory of Open Access Journals (Sweden)

    Hongmin LI

    2016-09-01

    Full Text Available Background and objective The inhibitory ability of miR-424 on the proliferation of renal carcinoma cell and the migration and invasion of cancer cells has been widely explored and demonstrated. However, the effects of miR-424 on non-small cell lung cancer (NSCLC have not been systematically examined. In this study, detected the growth and invasion effect of miR-424 in NSCLC A549 cell. The migration and molecular mechanism of this cell are also detected. Methods NSCLC A549 cell was transfected with miR-424 and its inhibitor. After transfection, the proliferation ability of A549 cell was detectedby CCK8 assay. Then, the migration ability in A549 cell was detected by migration assays. Furthermore, the expression level of MMP2 and MMP9 in A549 was detected by Western blot and immune fluorescence. The 3'UTR of E2F6 was cloned into luciferase reporter vector and its enzymatic activitywas detected to verify whether miR-424 can target E2F6. The expression level of E2F6 in a549 cell after transfecing with miR-424 was detected by Western blot. Results After transfection of miR-424, the proliferation and migration abilities were remarkably decreased and the expression level of MMP-2 and MMP-9 were down-regulated in A549. Moreover, MiR-424 inhibited the enzymatic activity of luviferase reporter vector of E2F6. Specifically, the expression level of E2F6 was down-regulated in A549. Conclusion miR-424 can inhibit the proliferation and migration abilities of A549 by negatively regulating the expression of E2F6.

  18. Proliferation assessment in breast carcinomas using digital image analysis based on virtual Ki67/cytokeratin double staining.

    Science.gov (United States)

    Røge, Rasmus; Riber-Hansen, Rikke; Nielsen, Søren; Vyberg, Mogens

    2016-07-01

    Manual estimation of Ki67 Proliferation Index (PI) in breast carcinoma classification is labor intensive and prone to intra- and interobserver variation. Standard Digital Image Analysis (DIA) has limitations due to issues with tumor cell identification. Recently, a computer algorithm, DIA based on Virtual Double Staining (VDS), segmenting Ki67-positive and -negative tumor cells using digitally fused parallel cytokeratin (CK) and Ki67-stained slides has been introduced. In this study, we compare VDS with manual stereological counting of Ki67-positive and -negative cells and examine the impact of the physical distance of the parallel slides on the alignment of slides. TMAs, containing 140 cores of consecutively obtained breast carcinomas, were stained for CK and Ki67 using optimized staining protocols. By means of stereological principles, Ki67-positive and -negative cell profiles were counted in sampled areas and used for the estimation of PIs of the whole tissue core. The VDS principle was applied to both the same sampled areas and the whole tissue core. Additionally, five neighboring slides were stained for CK in order to examine the alignment algorithm. Correlation between manual counting and VDS in both sampled areas and whole core was almost perfect (correlation coefficients above 0.97). Bland-Altman plots did not reveal any skewness in any data ranges. There was a good agreement in alignment (>85 %) in neighboring slides, whereas agreement decreased in non-neighboring slides. VDS gave similar results compared with manual counting using stereological principles. Introduction of this method in clinical and research practice may improve accuracy and reproducibility of Ki67 PI.

  19. Histogram analysis parameters of dynamic contrast-enhanced magnetic resonance imaging can predict histopathological findings including proliferation potential, cellularity, and nucleic areas in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Surov, Alexey; Meyer, Hans Jonas; Leifels, Leonard; Höhn, Anne-Kathrin; Richter, Cindy; Winter, Karsten

    2018-04-20

    Our purpose was to analyze possible associations between histogram analysis parameters of dynamic contrast-enhanced magnetic resonance imaging DCE MRI and histopathological findings like proliferation index, cell count and nucleic areas in head and neck squamous cell carcinoma (HNSCC). 30 patients (mean age 57.0 years) with primary HNSCC were included in the study. In every case, histogram analysis parameters of K trans , V e , and K ep were estimated using a mathlab based software. Tumor proliferation index, cell count, and nucleic areas were estimated on Ki 67 antigen stained specimens. Spearman's non-parametric rank sum correlation coefficients were calculated between DCE and different histopathological parameters. KI 67 correlated with K trans min ( p = -0.386, P = 0.043) and s K trans skewness ( p = 0.382, P = 0.045), V e min ( p = -0.473, P = 0.011), Ve entropy ( p = 0.424, P = 0.025), and K ep entropy ( p = 0.464, P = 0.013). Cell count correlated with K trans kurtosis ( p = 0.40, P = 0.034), V e entropy ( p = 0.475, P = 0.011). Total nucleic area correlated with V e max ( p = 0.386, P = 0.042) and V e entropy ( p = 0.411, P = 0.030). In G1/2 tumors, only K trans entropy correlated well with total ( P =0.78, P =0.013) and average nucleic areas ( p = 0.655, P = 0.006). In G3 tumors, KI 67 correlated with Ve min ( p = -0.552, P = 0.022) and V e entropy ( p = 0.524, P = 0.031). Ve max correlated with total nucleic area ( p = 0.483, P = 0.049). Kep max correlated with total area ( p = -0.51, P = 0.037), and K ep entropy with KI 67 ( p = 0.567, P = 0.018). We concluded that histogram-based parameters skewness, kurtosis and entropy of K trans , V e , and K ep can be used as markers for proliferation activity, cellularity and nucleic content in HNSCC. Tumor grading influences significantly associations between perfusion and histopathological parameters.

  20. [Roles of Y box-binding protein 1 in SK-BR-3 breast cancer proliferation].

    Science.gov (United States)

    Shi, Jianhong; Lü, Xinrui; Wang, Bing; Daudan, Lin; Yanan, Wang; Yuhui, Bu; Zhenfeng, Ma

    2014-09-30

    To explore the roles of Y box-binding protein 1 (YB-1) in breast cancer cell proliferation. Twenty cases of surgical removal of breast cancer tissue (diagnosed with invasive ductal carcinoma, stage II, by postoperative paraffin pathology) and normal breast tissues adjacent to carcinoma were collected during June 2013 to August 2013.Quantitative real-time PCR (qRT-PCR) was performed to detect the YB1 mRNA levels. Cultured mammary epithelial cells (HBL-100) and breast cancer cells (MCF7, MDA-MB-231 & SK-BR-3 cells) were harvested and qRT-PCR was performed to detect the YB1 mRNA levels.SK-BR-3 cells were stimulated with various concentrations of PDGF-BB and YB1 expression levels were detected by qRT-PCR. Down-regulation or over-expression of YB1 by si-YB1 or Ad-GFP-YB1 was detected in SK-BR-3 cells. And MTS cell proliferation assay kit was used to detect cell proliferation. YB1 mRNA levels were significantly higher in breast cancer tissues and MDA-MB-231 and SK-BR-3 breast cancer cell lines than that in adjacent normal breast tissues and HBL-100 mammary epithelial cells respectively (P BR-3 cells in a dose-dependent manner. A down-regulation of endogenous YB1 decreases and an over-expression of exogenous YB1 promotes the proliferation activity in SK-BR-3 cells.

  1. Transcriptional Inhibition of the Human Papilloma Virus Reactivates Tumor Suppressor p53 in Cervical Carcinoma Cells

    Science.gov (United States)

    Kochetkov, D. V.; Ilyinskaya, G. V.; Komarov, P. G.; Strom, E.; Agapova, L. S.; Ivanov, A. V.; Budanov, A. V.; Frolova, E. I.; Chumakov, P. M.

    2009-01-01

    Inactivation of tumor suppressor p53 accompanies the majority of human malignancies. Restoration of p53 function causes death of tumor cells and is potentially suitable for gene therapy of cancer. In cervical carcinoma, human papilloma virus (HPV) E6 facilitates proteasomal degradation of p53. Hence, a possible approach to p53 reactivation is the use of small molecules suppressing the function of viral proteins. HeLa cervical carcinoma cells (HPV-18) with a reporter construct containing the b-galactosidase gene under the control of a p53-responsive promoter were used as a test system to screen a library of small molecules for restoration of the transcriptional activity of p53. The effect of the two most active compounds was studied with cell lines differing in the state of p53-dependent signaling pathways. The compounds each specifically activated p53 in cells expressing HPV-18 and, to a lesser extent, HPV-16 and exerted no effect on control p53-negative cells or cells with the intact p53-dependent pathways. Activation of p53 in cervical carcinoma cells was accompanied by induction of p53-dependent CDKN1 (p21), inhibition of cell proliferation, and induction of apoptosis. In addition, the two compounds dramatically decreased transcription of the HPV genome, which was assumed to cause p53 reactivation. The compounds were low-toxic for normal cells and can be considered as prototypes of new anticancer drugs. PMID:17685229

  2. Prostaglandin receptor EP3 regulates cell proliferation and migration with impact on survival of endometrial cancer patients.

    Science.gov (United States)

    Zhu, Junyan; Trillsch, Fabian; Mayr, Doris; Kuhn, Christina; Rahmeh, Martina; Hofmann, Simone; Vogel, Marianne; Mahner, Sven; Jeschke, Udo; von Schönfeldt, Viktoria

    2018-01-02

    Prostaglandin E2 (PGE2) receptor 3 (EP3) regulates tumor cell proliferation, migration, and invasion in numerous cancers. The role of EP3 as a prognostic biomarker in endometrial cancer remains unclear. The primary aim of this study was to analyze the prognostic significance of EP3 expression in endometrial cancer. We analyzed the EP3 expression of 140 endometrial carcinoma patients by immunohistochemistry. RL95-2 endometrial cancer cell line was chosen from four endometrial cancer cell lines (RL95-2, Ishikawa, HEC-1-A, and HEC-1-B) according to EP3 expression level. Treated with PGE2 and EP3 antagonist, RL95-2 cells were investigated by MTT, BrdU, and wound healing assay for functional assessment of EP3. EP3 staining differed significantly according to WHO tumor grading in both whole cohort (p = 0.01) and the subgroup of endometrioid carcinoma (p = 0.01). Patients with high EP3 expression in their respective tumors had impaired progression-free survival as well as overall survival in both cohorts above. EP3 expression in the overall cohort was identified as an independent prognostic marker for progression-free survival (HR 1.014, 95%CI 1.003-1.024, p = 0.01) when adjusted for age, stage, grading, and recurrence. Treatment with EP3 antagonists induced upregulation of estrogen receptor β and decreased activity of Ras and led to attenuated proliferation and migration of RL95-2 cells. EP3 seems to play a crucial role in endometrial cancer progression. In the context of limited systemic treatment options for endometrial cancer, this explorative analysis identifies EP3 as a potential target for diagnostic workup and therapy.

  3. RIP3 Inhibits Inflammatory Hepatocarcinogenesis but Promotes Cholestasis by Controlling Caspase-8- and JNK-Dependent Compensatory Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Mihael Vucur

    2013-08-01

    Full Text Available For years, the term “apoptosis” was used synonymously with programmed cell death. However, it was recently discovered that receptor interacting protein 3 (RIP3-dependent “necroptosis” represents an alternative programmed cell death pathway activated in many inflamed tissues. Here, we show in a genetic model of chronic hepatic inflammation that activation of RIP3 limits immune responses and compensatory proliferation of liver parenchymal cells (LPC by inhibiting Caspase-8-dependent activation of Jun-(N-terminal kinase in LPC and nonparenchymal liver cells. In this way, RIP3 inhibits intrahepatic tumor growth and impedes the Caspase-8-dependent establishment of specific chromosomal aberrations that mediate resistance to tumor-necrosis-factor-induced apoptosis and underlie hepatocarcinogenesis. Moreover, RIP3 promotes the development of jaundice and cholestasis, because its activation suppresses compensatory proliferation of cholangiocytes and hepatic stem cells. These findings demonstrate a function of RIP3 in regulating carcinogenesis and cholestasis. Controlling RIP3 or Caspase-8 might represent a chemopreventive or therapeutic strategy against hepatocellular carcinoma and biliary disease.

  4. Clinicopathological evaluation of radiation induced basal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Meibodi Naser

    2008-01-01

    Full Text Available Background: Development of skin neoplasms is one of the most important chronic complications of radiation therapy. Basal cell carcinoma (BCC is the most frequent carcinoma occurring at the region of the body to which radiotherapy was delivered. Aim: The aim of this study was to evaluate clinical and histological aspects of basal cell carcinoma in patients with a history of radiotherapy. Materials and Methods: Medical records and microscopic slides of 80 patients with basal cell carcinoma who had received radiotherapy (1996-2006 were reviewed in pathology department of Imam Reza hospital of Mashhad, Iran. Collected data were analyzed statistically using descriptive test. Results: 60 men and 20 women were included, majority of them in their sixties. Plaque was the most common clinical pattern of basal cell carcinoma. Fifty one percent of the patients had pigmented and 42.5% had multiple lesions. Scalp was the most common site of involvement. Histologically, macronodular and pigmented carcinoma were the most predominant forms of basal cell carcinoma. Discussion: Majority of patients had scalp involvement and multiple lesions. Nodular and pigmented forms were the most common histological findings. We suggest the need for close supervision in patients with a history of radio therapy in the past.

