WorldWideScience

Sample records for carcinogenesis molecular concepts

  1. Melanoma: Stem cells, sun exposure and hallmarks for carcinogenesis, molecular concepts and future clinical implications

    Directory of Open Access Journals (Sweden)

    Kyrgidis Athanassios

    2010-01-01

    Full Text Available Background :The classification and prognostic assessment of melanoma is currently based on morphologic and histopathologic biomarkers. Availability of an increasing number of molecular biomarkers provides the potential for redefining diagnostic and prognostic categories and utilizing pharmacogenomics for the treatment of patients. The aim of the present review is to provide a basis that will allow the construction-or reconstruction-of future melanoma research. Methods: We critically review the common medical databases (PubMed, EMBASE, Scopus and Cochrane CENTRAL for studies reporting on molecular biomarkers for melanoma. Results are discussed along the hallmarks proposed for malignant transformation by Hanahan and Weinberg. We further discuss the genetic basis of melanoma with regard to the possible stem cell origin of melanoma cells and the role of sunlight in melanoma carcinogenesis. Results: Melanocyte precursors undergo several genome changes -UV-induced or not- which could be either mutations or epigenetic. These changes provide stem cells with abilities to self-invoke growth signals, to suppress anti-growth signals, to avoid apoptosis, to replicate without limit, to invade, proliferate and sustain angiogenesis. Melanocyte stem cells are able to progressively collect these changes in their genome. These new potential functions, drive melanocyte precursors to the epidermis were they proliferate and might cause benign nevi. In the epidermis, they are still capable of acquiring new traits via changes to their genome. With time, such changes could add up to transform a melanocyte precursor to a malignant melanoma stem cell. Conclusions : Melanoma cannot be considered a "black box" for researchers anymore. Current trends in the diagnosis and prognosis of melanoma are to individualize treatment based on molecular biomarkers. Pharmacogenomics constitute a promising field with regard to melanoma patients′ treatment. Finally, development of novel

  2. Molecular mechanisms in radiation carcinogenesis: introduction

    International Nuclear Information System (INIS)

    Molecular studies of radiation carcinogenesis are discussed in relation to theories for extrapolating from cellular and animal models to man. Skin cancer is emphasized because of sunlight-induced photochemical damage to DNA. It is emphasized that cellular and animal models are needed as well as molecular theories for quantitative evaluation of hazardous environmental agents. (U.S.)

  3. Molecular mechanism of cholangiocarcinoma carcinogenesis.

    Science.gov (United States)

    Maemura, Kosei; Natsugoe, Shoji; Takao, Sonshin

    2014-10-01

    Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with a poor prognosis, which often arises from conditions causing long-term inflammation, injury, and reparative biliary epithelial cell proliferation. Several conditions are known to be major risk factors for cancer in the biliary tract or gallbladder, including primary sclerosing cholangitis, liver fluke infection, pancreaticobiliary maljunction, and chemical exposure in proof-printing workers. Abnormalities in various signaling cascades, molecules, and genetic mutations are involved in the pathogenesis of CCA. CCA is characterized by a series of highly recurrent mutations in genes, including KRAS, BRF, TP53, Smad, and p16(INK4a) . Cytokines that are affected by inflammatory environmental conditions, such as interleukin-6 (IL-6), transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and platelet-derived growth factor (PDGF), play an important role in cancer pathogenesis. Prominent signaling pathways important in carcinogenesis include TGF-β/Smad, IL-6/STAT-3, PI3K/AKT, Wnt, RAF/MEK/MAPK, and Notch. Additionally, some microRNAs regulate targets in critical pathways of CCA development and progression. This review article provides the understanding of the genetic and epigenetic mechanism(s) of carcinogenesis in CCA, which leads to the development of new therapeutic targets for the prevention and treatment of this devastating cancer. PMID:24895231

  4. Diet, lifestyle, and molecular alterations that drive colorectal carcinogenesis

    NARCIS (Netherlands)

    Diergaarde, B.

    2004-01-01

    Environmental factors have been repeatedly implicated in the etiology of colorectal cancer, and much is known about the molecular events involved in colorectal carcinogenesis. The relationships between environmental risk factors and the molecular alterations that drive colorectal carcinogenesis are

  5. Carcinogenesis

    International Nuclear Information System (INIS)

    Progress is reported on studies at the molecular, biochemical, and immunological level of carcinogenesis induced in mice by viruses, radiation, or environmental chemicals alone or in combinations. Emphasis was placed on the identification and assessments of cocarcinogens and studies on their mechanisms of action. Data are included on mechanisms of carcinogenesis in the liver, thyroid, Harderian glands, skin, and lungs. The effects of the food additive butylated hydroxytoluene (BHT), phenobarbitol, DDT, uv irradiation, the herbicide 3-amino-1,2,4-triazole(AT), the pituitary hormone prolactin, topically applied 8-methoxypsoralen (8-MOP), and benzo(a) pyrene(BaP) on tumor induction or enhancement were studied

  6. Modifier-concept of colorectal carcinogenesis: Lipidomics as a technical tool in pathway analysis

    Institute of Scientific and Technical Information of China (English)

    Nikolaus; Gassler; Christina; Klaus; Elke; Kaemmerer; Andrea; Reinartz

    2010-01-01

    In the modifier concept of intestinal carcinogenesis, lipids have been established as important variables and one focus is given to long-chain fatty acids. Increased consumption of long-chain fatty acids is in discussion to modify the development of colorectal carcinoma in humans. Saturated long-chain fatty acids, in particular, are assumed to promote carcinogenesis, whereas poly-unsaturated forms are likely to act in the opposite way. At present, the molecular mechanisms behind these effects are not well u...

  7. Molecular aspects of carcinogenesis in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Alexandros Koliopanos; Constantinos Avgerinos; Constantina Paraskeva; Zisis Touloumis; Dionisisa Kelgiorgi; Christos Dervenis

    2008-01-01

    BACKGROUND: Pancreatic cancer (PCa) is one of the most aggressive human solid tumors, with rapid growth and metastatic spread as well as resistance to chemotherapeutic drugs, leading rapidly to virtually incurable disease. Over the last 20 years, however, signiifcant advances have been made in our understanding of the molecular biology of PCa, with a focus on the cytogenetic abnormalities in PCa cell growth and differentiation. DATA SOURCES: A MEDLINE search and manual cross-referencing were utilized to identify published data for PCa molecular biology studies between 1986 and 2008, with emphasis on genetic alterations and developmental oncology. RESULTS: Activation of oncogenes, deregulation of tumor suppressor and genome maintenance genes, upregulation of growth factors/growth factor receptor signaling cascade systems, and alterations in cytokine expression, have been reported to play important roles in the process of pancreatic carcinogenesis. Alterations in the K-ras proto-oncogene and the p16INK4a, p53, FHIT, and DPC4 tumor suppressor genes occur in a high percentage of tumors. Furthermore, a variety of growth factors are expressed at increased levels. In addition, PCa often exhibits alterations in growth inhibitory pathways and evades apoptosis through p53 mutations and aberrant expression of apoptosis-regulating genes, such as members of the Bcl family. Additional pathways in the development of an aggressive phenotype, local inifltration and metastasis are still under ongoing genetic research. The present paper reviews recent studies on the pathogenesis of PCa, and includes a brief reference to alterations reported for other types of pancreatic tumor. CONCLUSIONS: Advances in molecular genetics and biology have improved our perception of the pathogenesis of PCa. However, further studies are needed to better understand the fundamental changes that occur in PCa, thus leading to better diagnostic and therapeutic management.

  8. Molecular epidemiology of radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    The role of ionizing radiation in carcinogenesis is discussed. Every cell contains proto-oncogenes, which if damaged may lead to cell transformation. Every cell also contains tumor suppressor genes, which guard against transformation. Thus, transformation would seem to require a double injury to the DNA in a cell. Ionizing radiation is known to be a relatively weak mutagen, but a good clastogen (inducer of chromosome breaks, deletions and rearrangements). Ionizing radiation may therefore be a 'promoter' of cancer, i.e. a stimulant of the clonal expansion of transformed cells, if it kills enough cells to induce compensatory hyperplasia - i.e. rapid growth of cells. Ionizing radiation may be a 'progressor', if it deactivates tumor suppressor genes tending to suppress the growth of existing clones of transformed cells resulting from any of numerous causes. It may therefore be an oversimplification to say that radiation causes cancer; rather, it seems to be a weak initiator, an indirect promoter, and a late-stage progressor. 2 figs

  9. A Review of Molecular Events of Cadmium-Induced Carcinogenesis

    OpenAIRE

    Luevano, Joe; Damodaran, Chendil

    2014-01-01

    Cadmium (Cd) is a toxic, heavy industrial metal that poses serious environmental health hazards to both humans and wildlife. Lately, Cd and Cd containing compounds have been classified as known human carcinogens and epidemiological data show causal associations with prostate, breast and lung cancer. The molecular mechanisms involved in Cd-induced carcinogenesis are poorly understood and are only now beginning to be elucidated. The effects of chronic exposure to Cd have recently become of grea...

  10. Molecular oncology focus - Is carcinogenesis a 'mitochondriopathy'?

    Directory of Open Access Journals (Sweden)

    Ścińska Anna

    2010-04-01

    Full Text Available Abstract Mitochondria are sub-cellular organelles that produce adenosine triphosphate (ATP through oxidative phosphorylation (OXPHOS. As suggested over 70 years ago by Otto Warburg and recently confirmed with molecular techniques, alterations in respiratory activity and in mitochondrial DNA (mtDNA appear to be common features of malignant cells. Somatic mtDNA mutations have been reported in many types of cancer cells, and some reports document the prevalence of inherited mitochondrial DNA polymorphisms in cancer patients. Nevertheless, a careful reanalysis of methodological criteria and methodology applied in those reports has shown that numerous papers can't be used as relevant sources of data for systematic review, meta-analysis, or finally for establishment of clinically applicable markers. In this review technical and conceptual errors commonly occurring in the literature are summarized. In the first place we discuss, why many of the published papers cannot be used as a valid and clinically useful sources of evidence in the biomedical and healthcare contexts. The reasons for introduction of noise in data and in consequence - bias for the interpretation of the role of mitochondrial DNA in the complex process of tumorigenesis are listed. In the second part of the text practical aspects of mtDNA research and requirements necessary to fulfill in order to use mtDNA analysis in clinics are shown. Stringent methodological criteria of a case-controlled experiment in molecular medicine are indicated. In the third part we suggest, what lessons can be learned for the future and propose guidelines for mtDNA analysis in oncology. Finally we conclude that, although several conceptual and methodological difficulties hinder the research on mitochondrial patho-physiology in cancer cells, this area of molecular medicine should be considered of high importance for future clinical practice.

  11. A Review of Molecular Events of Cadmium-Induced Carcinogenesis

    Science.gov (United States)

    Luevano, Joe; Damodaran, Chendil

    2014-01-01

    Cadmium (Cd) is a toxic, heavy industrial metal that poses serious environmental health hazards to both humans and wildlife. Lately, Cd and Cd containing compounds have been classified as known human carcinogens and epidemiological data show causal associations with prostate, breast and lung cancer. The molecular mechanisms involved in Cd-induced carcinogenesis are poorly understood and are only now beginning to be elucidated. The effects of chronic exposure to Cd have recently become of great interest due to the development of malignancies in Cd-induced tumorigenesis in animal. Briefly, various in vitro studies demonstrate that Cd can act as a mitogen, stimulate cell proliferation, inhibit apoptosis and DNA repair, and induce carcinogenesis in several mammalian tissues and organs. Thus, the various mechanisms involved in chronic Cd exposure and malignant transformations warrant further investigation. In this review, we will focus on recent evidence of various leading general and tissue specific molecular mechanisms that follow chronic exposure to Cd in prostate, breast and lung transformed malignancies. In addition, this review considers less defined mechanisms such as epigenetic modification and autophagy, which are thought to play a role in the development of Cd-induced malignant transformation. PMID:25272057

  12. Carcinogenesis

    International Nuclear Information System (INIS)

    This section contains summaries of research in the following areas: use of liver for mechanistic studies of multistage hepatocarcinogenesis and for screening of environmental contaminants for tumor initiating and promoting activity; molecular properties of rat liver ornithine aminotransferase; regulation of gene expression in rat liver; methods of tumor detection; mechanisms of radiation and viral oncogenesis; biphenyl metabolism by rat liver microsomes; and studies on aryl hydrocarbon hydroxylase activity

  13. The molecular mechanisms of hazardous metals for carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    ChenJK; LeiYX

    2002-01-01

    The available experimental and epidemiological data have shown that nickel (Ni) and cadmium (Dd) and their compounds are carcinogenic to experimental animals and human.These two metals have been classified as human carcinogens bythe International Agency for Research on Cancer (IARC).However,Their underlying molecular mechanisms remain unknown.The objective of this research was to investigate the molecular mechanisms responsible for Ni and Cd carcinogenesis through epidemiological study in human exposure,transformation expreiments in human epithelial cells (16HBE) and BALB/c-3T3 cell lines in vitro,DNA damage detections (comet,DNA-protein crosslinks) as well as telomerase activity and apoptosis assay,and analysis of oncogens,tumor suppressor genes and their mutation (including genomic instability,k-ras,p15,p16,p53,FHIT) in transformed cell lines or tumor cells/tissue.Furthermore,we also detected and analyses the methylation,related novel genes and encoded protein in Cd transformed cells.The results and conclusion are as follows:(1)There is significant relationship between some hazardous metals and lung cancer (OR=8.76),especially for nickel(OR=11.25).(2)Ni and Cd and their compounds could induce malignant transformation in mammalian cell lines and human epithelial cells,and induce tumorigenesis in nude mice.(3)There is obvious DNA damage during cell transformation and tumorigenesis induced by Ni.(4) Significant genomic instability has been shown during cell transformation and tumorigenesis induced by Ni.(5)Detection of k-ras,p15,p16 genes in point mutation have demonstrated no changes during cell transformation and tumorigenesis induced by hazardous medals,suggesting that gene mutation is not the main way to metal carcinogenesis.(6)There are some aberrant DNA methylation in Cdtransformed cell lines.(7)We found two novel Cd-responsive proto-oncogenes and their encoded proteins in Cd-transformed cell lines.

  14. BRAFV600E: implications for carcinogenesis and molecular therapy.

    LENUS (Irish Health Repository)

    Cantwell-Dorris, Emma R

    2012-02-01

    The mitogen-activated protein kinase (MAPK)\\/extracellular signal-regulated kinase (ERK) pathway is frequently mutated in human cancer. This pathway consists of a small GTP protein of the RAS family that is activated in response to extracellular signaling to recruit a member of the RAF kinase family to the cell membrane. Active RAF signals through MAP\\/ERK kinase to activate ERK and its downstream effectors to regulate a wide range of biological activities including cell differentiation, proliferation, senescence, and survival. Mutations in the v-raf murine sarcoma viral oncogenes homolog B1 (BRAF) isoform of the RAF kinase or KRAS isoform of the RAS protein are found as activating mutations in approximately 30% of all human cancers. The BRAF pathway has become a target of interest for molecular therapy, with promising results emerging from clinical trials. Here, the role of the most common BRAF mutation BRAF(V600E) in human carcinogenesis is investigated through a review of the literature, with specific focus on its role in melanoma, colorectal, and thyroid cancers and its potential as a therapeutic target.

  15. Recent Concepts of Ovarian Carcinogenesis: Type I and Type II

    Directory of Open Access Journals (Sweden)

    Masafumi Koshiyama

    2014-01-01

    Full Text Available Type I ovarian tumors, where precursor lesions in the ovary have clearly been described, include endometrioid, clear cell, mucinous, low grade serous, and transitional cell carcinomas, while type II tumors, where such lesions have not been described clearly and tumors may develop de novo from the tubal and/or ovarian surface epithelium, comprise high grade serous carcinomas, undifferentiated carcinomas, and carcinosarcomas. The carcinogenesis of endometrioid and clear cell carcinoma (CCC arising from endometriotic cysts is significantly influenced by the free iron concentration, which is associated with cancer development through the induction of persistent oxidative stress. A subset of mucinous carcinomas develop in association with ovarian teratomas; however, the majority of these tumors do not harbor any teratomatous component. Other theories of their origin include mucinous metaplasia of surface epithelial inclusions, endometriosis, and Brenner tumors. Low grade serous carcinomas are thought to evolve in a stepwise fashion from benign serous cystadenoma to a serous borderline tumor (SBT. With regard to high grade serous carcinoma, the serous tubal intraepithelial carcinomas (STICs of the junction of the fallopian tube epithelium with the mesothelium of the tubal serosa, termed the “tubal peritoneal junction” (TPJ, undergo malignant transformation due to their location, and metastasize to the nearby ovary and surrounding pelvic peritoneum. Other theories of their origin include the ovarian hilum cells.

  16. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Payne CM

    2011-05-01

    Full Text Available Claire M Payne, Cheray Crowley-Skillicorn, Carol Bernstein, Hana Holubec, Harris BernsteinDepartment of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USAAbstract: Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the “hot spots” in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss.Keywords: chromosome 1p, colon carcinogenesis, molecular pathways, cellular pathways

  17. Recent advances in molecular biology of gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    萧树东; 冉志华

    2003-01-01

    Gastric cancer is a major health care problem and the second most common fatal cancer worldwide. In the last decade, better insight has been gained into the molecular basis underlying the neoplasitc transformation of stomach. The dramatic variation in the incidence of gastric cancer in different geographical areas and from one generation to the next have led to the hypothesis that the incidence of gastric cancer is determined largely by environmental rather than genetic factors.

  18. Gastric Carcinogenesis and Underlying Molecular Mechanisms: Helicobacter pylori and Novel Targeted Therapy

    Directory of Open Access Journals (Sweden)

    Toshihiro Nishizawa

    2015-01-01

    Full Text Available The oxygen-derived free radicals that are released from activated neutrophils are one of the cytotoxic factors of Helicobacter pylori-induced gastric mucosal injury. Increased cytidine deaminase activity in H. pylori-infected gastric tissues promotes the accumulation of various mutations and might promote gastric carcinogenesis. Cytotoxin-associated gene A (CagA is delivered into gastric epithelial cells via bacterial type IV secretion system, and it causes inflammation and activation of oncogenic pathways. H. pylori infection induces epigenetic transformations, such as aberrant promoter methylation in tumor-suppressor genes. Aberrant expression of microRNAs is also reportedly linked to gastric tumorogenesis. Moreover, recent advances in molecular targeting therapies provided a new interesting weapon to treat advanced gastric cancer through anti-human epidermal growth factor receptor 2 (HER-2 therapies. This updated review article highlights possible mechanisms of gastric carcinogenesis including H. pylori-associated factors.

  19. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  20. Nanocytological field carcinogenesis detection to mitigate overdiagnosis of prostate cancer: a proof of concept study.

    Directory of Open Access Journals (Sweden)

    Hemant K Roy

    Full Text Available To determine whether nano-architectural interrogation of prostate field carcinogenesis can be used to predict prognosis in patients with early stage (Gleason 6 prostate cancer (PCa, which is mostly indolent but frequently unnecessarily treated.We previously developed partial wave spectroscopic microscopy (PWS that enables quantification of the nanoscale intracellular architecture (20-200 nm length scale with remarkable accuracy. We adapted this technique to assess prostate needle core biopsies in a case control study from men with Gleason 6 disease who either progressed (n = 20 or remained indolent (n = 18 over a ~3 year follow up. We measured the parameter disorder strength (Ld characterizing the spatial heterogeneity of the nanoscale cellular structure and nuclear morphology from the microscopically normal mucosa ~150 histologically normal epithelial cells.There was a profound increase in nano-architectural disorder between progressors and non-progressors. Indeed, the Ld from future progressors was dramatically increased when compared to future non-progressors (1±0.065 versus 1.30±0.0614, respectively p = 0.002. The area under the receiver operator characteristic curve (AUC was 0.79, yielding a sensitivity of 88% and specificity of 72% for discriminating between progressors and non-progressors. This was not confounded by demographic factors (age, smoking status, race, obesity, thus supporting the robustness of the approach.We demonstrate, for the first time, that nano-architectural alterations occur in prostate cancer field carcinogenesis and can be exploited to predict prognosis of early stage PCa. This approach has promise in addressing the clinically vexing dilemma of management of Gleason 6 PCa and may provide a paradigm for dealing with the larger issue of cancer overdiagnosis.

  1. The role of B-vitamins - gene interactions in colorectal carcinogenesis: A molecular epidemiological approach

    NARCIS (Netherlands)

    Donk, van den M.

    2005-01-01

    Folate deficiency can affect DNA methylation and DNA synthesis. Both factors may be operative in colorectal carcinogenesis. Many enzymes, like methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS), methionine synthase (MTR), and serine hydroxymethyltransferase (SHMT), are needed for

  2. Molecular aspects of hepatic carcinogenesis Aspectos moleculares da carcinogênese hepática

    OpenAIRE

    Marcelo Eidi NITA; Alves, Venâncio Avancini Ferreira; Carrilho, Flair José; Ono-Nita, Suzane Kioko; de Mello, Evandro Sobroza; Joaquim J. Gama-Rodrigues

    2002-01-01

    Exogenous agents correlated with hepatocellular carcinoma (HCC) have been identified and well characterized. These agents, including the different viruses that cause chronic hepatitis and cirrhosis, can lead to regenerative nodules and dysplastic nodules/adenomatous hyperplasia. These conditions associated with several molecular alterations of hepatocyte ultimately culminate in hepatocellular carcinoma. Recently, there has been a great progress in the identification of somatic and germinative...

  3. Studies on the repair of double strand break of DNA and cellular carcinogenesis, and consideration on the concept of extinction of nuclear power

    International Nuclear Information System (INIS)

    This paper describes the relationship between the repair of double strand break (DSB) of DNA and cellular carcinogenesis mainly on author's investigations, and his recent thought aiming at the extinction of nuclear power. The molecular repairing system is explained about DNA DSB induced by radiation and chemicals. When DSB occurs, nucleosome consisting from 4 core-histones participates to link the broken ends and then repair mechanisms of homologous recombination (HRR) and non-homologous end joining (NHEJ) begin to work. The latter is dominant in mammalians. Thus the genetic defect in these systems of DSB response and repair is a course of disorders such as ataxia telangiectasia (AT) (DSB sensor defect), genetic breast cancer (HRR defect), and radiosensitive-severe combined immunodeficiency (RS-SCID) (NHEJ defect), all of which result in cancer formation. NHEJ repair is known to be error-prone. Against multi-step carcinogenesis where accumulated gene mutations lead to the cancer formation, the author thinks chromosomal instability is one of important carcinogenic causes: the instability can be a trigger of producing cancer stem cells because the cells can be yielded from mouse embryonic stem cells where DSB is shown to participate in the process. Low dose radiation produces a small amount of DSB, to which the repair response is less sensitive at G2/M checkpoint, ultimately leading to genomic instability. Considering effects of the low dose radiation exposure above, and of the internal exposure to 3H-thymidine beta ray in cells, of indoor Rn participating 16% of lung cancer incidence (Canadian epidemiological data) and so on, together with moral and social responsibility of scientist and technologist, the author says to have attained to the concept of the ''Extinction of Nuclear Power''. (T.T)

  4. The molecular concept of law

    OpenAIRE

    Hendrik Gommer

    2011-01-01

    In his famous work The Concept of Law Hart asked himself the question 'what is law?' Hart makes a very strict distinction between rules and morals: morals are rooted in biology, rules source back to society. Hart's sociological truisms have proven to be untrue, because modern evolutionary biology is not about the survival of the individual (or even of a species) but about the spreading of genes. This knowledge changes the fundamentals of Hart's theory and therefore his theory as a whole. In a...

  5. The molecular concept of law

    Directory of Open Access Journals (Sweden)

    Hendrik Gommer

    2011-04-01

    Full Text Available In his famous work The Concept of Law Hart asked himself the question 'what is law?' Hart makes a very strict distinction between rules and morals: morals are rooted in biology, rules source back to society. Hart's sociological truisms have proven to be untrue, because modern evolutionary biology is not about the survival of the individual (or even of a species but about the spreading of genes. This knowledge changes the fundamentals of Hart's theory and therefore his theory as a whole. In addition, my theory captures vital insights of Dworkin, legal realism, Posner and CLS, while at the same time forming a significant improvement upon them.In essence, the biological theory of law presented in this article is based on fractal patterns. Macroscale patterns recur in microscale patterns. The spreading of genes depends on important characteristics of genes: they are stable, they replicate, they need nutrients to replicate and they can cooperate. Superficially, genes, cells, organisms and groups may seem to act purposefully, but it is merely a pattern, with genes as generators, that brings structure to chaos. Human desires are in fact the needs of their genes. Thanks to language, morals can be put in words and become rules. To keep everyone working together, we need an ingenious device - like the law - to maintain that complex situations can continue to be judged on the basis of the simple principle of stability and reciprocity. To a degree, therefore, law itself can be derived from unconscious emotions and morals.

  6. Non-steroidal anti-inflammatory drugs and molecular carcinogenesis of colorectal carcinomas

    NARCIS (Netherlands)

    Huls, G; Koornstra, JJ; Kleibeuker, JH

    2003-01-01

    Context Colorectal cancer is the second most common cause of cancer-related mortality in the west. The high incidence and mortality make effective prevention an important public-health and economic issue. Non-steroidal anti-inflammatory drugs (NSAIDs) can inhibit colorectal-carcinogenesis and are am

  7. Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Wei-Jian Sun; Xiang Zhou; Ji-Hang Zheng; Ming-Dong Lu; Jian-Yun Nie; Xiang-Jiao Yang; Zhi-Qiang Zheng

    2012-01-01

    Histone acetyltransferases and deacetylases are two groups of enzymes whose opposing activities govern the dynamic levels of reversible acetylation on specific lysine residues of histones and many other proteins.Gastrointestinal (GI) carcinogenesis is a major cause of morbidity and mortality worldwide.In addition to genetic and environmental factors,the role of epigenetic abnormalities such as aberrant histone acetylation has been recognized to be pivotal in regulating benign tumorigenesis and eventual malignant transformation.Here we provide an overview of histone acetylation,list the major groups of histone acetyltransferases and deacetylases,and cover in relatively more details the recent studies that suggest the links of these enzymes to GI carcinogenesis.As potential novel therapeutics for GI and other cancers,histone deacetylase inhibitors are also discussed.

  8. Cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis

  9. Molecular analysis of tumor-promoting CD8+ T cells in two-stage cutaneous chemical carcinogenesis.

    Science.gov (United States)

    Kwong, Bernice Y; Roberts, Scott J; Silberzahn, Tobias; Filler, Renata B; Neustadter, Jason H; Galan, Anjela; Reddy, Swapna; Lin, William M; Ellis, Peter D; Langford, Cordelia F; Hayday, Adrian C; Girardi, Michael

    2010-06-01

    T-pro are tumor-infiltrating TCRalphabeta(+)CD8(+) cells of reduced cytotoxic potential that promote experimental two-stage chemical cutaneous carcinogenesis. Toward understanding their mechanism of action, this study uses whole-genome expression analysis to compare T-pro with systemic CD8(+) T cells from multiple groups of tumor-bearing mice. T-pro show an overt T helper 17-like profile (high retinoic acid-related orphan receptor-(ROR)gammat, IL-17A, IL-17F; low T-bet and eomesodermin), regulatory potential (high FoxP3, IL-10, Tim-3), and transcripts encoding epithelial growth factors (amphiregulin, Gro-1, Gro-2). Tricolor flow cytometry subsequently confirmed the presence of TCRbeta(+) CD8(+) IL-17(+) T cells among tumor-infiltrating lymphocytes (TILs). Moreover, a time-course analysis of independent TIL isolates from papillomas versus carcinomas exposed a clear association of the "T-pro phenotype" with malignant progression. This molecular characterization of T-pro builds a foundation for elucidating the contributions of inflammation to cutaneous carcinogenesis, and may provide useful biomarkers for cancer immunotherapy in which the widely advocated use of tumor-specific CD8(+) cytolytic T cells should perhaps accommodate the cells' potential corruption toward the T-pro phenotype. The data are also likely germane to psoriasis, in which the epidermis may be infiltrated by CD8(+) IL-17-producing T cells.

  10. Study to evaluate molecular mechanics behind synergistic chemo-preventive effects of curcumin and resveratrol during lung carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Anshoo Malhotra

    Full Text Available BACKGROUND: The combination approach is the future of the war against cancer and the present study evaluated molecular mechanics behind the synergistic effects of curcumin and resveratrol during lung carcinogenesis. METHODS: The mice were segregated into five groups which included normal control, Benzo[a]pyrene[BP] treated, BP+curcumin treated, BP+resveratrol treated and BP+curcumin+resveratrol treated. RESULTS: The morphological analyses of tumor nodules confirmed lung carcinogenesis in mice after 22 weeks of single intra-peritoneal[i.p] injection of BP at a dose of 100 mg/Kg body weight. The BP treatment resulted in a significant increase in the protein expressions of p53 in the BP treated mice. Also, a significant increase in the protein expression of phosphorylated p53[ser15] confirmed p53 hyper-phosphorylation in BP treated mice. On the other hand, enzyme activities of caspase 3 and caspase 9 were noticed to be significantly decreased following BP treatment. Further, radiorespirometric studies showed a significant increase in the 14C-glucose turnover as well as 14C-glucose uptake in the lung slices of BP treated mice. Moreover, a significant rise in the cell proliferation was confirmed indirectly by enhanced uptake of 3H-thymidine in the lung slices of BP treated mice. Interestingly, combined treatment of curcumin and resveratrol to BP treated animals resulted in a significant decrease in p53 hyper-phosphorylation, 14C glucose uptakes/turnover and 3H-thymidine uptake in the BP treated mice. However, the enzyme activities of caspase 3 and caspase 9 showed a significant increase upon treatment with curcumin and resveratrol. CONCLUSION: The study, therefore, concludes that molecular mechanics behind chemo-preventive synergism involved modulation of p53 hyper-phosphorylation, regulation of caspases and cellular metabolism enzymes.

  11. Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available The monitoring of pancreatic ductal adenocarcinoma (PDAC in high-risk populations is essential. Cathepsin E (CTSE is specifically and highly expressed in PDAC and pancreatic intraepithelial neoplasias (PanINs, and its expression gradually increases along with disease progression. In this study, we first established an in situ 7,12-dimethyl-1,2-benzanthracene (DMBA-induced rat model for PanINs and PDAC and then confirmed that tumorigenesis properties in this model were consistent with those of human PDAC in that CTSE expression gradually increased with tumor development using histology and immunohistochemistry. Then, using in vivo imaging of heterotopically implanted tumors generated from CTSE- overexpressing cells (PANC-1-CTSE in nude mice and in vitro imaging of PanINs and PDAC in DMBA-induced rats, the specificity of the synthesized CTSE-activatable probe was verified. Quantitative determination identified that the fluorescence signal ratio of pancreatic tumor to normal pancreas gradually increased in association with progressive pathological grades, with the exception of no significant difference between PanIN-II and PanIN-III grades. Finally, we monitored pancreatic carcinogenesis in vivo using confocal laser endomicroscopy (CLE in combination with the CTSE-activatable probe. A prospective double-blind control study was performed to evaluate the accuracy of this method in diagnosing PDAC and PanINs of all grades (>82.7%. This allowed us to establish effective diagnostic criteria for CLE in PDAC and PanINs to facilitate the monitoring of PDAC in high-risk populations.