  5. Cutaneous squamous and neuroendocrine carcinoma: genetically and immunohistochemically different from Merkel cell carcinoma.

    Science.gov (United States)

    Pulitzer, Melissa P; Brannon, A Rose; Berger, Michael F; Louis, Peter; Scott, Sasinya N; Jungbluth, Achim A; Coit, Daniel G; Brownell, Isaac; Busam, Klaus J

    2015-08-01

    Cutaneous neuroendocrine (Merkel cell) carcinoma most often arises de novo in the background of a clonally integrated virus, the Merkel cell polyomavirus, and is notable for positive expression of retinoblastoma 1 (RB1) protein and low expression of p53 compared with the rare Merkel cell polyomavirus-negative Merkel cell carcinomas. Combined squamous and Merkel cell tumors are consistently negative for Merkel cell polyomavirus. Little is known about their immunophenotypic or molecular profile. Herein, we studied 10 combined cutaneous squamous cell and neuroendocrine carcinomas for immunohistochemical expression of p53, retinoblastoma 1 protein, neurofilament, p63, and cytokeratin 20 (CK20). We compared mutation profiles of five combined Merkel cell carcinomas and seven 'pure' Merkel cell carcinomas using targeted next-generation sequencing. Combined tumors were from the head, trunk, and leg of Caucasian males and one female aged 52-89. All cases were highly p53- and p63-positive and neurofilament-negative in the squamous component, whereas RB1-negative in both components. Eight out of 10 were p53-positive, 3/10 p63-positive, and 3/10 focally neurofilament-positive in the neuroendocrine component. Six out of 10 were CK20-positive in any part. By next-generation sequencing, combined tumors were highly mutated, with an average of 48 mutations per megabase compared with pure tumors, which showed 1.25 mutations per megabase. RB1 and p53 mutations were identified in all five combined tumors. Combined tumors represent an immunophenotypically and genetically distinct variant of primary cutaneous neuroendocrine carcinomas, notable for a highly mutated genetic profile, significant p53 expression and/or mutation, absent RB1 expression in the context of increased RB1 mutation, and minimal neurofilament expression.

  6. VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells.

    Science.gov (United States)

    Bindra, Ranjit S; Vasselli, James R; Stearman, Robert; Linehan, W Marston; Klausner, Richard D

    2002-06-01

    Renal cell carcinoma is associated with mutation of the von Hippel-Lindau (VHL) tumor suppressor gene. Cell lines derived from these tumors cannot exit the cell cycle when deprived of growth factors, and the ability to exit the cell cycle can be restored by the reintroduction of wild-type protein VHL (pVHL). Here, we report that cyclin D1 is overexpressed and remains inappropriately high in during contact inhibition in pVHL-deficient cell lines. In addition, hypoxia increased the expression of cyclin D1 specifically in pVHL-negative cell lines into which pVHL expression was restored. Hypoxic-induction of cyclin D1 was not observed in other pVHL-positive cell lines. This suggests a model whereby in some kidney cell types, pVHL may regulate a proliferative response to hypoxia, whereas the loss of pVHL leads to constitutively elevated cyclin D1 and abnormal proliferation under normal growth conditions.

  7. Ultrastructural proof of polyomavirus in Merkel cell carcinoma tumour cells and its absence in small cell carcinoma of the lung.

    Directory of Open Access Journals (Sweden)

    Charlotte T A H Wetzels

    Full Text Available BACKGROUND: A new virus called the Merkel Cell Polyomavirus (MCPyV has recently been found in Merkel Cell Carcinoma (MCC. MCC is a rare aggressive small cell neuroendocrine carcinoma primarily derived from the skin, morphologically indistinguishable from small cell lung carcinoma (SCLC. So far the actual presence of the virus in MCC tumour cells on a morphological level has not been demonstrated, and the presence of MCPyV in other small cell neuroendocrine carcinomas has not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS: We investigated MCC tissue samples from five patients and SCLCs from ten patients for the presence of MCPyV-DNA by PCR and sequencing. Electron microscopy was used to search ultrastructurally for morphological presence of the virus in MCPyV-DNA positive samples. MCPyV was detected in two out of five primary MCCs. In one MCC patient MCPyV-DNA was detected in the primary tumour as well as in the metastasis, strongly suggesting integration of MCPyV in the cellular DNA of the tumour in this patient. In the primary MCC of another patient viral particles in tumour cell nuclei and cytoplasm were identified by electron microscopy, indicating active viral replication in the tumour cells. In none of the SCLCs MCPyV-DNA was detected. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest that MCPyV is an oncogenic polyomavirus in humans, and is potentially causally related to the development of MCC but not to the morphological similar SCLC.

  8. Study of a new tumor marker, CYFRA 21-1, in squamous cell carcinoma of the cervix, and comparison with squamous cell carcinoma antigen

    International Nuclear Information System (INIS)

    Tsai, S.Ch.; KAo, CH.H.; Wang, S.J.

    1996-01-01

    The diagnosis value of a new tumor marker, CYFRA 21-1, was studied in the blood samples collected from 22 controls, and 87 pre-treatment patients with squamous cell carcinoma of the cervix. Sensitivity and specificity of CYFRA 21-1 was was compared with those of squamous cell carcinoma antigen (SCC) measured in the sera of the same patients. Serum CYFRA 21-1 levels were higher in patients with squamous cell carcinoma than in controls (p < 0.05), and correlated with FIGO stage (Stage IIb-IV vs. Stage Ib-IIa, p = 0.0477). Using 2.5 ng/ml as cut-off value, elevated CYFRA 21-1 levels were found in 13.6% of controls, 34.8% of patients with Stage Ib-IIa squamous cell carcinoma of the cervix, and 63.5% of patients with Stage IIb-IV squamous cell carcinoma of the cervix. However, there was less sensitivity and specificity of CYFRA 21-1 than those of SCC in detecting squamous cell carcinoma of the cervix. CYFRA 21-1 may not be a better tumor marker than SCC for squamous cell carcinoma of the cervix. (author)

  9. Collision tumor of Small Cell Carcinoma and Squamous Cell Carcinoma of maxillary sinus

    Directory of Open Access Journals (Sweden)

    Irfan Sugianto

    2016-06-01

    Full Text Available Two kinds of different malignant tumors occurring within the same organ is defined as collision tumor. Small Cell Carcinoma (SmCC is high-grade derived from neuroendocrine cell tumors, occurance in the head and neck is rare. Squamous Cell Carcinoma (SCC is the most common malignancies encountered in head and neck area, but the occuranceof collision tumor is very rare. This report describe a 82 year-old woman patient with a SmCC and SCC that occurred in the maxillary sinus. CT was performed including with enhancement, MRI examination was T1WI, STIR and contrast enhancement. We also conducted analysis of Dynamic Contrast Enhancement (DCE. Histopathologic examination revealed small cell carcinoma. A distant metastasis was not detected. After patient received chemoradiotherapy (CCRT, most of  tumorwas reduced although a part of the tumor was remained. Pathological examination of surgery tumor specimen revealed that specimen consisted of SCC and SmCC was disappeared, and six months after surgery, the patient suffered tumor recurrence and multiple metastasis to the organs in the abdomen. This time we have to report that the experience one cases that are considered collision cancer of SmCC and SCC that occurred in the maxillary sinus.

  10. Tumor cell proliferation kinetics and tumor growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  11. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma.

    Science.gov (United States)

    Linehan, W Marston; Spellman, Paul T; Ricketts, Christopher J; Creighton, Chad J; Fei, Suzanne S; Davis, Caleb; Wheeler, David A; Murray, Bradley A; Schmidt, Laura; Vocke, Cathy D; Peto, Myron; Al Mamun, Abu Amar M; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W Kimryn; Brooks, Angela N; Hoadley, Katherine A; Robertson, A Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J; Bootwalla, Moiz; Baylin, Stephen B; Laird, Peter W; Cherniack, Andrew D; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B; Akbani, Rehan; Leiserson, Mark D M; Raphael, Benjamin J; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K; Czerniak, Bogdan; Godwin, Andrew K; Hakimi, A Ari; Ho, Thai H; Hsieh, James; Ittmann, Michael; Kim, William Y; Krishnan, Bhavani; Merino, Maria J; Mills Shaw, Kenna R; Reuter, Victor E; Reznik, Ed; Shelley, Carl S; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D; Penny, Robert J; Shelton, Candace; Shelton, W Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T; Bowen, Jay; Gastier-Foster, Julie M; Gerken, Mark; Leraas, Kristen M; Lichtenberg, Tara M; Ramirez, Nilsa C; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A; Felau, Ina; Hutter, Carolyn M; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C; Zhang, Jiashan; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S N; Carlsen, Rebecca; Carter, Scott L; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, Harsha V; Drummond, Jennifer A; Gabriel, Stacey B; Gibbs, Richard A; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D Neil; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven J M; Jones, Corbin D; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A; Moore, Richard A; Morton, Donna; Mose, Lisle E; Mungall, Andrew J; Muzny, Donna; Parker, Joel S; Perou, Charles M; Roach, Jeffrey; Schein, Jacqueline E; Schumacher, Steven E; Shi, Yan; Simons, Janae V; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L; Boice, Lori; Bollag, Roni J; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L; Slaton, Joel; Stanton, Melissa; Thompson, R Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M; Winemiller, Cynthia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-14

    Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).

  12. The anti-hepatocellular carcinoma cell activity by a novel mTOR kinase inhibitor CZ415

    International Nuclear Information System (INIS)

    Zhang, Wei; Chen, Bingyu; Zhang, Yu; Li, Kaiqiang; Hao, Ke; Jiang, Luxi; Wang, Ying; Mou, Xiaozhou; Xu, Xiaodong; Wang, Zhen

    2017-01-01

    Dysregulation of mammalian target of rapamycin (mTOR) in hepatocellular carcinoma (HCC) represents a valuable treatment target. Recent studies have developed a highly-selective and potent mTOR kinase inhibitor, CZ415. Here, we showed that nM concentrations of CZ415 efficiently inhibited survival and induced apoptosis in HCC cell lines (HepG2 and Huh-7) and primary-cultured human HCC cells. Meanwhile, CZ415 inhibited proliferation of HCC cells, more potently than mTORC1 inhibitors (rapamycin and RAD001). CZ415 was yet non-cytotoxic to the L02 human hepatocytes. Mechanistic studies showed that CZ415 disrupted assembly of mTOR complex 1 (mTORC1) and mTORC2 in HepG2 cells. Meanwhile, activation of mTORC1 (p-S6K1) and mTORC2 (p-AKT, Ser-473) was almost blocked by CZ415. In vivo studies revealed that oral administration of CZ415 significantly suppressed HepG2 xenograft tumor growth in severe combined immuno-deficient (SCID) mice. Activation of mTORC1/2 was also largely inhibited in CZ415-treated HepG2 tumor tissue. Together, these results show that CZ415 blocks mTORC1/2 activation and efficiently inhibits HCC cell growth in vitro and in vivo. - Highlights: • CZ415 is anti-survival and pro-apoptotic to hepatocellular carcinoma (HCC) cells. • CZ415 inhibits HCC cell proliferation, more efficiently than mTORC1 inhibitors. • CZ415 blocks assembly and activation of both mTORC1 and mTORC2 in HCC cells. • CZ415 oral administration inhibits HepG2 tumor growth in SCID mice. • mTORC1/2 activation in HepG2 tumor is inhibited with CZ415 administration.

  13. H2A/K pseudogene mutation may promote cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jisheng; Jing, Ruirui; Lv, Xin; Wang, Xiaoyue; Li, Junqiang; Li, Lin; Li, Cuiling; Wang, Daoguang; Bi, Baibing; Chen, Xinjun [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Yang, Jing-Hua, E-mail: sdu_crc_group1@126.com [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA (United States)

    2016-05-15

    Highlights: • The mutant H2A/K pseudogene is active. • The mutant H2A/K pseudogene can promote cell proliferation. - Abstract: Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.

  14. Depletion of Pokemon gene inhibits hepatocellular carcinoma cell growth through inhibition of H-ras.

    Science.gov (United States)

    Zhang, Quan-Le; Tian, De-An; Xu, Xiang-Jiang

    2011-01-01

    Pokemon is a transcription repressor which plays a critical role in cell transformation and malignancy. However, little is known about its effect on the development and progression of hepatocellular carcinoma (HCC). The aim of this study was to investigate the expression of Pokemon in human HCC tissues and the biological behavior of Pokemon in HCC cells in which it is overexpressed. We also explored the expression of potential downstream cofactors of Pokemon. Reverse transcription polymerase chain reaction and Western blot analysis were used to investigate the expression of Pokemon in tissues of 30 HCC patients. We then examined cell proliferation or apoptosis and β-catenin or H-ras expression in Pokemon-depleted HepG(2) cells using DNA vector-based RNA interference technology. Pokemon was markedly expressed in 22/30 (73.3%) HCC tissues, with expression levels higher than in adjacent normal liver tissues (p Pokemon inhibited proliferation of HepG(2) or induced apoptosis. Also, H-ras expression decreased to a large extent. Pokemon exerts its oncogenic activity in the development of HCC by promoting cancer cell growth and reducing apoptosis, and the effect may be mediated by H-ras. Copyright © 2011 S. Karger AG, Basel.

  15. Origin of clear cell carcinoma: nature or nurture?

    Science.gov (United States)

    Kolin, David L; Dinulescu, Daniela M; Crum, Christopher P

    2018-02-01

    A rare but serious complication of endometriosis is the development of carcinoma, and clear cell and endometrioid carcinomas of the ovary are the two most common malignancies which arise from endometriosis. They are distinct diseases, characterized by unique morphologies, immunohistochemical profiles, and responses to treatment. However, both arise in endometriosis and can share common mutations. The overlapping mutational profiles of clear cell and endometrioid carcinomas suggest that their varied histologies may be due to a different cell of origin which gives rise to each type of cancer. Cochrane and colleagues address this question in a recent article in this journal. They show that a marker of ovarian clear cell carcinoma, cystathionine gamma lyase, is expressed in ciliated cells. Similarly, they show that markers of secretory cells (estrogen receptor and methylenetetrahydrofolate dehydrogenase 1) are expressed in ovarian endometrioid carcinoma. Taken together, they suggest that endometrioid and clear cell carcinomas arise from cells related to secretory and ciliated cells, respectively. We discuss Cochrane et al's work in the context of other efforts to determine the cell of origin of gynecological malignancies, with an emphasis on recent developments and challenges unique to the area. These limitations complicate our interpretation of tumor differentiation; does it reflect nature imposed by a specific cell of origin or nurture, by either mutation(s) or environment? Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    Science.gov (United States)

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p cell level correlated positively with the number of patient colonies (r = 0.762, p Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research

  17. [Some morphometric parameters of nucleoli and nuclei in invasive ductal breast carcinomas in women].

    Science.gov (United States)

    Karpinska-Kaczmarczyk, Katarzyna

    2009-01-01

    The purpose of this study was to correlate seven morphometric parameters of nucleoli and nuclei of invasive ductal cancer cells with some clinico-pathological factors such as age, tumor size, axillary lymph node status, MIB-1 proliferation index, and estrogen receptor expression in tumor cells. Methyl green-pyronin Y (MG-PY) was used for simultaneous staining of nuclei and nucleoli in histological sections of 150 invasive ductal breast carcinomas. Next, morphometric parameters of nucleoli and nuclei of tumor cells were measured with computerized image analysis. Nuclear area and number of nucleoli in breast tumor cells were greater in younger axillary node-negative patients. The number of nucleoli and nucleolar shape polymorphism were reduced in tumors measuring 20 mm or less or with lower histological grade. Nuclear area, nucleolar number, and nucleolar polymorphism in carcinomas with low proliferation index and estrogen receptor expression were smaller than in carcinomas with high proliferation index and no estrogen receptor expression. Nucleolar area in primary tumors without axillary node involvement was greater than in tumors with more than three axillary nodes positive. MG-PY selectively and simultaneously stains nucleoli and nuclei of tumor cells enabling standardized and reproducible examination of these structures with computerized image analysis. Univariate statistical analysis disclosed that some morphometric parameters of nucleoli and nuclei of tumor cells correlated with several established clinico-pathological prognostic factors. Therefore, the prognostic significance of these parameters should be studied in a larger group of patients with invasive ductal breast carcinomas.

  18. Effects of YC-1 on hypoxia-inducible factor 1 alpha in hypoxic human bladder transitional carcinoma cell line T24 cells.

    Science.gov (United States)

    Li, Yangle; Zhao, Xiaokun; Tang, Huiting; Zhong, Zhaohui; Zhang, Lei; Xu, Ran; Li, Songchao; Wang, Yi

    2012-01-01

    It was the aim of this study to explore the effects of 3-(5'-hydroxymethyl-2'-furyl)-l-benzyl indazole (YC-1) on transcription activity, cell proliferation and apoptosis of hypoxic human bladder transitional carcinoma cells (BTCC), mediated by hypoxia-inducible factor 1α (HIF-1α). BTCC cell line T24 cells were incubated under normoxic or hypoxic conditions, adding different doses of YC-1. The protein expression of HIF-1α and HIF-1α-mediated genes was detected by Western blotting. RT-PCR was used to detect HIF-1α mRNA expression. Cell proliferation, apoptosis and migration activity were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and transwell migration assay. The cells were pretreated by two ERK/p38 MAPK pathway-specific inhibitors, PD98059 or SB203580, and then incubated with YC-1 treatment under hypoxic condition. HIF-1α protein expression was detected by Western blotting. Hypoxic T24 cells expressed a higher level of HIF-1α, vascular endothelial growth factor, matrix metalloproteinases-2, B-cell lymphoma/leukemia-2 protein and HIF-1α mRNA compared with normoxic controls, in which the above-mentioned expression was downregulated by YC-1 in a dose-dependent manner. Cell proliferation and migration activity were inhibited while apoptosis was induced by YC-1 under hypoxic condition. Moreover, YC-1-downregulated HIF-1α expression was reversed by PD98059 and SB203580, respectively. YC-1 inhibits HIF-1α and HIF-1α-mediated gene expression, cell proliferation and migration activity and induces apoptosis in hypoxic BTCC. The ERK/p38 MAPK pathway may be involved in YC-1-mediated inhibition of HIF-1α. Copyright © 2011 S. Karger AG, Basel.

  19. Ductal carcinoma in situ of the breast: histological classification and genetic alterations

    NARCIS (Netherlands)

    van de Vijver, M. J.

    1998-01-01

    Ductal carcinoma in situ (DCIS) of the breast represents a proliferation of malignant epithelial cells within the ducts and lobules of the breast, without invasion through the basement membrane. It is believed that all invasive carcinomas are preceded by DCIS; however, it is not known what

  20. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model.

    Science.gov (United States)

    Kurundkar, Deepali; Srivastava, Ritesh K; Chaudhary, Sandeep C; Ballestas, Mary E; Kopelovich, Levy; Elmets, Craig A; Athar, Mohammad

    2013-01-15

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. MiR-520b suppresses proliferation of hepatoma cells through targeting ten-eleven translocation 1 (TET1) mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiying; Lu, Zhanping; Gao, Yuen [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China); Ye, Lihong [State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin (China); Song, Tianqiang, E-mail: tjchi@hotmai.com [Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin (China)

    2015-05-08

    Accumulating evidence indicates that microRNAs are able to act as oncogenes or tumor suppressor genes in human cancer. We previously reported that miR-520b was down-regulated in hepatocellular carcinoma (HCC) and its deregulation was involved in hepatocarcinogenesis. In the present study, we report that miR-520b suppresses cell proliferation in HCC through targeting the ten-eleven translocation 1 (TET1) mRNA. Notably, we identified that miR-520b was able to target 3′-untranslated region (3′UTR) of TET1 mRNA by luciferase reporter gene assays. Then, we revealed that miR-520b was able to reduce the expression of TET1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blotting analysis. In terms of function, 5-ethynyl-2-deoxyuridine (EdU) incorporation and colony formation assays demonstrated that the forced miR-520b expression remarkably inhibited proliferation of hepatoma cells, but TET1 overexpression could rescue the inhibition of cell proliferation mediated by miR-520b. Furthermore, anti-miR-520b enhanced proliferation of hepatoma cells, whereas silencing of TET1 abolished anti-miR-520b-induced acceleration of cell proliferation. Then, we validated that the expression levels of miR-520b were negatively related to those of TET1 mRNA in clinical HCC tissues. Thus, we conclude that miR-520b depresses proliferation of liver cancer cells through targeting 3′UTR of TET1 mRNA. Our finding provides new insights into the mechanism of hepatocarcinogenesis. - Highlights: • TET1 is a novel target gene of miR-520b. • TET1 is upregulated in clinical HCC tissues. • MiR-520b is negatively correlated with TET1 in clinical HCC tissues. • MiR-520b depresses the proliferation of HCC cells through targeting TET1 mRNA.

  2. Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics.

    Directory of Open Access Journals (Sweden)

    Xiaobo Nie

    Full Text Available The human mitochondrial ATP-dependent Lon protease functions in regulating the metabolism and quality control of proteins and mitochondrial DNA (mtDNA. However, the role of Lon in cancer is not well understood. Therefore, this study was undertaken to investigate the importance of Lon in cervical cancer cells from patients and in established cell lines. Microarray analysis from 30 cancer and 10 normal cervical tissues were analyzed by immunohistochemistry for Lon protein levels. The expression of Lon was also examined by immunoblotting 16 fresh cervical cancer tissues and their respective non-tumor cervical tissues. In all cases, Lon expression was significantly elevated in cervical carcinomas as compared to normal tissues. Augmented Lon expression in tissue microarrays did not vary between age, tumor-node-metastasis grades, or lymph node metastasis. Knocking down Lon in HeLa cervical cancer cells by lentivrial transduction resulted in a substantial decrease in both mRNA and protein levels. Such down-regulation of Lon expression significantly blocked HeLa cell proliferation. In addition, knocking down Lon resulted in decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using the Seahorse XF24 extracellular flux analyzer. Together, these data demonstrate that Lon plays a potential role in the oncogenesis of cervical cancer, and may be a useful biomarker and target in the treatment of cervical cancer. Lon; immunohistochemistry; cervical cancer; cell proliferation; cellular bioenergetics.

  3. Treatment of early glassy cell carcinoma of uterine cervix

    International Nuclear Information System (INIS)

    Kim, Ok Bae; Kim, Jin Hee; Choi, Tae Jin

    2006-01-01

    The purpose of this study was to investigate the clinical findings, treatment, and outcome of patients with glassy cell carcinoma of cervix. We reviewed all cases of glassy cell carcinoma of the uterine cervix confirmed and treated at the Dongsan Medical Center, Keimyung University, between January 1993 and December 2005. There were 7 cases with histopathologically confirmed gassy cell carcinoma. A tumor was diagnosed as glassy cell carcinoma if over 50% of the tumor cell type displayed glassy cell features. Six patients with stage IB had radical hysterectomy and bilateral pelvic node dissection, and 2 of them received adjuvant external pelvic irradiation with concurrent chemotherapy. Remaining one patient with stage IIA had curative concurrent chemoradiotherapy with external pelvic irradiation and brachytherapy. There were 7 patients diagnosed as glassy cell carcinoma among the 3,745 (0.2%) patients of carcinoma of uterine cervix. The mean age of 7 patients was 44 years with range of 35 to 53 years of age. The most frequent symptom was vaginal bleeding (86%). By the punch biopsy undertaken before treatment of 7 cases, 2 only cases could diagnose as glassy cell carcinoma of uterine cervix, but remaining of them confirmed by surgical pathological examination. The mean follow up duration was 73 months with range of 13 to 150 months. All 7 patients were alive without disease after treatment. Glassy cell carcinoma of the uterine cervix is a distinct clinicopathologic entity that demonstrates an aggressive biologic behavior. However for early-stage disease, we may have more favorable clinical outcome with radical surgery followed by chemoradiotherapy

  4. Cell Proliferation in Neuroblastoma

    Science.gov (United States)

    Stafman, Laura L.; Beierle, Elizabeth A.

    2016-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed. PMID:26771642

  5. CT in the diagnosis of squamous cell carcinoma of urinary bladder

    International Nuclear Information System (INIS)

    Narumi, Yoshifumi; Mitani, Takashi; Kuriyama, Keiko

    1988-01-01

    CT findings of 8 operated cases with squamous cell carcinoma of urinary bladder were reviewed. All of them had advanced stage tumor with invasion into perivesical fat or organs (≥ T3b), and with or without lymphnode involvement. We compared them with 15 operated cases with advavced transitional cell carcinoma of urinary bladder (≥ T3b) especially in regard to the direction of tumor growth, and the frequency of invasion into perivesical organs and lymphnode involvement. Futhermore, we studied a relation between CT findings and histopathological stages of the squamous cell carcinoma of urinary bladder. Squamous cell carcinoma of urinary bladder showed predominant extravesical growth as the stage advanced, while transitional cell carcinoma generally showed predominant intravesical growth. Squamous cell carcinoma invaded into perivesical organs and metastasized to lymphnodes more frequently than transitional cell carcinoma of control group. Accuracy of CT staging of squamous cell carcinoma of urinary bladder was found to be 100 % in T stage and 75 % in N stage. (author)

  6. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K., E-mail: peter.leung@ubc.ca

    2014-01-10

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation.

  7. Merkel cell polyomavirus infection and Merkel cell carcinoma.

    Science.gov (United States)

    Liu, Wei; MacDonald, Margo; You, Jianxin

    2016-10-01

    Merkel cell polyomavirus is the only polyomavirus discovered to date that is associated with a human cancer. MCPyV infection is highly prevalent in the general population. Nearly all healthy adults asymptomatically shed MCPyV from their skin. However, in elderly and immunosuppressed individuals, the infection can lead to a lethal form of skin cancer, Merkel cell carcinoma. In the last few years, new findings have established links between MCPyV infection, host immune response, and Merkel cell carcinoma development. This review discusses these recent discoveries on how MCPyV interacts with host cells to achieve persistent infection and, in the immunocompromised population, contributes to MCC development. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. 17β-estradiol-induced ACSL4 protein expression promotes an invasive phenotype in estrogen receptor positive mammary carcinoma cells.