  12. Curcumin Protects against UVB-Induced Skin Cancers in SKH-1 Hairless Mouse: Analysis of Early Molecular Markers in Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Kuen-Daw Tsai

    2012-01-01

    Full Text Available Curcumin (CUR has been shown to possess a preventive effect against various cancers and interfere with multiple-cell signaling pathways. We evaluated the protective effects of CUR in regression of UVB-induced skin tumor formation in SKH-1 hairless mice and its underlying early molecular biomarkers associated with carcinogenesis. Mice irradiated with UVB at 180 mJ/cm2 twice per week elicited 100% tumor incidence at 20 weeks. Topical application of CUR prior to UVB irradiation caused delay in tumor appearance, multiplicity, and size. Topical application of CUR prior to and immediately after a single UVB irradiation (180 mJ/cm2 resulted in a significant decrease in UVB-induced thymine dimer-positive cells, expression of proliferative cell nuclear antigen (PCNA, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and apoptotic sunburn cells together with an increase in p53 and p21/Cip1-positive cell population in epidermis. Simultaneously, CUR also significantly inhibited NF-κB, cyclooxygenase-2 (COX-2, prostaglandin E2 (PGE2, and nitric oxide (NO levels. The results suggest that the protective effect of CUR against photocarcinogenesis is accompanied by downregulation of cell proliferative controls, involving thymine dimer, PCNA, apoptosis, transcription factors NF-κB, and of inflammatory responses involving COX-2, PGE2, and NO, while upregulation of p53 and p21/Cip1 to prevent DNA damage and facilitate DNA repair.

  13. Célula tronco tumoral: novo conceito em carcinogênese colorretal Câncer stem cells: a new concept in colorectal carcinogenesis

    Directory of Open Access Journals (Sweden)

    Mauro de Souza Leite Pinho

    2009-03-01

    Full Text Available Apesar dos grandes avanços obtidos pelos estudos utilizando técnicas de biologia molecular diversas controvérsias persistem a respeito do mecanismo de carcinogênese colorretal. Ao longo do último ano, entretanto, observamos na literatura o surgimento de um novo conceito referente à existência de um conjunto de células situadas nas bases das criptas intestinais, as quais apresentam características bastante distintas do restante das células epiteliais. Estas células, denominadas como células tronco intestinais, apresentam-se de forma indiferenciada e com um ciclo de vida com duração superior a um ano. Desta forma, justifica-se assim nestas células a possibilidade da ocorrência de um acúmulo de mutações, etapa considerada essencial para o desenvolvimento do processo neoplásico, e que seria improvável de ocorrer em um colonócito normal, cujo ciclo de vida dura em média cinco dias. Outra importante evidência da participação destas células tronco no mecanismo de carcinogênese foi demonstrada por estudos capazes de reproduzir a formação de tecidos neoplásicos com a mesma característica do tumor original, a partir do implante de um reduzido número destas células em modelos experimentais, o que não se obtém através do implante de um grande número de células tumorais normais. Sabendo-se que a presença de uma mutação do gene APC é uma etapa precoce no processo de carcinogênese colorretal, acredita-se que esta exerça este papel contribuindo para a ocorrência de uma superpopulação de células tronco intestinais, levando a um desequilíbrio proliferativo na mucosa intestinal.Despite the great number of studies using molecular biology tools several questions remain about the mechanisms of colorectal carcinogenesis. A recent concept has emerged from the literature regarding the existence of a specific group of indiferentiated cells situated at the bottom of intestinal crypts with a long life cycle that may last

  14. The molecular biology of radiation-induced carcinogenesis: thymic lymphoma, myeloid leukaemia and osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Janowski, M. (Centre d' Etude de l' Energie Nucleaire, Mol (Belgium)); Cox, R. (Medical Research Council, Harwell (UK). Radiobiological Research Unit); Strauss, P.G. (GSF, Neuherberg (Germany, F.R.). Abt. fuer Molekulare Zellpathologie)

    1990-04-01

    In mice, external X- or {gamma}-irradiation may induce thymic lymphomas or myeloid leukaemias, while bone-seeking {alpha}-emitters may induce osteosarcomas, and to a lesser extent acute myeloid leukaemia. The paper reviews briefly some experimental data in respect to molecular mechanisms underlying these radio-carcinogenic processes. Thymic lymphomagenesis proceeds by an indirect mechanism in which recombinant proviruses could be involved. Myeloid leukaemogenesis is characterized by a very early putative initiating event, consisting of non-random rearrangements and/or deletions of chromosome 2. Osteosarcomagenesis in mice is often associated with the expression of proviruses, and the tumors often contain somatically acquired proviruses. (UK).

  15. The molecular basis for carcinogenesis in metaplastic columnar-lined esophagus.

    Science.gov (United States)

    Souza, R F; Meltzer, S J

    1997-09-01

    A wide variety of biologic events and mechanisms appear to have roles in the development and progression of Barrett's esophagus-associated neoplastic lesions. Figure 5 is a schematic depiction of these events. This is known as an infernogram (named after Dante's Inferno) (S. Kern, unpublished presentations, 1996). Events at the bottom rings of the inferno are high-frequency mutations; nearer to the top of the inferno are the less common events. The next several years promise many further discoveries of not only high-frequency and low-frequency events, but also their application. Some of the molecular alterations already studied show promise as markers for early cancer detection or prognostication. Eventually, applications of these discoveries should yield new and more effective means of preventing and treating the deadly complications of this troublesome premalignant condition.

  16. [Correlation between histological and molecular mechanisms of carcinogenesis in stomach cancer].

    Science.gov (United States)

    Rüschoff, J; Mehringer, S; Beyser, K; Dietmaier, W; Langner, C; Bocker, T; Kullmann, F

    1999-01-01

    Since gastric cancer is an exceptional heterogeneous tumor conflicting results have been obtained about the relationship between genotype and phenotype. From the molecular point of view gastric carcinoma diffuse type forms a distinct entity which is microsatellite stable, has almost no p53 mutations and exhibits in at least half of the cases mutations in the E-cadherin gene. In contrast, all other gastric carcinomas comprise a heterogeneous group of which about one third exhibits microsatellite instability (MSI) but no p53 protein stabilization or gene mutations. These tumors are either of pure intestinal (glandular) type or show large solid (medullary) tumor cell clusters. Thereby, in sporadic gastric cancer MSI is caused by loss of hMLH1 expression due to hypermethylation of the promotor region rather than by mutation of the gene itself. Tumors that are microsatellite stable (MSS) and show p53 alterations are either intestinal (about 70%) or a mixed-type encompassing at least 5% glandular and poorly differentiated diffuse components (about 30%). Whereas pure diffuse type gastric cancer is unlikely to develop from intestinal type carcinoma, this may, however, be the case in some advanced mixed-type gastric cancers.

  17. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang.

    Science.gov (United States)

    Amaro, Adriana; Chiara, Silvana; Pfeffer, Ulrich

    2016-03-01

    Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-β and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information. PMID:26947218

  18. Defining Molecular Sensors to Assess Long-Term Effects of Pesticides on Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Fanny L'Héritier

    2014-09-01

    Full Text Available The abundance of dioxins and dioxin-like pollutants has massively increased in the environment due to human activity. These chemicals are particularly persistent and accumulate in the food chain, which raises major concerns regarding long-term exposure to human health. Most dioxin-like pollutants activate the aryl hydrocarbon receptor (AhR transcription factor, which regulates xenobiotic metabolism enzymes that belong to the cytochrome P450 1A family (that includes CYP1A1 and CYP1B1. Importantly, a crosstalk exists between estrogen receptor α (ERα and AhR. More specifically, ERα represses the expression of the CYP1A1 gene, which encodes an enzyme that converts 17β-estradiol into 2-hydroxyestradiol. However, (ERα does not repress the CYP1B1 gene, which encodes an enzyme that converts 17β-estradiol into 4-hydroxyestradiol, one of the most genotoxic estrogen metabolites. In this review, we discuss how chronic exposure to xenobiotic chemicals, such as pesticides, might affect the expression of genes regulated by the AhR–ERα crosstalk. Here, we focus on recent advances in the understanding of molecular mechanisms that mediate this crosstalk repression, and particularly on how ERα represses the AhR target gene CYP1A1, and could subsequently promote breast cancer. Finally, we propose that genes implicated in this crosstalk could constitute important biomarkers to assess long-term effects of pesticides on human health.

  19. Carcinogenesis by internal radiation exposures

    International Nuclear Information System (INIS)

    Radiation carcinogenesis is based on the same molecular mechanisms, while spatial and temporal dose distribution in target cells is differed between internal and external radiation exposures. Animal models on dose-carcinogenic response relationships are required to complement an uncertainties in human epidemiological studies and finally to estimate human risk of internal exposures to radionuclides. Several dose response models for experimental carcinogenesis by internally administered radionuclides in laboratory animals were reviewed and discussed in this paper. (J.P.N.)

  20. Theoretical Concepts in Molecular Photodissociation Dynamics

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm

    1995-01-01

    This chapter contains sections titled: Introduction Quantum Dynamics of Molecular Photofragmentation The Total Reaction Probability Final Product Distributions Time-Independent Approach, Stationary Scattering States Gaussian Wave Packet Dynamics Wigner Phase Space Representation The Diatomic Mole...

  1. Chemical carcinogenesis

    Directory of Open Access Journals (Sweden)

    Paula A. Oliveira

    2007-12-01

    Full Text Available The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair - i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.A sociedade obtém numerosos benefícios da utilização de compostos químicos. A aplicação dos pesticidas, por exemplo, permitiu obter alimento em quantidade suficiente para satisfazer as necessidades alimentares de milhões de pessoas, condição relacionada com o aumento da esperança de vida. Os benefícios estão, por

  2. Gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Ismail Gomceli; Baris Demiriz; Mesut Tez

    2012-01-01

    Gastric cancer is the second most common cancer worldwide and the second most common cause of cancer-related deaths.Despite complete resection of gastric cancer and lymph node dissection,as well as improvements in chemotherapy and radiotherapy,there are still 700 000 gastric cancer-related deaths per year worldwide and more than 80% of patients with advanced gastric cancer die of the disease or recurrent disease within 1 year after diagnosis.None of the treatment modalities we have been applying today can influence the overall survival rates:at present,the overall 5-year relative survival rate for gastric cancer is about 28%.Cellular metaplasia due to chronic inflammation,injury and repair are the most documented processes for neoplasia.It appears that chronic inflammation stimulates tumor development and plays a critical role in initiating,sustaining and advancing tumor growth.It is also evident that not all inflammation is tumorigenic.Additional mutations can be acquired,and this leads to the cancer cell gaining a further growth advantage and acquiring a more malignant phenotype.Intestinalization of gastric units,which is called "intestinal metaplasia";phenotypic antralization of fundic units,which is called "spasmolytic polypeptide-expressing metaplasia"; and the development directly from the stem/progenitor cell zone are three pathways that have been described for gastric carcinogenesis.Also,an important factor for the development of gastrointestinal cancers is peritumoral stroma.However,the initiating cellular event in gastric metaplasia is still controversial.Understanding gastric carcinogenesis and its precursor lesions has been under intense investigation,and our paper attempts to high-light recent progress in this field of cancer research.

  3. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    Science.gov (United States)

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in…

  4. Molecular evolution: concepts and the origin of disciplines.

    Science.gov (United States)

    Suárez-Díaz, Edna

    2009-03-01

    This paper focuses on the consolidation of Molecular Evolution, a field originating in the 1960s at the interface of molecular biology, biochemistry, evolutionary biology, biophysics and studies on the origin of life and exobiology. The claim is made that Molecular Evolution became a discipline by integrating different sorts of scientific traditions: experimental, theoretical and comparative. The author critically incorporates Timothy Lenoir's treatment of disciplines (1997), as well as ideas developed by Stephen Toulmin (1962) on the same subject. On their account disciplines are spaces where the social and epistemic dimensions of science are deeply and complexly interwoven. However, a more detailed account of discipline formation and the dynamics of an emerging disciplinary field is lacking in their analysis. The present essay suggests focusing on the role of scientific concepts in the double configuration of disciplines: the social/political and the epistemic order. In the case of Molecular Evolution the concepts of molecular clock and informational molecules played a central role, both in differentiating molecular from classical evolutionists, and in promoting communication between the different sorts of traditions integrated in Molecular Evolution. The paper finishes with a reflection on the historicity of disciplines, and the historicity of our concepts of disciplines. PMID:19268873

  5. Gene Concepts in Higher Education Cell and Molecular Biology Textbooks

    Science.gov (United States)

    Albuquerque, Pitombo Maiana; de Almeida, Ana Maria Rocha; El-Hani, Nino Charbel

    2008-01-01

    Despite being a landmark of 20th century biology, the "classical molecular gene concept," according to which a gene is a stretch of DNA encoding a functional product, which may be a single polypeptide or RNA molecule, has been recently challenged by a series of findings (e.g., split genes, alternative splicing, overlapping and nested genes, mRNA…

  6. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    Science.gov (United States)

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  7. Molecular-Scale Electronics: From Concept to Function.

    Science.gov (United States)

    Xiang, Dong; Wang, Xiaolong; Jia, Chuancheng; Lee, Takhee; Guo, Xuefeng

    2016-04-13

    Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics.

  8. Endothelins and carcinogenesis.

    Science.gov (United States)

    Olender, Jacek; Nowakowska-Zajdel, Ewa; Walkiewicz, Katarzyna; Muc-Wierzgoń, Małgorzata

    2016-01-01

    Endothelins are a family of four endogenous peptides (ET-1, ET-2, ET-3, ET-4) secreted primarily in an inactive form by the endothelium. They are activated with the participation of converting enzyme. Numerous studies have described their pleiotropic biological activity. These peptides are involved, inter alia, in the regulation of processes such as cell proliferation, migration, angiogenesis and apoptosis. Their important role in the regulation of blood pressure, tissue perfusion (especially in the central nervous system), and myocardial systolic function is also known. Moreover, changes in transcriptional activity of endothelin and its receptors may be involved, with the participation of a number of signaling pathways, in carcinogenesis, and the pathogenesis of numerous diseases (heart, kidney, lung and skin disorders, especially with the component of fibrosis). Their role has been documented in the development of breast, prostatic, colorectal, ovarian, lung, kidney, and endometrial cancer, and in melanoma. In this article we present a brief description of the endothelin group and the participation of them and their receptors in carcinogenesis. We also try to show their role as prognostic and predictive factors in human malignant tumors. The article also refers to clinical trials on the use of preparations of endothelin receptor antagonists in the design of molecular therapeutic strategies in human malignancies. PMID:27594562

  9. Molecular Tissue Engineering:Concepts,Status and Challenge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Tissue engineering has confronted many difficulties mainly as follows:1)How to modulate the adherence,proliferation,and oriented differentiation of seed cells, especially that of stemcells. 2) Massive preparation and sustained controllable delivery of tissue inducing factors or plasmid DNA, such as growth factors, angiogenesis stimulators,and so on. 3) Development of "intelligent biomimetic materials" as extracellular matrix with a good superficial and structural compatibility as well as biological activity to stimulate predictable, controllable and desirable responses under defined conditions.Molecular biology is currently one of the most exciting fields of research across life sciences,and the advances in it also bring a bright future for tissue engineering to overcome these difficulties.In recent years,tissue engineering benefits a lot from molecular biology.Only a comprehensive understanding of the involved ingredients of tissue engineering (cells,tissue inducing factors,genes,biomaterials) and the subtle relationships between them at molecular level can lead to a successful manipulation of reparative processes and a better biological substitute.Molecular tissue engineering,the offspring of the tissue engineering and molecular biology,has gained an increasing importance in recent years.It offers the promise of not simply replacing tissue,but improving the restoration.The studies presented in this article put forward this new concept for the first time and provide an insight into the basic principles,status and challenges of this emerging technology.

  10. Partition coefficient and molecular flexibility: the concept of lipophilicity space.

    Science.gov (United States)

    Vistoli, Giulio; Pedretti, Alessandro; Testa, Bernard

    2009-08-01

    The rationale of this study was to investigate molecular flexibility and its influence on physicochemical properties with a view to uncovering additional information on the fuzzy concept of dynamic molecular structure. Indeed, it is now known that computed molecular interaction fields (MIFs) such as molecular electrostatic potentials (MEPs) and lipophilicity potentials (MLPs) are conformation-dependent, as are dipole moments. A database of 125 compounds was used whose conformational space was explored, while conformation-dependent parameters were computed for each non-redundant conformer found in the conformational space of the compounds. These parameters were the virtual log P (log P(MLP), calculated by a MLP approach), the apolar surface area (ASA), polar surface area (PSA), and solvent-accessible surface (SAS). For each compound, the range taken by each parameter (its property space) was divided by the number of rotors taken as an index of flexibility, yielding a parameter termed 'molecular sensitivity'. This parameter was poorly correlated with others (i.e., it contains novel information) and showed the compounds to fall into two broad classes. 'Sensitive' molecules are those whose computed property ranges are markedly sensitive to conformational effects, whereas 'insensitive' (in fact, less sensitive) molecules have property ranges which are comparatively less affected by conformational fluctuations. A pharmacokinetic application is presented. PMID:19697333

  11. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Govindarajan Kunde R

    2011-05-01

    Full Text Available Abstract Background The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Methods Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen and an anti-estrogen (ICI 182,780. Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa. Results Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE, is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry

  12. Understanding Carcinogenesis for Fighting Oral Cancer

    OpenAIRE

    Takuji Tanaka; Rikako Ishigamori

    2011-01-01

    Oral cancer is one of the major global threats to public health. Oral cancer development is a tobacco-related multistep and multifocal process involving field cancerization and carcinogenesis. The rationale for molecular-targeted prevention of oral cancer is promising. Biomarkers of genomic instability, including aneuploidy and allelic imbalance, are able to measure the cancer risk of oral premalignancies. Understanding of the biology of oral carcinogenesis will give us important advances for...

  13. Cellular Dichotomy Between Anchorage-Independent Growth Responses to bFGF and TA Reflects Molecular Switch in Commitment to Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Tan, Ruimin; Opresko, Lee K.; Quesenberry, Ryan D.; Bandyopadhyay, Somnath; Chrisler, William B.; Weber, Thomas J.

    2009-11-01

    We have investigated gene expression patterns underlying reversible and irreversible anchorage-independent growth (AIG) phenotypes to identify more sensitive markers of cell transformation for studies directed at interrogating carcinogenesis responses. In JB6 mouse epidermal cells, basic fibroblast growth factor (bFGF) induces an unusually efficient and reversible AIG response, relative to 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced AIG which is irreversible. The reversible and irreversible AIG phenotypes are characterized by largely non-overlapping global gene expression profiles. However, a subset of differentially expressed genes were identified as common to reversible and irreversible AIG phenotypes, including genes regulated in a reciprocal fashion. Hepatic leukemia factor (HLF) and D-site albumin promoter-binding protein (DBP) were increased in both bFGF and TPA soft agar colonies and selected for functional validation. Ectopic expression of human HLF and DBP in JB6 cells resulted in a marked increase in TPA- and bFGF-regulated AIG responses. HLF and DBP expression were increased in soft agar colonies arising from JB6 cells exposed to gamma radiation and in a human basal cell carcinoma tumor tissue, relative to paired non-tumor tissue. Subsequent biological network analysis suggests that many of the differentially expressed genes that are common to bFGF- and TPA-dependent AIG are regulated by c-Myc, SP-1 and HNF-4 transcription factors. Collectively, we have identified a potential molecular switch that mediates the transition from reversible to irreversible AIG.

  14. Experimental studies on lung carcinogenesis and their relationship to future research on radiation-induced lung cancer in humans

    International Nuclear Information System (INIS)

    The usefulness of experimental systems for studying human lung carcinogenesis lies in the ease of studying components of a total problem. As an example, the main thrust of attack on possible synergistic interactions between radiation, cigarette smoke, and other irritants must be by means of research on animals. Because animals can be serially sacrificed, a systematic search can be made for progressive lung changes, thereby improving our understanding of carcinogenesis. The mechanisms of radiation-induced carcinogenesis have not yet been delineated, but modern concepts of molecular and cellular biology and of radiation dosimetry are being increasingly applied to both in vivo and in vitro exposure to determine the mechanisms of radiation-induced carcinogenesis, to elucidate human data, and to aid in extrapolating experimental animal data to human exposures. In addition, biologically based mathematical models of carcinogenesis are being developed to describe the nature of the events leading to malignancy; they are also an essential part of a rational approach to quantitative cancer risk assessment. This paper summarizes recent experimental and modeling data on radon-induced lung cancer and includes the confounding effects of cigarette-smoke exposures. The applicability of these data to understanding human exposures is emphasized, and areas of future research on human radiation-induced carcinogenesis are discussed. 7 refs., 2 figs., 3 tabs

  15. Molecular Theory of the Living Cell Concepts, Molecular Mechanisms, and Biomedical Applications

    CERN Document Server

    Ji, Sungchul

    2012-01-01

    This book presents a comprehensive molecular theory of the living cell based on over thirty concepts, principles and laws imported from thermodynamics, statistical mechanics, quantum mechanics, chemical kinetics, informatics, computer science, linguistics, semiotics, and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for the basic living processes such as ligand-receptor interactions, protein folding, single-molecule enzymic catalysis, force-generating mechanisms in molecular motors, signal transduction, regulation of the genome-wide RNA metabolism, morphogenesis, the micro-macro coupling in coordination dynamics, the origin of life, and the mechanisms of biological evolution itself. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotheragnostics and personalized medicine.

  16. Molecular characteristics of pancreatic carcinogenesis

    NARCIS (Netherlands)

    Koorstra, J.M.

    2010-01-01

    Ductal adenocarcinoma of the pancreas is a very aggressive disease with a high mortality rate. Pancreatic carcinoma is the fourth leading cause of cancer-related death in Western countries, despite the fact this cancer accounts for only about 3% of all malignant tumors. Most pancreatic cancers (appr

  17. Recent Research Progress in Molecular Mechanisms of Cadmium Induced Carcinogenesis%镉致癌的分子机制研究进展

    Institute of Scientific and Technical Information of China (English)

    吴婧; 董欣敏; 郑燕芳; 张积仁

    2015-01-01

    镉是一种无处不在的重金属环境污染物,广泛用于工业环境中。普通人主要通过摄食、吸烟及饮水等方式摄入镉。1993年国际肿瘤研究机构(IARC)就已将镉及其化合物列为第1类人致癌物,镉的致癌性被广泛研究,大量研究发现镉会提高肺癌、前列腺癌、乳腺癌、消化道肿瘤等肿瘤的患病风险。但至目前为止,镉的致癌分子机制尚不清楚。大量研究认为镉通过以下几方面致癌:氧化应激、抑制DNA损伤修复、DNA异常甲基化、抑制细胞凋亡、影响细胞周期调控、致多种基因异常表达、雌激素样效应、促进肿瘤干细胞生长、慢性炎症刺激。%Cadmium (Cd) is a ubiquitous environmental heavy metal pollutant which causes increasing worldwide concern. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smok-ing, and drinking water. Cadmium has been classified as a human carcinogen by the international agency for re-search on cancer (IARC). In 1993, its carcinogenicity has been long established;most evidence is available for ele-vated risk for lung cancer, prostate cancer, breast cancer, gastroenteric cancer and so on. But the underlying mecha-nisms of cadmium carcinogenesis are still not clear. Many studies have been demonstrated that Cd induces cancer by multiple mechanisms:induction of oxidative stress, inhibition of DNA damage repair as well as apoptosis, aber-rant methylation and gene expression, resulting in cell cycle arrest, as a metalloestrogen, promotion of cancer stem cell growth and induction of cancer via chronic inflammation. This review summarizes the recent advances in the carcinogenic mechanism of cadmium on the molecular medicine level.

  18. Bioresponsive probes for molecular imaging: concepts and in vivo applications

    NARCIS (Netherlands)

    Duijnhoven, S.M. van; Robillard, M.S.; Langereis, S.; Grull, H.

    2015-01-01

    Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecu

  19. Environmental and chemical carcinogenesis.

    Science.gov (United States)

    Wogan, Gerald N; Hecht, Stephen S; Felton, James S; Conney, Allan H; Loeb, Lawrence A

    2004-12-01

    People are continuously exposed exogenously to varying amounts of chemicals that have been shown to have carcinogenic or mutagenic properties in experimental systems. Exposure can occur exogenously when these agents are present in food, air or water, and also endogenously when they are products of metabolism or pathophysiologic states such as inflammation. It has been estimated that exposure to environmental chemical carcinogens may contribute significantly to the causation of a sizable fraction, perhaps a majority, of human cancers, when exposures are related to "life-style" factors such as diet, tobacco use, etc. This chapter summarizes several aspects of environmental chemical carcinogenesis that have been extensively studied and illustrates the power of mechanistic investigation combined with molecular epidemiologic approaches in establishing causative linkages between environmental exposures and increased cancer risks. A causative relationship between exposure to aflatoxin, a strongly carcinogenic mold-produced contaminant of dietary staples in Asia and Africa, and elevated risk for primary liver cancer has been demonstrated through the application of well-validated biomarkers in molecular epidemiology. These studies have also identified a striking synergistic interaction between aflatoxin and hepatitis B virus infection in elevating liver cancer risk. Use of tobacco products provides a clear example of cancer causation by a life-style factor involving carcinogen exposure. Tobacco carcinogens and their DNA adducts are central to cancer induction by tobacco products, and the contribution of specific tobacco carcinogens (e.g. PAH and NNK) to tobacco-induced lung cancer, can be evaluated by a weight of evidence approach. Factors considered include presence in tobacco products, carcinogenicity in laboratory animals, human uptake, metabolism and adduct formation, possible role in causing molecular changes in oncogenes or suppressor genes, and other relevant data

  20. Liver Development, Regeneration, and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Janet W. C. Kung

    2010-01-01

    Full Text Available The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.

  1. Energetics and mammary carcinogenesis: effects of moderate-intensity running and energy intake on cellular processes and molecular mechanisms in rats

    OpenAIRE

    Zhu, Zongjian; Jiang, Weiqin; McGinley, John N.; Thompson, Henry J.

    2008-01-01

    The objective of this experiment was to determine the effects on mammary carcinogenesis of similar limitations in energy availability either by energy expenditure due to moderate-intensity running (physical activity, PA) or by regulating dietary energy (RE) intake relative to a sedentary control (SC) group that ate ad libitum. A total of 90 female Sprague-Dawley rats were injected with 1-methyl-1-nitrosourea (50 mg/kg) and 7 days thereafter were randomized to either SC, a PA group given free ...

  2. Energetics and mammary carcinogenesis: effects of moderate-intensity running and energy intake on cellular processes and molecular mechanisms in rats

    Science.gov (United States)

    Zhu, Zongjian; Jiang, Weiqin; McGinley, John N.; Thompson, Henry J.

    2009-01-01

    The objective of this experiment was to determine the effects on mammary carcinogenesis of similar limitations in energy availability either by energy expenditure due to moderate-intensity running (physical activity, PA) or by regulating dietary energy (RE) intake relative to a sedentary control (SC) group that ate ad libitum. A total of 90 female Sprague-Dawley rats were injected with 1-methyl-1-nitrosourea (50 mg/kg) and 7 days thereafter were randomized to either SC, a PA group given free access to a motorized running wheel, or a RE group whose food intake limited growth to the rate observed in PA. Compared with SC, mammary carcinogenesis was inhibited by RE or PA. Cancer incidence, 92.6%, 77.8%, and 66.7% (P = 0.06), and cancer multiplicity, 3.44, 2.11, and 1.62 cancers/rat (P = 0.006), in SC, RE, and PA, respectively, were reduced to a similar extent by RE and PA. Histological and Western blot analyses of mammary carcinomas provided evidence that RE and PA induced apoptosis via the mitochondrial pathway, that cell cycle progression was suppressed at the G1/S transition, and that intratumoral blood vessel density was reduced, although it remains to be determined whether PA and RE exert these effects via the same mechanisms. PMID:19095749

  3. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology.

  4. Oxidative Stress and HPV Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Federico De Marco

    2013-02-01

    Full Text Available Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV, represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide and iNOS (inducible nitric oxide synthase will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis

  5. Clusters of Concepts in Molecular Genetics: A Study of Swedish Upper Secondary Science Students' Understanding

    Science.gov (United States)

    Gericke, Niklas; Wahlberg, Sara

    2013-01-01

    To understand genetics, students need to be able to explain and draw connections between a large number of concepts. The purpose of the study reported herein was to explore the way upper secondary science students reason about concepts in molecular genetics in order to understand protein synthesis. Data were collected by group interviews. Concept…

  6. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  7. Hormones and endometrial carcinogenesis.

    Science.gov (United States)

    Kamal, Areege; Tempest, Nicola; Parkes, Christina; Alnafakh, Rafah; Makrydima, Sofia; Adishesh, Meera; Hapangama, Dharani K

    2016-02-01

    Endometrial cancer (EC) is the commonest gynaecological cancer in the Western World with an alarmingly increasing incidence related to longevity and obesity. Ovarian hormones regulate normal human endometrial cell proliferation, regeneration and function therefore are implicated in endometrial carcinogenesis directly or via influencing other hormones and metabolic pathways. Although the role of unopposed oestrogen in the pathogenesis of EC has received considerable attention, the emerging role of other hormones in this process, such as androgens and gonadotropin-releasing hormones (GnRH) is less well recognised. This review aims to consolidate the current knowledge of the involvement of the three main endogenous ovarian hormones (oestrogens, progesterone and androgens) as well as the other hormones in endometrial carcinogenesis, to identify important avenues for future research. PMID:26966933

  8. A general concept for molecular biology of cancer.

    Science.gov (United States)

    Busch, H

    1976-11-01

    The demonstrations that "fetal" isozymes and other fetal or "oncodevelopmental" antigens are present in tumor cells has led to the general concept that genes normally silent in adult tissues are activated during the neoplastic process. Recent evidence that some chromatin proteins of tumor cells are fetal antigens has suggested that some of the "switches" involved in gene activation for tumor growth may also be fetal or oncodevelopmental. These results have led to current theoretical concept that fetal gene derepressors interact with the genome to produce messenger RNA for the protein products involved for growth, invasiveness, and metastasis. These processes may not be controllable in adult cells because of the lack of inhibitors, which were present during embryonic development but are not produced in adult tissues.

  9. Biomarkers for pancreatic carcinogenesis

    OpenAIRE

    Hustinx, S.R.