    Science.gov (United States)

    Belkaid, Anissa; Ouellette, Rodney J; Surette, Marc E

    2017-04-01

    Long chain acyl-CoA synthase-4 (ACSL4) expression has been associated with an aggressive phenotype in breast carcinoma cells, whereas its role in ERα-positive breast cancer has not been studied. ACSL4 prefers 20-carbon polyunsaturated fatty acid (PUFA) substrates, and along with other ACSLs has been associated with cellular uptake of exogenous fatty acids. 17β-estradiol induces proliferation and invasive capacities in ERα+ve breast carcinoma that is associated with modifications of cellular lipid metabolism. In this study, treatment of steroid-starved ERα-positive MCF-7 and T47D mammary carcinoma cells with 17β-estradiol resulted in increased cellular uptake of the PUFA arachidonic acid (AA) and eicosapentaenoic acid (EPA), important building blocks for cellular membranes, and increased ACSL4 protein levels. There was no change in the expression of the ACSL1, ACSL3 and ACSL6 protein isotypes. Increased ACSL4 protein expression was not accompanied by changes in ACSL4 mRNA expression, but was associated with a significant increase in the protein half-life compared to untreated cells. ERα silencing reversed the impact of 17β-estradiol on ACSL4 protein levels and half-life. Silencing of ACSL4 eliminated the 17β-estradiol-induced increase in AA and EPA uptake, as well as the 17β-estradiol-induced cell migration, proliferation and invasion capacities. ASCL4 silencing also prevented the 17β-estradiol induced increases in p-Akt and p-GSK3β, and decrease in E-cadherin expression, important events in epithelial to mesenchymal transition. Taken together, these results demonstrate that ACSL4 is a target of 17β-estradiol-stimulated ERα and is required for the cellular uptake of exogenous PUFA and the manifestation of a more malignant phenotype in ERα+ve breast carcinoma cells. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. MicroRNA and protein profiles in invasive versus non-invasive oral tongue squamous cell carcinoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Korvala, Johanna, E-mail: johanna.korvala@oulu.fi [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Jee, Kowan [Department of Pathology, University of Turku, Turku University Hospital, Turku (Finland); Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Porkola, Emmi [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Almangush, Alhadi [Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Mosakhani, Neda [Department of Pathology, HUSLAB, Helsinki (Finland); Bitu, Carolina [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Cervigne, Nilva K. [Department of Oral Diagnosis, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901 – Bairro Areião, CEP: 13414-903 Piracicaba, São Paulo (Brazil); Department of Clinical and Pathology, Faculty of Medicine of Jundiai - FMJ, Jundiai, SP (Brazil); Zandonadi, Flávia S.; Meirelles, Gabriela V.; Leme, Adriana Franco Paes [Laboratório Nacional de Biociências, LNBio, CNPEM, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas/SP, P.O.Box 6192, CEP 13083-970 Campinas, São Paulo (Brazil); Coletta, Ricardo D. [Department of Oral Diagnosis, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901 – Bairro Areião, CEP: 13414-903 Piracicaba, São Paulo (Brazil); and others

    2017-01-01

    Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.

  10. [Effects of cucurmosin on the cell proliferation and apoptosis in human pancreatic PANC-1 cells].

    Science.gov (United States)

    Xu, Chun-Sen; Huang, He-Guang; Chen, Ming-Huang

    2012-02-01

    To observe the effects of cucurmosin (CUS) on the cell proliferation and apoptosis in pancreatic PANC-1 cells. The inhibition of CUS on the PANC-1 cell growth was observed using MTT assay. The inhibition ratio of CUS on the pancreatic orthotopic transplantation was in vivo observed in the NOD/SCID mouse model. The changes of microstructure of the apoptosis-inducing effect of CUS on PANC-1 was observed under electron microscope. The cell cycle and apoptosis after CUS intervention was detected using flow cytometry. The Caspase-3 activity after CUS treatment was detected using enzyme linked immunospecific assay (ELISA). Treatment with CUS at the dose of 0.125, 0.25, and 0.5 mg/kg inhibited the growth of pancreatic carcinoma PANC-1 xenografs with the ratio of 45.2%, 50.0%, and 59.7%, respectively (P PANC-1 cells in a dose-dependent maner. Being exposed to 40.0 microg/mL of the CUS for 24, 48, and 72 h, the percentage of G0/ G1 phase cells was 56.60% +/- 6.65%, 67.83% +/- 6.76%, and 77.00% +/- 6.73%, respectively (P PANC-1 cells in the G0/G1 phase of the cell cycle in a time-dependent maner. CUS significantly inhibited the growth of PANC-1 cells possibly through the G0/G1 cell cycle arrest and apoptosis.

  11. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells

    International Nuclear Information System (INIS)

    Wu, Xiaoqin; Zhao, Bin; Cheng, Yahui; Yang, Yang; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Zhang, Lei; Lv, Xiongwen; Li, Jun

    2015-01-01

    Hepatocellular carcinoma (HCC) has a high mortality rate worldwide and still remains to be a noticeable public health problem. Therefore, new remedies are urgently needed. Melittin, a major component of bee venom, is known to suppress cell growth in various cancers including HCC. However, the mechanism of the anticancer effect of melittin on HCC has not been fully elucidated. It has been reported that Methyl-CpG binding protein 2 (MeCP2) plays a key role in tumor proliferation, apoptosis, migration and invasion. In the present study, we found the high expression of MeCP2 in human HCC tissues and in the SMMC-7721 cell line. MeCP2 silencing inhibited cell proliferation, while over-expression of MeCP2 promoted cell growth in SMMC-7721 cells. It indicates that MeCP2 may be an attractive target for human HCC. We further found that melittin could inhibit cell proliferation by reducing MeCP2 expression in vitro. Interestingly, the inhibitory effect of melittin on cell proliferation was due to a delay in G 0 /G 1 cell cycle progression, without influencing cell apoptosis. Next, we investigated the potential molecular mechanisms and found that MeCP2 could modulate Shh signaling in SMMC-7721 cells. Further study indicates that melittin may induce the demethylation of PTCH1 promoter, resulting in the increased expression of PTCH1. Furthermore, the expression of Shh and GLI1 was significantly lowered upon treatment of melittin. These results suggest that melittin can block Shh signaling in vitro. In short, these results indicate that melittin inhibits cell proliferation by down-regulating MeCP2 through Shh signaling in SMMC-7721 cells. - Highlights: • MeCP2 plays a key role in the proliferation of human HCC cells. • Melittin reduces MeCP2 expression in vitro. • Melittin induces G 0 /G 1 cell cycle arrest in SMMC-7721 cells. • MeCP2 modulates the Shh signaling pathway in SMMC-7721 cells. • Melittin blocks the Shh signaling pathway in SMMC-7721 cells.

  12. Dose dependent activation of retinoic acid-inducible gene-I promotes both proliferation and apoptosis signals in human head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jingzhou Hu

    Full Text Available The retinoic-acid-inducible gene (RIG-like receptor (RLR family proteins are major pathogen reorganization receptors (PRR responsible for detection of viral RNA, which initiates antiviral response. Here, we evaluated the functional role of one RLR family member, RIG-I, in human head and neck squamous cell carcinoma (HNSCC. RIG-I is abundantly expressed both in poorly-differentiated primary cancer and lymph node metastasis, but not in normal adjacent tissues. Activation of RIG-I by transfection with low dose of 5'-triphosphate RNA (3p-RNA induces low levels of interferon and proinflammatory cytokines and promotes NF-κB- and Akt-dependent cell proliferation, migration and invasion. In contrast, activation of RIG-I by a high dose of 3p-RNA induces robust mitochondria-derived apoptosis accompanied by decreased activation of Akt, which is independent of the interferon and TNFα receptor, but can be rescued by over-expression of constitutively active Akt. Furthermore, co-immunoprecipitation experiments indicate that the CARD domain of RIG-I is essential for inducing apoptosis by interacting with caspase-9. Together, our results reveal a dual role of RIG-I in HNSCC through regulating activation of Akt, in which RIG-I activation by low-dose viral dsRNA increases host cell survival, whereas higher level of RIG-I activation leads to apoptosis. These findings highlight the therapeutic potential of dsRNA mediated RIG-I activation in the treatment of HNSCC.

  13. Pathological significance and prognostic roles of densities of CD57+ cells, CD68+ cells, and mast cells, and their ratios in clear cell renal cell carcinoma.

    Science.gov (United States)

    Nakanishi, Hiromi; Miyata, Yasuyoshi; Mochizuki, Yasushi; Yasuda, Takuji; Nakamura, Yuichiro; Araki, Kyohei; Sagara, Yuji; Matsuo, Tomohiro; Ohba, Kojiro; Sakai, Hideki

    2018-05-19

    The immune system is closely associated with malignant behavior in renal cell carcinoma (RCC). Therefore, understanding the pathological roles of immune cells in tumor stroma is essential to discuss the pathological characteristics of RCC. In this study, the clinical significance of densities of CD57+ cells, CD68+ cells, and mast cells, and their ratios were investigated in patients with clear cell RCC. The densities of CD57+, CD68+, and mast cells were evaluated by immunohistochemical techniques in 179 patients. Proliferation index (PI), apoptotic index (AI), and microvessel density (MVD) were evaluated by using anti-Ki-67, anti-cleaved caspase-3, and anti-CD31 antibodies, respectively. The density of CD57+ cell was negatively correlated with grade, pT stage, and metastasis, although densities of CD68+ cell and mast cell were positively correlated. Ratios of CD68+ cell/CD57+ cell and mast cell/CD57+ cell were significantly correlated with grade, pT stage, and metastasis. Survival analyses showed that the CD68+ cell/CD57+ cell ratio was a significant predictor for cause-specific survival by multi-variate analyses (hazard ratio=1.41, 95% confidential interval=1.03-1.93, P=.031), and was significantly correlated with PI, AI, and MVD (r=.47; P <. 001, r=-.31, P<.001, and r=.40, P<.001, respectively). In conclusion, CD57+ cell, CD68+ cell, and mast cell played important roles in malignancy in clear cell RCC. The CD68+ cell/CD57+ cell ratio was strongly correlated with pathological features and prognosis in these patients because this ratio reflected the status of cancer cell proliferation, apoptosis, and angiogenesis. Copyright © 2018. Published by Elsevier Inc.

  14. Cell proliferation of Paramecium tetraurelia under simulated microgravity

    Science.gov (United States)

    Sawai, S.; Mogami, Y.; Baba, S. A.

    Paramecium is known to proliferate faster under microgravity in space and slower under hypergravity Experiments using axenic culture medium have demonstrated that the hypergravity affected directly on the proliferation of Paramecium itself Kato et al 2003 In order to assess the mechanisms underlying the physiological effects of gravity on cell proliferation Paramecium tetraurelia was grown under simulated microgravity performed by clinorotation and the time course of the proliferation was investigated in detail on the basis of the logistic analysis P tetraurelia was cultivated in a closed chamber in which cells were confined without air babbles reducing the shear stresses and turbulence under the rotation The chamber is made of quartz and silicone rubber film the former is for the optically-flat walls for the measurement of cell density by means of a non-invasive laser optical-slice method and the latter for gas exchange Because the closed chamber has an inner dimension of 3 times 3 times 60 mm Paramecium does not accumulate at the top of the chamber despite its negative gravitactic behavior We measured the cell density at regular time intervals without breaking the configuration of the chamber and analyzed the proliferation parameters by fitting the data to a logistic equation Clinorotation had the effects of reducing the proliferation of P tetraurelia It reduced both the saturation cell density and the maximum proliferation rate although it had little effect on the

  15. Silver Nanoparticles Exhibit the Dose-Dependent Anti-Proliferative Effect against Human Squamous Carcinoma Cells Attenuated in the Presence of Berberine

    Directory of Open Access Journals (Sweden)

    Arkadiusz Dziedzic

    2016-03-01

    Full Text Available The biological activity of nanosize silver particles towards oral epithelium-derived carcinoma seems to be still underinvestigated. We evaluated the influence of low doses of nanosize scale silver particles on the proliferation and viability of malignant oral epithelial keratinocytes in vitro, alone and in conjunction with the plant alkaloid berberine. Cells of human tongue squamous carcinoma SCC-25 (ATCC CRL-1628, cultivated with the mixture of Dulbecco's modified Eagle’s medium, were exposed to silver nanoparticles alone (AgNPs, concentrations from 0.31 to 10 μg/mL and to a combination of AgNPs with berberine chloride (BER, 1/2 IC50 concentration during 24 h and 48 h. The cytotoxic activity of AgNPs with diameters of 10 nm ± 4 nm was measured by 3-(4,5-dimethyl-2-thiazyl-2,5-diphenyl-2H-tetrazolium bromide (MTT assay. Cell cycle analysis was performed by treating cells with propidium iodide followed by flow-activated cell sorting. RT-QPCR reaction was used to assess expression of anti-apoptotic proteins Bcl-2 and pro-apoptotic protein Bcl-2-associated X protein Bax genes expression. Monodisperse silver nanoparticles at a concentration of 10 μg/mL arrested SCC-25 cells cycle after 48 h at the G0/G1 phase in a dose- and time-dependent manner through disruption G0/G1 checkpoint, with increase of Bax/Bcl-2 ratio gene expression. AgNPs exhibit cytotoxic effects on SCC-25 malignant oral epithelial keratinocytes, which is diminished when combined with BER. The AgNPs concentration required to inhibit the growth of carcinoma cells by 50% (IC50 after 48 h was estimated at 5.19 μg/mL. AgNPs combined with BER increased the expression of Bcl-2 while decreasing the ratio of Bax/Bcl-2 in SCC-25 cells. Silver particles at low doses therefore reduce the proliferation and viability of oral squamous cell carcinoma cells. SCC-25 cells are susceptible to damage from AgNPs-induced stress, which can be regulated by the natural alkaloid berberine, suggesting

  16. Hepatitis B virus X protein mutant HBxΔ127 promotes proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fabao [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); You, Xiaona [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Chi, Xiumei [Department of Hepatology, The First Hospital, Jilin University, Changchun 130021 (China); Wang, Tao [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Niu, Junqi, E-mail: junqiniu@yahoo.com.cn [Department of Hepatology, The First Hospital, Jilin University, Changchun 130021 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-02-07

    Highlights: • Relative to wild type HBx, HBX mutant HBxΔ127 strongly enhances cell proliferation. • Relative to wild type HBx, HBxΔ127 remarkably up-regulates miR-215 in hepatoma cells. • HBxΔ127-elevated miR-215 promotes cell proliferation via targeting PTPRT mRNA. - Abstract: The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migration in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.

  17. Expression of long non-coding RNA-HOTAIR in oral squamous cell carcinoma Tca8113 cells and its associated biological behavior

    Science.gov (United States)

    Liu, Huawei; Li, Zhiyong; Wang, Chao; Feng, Lin; Huang, Haitao; Liu, Changkui; Li, Fengxia

    2016-01-01

    As a long noncoding RNA, HOX transcript antisense intergenic RNA (HOTAIR) is highly expressed in many types of tumors. However, its expression and function in oral squamous cell carcinoma (OSCC) cells and tissues remains largely unknown. We herein studied the biological functions of HOTAIR in OSCC Tca8113 cells. Real-time quantitative PCR showed that HOTAIR, p21 and p53 mRNA expressions in doxorubicin (DOX)-treated or γ-ray-irradiated Tca8113 cells were up-regulated. Knockdown of p53 expression inhibited DOX-induced HOTAIR up-regulation, suggesting that DNA damage-induced HOTAIR expression may be associated with p53. Transfection and CCK-8 assays showed that compared with the control group, overexpression of HOTAIR promoted the proliferation of Tca8113 cells, while interfering with its expression played an opposite role. Flow cytometry exhibited that HOTAIR overexpression decreased the rate of DOX-induced apoptosis. When HOTAIR expression was inhibited by siRNA, the proportions of cells in G2/M and S phases increased and decreased respectively. Meanwhile, the rate of DOX-induced apoptosis rose. DNA damage-induced HOTAIR expression facilitated the proliferation of Tca8113 cells and decreased their apoptosis. However, whether the up-regulation depends on p53 still needs in-depth studies. PMID:27904675

  18. Primary Small Cell Carcinoma of the Upper Urinary Tract

    Directory of Open Access Journals (Sweden)

    Victor Ka-Siong Kho

    2010-03-01

    Full Text Available We report a case of primary extrapulmonary small cell carcinoma of the distal ureter, with a synchronous small cell carcinoma of the ipsilateral renal pelvis. These tumors, rarely reported in the urinary tract, are locally aggressive and have a poor prognosis. A 77-year-old male bedridden patient presented with fever and chills with left side-flank pain for 3 days. Following a diagnosis of ureteral urothelial carcinoma, hand-assisted laparoscopic nephroureterectomy with bladder cuff excision was carried out. Adjuvant chemotherapy was given after pathologic report of primary small cell carcinoma of the distal ureter and a synchronous small cell carcinoma of the ipsilateral renal pelvis. After 3 cycles of combination chemotherapy, the patient died 4 months postoperatively due to sepsis.

  19. An in vitro study of the long non-coding RNA TUG1 in tongue squamous cell carcinoma.

    Science.gov (United States)

    Li, Zhi-Qiang; Zou, Rui; Ouyang, Ke-Xiong; Ai, Wei-Jian

    2017-11-01

    This study sought to study the expression of the long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) in tongue squamous cell carcinoma (TSCC) and reveal its possible function. qRT-PCR was used to evaluate 27 samples of fresh TSCC tissues and adjacent normal tongue tissues. siRNA technology was employed to downregulate TUG1 expression in CAL-27 and SCC-9 cell lines. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was utilized to assess cell proliferation ability; apoptosis and cell-cycle phases were analysed via flow cytometry. qRT-PCR findings indicated that the lncRNA TUG1 was upregulated in TSCC tissues compared with adjacent normal tongue tissues (PTUG1 expression was downregulated using siRNA technology, cell proliferation was significantly inhibited (PTUG1 may represent a potential oncogene in TSCC. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Clear cell and endometrioid carcinomas: are their differences attributable to distinct cells of origin?

    Science.gov (United States)

    Cochrane, Dawn R; Tessier-Cloutier, Basile; Lawrence, Katherine M; Nazeran, Tayyebeh; Karnezis, Anthony N; Salamanca, Clara; Cheng, Angela S; McAlpine, Jessica N; Hoang, Lien N; Gilks, C Blake; Huntsman, David G

    2017-09-01

    Endometrial epithelium is the presumed tissue of origin for both eutopic and endometriosis-derived clear cell and endometrioid carcinomas. We had previously hypothesized that the morphological, biological and clinical differences between these carcinomas are due to histotype-specific mutations. Although some mutations and genomic landscape features are more likely to be found in one of these histotypes, we were not able to identify a single class of mutations that was exclusively present in one histotype and not the other. This lack of genomic differences led us to an alternative hypothesis that these cancers could arise from distinct cells of origin within endometrial tissue, and that it is the cellular context that accounts for their differences. In a proteomic screen, we identified cystathionine γ-lyase (CTH) as a marker for clear cell carcinoma, as it is expressed at high levels in clear cell carcinomas of the ovary and endometrium. In the current study, we analysed normal Müllerian tissues, and found that CTH is expressed in ciliated cells of endometrium (both eutopic endometrium and endometriosis) and fallopian tubes. We then demonstrated that other ciliated cell markers are expressed in clear cell carcinomas, whereas endometrial secretory cell markers are expressed in endometrioid carcinomas. The same differential staining of secretory and ciliated cells was demonstrable in a three-dimensional organoid culture system, in which stem cells were stimulated to differentiate into an admixture of secretory and ciliated cells. These data suggest that endometrioid carcinomas are derived from cells of the secretory cell lineage, whereas clear cell carcinomas are derived from, or have similarities to, cells of the ciliated cell lineage. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Altered expression of the urokinase receptor homologue, C4.4A, in invasive areas of human esophageal squamous cell carcinoma

    DEFF Research Database (Denmark)

    Hansen, L.V.; Laerum, O.D.; Illemann, M.

    2008-01-01

    . In the present study, we have therefore analyzed the expression of C4.4A in 14 esophageal squamous cell carcinomas (ESCC). Normal squamous esophageal epithelium shows a strong cell surface associated C4.4A expression in the suprabasal layers, whereas basal cells are negative. Upon transition to dysplasia...... and carcinoma in situ the expression of C4.4A is abruptly and coordinately weakened. Double immunofluorescence staining of normal and dysplastic tissue showed that C4.4A colocalizes with the epithelial cell surface marker E-cadherin in the suprabasal cells and has a complementary expression pattern compared...... to the proliferation marker Ki-67. A prominent, but frequently intracellular, C4.4A expression reappeared in tumor cells located at the invasive front and local lymph node metastases. Because C4.4A was reported previously to be a putative laminin-5 (LN5) ligand, and both proteins are expressed by invasive tumor cells...

  2. Accurate detection of carcinoma cells by use of a cell microarray chip.

    Directory of Open Access Journals (Sweden)

    Shohei Yamamura

    Full Text Available BACKGROUND: Accurate detection and analysis of circulating tumor cells plays an important role in the diagnosis and treatment of metastatic cancer treatment. METHODS AND FINDINGS: A cell microarray chip was used to detect spiked carcinoma cells among leukocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth, was made from polystyrene; and the formation of monolayers of leukocytes in the microchambers was observed. Cultured human T lymphoblastoid leukemia (CCRF-CEM cells were used to examine the potential of the cell microarray chip for the detection of spiked carcinoma cells. A T lymphoblastoid leukemia suspension was dispersed on the chip surface, followed by 15 min standing to allow the leukocytes to settle down into the microchambers. Approximately 29 leukocytes were found in each microchamber when about 600,000 leukocytes in total were dispersed onto a cell microarray chip. Similarly, when leukocytes isolated from human whole blood were used, approximately 89 leukocytes entered each microchamber when about 1,800,000 leukocytes in total were placed onto the cell microarray chip. After washing the chip surface, PE-labeled anti-cytokeratin monoclonal antibody and APC-labeled anti-CD326 (EpCAM monoclonal antibody solution were dispersed onto the chip surface and allowed to react for 15 min; and then a microarray scanner was employed to detect any fluorescence-positive cells within 20 min. In the experiments using spiked carcinoma cells (NCI-H1650, 0.01 to 0.0001%, accurate detection of carcinoma cells was achieved with PE-labeled anti-cytokeratin monoclonal antibody. Furthermore, verification of carcinoma cells in the microchambers was performed by double staining with the above monoclonal antibodies. CONCLUSION: The potential application of the cell microarray chip for the detection of CTCs was shown, thus demonstrating accurate detection by double staining for cytokeratin and EpCAM at the single carcinoma cell level.

  3. Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-04-01

    Full Text Available IntroductionMany antitumor therapies induce apoptotic cell death in order to cause tumor regression. Paradoxically, apoptotic cells are also known to promote wound healing, cell proliferation, and tumor cell repopulation in multicellular organisms. We aimed to characterize the nature of the regenerative signals concentrated in the micromilieu of dead and dying cells.MethodsCultures of viable melanoma B16F10 cells, mouse fibroblasts, and primary human fibroblast-like synoviocytes (FLS in the presence of dead and dying cells, their supernatants (SNs, or purified agonists and antagonists were used to evaluate the stimulation of proliferation. Viable cell quantification was performed by either flow cytometry of harvested cells or by crystal violet staining of adherent cells. High-performance liquid chromatography and liquid chromatography coupled with mass spectrometry of cell SNs were deployed to identify the nature of growth-promoting factors. Coimplantation of living cells in the presence of SNs collected from dead and dying cells and specific agonists was used to evaluate tumor growth in vivo.ResultsThe stimulation of proliferation of few surviving cells by bystander dead cells was confirmed for melanoma cells, mouse fibroblasts, and primary FLS. We found that small soluble molecules present in the protein-free fraction of SNs of dead and dying cells were responsible for the promotion of proliferation. The nucleoside inosine released by dead and dying cells acting via adenosine receptors was identified as putative inducer of proliferation of surviving tumor cells after irradiation and heat treatment.ConclusionInosine released by dead and dying cells mediates tumor cell proliferation via purinergic receptors. Therapeutic strategies surmounting this pathway may help to reduce the rate of recurrence after radio- and chemotherapy.

  4. Human Homolog of Drosophila Ariadne (HHARI) is a marker of cellular proliferation associated with nuclear bodies

    Energy Technology Data Exchange (ETDEWEB)

    Elmehdawi, Fatima; Wheway, Gabrielle; Szymanska, Katarzyna [Division of Clinical Sciences, Leeds Institute of Molecular Medicine, Level 8, Wellcome Trust Brenner Building, University of Leeds, Leeds, LS9 7TF West Yorkshire (United Kingdom); Adams, Matthew [BioScreening Technology Group, Biomedical Health Research Center, Wellcome Trust Brenner Building, University of Leeds, Leeds, LS9 7TF West Yorkshire (United Kingdom); High, Alec S. [Department of Histopathology, Bexley Wing, St. James' s University Hospital, Beckett Street, Leeds, LS9 7TF West Yorkshire (United Kingdom); Johnson, Colin A., E-mail: c.johnson@leeds.ac.uk [Division of Clinical Sciences, Leeds Institute of Molecular Medicine, Level 8, Wellcome Trust Brenner Building, University of Leeds, Leeds, LS9 7TF West Yorkshire (United Kingdom); Robinson, Philip A. [Division of Clinical Sciences, Leeds Institute of Molecular Medicine, Level 8, Wellcome Trust Brenner Building, University of Leeds, Leeds, LS9 7TF West Yorkshire (United Kingdom)

    2013-02-01

    HHARI (also known as ARIH1) is an ubiquitin-protein ligase and is the cognate of the E2, UbcH7 (UBE2L3). To establish a functional role for HHARI in cellular proliferation processes, we performed a reverse genetics screen that identified n=86/522 (16.5%) ubiquitin conjugation components that have a statistically significant effect on cell proliferation, which included HHARI as a strong hit. We then produced and validated a panel of specific antibodies that establish HHARI as both a nuclear and cytoplasmic protein that is expressed in all cell types studied. HHARI was expressed at higher levels in nuclei, and co-localized with nuclear bodies including Cajal bodies (p80 coilin, NOPP140), PML and SC35 bodies. We confirmed reduced cellular proliferation after ARIH1 knockdown with individual siRNA duplexes, in addition to significantly increased levels of apoptosis, an increased proportion of cells in G2 phase of the cell cycle, and significant reductions in total cellular RNA levels. In head and neck squamous cell carcinoma biopsies, there are higher levels of HHARI expression associated with increased levels of proliferation, compared to healthy control tissues. We demonstrate that HHARI is associated with cellular proliferation, which may be mediated through its interaction with UbcH7 and modification of proteins in nuclear bodies. -- Highlights: ► We produce and validate new antibody reagents for the ubiquitin-protein ligase HHARI. ► HHARI colocalizes with nuclear bodies including Cajal, PML and SC35 bodies. ► We establish new functions in cell proliferation regulation for HHARI. ► Increased HHARI expression associates with squamous cell carcinoma and proliferation.