    2007-01-01

    Pancreatic cancer is a devastating disease. Most pancreatic cancers (approximately 85%) are diagnosed at a late, incurable stage. The poor prognosis and late presentation of pancreatic cancer patients underscore the importance of early detection, which is the sine qua non for the fight against pancreatic cancer. It is hoped for the future that the understanding of genetic alterations will lead to the rapid discovery of an effective biomarker of pancreatic carcinogenesis. In this thesis we vis...

  10. Oral Carcinogenesis and Oral Cancer Chemoprevention: A Review

    OpenAIRE

    Takahiro Tanaka; Mayu Tanaka; Takuji Tanaka

    2011-01-01

    Oral cancer is one of the major global threats to public health. The development of oral cancer is a tobacco-related multistep and multifocal process involving field cancerization and carcinogenesis. The rationale for molecular-targeted prevention of oral cancer is promising. Biomarkers of genomic instability, including aneuploidy and allelic imbalance, are possible to measure the cancer risk of oral premalignancies. Understanding of the biology of oral carcinogenesis will yield important adv...

  11. Molecular complexity of primary open angle glaucoma: current concepts

    Indian Academy of Sciences (India)

    Kunal Ray; Suddhasil Mookherjee

    2009-12-01

    Glaucoma is a group of heterogeneous optic neuropathies with complex genetic basis. Among the three principle subtypes of glaucoma, primary open angle glaucoma (POAG) occurs most frequently. Till date, 25 loci have been found to be linked to POAG. However, only three underlying genes (Myocilin, Optineurin and WDR36) have been identified. In addition, at least 30 other genes have been reported to be associated with POAG. Despite strong genetic influence in POAG pathogenesis, only a small part of the disease can be explained in terms of genetic aberration. Current concepts of glaucoma pathogenesis suggest it to be a neurodegenerative disorder which is triggered by different factors including mechanical stress due to intra-ocular pressure, reduced blood flow to retina, reperfusion injury, oxidative stress, glutamate excitotoxicity, and aberrant immune response. Here we present a mechanistic overview of potential pathways and crosstalk between them operating in POAG pathogenesis.

  12. Oxidants, antioxidants and carcinogenesis.

    Science.gov (United States)

    Ray, Gibanananda; Husain, Syed Akhtar

    2002-11-01

    Reactive oxygen metabolites (ROMs), such as superoxide anions (O2*-) hydrogen peroxide (H2O2), and hydroxyl radical (*OH), malondialdehyde (MDA) and nitric oxide (NO) are directly or indirectly involved in multistage process of carcinogenesis. They are mainly involved in DNA damage leading sometimes to mutations in tumour suppressor genes. They also act as initiator and/or promotor in carcinogenesis. Some of them are mutagenic in mammalian systems. O2*-, H2O2 and *OH are reported to be involved in higher frequencies of sister chromatid exchanges (SCEs) and chromosome breaks and gaps (CBGs). MDA, a bi-product of lipid peroxidation (LPO), is said to be involved in DNA adduct formations, which are believed to be responsible for carcinogenesis. NO, on the other hand, plays a duel role in cancer. At high concentration it kills tumour cells, but at low concentration it promotes tumour growth and metastasis. It causes DNA single and double strand breaks. The metabolites of NO such as peroxynitrite (OONO-) is a potent mutagen that can induce transversion mutations. NO can stimulate O2*-/H2O2/*OH-induced LPO. These deleterious actions of oxidants can be countered by antioxidant defence system in humans. There are first line defense antioxidants such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). SOD converts O2*- to H2O2, which is further converted to H2O with the help of GPx and CAT. SOD inhibits *OH production. SOD also act as antipoliferative agent, anticarcinogens, and inhibitor at initiation and promotion/transformation stage in carcinogenesis. GPx is another antioxidative enzyme which catalyses to convert H2O2, to H2O. The most potent enzyme is CAT. GPx and CAT are important in the inactivation of many environmental mutagens. CAT is also found to reduce the SCE levels and chromosomal aberrations. Antioxidative vitamins such as vitamin A, E, and C have a number of biological activities such as immune stimulation, inhibition of

  13. Mechanisms of cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Cadmium (Cd), a heavy metal of considerable occupational and environmental concern, has been classified as a human carcinogen by the International Agency for Research on Cancer (IARC). The carcinogenic potential of Cd as well as the mechanisms underlying carcinogenesis following exposure to Cd has been studied using in vitro cell culture and in vivo animal models. Exposure of cells to Cd results in their transformation. Administration of Cd in animals results in tumors of multiple organs/tissues. Also, a causal relationship has been noticed between exposure to Cd and the incidence of lung cancer in human. It has been demonstrated that Cd induces cancer by multiple mechanisms and the most important among them are aberrant gene expression, inhibition of DNA damage repair, induction of oxidative stress, and inhibition of apoptosis. The available evidence indicates that, perhaps, oxidative stress plays a central role in Cd carcinogenesis because of its involvement in Cd-induced aberrant gene expression, inhibition of DNA damage repair, and apoptosis.

  14. Oral Carcinogenesis and Oral Cancer Chemoprevention: A Review

    Directory of Open Access Journals (Sweden)

    Takuji Tanaka

    2011-01-01

    Full Text Available Oral cancer is one of the major global threats to public health. The development of oral cancer is a tobacco-related multistep and multifocal process involving field cancerization and carcinogenesis. The rationale for molecular-targeted prevention of oral cancer is promising. Biomarkers of genomic instability, including aneuploidy and allelic imbalance, are possible to measure the cancer risk of oral premalignancies. Understanding of the biology of oral carcinogenesis will yield important advances for detecting high-risk patients, monitoring preventive interventions, and assessing cancer risk and pharmacogenomics. In addition, novel chemopreventive agents based on molecular mechanisms and targets against oral cancers will be derived from studies using appropriate animal carcinogenesis models. New approaches, such as molecular-targeted agents and agent combinations in high-risk oral individuals, are undoubtedly needed to reduce the devastating worldwide consequences of oral malignancy.

  15. [Iron function and carcinogenesis].

    Science.gov (United States)

    Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models.

  16. Using the Cambridge Structural Database to Teach Molecular Geometry Concepts in Organic Chemistry

    Science.gov (United States)

    Wackerly, Jay Wm.; Janowicz, Philip A.; Ritchey, Joshua A.; Caruso, Mary M.; Elliott, Erin L.; Moore, Jeffrey S.

    2009-01-01

    This article reports a set of two homework assignments that can be used in a second-year undergraduate organic chemistry class. These assignments were designed to help reinforce concepts of molecular geometry and to give students the opportunity to use a technological database and data mining to analyze experimentally determined chemical…

  17. Foundational Concepts and Underlying Theories for Majors in "Biochemistry and Molecular Biology"

    Science.gov (United States)

    Tansey, John T.; Baird, Teaster, Jr.; Cox, Michael M.; Fox, Kristin M.; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3)…

  18. Oxidative stress in prostate hyperplasia and carcinogenesis.

    Science.gov (United States)

    Udensi, Udensi K; Tchounwou, Paul B

    2016-01-01

    Prostatic hyperplasia (PH) is a common urologic disease that affects mostly elderly men. PH can be classified as benign prostatic hyperplasia (BPH), or prostate cancer (PCa) based on its severity. Oxidative stress (OS) is known to influence the activities of inflammatory mediators and other cellular processes involved in the initiation, promotion and progression of human neoplasms including prostate cancer. Scientific evidence also suggests that micronutrient supplementation may restore the antioxidant status and hence improve the clinical outcomes for patients with BPH and PCa. This review highlights the recent studies on prostate hyperplasia and carcinogenesis, and examines the role of OS on the molecular pathology of prostate cancer progression and treatment. PMID:27609145

  19. Studies of pancreatic carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    JI Yu-bin; PANG Lin-lin; YU Lei; YANG Hai-fan; LIU Guang-da; LI Hai-jiao

    2008-01-01

    Pancreatic carcinoma is the most common pancreatic neoplasm characterized by latentmorbidit, poor prognosis, high mortality rate and limited choice of treatment. Quite a lot studies focused on its pathogenesis, and showed molecular genetic alterations, which derived of genetic and environmental factors and played an important role in tumorigenesis. Recently, more and more findings laid particular emphasis on the changes of gene molecule and some were confirmed in vitro and in vivo. In this paper, we made a review and summarized the arked molecular changes and signalings of the four pathways to understand their functions in Pancreatic carcinoma. The most important changes concentrate on K-RAS, p16 INK4α, P53 and SMAD4 gene, secondly, the changes of pl4ARF, TGF-β, LKB1 /STK11, BRCA2 and growth factor Hedgehog and Notch path way and Telomere also play a important role in pancreatic carcinoma. The vast majority (83%) of pancreatic carcinomas had a distinctive genetic fingerprint, comprising activation of the K-ras oncogene and inactivation of the p 16 gene, generally also accompanied by alterations in the p53 gene (in 76 % of the tumors). The activation of K-ras appears nearly to be a prerequisite for the development of pancreatic carcinoma. Also, the binary alteration of K-ras and p16 is an extremely uncommon combination among other human tumor types. This particular genetic imprint of pancreatic carcinomas could have diagnostic utility in the evaluation of patients with metastatic adenocarcinoma of unknown primary origin. The evaluation of genetic alterations as they naturally occur in humantumors allows the formulation of hypotheses concerning the biological processes that involve human tumongenesis. A central tenet of tumori genesis, that positive selection is exerted upon those tumor cells that alterrate-limiting regulatory pathways, implies that mutation of one gene abrogates the need for inactivation of another gene in the same tumor suppressive pathway. It

  20. Brown bullhead (Ameiurus nebulosus) skin carcinogenesis.

    Science.gov (United States)

    Bunton, T E

    2000-06-01

    Alternative models using fish species have been tested in liver toxicity and carcinogenesis bioassays. Similar models have not been developed for skin. The brown bullhead (Ameiurus nebulosus) has shown potential as a model for skin carcinogenesis studies due to its sensitivity to environmental chemical pollutants. The present study is an initial morphologic and biochemical characterization of the normal and neoplastic brown bullhead skin to assess its suitability as a model of skin carcinogenesis. Brown bullhead were removed from Back River in the Chesapeake Bay region, an area historically polluted with heavy metals and polycyclic aromatic hydrocarbons. Histology, histochemistry, and electron microscopy were used to stage the morphologic development and progression of neoplasia in skin. The distribution of keratin, a family of structural proteins with altered expression in mammalian tumorigenesis, was analyzed with one and two dimensional gel electrophoresis and nitrocellulose blots of extracts from normal skin. Keratin expression in skin and other organs was also assessed with immunohistochemistry using AE1, AE3, and PCK 26 antibodies, and the proliferation index in skin and neoplasms with PCNA antibody. Skin lesions appeared to progress from hyperplasia through carcinoma, and the proliferation index was increased in papilloma. Also in papilloma, intercellular interdigitations appeared increased and desmosomes decreased which may in future studies correlate with changes in expression of other molecular markers of neoplastic progression. Both Type I and Type II keratin subfamilies were detected in skin using gel electrophoresis with the complimentary keratin blot-binding assay. For further development of the brown bullhead model, future studies can compare and relate these baseline data to alterations in expression of keratin and other markers in fish neoplasms and to molecular events which occur in man. PMID:10930121

  1. DNA methylation and carcinogenesis.

    Science.gov (United States)

    Lichtenstein, A V; Kisseljova, N P

    2001-03-01

    In the world of easy things truth is opposed to lie; in the world of complicated things one profound truth is opposed to another not less profound than the first. Neils Bohr The hypothesis of the exclusively genetic origin of cancer ("cancer is a disease of genes, a tumor without any damage to the genome does not exist") dominated in the oncology until recently. A considerable amount of data confirming this hypothesis was accumulated during the last quarter of the last century. It was demonstrated that the accumulation of damage of specific genes lies at the origin of a tumor and its following progression. The damage gives rise to structural changes in the respective proteins and, consequently, to inappropriate mitogenic stimulation of cells (activation of oncogenes) or to the inactivation of tumor suppressor genes that inhibit cell division, or to the combination of both (in most cases). According to an alternative (epigenetic) hypothesis that was extremely unpopular until recently, a tumor is caused not by a gene damage, but by an inappropriate function of genes ("cancer is a disease of gene regulation and differentiation"). However, recent studies led to the convergence of these hypotheses that initially seemed to be contradictory. It was established that both factors--genetic and epigenetic--lie at the origin of carcinogenesis. The relative contribution of each varies significantly in different human tumors. Suppressor genes and genes of repair are inactivated in tumors due to their damage or methylation of their promoters (in the latter case an "epimutation", an epigenetic equivalent of a mutation, occurs, producing the same functional consequences). It is becoming evident that not only the mutagens, but various factors influencing cell metabolism, notably methylation, should be considered as carcinogens.

  2. Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8

    Directory of Open Access Journals (Sweden)

    Abdulamir Ahmed S

    2010-09-01

    Full Text Available Abstract Background Colorectal cancer (CRC has long been associated with bacteremia and/or endocarditis by Streptococcus gallolyticus member bacteria (SGMB but the direct colonization of SGMB along with its molecular carcinogenic role, if any, has not been investigated. We assessed the colonization of SGMB in CRC patients with history of bacteremia (CRC-w/bac and without history of bacteremia (CRC-wo/bac by isolating SGMB from feces, mucosal surfaces of colorectum, and colorectal tissues and detecting SGMB DNA, via PCR and in situ hybridization (ISH assays targeting SodA gene in colorectal tissues. Moreover, mRNA of IL1, IL-8, COX-2, IFN-γ, c-Myc, and Bcl-2 in colorectal tissues of studied groups was assessed via ISH and RT-PCR. Results SGMB were found to be remarkably isolated in tumorous (TU and non-tumorous (NTU tissues of CRC-w/bac, 20.5% and 17.3%, and CRC-wo/bac, 12.8% and 11.5%, respectively while only 2% of control tissues revealed SGMB (P 10 CN/g respectively, showed higher colonization in TU than in NTU and in CRC-w/bac than in CRC-wo/bac (P Conclusions The current study indicated that colorectal cancer is remarkably associated with SGMB; moreover, molecular detection of SGMB in CRC was superior to link SGMB with CRC tumors highlighting a possible direct and active role of SGMB in CRC development through most probably inflammation-based sequel of tumor development or propagation via, but not limited to, IL-1, COX-2, and IL-8.

  3. Helicobacter pylori in gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Hyo; Jun; Ahn; Dong; Soo; Lee

    2015-01-01

    Gastric cancer still is a major concern as the third most common cancer worldwide, despite declining rates of incidence in many Western countries. Helicobacter pylori(H. pylori) is the major cause of gastric carcinogenesis, and its infection insults gastric mucosa leading to theoccurrence of atrophic gastritis which progress to intestinal metaplasia, dysplasia, early gastric cancer, and advanced gastric cancer consequently. This review focuses on multiple factors including microbial virulence factors, host genetic factors, and environmental factors, which can heighten the chance of occurrence of gastric adenocarcinoma due to H. pylori infection. Bacterial virulence factors are key components in controlling the immune response associated with the induction of carcinogenesis, and cag A and vac A are the most well-known pathogenic factors. Host genetic polymorphisms contribute to regulating the inflammatory response to H. pylori and will become increasingly important with advancing techniques. Environmental factors such as high salt and smoking may also play a role in gastric carcinogenesis. It is important to understand the virulence factors, host genetic factors, and environmental factors interacting in the multistep process of gastric carcinogenesis. To conclude, prevention via H. pylori eradication and controlling environmental factors such as diet, smoking, and alcohol is an important strategy to avoid H. pylori-associated gastric carcinogenesis.

  4. Experimental, statistical, and biological models of radon carcinogenesis

    International Nuclear Information System (INIS)

    Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared to domestic environments and from uncertainties about the interaction between cigarette-smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research program that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models), and the relationship of radon to smoking and other copollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. 20 refs., 1 fig

  5. Experimental, statistical and biological models of radon carcinogenesis

    International Nuclear Information System (INIS)

    Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared with domestic environments and from uncertainties about the interaction between cigarette smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research programme that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models) and the relationship of radon to smoking and other co-pollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. (author)

  6. Effects of environmental stressors on histone modifications and their relevance to carcinogenesis: a systematic review.

    NARCIS (Netherlands)

    Dik, S.; Scheepers, P.T.J.; Godderis, L.

    2012-01-01

    Carcinogenesis is a complex process involving both genetic and epigenetic mechanisms. The cellular molecular epigenetic machinery, including histone modifications, is associated with changes in gene expression induced by exposure to environmental agents. In this paper, we systematically reviewed pub

  7. Modeling Multiple Causes of Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T D

    1999-01-24

    An array of epidemiological results and databases on test animal indicate that risk of cancer and atherosclerosis can be up- or down-regulated by diet through a range of 200%. Other factors contribute incrementally and include the natural terrestrial environment and various human activities that jointly produce complex exposures to endotoxin-producing microorganisms, ionizing radiations, and chemicals. Ordinary personal habits and simple physical irritants have been demonstrated to affect the immune response and risk of disease. There tends to be poor statistical correlation of long-term risk with single agent exposures incurred throughout working careers. However, Agency recommendations for control of hazardous exposures to humans has been substance-specific instead of contextually realistic even though there is consistent evidence for common mechanisms of toxicological and carcinogenic action. That behavior seems to be best explained by molecular stresses from cellular oxygen metabolism and phagocytosis of antigenic invasion as well as breakdown of normal metabolic compounds associated with homeostatic- and injury-related renewal of cells. There is continually mounting evidence that marrow stroma, comprised largely of monocyte-macrophages and fibroblasts, is important to phagocytic and cytokinetic response, but the complex action of the immune process is difficult to infer from first-principle logic or biomarkers of toxic injury. The many diverse database studies all seem to implicate two important processes, i.e., the univalent reduction of molecular oxygen and breakdown of aginuine, an amino acid, by hydrolysis or digestion of protein which is attendant to normal antigen-antibody action. This behavior indicates that protection guidelines and risk coefficients should be context dependent to include reference considerations of the composite action of parameters that mediate oxygen metabolism. A logic of this type permits the realistic common-scale modeling of

  8. Epigenetic alterations in gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    In-Seon CHOI; Tsung-Teh WU

    2005-01-01

    Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogene overexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanism to silence a variety of methylated tissue-specific and imprinted genes, have been extensively studied in gastric carcinoma and play important roles in gastric carcinogenesis. This review will briefly discuss the basic aspects of DNA methylation and CpG island methylation, in particular the epigenetic alterations of certain critical genes implicated in gastric carcinogenesis and its relevance of clinical implications.

  9. Experimental radiation carcinogenesis is studies at NIRS

    International Nuclear Information System (INIS)

    Experimental radiation carcinogenesis studies conducted during the past decade at NIRS are briefly reviewed. They include the following: 1) Age dependency of susceptibility to radiation carcinogenesis. 2) Radiation-induced myeloid leukemia. 3) Mechanism of fractionated X-irradiation (FX) induced thymic lymphomas. 4) Significance of radiation-induced immunosuppression in radiation carcinogenesis in vivo. 5) Other ongoing studies. (author)

  10. DNA damage and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Stelow, R B

    1980-01-01

    Although cancer may arise as a result of many different types of molecular changes, there is little reason to doubt that changes to DNA are one of the more important ones in cancer initiation. Although DNA repair mechanisms seem able to eliminate a very large fraction of deleterious changes to DNA, we not only have little insight into the molecular mechanisms involved in such repair, but have a negligible amount of information to permit us to estimate the shape of dose response relations at low doses. The case of skin cancer is a special one, in that the average population is exposed to sufficient solar uv so that the effects of small increments in uv dose may be estimated. An approximate 85% reduction in DNA repair increases skin cancer incidence 10/sup 4/ fold.

  11. Radiation carcinogenesis: radioprotectors and photosensitizers

    International Nuclear Information System (INIS)

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer

  12. Radiation carcinogenesis: radioprotectors and photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1982-01-01

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer.

  13. Aberrant DNA methylation in cervical carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Hui-Juan Yang

    2013-01-01

    Persistent infection with high-risk types of human papillomavirus(HPV) is known to cause cervical cancer; however,additional genetic and epigenetic alterations are required for progression from precancerous disease to invasive cancer.DNA methylation is an early and frequent molecular alteration in cervical carcinogenesis.In this review,we summarize DNA methylation within the HPV genome and human genome and identify its clinical implications.Methylation of the HPV long control region (LCR) and L1 gene is common during cervical carcinogenesis and increases with the severity of the cervical neoplasm.The L1 gene of HPV16 and HPV18 is consistently hypermethylated in invasive cervical cancers and can potentially be used as a clinical marker of cancer progression.Moreover,promoters of tumor suppressor genes (TSGs) involved in many cellular pathways are methylated in cervical precursors and invasive cancers.Some are associated with squamous cell carcinomas,and others are associated with adenocarcinomas.Identification of methylated TSGs in Pap smear could be an adjuvant test in cervical cancer screening for triage of women with high-risk HPV,atypical squamous cells of undetermined significance,or low grade squamous intraepithelial lesion (LSIL).However,consistent panels must be validated for this approach to be translated to the clinic.Furthermore,reversion of methylated TSGs using demethylating drugs may be an alternative anticancer treatment,but demethylating drugs without toxic carcinogenic and mutagenic properties must be identified and validated.

  14. [Hpv cofactors in cervical carcinogenesis].

    Science.gov (United States)

    Pinto, Alvaro P; Tulio, Siumara; Cruz, Olívia Russo

    2002-01-01

    Human papillomavirus (HPV) plays a central rule in uterine cervix carcinogenesis. Other factors direct or indirectly influence the installation of this mechanism in cervical squamous epithelium. Investigations regarding mechanisms of interaction of these factors with viral elements are found in the literature of the last 20 years. The present review article discusses possible co-factors of HPV in the genesis of the squamous carcinoma of uterine cervix, taking into account only the factors whose association with the virus or cervical cancer has been documented by experimental studies, and not based just on clinical or epidemiological data. Among the approached parameters are immunological factors (local and humoral immune response), the association with Acquired Immune Deficiency Syndrome, genetic factors as protein p53 polymorphism, tabagism and the use of oral contraceptives. All these factors interact in variable intensity with oncoproteins and other HPV elements, increasing and facilitating the virus action in host cells, leading to the development of immortalization and carcinogenesis. PMID:12185639

  15. Mathematical Modeling of Carcinogenesis Based on Chromosome Aberration Data

    Institute of Scientific and Technical Information of China (English)

    Xiao-bo Li

    2009-01-01

    Objective: The progression of human cancer is characterized by the accumulation of genetic instability. An increasing number of experimental genetic molecular techniques have been used to detect chromosome aberrations. Previous studies on chromosome abnormalities often focused on identifying the frequent loci of chromosome alterations, but rarely addressed the issue of interrelationship of chromosomal abnormalities. In the last few years, several mathematical models have been employed to construct models of carcinogenesis, in an attempt to identify the time order and cause-and-effect relationship of chromosome aberrations. The principles and applications of these models are reviewed and compared in this paper. Mathematical modeling of carcinogenesis can contribute to our understanding of the molecular genetics of tumor development, and identification of cancer related genes, thus leading to improved clinical practice of cancer.

  16. THE EVALUATION OF A TOOL FOR DISSEMINATION OF BIOTECHNOLOGY AND MOLECULAR BIOLOGY CONCEPTS IN FORMAL EDUCATION

    Directory of Open Access Journals (Sweden)

    F.M. Escanhoela

    2007-05-01

    Full Text Available Since 2003, the CBME Scientific Dissemination Coordination hasdeveloped a project related to the production and distribution of a scientificdissemination newspaper, called CBME InFORMAÇÃO, directed to high-schoolstudents and teachers. It is a quarterly publication and shows the concepts andadvances of studies in molecular biology and biotechnology. In order to evaluatethe newspaper, a research was accomplished in 2005. It involved 177 studentsfrom six high schools of São Carlos and region. In addition, opinions of fivescience teachers that worked with the newspaper in their classrooms, as well aseight Biology undergraduates were collected. The teachers received somequestionnaires that had to be answered by them and their students after a specifyactivity with the periodical – basically, the activities consisted of three stages:individual reading of the newspaper; formulation of questions by the teacher and,finally, group discussion on the chosen theme. The research confirmed theimportance of the use of the periodical as a tool in the formation of critical readersof facts related to the biotechnology and molecular biology, what should contributewith the citizenship development in the students. Moreover, it provided a possibilityto reorganize the periodical.

  17. Genomic instability and colon carcinogenesis: from the perspective of genes

    Directory of Open Access Journals (Sweden)

    Chinthalapally V Rao

    2013-05-01

    Full Text Available Colon cancer is the second most lethal cancer; approximately 600,000 people die of it annually in the world. Colon carcinogenesis generally follows a slow and stepwise process of accumulation of mutations under the influence of environmental and epigenetic factors. To adopt a personalized (tailored cancer therapy approach and to improve current strategies for prevention, diagnosis, prognosis and therapy overall, advanced understanding of molecular events associated with colon carcinogenesis is necessary. A contemporary approach that combines genetics, epigenomics and signaling pathways has revealed many genetic/genomic alterations associated with colon cancer progression and their relationships to a genomic instability phenotype prevalent in colon cancer. In this review, we describe the relationship between gene mutations associated with colon carcinogenesis and a genomic instability phenotype, and we discuss possible clinical applications of genomic instability studies. Colon carcinogenesis is associated with frequent mutations in several pathways that include phosphatidylinositol 3-kinase (PI3K, adenomatous polyposis coli (APC, p53 (TP53, F-box and WD repeat domain containing 7 (FBXW7, transforming growth factor (TGF-beta, chromosome cohesion and KRAS. These genes frequently mutated in pathways affecting colon cancer were designated colon cancer (CAN genes. Aberrations in major colon CAN genes have a causal relationship to genomic instability. Conversely, genomic instability itself plays a role in colon carcinogenesis in experimental settings, as demonstrated in transgenic mouse models with high genomic instability. Thus, there is a feedback-type relationship between CAN gene mutations and genomic instability. These genetic/genomic studies have led to emerging efforts to apply the knowledge to colon cancer prognosis and to targeted therapy.

  18. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language

    OpenAIRE

    Herzog, Ronny; Schwudke, Dominik; Schuhmann, Kai; Sampaio, Julio L; Bornstein, Stefan R; Schroeder, Michael; Shevchenko, Andrej

    2011-01-01

    Shotgun lipidome profiling relies on direct mass spectrometric analysis of total lipid extracts from cells, tissues or organisms and is a powerful tool to elucidate the molecular composition of lipidomes. We present a novel informatics concept of the molecular fragmentation query language implemented within the LipidXplorer open source software kit that supports accurate quantification of individual species of any ionizable lipid class in shotgun spectra acquired on any mass spectrometry plat...

  19. Preclinical Cancer Chemoprevention Studies Using Animal Model of Inflammation-Associated Colorectal Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Takuji Tanaka

    2012-07-01

    Full Text Available Inflammation is involved in all stages of carcinogenesis. Inflammatory bowel disease, such as ulcerative colitis and Crohn’s disease is a longstanding inflammatory disease of intestine with increased risk for colorectal cancer (CRC. Several molecular events involved in chronic inflammatory process are reported to contribute to multi-step carcinogenesis of CRC in the inflamed colon. They include over-production of free radicals, reactive oxygen and nitrogen species, up-regulation of inflammatory enzymes in arachidonic acid biosynthesis pathway, up-regulation of certain cytokines, and intestinal immune system dysfunction. In this article, firstly I briefly introduce our experimental animal models where colorectal neoplasms rapidly develop in the inflamed colorectum. Secondary, data on preclinical cancer chemoprevention studies of inflammation-associated colon carcinogenesis by morin, bezafibrate, and valproic acid, using this novel inflammation-related colorectal carcinogenesis model is described.

  20. Preclinical Cancer Chemoprevention Studies Using Animal Model of Inflammation-Associated Colorectal Carcinogenesis

    International Nuclear Information System (INIS)

    Inflammation is involved in all stages of carcinogenesis. Inflammatory bowel disease, such as ulcerative colitis and Crohn’s disease is a longstanding inflammatory disease of intestine with increased risk for colorectal cancer (CRC). Several molecular events involved in chronic inflammatory process are reported to contribute to multi-step carcinogenesis of CRC in the inflamed colon. They include over-production of free radicals, reactive oxygen and nitrogen species, up-regulation of inflammatory enzymes in arachidonic acid biosynthesis pathway, up-regulation of certain cytokines, and intestinal immune system dysfunction. In this article, firstly I briefly introduce our experimental animal models where colorectal neoplasms rapidly develop in the inflamed colorectum. Secondary, data on preclinical cancer chemoprevention studies of inflammation-associated colon carcinogenesis by morin, bezafibrate, and valproic acid, using this novel inflammation-related colorectal carcinogenesis model is described

  1. Preclinical Cancer Chemoprevention Studies Using Animal Model of Inflammation-Associated Colorectal Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Takuji [Cytopatholgy Division, Tohkai Cytopathology Institute, Cancer Research and Prevention (TCI-CaRP), 5-1-2 Minami-uzura, Gifu 500-8285 (Japan); Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan)

    2012-07-16

    Inflammation is involved in all stages of carcinogenesis. Inflammatory bowel disease, such as ulcerative colitis and Crohn’s disease is a longstanding inflammatory disease of intestine with increased risk for colorectal cancer (CRC). Several molecular events involved in chronic inflammatory process are reported to contribute to multi-step carcinogenesis of CRC in the inflamed colon. They include over-production of free radicals, reactive oxygen and nitrogen species, up-regulation of inflammatory enzymes in arachidonic acid biosynthesis pathway, up-regulation of certain cytokines, and intestinal immune system dysfunction. In this article, firstly I briefly introduce our experimental animal models where colorectal neoplasms rapidly develop in the inflamed colorectum. Secondary, data on preclinical cancer chemoprevention studies of inflammation-associated colon carcinogenesis by morin, bezafibrate, and valproic acid, using this novel inflammation-related colorectal carcinogenesis model is described.