  5. Primary orbital squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ana L. Campos Arbulú

    2017-02-01

    Full Text Available Primary orbital squamous cell carcinoma is a rare entity. There is little published literature. We report a case of primary squamous cell carcinoma of the orbital soft tissues. Surgical resection offered the best treatment for the patient. Complete resection of the lesion was achieved. The patient received adjuvant radiotherapy due to the proximity of the lesion to the surgical margins. Surgical treatment is feasible and should be considered as part of the surgeon's arsenal. However, therapeutic decisions must be made on a case-by-case basis

  6. Merkel cell carcinoma with seborrheic keratosis: A unique association.

    Science.gov (United States)

    Anand, Murthy S; Krishnamurthy, Shantha; Ravindranath, Suvarna; Ranganathan, Jyothi

    2018-01-01

    Merkel cell carcinoma (MCC) is a rare, clinically aggressive neuroendocrine carcinoma of the skin; MCC is 40 times less common as compared to melanoma. The most frequently reported sites have been the head and neck, extremities, and trunk. Potential mimics include malignant melanoma, lymphoma, or metastatic small cell (neuroendocrine) carcinomas. Histopathology of MCC resembles small cell carcinoma both morphologically and on IHC. The possible cell of origin was proposed as the Merkel cell, which functions as a mechanoreceptor. It has a high chance of local recurrence, regional and distant spread. In recent times, Merkel cell polyomavirus has been implicated as the causative agent for this tumor. The same agent has a reported etiologic association with other skin lesions, including seborrheic keratosis.

  7. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Noelia Losino

    Full Text Available Embryonic stem cells (ESC need a set of specific factors to be propagated. They can also grow in conditioned medium (CM derived from a bovine granulosa cell line BGC (BGC-CM, a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+. Here, we investigated if the FN EDA(+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-, and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  8. Influence of inhibitors of serotonin uptake on intestinal epithelium and colorectal carcinomas.

    OpenAIRE

    Tutton, P. J.; Barkla, D. H.

    1982-01-01

    Previous studies have shown that in certain tissues, including colonic carcinomas, cell proliferation may be promoted by serotonin, and indirect evidence suggests that the effects of this amine on colonic tumours involves a cellular-uptake mechanism. In the present study, two specific inhibitors of serotonin uptake, Citalopram and Fluoxetine, are examined for their effects on cell proliferation and tumour growth. Each of the agents was found to suppress cell division in dimethylhydrazine-indu...

  9. Asymptomatic renal cell carcinoma incidentally detected by abdominal CT

    International Nuclear Information System (INIS)

    Yoneda, Fumio; Miyake, Noriaki; Tsujimura, Haruhiro; Nakajima, Mikio; Akiyama, Hajime

    1987-01-01

    Four cases of renal cell carcinoma that were incidentally detected by abdominal CT are reported. Abdominal CT was performed during gastro-intestinal examination in two patients and for suspected liver disease in the other two. No patient had symptoms of renal cell carcinoma, or hematuria. In all cases, the histopathological diagnosis was renal cell carcinoma of a low stage. (author)

  10. Basal Cell Carcinoma with Myoepithelial Differentiation: Case Report and Literature Review.

    Science.gov (United States)

    Cohen, Philip R

    2018-01-17

    Basal cell carcinoma is the most common skin cancer. Myoepithelial cells are specialized epithelial cells. Basal cell carcinoma with myoepithelial differentiation is a rare tumor. A 71-year-old man with a basal cell carcinoma with myoepithelial differentiation that presented as an asymptomatic red papule of two months duration on his forehead is described. Including the reported patient, this variant of basal cell carcinoma has been described in 16 patients: 11 men and five women. The patients ranged in age at diagnosis from 43 years to 83 years; the median age at diagnosis was 66 years. All of the tumors were located on the face-most were papules or nodules of less than 10 x 10 mm. Their pathology demonstrated two components: one was that of a typical basal cell carcinoma and the other was myoepithelioma-like in which the tumor cells were plasmacytoid or signet ring in appearance and contained abundant eosinophilic cytoplasm or hyaline inclusions or both. The myoepithelial tumor cells had variable immunohistochemical expression that included not only cytokeratin but also actin, glial fibrillary acid protein, S100, and vimentin. The most common clinical impression, prior to biopsy, was a basal cell carcinoma. The pathologic differential diagnosis included cutaneous mixed sweat gland tumor of the skin, myoepithelioma, myoepithelial carcinoma, and tumors that contain a prominent signet ring cell component (such as metastatic gastrointestinal and breast carcinoma, melanoma, plasmacytoid squamous cell carcinoma, and T-cell lymphoma). Mohs micrographic surgical excision, with complete removal of the tumor, was recommended for treatment of the carcinoma.

  11. Stimulation of the proliferation of hemopoietic stem cells in irradiated bone marrow cell culture

    International Nuclear Information System (INIS)

    Mori, K.J.; Izumi, H.; Seto, A.

    1981-01-01

    Long-term hemopoiesis was established in bone marrow cell culture in vitro. This culture was shown to support the recovery proliferation of hemopoietic stem cells completely in vitro after irradiation. Hemopoietic stem cells were stimulated into proliferation in culture when normal bone marrow cells were overlayed on top of the irradiated adherent cell colonies. These results indicate that proliferation and differentiation of hemopoietic stem cells in vitro are also supported by stromahemopoietic cell interactions

  12. TWEAK induces liver progenitor cell proliferation

    Science.gov (United States)

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.

    2005-01-01

    Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  13. Comparison of staining of mitotic figures by haematoxylin and eosin-and crystal violet stains, in oral epithelial dysplasia and squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ankle Madhuri

    2007-01-01

    Full Text Available Mitosis of cells gives rise to tissue integrity. Defects during mitosis bring about abnormalities. Excessive proliferation of cells due to increased mitosis is one such outcome, which is the hallmark in precancer and cancer. The localization of proliferating cells or their precursors may not be obvious and easy. Establishing an easy way to distinguish these mitotic cells will help in grading and understanding their biological potential. Although immunohistochemistry is an advanced method in use, the cost and time factor makes it less feasible for many laboratories. Selective histochemical stains like toluidine blue, giemsa and crystal violet have been used in tissues including the developing brain, neural tissue and skin. Aim of the study: 1To compare the staining of mitotic cells in haematoxylin and eosin with that in crystal violet. 2To compare the number of mitotic figures present in normal oral mucosa, epithelial dysplasia and oral squamous cell carcinoma in crystal violet-stained sections with that in H and E-stained sections. Materials and Methods: Ten tissues of normal oral mucosa and 15 tissues each of oral epithelial dysplasia seen in tobacco-associated leukoplakia and squamous cell carcinoma were studied to evaluate the selectivity of 1% crystal violet for mitotic figures. The staining was compared with standard H and E staining. Statistical analysis was done using Man-Whitney U test. Results: A statistically significant increase in the mean mitotic count was observed in crystal violet-stained sections of epithelial dysplasia as compared to the H and E-stained sections ( p = 0.0327. A similar increase in the mitotic counts was noted in crystal violet-stained sections of oral squamous cell carcinoma as compared to the H and E-stained sections.( p = 0.0443. No significant difference was found in the mitotic counts determined in dysplasia or carcinoma by either the crystal violet ( p = 0.4429 or the H and E-staining techniques ( p = 0

  14. Silencing of Tumor Necrosis Factor Receptor 1 by siRNA in EC109 Cells Affects Cell Proliferation and Apoptosis

    Directory of Open Access Journals (Sweden)

    Ma Changhui

    2009-01-01

    Full Text Available Tumor necrosis factor receptor 1 (TNFR1 is a membrane receptor able to bind TNF-α or TNF-β. TNFR1 can suppress apoptosis by activating the NF-κB or JNK/SAPK signal transduction pathway, or it can induce apoptosis through a series of caspase cascade reactions; the particular effect may depend on the cell line. In the present study, we first showed that TNFR1 is expressed at both the gene and protein levels in the esophageal carcinoma cell line EC109. Then, by applying a specific siRNA, we silenced the expression of TNFR1; this resulted in a significant time-dependent promotion of cell proliferation and downregulation of the apoptotic rate. These results suggest that TNFR1 is strongly expressed in the EC109 cell line and that it may play an apoptosis-mediating role, which may be suppressed by highly activated NF-κB.

  15. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver.

    Science.gov (United States)

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2011-11-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car(+/+) mice. After being fed the DDC diet, Car(+/+), but not Car(-/-) mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car(+/+), but not Car(-/-) mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car(+/+) mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma.

  16. Clinical presentation of renal cell carcinoma

    International Nuclear Information System (INIS)

    Rehman, R.A.; Ashraf, S.; Jamil, N.

    2015-01-01

    Most common malignant tumour of the kidney is Renal Cell Carcinoma (RCC) and is known for its unpredictable clinical behaviour. Aetiology and risk factors are not completely understood. Extensive workup is being done in the understanding of the disease, especially to diagnose early and to treat promptly. The objective of this study was to determine the clinical presentation and pathological pattern of RCC. Methods: After approval from ethical committee a retrospective review of records was conducted extending from January 2012 to January 2014 to identify clinical characteristics of renal cell carcinomas. The study included all renal cancer patients presented to Sheikh Zayed Hospital Lahore with in this specified period. The data was retrieved regarding, history, physical examination and necessary investigations such as ultrasonography of abdomen and pelvis and CT scan of abdomen and pelvis. Results: There were total of 50 cases. The male to female ratio was 3:2. Mean age of patients were 52.38 (18-93) years old. Most common clinical presentation was gross haematuria(66%).The mean tumour size was 8.34 (3-24) cm. Tumour histology were clear cell (84%), papillary transitional cell carcinoma (12%) and oncosytoma contributed 4%. Conclusion: We observed that large number of the patients with RCC presented with haematuria and most of them were male. Common pathological type was clear cell carcinoma. (author)

  17. Squamous Cell Carcinoma of the Hilar Bile Duct

    Directory of Open Access Journals (Sweden)

    Ippei Yamana

    2011-08-01

    Full Text Available We herein report a rare case of squamous cell carcinoma of the hilar bile duct. A 66-year-old Japanese male patient was admitted to our hospital because of appetite loss and jaundice. Abdominal computed tomography revealed an enhanced mass measuring 10 × 30 mm in the hilar bile duct region. After undergoing biliary drainage, the patient underwent extended right hepatic lobectomy with regional lymph nodes dissection. The tumor had invaded the right portal vein. Therefore, we also performed resection and reconstruction of the portal vein. Histopathologically, the carcinoma cells exhibited a solid structure with differentiation to squamous cell carcinoma with keratinization and intercellular bridges. Immunohistochemical staining of the tumor cells revealed positive cytokeratin staining and negative CAM 5.2 staining. Based on these findings, a definitive diagnosis of well-differentiated squamous cell carcinoma of the hilar bile duct was made.

  18. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH2-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    International Nuclear Information System (INIS)

    Miyata, Yoshiki; Sato, Takashi; Ito, Akira

    2005-01-01

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH 2 -terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation

  19. Cell proliferation changes in hemopoietic tissue as a result of irradiation or drug administration: the control of cell proliferation in hemopoietic tissue

    International Nuclear Information System (INIS)

    Lord, B.I.

    1975-01-01

    The nature of the control processes operative on these cells is not completely understood. Erythropoietin has long been known as a direct stimulator of erythropoiesis at all levels. A similar compound has long been sought (unsuccessfully) to stimulate granulopoiesis. Currently the role of specific proliferation inhibitors of erythropoiesis and granulopoiesis are now attaining more prominence. In this respect, Patt and Maloney demonstrated an inverse relationship of cell concentration in the rabbit femur and the uptake of tritiated thymidine by the cells, and we have now established that extracts of mature blood cells do have specific effects on developing hemopoietic cells which are compatible with proliferation inhibition and which are completely reversible. Our current studies are showing that, used in vivo, these extracts are in fact capable of lowering the proliferation rates of the maturing hemopoietic cells (Lord- unpublished results). It is clear, therefore, that the maturing cell populations proliferate under a complex set of control processes

  20. Squamous cell carcinoma - invasive (image)

    Science.gov (United States)

    This irregular red nodule is an invasive squamous cell carcinoma (a form of skin cancer). Initial appearance, shown here, may be very similar to a noncancerous growth called a keratoacanthoma. Squamous cell cancers ...

  1. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Foster, H; Tutton, P J

    1988-09-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells.

  2. Identification of cancer stem-like side population cells in purified primary cultured human laryngeal squamous cell carcinoma epithelia.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Wu

    Full Text Available Cancer stem-like side population (SP cells have been identified in many solid tumors; however, most of these investigations are performed using established cancer cell lines. Cancer cells in tumor tissue containing fibroblasts and many other types of cells are much more complex than any cancer cell line. Although SP cells were identified in the laryngeal squamous cell carcinoma (LSCC cell line Hep-2 in our pilot study, it is unknown whether the LSCC tissue contains SP cells. In this study, LSCC cells (LSCCs were primary cultured and purified from a surgically resected LSCC specimen derived from a well-differentiated epiglottic neoplasm of a Chinese male. This was followed by the verification of epithelium-specific characteristics, such as ultrastructure and biomarkers. A distinct SP subpopulation (4.45±1.07% was isolated by Hoechst 33342 efflux analysis from cultured LSCCs by using a flow cytometer. Cancer stem cell (CSC-associated assays, including expression of self-renewal and CSC marker genes, proliferation, differentiation, spheroid formation, chemotherapy resistance, and tumorigenicity were then conducted between SP and non-SP (NSP LSCCs. In vitro and in vivo assays revealed that SP cells manifested preferential expression of self-renewal and CSC marker genes, higher capacity for proliferation, differentiation, and spheroid formation; enhanced resistance to chemotherapy; and greater xenograft tumorigenicity in immunodeficient mice compared with NSP cells. These findings suggest that the primary cultured and purified LSCCs contain cancer stem-like SP cells, which may serve as a valuable model for CSC research in LSCC.

  3. Alteration of runt-related transcription factor 3 gene expression and biologic behavior of esophageal carcinoma TE-1 cells after 5-azacytidine intervention.

    Science.gov (United States)

    Wang, Shuai; Liu, Hong; Akhtar, Javed; Chen, Hua-Xia; Wang, Zhou

    2013-01-01

    5-Azacytidine (5-azaC) was originally identified as an anticancer drug (NSC102876) which can cause hypomethylation of tumor suppressor genes. To assess its effects on runt-related transcription factor 3 (RUNX3), expression levels and the promoter methylation status of the RUNX3 gene were assessed. We also investigated alteration of biologic behavior of esophageal carcinoma TE-1 cells. MTT assays showed 5-azaC inhibited the proliferation of TE-1 cells in a time and dose-dependent way. Although other genes could be demethylated after 5-azaC intervention, we focused on RUNX3 gene in this study. The expression level of RUNX3 mRNA increased significantly in TE-1 cells after treatment with 5-azaC at hypotoxic levels. RT-PCR showed 5-azaC at 50 μM had the highest RUNX3-induction activity. Methylation-specific PCR indicated that 5-azaC induced RUNX3 expression through demethylation. Migration and invasion of TE-1 cells were inhibited by 5-azaC, along with growth of Eca109 xenografts in nude mice. In conclusion, we demonstrate that the RUNX3 gene can be reactivated by the demethylation reagent 5-azaC, which inhibits the proliferation, migration and invasion of esophageal carcinoma TE-1 cells.

  4. Expression of Potential Cancer Stem Cell Marker ABCG2 is Associated with Malignant Behaviors of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Guang Zhang

    2013-01-01

    Full Text Available Background. Despite improvement in treatment, the prognosis of hepatocellular carcinoma (HCC remains disastrous. Cancer stem cells (CSCs may be responsible for cancer malignant behaviors. ATP-binding cassette, subfamily G, member 2 (ABCG2 is widely expressed in both normal and cancer stem cells and may play an important role in cancer malignant behaviors. Methods. The expression of ABCG2 in HCC tissues and SMMC-7721 cells was examined, and the relevance of ABCG2 expression with clinical characteristics was analyzed. ABCG2+ and ABCG2− cells were sorted, and the potential of tumorigenicity was determined. Expression level of ABCG2 was manipulated by RNA interference and overexpression. Malignant behaviors including proliferation, drug resistance, migration, and invasion were studied in vitro. Results. Expression of ABCG2 was found in a minor group of cells in HCC tissues and cell lines. ABCG2 expression showed tendencies of association with unfavorable prognosis factors. ABCG2 positive cells showed a superior tumorigenicity. Upregulation of ABCG2 enhanced the capacity of proliferation, doxorubicin resistance, migration, and invasion potential, while downregulation of ABCG2 significantly decreased these malignant behaviors. Conclusion. Our results indicate that ABCG2 is a potential CSC marker for HCC. Its expression level has a close relationship with tumorigenicity, proliferation, drug resistance, and metastasis ability.

  5. Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells

    International Nuclear Information System (INIS)

    Morganroth, G.S.; Chan, L.S.; Weinstein, G.D.; Voorhees, J.J.; Cooper, K.D.

    1991-01-01

    Determination of the cell types proliferating in the dermis of patients with psoriasis should identify those cells experiencing activation or responding to growth factors in the psoriatic dermal milieu. Toward that end, sections of formalin-fixed biopsies obtained from 3H-deoxyuridine (3H-dU)-injected skin of eight psoriatic patients were immunostained, followed by autoradiography. Proliferating dermal cells exhibit silver grains from tritium emissions. The identity of the proliferating cells could then be determined by simultaneous visualization with antibodies specific for various cell types. UCHL1+ (CD45RO+) T cells (recall antigen-reactive helper T-cell subset) constituted 36.6 +/- 3.1% (mean +/- SEM, n = 6) of the proliferating dermal cells in involved skin, whereas Leu 18+ (CD45RA+) T cells (recall antigen naive T-cell subsets) comprised only 8.7 +/- 1.5% (n = 6). The Factor XIIIa+ dermal perivascular dendritic cell subset (24.9 +/- 1.5% of proliferating dermal cells, n = 6) and Factor VIII+ endothelial cells represented the two other major proliferating populations in lesional psoriatic dermis. Differentiated tissue macrophages, identified by phase microscopy as melanophages or by immunostaining with antibodies to Leu M1 (CD15) or myeloid histiocyte antigen, comprised less than 5% of the proliferating population in either skin type. In addition to calculating the relative proportions of these cells to each other as percent, we also determined the density of cells, in cells/mm2 of tissue. The density of proliferating cells within these populations was increased in involved versus uninvolved skin: UCHL1+, 9.0 +/- 1.7 cells/mm2 versus 1.8 +/- 0.6 cells/mm2, p less than 0.01; Factor XIIIa+, 6.0 +/- 0.7 cells/mm2 versus 1.5 +/- 0.5 cells/mm2, p less than 0.01; Factor VIII+, 5.5 +/- 1.4 cells/mm2 versus 0.0 cells/mm2, p less than 0.05

  6. microRNA-145 promotes differentiation in human urothelial carcinoma through down-regulation of syndecan-1

    International Nuclear Information System (INIS)

    Fujii, Tomomi; Shimada, Keiji; Tatsumi, Yoshihiro; Hatakeyama, Kinta; Obayashi, Chiho; Fujimoto, Kiyohide; Konishi, Noboru

    2015-01-01

    A new molecular marker of carcinoma in the urinary bladder is needed as a diagnostic tool or as a therapeutic target. Potential markers include microRNAs (miRNAs), which are short, low molecular weight RNAs 19–24 nt long that regulate genes associated with cell proliferation, differentiation, and development in various cancers. In this study, we investigated the molecular mechanisms by which miR-145 promotes survival of urothelial carcinoma cells and differentiation into multiple lineages. We found miR-145 to regulate expression of syndecan-1, a heparin sulfate proteoglycan. Cell proliferation in the human urothelial carcinoma cell lines T24 and KU7 was assessed by MTS assay. Cellular senescence and apoptosis were measured by senescence-associated β-galactosidase (SA-β-gal) and TUNEL assay, respectively. Quantitative RT-PCR was used to measure mRNA expression of various genes, including syndecan-1, stem cell factors, and markers of differentiation into squamous, glandular, or neuroendocrine cells. Overexpression of miR-145 induced cell senescence, and thus significantly inhibited cell proliferation in T24 and KU7 cells. Syndecan-1 expression diminished, whereas stem cell markers such as SOX2, NANOG, OCT4, and E2F3 increased. miR-145 also up-regulated markers of differentiation into squamous (p63, TP63, and CK5), glandular (MUC-1, MUC-2, and MUC-5 AC), and neuroendocrine cells (NSE and UCHL-1). Finally, expression of miR-145 was down-regulated in high-grade urothelial carcinomas, but not in low-grade tumors. Results indicate that miR-145 suppresses syndecan-1 and, by this mechanism, up-regulates stem cell factors and induces cell senescence and differentiation. We propose that miR-145 may confer stem cell-like properties on urothelial carcinoma cells and thus facilitate differentiation into multiple cell types. The online version of this article (doi:10.1186/s12885-015-1846-0) contains supplementary material, which is available to authorized users

  7. Histopathologic risk factors in oral and oropharyngeal squamous cell carcinoma variants: An update with special reference to HPV-related carcinomas

    Science.gov (United States)

    2014-01-01

    Accurate identification of the microscopic risk factors of oral and oropharyngeal (OP) squamous cell carcinomas (SCC) and their morphologic variants is of at most importance, as these generally determine treatment modalities, prognosis and overall patient outcome. The great majority of oral and oropharyngeal squamous cell carcinomas are microscopically described as kerartinizing squamous cell carcinoma (KSCC). They bear certain resemblance to keratinizing stratified squamous epithelium. Tobacco habits and excessive consumption of alcoholic beverages have been considered to be the main etiologic agents in these carcinomas. The tumors occurred in older patients more commonly affected the oral tongue and floor of the mouth with well established morphologic risk factors including tumor grade, pattern of invasion and perineural involvement. Within the last 30 years however, the advent and expanding prevalence of high risk human papillomavirus (HPV) as an important etiologic agent for head and neck squamous cell carcinoma, particularly in the OP, has resulted in a significant change in the established morphologic criteria for risk assessment. The majority of HPV relate carcinomas of the OP are nonkeratinizing squamous cell carcinoma (NKSCC). These tumors are found to be more responsive to treatment with a favorable patient outcome and good prognosis. Consequently, alterations in treatment protocols aimed at de-escalation are currently being evaluated. More recently, other morphologic variants that are HPV positive are reported with increasing frequency in the OP and other head and neck sites. As a result, several clinical and pathologic questions have emerged. Importantly, whether the virus is biologically active in these tumors and involved in their pathogenesis, and second, what are the clinical implications with regard to patient management and outcome in the HPV-related variants. Examples of HPV-related squamous cell carcinoma variants that will be addressed here are

  8. Autophagy induction contributes to GDC-0349 resistance in head and neck squamous cell carcinoma (HNSCC) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yajuan; Peng, Yi [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China); Tang, Hao [Department of Pathology, Hubei Cancer Hospital, Wuhan 430071 (China); He, Xiaojun; Wang, Zhaohua [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China); Hu, Desheng, E-mail: hudeshengvvip@sina.com [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China); Zhou, Xiaoyi, E-mail: zhouxy1218@126.com [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China)

    2016-08-19

    Dysregulation of mammalian target of rapamycin (mTOR) signaling contributes to head and neck squamous cell carcinoma (HNSCC) tumorigenesis and progression. In the current study, we tested the anti-HNSCC cell activity by GDC-0349, a selective ATP-competitive inhibitor of mTOR. We showed that GDC-0349 inhibited proliferation of established and primary human HNSCC cells bearing high-level of p-AKT/p-S6K. Further, it induced caspase-dependent apoptosis in the HNSCC cells. GDC-0349 blocked mTORC1 and mTORC2 activation, yet it simultaneously induced autophagy activation in HNSCC cells. The latter was evidenced by induction of LC3B-II, Beclin-1 and Autophagy-related (ATG)-7, as well as downregulation of p62. Autophagy inhibitors (3-methyladenine and bafilomycin A1) or ATG-7 siRNA dramatically potentiated GDC-0349’s cytotoxicity against HNSCC cells. Intriguingly, we showed that ceramide (C14), a pro-apoptotic sphingolipid, also induced ATG-7 degradation, and sensitized HNSCC cells to GDC-0349. Collectively, the preclinical study provided evidences to support GDC-0349 as a promising anti-HNSCC agent. GDC-0349 sensitization may be achieved via autophagy inhibition. - Highlights: • GDC-0349 inhibits proliferation of HNSCC cells bearing high-level of p-AKT/p-S6K. • GDC-0349 activates caspase-dependent apoptosis in HNSCC cells. • Simultaneous blockage of mTORC1/2 by GDC-0349 induces autophagy activation. • Autophagy inhibitor or ATG-7 siRNA potentiates GDC-0349’s cytotoxicity. • C14 ceramide downregulates ATG-7 and sensitizes HNSCC cells to GDC-0349.