  2. Understanding Alterations in Cell Nano-architecture during Early Carcinogenesis using Optical Microscopy

    Science.gov (United States)

    Damania, Dhwanil

    Carcinogenesis is a complex multi-step process which eventually results in a malignant phenotype that often progresses into a fatal metastatic stage. There are several molecular changes (e.g. DNA methylation, activation of proto-oncogenes, loss of tumor-suppressor genes, histone acetylation) that occur in cells prior to the microscopically detectable morphological alterations. Hence, it is intuitive that these molecular changes should impact various biochemical, biophysical and transport processes within the cell and therefore its nanoscale morphology. Furthermore, recent studies have established that apparently `normal' cells (i.e., away from the actual tumor location) undergo similar genetic/epigenetic changes as the actual cancer cells, giving rise to the phenomenon of field carcinogenesis. Unfortunately, traditional microscopy or histopathology cannot resolve structures below 300 nm due to diffraction-limited resolution. Hence, we developed a novel optical imaging technique, partial wave spectroscopic (PWS) microscopy or optical nanocytology which quantifies the nanoscale refractive-index fluctuations (i.e. mass-density variations such as chromatin compaction) in an optically measured biomarker, disorder strength (Ld). This dissertation proves the nanoscale sensitivity of PWS nanocytology and shows that increase in Ld parallels neoplastic potential of a cell by using standardized cell-lines and animal-models. Based on concept of field carcinogenesis, we employ PWS nanocytology in a multi-center clinical study on approximately 450 patients in four different cancer-types (colon, ovarian, thyroid and lung) and we illustrate that nanoscale disorder increase is a ubiquitous phenomenon across different organs. We further demonstrate the potential of PWS nanocytology in predicting risk for developing future neoplasia. Biologically, we prove that cytoskeletal organization in both nucleus and cytoplasm plays a crucial role in governing L d-differences. Moreover, we

  3. Selenium in human mammary carcinogenesis

    DEFF Research Database (Denmark)

    Overvad, Kim; Grøn, P.; Langhoff, Otto;

    1991-01-01

    In a case-referent study on the possible role of selenium in human mammary carcinogenesis, serum selenium was found to be 79 +/- 12 micrograms/l in 66 cases and 81 +/- 12 micrograms/l in 93 referents. An internal trend in serum selenium was observed among cases (TNM stage I 81 +/- 11 micrograms....../l and TNM stage II 76 +/- 13 micrograms selenium/l), indicating disease-mediated changes. The evaluation of selenium as a risk indicator in human breast cancer was therefore restricted to TNM stage I patients (n = 36). Multiple logistic regression analyses including variables associated with selenium...... levels revealed no association between selenium levels and breast cancer risk....

  4. Stem cells and colorectal carcinogenesis

    Science.gov (United States)

    Stoian, M; Stoica, V; Radulian, G

    2016-01-01

    Abstract Colorectal cancer represents an important cause of mortality and morbidity. Unfortunately, the physiopathology is still under study. There are theories about carcinogenesis and it is known that not only a single factor is responsible for the development of a tumor, but several conditions. Stem cells are a promising target for the treatment of colorectal cancer, along with the environment that has an important role. It has been postulated that mutations within the adult colonic stem cells may induce neoplastic changes. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumor and therefore they are responsible for recurrence. It is important to know that a new way of treatment needs to be found, since these cells are resistant to chemotherapy and radiotherapy.

  5. Molecular concept of H2O, CH4 and CO2 adsorption on organic material

    Science.gov (United States)

    Gensterblum, Yves; Merkel, Alexej; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    Unconventional gas, such as shale gas or coalbed methane offers an attractive low-carbon solution and furthermore provides possibilities for CO2-storage and coevally for enhanced gas recovery. In order to better understand gas and water interaction with organic matter (coal) of different maturity we developed a molecular concept with experimental and literature support for sorption of these fluids on organic material over the entire range of thermal maturity. With increasing burial depth and temperature CO2 and CH4 are the main volatiles released when organic material matures (cf. coalification). While most CO2 is generally dissolved in formation water and transported away from the coal, most CH4 (coalbed methane, CBM) remains adsorbed to the coal pore structure and is produced as unconventional gas. We present here the experimental basis and a conceptual model and to explain CO2 and CH4 sorption in the presence of water on coal with varying coal maturity (from lignite to anthracite). Adsorption experiments have been performed on different maturity coals at various temperatures, pressures up to 20 MPa and under dry and moist conditions. With increasing coal maturity we find for both gases a linear sorption capacity trend for moisture-equilibrated and a more parabolic trend for dry coal samples. When investigating the difference in CH4 and CO2 sorption capacity on coal of different maturity as a function of moisture content we infer that oxygen containing functional groups account for the selective sorption properties of gases and water to coals. Additionally restrictions in translational and vibrational movements of the sorbed gas molecules induced by adsorbed water molecules cause differences in the presence of water.

  6. Midkine translocated to nucleoli and involved in carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Li-Cheng Dai

    2009-01-01

    Midkine (MK) is a heparin-binding growth factor with its gene first identified in embryonal carcinoma cells at early stages of retinoic acid-induced differentiation.MK is frequently and highly expressed in a variety of human carcinomas. Furthermore, the blood MK level is frequently elevated with advance of human carcinomas, decreased after surgical removal of the tumors. Thus, it is expected to become a promising marker for evaluating the progress of carcinomas.There is mounting evidence that MK plays a significant role in carcinogenesis-related activities, such as proliferation, migration, anti-apoptosis, mitogenesis,transforming, and angiogenesis. In addition, siRNA and anti-sense oligonucleotides for MK have yielded great effects in anti-tumor activities. Therefore, MK appears to be a potential candidate molecular target of therapy for human carcinomas. In this paper, we review MK targeting at nucleoli in different tumor cells and its role in carcinogenesis to deepen our understanding of the mechanism of MK involved in carcinogenesis.

  7. 4-nitroquinoline-1-oxide induced experimental oral carcinogenesis.

    Science.gov (United States)

    Kanojia, Deepak; Vaidya, Milind M

    2006-08-01

    Human oral cancer is the sixth largest group of malignancies worldwide and single largest group of malignancies in the Indian subcontinent. Seventy percent of premalignant cancers appear from premalignant lesions. Only 8-10% of these lesions finally turn into malignancy. The appearance of these premalignant lesions is one distinct feature of human oral cancer. At present there is dearth of biomarkers to identify which of these lesions will turn into malignancy. Regional lymph node metastasis and locoregional recurrence are the major factors responsible for the limited survival of patients with oral cancer. Paucity of early diagnostic and prognostic markers is one of the contributory factors for higher mortality rates. Cancer is a multistep process and because of constrain in availability of human tissues from multiple stages of oral carcinogenesis including normal tissues, animal models are being widely used, aiming for the development of diagnostic and prognostic markers. A number of chemical carcinogens like coal tar, 20 methyl cholanthrene (20MC), 9,10-dimethyl-1,2-benzanthracene (DMBA) and 4-nitroquinoline-1-oxide (4NQO) have been used in experimental oral carcinogenesis. However, 4NQO is the preferred carcinogen apart from DMBA in the development of experimental oral carcinogenesis. 4NQO is a water soluble carcinogen, which induces tumors predominantly in the oral cavity. It produces all the stages of oral carcinogenesis and several lines of evidences suggest that similar histological as well as molecular changes are observed in the human system. In the present review an attempt has been made to collate the information available on mechanisms of action of 4NQO, studies carried out for the development of biomarkers and chemopreventives agents using 4NQO animal models. PMID:16448841

  8. Science literacy and meaningful learning: status of public high school students from Rio de Janeiro face to molecular biology concepts

    OpenAIRE

    Daniel Alves Escodino; Andréa Carla de Souza Góes

    2013-01-01

    In this work we aimed to determine the level of Molecular Biology (MB) science literacy of students from two Brazilian public schools which do not consider the rogerian theory for class planning and from another institution, Cap UERJ, which favours this theory. We applied semiclosed questionnaires specific to the different groups of science literacy levels. Besides, we have asked them to perform conceptual maps with MB concepts in order to observe if they have experienced meaningful learning....

  9. Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Directory of Open Access Journals (Sweden)

    Rivoltini Licia

    2009-06-01

    Full Text Available Abstract Supported by the Office of International Affairs, National Cancer Institute (NCI, the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc and the United States Food and Drug Administration (FDA to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations. Converging concepts were identified: enhanced knowledge of interferon-related pathways was found to be central to the understanding of immune-mediated tissue-specific destruction (TSD of which tumor rejection is a representative facet. Although the expression of interferon-stimulated genes (ISGs likely mediates the inflammatory process leading to tumor rejection, it is insufficient by itself and the associated mechanisms need to be identified. It is likely that adaptive immune responses play a broader role in tumor rejection than those strictly related to their antigen-specificity; likely, their primary role is to trigger an acute and tissue-specific inflammatory response at the tumor site that leads to rejection upon recruitment of additional innate and adaptive immune mechanisms. Other candidate systemic and/or tissue-specific biomarkers

  10. Emerging concepts in biomarker discovery; the US-Japan Workshop on Immunological Molecular Markers in Oncology.

    Science.gov (United States)

    Tahara, Hideaki; Sato, Marimo; Thurin, Magdalena; Wang, Ena; Butterfield, Lisa H; Disis, Mary L; Fox, Bernard A; Lee, Peter P; Khleif, Samir N; Wigginton, Jon M; Ambs, Stefan; Akutsu, Yasunori; Chaussabel, Damien; Doki, Yuichiro; Eremin, Oleg; Fridman, Wolf Hervé; Hirohashi, Yoshihiko; Imai, Kohzoh; Jacobson, James; Jinushi, Masahisa; Kanamoto, Akira; Kashani-Sabet, Mohammed; Kato, Kazunori; Kawakami, Yutaka; Kirkwood, John M; Kleen, Thomas O; Lehmann, Paul V; Liotta, Lance; Lotze, Michael T; Maio, Michele; Malyguine, Anatoli; Masucci, Giuseppe; Matsubara, Hisahiro; Mayrand-Chung, Shawmarie; Nakamura, Kiminori; Nishikawa, Hiroyoshi; Palucka, A Karolina; Petricoin, Emanuel F; Pos, Zoltan; Ribas, Antoni; Rivoltini, Licia; Sato, Noriyuki; Shiku, Hiroshi; Slingluff, Craig L; Streicher, Howard; Stroncek, David F; Takeuchi, Hiroya; Toyota, Minoru; Wada, Hisashi; Wu, Xifeng; Wulfkuhle, Julia; Yaguchi, Tomonori; Zeskind, Benjamin; Zhao, Yingdong; Zocca, Mai-Britt; Marincola, Francesco M

    2009-06-17

    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations. Converging concepts were identified: enhanced knowledge of interferon-related pathways was found to be central to the understanding of immune-mediated tissue-specific destruction (TSD) of which tumor rejection is a representative facet. Although the expression of interferon-stimulated genes (ISGs) likely mediates the inflammatory process leading to tumor rejection, it is insufficient by itself and the associated mechanisms need to be identified. It is likely that adaptive immune responses play a broader role in tumor rejection than those strictly related to their antigen-specificity; likely, their primary role is to trigger an acute and tissue-specific inflammatory response at the tumor site that leads to rejection upon recruitment of additional innate and adaptive immune mechanisms. Other candidate systemic and/or tissue-specific biomarkers were recognized that

  11. Statistical modeling and extrapolation of carcinogenesis data

    International Nuclear Information System (INIS)

    Mathematical models of carcinogenesis are reviewed, including pharmacokinetic models for metabolic activation of carcinogenic substances. Maximum likelihood procedures for fitting these models to epidemiological data are discussed, including situations where the time to tumor occurrence is unobservable. The plausibility of different possible shapes of the dose response curve at low doses is examined, and a robust method for linear extrapolation to low doses is proposed and applied to epidemiological data on radiation carcinogenesis

  12. Breast carcinogenesis: risk of radiation

    International Nuclear Information System (INIS)

    The risk of radiation carcinogenesis in the opposite breast is a major concern for physicians and breast cancer patients who choose to preserve the involved breast through conservation treatment, i.e., conservation survey and radiation therapy. In analyzing the carcinogenic effect of irradiation on the breast, the radiobiologic risks assumed from the studies must be evaluated first in order to determine the accuracy of the epidemiologic data and radiation dosage. It is generally assumed from the carcinogenic studies that radiation is carcinogenic at any dose rate. However, it is well-known that low dose rates are less effective at producing cancer in animal species than high dose rates. However, in most epidemiologic studies no apparent account is taken of dose rate. Also, there are technical differences between the irradiation received by individuals involved in most epidemiologic studies and the therapeutic irradiation received by breast cancer patients. All of these factors make it difficult, if not impossible, to directly correlate the irradiation risk ascertained from the studies and modern radiotherapy. This paper examines what risk exists and how great it is

  13. p21 Ablation in Liver Enhances DNA Damage, Cholestasis, and Carcinogenesis

    NARCIS (Netherlands)

    Ehedego, H.; Boekschoten, M.V.; Hu, W.; Doler, C.; Haybaeck, J.; Gassler, N.; Muller, M.R.; Liedtke, C.; Trautwein, C.

    2015-01-01

    Genetic mouse studies suggest that the NF-¿B pathway regulator NEMO (also known as IKK¿) controls chronic inflammation and carcinogenesis in the liver. However, the molecular mechanisms explaining the function of NEMO are not well defined. Here, we report that overexpression of the cell-cycle regula

  14. Implications of tyrosine phosphoproteomics in cervical carcinogenesis

    Directory of Open Access Journals (Sweden)

    DeFord James

    2008-01-01

    Full Text Available Abstract Background Worldwide cervical cancer remains a leading cause of mortality from gynecologic malignancies. The link between cervical cancer and persistent infection with HPV has been established. At a molecular level little is known about the transition from the precancerous state to invasive cancer. To elucidate this process, cervical biopsies from human specimens were obtained from precancerous state to stage III disease. Methods Cervical biopsies were obtained from patients with a diagnosis of cervical cancer undergoing definitive surgery or staging operation. Biopsies were obtained from patients with precancerous lesions at the time of their excisional procedure. Control samples were obtained from patients undergoing hysterectomy for benign conditions such as fibroids. Samples were subjected to proteomic profiling using two dimensional gel electrophoresis with subsequent trypsin digestion followed by MALDI-TOF protein identification. Candidate proteins were then further studied using western blotting, immunoprecipitation and immunohistochemistry. Results Annexin A1 and DNA-PKcs were found to be differentially expressed. Phosphorylated annexin A1 was up regulated in diseased states in comparison to control and its level was strongly detected in the serum of cervical cancer patients compared to controls. DNA-PKcs was noted to be hyperphosphorylated and fragmented in cancer when compared to controls. By immunohistochemistry annexin A1 was noted in the vascular environment in cancer and certain precancerous samples. Conclusion This study suggests a probable role for protein tyrosine phosphorylation in cervical carcinogenesis. Annexin A1 and DNA-PK cs may have synergistic effects with HPV infection. Precancerous lesions that may progress to cervical cancer may be differentiated from lesions that will not base on similar immunohistochemical profile to invasive squamous cell carcinoma.

  15. Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment.

    Science.gov (United States)

    Manoylov, Kalina M

    2014-06-01

    Algal taxonomy is a key discipline in phycology and is critical for algal genetics, physiology, ecology, applied phycology, and particularly bioassessment. Taxonomic identification is the most common analysis and hypothesis-testing endeavor in science. Errors of identification are often related to the inherent problem of small organisms with morphologies that are difficult to distinguish without research-grade microscopes and taxonomic expertise in phycology. Proposed molecular approaches for taxonomic identification from environmental samples promise rapid, potentially inexpensive, and more thorough culture-independent identification of all algal species present in a sample of interest. Molecular identification has been used in biodiversity and conservation, but it also has great potential for applications in bioassessment. Comparisons of morphological and molecular identification of benthic algal communities are improved by the identification of more taxa; however, automated identification technology does not allow for the simultaneous analysis of thousands of samples. Currently, morphological identification is used to verify molecular taxonomic identities, but with the increased number of taxa verified in algal gene libraries, molecular identification will become a universal tool in biological studies. Thus, in this report, successful application of molecular techniques related to algal bioassessment is discussed.

  16. 11β-羟基类固醇脱氢酶2基因表达作为葡萄籽提取物预防乳腺癌靶点的探讨%Expression of 11 beta-hydroxysteroid dehydrogenase type 2 genes as a molecular target endpoint for the prevention of breast cell carcinogenesis with grape seed extracts

    Institute of Scientific and Technical Information of China (English)

    宋筱瑜; 王华骞

    2011-01-01

    Objective To study the change of 11 β-HSD 2 gene expression in carcinogenesis and cancer prevention and to study the possibility of using 11 β-HSD 2 gene expression as a molecular target endpoint in the progression of breast cell carcinogenesis suppressed by Grape Seed Extract (GSE). Methods Cell carcinogenesis model for human breast epithelial MCF10A cell was induced by treating the cell with carcinogens NNK and B[ a] P repeatedly, and the cell model system for the prevention of carcinogenesis was developed by combining GSE with NNK and B[ a] P. Western blot analysis was used to detect the expression of 11 β-HSD 2 gene. The biological change of carcinogen treated cells was studied by transfecting small interference RNA ( siRNA ) to inhibit 11 β-HSD 2 gene expression of cells. Results The colony formation of carcinogen treated cells in low-mitogen medium was less after the expression of 11 β-HSD 2 gene was inhibited by specific siRNA, which was just like the colony formation of normal cells. The expression of 11 β-HSD 2 gene was high in carcinogen treated cells, and the gene expression was low or undetectable in normal breast epithelial cells and cells combined treated with GSE and carcinogen. Conclusion The biological display of carcinogen treated cells could be normalized after the expression of 11 β-HSD 2 gene was inhibited. The mechanism for GSE preventing carcinogenesis might be the result of GSE inhibiting the expression of 11β-HSD 2 gene. 11β-HSD 2 gene might be the molecular target endpoint for the suppression of breast cell carcinogenesis by GSE.%目的 研究11β-羟基类固醇脱氢酶2型基因(11β-HSD 2)表达在癌症发生及预防过程中的变化,探讨该基因作为葡萄籽提取物(GSE)抑制乳腺上皮细胞慢性癌变过程中靶点的可能性.方法 建立低浓度致癌物NNK和B[a]P刺激乳腺上皮细胞MCF 10A癌变及GSE抑制乳腺上皮细胞癌变过程的细胞模型,研究瞬时转染了靶向11β-HSD 2基因的

  17. Improved Student Linkage of Mendelian and Molecular Genetic Concepts through a Yeast-Based Laboratory Module

    Science.gov (United States)

    Wolyniak, Michael J.

    2013-01-01

    A study of modern genetics requires students to successfully unite the principles of Mendelian genetics with the functions of DNA. Traditional means of teaching genetics are often successful in teaching Mendelian and molecular ideas but not in allowing students to see how the two subjects relate. The laboratory module presented here attempts to…

  18. Electron ionization LC-MS with supersonic molecular beams--the new concept, benefits and applications.

    Science.gov (United States)

    Seemann, Boaz; Alon, Tal; Tsizin, Svetlana; Fialkov, Alexander B; Amirav, Aviv

    2015-11-01

    A new type of electron ionization LC-MS with supersonic molecular beams (EI-LC-MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly-though EI ion source as vibrationally cold molecules in the SMB, resulting in 'Cold EI' (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI-LC-MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI-LC-MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non-polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS-MS as an alternative to lengthy LC-MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of

  19. Molecular beam sampling system with very high beam-to-background ratio: The rotating skimmer concept

    International Nuclear Information System (INIS)

    A novel method of reducing the background pressure in a vacuum system used for sampling a molecular beam from a high pressure region is presented. A triple differential pumping stage is constructed with a chopper with rotating skimmer within the first pumping stage, which serves effectively as a valve separating periodically the vacuum system from the ambient environment. The mass spectrometry measurement of the species in the molecular beam show an excellent beam-to-background ratio of 14 and a detection limit below 1 ppm. The potential of this method for detection of low density reactive species in atmospheric pressure plasmas is demonstrated for the detection of oxygen atoms generated in an atmospheric pressure microplasma source.

  20. Cellular and molecular mechanisms of osteoporosis: current concepts and future direction treatment

    OpenAIRE

    A. T. Dolzhenko; S. Sagalovsky

    2016-01-01

    The article presents review of literature dedicated to the contemporary view on the cellular-molecular mechanisms of the bone remodeling and pathogenesis of the osteoporosis. The discovery of the cytokine RANKL-RANK-OPG system and significant role of the cathepsin K in process bone remodeling has made progress in understanding the mechanisms development disease and possible to development drugs of the new generation – denosumab, a fully human RANKL monoclonal antibody and inhibitor cathepsin ...

  1. Science literacy and meaningful learning: status of public high school students from Rio de Janeiro face to molecular biology concepts

    Directory of Open Access Journals (Sweden)

    Daniel Alves Escodino

    2013-12-01

    Full Text Available In this work we aimed to determine the level of Molecular Biology (MB science literacy of students from two Brazilian public schools which do not consider the rogerian theory for class planning and from another institution, Cap UERJ, which favours this theory. We applied semiclosed questionnaires specific to the different groups of science literacy levels. Besides, we have asked them to perform conceptual maps with MB concepts in order to observe if they have experienced meaningful learning. Finally, we prepared MB classes for students of the three schools, considering their conceptual maps and tried to evaluate, through a second map execution, if the use of alternative didactics material, which consider meaningful learning process, would have any effect over the appropriation of new concepts. We observed that most students are placed at Functional literacy level. Nonetheless, several students from CAp were also settled at the higher Conceptual and Procedural levels. We found that most students have not experienced meaningful learning and that the employment of didactic material and implementation of proposals which consider the cognitive structure of the students had a significant effect on the appropriation of several concepts.

  2. Biological interaction of thiamine with lysozyme using binding capacity concept and molecular docking.

    Science.gov (United States)

    Hosseinzadeh, Reza; Khorsandi, Khatereh; Sheikh-Hasani, Vahid; Khatibi, Ali

    2016-10-01

    The binding of thiamine (vitamin B1) on lysozyme has been examined at various ionic strengths of phosphate buffer (pH 6.9), various pH values, and various protein concentrations at 25°C using thiamine selective membrane electrode. This method is faster and more precise than equilibrium dialysis technique which can obtain sufficient and accurate data for binding analysis. The values of Hill equation parameters were estimated for each set using binding capacity concept and used for calculation of intrinsic binding affinity. The results represent two binding sets for thiamine on lysozyme at various experimental conditions. PMID:26474328

  3. Experimental radiation carcinogenesis: what have we learned

    International Nuclear Information System (INIS)

    The author reviews the need for animal experiments in development of a biological model for radioinduced carcinogenesis. He concludes they are vital for: (1) study of mechanisms; (2) establishment of generalizations; (3) elucidation of dose-response and time-dose relationships; and (4) determination of dose-distributions and their results, particularly for radionuclides

  4. Impaired glucose metabolism treatment and carcinogenesis

    OpenAIRE

    MATYSZEWSKI, ARTUR; Czarnecka, Anna; Kawecki, Maciej; KORZEŃ, PIOTR; SAFIR, ILAN J.; Kukwa, Wojciech; SZCZYLIK, CEZARY

    2015-01-01

    Carbohydrate metabolism disorders increase the risk of carcinogenesis. Diabetes mellitus alters numerous physiological processes that may encourage cancer growth. However, treating impaired glucose homeostasis may actually promote neoplasia; maintaining proper glucose plasma concentrations reduces metabolic stresses, however, certain medications may themselves result in oncogenic effects. A number of previous studies have demonstrated that metformin reduces the cancer risk. However, the use o...

  5. Chemically induced skin carcinogenesis: Updates in experimental models (Review).

    Science.gov (United States)

    Neagu, Monica; Caruntu, Constantin; Constantin, Carolina; Boda, Daniel; Zurac, Sabina; Spandidos, Demetrios A; Tsatsakis, Aristidis M

    2016-05-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands‑on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro‑inflammatory cytokines, and simultaneous inflammation sustained by pro‑inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  6. History, Classification, Molecular Structure and Properties of Dendrimers which are a New Concept in Textile

    Directory of Open Access Journals (Sweden)

    Osman NAMIRTI

    2011-02-01

    Full Text Available Over the last 20 years polymer chemistry has created a number of non-lineer structures and introduction of a large number of branches during the polymer synthesis leads to obtain molecules with many end groups. Two types of these polymers are regularly branched "dendrimers" and "hyperbranched polymers" where branching is formed randomly. In this article knowledge about history, classification, molecular structure and properties of dendrimers which have found various application areas also in textile due to their special structures is given.

  7. Cellular and molecular mechanisms of osteoporosis: current concepts and future direction treatment

    Directory of Open Access Journals (Sweden)

    A. T. Dolzhenko

    2016-01-01

    Full Text Available The article presents review of literature dedicated to the contemporary view on the cellular-molecular mechanisms of the bone remodeling and pathogenesis of the osteoporosis. The discovery of the cytokine RANKL-RANK-OPG system and significant role of the cathepsin K in process bone remodeling has made progress in understanding the mechanisms development disease and possible to development drugs of the new generation – denosumab, a fully human RANKL monoclonal antibody and inhibitor cathepsin K odanacatib that inhibits of the bone resorption.

  8. Radiation carcinogenesis and radiological protection

    International Nuclear Information System (INIS)

    With the publication of the latest recommendations of the International Commission on Radiological Protection, several new issues have arisen. The Commission arrives at its recommendations for dose limits using a theoretical or predictive method making use of the data on risks of cancer in populations who have been accidentally or iatrogenically exposed. The issues of importance in this method are discussed, particularly the concept of acceptable risk. An aternative method for setting dose limits, a pragmatic method, involves the study of the cancer incidence in radiation workers and a comparison with cancer incidence in other occupations and industries

  9. Craniofacial development: current concepts in the molecular basis of Treacher Collins syndrome.

    Science.gov (United States)

    van Gijn, Daniel Richard; Tucker, Abigail S; Cobourne, Martyn T

    2013-07-01

    The human face and skull are an elegant example of the anatomical sophistication that results from the interplay between the molecular cascades and the tissue interactions that are necessary for the proper development of the craniofacial complex. When it fails to develop normally the consequences can have life-long implications for the biological, psychological, and aesthetic wellbeing of an affected person. Among the many syndromes that affect the region, understanding of the biology that underlies Treacher Collins syndrome has advanced in the last decade, particularly concerning the causative TCOF1 gene that encodes TREACLE protein, a serine/alanine-rich nucleolar phosphoprotein with an essential function during ribosome biogenesis in cranial neural crest cells. Abnormal growth and differentiation of these cells affect much of the craniofacial skeleton.

  10. The geometric phase in quantum systems foundations, mathematical concepts, and applications in molecular and condensed matter physics

    CERN Document Server

    Böhm, Arno; Koizumi, Hiroyasu; Niu, Qian; Zwanziger, Joseph

    2003-01-01

    Aimed at graduate physics and chemistry students, this is the first comprehensive monograph covering the concept of the geometric phase in quantum physics from its mathematical foundations to its physical applications and experimental manifestations It contains all the premises of the adiabatic Berry phase as well as the exact Anandan-Aharonov phase It discusses quantum systems in a classical time-independent environment (time dependent Hamiltonians) and quantum systems in a changing environment (gauge theory of molecular physics) The mathematical methods used are a combination of differential geometry and the theory of linear operators in Hilbert Space As a result, the monograph demonstrates how non-trivial gauge theories naturally arise and how the consequences can be experimentally observed Readers benefit by gaining a deep understanding of the long-ignored gauge theoretic effects of quantum mechanics and how to measure them

  11. Multi-step pancreatic carcinogenesis and its clinical implications.

    Science.gov (United States)

    Sakorafas, G H; Tsiotou, A G

    1999-12-01

    The poor prognosis of pancreatic cancer relates mainly to its delayed diagnosis. It has been repeatedly shown that earlier diagnosis of pancreatic cancer is associated with a better outcome. Molecular diagnostic methods (mainly detection of K-ras mutations in pure pancreatic or duodenal juice, on specimens obtained by percutaneous fine-needle aspirations or in stool specimens) can achieve earlier diagnosis in selected subgroups of patients, such as patients with chronic pancreatitis (especially hereditary), adults with recent onset of non-insulin-dependent diabetes mellitus and patients with some inherited disorders that predispose to the development of pancreatic cancer. There is increasing evidence that pancreatic carcinogenesis is a multi-step phenomenon. Screening procedures for precursor lesions in these selected subgroups of patients may reduce the incidence and mortality from pancreatic cancer.

  12. Mucin-Type O-Glycosylation in Gastric Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Henrique O. Duarte

    2016-07-01

    Full Text Available Mucin-type O-glycosylation plays a crucial role in several physiological and pathological processes of the gastric tissue. Modifications in enzymes responsible for key glycosylation steps and the consequent abnormal biosynthesis and expression of their glycan products constitute well-established molecular hallmarks of disease state. This review addresses the major role played by mucins and associated O-glycan structures in Helicobacter pylori adhesion to the gastric mucosa and the subsequent establishment of a chronic infection, with concomitant drastic alterations of the gastric epithelium glycophenotype. Furthermore, alterations of mucin expression pattern and glycan signatures occurring in preneoplastic lesions and in gastric carcinoma are also described, as well as their impact throughout the gastric carcinogenesis cascade and in cancer progression. Altogether, mucin-type O-glycosylation alterations may represent promising biomarkers with potential screening and prognostic applications, as well as predictors of cancer patients’ response to therapy.

  13. Mucin-Type O-Glycosylation in Gastric Carcinogenesis.

    Science.gov (United States)

    Duarte, Henrique O; Freitas, Daniela; Gomes, Catarina; Gomes, Joana; Magalhães, Ana; Reis, Celso A

    2016-01-01

    Mucin-type O-glycosylation plays a crucial role in several physiological and pathological processes of the gastric tissue. Modifications in enzymes responsible for key glycosylation steps and the consequent abnormal biosynthesis and expression of their glycan products constitute well-established molecular hallmarks of disease state. This review addresses the major role played by mucins and associated O-glycan structures in Helicobacter pylori adhesion to the gastric mucosa and the subsequent establishment of a chronic infection, with concomitant drastic alterations of the gastric epithelium glycophenotype. Furthermore, alterations of mucin expression pattern and glycan signatures occurring in preneoplastic lesions and in gastric carcinoma are also described, as well as their impact throughout the gastric carcinogenesis cascade and in cancer progression. Altogether, mucin-type O-glycosylation alterations may represent promising biomarkers with potential screening and prognostic applications, as well as predictors of cancer patients' response to therapy. PMID:27409642

  14. Concepts and Molecular Aspects in the Polypharmacology of PARP-1 Inhibitors.

    Science.gov (United States)

    Passeri, Daniela; Camaioni, Emidio; Liscio, Paride; Sabbatini, Paola; Ferri, Martina; Carotti, Andrea; Giacchè, Nicola; Pellicciari, Roberto; Gioiello, Antimo; Macchiarulo, Antonio

    2016-06-20

    Recent years have witnessed a renewed interest in PARP-1 inhibitors as promising anticancer agents with multifaceted functions. Particularly exciting developments include the approval of olaparib (Lynparza) for the treatment of refractory ovarian cancer in patients with BRCA1/2 mutations, and the increasing understanding of the polypharmacology of PARP-1 inhibitors. The aim of this review article is to provide the reader with a comprehensive overview of the distinct levels of the polypharmacology of PARP-1 inhibitors, including 1) inter-family polypharmacology, 2) intra-family polypharmacology, and 3) multi-signaling polypharmacology. Progress made in gaining insight into the molecular basis of these multiple target-independent and target-dependent activities of PARP-1 inhibitors are discussed, with an outlook on the potential impact that a better understanding of polypharmacology may have in aiding the explanation as to why some drug candidates work better than others in clinical settings, albeit acting on the same target with similar inhibitory potency.

  15. Mechanisms of carcinogenesis in human skin against the background of papillomavirus infection.

    Science.gov (United States)

    Reva, I V; Reva, G V; Yamamoto, T; Tolmachyov, V E

    2014-09-01

    The cells in the skin tumor developing under conditions of persisting papillomavirus infection are morphologically identical to blast cells in a blood smear from a leukemia patient. The cells filling the lesion focus are morphologically and immunohistochemically related to blood stem cells. A mechanism of epithelial layer modification under conditions of papillomavirus infection leading to carcinogenesis is proposed. The dynamics of structural changes in the skin is characterized by disturbed interactions between the epithelium and adjacent connective tissue, destruction of the basal membrane, disorders in the cambial keratinocyte differentiation, and absence of the spinous and granular layers. We conclude that detection of blast leukocytes in the human skin lesion can be explained by disorders in the cell-cell interactions in the epithelium-mesenchymal tissue system. High proliferative activity followed by death of cambial keratinocytes, migration of effector antigen-presenting CD68 cells to the adjacent connective tissue are the factors inducing migration of blast leukocytic forms to the focus. Not only keratinocyte restitution capacity, but also epithelium-dependent differentiation of young leukocytes disappeared. Undifferentiated cells are migrated from the blood to the epithelium alteration zone, but not in the reverse direction. The insufficiency or the absence of blood blast cell differentiation of the in the focus of epidermal injury and adjacent tissue triggers carcinogenesis. The authors suggest their model of carcinogenesis. The conclusions offer a new concept of cancer pathogenesis and suggest a new strategy in the search for methods for early diagnosis of carcinogenesis.

  16. Collimator design for a dedicated molecular breast imaging-guided biopsy system: Proof-of-concept

    Energy Technology Data Exchange (ETDEWEB)

    Weinmann, Amanda L.; Hruska, Carrie B.; Conners, Amy L.; O' Connor, Michael K. [Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905 (United States)

    2013-01-15

    Purpose: Molecular breast imaging (MBI) is a dedicated nuclear medicine breast imaging modality that employs dual-head cadmium zinc telluride (CZT) gamma cameras to functionally detect breast cancer. MBI has been shown to detect breast cancers otherwise occult on mammography and ultrasound. Currently, a MBI-guided biopsy system does not exist to biopsy such lesions. Our objective was to consider the utility of a novel conical slant-hole (CSH) collimator for rapid (<1 min) and accurate monitoring of lesion position to serve as part of a MBI-guided biopsy system. Methods: An initial CSH collimator design was derived from the dimensions of a parallel-hole collimator optimized for MBI performed with dual-head CZT gamma cameras. The parameters of the CSH collimator included the collimator height, cone slant angle, thickness of septa and cones of the collimator, and the annular areas exposed at the base of the cones. These parameters were varied within the geometric constraints of the MBI system to create several potential CSH collimator designs. The CSH collimator designs were evaluated using Monte Carlo simulations. The model included a breast compressed to a thickness of 6 cm with a 1-cm diameter lesion located 3 cm from the collimator face. The number of particles simulated was chosen to represent the count density of a low-dose, screening MBI study acquired with the parallel-hole collimator for 10 min after a {approx}150 MBq (4 mCi) injection of Tc-99m sestamibi. The same number of particles was used for the CSH collimator simulations. In the resulting simulated images, the count sensitivity, spatial resolution, and accuracy of the lesion depth determined from the lesion profile width were evaluated. Results: The CSH collimator design with default parameters derived from the optimal parallel-hole collimator provided 1-min images with error in the lesion depth estimation of 1.1 {+-} 0.7 mm and over 21 times the lesion count sensitivity relative to 1-min images

  17. Heterogeneity in multistage carcinogenesis and mixture modeling

    Directory of Open Access Journals (Sweden)

    Morgenthaler Stephan

    2008-07-01

    Full Text Available Abstract Carcinogenesis is commonly described as a multistage process, in which stem cells are transformed into cancer cells via a series of mutations. In this article, we consider extensions of the multistage carcinogenesis model by mixture modeling. This approach allows us to describe population heterogeneity in a biologically meaningful way. We focus on finite mixture models, for which we prove identifiability. These models are applied to human lung cancer data from several birth cohorts. Maximum likelihood estimation does not perform well in this application due to the heavy censoring in our data. We thus use analytic graduation instead. Very good fits are achieved for models that combine a small high risk group with a large group that is quasi immune.

  18. Lymphotoxin prevention of diethylnitrosamine carcinogenesis in vivo

    International Nuclear Information System (INIS)

    Development of intervention measures to control cancer would be facilitated by being able to monitor in vivo carcinogenesis by in vitro quantitation of early indices of neoplastic transformation to assess the in vivo effectiveness of preventive-therapeutic measures. Pregnant Syrian golden hamsters were used in an in vivo-in vitro transplacental model of carcinogenesis to determine the extent that in vivo administration of immunologic hormone preparations along with chemical carcinogen would prevent morphologic transformation assessed in vitro. Pregnant hamsters at 10-11 days of gestation were given injections ip of 3 mg diethylnitrosamine (DENA)/100 g body weight and were killed 2 days later when fetal cells were seeded for colony formation. The frequency of morphologically transformed colonies was assessed after 7 days of growth. Cloning efficiency and mean transformation frequency after DENA exposure were 3.6% and 1 X 10(-4) per cell seeded, respectively. The ip injection of an immunologic hormone preparation reduced the transformation frequency by 46%. The hormone preparation, containing 10,000 U of lymphotoxin but no detectable interferon, was the ultrafiltered lymphokines (greater than 10,000 mol wt) from phytohemagglutinin-stimulated hamster peritoneal leukocytes. The effect of lymphotoxin on cocarcinogenic exposure of fetal cells to DENA in vivo followed by X-irradiation in vitro was also determined. Cells exposed to 250 rad in vitro had a cloning efficiency of 0.5% and a transformation frequency of 0.4 X 10(-4) per cell seeded. After DENA injection and X-irradiation, the transformation frequency increased to 1 X 10(-4) and was inhibited 64% by lymphotoxin in vivo. Thus immunologic hormones (e.g., lymphotoxin) can prevent carcinogenesis in vivo. Furthermore, in vitro quantitation of transformation is a rapid means for evaluating therapeutic and autochthonous effector mechanisms for their ability to prevent or otherwise modulate carcinogenesis in vivo

  19. Study of chemical and radiation induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  20. Genetic alterations in carcinogenesis and chemoprevention.

    OpenAIRE

    Rosin, M P

    1993-01-01

    Laboratory and clinical studies suggest that genetic change is intrinsically involved in the development of cancer and that this change occurs in humans throughout carcinogenesis, in both early and late stages. Therefore, the quantification of the level of genetic change in human epithelial tissues may serve as a marker for cancer risk. The micronucleus test has been used to quantify the level of site-specific chromosomal breakage occurring in epithelial tissues of individuals at elevated ris...

  1. Inhibition of carcinogenesis by retinoids. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Nettesheim, P.

    1979-01-01

    Progress made in recent years in the search for retinoids with anticarcinogenic activity is reviewed. There are many studies to be found in the literature which show no substantial effect of retinoids on carcinogenesis or tumor growth. Some of these negative findings may be related to the carcinogen dose used, the type of retinoid used, the dose, dose schedule or mode of administration of the retinoid. Others may indicate that the particular type of tumor or tumor system is, indeed, refractory to retinoids in general or to those retinoids that were tested. A great gap still exists in our knowledge concerning the pharmake-kinetics of most retinoids their availability to various normal and cancerous tissues, and the role and existence of transport and binding proteins. There are studies which indicate that under certain conditions, particularly conditions of topical application, some retinoids may even enhance carcinogenesis. It seems, however, indisputable by now that some retinoids are effective inhibitors of carcinogenesis in some organ systems and can even inhibit the growth of some established tumors. While the mechanisms of these inhibitory effects are presently not understood, it does seem clear that they are not mediated via the cytotoxic mechanisms typical of chemotherapeutic agents. The hope that retinoids might become an effective tool to halt the progression of some neoplastic diseases, seems to be justified.

  2. Oxidative stress in prostate hypertrophy and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Waldemar M. Przybyszewski

    2009-07-01

    Full Text Available Aging, significant impairment of the oxidation/reduction balance, infection, and inflammation are recognized risk factors of benign hyperplasia and prostate cancer. Chronic symptomatic and asymptomatic prostate inflammatory processes generate significantly elevated levels of reactive oxygen and nitrogen species, and halogenated compounds. Prostate cancer patients showed significantly higher lipid peroxidation and lower antioxidant levels in peripheral blood than healthy controls, whereas patients with prostate hyperplasia did not show such symptoms. Oxidative/nitrosative/halogenative stress causes DNA modifications leading to genome instability that may initiate carcinogenesis; however, it was shown that oxidative damage alone is not sufficient to initiate this process. Peroxidation products induced by reactive oxygen and nitrogen species seem to take part in epigenetic mechanisms regulating genome activity. One of the most common changes occurring in more than 90�0of all analyzed prostate cancers is the silencing of GSTP1 gene activity. The gene encodes glutathione transferase, an enzyme participating in detoxification processes. Prostate hyperplasia is often accompanied by chronic inflammation and such a relationship was not observed in prostate cancer. The participation of infection and inflammation in the development of hyperplasia is unquestionable and these factors probably also take part in initiating the early stages of prostate carcinogenesis. Thus it seems that therapeutic strategies that prevent genome oxidative damage in situations involving oxidative/nitrosative/halogenative stress, i.e. use of antioxidants, plant steroids, antibiotics, and non-steroidal anti-inflammatory drugs, could help prevent carcinogenesis.

  3. Nucleophosmin in the pathogenesis of arsenic-related bladder carcinogenesis revealed by quantitative proteomics

    International Nuclear Information System (INIS)

    To investigate the molecular mechanisms of arsenic (As)-associated carcinogenesis, we performed proteomic analysis on E7 immortalized human uroepithelial cells after treatment with As in vitro. Quantitative proteomics was performed using stable isotope dimethyl labeling coupled with two-dimensional liquid chromatography peptide separation and mass spectrometry (MS)/MS analysis. Among 285 proteins, a total of 26 proteins were upregulated (ratio > 2.0) and 18 proteins were downregulated (ratio < 0.65) by As treatment, which are related to nucleotide binding, lipid metabolism, protein folding, protein biosynthesis, transcription, DNA repair, cell cycle control, and signal transduction. This study reports the potential significance of nucleophosmin (NPM) in the As-related bladder carcinogenesis. NPM was universally expressed in all of uroepithelial cell lines examined, implying that NPM may play a role in human bladder carcinogenesis. Upregulation of NPM tends to be dose- and time-dependent after As treatment. Expression of NPM was associated with cell proliferation, migration and anti-apoptosis. On the contrary, soy isoflavones inhibited the expression of NPM in vitro. The results suggest that NPM may play a role in the As-related bladder carcinogenesis, and soybean-based foods may have potential in the suppression of As/NPM-related tumorigenesis.

  4. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  5. Xeroderma pigmentosum, DNA repair and carcinogenesis

    International Nuclear Information System (INIS)

    The following topics are reviewed: Symptoms of xeroderma pigmentosum; xeroderma pigmentosum as a defect in the biochemistry of repair of radiation damage; major classes of DNA damage and repair mechanisms; excision repair in relation to biochemical steps and the XP defect; sensitivity of xeroderma pigmentosum cells; host-cell reactivation of UV-damaged viruses; excision of pyrimidine dimers from human cells; formation and sealing of single strand breaks during dimer excision; insertion of new bases to repair DNA; and DNA repair, carcinogens, and carcinogenesis

  6. Mechanisms of carcinogenesis prevention by flavonoids

    Directory of Open Access Journals (Sweden)

    G. A. Belitsky

    2014-01-01

    Full Text Available The mechanisms of anticancerogenic effects of flavanoids and isocyanates from the plants widely consumed in the midland belt of Russia were reviewed. Data of studies both in vitro and in vivo were analyzed. Special attention was paid to inhibition of targets responsible for carcinogen metabolic activation, carcinogenesis promotion and tumor progression as well as neoangiogenesis. Besides that the antioxidant properties of flavonoids and their effects on cell cycle regulation, apoptosis initiation and cell mobility were considered.

  7. Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis

    International Nuclear Information System (INIS)

    Epidemiological and experimental evidence has emerged that a dysregulated inflammation is associated with most of the tumors, and many studies have begun to unravel the molecular pathways linking inflammation and cancer. As a typical example linking these associations, Helicobacter pylori (H. pylori) infection-associated atrophic gastritis has been recognized as precursor lesion of gastric cancer. The identification of transcription factors such as NF-κB and STAT3, and their gene products such as IL-8, COX-2, iNOS, cytokines, chemokines and their receptors, etc have laid the molecular foundation for our understanding of the decisive role of inflammation in carcinogenesis. In addition to the role as the initiator of cancer, inflammation contributes to survival and proliferation of malignant cells, tumor angiogenesis, and even metastasis. In this review, the fundamental mechanisms of H. pylori-induced carcinogenesis as well as the possibility of cancer prevention through suppressing H. pylori-induced inflammation are introduced. We infer that targeting inflammatory pathways have a potential role to detour the unpleasant journey to H. pylori-associated gastric carcinogenesis

  8. Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hee; Hong, Kyung-Sook; Hong, Hua [Lab of Translational Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Hahm, Ki Baik, E-mail: hahmkb@gachon.ac.kr [Lab of Translational Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Department of Gastroenterology, Gachon Graduate School of Medicine, Gil Hospital, Incheon 406-840 (Korea, Republic of)

    2011-07-25

    Epidemiological and experimental evidence has emerged that a dysregulated inflammation is associated with most of the tumors, and many studies have begun to unravel the molecular pathways linking inflammation and cancer. As a typical example linking these associations, Helicobacter pylori (H. pylori) infection-associated atrophic gastritis has been recognized as precursor lesion of gastric cancer. The identification of transcription factors such as NF-κB and STAT3, and their gene products such as IL-8, COX-2, iNOS, cytokines, chemokines and their receptors, etc have laid the molecular foundation for our understanding of the decisive role of inflammation in carcinogenesis. In addition to the role as the initiator of cancer, inflammation contributes to survival and proliferation of malignant cells, tumor angiogenesis, and even metastasis. In this review, the fundamental mechanisms of H. pylori-induced carcinogenesis as well as the possibility of cancer prevention through suppressing H. pylori-induced inflammation are introduced. We infer that targeting inflammatory pathways have a potential role to detour the unpleasant journey to H. pylori-associated gastric carcinogenesis.

  9. Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ki Baik Hahm

    2011-07-01

    Full Text Available Epidemiological and experimental evidence has emerged that a dysregulated inflammation is associated with most of the tumors, and many studies have begun to unravel the molecular pathways linking inflammation and cancer. As a typical example linking these associations, Helicobacter pylori (H. pylori infection-associated atrophic gastritis has been recognized as precursor lesion of gastric cancer. The identification of transcription factors such as NF-κB and STAT3, and their gene products such as IL-8, COX-2, iNOS, cytokines, chemokines and their receptors, etc have laid the molecular foundation for our understanding of the decisive role of inflammation in carcinogenesis. In addition to the role as the initiator of cancer, inflammation contributes to survival and proliferation of malignant cells, tumor angiogenesis, and even metastasis. In this review, the fundamental mechanisms of H. pylori-induced carcinogenesis as well as the possibility of cancer prevention through suppressing H. pylori-induced inflammation are introduced. We infer that targeting inflammatory pathways have a potential role to detour the unpleasant journey to H. pylori-associated gastric carcinogenesis.

  10. Skin carcinogenesis in man and in experimental models

    International Nuclear Information System (INIS)

    This book presents an updated overview of the current state of the art in scientific, experimental and clinical investigations on the generation and the prevention of cancer of the skin. From the achievements presented, marked refinements in the assessment of the risk of cancer, by environmental and endogenous factors, including tumor virus, will be stimulated. They include the problem of the stratospheric 'ozone holes' above both poles of the earth causing much public concern as expressed by current headlines in the media and by the United Nations Environmental Program. Moreover, new ideas will merge for developing specific approaches to explore the mechanistic, i.e. ultimately the molecular-biological, causes of skin cancer and others. In addition, the experimental utilization of oncogens and of other techniques of molecular biology at all levels of the biology of tissues and cells, may open up entirely new facets in the research on skin cancer. Detailed knowledge of the mechanistic aspects of skin carcinogenesis may give important hints with respect to 'tailor-make' and utilize new anti-tumor agents in the therapy of skin cancer for the benefit of the cancer patient. (orig.). 67 figs., 44 tabs

  11. Transgenerational teratogenesis and carcinogenesis by radiation

    International Nuclear Information System (INIS)

    This paper thoroughly reviews studies on transgenerational teratogenesis and carcinogenesis induced by radiation and summarizes currently available data from animal studies. The discussions focus on the incidence of tumors, malformations, and mutations in the offspring after parental exposure to radiation, as well as estimated relative risks of congenital malformations and stillbirths in the offspring after parental X-ray exposure. The data suggest that different types of tumors are induced in offspring, because of strain differences in the experimental animals. The results of epidemiological studies in human populations, such as the children of atomic bomb survivors, conflict with the findings in animal studies. The author points to the following reasons for the differences between the results in animals and humans: differences in radiation doses, timing of exposure, and genetic predisposition, etc. While pointing out issues that need to be investigated further, the author indicates that clear strain differences exist in types of tumors induced and in tumor incidences in the offspring of animals that were irradiated before the offspring were conceived, and that genetic predisposition is therefore important in transgenerational carcinogenesis. (K.H.)

  12. Defining the role of polyamines in colon carcinogenesis using mouse models

    Directory of Open Access Journals (Sweden)

    Natalia A Ignatenko

    2011-01-01

    Full Text Available Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention.

  13. Molecular concept and experimental evidence of H2O, CH4 and CO2 adsorption on organic material

    Science.gov (United States)

    Gensterblum, Yves; Krooss, Bernhard; Busch, Andreas

    2014-05-01

    Unconventional gas, such as shale gas or coalbed methane offers an attractive low-carbon solution and furthermore provides possibilities for CO2-storage and coevally for enhanced gas recovery. In order to better understand gas and water interaction with organic matter (coal) of different maturity we developed a molecular concept with experimental and literature support for sorption of these fluids on organic material over the entire range of thermal maturity. With increasing burial depth and temperature CO2 and CH4 are the main volatiles released when organic material matures (cf. coalification). While most CO2 is generally dissolved in formation water and transported away from the coal, most CH4 (coalbed methane, CBM) remains adsorbed to the coal pore structure and is produced as unconventional gas. We present here the experimental basis and a conceptual model and to explain CO2 and CH4 sorption in the presence of water on coal with varying coal maturity (from lignite to anthracite). Adsorption experiments have been performed on different maturity coals at various temperatures, pressures up to 20 MPa and under dry and moist conditions. With increasing coal maturity we find for both gases a linear sorption capacity trend for moisture-equilibrated and a more parabolic trend for dry coal samples. When investigating the difference in CH4 and CO2 sorption capacity on coal of different maturity as a function of moisture content we infer that oxygen containing functional groups account for the selective sorption properties of gases and water to coals. Additionally restrictions in translational and vibrational movements of the sorbed gas molecules induced by adsorbed water molecules cause differences in the presence of water.

  14. Molecular genetics of pancreatic carcinogenesis and their clinical significance

    NARCIS (Netherlands)

    Ottenhof, N.A.

    2012-01-01

    Like all types of cancer, pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, is a disease of the genes and the genetic alterations that are involved in the development of PDAC have been under investigation for many years. The research described in this thesis focuses on

  15. Investigating evolutionary perspective of carcinogenesis with single-cell transcriptome analysis

    Institute of Scientific and Technical Information of China (English)

    Xi Zhang; Cheng Zhang; Zhongjun Li; Jiangjian Zhong; Leslie P. Weiner; Jiang F. Zhong

    2013-01-01

    We developed phase-switch microfluidic devices for molecular profiling of a large number of single cells. Whole genome microarrays and RNA-sequencing are commonly used to determine the expression levels of genes in cell lysates (a physical mix of millions of cells) for inferring gene functions. However, cellular heterogeneity becomes an inherent noise in the measurement of gene expression. The unique molecular characteristics of individual cells, as well as the temporal and quantitative information of gene expression in cells, are lost when averaged among all cells in cell lysates. Our single-cell technology overcomes this limitation and enables us to obtain a large number of single-cell transcriptomes from a population of cells. A collection of single-cell molecular profiles allows us to study carcinogenesis from an evolutionary perspective by treating cancer as a diverse population of cells with abnormal molecular characteristics. Because a cancer cellpopulation contains cells at various stages of development toward drug resistance, clustering similar single-cell molecular profiles could reveal how drug-resistant sub-clones evolve during cancer treatment. Here, we discuss how single-celltranscriptome analysis technology could enable the study of carcinogenesis from an evolutionary perspective and the development of drug-resistance in leukemia. The single-cell transcriptome analysis reported here could have a direct and significant impact on current cancer treatments and future personalized cancer therapies.

  16. Oxidative stress and inflammation in liver carcinogenesis

    Directory of Open Access Journals (Sweden)

    Natalia Olaya

    2007-02-01

    series of transcription factors. Moreover, in addition to direct production of ROS by these pathogens, liver infiltration by activated phagocytic cells provides an additional source of ROS production that promotes oxidative stress via interleukin or NO production that can damage proteins, lipids and DNA.

    Nuclear MSI was demonstrated first in familial hereditary colorectal cancer (HNPCC and then in sporadic cancers, primarily digestive tract cancers such as colorectal, gastric and pancreatic cancers.In HCC, although nuclear MSI has been shown in some studies (15,18, there is as yet no direct evidence of alteration of the MMR genes and the biological and the clinicopathological significance of the lowlevel MSI seen in HCC is unclear. MSI has also been shown to occur in inflammatory tissues such as chronic hepatitis and cirrhosis as well as in ulcerative colitis, chronic pancreatitis and in non digestive inflammatory diseases such as rheumatoid arthritis.

    Recently, the role of mitochondria in carcinogenesis has been under numerous investigation, in part because their prominent role in apoptosis, ROS production and other aspects of tumour biology. The mitochondrial genome is particularly susceptible to mutations because of the high level of ROS generation in this organelle, coupled with a relatively low level of DNA repair. Somatic mutations of mitochondrial DNA (mtDNA have been shown in HCC as was also observed MSI. These findings suggest a potential role for mitochondrial genome instability in the early steps of tumorigenesis.

    Ischemia-reperfusion injury can occur in several situations and is a major cause of cell damage during surgery. Cells and tissues subjected to hypoxia by prolonged ischemia become acidic

  17. Role of retinoic receptors in lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    Renyi-Vamos Ferenc

    2008-07-01

    Full Text Available Abstract Several in vitro and in vivo studies have examined the positive and negative effects of retinoids (vitamin A analogs in premalignant and malignant lesions. Retinoids have been used as chemopreventive and anticancer agents because of their pleiotropic regulator function in cell differentiation, growth, proliferation and apoptosis through interaction with two types of nuclear receptors: retinoic acid receptors and retinoid X receptors. Recent investigations have gradually elucidated the function of retinoids and their signaling pathways and may explain the failure of earlier chemopreventive studies. In this review we have compiled basic and recent knowledge regarding the role of retinoid receptors in lung carcinogenesis. Sensitive and appropriate biological tools are necessary for screening the risk population and monitoring the efficacy of chemoprevention. Investigation of retinoid receptors is important and may contribute to the establishment of new strategies in chemoprevention for high-risk patients and in the treatment of lung cancer.

  18. Deletion of macrophage migration inhibitory factor inhibits murine oral carcinogenesis: Potential role for chronic pro-inflammatory immune mediators.

    Science.gov (United States)

    Oghumu, Steve; Knobloch, Thomas J; Terrazas, Cesar; Varikuti, Sanjay; Ahn-Jarvis, Jennifer; Bollinger, Claire E; Iwenofu, Hans; Weghorst, Christopher M; Satoskar, Abhay R

    2016-09-15

    Oral cancer kills about 1 person every hour each day in the United States and is the sixth most prevalent cancer worldwide. The pro-inflammatory cytokine 'macrophage migration inhibitory factor' (MIF) has been shown to be expressed in oral cancer patients, yet its precise role in oral carcinogenesis is not clear. In this study, we examined the impact of global Mif deletion on the cellular and molecular process occurring during oral carcinogenesis using a well-established mouse model of oral cancer with the carcinogen 4-nitroquinoline-1-oxide (4NQO). C57BL/6 Wild-type (WT) and Mif knock-out mice were administered with 4NQO in drinking water for 16 weeks, then regular drinking water for 8 weeks. Mif knock-out mice displayed fewer oral tumor incidence and multiplicity, accompanied by a significant reduction in the expression of pro-inflammatory cytokines Il-1β, Tnf-α, chemokines Cxcl1, Cxcl6 and Ccl3 and other molecular biomarkers of oral carcinogenesis Mmp1 and Ptgs2. Further, systemic accumulation of myeloid-derived tumor promoting immune cells was inhibited in Mif knock-out mice. Our results demonstrate that genetic Mif deletion reduces the incidence and severity of oral carcinogenesis, by inhibiting the expression of chronic pro-inflammatory immune mediators. Thus, targeting MIF is a promising strategy for the prevention or therapy of oral cancer. PMID:27164411

  19. Radiation-induced mammary carcinogenesis in rodent models. What's different from chemical carcinogenesis?

    International Nuclear Information System (INIS)

    Ionizing radiation is one of a few well-characterized etiologic factors of human breast cancer. Laboratory rodents serve as useful experimental models for investigating dose responses and mechanisms of cancer development. Using these models, a lot of information has been accumulated about mammary gland cancer, which can be induced by both chemical carcinogens and radiation. In this review, we first list some experimental rodent models of breast cancer induction. We then focus on several topics that are important in understanding the mechanisms and risk modification of breast cancer development, and compare radiation and chemical carcinogenesis models. We will focus on the pathology and natural history of cancer development in these models, genetic changes observed in induced cancers, indirect effects of carcinogens, and finally risk modification by reproductive factors and age at exposure to the carcinogens. In addition, we summarize the knowledge available on mammary stem/progenitor cells as a potential target of carcinogens. Comparison of chemical and radiation carcinogenesis models on these topics indicates certain similarities, but it also indicates clear differences in several important aspects, such as genetic alterations of induced cancers and modification of susceptibility by age and reproductive factors. Identification of the target cell type and relevant translational research for human risk management may be among the important issues that are addressed by radiation carcinogenesis models. (author)

  20. Gene and DNA concepts by UNIFAL-MG entering students and the effectiveness of drama as a Molecular Biology teaching strategy

    Directory of Open Access Journals (Sweden)

    Marina Isidoro Silva

    2014-10-01

    Full Text Available The Molecular Biology concepts comprehension is important for understanding several Biological processes as well as to establish correlations and interrelations among cell processes and its interaction with the environment. The aim of this work was to evaluate the undergraduate students from the Universidade Federal de Alfenas-MG (UNIFAL-MG knowledge about gene and DNA concepts as well as to evaluate the effectiveness of drama as an innovative teaching strategy. This strategy was evaluated by the students` knowledge gain and scholar performance. The results showed the UNIFAL-MG beginners’ students presented defective concepts about gene and DNA composition and structure, probably due to deficient teaching-learning process before the University entrance. Drama was an efficient strategy to induce learning gain and to improve scholar performance of classes with a good initial level of knowledge.

  1. Magnetic exchange between metal ions with unquenched orbital angular momenta: basic concepts and relevance to molecular magnetism

    Science.gov (United States)

    Palii, Andrei; Tsukerblat, Boris; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    This review article is a first attempt to give a systematic and comprehensive description (in the framework of the unified theoretical approach) of the exchange interactions in polynuclear systems based on orbitally degenerate metal ions in the context of their relevance to the modern molecular magnetism. Interest in these systems is related to the fundamental problems of magnetism and at the same time steered by a number of impressive potential applications of molecular magnets, like high-density memory storage units, nanoscale qubits, spintronics and photoswitchable devices. In the presence of orbital degeneracy, the conventional spin Hamiltonian (Heisenberg-Dirac-van Vleck model) becomes inapplicable even as an approximation. The central component of this review article constitutes the concept of orbitally-dependent exchange interaction between metal ions possessing unquenched orbital angular momenta. We present a rigorous procedure of derivation of the kinetic exchange Hamiltonian for a pair of orbitally degenerate transition metal ions that is expressed in terms of the orbital matrices and spin operators. The microscopic background reveals the interrelations between the parameters of the Hamiltonian and the internal parameters of the system including all relevant transfer integrals and fundamental intracenter interactions. The developed formalism integrated with the irreducible tensor operator (ITO) technique makes it possible to describe the exchange coupling and all relevant interactions (crystal fields, spin-orbit (SO) and Zeeman couplings) in terms of the ITOs of the full spherical group, and in this way to develop anunified and efficient computational tool. The orbitally-dependent exchange was shown to lead to an anomalously strong magnetic anisotropy that can be considered as a main physical manifestation of the unquenched orbital angular momentum in metal clusters of orbitally-degenerate ions. The theoretical background is illustrated by the following

  2. Epigenetic regulation of human DCLK-1 gene during colon-carcinogenesis: clinical and mechanistic implications

    Science.gov (United States)

    O’Connell, Malaney; Shubhashish, Sarkar

    2016-01-01

    Colorectal carcinogenesis is a multi-step process. While ~25% of colorectal cancers (CRCs) arise in patients with a family history (genetic predisposition), ~75% of CRCs are due to age-associated accumulation of epigenetic alterations which can result in the suppression of key tumor suppressor genes leading to mutations and activation of oncogenic pathways. Sporadic colon-carcinogenesis is facilitated by many molecular pathways of genomic instability which include chromosomal instability (CIN), micro-satellite instability (MSI) and CpG island methylator phenotype (CIMP), leading towards loss of homeostasis and onset of neoplastic transformation. The unopposed activation of Wnt/β-catenin pathways, either due to loss of APC function or up-regulation of related stimulatory pathways, results in unopposed hyperproliferation of colonic crypts, considered the single most important risk factor for colon carcinogenesis. Hypermethylation of CpG islands within the promoters of specific genes can potentially inactivate DNA repair genes and/or critical tumor suppressor genes. Recently, CpG methylation of the 5’ promoter of human (h) DCLK1 gene was reported in many human epithelial cancers, including colorectal cancers (CRCs), resulting in the loss of expression of the canonical long isoform of DCLK1 (DCLK1-L) in hCRCs. Instead, a shorter isoform of DCLK1 (DCLK1-S) was discovered to be expressed in hCRCs, from an alternate β promoter of DCLKL1-gene; the clinical and biological implications of these novel findings, in relation to recent publications is discussed. PMID:27777940

  3. Role of S100 Proteins in Colorectal Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Paula Moravkova

    2016-01-01

    Full Text Available The family of S100 proteins represents 25 relatively small (9–13 kD calcium binding proteins. These proteins possess a broad spectrum of important intracellular and extracellular functions. Colorectal cancer is the third most common cancer in men (after lung and prostate cancer and the second most frequent cancer in women (after breast cancer worldwide. S100 proteins are involved in the colorectal carcinogenesis through different mechanisms: they enable proliferation, invasion, and migration of the tumour cells; furthermore, S100 proteins increase angiogenesis and activate NF-κβ signaling pathway, which plays a key role in the molecular pathogenesis especially of colitis-associated carcinoma. The expression of S100 proteins in the cancerous tissue and serum levels of S100 proteins might be used as a precise diagnostic and prognostic marker in patients with suspected or already diagnosed colorectal neoplasia. Possibly, in the future, S100 proteins will be a therapeutic target for tailored anticancer therapy.

  4. Cell cycle deregulation by methyl isocyanate: Implications in liver carcinogenesis.

    Science.gov (United States)

    Panwar, Hariom; Raghuram, Gorantla V; Jain, Deepika; Ahirwar, Alok K; Khan, Saba; Jain, Subodh K; Pathak, Neelam; Banerjee, Smita; Maudar, Kewal K; Mishra, Pradyumna K

    2014-03-01

    Liver is often exposed to plethora of chemical toxins. Owing to its profound physiological role and central function in metabolism and homeostasis, pertinent succession of cell cycle in liver epithelial cells is of prime importance to maintain cellular proliferation. Although recent evidence has displayed a strong association between exposures to methyl isocyanate (MIC), one of the most toxic isocyanates, and neoplastic transformation, molecular characterization of the longitudinal effects of MIC on cell cycle regulation has never been performed. Here, we sequentially delineated the status of different proteins arbitrating the deregulation of cell cycle in liver epithelial cells treated with MIC. Our data reaffirms the oncogenic capability of MIC with elevated DNA damage response proteins pATM and γ-H2AX, deregulation of DNA damage check point genes CHK1 and CHK2, altered expression of p53 and p21 proteins involved in cell cycle arrest with perturbation in GADD-45 expression in the treated cells. Further, alterations in cyclin A, cyclin E, CDK2 levels along with overexpression of mitotic spindle checkpoints proteins Aurora A/B, centrosomal pericentrin protein, chromosomal aberrations, and loss of Pot1a was observed. Thus, MIC impacts key proteins involved in cell cycle regulation to trigger genomic instability as a possible mechanism of developmental basis of liver carcinogenesis. PMID:22223508

  5. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution.

    Science.gov (United States)

    Skinner, Michael K

    2015-04-26

    Environment has a critical role in the natural selection process for Darwinian evolution. The primary molecular component currently considered for neo-Darwinian evolution involves genetic alterations and random mutations that generate the phenotypic variation required for natural selection to act. The vast majority of environmental factors cannot directly alter DNA sequence. Epigenetic mechanisms directly regulate genetic processes and can be dramatically altered by environmental factors. Therefore, environmental epigenetics provides a molecular mechanism to directly alter phenotypic variation generationally. Lamarck proposed in 1802 the concept that environment can directly alter phenotype in a heritable manner. Environmental epigenetics and epigenetic transgenerational inheritance provide molecular mechanisms for this process. Therefore, environment can on a molecular level influence the phenotypic variation directly. The ability of environmental epigenetics to alter phenotypic and genotypic variation directly can significantly impact natural selection. Neo-Lamarckian concept can facilitate neo-Darwinian evolution. A unified theory of evolution is presented to describe the integration of environmental epigenetic and genetic aspects of evolution.

  6. Concept - or no concept

    DEFF Research Database (Denmark)

    Thorsteinsson, Uffe

    1999-01-01

    Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown......Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown...

  7. Comfrey (Symphytum officinale. L. and Experimental Hepatic Carcinogenesis: A Short-Term Carcinogenesis Model Study

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Pereira Lavieri Gomes

    2010-01-01

    Full Text Available Comfrey or Symphytum officinale (L. (Boraginaceae is a very popular plant used for therapeutic purposes. Since the 1980s, its effects have been studied in long-term carcinogenesis studies, in which Comfrey extract is administered at high doses during several months and the neoplastic hepatic lesions are evaluated. However, the literature on this topic is very poor considering the studies performed under short-term carcinogenesis protocols, such as the ‘resistant hepatocyte model’ (RHM. In these studies, it is possible to observe easily the phenomena related to the early phases of tumor development, since pre-neoplastic lesions (PNLs rise in about 1–2 months of chemical induction. Herein, the effects of chronic oral treatment of rats with 10% Comfrey ethanolic extract were evaluated in a RHM. Wistar rats were sequentially treated with N-nitrosodiethylamine (ip and 2-acetilaminofluorene (po, and submitted to hepatectomy to induce carcinogenesis promotion. Macroscopic/microscopic quantitative analysis of PNL was performed. Non-parametric statistical tests (Mann–Whitney and χ2 were used, and the level of significance was set at P ≤ 0.05. Comfrey treatment reduced the number of pre-neoplastic macroscopic lesions up to 1 mm (P ≤ 0.05, the percentage of oval cells (P = 0.0001 and mitotic figures (P = 0.007, as well as the number of Proliferating Cell Nuclear Antigen (PCNA positive cells (P = 0.0001 and acidophilic pre-neoplastic nodules (P = 0.05. On the other hand, the percentage of cells presenting megalocytosis (P = 0.0001 and vacuolar degeneration (P = 0.0001 was increased. Scores of fibrosis, glycogen stores and the number of nucleolus organizing regions were not altered. The study indicated that oral treatment of rats with 10% Comfrey alcoholic extract reduced cell proliferation in this model.

  8. Multistage chemical carcinogenesis in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Slaga, T.J.; Fischer, S.M.; Weeks, C.E.; Klein-Szanto, A.J.P.

    1979-01-01

    Skin tumors in mice can be induced by the sequential application of a subthreshold dose of a carcinogen (initiation phase) followed by repetitive treatment with a noncarcinogenic tumor promoter. The initiation phase requires only a single application of either a direct acting carcinogen or a procarcinogen which has to be metabolized before being active and is essentially an irreversible step which probably involves a somatic cell mutation. There is a good correlation between the skin tumor initiating activites of several polycyclic aromatic hydrocarbons (PAH) and their ability to bind covalently to epidermal DNA. Laboratory results suggest that bay region diol-epoxides are the ultimate carcinogenic form of PAH carcinogens. Potent inhibitors and stimulators of PAH tumor initiation appear to affect the level of the PAH diol-epoxide reacting with specific DNA bases. Reecent data suggests that the tumor promotion stage involves at least three important steps: (1) the induction of embryonic looking cells (dark cells) in adult epidermis; (2) an increased production of epidermal prostaglandins and polyamines; (3) sustained proliferation of dark cells. Retinoic acid specifically inhibits step two whereas the anti-inflammatory steriod fluocinolone acetonide is a potent inhibitor of steps one and three. The mechanism and the importance of a specific sequence for each step in chemical carcinogenesis in mouse skin are detailed.

  9. Pulmonary carcinogenesis from plutonium-containing particles

    International Nuclear Information System (INIS)

    Induction of lung tumors by various types of radiation is of paramount concern to the nuclear industry. The data presented were obtained by exposing the pulmonary system of Syrian hamsters to particles of zirconium oxide containing various amounts of either plutonium-238 or -239 as the alpha radiation source. These particles were injected intravenously and lodged permanently in the capillary bed of the lung. When less than 20% of the lung tissue was irradiated, simulating the ''hot particle'' mode, tumors were not evident with lung burdens up to 500 nCi plutonium. More diffuse irradiation significantly increased the tumor incidence, with lung burdens of 50 to 150 nCi. When plutonium-laden microspheres were administered intratracheally, tumor production was considerably increased and the addition of 3 mg of iron oxide intratracheally further increased the incidence. Using the zirconium oxide matrix for the carrier of plutonium in aerosol particles produced tumor incidences of up to 50% in Syrian hamsters exposed by inhalation. Initial pulmonary (alveolar) burdens reached 100 nCi of plutonium. Similar inhalation studies using plutonium dioxide alone (no matrix) failed to produce any increase in lung tumorigenesis. The results are discussed in terms of possible mechanisms necessary for lung carcinogenesis. (H.K.)

  10. Hypoxia and Angiogenesis in Endometrioid Endometrial Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Nicole Horrée

    2007-01-01

    Full Text Available Background: Hypoxia-inducible factor 1α (HIF-1α plays an essential role in the adaptive response of cells to hypoxia, triggering biologic events associated with aggressive tumor behavior. Methods: Expression of HIF-1α and proteins in the HIF-1α pathway (Glut-1, CAIX, VEGF in paraffin-embedded specimens of normal (n = 17, premalignant (n = 17 and endometrioid endometrial carcinoma (n = 39 was explored by immunohistochemistry, in relation to microvessel density (MVD. Results: HIF-1α overexpression was absent in inactive endometrium but present in hyperplasia (61% and carcinoma (87%, with increasing expression in a perinecrotic fashion pointing to underlying hypoxia. No membranous expression of Glut-1 and CAIX was noticed in inactive endometrium, in contrast with expression in hyperplasia (Glut-1 0%, CAIX 61%, only focal and diffuse and carcinoma (Glut-1 94.6%, CAIX 92%, both mostly perinecrotically. Diffuse HIF-1α was accompanied by activation of downstream targets. VEGF was significantly higher expressed in hyperplasias and carcinomas compared to inactive endometrium. MVD was higher in hyperplasias and carcinomas than in normal endometrium (p < 0.001. Conclusion: HIF-1α and its downstream genes are increasingly expressed from normal through premalignant to endometrioid adenocarcinoma of the endometrium, paralleled by activation of its downstream genes and increased angiogenesis. This underlines the potential importance of hypoxia and its key regulator HIF-1α in endometrial carcinogenesis.

  11. Targeting hepatitis B virus and human papillomavirus induced carcinogenesis: novel patented therapeutics.

    Science.gov (United States)

    Kanwar, Rupinder K; Singh, Neha; Gurudevan, Sneha; Kanwar, Jagat R

    2011-05-01

    Viral infections leading to carcinogenesis tops the risk factors list for the development of human cancer. The decades of research has provided ample scientific evidence that directly links 10-15% of the worldwide incidence of human cancers to the infections with seven human viruses. Moreover, the insights gained into the molecular pathogenetic and immune mechanisms of hepatitis B virus (HBV) and human papillomavirus (HPV) viral transmission to tumour progression, and the identification of their viral surface antigens as well as oncoproteins have provided the scientific community with opportunities to target these virus infections through the development of prophylactic vaccines and antiviral therapeutics. The preventive vaccination programmes targeting HBV and high risk HPV infections, linked to hepatocellular carcinoma (HCC) and cervical cancer respectively have been recently reported to alter age-old cancer patterns on an international scale. In this review, with an emphasis on HBV and HPV mediated carcinogenesis because of the similarities and differences in their global incidence patterns, viral transmission, mortality, molecular pathogenesis and prevention, we focus on the development of recently identified HBV and HPV targeting innovative strategies resulting in several patents and patent applications. PMID:21517743

  12. Deficiency of CCAAT/enhancer binding protein family DNA binding prevents malignant conversion of adenoma to carcinoma in NNK-induced lung carcinogenesis in the mouse

    Directory of Open Access Journals (Sweden)

    Kimura Shioko

    2012-12-01

    Full Text Available Abstract Background The CCAAT/enhancer binding proteins (C/EBPs play important roles in carcinogenesis of many tumors including the lung. Since multiple C/EBPs are expressed in lung, the combinatorial expression of these C/EBPs on lung carcinogenesis is not known. Methods A transgenic mouse line expressing a dominant negative A-C/EBP under the promoter of lung epithelial Clara cell secretory protein (CCSP gene in doxycycline dependent fashion was subjected to 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced lung carcinogenesis bioassay in the presence and absence of doxycycline, and the effect of abolition of DNA binding activities of C/EBPs on lung carcinogenesis was examined. Results A-C/EBP expression was found not to interfere with tumor development; however, it suppressed the malignant conversion of adenoma to carcinoma during NNK-induced lung carcinogenesis. The results suggested that Ki67 may be used as a marker for lung carcinomas in mouse. Conclusions The DNA binding of C/EBP family members can be used as a potential molecular target for lung cancer therapy.

  13. Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept.

    Science.gov (United States)

    Yuen, Carlen A; Asuthkar, Swapna; Guda, Maheedhara R; Tsung, Andrew J; Velpula, Kiran K

    2016-01-01

    Prior targeted treatment for glioblastoma multiforme (GBM) with anti-angiogenic agents, such as bevacizumab, has been met with limited success potentially owing to GBM tumor's ability to develop a hypoxia-induced escape mechanism--a glycolytic switch from oxidative phosphorylation to glycolysis, an old concept known as the Warburg effect. New studies points to a subpopulation of cells as a source for treatment-resistance, cancer stem cells (CSCs). Taken together, the induction of the Warburg effect leads to the promotion of CSC self-renewal and undifferentiation. In response to hypoxia, hypoxia-inducible transcription factor is upregulated and is the central driver in setting off the cascade of events in CSC metabolic reprogramming. Hypoxia-inducible transcription factor upregulates GLUT1 to increase glucose uptake into the cell, upregulates HK2 and PK during glycolysis, upregulates LDHA in the termination of glycolysis, and downregulates PDH to redirect energy production toward glycolysis. This review aims to unite these old and new concepts simultaneously and examine potential enzyme targets driven by hypoxia in the glycolytic phenotype of CSCs to reverse the metabolic shift induced by the Warburg effect. PMID:26997129

  14. Mouse Models for Efficacy Testing of Agents against Radiation Carcinogenesis — A Literature Review

    Directory of Open Access Journals (Sweden)

    Leena Rivina

    2012-12-01

    Full Text Available As the number of cancer survivors treated with radiation as a part of their therapy regimen is constantly increasing, so is concern about radiation-induced cancers. This increases the need for therapeutic and mitigating agents against secondary neoplasias. Development and efficacy testing of these agents requires not only extensive in vitro assessment, but also a set of reliable animal models of radiation-induced carcinogenesis. The laboratory mouse (Mus musculus remains one of the best animal model systems for cancer research due to its molecular and physiological similarities to man, small size, ease of breeding in captivity and a fully sequenced genome. This work reviews relevant M. musculus inbred and F1 hybrid animal models and methodologies of induction of radiation-induced leukemia, thymic lymphoma, breast, and lung cancer in these models. Where available, the associated molecular pathologies are also included.

  15. Colorectal carcinogenesis-update and perspectives

    DEFF Research Database (Denmark)

    Raskov, Hans; Pommergaard, Hans-Christian; Burcharth, Jakob;

    2014-01-01

    of CRC include at least two important cell surface receptors: the epidermal growth factor receptor and the vascular endothelial growth factor receptor. The genetic and molecular knowledge of CRC has widen the scientific and clinical perspectives of diagnosing and treatment. However, despite significant...

  16. Concept and approach of human signal-molecular-profiling database: a pilot study on depression using Lab-on-chips.

    Science.gov (United States)

    Dong, Tao; Zhao, Xinyan; Yang, Zhaochu

    2013-01-01

    Signal molecular profiling (SMP) in serum can reveal abundant medical information about the human body. The construction of a human signal-molecular-profiling database (HSMPD) will greatly prompt the research of medical science. However, some challenges hinder the construction of HSMPD. A promising strategy is proposed to provide a convenient way for the establishment of HSMPD. Firstly, a low-cost and high-throughput tool for measuring SMP should be developed and standardized. When the SMP-oriented tools were accepted by most hospitals worldwide, SMP information will be decoded by a cloud-based system and stored into the online database naturally. In the pilot study, an ultrasensitive Lab-on-chips (LOC) device was developed as a specific tool for SMP. Clinical serum samples from 10 women within 4 weeks of giving birth, including 2 patients with postpartum depression were studied by the LOC devices, since accumulating evidence has indicated that hormones and cytokines in patients with mood disorders are abnormal. HSMPD may be applied to diagnose depression in the future. Here, five kinds of signal molecules were quantified on the devices, namely, tumor necrosis factor-alpha (TNF-α), thyroid-stimulating hormone (TSH), interleukin (IL)-2, IL-6 and IL-8. The preliminary results showed that the concentrations of IL-2 and IL-8 in the depression group may be higher than those in the control group, whereas the other kinds of signal molecules did not change significantly. Although the correlations are not enough to induct any diagnostic criterion, the SMP-oriented tool was verified. The results also indicated that the strategy to establish HSMPD is conceivable.

  17. New concepts in molecular imaging: non-invasive MRI spotting of proteolysis using an Overhauser effect switch.

    Directory of Open Access Journals (Sweden)

    Philippe Mellet

    Full Text Available BACKGROUND: Proteolysis, involved in many processes in living organisms, is tightly regulated in space and time under physiological conditions. However deregulation can occur with local persistent proteolytic activities, e.g. in inflammation, cystic fibrosis, tumors, or pancreatitis. Furthermore, little is known about the role of many proteases, hence there is a need of new imaging methods to visualize specifically normal or disease-related proteolysis in intact bodies. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, a new concept for non invasive proteolysis imaging is proposed. Overhauser-enhanced Magnetic Resonance Imaging (OMRI at 0.2 Tesla was used to monitor the enzymatic hydrolysis of a nitroxide-labeled protein. In vitro, image intensity switched from 1 to 25 upon proteolysis due to the associated decrease in the motional correlation time of the substrate. The OMRI experimental device used in this study is consistent with protease imaging in mice at 0.2 T without significant heating. Simulations show that this enzymatic-driven OMRI signal switch can be obtained at lower frequencies suitable for larger animals or humans. CONCLUSIONS/SIGNIFICANCE: The method is highly sensitive and makes possible proteolysis imaging in three dimensions with a good spatial resolution. Any protease could be targeted specifically through the use of taylor-made cleavable macromolecules. At short term OMRI of proteolysis may be applied to basic research as well as to evaluate therapeutic treatments in small animal models of experimental diseases.

  18. Chemical and radiation carcinogenesis. Progress report

    International Nuclear Information System (INIS)

    Gamma radiation, as a quantitative perturbation reference, has been related to oxygen toxicity as the unavoidable background risk due to living in an oxygen atmosphere. The basic mechanisms shared by gamma irradiation and oxygen toxicity have been studied. The response to these two perturbations has been characterized at the molecular level through DNA chemistry and monoclonal antibodies, and by cellular biological responses. The investigation of cellular responses is being extended to the molecular level through a study of alteration of gene arrangement and gene expression. Concentration has been on the study of the involvement of the evolutionally conserved repetitive DNA sequences shared by hamster and man. Such sequences were found and some have been isolated in plasmids. Two cellular systems were chosen for investigation, the embryonic/adult mesenchymal system and the hematopoietic tissues system. Concentration has been on the isolation, properties, and response to perturbation of the progenitor cells and the stem cell populations

  19. The glutathione biotransformation system and colon carcinogenesis in human

    NARCIS (Netherlands)

    Grubben, M.J.A.L.; Nagengast, F.M.; Katan, M.B.; Peters, W.H.M.

    2001-01-01

    Evidence for a protective role of the glutathione biotransformation system in carcinogenesis is growing. However, most data on this system in relation to colorectal cancer originate from animal studies. Here we review the human data. In humans, a significant association was found between glutathione

  20. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C;

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...

  1. Death receptors and ligands in cervical carcinogenesis : an immunohistochemical study

    NARCIS (Netherlands)

    Reesink-Peters, N; Hougardy, B M T; van den Heuvel, F A J; Ten Hoor, K A; Hollema, H; Boezen, H M; de Vries, E G E; de Jong, S; van der Zee, A G J

    2005-01-01

    OBJECTIVE: Increasing imbalance between proliferation and apoptosis is important in cervical carcinogenesis. The death ligands FasL and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induce apoptosis by binding to their cognate cell-surface death receptors Fas or death receptor (DR)

  2. Hypoxia and cell cycle deregulation in endometrial carcinogenesis

    NARCIS (Netherlands)

    Horrée, N.

    2007-01-01

    Because uterine endometrial carcinoma is the most common malignancy of the female genital tract and 1 of every 5 patients dies of this disease, understanding the mechanisms of carcinogenesis and progression of endometrial carcinoma is important. In general, this thesis can be summarized as a study o

  3. STUDIES INTO THE MECHANISMS OF POTASSIUM BROMATE INDUCED THYROID CARCINOGENESIS

    Science.gov (United States)

    Studies into the Mechanisms of Potassium Bromate Induced Thyroid Carcinogenesis. Potassium bromate (KBrO3) occurs in finished drinking water as a by-product of the ozonation disinfection process and has been found to induce thyroid follicular cell tumors in the rat after ...

  4. Downregulation of keratin 76 expression during oral carcinogenesis of human, hamster and mouse.

    Directory of Open Access Journals (Sweden)

    Srikant Ambatipudi

    Full Text Available BACKGROUND: Keratins are structural marker proteins with tissue specific expression; however, recent reports indicate their involvement in cancer progression. Previous study from our lab revealed deregulation of many genes related to structural molecular integrity including KRT76. Here we evaluate the role of KRT76 downregulation in oral precancer and cancer development. METHODS: We evaluated KRT76 expression by qRT-PCR in normal and tumor tissues of the oral cavity. We also analyzed K76 expression by immunohistochemistry in normal, oral precancerous lesion (OPL, oral squamous cell carcinoma (OSCC and in hamster model of oral carcinogenesis. Further, functional implication of KRT76 loss was confirmed using KRT76-knockout (KO mice. RESULTS: We observed a strong association of reduced K76 expression with increased risk of OPL and OSCC development. The buccal epithelium of DMBA treated hamsters showed a similar trend. Oral cavity of KRT76-KO mice showed preneoplastic changes in the gingivobuccal epithelium while no pathological changes were observed in KRT76 negative tissues such as tongue. CONCLUSION: The present study demonstrates loss of KRT76 in oral carcinogenesis. The KRT76-KO mice data underlines the potential of KRT76 being an early event although this loss is not sufficient to drive the development of oral cancers. Thus, future studies to investigate the contributing role of KRT76 in light of other tumor driving events are warranted.

  5. Multistage models of carcinogenesis and their implications for dose-response models and risk projections

    International Nuclear Information System (INIS)

    Multistage models are used to both describe the biological steps in developing a cancer and as a mathematical description of the relationship of exposure to tumor incidence. With the rapid development of molecular biology the stages of tumor development are becoming understood. Specifically, the effect and role of proto-oncogenes and suppressor genes are exciting developments in the field of carcinogenesis. Mathematically the field has moved from the original Armitage-Doll multistage model to the more current cell kinetic models. These latter models attempt to describe both the rate of cell mutation and the birth-death process involved in clonal expansion. This then allows modeling of both initiation and promotion or cellular proliferation. The field of radiation carcinogenesis has a considerable body of data and knowledge. Unfortunately, relatively little work has been done with the cell kinetic models as to estimation of tumor incidence. This may be due to the newness of kinetic models in general. The field holds promise and it is essential if we are to develop better human risk estimates from exposure to ionizing radiation. (author)

  6. Femtosecond Laser Spectroscopy of the Rhodopsin Photochromic Reaction: A Concept for Ultrafast Optical Molecular Switch Creation (Ultrafast Reversible Photoreaction of Rhodopsin

    Directory of Open Access Journals (Sweden)

    Olga Smitienko

    2014-11-01

    Full Text Available Ultrafast reverse photoreaction of visual pigment rhodopsin in the femtosecond time range at room temperature is demonstrated. Femtosecond two-pump probe experiments with a time resolution of 25 fs have been performed. The first рump pulse at 500 nm initiated cis-trans photoisomerization of rhodopsin chromophore, 11-cis retinal, which resulted in the formation of the primary ground-state photoproduct within a mere 200 fs. The second pump pulse at 620 nm with a varying delay of 200 to 3750 fs relative to the first рump pulse, initiated the reverse phototransition of the primary photoproduct to rhodopsin. The results of this photoconversion have been observed on the differential spectra obtained after the action of two pump pulses at a time delay of 100 ps. It was found that optical density decreased at 560 nm in the spectral region of bathorhodopsin absorption and increased at 480 nm, where rhodopsin absorbs. Rhodopsin photoswitching efficiency shows oscillations as a function of the time delay between two рump pulses. The quantum yield of reverse photoreaction initiated by the second pump pulse falls within the range 15% ± 1%. The molecular mechanism of the ultrafast reversible photoreaction of visual pigment rhodopsin may be used as a concept for the development of an ultrafast optical molecular switch.

  7. Distinct response of the hepatic transcriptome to Aflatoxin B1 induced hepatocellular carcinogenesis and resistance in rats

    Science.gov (United States)

    Shi, Jiejun; He, Jiangtu; Lin, Jing; Sun, Xin; Sun, Fenyong; Ou, Chao; Jiang, Cizhong

    2016-01-01

    Aflatoxin is a natural potent carcinogen and a major cause of liver cancer. However, the molecular mechanisms of hepatocellular carcinogenesis remain largely unexplored. In this study, we profiled global gene expression in liver tissues of rats that developed hepatocellular carcinoma (HCC) from aflatoxin B1 (AFB1) administration and those that were AFB1-resistant, as well as rats without AFB1 exposure as a control. AFB1 exposure resulted in extensive perturbation in gene expression with different functions in HCC and AFB1 resistance (AR) samples. The differentially expressed genes (DEGs) in HCC sample were enriched for cell proliferation, cell adhesion and vasculature development that largely contribute to carcinogenesis. Anti-apoptosis genes were up-regulated in HCC sample whereas apoptosis-induction genes were up-regulated in AR sample. AFB1 exposure also caused extensive alteration in expression level of lncRNAs. Among all the 4511 annotated lncRNAs, half of them were highly expressed only in HCC sample and up-regulated a group of protein-coding genes with cancer-related functions: apoptosis regulation, DNA repair, and cell cycle. Intriguingly, these genes were down-regulated by lncRNAs highly expressed in AR sample. Collectively, apoptosis is the critical biological process for carcinogenesis in response to AFB1 exposure through changes in expression level of both protein-coding and lncRNA genes. PMID:27545718

  8. Role of microsatellites instability in carcinogenesis of postcricoid carcinoma on top of plummer-vinson syndrome.

    Science.gov (United States)

    Badawy, Badawy Shahat; Ahmad, Mohamed Abdel-Kader; Sayed, Ramadan Hashem; Habib, Tito Naeem

    2010-10-01

    To develop a molecular pattern that might help in understanding carcinogenesis of postcricoid carcinoma (PCC) on top of Plummer-Vinson syndrome (PVS) in a prospective controlled study. Twenty-four patients with PVS were diagnosed and followed up over a 4 year period, during which eight of them showed malignant change to PCC. Twenty volunteers free of neoplastic diseases were included as a control group. In the two groups, DNA extraction from mononuclear peripheral blood cells, and analysis of loss of heterozygosity (LOH) and microsatellite instability (MSI) using six paired simple tandem repeats (STRs) primers were done. The molecular weight of each STRs locus was scored and statistical correlations were performed. LOH occurred in 55.6 and 72.9% of PVS and PCC cases compared to 25% of control group. At loci D17S695, D9S753 and D9S171, LOH occurred in 54.2, 66.7, and 70.8% of PVS cases; and in 62.5% of PCC cases for each locus compared to 15, 25 and 45% of control cases. D3S1286 and CFS1-R displayed the highest frequency of LOH in PCC (100% for each) while recorded in 58.3 and 33.3% in PVS compared to 30 and 0% in control cases. Certain genetic events tend to occur as early and late events in malignant change of PVS to PCC. Detection of these events may help in understanding carcinogenesis and in early detection of malignancy. CFS1-R is the most informative marker of tumor progression.

  9. Inflammation-driven carcinogenesis is mediated through STING

    Science.gov (United States)

    Ahn, Jeonghyun; Xia, Tianli; Konno, Hiroyasu; Konno, Keiko; Ruiz, Phillip; Barber, Glen N.

    2016-01-01

    Chronic stimulation of innate immune pathways by microbial agents or damaged tissue is known to promote inflammation-driven tumorigenesis by mechanisms that are not well understood. Here we demonstrate that mutagenic 7,12-dimethylbenz(a)anthracene (DMBA), cisplatin and etoposide induce nuclear DNA leakage into the cytosol that intrinsically activates stimulator of interferon genes (STING)-dependent cytokine production. Inflammatory cytokine levels are subsequently augmented in a STING-dependent extrinsic manner by infiltrating phagocytes purging dying cells. Consequently, STING−/− mice, or wild-type mice adoptively transferred with STING−/− bone marrow, are almost completely resistant to DMBA-induced skin carcinogenesis compared with their wild-type counterparts. Our data establish a role for STING in the control of cancer, shed significant insight into the causes of inflammation-driven carcinogenesis and may provide a basis for therapeutic strategies to help prevent malignant disease. PMID:25300616

  10. Epigenetic targets of arsenic: emphasis on epigenetic modifications during carcinogenesis.

    Science.gov (United States)

    Roy, Ram Vinod; Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei; Hitron, John Andrew; Divya, Sasidharan Padmaja; D, Rakesh; Kim, Donghern; Yin, Yuanqin; Zhang, Zhuo; Shi, Xianglin

    2015-01-01

    DNA methylation and histone modification promote opening and closure of chromatin structure, which affects gene expression without altering the DNA sequence. Epigenetic markers regulate the dynamic nature of chromatin structure at different levels: DNA, histone, noncoding RNAs, as well as the higher-order chromatin structure. Accumulating evidence strongly suggests that arsenic-induced carcinogenesis involves frequent changes in the epigenetic marker. However, progress in identifying arsenic-induced epigenetic changes has already been made using genome-wide approaches; the biological significance of these epigenetic changes remains unknown. Moreover, arsenic-induced changes in the chromatin state alter gene expression through the epigenetic mechanism. The current review provides a summary of recent literature regarding epigenetic changes caused by arsenic in carcinogenesis. We highlight the transgenerational studies needed to explicate the biological significance and toxicity of arsenic over a broad spectrum.

  11. The Role of Ubiquitine Proteasome Pathway in Carcinogenesis

    Directory of Open Access Journals (Sweden)

    N.Ceren Sumer Turanligil

    2010-02-01

    Full Text Available Ubiquitin works as a marker protein which targets misfolded or injured proteins to cellular degradation. It brings the abnormal proteins to a subcellular organelle named proteasome and it maintains the degradation of proteins in limited lenghts of peptides by leaving the process withuout being changed. Mistakes in ubiquitin-dependent proteolysis in various steps of carcinogenesis is known. In this review, we dealed with the effects of ubiquitin-proteasome pathway (UPP on carcinogenesis via intercellular signaling molecules like Ras, transcription factors like NF-kB, cytokines like TNF-alfa Tumor necrosis factor, protooncogenes like p53 and MDM2(murine double minute 2, components of cell cycle and DNA repair proteins like BRCA1. We also focused on the relationship of UPP on antigen presentation which is active in immune response and its place in the aetiology of colon cancer to provide a specific example. [Archives Medical Review Journal 2010; 19(1.000: 36-55

  12. Animal Models of Colitis-Associated Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Manasa Kanneganti

    2011-01-01

    Full Text Available Inflammatory bowel disease (IBD is a group of chronic inflammatory disorders that affect individuals throughout life. Although the etiology and pathogenesis of IBD are largely unknown, studies with animal models of colitis indicate that dysregulation of host/microbial interactions are requisite for the development of IBD. Patients with long-standing IBD have an increased risk for developing colitis-associated cancer (CAC, especially 10 years after the initial diagnosis of colitis, although the absolute number of CAC cases is relatively small. The cancer risk seems to be not directly related to disease activity, but is related to disease duration/extent, complication of primary sclerosing cholangitis, and family history of colon cancer. In particular, high levels and continuous production of inflammatory mediators, including cytokines and chemokines, by colonic epithelial cells (CECs and immune cells in lamina propria may be strongly associated with the pathogenesis of CAC. In this article, we have summarized animal models of CAC and have reviewed the cellular and molecular mechanisms underlining the development of carcinogenic changes in CECs secondary to the chronic inflammatory conditions in the intestine. It may provide us some clues in developing a new class of therapeutic agents for the treatment of IBD and CAC in the near future.

  13. Using cell replication data in mathematical modeling in carcinogenesis.

    OpenAIRE

    Portier, C.J.; Kopp-Schneider, A; Sherman, C D

    1993-01-01

    Risk estimation involves the application of quantitative models of dose versus response to carcinogenicity data. Recent advances in biology, computing, and mathematics have led to the application of mathematically complicated, mechanistically based models of carcinogenesis to the estimation of risks. This paper focuses on two aspects of this application, distinguishing between models using available data and the development of new models to keep pace with research developments.

  14. Experimental Gastric Carcinogenesis in Cebus apella Nonhuman Primates

    Science.gov (United States)

    Silva, Tanielly Cristina Raiol; Andrade Junior, Edilson Ferreira; Rezende, Alexandre Pingarilho; Carneiro Muniz, José Augusto Pereira; Lacreta Junior, Antonio Carlos Cunha; Assumpção, Paulo Pimentel; Calcagno, Danielle Queiroz; Demachki, Samia; Rabenhorst, Silvia Helena Barem; Smith, Marília de Arruda Cardoso; Burbano, Rommel Rodriguez

    2011-01-01

    The evolution of gastric carcinogenesis remains largely unknown. We established two gastric carcinogenesis models in New-World nonhuman primates. In the first model, ACP03 gastric cancer cell line was inoculated in 18 animals. In the second model, we treated 6 animals with N-methyl-nitrosourea (MNU). Animals with gastric cancer were also treated with Canova immunomodulator. Clinical, hematologic, and biochemical, including C-reactive protein, folic acid, and homocysteine, analyses were performed in this study. MYC expression and copy number was also evaluated. We observed that all animals inoculated with ACP03 developed gastric cancer on the 9th day though on the 14th day presented total tumor remission. In the second model, all animals developed pre-neoplastic lesions and five died of drug intoxication before the development of cancer. The last surviving MNU-treated animal developed intestinal-type gastric adenocarcinoma observed by endoscopy on the 940th day. The level of C-reactive protein level and homocysteine concentration increased while the level of folic acid decreased with the presence of tumors in ACP03-inoculated animals and MNU treatment. ACP03 inoculation also led to anemia and leukocytosis. The hematologic and biochemical results corroborate those observed in patients with gastric cancer, supporting that our in vivo models are potentially useful to study this neoplasia. In cell line inoculated animals, we detected MYC immunoreactivity, mRNA overexpression, and amplification, as previously observed in vitro. In MNU-treated animals, mRNA expression and MYC copy number increased during the sequential steps of intestinal-type gastric carcinogenesis and immunoreactivity was only observed in intestinal metaplasia and gastric cancer. Thus, MYC deregulation supports the gastric carcinogenesis process. Canova immunomodulator restored several hematologic measurements and therefore, can be applied during/after chemotherapy to increase the tolerability and

  15. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation.

    Science.gov (United States)

    Li, Wenjuan; Zhang, Chunjing; Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis. PMID:25961580

  16. Heel spur radiotherapy and radiation carcinogenesis risk estimation

    International Nuclear Information System (INIS)

    Radiotherapy is a nonsurgical alternative therapy of painful heel spur patients. Nonetheless, cancer induction is the most important somatic effect of ionizing radiation. This study was designed to evaluate the carcinogenesis risk factor in benign painful heel spur patients treated by radiotherapy. Between 1974 and 1999, a total of 20 patients received mean 8.16 Gy total irradiation dose in two fractions. Thermoluminescent dosimeters (TLD100) were placed on multiple phantom sites in vivo within the irradiated volume to verify irradiation accuracy and carcinogenesis risk factor calculation. The 20 still-alive patients, who had a minimum 5-year and maximum 29-year follow-up (mean 11.9 years), have been evaluated by carcinogenic radiation risk factor on the basis of tissue weighting factors as defined by the International Commission on Radiological Protection Publication 60. Reasonable pain relief has been obtained in all 20 patients. The calculated mean carcinogenesis risk factor is 1.3% for radiation portals in the whole group, and no secondary cancer has been clinically observed. Radiotherapy is an effective treatment modality for relieving pain in calcaneal spur patients. The estimated secondary cancer risk factor for irradiation of this benign lesion is not as high as was feared. (author)

  17. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation.

    Science.gov (United States)

    Li, Wenjuan; Zhang, Chunjing; Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis.

  18. Pro-apoptotic and anti-inflammatory potential of andrographolide during 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis

    OpenAIRE

    Karthikeyan Sekar; Baskaran Nagarethinam; Arjun Kumar Singh; Manoharan Shanmugam

    2012-01-01

    Objective: Aim of the present study was to investigate the modulating effect of andrographolide on apoptotic and inflammatory markers during 7,12-dimethyl-benz[a]anthracene (DMBA) induced hamster buccal pouch carcinogenesis. Methods: Oral tumors were developed in the buccal pouch of golden Syrian hamsters by painting with 0.5% DMBA in liquid paraffin three times a week for 14 weeks. The expression pattern of molecular markers were assayed using immunohistochemistry (p53, Bcl-2 and Bax), ELISA...

  19. Stochastic concepts in molecular simulation

    OpenAIRE

    Hess, Berk

    2002-01-01

    Eiwitten zijn grote moleculen die een belangrijke rol spelen in bijna alle processen in levende organismen. Ze reguleren processen in cellen, katalyseren chemische reacties en kunnen chemische energie omzetten in mechanische energie, bijvoorbeeld in spieren. Eiwitten bestaan uit ketens van vijftig tot enkele honderden aminozuur residuen. Er zijn twintig verschillende residuen. Deze bestaan elk uit een hoofdketen van enkele atomen en een zijketen. De zijketen is verschillend voor elk van de tw...

  20. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme.

    Science.gov (United States)

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton-Jacobi inequality - constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  1. Carcinogenesis switched on by DNA cross-link between complementary bases aroused by aflatoxin and N-nitroso compounds

    Institute of Scientific and Technical Information of China (English)

    DAI Qianhuan; LU Ping; PENG Shaohua; ZHANG Qingrong

    2003-01-01

    The di-region theory put forward by Dai Qianhuan, a molecular mechanism of chemical carcinogenesis, concluded that the carcinogenesis induced by most of the environmental carcinogens is switched on by the cross-linking between DNA complementary bases aroused by the bifunctional alkylation of their metabolic intermediates. It was evidenced in this paper with DNA filter elution method that one carcinogenic mycotoxin, aflatoxin G1, four carcinogenic N-nitroso compounds, N-nitrosodiethyl-amine, N-nitrosodibutyl-amine, N-nitrosomorpholine and N-nitrosopyrrolidine, one carcinogenic diazo color, 4-dimethylaminodiazobenzene and one carcinogenic nitrogen-containing heterocyclic compound, quinoline, all induced DNA interstrands cross-linking with dosage correlation after metabolic activation. However, the non-carcinogens in corresponding series for control, aflatoxin B2, N-nitroso-diphenylamine, 4′-bromo-4-dimethylaminodiazobenzene and isoquinoline, cannot induce DNA interstrands cross-linking at all in the same condition. A method for the determination of cross-linking ratio between DNA complementary bases in total DNA interstrands cross-linking, which has no monitoring measure as yet, has been established for the first time based upon a 24 hour repairing experiment. The DNA complementary pair cross-linking ratio induced by a metabolized carcinogen is correlated with its carcinogenic potential. It may be concluded that the mutations including point and frameshift mutagenesis induced by aflatoxin and other carcinogens are switched on by their corresponding cross-linking base pair between complementary bases. Therefore, the di-region theory is a reasonable molecular mechanism for chemical, endogenous and physical carcinogenesis.

  2. Acyclic retinoid in chemoprevention of hepatocellular carcinoma: Targeting phosphorylated retinoid X receptor-α for prevention of liver carcinogenesis

    Directory of Open Access Journals (Sweden)

    Masahito Shimizu

    2012-01-01

    Full Text Available One of the key features of hepatocellular carcinoma (HCC is the high rate of intrahepatic recurrence that correlates with poor prognosis. Therefore, in order to improve the clinical outcome for patients with HCC, development of a chemopreventive agent that can decrease or delay the incidence of recurrence is a critical issue for urgent investigation. Acyclic retinoid (ACR, a synthetic retinoid, successfully improves HCC patient survival by preventing recurrence and the formation of secondary tumors. A malfunction of the retinoid X receptor-α (RXRα due to phosphorylation by the Ras-MAPK signaling pathway plays a critical role in liver carcinogenesis, and ACR exerts chemopreventive effects on HCC development by inhibiting RXRα phosphorylation. Here, we review the relationship between retinoid signaling abnormalities and liver disease, the mechanisms of how RXRα phosphorylation contributes to liver carcinogenesis, and the detailed effects of ACR on preventing HCC development, especially based on the results of our basic and clinical research. We also outline the concept of "clonal deletion and inhibition" therapy, which is defined as the removal and inhibition of latent malignant clones from the liver before they expand into clinically detectable HCC, because ACR prevents the development of HCC by implementing this concept. Looking toward the future, we discuss "combination chemoprevention" using ACR as a key drug since it can generate a synergistic effect, and may thus be an effective new strategy for the prevention of HCC.

  3. Dose-dependent effects of UVB-induced skin carcinogenesis in hairless p53 knockout mice

    International Nuclear Information System (INIS)

    Exposure to (solar) UVB radiation gives rise to mutations in the p53 tumor suppressor gene that appear to contribute to the earliest steps in the molecular cascade towards human and murine skin cancer. To examine in more detail the role of p53, we studied UVB-induced carcinogenesis in hairless p53 knock-out mice. The early onset of lymphomas as well as early wasting of mice interfered with the development of skin tumors in p53 null-mice. The induction of skin tumors in the hairless p53+/- mice was accomplished by daily exposure to two different UV-doses of approximately 450 J/m2 and 900 J/m2 from F40 lamps corresponding to a fraction of about 0.4 and 0.8 of the minimal edemal dose. Marked differences in skin carcinogenesis were observed between the p53+/- mice and their wild type littermates. Firstly, at 900 J/m2, tumors developed significantly faster in the heterozygotes than in wild types, whereas at 450 J/m2 there was hardly any difference, suggesting that only at higher damage levels loss of one functional p53 allele is important. Secondly, a large portion (25%) of skin tumors in the heterozygotes were of a more malignant, poorly differentiated variety of squamous cell carcinomas, i.e. spindle cell carcinomas, a tumor type that was rarely observed in daily UV exposed wild type hairless mice. Thirdly, the p53 mutation spectrum in skin tumors in heterozygotes is quite different from that in wild types. Together these results support the notion that a point mutation in the p53 gene impacts skin carcinogenesis quite differently than allelic loss: the former is generally selected for in early stages of skin tumors in wild type mice, whereas the latter enhances tumor development only at high exposure levels (where apoptosis becomes more prevalent) and appears to increase progression (to a higher grade of malignancy) of skin tumors

  4. Expression of some tumor associated factors in human carcinogenesis and development of gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Ming-Dong Zhao; Xue-Mei Hu; Dian-Jing Sun; Qun Zhang; Yu-Hao Zhang; Wei Meng

    2005-01-01

    AIM: To study the effect of IGF-1/IGF-1R and gastrin/ CCK-BR on carcinogenesis and development of human gastric carcinoma and to explore its mechanism and provide a credible theoretical foundation for early diagnosis and molecular therapy of gastric carcinoma. METHODS: mRNA expression levels of IGF-1/IGF-1R and gastrin/CCK-BR were assessed by RT-PCR method in gastric cancer tissues, adjacent mucosa, and tumor-free tissues from 56 patients with gastric carcinoma and normal gastric mucosae from 56 healthy controls. Tissue specimens were obtained by biopsy and confirmed by histological evaluation.RESULTS: The mRNA levels of IGF-1/IGF-1R were increased in gastric cancer tissues compared with normal tissues from healthy controls and successively increased in tumor-free tissues, adjacent mucosa, and gastric cancer tissues. The mRNA levels of gastrin/CCK-BR were increased in gastric cancer tissues compared with normal tissues from healthy controls. There was a significant difference between gastric cancer tissues and adjacent mucosa and tumor-free tissues, but the mRNA levels of gastrin were not significantly increased in adjacent mucosa and gastric cancer tissues compared with tumorfree tissues. The mRNA levels of CCK-BR were increased in gastric cancer tissues and adjacent mucosa compared with tumor-free tissues, but not significantly increased in adjacent mucosa and gastric cancer tissues compared with gastric cancer tissues. CONCLUSION: Overexpression of IGF-1/IGF-1R and gastrin/CCK-BR promotes the disorderly proliferation of gastric mucosa epithelia and it is of great significance in the carcinogenesis and development of gastric carcinoma.

  5. EXPRESSION OF GST-π GENE IN HUMAN ESOPHAGEAL CARCINOGENESIS

    Institute of Scientific and Technical Information of China (English)

    FU Baojin; ZHANG Yunhan; WANG Yaohe; GAO Dongling; FU Shuli; WEN Xiaogang; ZHANG Sanshen; WANG Jiang

    1999-01-01

    Objective: To investigate the possible role of GSTπ in esophageal carcinogenesis. Methods: GST-πexpression at mRNA level was studied by in situ hybridization (ISH) and at protein level by immunohistochemistry (IHC). GST-π expression in normal epithelial cells (NC) of the esophagus,hyperplastic cells (HC), dysplastic cells (DC) from grade Ⅰ to Ⅲ, carcinoma in situ (CIS) and all the cells in squamous cell carcinomas (SCC) were examined in the same esophageal cancer specimens (n=48) which provided a model reflecting the process of esophageal carcinogenesis. Results: The positive rate of IHC staining was 87. 5% for NC, 95.3% for HC, 55.9% for DC (grade Ⅰ: 73.9%, grade Ⅱ: 47.4%, grade Ⅲ: 41.2%),36.4% for CIS and 45.8% for SCC. The positive rate of GST-π mRNA expression was 81.2% for NC, 94.4% for HC, 61.9% for DC (grade Ⅰ: 76.5%, grade Ⅱ: 61.5%,grade Ⅲ: 41.7%), 44.4% for CIS and 83.3% for grade ⅠSCC, 30.0% for grade Ⅱ SCC and 0% for grade ⅢSCC. There was no statistically significant difference in GST-π expression at the mRNA and the protein level.Conclusion: There is a decreasing tendency of GST-πexpression from dysplasia to CIS and SCC. The decrease in GST-π expression is an early event in esophageal carcinogenesis.

  6. Statistical properties of a two-stage model of carcinogenesis.

    OpenAIRE

    Portier, C J

    1987-01-01

    Some of the statistical properties of a simple two-stage model of carcinogenesis are explored. The implications of additive treatment effects versus independent treatment effects on the shape of the dose-response curve are considered. Response that is low-dose linear results in the cases where the mutation rates are affected by dose or in the cases where treatment changes the birth rate/death rate of initiated cells in an additive fashion. Independent treatment effects lead to non-low-dose li...

  7. : beta-carotene, alpha-linolenate and carcinogenesis.

    OpenAIRE

    Maillard, Virginie; Hoinard, Claude; Arab, Khelifa; Jourdan, Marie-Lise; Bougnoux, Philippe; Chajès, Véronique

    2006-01-01

    To investigate whether dietary alpha-linolenic acid (ALA) content alters the effect of beta-carotene on mammary carcinogenesis, we conducted a chemically induced mammary tumorigenesis experiment in rats randomly assigned to four nutritional groups (15 rats per group) varying in beta-carotene supplementation and ALA content. Two oil formula-enriched diets (15 %) were used: one with 6 g ALA/kg diet in an essential fatty acids (EFA) ratio of linoleic acid:ALA of 5:1 w/w (EFA 5 diet), the other w...

  8. Altered cytokeratin expression during chemoprevention of hamster buccal pouch carcinogenesis by S-allylcysteine.

    Science.gov (United States)

    Balasenthil, Seetharaman; Rao, Kunchala S; Nagini, Siddavaram

    2003-01-01

    We examined the effect of S-allylcysteine (SAC), a water-soluble garlic constituent, on cytokeratin expression, a sensitive and specific marker for differentiation status during 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis in male Syrian hamsters. Hamsters were divided into four groups of six animals each. Animals in group 1 were painted with a 0.5% solution of DMBA in liquid paraffin on the right buccal pouches three times a week for 14 weeks. Group 2 animals were painted with DMBA as in group I, and in addition they received orally 200 mg/kg of SAC on days alternate to DMBA application. Group 3 animals received SAC as in group 2. Group 4 animals received neither DMBA nor SAC and served as the control. The hamsters were killed after an experimental period of 14 weeks. Cytokeratin expression was detected by Western blot analysis using monoclonal antibodies AE1 and AE3. In DMBA-induced HBP tumors, the decreased expression of high molecular weight cytokeratins of molecular mass between 55-70 kDa was observed. Administration of SAC (200 mg/kg) to animals painted with DMBA suppressed the incidence of DMBA-induced carcinomas and was associated with restoration of normal cytokeratin expression. The results of the present study suggest that inhibition of HBP tumorigenesis by SAC may be due to its regulatory effects on differentiation, tumor invasiveness, and its ability to migrate and form metastases. PMID:14704476

  9. Expression of survivin protein in human colorectal carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Lian-Jie Lin; Chang-Qing Zheng; Yu Jin; Ying Ma; Wei-Guo Jiang; Tie Ma

    2003-01-01

    AIM: To identify the role of survivin in colorectal carcinogenesis and the relationship between Survivin and histological differentiation grade of colorectal carcinoma.METHODS: Immunohistochemical staining of survivin by using the monoclonal antibody was performed by the standard streptavidin-peroxidase (SP) technique for the 188paraffin sections which included 30 normal colorectal mucosas, 41 adenomas with low grade dysplasia, 30adenomas with high grade dysplasia, and 87 colorectal carcinomas which were classified as high, middle and low differentiated subgroups which included 33, 28, 26 cases respectively.RESULTS: Expression of survivin was observed in the cytoplasm of adenoma with dysplasia and colorectal carcinoma cells. No immunoreactivity of survivin was seen in normal mucosas. The positive rate of survivin increased in the transition from normal mucosas to adenomas with low grade dysplasia to high grade dysplasia/carcinomas (0.0 %, 31.7 %, 56.7 % and 63.2% respectively). But the difference between high grade dyspiasia and carcinomas had no statistical significance. Positive rate was not related to histological differentiation grade of colorectal carcinoma.Moreover, there was no correlation between histological differentiation grade of colorectal carcinoma and immunoreactive intensity of survivin.CONCLUSION: The expression of survivin is the essential event in the early stage of colorectal carcinogenesis and plays an important role in the transition sequence and it is not related to histological differentiation grade of colorectal carcinoma. It thus may provide a new diagnostic and therapeutic target in colorectal cancer.

  10. Thrombospondin-1 in a Murine Model of Colorectal Carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Zenaida P Lopez-Dee

    Full Text Available Colorectal Cancer (CRC is one of the late complications observed in patients suffering from inflammatory bowel diseases (IBD. Carcinogenesis is promoted by persistent chronic inflammation occurring in IBD. Understanding the mechanisms involved is essential in order to ameliorate inflammation and prevent CRC. Thrombospondin 1 (TSP-1 is a multidomain glycoprotein with important roles in angiogenesis. The effects of TSP-1 in colonic tumor formation and growth were analyzed in a model of inflammation-induced carcinogenesis. WT and TSP-1 deficient mice (TSP-1-/- of the C57BL/6 strain received a single injection of azoxymethane (AOM and multiple cycles of dextran sodium sulfate (DSS to induce chronic inflammation-related cancers. Proliferation and angiogenesis were histologically analyzed in tumors. The intestinal transcriptome was also analyzed using a gene microarray approach. When the area containing tumors was compared with the entire colonic area of each mouse, the tumor burden was decreased in AOM/DSS-treated TSP-1-/- versus wild type (WT mice. However, these lesions displayed more angiogenesis and proliferation rates when compared with the WT tumors. AOM-DSS treatment of TSP-1-/- mice resulted in significant deregulation of genes involved in transcription, canonical Wnt signaling, transport, defense response, regulation of epithelial cell proliferation and metabolism. Microarray analyses of these tumors showed down-regulation of 18 microRNAs in TSP-1-/- tumors. These results contribute new insights on the controversial role of TSP-1 in cancer and offer a better understanding of the genetics and pathogenesis of CRC.

  11. [THE ROLE OF ESTROGENS IN THE CARCINOGENESIS OF LUNG CANCER].

    Science.gov (United States)

    Uchikova, E; Uchikov, A; Dimitrakova, E; Uchikov, P

    2016-01-01

    Morbidity and mortality from lung cancer has dramatically increased in women as compared to men over the past few years. Historically, smoking has been considered the major risk factor for lung cancer regardless of gender. Several recent lines of evidence implicate gender differences in the observed differences in prevalence and histologic type which cannot be explained based on the carcinogenic action of nicotine. Several recent studies underscore the importance of reproductive and hormonal factors in the carcinogenesis of lung cancer Lung cancer morbidity and mortality in Bulgaria was 16.2/100000 women and 14.6/ 100000 women, resp. Lung cancer morbidity in Europe was 39/100000 women. Lung cancer is extremely sensitive to estrogens. The latter act directly or as effect modifiers for the relationship between smoking and lung cancer. Further research examining the relationship between serum estrogen levels and the estrogen receptor expression in normal and tumor lung tissue samples can help elucidate the importance of reproductive and hormonal (exogenous and endogenous) factors in the carcinogenesis of lung cancer.

  12. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-10-01

    Full Text Available Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer.

  13. [THE ROLE OF ESTROGENS IN THE CARCINOGENESIS OF LUNG CANCER].

    Science.gov (United States)

    Uchikova, E; Uchikov, A; Dimitrakova, E; Uchikov, P

    2016-01-01

    Morbidity and mortality from lung cancer has dramatically increased in women as compared to men over the past few years. Historically, smoking has been considered the major risk factor for lung cancer regardless of gender. Several recent lines of evidence implicate gender differences in the observed differences in prevalence and histologic type which cannot be explained based on the carcinogenic action of nicotine. Several recent studies underscore the importance of reproductive and hormonal factors in the carcinogenesis of lung cancer Lung cancer morbidity and mortality in Bulgaria was 16.2/100000 women and 14.6/ 100000 women, resp. Lung cancer morbidity in Europe was 39/100000 women. Lung cancer is extremely sensitive to estrogens. The latter act directly or as effect modifiers for the relationship between smoking and lung cancer. Further research examining the relationship between serum estrogen levels and the estrogen receptor expression in normal and tumor lung tissue samples can help elucidate the importance of reproductive and hormonal (exogenous and endogenous) factors in the carcinogenesis of lung cancer. PMID:27509656

  14. 一个与化学因素致鼻咽癌相关的硝基还原酶基因的克隆与鉴定%Molecular Cloning and Characterization of a Novel Nitroreductase Gene, NOR1, Possibly Involved in Chemical Carcinogenesis of NPC

    Institute of Scientific and Technical Information of China (English)

    聂新民; 周鸣; 唐珂; 张必成; 向娟娟; 熊炜; 吕红斌; 李小玲; 李桂源

    2003-01-01

    gene may play an important rol e in the formation of chemical carcinogen and carcinogenesis of NPC by its nitro sation function and high enzyme activity.

  15. Effect of luteolin on glycoproteins metabolism in 1, 2-dimethylhydrazine induced experimental colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Manju Vaiyapuri

    2008-12-01

    carcinogenesis. Thus, the present study indicates that luteolin has protected the cell surface and maintained the structural integrity of the cell membranes during DMH induced colon carcinogenesis. Keywords: Colon cancer, 1, 2-dimethylhydrazine, luteolin, glycoproteins Received: 23 January 2009 / Received in revised form: 17 February 2009, Accepted: 28 February 2009, Published online: 3 March 2009

  16. Initiation of esophageal squamous cell carcinoma (ESCC) in a murine 4-nitroquinoline-1-oxide and alcohol carcinogenesis model

    Science.gov (United States)

    Osei-Sarfo, Kwame; Scognamiglio, Theresa; Gudas, Lorraine J.

    2015-01-01

    Esophageal squamous cell carcinomas (ESCCs) are very common, aggressive tumors, and are often associated with alcohol and tobacco abuse. Because ESCCs exhibit high recurrence rates and are diagnosed at late stages, identification of prognostic and drug targets for prevention and treatment is critical. We used the 4-nitroquinoline-1-oxide (4-NQO) murine model of oral carcinogenesis and the Meadows-Cook model of alcohol abuse to assess changes in the expression of molecular markers during the initial stages of ESCC. Combining these two models, which mimic chronic alcohol and tobacco abuse in humans, we detected increased cellular proliferation (EGFR and Ki67 expression), increased canonical Wnt signaling and downstream elements (β-catenin, FoxM1, and S100a4 protein levels), changes in cellular adhesive properties (reduced E-cadherin in the basal layer of the esophageal epithelium), and increased levels of phosphorylated ERK1/2 and p38. Additionally, we found that treatment with ethanol alone increased the numbers of epithelial cells expressing solute carrier family 2 (facilitated glucose transporter, member 1) (SLC2A1) and carbonic anhydrase IX (CAIX), and increased the phosphorylation of p38. Thus, we identified both 4-NQO- and ethanol-specific targets in the initial stages of esophageal carcinogenesis, which should lead to the development of potential markers and therapeutic targets for human ESCC. PMID:25714027

  17. Deficient Expression of Aldehyde Dehydrogenase 1A1 Is Consistent with Increased Sensitivity of Gorlin Syndrome Patients to Radiation Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2015-06-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profiles by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.

  18. Oxidative DNA base modifications as factors in carcinogenesis

    International Nuclear Information System (INIS)

    Reactive oxygen species can cause extensive DNA modifications including modified bases. Some of the DNA base damage has been found to possess premutagenic properties. Therefore, if not repaired, it can contribute to carcinogenesis. We have found elevated amounts of modified bases in cancerous and precancerous tissues as compared with normal tissues. Most of the agents used in anticancer therapy are paradoxically responsible for induction of secondary malignancies and some of them may generate free radicals. The results of our experiments provide evidence that exposure of cancer patients to therapeutic doses of ionizing radiation and anticancer drugs cause base modifications in genomic DNA of lymphocytes. Some of these base damages could lead to mutagenesis in critical genes and ultimately to secondary cancers such as leukemias. This may point to an important role of oxidative base damage in cancer initiation. Alternatively, the increased level of the modified base products may contribute to genetic instability and metastatic potential of tumor cells. (author)

  19. Studies on the multistage nature of radiation carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.; Ley, R.D.; Grube, D.; Staffeldt, E.

    1980-01-01

    With low dose levels of ionizing or ultraviolet radiation, the number of initiation events exceeds the number of tumors that grow to a detectable size. Ionizing radiation, which is a complete carcinogen, appears to be a more effective initiator than an enhancer or promoter. However, the initiation and promotion aspects of ionizing radiation have been studied in very few organ systems. In the case of UVR, with or without photosensitizers such as psoralens, the requirement of a relatively large number of exposures for carcinogenesis suggests that the expression of the initiated cells as frank tumors requires a number of events spread out over the time of the development of the tumor. Both ionizing and ultraviolet radiation are, perhaps, underutilized as tools for probing the mechanism of both initiation and promotion.

  20. Carcinogenesis of gallbladder mucosa with occult pancreatobiliary reflux

    International Nuclear Information System (INIS)

    Characteristics of gallbladder cancer (GC) with occult pancreatobiliary reflux (OPBR) were retrospectively examined with images by US (ultrasonography), endoscopic US (EUS), ERCP (endoscopic retrograde cholangiopancreatography) and multi-row CT, and with pathological specimens of the mucosa to consider its carcinogenesis. Subjects were 51-77 years old, 7 female patients with GC in whom OPBR was suggested mainly by mucosal hypertrophy in those images. Pathological observation was performed on specimens stained by HE and Ki-67 (for detecting cell proliferation). Imaging and pathological findings of the mucosa in the present GC were found analogous to known characteristics of GC with abnormal pancreatbiliary confluence, suggesting a similar carcinogenetic process to each other, where biliary phospholipids (PL) were degraded to toxic lyso-PL and free fatty acids. The subject with OPBR could thus be classified in the high risk group. More cases in number were thought necessary to define the surgical treatment, its timing and procedure in GC. (R.T.)

  1. Recent advances in the study of HPV-associated carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Liyan; Jin; Zhi-Xiang; Xu

    2015-01-01

    Human papillomaviruses(HPVs) cause virtually all cervical cancers, the second leading cause of death by cancer among women, as well as other anogenital cancers and a subset of head and neck cancers. Approximately half of women, who develop cervical cancer die from it. Despite the optimism that has accompanied the introduction of prophylactic vaccines to prevent some HPV infections, the relatively modest uptake of the vaccine, especially in the developing world, and the very high fraction of men and women who are already infected, means that HPV-associated disease will remain as a significant public health problem for decades. In this review, we summarize some recent findings on HPV-associated carcinogenesis, such as mi RNAs in HPV-associated cancers, implication of stem cells in the biology and therapy of HPV-positive cancers, HPV vaccines, targeted therapy of cervical cancer, and drug treatment for HPV-induced intraepithelial neoplasias.

  2. Translesion Synthesis Polymerases in the Prevention and Promotion of Carcinogenesis

    Directory of Open Access Journals (Sweden)

    L. Jay Stallons

    2010-01-01

    Full Text Available A critical step in the transformation of cells to the malignant state of cancer is the induction of mutations in the DNA of cells damaged by genotoxic agents. Translesion DNA synthesis (TLS is the process by which cells copy DNA containing unrepaired damage that blocks progression of the replication fork. The DNA polymerases that catalyze TLS in mammals have been the topic of intense investigation over the last decade. DNA polymerase η (Pol η is best understood and is active in error-free bypass of UV-induced DNA damage. The other TLS polymerases (Pol ι, Pol κ, REV1, and Pol ζ have been studied extensively in vitro, but their in vivo role is only now being investigated using knockout mouse models of carcinogenesis. This paper will focus on the studies of mice and humans with altered expression of TLS polymerases and the effects on cancer induced by environmental agents.

  3. Pathogenesis and biomarkers of carcinogenesis in ulcerative colitis

    DEFF Research Database (Denmark)

    Thorsteinsdottir, Sigrun; Gudjonsson, Thorkell; Nielsen, Ole Haagen;

    2011-01-01

    One of the most serious complications of ulcerative colitis is the development of colorectal cancer. Screening patients with ulcerative colitis by standard histological examination of random intestinal biopsy samples might be inefficient as a method of cancer surveillance. This Review focuses...... on the current understanding of the pathogenesis of ulcerative colitis-associated colorectal cancer and how this knowledge can be transferred into patient management to assist clinicians and pathologists in identifying patients with ulcerative colitis who have an increased risk of colorectal cancer. Inflammation....... Although progress has been made in the understanding of inflammation-driven carcinogenesis, markers based on these findings possess insufficient sensitivity or specificity to be usable as reliable biomarkers for risk of colorectal cancer development in patients with ulcerative colitis. However, screening...

  4. Mushroom Ganoderma lucidum prevents colitis-associated carcinogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Daniel Sliva

    Full Text Available BACKGROUND: Epidemiological studies suggest that mushroom intake is inversely correlated with gastric, gastrointestinal and breast cancers. We have recently demonstrated anticancer and anti-inflammatory activity of triterpene extract isolated from mushroom Ganoderma lucidum (GLT. The aim of the present study was to evaluate whether GLT prevents colitis-associated carcinogenesis in mice. METHODS/PRINCIPAL FINDINGS: Colon carcinogenesis was induced by the food-borne carcinogen (2-Amino-1-methyl-6-phenylimidazol[4,5-b]pyridine [PhIP] and inflammation (dextran sodium sulfate [DSS] in mice. Mice were treated with 0, 100, 300 and 500 mg GLT/kg of body weight 3 times per week for 4 months. Cell proliferation, expression of cyclin D1 and COX-2 and macrophage infiltration was assessed by immunohistochemistry. The effect of GLT on XRE/AhR, PXR and rPXR was evaluated by the reporter gene assays. Expression of metabolizing enzymes CYP1A2, CYP3A1 and CYP3A4 in colon tissue was determined by immunohistochemistry. GLT treatment significantly suppressed focal hyperplasia, aberrant crypt foci (ACF formation and tumor formation in mice exposed to PhIP/DSS. The anti-proliferative effects of GLT were further confirmed by the decreased staining with Ki-67 in colon tissues. PhIP/DSS-induced colon inflammation was demonstrated by the significant shortening of the large intestine and macrophage infiltrations, whereas GLT treatment prevented the shortening of colon lengths, and reduced infiltration of macrophages in colon tissue. GLT treatment also significantly down-regulated PhIP/DSS-dependent expression of cyclin D1, COX-2, CYP1A2 and CYP3A4 in colon tissue. CONCLUSIONS: Our data suggest that GLT could be considered as an alternative dietary approach for the prevention of colitis-associated cancer.

  5. Role of oxidative stress in cadmium toxicity and carcinogenesis

    International Nuclear Information System (INIS)

    Cadmium (Cd) is a toxic metal, targeting the lung, liver, kidney, and testes following acute intoxication, and causing nephrotoxicity, immunotoxicity, osteotoxicity and tumors after prolonged exposures. Reactive oxygen species (ROS) are often implicated in Cd toxicology. This minireview focused on direct evidence for the generation of free radicals in intact animals following acute Cd overload and discussed the association of ROS in chronic Cd toxicity and carcinogenesis. Cd-generated superoxide anion, hydrogen peroxide, and hydroxyl radicals in vivo have been detected by the electron spin resonance spectra, which are often accompanied by activation of redox sensitive transcription factors (e.g., NF-κB, AP-1 and Nrf2) and alteration of ROS-related gene expression. It is generally agreed upon that oxidative stress plays important roles in acute Cd poisoning. However, following long-term Cd exposure at environmentally-relevant low levels, direct evidence for oxidative stress is often obscure. Alterations in ROS-related gene expression during chronic exposures are also less significant compared to acute Cd poisoning. This is probably due to induced adaptation mechanisms (e.g., metallothionein and glutathione) following chronic Cd exposures, which in turn diminish Cd-induced oxidative stress. In chronic Cd-transformed cells, less ROS signals are detected with fluorescence probes. Acquired apoptotic tolerance renders damaged cells to proliferate with inherent oxidative DNA lesions, potentially leading to tumorigenesis. Thus, ROS are generated following acute Cd overload and play important roles in tissue damage. Adaptation to chronic Cd exposure reduces ROS production, but acquired Cd tolerance with aberrant gene expression plays important roles in chronic Cd toxicity and carcinogenesis.

  6. Alteration of gene expression during nasopharyngeal carcinogenesis revealed by oligonucleotide microarray after microdissection of tumor tissue and normal epithelia from nasopharynx

    Institute of Scientific and Technical Information of China (English)

    LIU Zhong-qi; TIAN Yong-quan; HU Yong-fang; LI Xiao-ling; MA Fu-rong; LI Gui-yuan

    2009-01-01

    average value of case groups and that of control group respectively (t=2.170, df=16, P=0.045 and t=-2.946, dr=16, P=0.009).Conclusions We had identified some genes which could be the molecular marker during the carcinogenesis and the development of the NPC. The genes which selected from the different subgroups seemed to be implicated for the diagnosis,classification, and progression of NPC, and provided important insights into their underlying biology.

  7. The CK1 family: contribution to cellular stress response and its role in carcinogenesis

    Directory of Open Access Journals (Sweden)

    Uwe eKnippschild

    2014-05-01

    Full Text Available Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key regulatory proteins and signal integration molecules and is tightly connected to the regulation of β-catenin, p53- and MDM2-specific functions and degradation. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, effort has enormously increased (i to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review we summarize the current knowledge regarding the regulation, functions, and interactions of CK1 family members with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.

  8. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis.

    Science.gov (United States)

    Barcellos-Hoff, Mary Helen; Mao, Jian-Hua

    2016-01-01

    Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures, such as those of astronauts during deep space travel. Here, we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic instability. It is unknown whether the potentially greater carcinogenic effect of high Z and energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality. PMID:27014632

  9. HZE Radiation Non-targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Mary Helen eBarcellos-Hoff

    2016-03-01

    Full Text Available Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures such as those of astronauts during deep space travel. Here we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects (RTE that occur as a result of direct energy deposition, e.g. DNA damage, and non-targeted effects (NTE that result from changes in cell signaling, e.g. genomic instability. It is unknown whether the potentially greater carcinogenic effect of HZE particle radiation is a function of the relative contribution or extent of NTE, or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens anti-tumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality.

  10. DNA interstrand cross-link induced by estrogens as well as their complete and synergic carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The estrogens show negative activity in Ames test, but estrodiol and diethylstilbestrol in estrogens both are carcinogens based upon animal experiments and epidemiological investigation. It is concluded from the di-region theory, a mechanism conception put forward by one of the present authors, that the carcinogenesis of estrogens is switched on by the covalent cross-link between complementary DNA bases induced by them. We verified for the first time by the DNA alkaline elution method that both estrodiol and diethylstilbestrol cause covalent cross-link between DNA-protein and DNA interstrands after metabolic activation with dosage correlation, but neither the non-carcinogens cholesterol nor pyrene can lead to these sorts of cross-link in the same condition. It has been known that there is a synergetic effect between estrogen and pollution of polycyclic aromatic hydrocarbons. Although non-carcinogenic pyrene alone cannot induce cross-link, its addition with equal molar quantity to estrodiol culture causes synergically the total and DNA interstrand cross-link ratios to be respectively four and three times more than the ones in the cultivation with estrodiol only. It is shown that not only the estrodiol set off the formation of pyrene bi-radicals, but also the pyrene radicals arouse conversely the production of estrodiol bi-radicals.

  11. HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview.

    Science.gov (United States)

    Rappa, Francesca; Farina, Felicia; Zummo, Giovanni; David, Sabrina; Campanella, Claudia; Carini, Francesco; Tomasello, Giovanni; Damiani, Provvidenza; Cappello, Francesco; DE Macario, Everly Conway; Macario, Alberto J L

    2012-12-01

    Molecular chaperones, many of which are heat-shock proteins (HSPs), are an important class of molecules with various functions. Pathological conditions in which chaperones become etiological and/or pathogenic factors are called chaperonopathies, and are classified into by defect, by excess, and by 'mistake'. In the latter case, the chaperone is structurally and functionally normal but participates in pathways that favor disease, although in some cases the chaperone may have post-translational modifications that may lead it to change its location and function and, thus, to become pathogenic. For example, HSP-chaperones are involved in carcinogenesis in various ways, so that some forms of cancer may be considered 'chaperonopathies by mistake'. This concept suggests new strategies for anticancer therapy (chaperonotherapy), in which the primary targets or therapeutic agents are chaperones. Chaperonotherapy consists of the utilization of HSP-chaperones for treating chaperonopathies, including cancer. Negative chaperonotherapy is aimed at eliminating or blocking the action of chaperones that favor carcinogenesis or other diseases, whereas positive chaperonotherapy uses chaperones, genes or proteins, to fight against diseases, such as cancer, by stimulating the immune system or the cellular defenses against stress.

  12. Punica granatum and its therapeutic implications on breast carcinogenesis: A review.

    Science.gov (United States)

    Vini, Ravindran; Sreeja, Sreeharshan

    2015-01-01

    Punica granatum has a recorded history of pharmacological properties which can be attributed to its rich reservoir of phytochemicals. Investigations in recent years have established its tremendous potential as an antitumorogenic agent against various cancers including breast cancer, which is the second leading cause of cancer-related deaths in women. The plausible role of Punica as a therapeutic agent, as an adjuvant in chemotherapy, and its dietary implications as chemopreventive agent in breast cancer have been explored. Mechanistic studies have revealed that Punica extracts and its components, individually or in combination, can modulate and target key proteins and genes involved in breast cancer. Our earlier finding also demonstrated the role of methanolic extract of pomegranate pericarp in reducing proliferation in breast cancer by binding to estrogen receptor at the same time not affecting uterine weight unlike estradiol or tamoxifen. This review analyses other plausible mechanisms of Punica in preventing the progression of breast cancer and how it can possibly be a therapeutic agent by acting at various steps of carcinogenesis including proliferation, invasion, migration, metastasis, angiogenesis, and inflammation via various molecular mechanisms. PMID:25857627

  13. Doxycycline Promotes Carcinogenesis & Metastasis via Chronic Inflammatory Pathway: An In Vivo Approach.

    Directory of Open Access Journals (Sweden)

    Neha Nanda

    Full Text Available Doxycycline (DOX exhibits anti-inflammatory, anti-tumor, and pro-apoptotic activity and is being tested in clinical trials as a chemotherapeutic agent for several cancers, including colon cancer.In the current study, the chemotherapeutic activity of doxycycline was tested in a rat model of colon carcinogenesis, induced by colon specific cancer promoter, 1,2, dimethylhydrazine (DMH as well as study the effect of DOX-alone on a separate group of rats.Doxycycline administration in DMH-treated rats (DMH-DOX unexpectedly increased tumor multiplicity, stimulated progression of colonic tumor growth from adenomas to carcinomas and revealed metastasis in small intestine as determined by macroscopic and histopathological analysis. DOX-alone treatment showed markedly enhanced chronic inflammation and reactive hyperplasia, which was dependent upon the dose of doxycycline administered. Moreover, immunohistochemical analysis revealed evidence of inflammation and anti-apoptotic action of DOX by deregulation of various biomarkers.These results suggest that doxycycline caused chronic inflammation in colon, small intestine injury, enhanced the efficacy of DMH in tumor progression and provided a mechanistic link between doxycycline-induced chronic inflammation and tumorigenesis. Ongoing studies thus may need to focus on the molecular mechanisms of doxycycline action, which lead to its inflammatory and tumorigenic effects.

  14. Role of Free Radicals, Oxidative Stress and Xenobiotics in Carcinogenesis by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Dibyajyoti Saha

    2014-09-01

    Full Text Available Carcinogenesis by many small molecular weight chemicals involves either a direct action of the chemical on cellular DNA or metabolism of the parent chemical to an active or ultimate form, which can than react with cellular DNA to produce a permanent chemical change in a DNA structure. A free radical is an atom or molecule that has one or more unpaired electron(s. These are highly reactive species capable of wide spread, indiscriminate oxidation and per oxidation of proteins, lipids and DNA which can lead to significant cellular damage and even tissue and/or organ failure. . Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. Xenobiotics are a compound that is foreign to the body. Xenobiotics can produce a variety of biological effects, including pharmacologic responses, toxicity, genes, immunologic reactions and cancer. Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. This communication highlights the role of carcinogens as environmental pollutants with the possible mechanism of free radicals, oxidative stress and xenobiotics.

  15. The Role of Macrophage Migration Inhibitory Factor (MIF) in Ultraviolet Radiation-Induced Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tadamichi [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, 930-0194, Toyama (Japan)

    2010-08-09

    Ultraviolet (UV) radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn) of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α. and macrophage migration inhibitory factor (MIF). MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer.

  16. Concept Search

    OpenAIRE

    Giunchiglia, Fausto; Kharkevich, Uladzimir; Zaihrayeu, Ilya

    2008-01-01

    In this paper we present a novel approach, called Concept Search, which extends syntactic search, i.e., search based on the computation of string similarity between words, with semantic search, i.e., search based on the computation of semantic relations between concepts. The key idea of Concept Search is to operate on complex concepts and to maximally exploit the semantic information available, reducing to syntactic search only when necessary, i.e., when no semantic information is available. ...

  17. [Colorectal cancer (CCR): genetic and molecular alterations].

    Science.gov (United States)

    Juárez-Vázquez, Clara Ibet; Rosales-Reynoso, Mónica Alejandra

    2014-01-01

    The aim of this review is to present a genetic and molecular overview of colorectal carcinogenesis (sporadic and hereditary origin) as a multistage process, where there are a number of molecular mechanisms associated with the development of colorectal cancer and genomic instability that allows the accumulation of mutations in proto-oncogenes and tumor suppressor genes, chromosomal instability, and methylation and microsatellite instability, and the involvement of altered expression of microRNAs' prognosis factors.

  18. The association between methylated CDKN2A and cervical carcinogenesis, and its diagnostic value in cervical cancer: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Li J

    2016-08-01

    Full Text Available Jinyun Li,1,2,* Chongchang Zhou,1,* Haojie Zhou,3,* Tianlian Bao,1 Tengjiao Gao,1 Xiangling Jiang,1 Meng Ye1,2 1Department of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, 2Department of Medical Oncology, Affiliated Hospital, Ningbo University, 3Department of Molecular Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, Zhejiang, People’s Republic of China *These authors are co-first authors of this work Background: Cervical cancer is the second deadliest gynecologic malignancy, characterized by apparently precancerous lesions and cervical intraepithelial neoplasia (CIN, and having a long course from the development of CIN to cervical cancer. Cyclin-dependent kinase inhibitor 2A (CDKN2A is a well-documented tumor suppressor gene and is commonly methylated in cervical cancer. However, the relationship between methylated CDKN2A and carcinogenesis in cervical cancer is inconsistent, and the diagnostic accuracy of methylated CDKN2A is underinvestigated. In this study, we attempted to quantify the association between CDKN2A methylation and the carcinogenesis of cervical cancer, and its diagnostic power.Methods: We systematically reviewed four electronic databases and identified 26 studies involving 1,490 cervical cancers, 1,291 CINs, and 964 controls. A pooled odds ratio (OR with corresponding 95% confidence intervals (95% CI was calculated to evaluate the association between methylated CDKN2A and the carcinogenesis of cervical cancer. Specificity, sensitivity, the area under the receiver operating characteristic curve, and the diagnostic odds ratio were computed to assess the effect of methylated CDKN2A in the diagnosis of cervical cancer.Results: Our results indicated an upward trend in the methylation frequency of CDKN2A in the carcinogenesis of cervical cancer (cancer vs control: OR =23.67, 95% CI =15.54–36.06; cancer vs CIN: OR =2.53, 95% CI =1.79–3.5; CIN vs control: OR =9.68, 95% CI =5.82–16.02. The

  19. 分子感官科学及其在食品感官品质评价方面的应用%The Concept of Molecular Sensory Science and Its Application on Food Sensory Quality Evaluation

    Institute of Scientific and Technical Information of China (English)

    宋焕禄

    2011-01-01

    文中介绍了分子感官科学概念的由来,综述了应用分子感官科学技术鉴定酱油、杏、桃子、梨以及香糯竹叶中气味活性化合物,以及鉴定Gouda奶酪、Cheddar奶酪、小麦面筋水解物、鸡汤中的滋味活性化合物。%The conception of molecular sensory science is introduced in the paper. The identification of aromaactive compounds from soy sauce, apricot, peach, pear and bamboo leaf were summarized. The identification of tasteactive compounds from Gouda cheese, Cheddar cheese, enzymatic hydrolyzed wheat gluten and chicken broth by the technology of molecular sensory science were also reviewed.

  20. Cell cycle regulation and apoptotic cell death in experimental colon carcinogenesis: intervening with cyclooxygenase-2 inhibitors.

    Science.gov (United States)

    Saini, Manpreet Kaur; Sanyal, Sankar Nath

    2015-01-01

    Relative imbalance in the pathways regulating cell cycle, cell proliferation, or cell death marks a prerequisite for neoplasm. C-phycocyanin, a biliprotein from Spirulina platensis and a selective COX-2 inhibitor along with piroxicam, a traditional nonsteroidal antiinflammatory drug was used to investigate the role of cell cycle regulatory proteins and proinflammatory transcription factor NFκB in 1,2-dimethylhydrazine dihydrochloride (DMH)-induced rat colon carcinogenesis. Cell cycle regulators [cyclin D1, cyclin E, cyclin dependent kinase 2 (CDK2), CDK4, and p53], NFκB (p65) pathway, and proliferating cell nuclear antigen (PCNA) were evaluated by gene and protein expression, whereas apoptosis was studied by terminal deoxynucleotidyl transferase dUTP nick end labeling and apoptotic bleb assay. Molecular docking of ligand protein interaction was done to validate the in vivo results. Cyclin D1, cyclin E, CDK2, and CDK4 were overexpressed in DMH, whereas piroxicam and c-phycocyanin promoted the cell cycle arrest by downregulating them. Both drugs mediated apoptosis through p53 activation. Piroxicam and c-phycocyanin also stimulated antiproliferation by restraining PCNA expression and reduced cell survival via inhibiting NFκB (p65) pathway. Molecular docking revealed that phycocyanobilin (a chromophore of c-phycocyanin) interact with DNA binding site of NFκB. Inhibition of cyclin/CDK complex by piroxicam and c-phycocyanin affects the expression of p53 in colon cancer followed by downregulation of NFκB and PCNA levels, thus substantiating the antineoplastic role of these agents. PMID:25825916

  1. Epigenetic Effects and Molecular Mechanisms of Tumorigenesis Induced by Cigarette Smoke: An Overview

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    2011-01-01

    Full Text Available Cigarette smoking is one of the major causes of carcinogenesis. Direct genotoxicity induced by cigarette smoke leads to initiation of carcinogenesis. Nongenotoxic (epigenetic effects of cigarette smoke also act as modulators altering cellular functions. These two effects underlie the mechanisms of tumor promotion and progression. While there is no lack of general reviews on the genotoxic and carcinogenic potentials of cigarette smoke in lung carcinogenesis, updated review on the epigenetic effects and molecular mechanisms of cigarette smoke and carcinogenesis, not limited to lung, is lacking. We are presenting a comprehensive review of recent investigations on cigarette smoke, with special attentions to nicotine, NNK, and PAHs. The current understanding on their molecular mechanisms include (1 receptors, (2 cell cycle regulators, (3 signaling pathways, (4 apoptosis mediators, (5 angiogenic factors, and (6 invasive and metastasis mediators. This review highlighted the complexity biological responses to cigarette smoke components and their involvements in tumorigenesis.

  2. Apoptotic cell death and its relationship to gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Ferda Bir; Nese Calli-Demirkan; A Cevik Tufan; Metin Akbulut; N Lale Satiroglu-Tufan

    2007-01-01

    AIM: To investigate the apoptotic process of cells within the intestinal metaplasia areas co-localizing with chronic gastritis and gastric carcinomas and to analyze the involvement of proteins regulating apoptosis in the process of intestinal metaplasia related gastric carcinogenesis.METHODS: Forty-two gastric carcinoma and seventeen chronic gastritis cases were included in this study. All cases were examined for the existence of intestinal metaplasia. Ten cases randomly selected from each group were processed for TUNEL assay. TUNEL positive cells within the intestinal metaplasia areas, colocalizing either to gastric carcinoma or chronic gastritis,were counted and converted to apoptotic indices.In addition, p53, bcl-2 and bax expression patterns within these tissues were analyzed on the basis of immunohistochemistry.RESULTS: Twenty-eight of the cases were intestinal and 14 of the cases were diffuse type adenocarcinomas.64% (27/42) of the gastric carcinoma cases had intestinal metaplasia. Intestinal metaplasia co-localized more with intestinal type carcinomas compared with diffuse type carcinomas [75% (21/28) vs 42% (6/14),respectively; P≤0.05]. The mean apoptotic index in tumor cells was 0.70±0.08. The mean apoptotic index in intestinal metaplasias co-localizing to tumors was significantly higher than that of intestinal metaplasias co-localizing to chronic gastritis (0.70±0.03 vs 0.09±0.01, respectively; P≤0.05). P53 positivity was not observed in areas of intestinal metaplasia adjacent to tumors or chronic gastritis. Intestinal metaplasia areas adjacent to tumors showed lower cytoplasmic bcl-2 positivity compared to intestinal metaplasia areas adjacent to chronic gastritis [55.5% (15/27) vs 70.5%(12/17), respectively]. On the other hand, intestinal metaplasia areas adjacent to tumors showed significantly higher cytoplasmic bax positivity compared to intestinal metaplasia areas adjacent to chronic gastritis [44.4%(12/27) vs 11.7% (2/17), respectively; P≤0

  3. Modulation of Estrogen Chemical Carcinogenesis by Botanical Supplements used for Postmenopausal Women's Health.

    Science.gov (United States)

    Snelten, Courtney S; Dietz, Birgit; Bolton, Judy L

    2012-06-01

    Breast cancer risk has been associated with long-term estrogen exposure including traditional hormone therapy (HT, formally hormone replacement therapy). To avoid traditional HT and associated risks, women have been turning to botanical supplements such as black cohosh, red clover, licorice, hops, dong gui, and ginger to relieve menopausal symptoms despite a lack of efficacy evidence. The mechanisms of estrogen carcinogenesis involve both hormonal and chemical pathways. Botanical supplements could protect women from estrogen carcinogenesis by modulating key enzymatic steps [aromatase, P4501B1, P4501A1, catechol-O-methyltransferase (COMT), NAD(P)H quinone oxidoreductase 1 (NQO1), and reactive oxygen species (ROS) scavenging] in estradiol metabolism leading to estrogen carcinogenesis as outlined in Figure 1. This review summarizes the influence of popular botanical supplements used for women's health on these key steps in the estrogen chemical carcinogenesis pathway, and suggests that botanical supplements may have added chemopreventive benefits by modulating estrogen metabolism. PMID:24223609

  4. Relationship between Helicobacter pylori infection and gastric carcinogenesis in elderly patients

    Institute of Scientific and Technical Information of China (English)

    李文新

    2013-01-01

    Objective To explore the relationship between Helicobacter pylori (HP) infection and gastric carcinogenesis,and to investigate its mechanism.Methods Totally 333elderly patients with different degrees of gastric mucosal lesions in our hospital were selected.Patients were

  5. Chemopreventive effect of Quercus infectoria against chemically induced renal toxicity and carcinogenesis

    OpenAIRE

    Rehman, Muneeb U.; Mir Tahir, Farrah Ali; Wajhul Qamar; Rehan Khan; Abdul Quaiyoom Khan; Abdul Lateef; Oday-O-Hamiza; Sarwat Sultana

    2012-01-01

    In this study we have shown that Quercus infectoria attenuates Fe- NTA induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. Fe-NTA promoted DEN (N-diethyl nitrosamine) initiated renal carcinogenesis by increasing the percentage incidence of tumors and induces early tumor markers viz. ornithine decarboxylase (ODC) level and PCNA expression. Fe- NTA (9 mg Fe/kg body weight, intraperitoneally) enhances renal Malondialdehyde, xanthine oxidase and hydrogen ...

  6. American ginseng attenuates azoxymethane/dextran sodium sulfate-induced colon carcinogenesis in mice

    OpenAIRE

    Yu, Chunhao; Wen, Xiao-Dong; Zhang, Zhiyu; Zhang, Chun-Feng; Wu, Xiao-hui; Martin, Adiba; Du, Wei; He, Tong-Chuan; Wang, Chong-Zhi; Yuan, Chun-Su

    2014-01-01

    Background Colorectal cancer is a leading cause of cancer-related death, and inflammatory bowel disease is a risk factor for this malignancy. We previously reported colon cancer chemoprevention potential using American ginseng (AG) in a xenograft mice model. However, the nude mouse model is not a gut-specific colon carcinogenesis animal model. Methods In this study, an experimental colitis and colitis-associated colorectal carcinogenesis mouse model, chemically induced by azoxymethane/dextran...

  7. Growth hormone, insulin-like growth factor system and carcinogenesis.

    Science.gov (United States)

    Boguszewski, Cesar Luiz; Boguszewski, Margaret Cristina da Silva; Kopchick, John J

    2016-01-01

    The growth hormone (GH) and insulin-like growth factor (IGF) system plays an important role in the regulation of cell proliferation, differentiation, apoptosis, and angiogenesis. In terms of cell cycle regulation, the GH-IGF system induces signalling pathways for cell growth that compete with other signalling systems that result in cell death; thus the final effect of these opposed forces is critical for normal and abnormal cell growth. The association of the GH-IGF system with carcinogenesis has long been hypothesised, mainly based on in vitro studies and the use of a variety of animal models of human cancer, and also on epidemiological and clinical evidence in humans. While ample experimental evidence supports a role of the GH-IGF system in tumour promotion and progression, with several of its components being currently tested as central targets for cancer therapy, the strength of evidence from patients with acromegaly, GH deficiency, or treated with GH is much weaker. In this review, we will attempt to consolidate this data. (Endokrynol Pol 2016; 67 (4): 414-426). PMID:27387246

  8. Effect of Withania somnifera on DMBA induced carcinogenesis.

    Science.gov (United States)

    Davis, L; Kuttan, G

    2001-05-01

    Administration of an extract of Withania somnifera was found to reduce two stage skin carcinogenesis induced by DMBA (dimethyl benzanthracene) and croton oil. Withania somnifera was administered at a concentration of (20 mg/dose/animal i.p.) consecutively on 5 days prior to DMBA administration and continued twice weekly for 10 weeks. After the 180th day of carcinogen administration, all of the animals developed papilloma in the control group whereas only six out of 12 animals developed papilloma in the treated group. A total of 11 papillomas were found in the control group while only six developed them in the Withania somnifera treated group. Enzyme analysis of skin and liver showed significant enhancement in antioxidant enzymes such as GSH, GST, Glutathione peroxides and Catalases in Withania somnifera treated group when compared with the control. The elevated level of lipid peroxide in the control group was significantly inhibited by Withania somnifera administration. These studies indicate that Withania somnifera could reduce the papilloma induced alterations to the antioxidant defense systems. PMID:11297845

  9. Influence of caloric intake on experimental carcinogenesis: a review.

    Science.gov (United States)

    Kritchevsky, D; Klurfeld, D M

    1986-01-01

    The effect of caloric intake on tumor growth has been recognized for over 70 years. Inhibition of tumor growth depends primarily on the extent of caloric restriction, but tumor type, animal strain, and dietary composition all exert some influence. Caloric restriction is most effective when maintained during both initiation and promotion, but if limited to one of these phases, restriction during promotion appears to be the more effective modality. The types of tumor that have been studied include spontaneous mammary and lung tumors as well as tumors induced by organ-specific carcinogens or irradiation with ultraviolet light. Numerous investigators have studied the effects of fat, and a diet low in calories but high in fat is generally significantly more effective in inhibiting carcinogenesis than is a diet high in calories but low in fat. Mice fed high fat, low calorie diets exhibited 48% fewer chemically induced skin tumors and 61% fewer tumors induced by ultraviolet irradiation than did mice fed low fat, high calorie diets. Mice fed a diet containing 2% fat exhibited a 66% incidence of skin tumors, whereas mice fed an isocaloric diet containing 61% fat showed a 78% incidence. Rats whose diet was restricted in calories by 40% exhibited no mammary tumors (coconut oil as primary dietary fat) or 75% fewer tumors (corn oil as dietary fat) compared to ad libitum-fed controls; they also exhibited 47% fewer colonic tumors. The mechanism by which caloric restriction exerts its tumor-inhibiting effects remains to be elucidated.

  10. The identification of Smad7 gene in lung carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    ZhanKT; HuoYY

    2002-01-01

    Previous study showed that Smad7 inhibited the transforming growth factor (TGF)-β1 signal transfuction physiologically in vitro.This study was carried out to investigate this feedback inhibitory effect in the carcinogenesis of lung.Smad7 expression was measured at transription and translation level in immortalized and malignant transformed cell line.Without stimulation of TGF-β1,Smad7 abundance in the malignant transformed cells was higher than thatin immortalized cells.Stimulated with TGF-β1,Smad7 expression level was up-regulated evidently in immortalized cells,but there was not a significant change in malignant transformed cells.With the overexpression of Smad7 in cells,the proliferation of malignant transformed cells was enhanced much higher than that in immortalized cells.Meanwhile,the inhibitory effect of exogenous TGF-β1 on malignant transformed cells was weaker than that on immortalized cells.It is suggested Smad7 feedback inhibition in malignant transformation stage be a mechanism to promote cell proliferation.

  11. An UVB-carcinogenesis model with KSN nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Yasuhito; Nikaido, Osamu [Kanazawa Univ. (Japan). Faculty of Pharmaceutical Sciences; Suzuki, Fumio; Hayakawa, Jun-ichiro; Hiai, Hiroshi

    1998-03-01

    We established and characterized a systematic ultraviolet light-induced carcinogenesis model using KSN nude mice. We prepared five groups of KSN mice and exposed them six times a week to five levels of daily ultraviolet B (UVB) doses; 1340, 670, 320, 160 and 0 J/m{sup 2}/day. In 670, 320 and 160 J/m{sup 2}/day, the latency period tended to become shorter in proportion to the daily doses and prevalence data fitted well to log-normal distribution. In the log-log plot of days till 50% prevalence versus daily dose, we saw a linear relationship for 1 mm tumor diameter. From this analysis, we determined that days necessary to reach 50% prevalence is in proportion to the -0.49 power of daily dose. The average number of tumors per survivor correlated with prevalence data. Direct measured rates of