  9. [Exenteration of the Orbit for Basal Cell Carcinoma].

    Science.gov (United States)

    Furdová, A; Horkovičová, K; Krčová, I; Krásnik, V

    2015-08-01

    Primary treatment of basal cell carcinoma of the lower eyelid and the inner corner is essentially surgical, but advanced lesions require extensive surgical interventions. In some cases it is necessary to continue with the mutilating surgery--exenteration of the orbit. In this work we evaluate the indications of radical solutions in patients with basal cell carcinoma invading the orbit and the subsequent possibility for individually made prosthesis to cover the defect of the cavity. Indications to exenteration of the orbit in patients with basal cell carcinoma findings in 2008-2013. Case report of 2 patients. In period 2008-20013 at the Dept. of Ophthalmology, Comenius University in Bratislava totally 221 patients with histologically confirmed basal cell carcinoma of the eyelids and the inner corner were treated. In 5 cases (2.7 %) with infiltration of the orbit the radical surgical procedure, exenteration was necessary. In 3 patients exenteration was indicated as the first surgical procedure in the treatment of basal cell carcinoma, since they had never visited ophthalmologist before only at in the stage of infiltration of the orbit (stage T4). In one case was indicated exenteration after previous surgical interventions and relapses. After healing the cavity patients got individually prepared epithesis. Surgical treatment of basal cell carcinoma involves the radical removal of the neoplasm entire eyelid and stage T1 or T2 can effectively cure virtually all tumors with satisfactory cosmetic and functional results. In advanced stages (T4 stage) by infiltrating the orbit by basal cell carcinoma exenteration of the orbit is necessary. This surgery is a serious situation for the patient and also for his relatives. Individually made prosthesis helps the patient to be enrolled to the social environment.

  10. A Lentinus edodes polysaccharide induces mitochondrial-mediated apoptosis in human cervical carcinoma HeLa cells.

    Science.gov (United States)

    Ya, Guowei

    2017-10-01

    In this study, a homogeneous polysaccharide (LEP1) with an average molecular weight of 53kDa was successfully purified from the fruiting bodies of Lentinus edodes and its anticancer efficacy on human cervical carcinoma HeLa cells in vitro and associated possible molecular mechanism were also evaluated. MTT assay showed that LEP1 exhibited a dose-dependent inhibitory effect on the proliferation of HeLa cells and caused apoptotic death. Our present findings provided the first evidence that LEP1 induced the apoptosis of HeLa cells via a mitochondria dependent pathway, as indicated by an increase in Bax/Bcl-2 ratio, a loss of mitochondrial membrane potential (Δym), the release of cytochrome c from the mitochondria to the cytosol, activation of caspase-9 and caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP) in HeLa cells. These combined results unequivocally indicated that the involvement of mitochondria-mediated signaling pathway in LEP1-induced apoptosis and strongly provided experimental evidence for the use of LEP1 as a potential therapeutic agent in the prevention and treatment of human cervical carcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthetic Strigolactone Analogues Reveal Anti-Cancer Activities on Hepatocellular Carcinoma Cells

    KAUST Repository

    Hasan, Mohammed Nihal

    2018-02-09

    Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.

  12. Synthetic Strigolactone Analogues Reveal Anti-Cancer Activities on Hepatocellular Carcinoma Cells

    KAUST Repository

    Hasan, Mohammed Nihal; Choudhry, Hani; Razvi, Syed Shoeb; Moselhy, Said Salama; Kumosani, Taha Abduallah; Zamzami, Mazin A.; Omran, Ziad; Halwani, Majed A.; Al-Babili, Salim; Abualnaja, Khalid Omer; Al-Malki, Abdulrahman Labeed; Alhosin, Mahmoud; Asami, Tadao

    2018-01-01

    Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.

  13. Progression of Human Renal Cell Carcinoma via Inhibition of RhoA-ROCK Axis by PARG1

    Directory of Open Access Journals (Sweden)

    Junichiro Miyazaki

    2017-04-01

    Full Text Available Renal cell carcinoma (RCC is the most lethal urological malignancy with high risk of recurrence; thus, new prognostic biomarkers are needed. In this study, a new RCC antigen, PTPL1 associated RhoGAP1 (PARG1, was identified by using serological identification of recombinant cDNA expression cloning with sera from RCC patients. PARG1 protein was found to be differentially expressed in RCC cells among patients. High PARG1 expression is significantly correlated with various clinicopathological factors relating to cancer cell proliferation and invasion, including G3 percentage (P = .0046, Ki-67 score (p expression is also correlated with high recurrence of N0M0 patients (P = .0084 and poor prognosis in RCC patients (P = .0345. Multivariate analysis has revealed that high PARG1 expression is an independent factor for recurrence (P = .0149 of N0M0 RCC patients. In in vitro studies, depletion of PARG1by siRNA in human RCC cell lines inhibited their proliferation through inducing G1 cell cycle arrest via upregulation of p53 and subsequent p21Cip1/Waf1, which are mediated by increased RhoA-ROCK activities. Similarly, PARG1 depletion cells inhibited invasion ability via increasing RhoA-ROCK activities in the RCC cell lines. Conversely, overexpression of PARG1 on human embryonic kidney cell line HEK293T promotes its cell proliferation and invasion. These results indicate that PARG1 plays crucial roles in progression of human RCC in increasing cell proliferation and invasion ability via inhibition of the RhoA-ROCK axis, and PARG1 is a poor prognostic marker, particularly for high recurrence of N0M0 RCC patients.

  14. The regulatory role of heparin on c-Met signaling in hepatocellular carcinoma cells.

    Science.gov (United States)

    İşcan, Evin; Güneş, Aysim; Korhan, Peyda; Yılmaz, Yeliz; Erdal, Esra; Atabey, Neşe

    2017-06-01

    The role of heparin as an anticoagulant is well defined; however, its role in tumorigenesis and tumor progression is not clear yet. Some studies have shown that anticoagulant treatment in cancer patients improve overall survival, however, recent clinical trials have not shown a survival benefit in cancer patients receiving heparin treatment. In our previous studies we have shown the inhibitory effects of heparin on Hepatocyte Growth Factor (HGF)-induced invasion and migration in hepatocellular carcinoma (HCC) cells. In this study, we showed the differential effects of heparin on the behaviors of HCC cells based on the presence or absence of HGF. In the absence of HGF, heparin activated HGF/c-Met signaling and promoted motility and invasion in HCC cells. Heparin treatment led to c-Met receptor dimerization and activated c-Met signaling in an HGF independent manner. Heparin-induced c-Met activation increased migration and invasion through ERK1/2, early growth response factor 1 (EGR1) and Matrix Metalloproteinases (MMP) axis. Interestingly, heparin modestly decreased the proliferation of HCC cells by inhibiting activatory phosphorylation of Akt. The inhibition of c-Met signaling reversed heparin-induced increase in motility and invasion and, proliferation inhibition. Our study provides a new perspective into the role of heparin on c-Met signaling in HCC.

  15. Long non-coding RNA TUG1 promotes progression of oral squamous cell carcinoma through upregulating FMNL2 by sponging miR-219

    OpenAIRE

    Yan, Guangqi; Wang, Xue; Yang, Mingliang; Lu, Li; Zhou, Qing

    2017-01-01

    Oral squamous cell carcinoma (OSCC) is a prevalent oral disease with a high morbidity and mortality rate. Several long non-coding RNAs (lncRNAs) were identified as important regulators of carcinogenesis. However, the pathogenic implications of TUG1 in OSCC are still unclear. In the present study, the expression of TUG1 was increased in OSCC cells. Knockdown of TUG1 inhibited cell proliferation, migration, and invasion, and induced cell cycle arrest at G0/G1 phase, whereas overexpression of TU...

  16. Breast carcinoma with osteoclast-like giant cells

    DEFF Research Database (Denmark)

    Gjerdrum, L M; Lauridsen, M C; Sørensen, Flemming Brandt

    2001-01-01

    Primary carcinoma with osteoclast-like giant cells is a very rare tumour of the female breast. The clinical course, histological, immunohistochemical and ultrastructural features of 61 cases of invasive duct carcinoma with osteoclast-like multinucleated giant cells (OMGCs) are reviewed and a new...... in the literature have shown that 86% of patients with these tumours are still alive after 5 years. Histologically, these tumours are invasive ductal carcinomas with OMGCs next to the neoplastic glands and within their lumen. Signs of recent and past haemorrhage are ubiquitously present in the highly vascularized...

  17. Basal Cell Carcinoma: 10 Years of Experience

    International Nuclear Information System (INIS)

    Cigna, E.; Tarallo, M.; Maruccia, M.; Sorvillo, V.; Pollastrini, A.; Scuderi, N.

    2011-01-01

    Introduction. Basal cell carcinoma (BCC) is a locally invasive malignant epidermal tumour. Incidence is increasing by 10% per year; incidence of metastases is minimal, but relapses are frequent (40%-50%). The complete excision of the BCC allows reduction of relapse. Materials and Methods. The study cohort consists of 1123 patients underwent surgery for basal cell carcinoma between 1999 and 2009. Patient and tumor characteristics recorded are: age; gender; localization (head and neck, trunk, and upper and lower extremities), tumor size, excisional margins adopted, and relapses. Results. The study considered a group of 1123 patients affected by basal cell carcinoma. Relapses occurred in 30 cases (2,67%), 27 out of 30 relapses occurred in noble areas, where peripheral margin was <3mm. Incompletely excised basal cell carcinoma occurred in 21 patients (1,87%) and were treated with an additional excision. Discussion. Although guidelines indicate 3mm peripheral margin of excision in BCC <2cm, in our experience, a margin of less than 5mm results in a high risk of incomplete excisions

  18. Presumed choroidal metastasis of Merkel cell carcinoma

    International Nuclear Information System (INIS)

    Small, K.W.; Rosenwasser, G.O.; Alexander, E. III; Rossitch, G.; Dutton, J.J.

    1990-01-01

    Merkel cell carcinoma is a rare skin tumor of neural crest origin and is part of the amine precursor uptake and decarboxylase system. It typically occurs on the face of elderly people. Distant metastasis is almost uniformly fatal. Choroidal metastasis, to our knowledge, has not been described. We report a patient with Merkel cell carcinoma who had a synchronous solid choroidal tumor and a biopsy-proven brain metastasis. Our 56-year-old patient presented with a rapidly growing, violaceous preauricular skin tumor. Computed tomography of the head disclosed incidental brain and choroidal tumors. Light and electron microscopy of biopsy specimens of both the skin and the brain lesions showed Merkel cell carcinoma. Ophthalmoscopy, fluorescein angiography, and A and B echography revealed a solid choroidal mass. The brain and skin tumors responded well to irradiation. A radioactive episcleral plaque was applied subsequently to the choroidal tumor. All tumors regressed, and the patient was doing well 28 months later. To our knowledge this is the first case of presumed choroidal metastasis of Merkel cell carcinoma

  19. Genomic instability in human actinic keratosis and squamous cell carcinoma

    Science.gov (United States)

    Cabral, Luciana Sanches; Neto, Cyro Festa; Sanches, José A; Ruiz, Itamar R G

    2011-01-01

    OBJECTIVE: To compare the repetitive DNA patterns of human actinic keratoses and squamous cell carcinomas to determine the genetic alterations that are associated with malignant transformation. INTRODUCTION: Cancer cells are prone to genomic instability, which is often due to DNA polymerase slippage during the replication of repetitive DNA and to mutations in the DNA repair genes. The progression of benign actinic keratoses to malignant squamous cell carcinomas has been proposed by several authors. MATERIAL AND METHODS: Eight actinic keratoses and 24 squamous cell carcinomas (SCC), which were pair-matched to adjacent skin tissues and/or leucocytes, were studied. The presence of microsatellite instability (MSI) and the loss of heterozygosity (LOH) in chromosomes 6 and 9 were investigated using nine PCR primer pairs. Random Amplified Polymorphic DNA patterns were also evaluated using eight primers. RESULTS: MSI was detected in two (D6S251, D9S50) of the eight actinic keratosis patients. Among the 8 patients who had squamous cell carcinoma-I and provided informative results, a single patient exhibited two LOH (D6S251, D9S287) and two instances of MSI (D9S180, D9S280). Two LOH and one example of MSI (D6S251) were detected in three out of the 10 patients with squamous cell carcinoma-II. Among the four patients with squamous cell carcinoma-III, one patient displayed three MSIs (D6S251, D6S252, and D9S180) and another patient exhibited an MSI (D9S280). The altered random amplified polymorphic DNA ranged from 70% actinic keratoses, 76% squamous cell carcinoma-I, and 90% squamous cell carcinoma-II, to 100% squamous cell carcinoma-III. DISCUSSION: The increased levels of alterations in the microsatellites, particularly in D6S251, and the random amplified polymorphic DNA fingerprints were statistically significant in squamous cell carcinomas, compared with actinic keratoses. CONCLUSION: The overall alterations that were observed in the repetitive DNA of actinic keratoses and

  20. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Ji, S.Q.; Cao, J.; Zhang, Q.Y.; Li, Y.Y.; Yan, Y.Q.; Yu, F.X.

    2013-01-01

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis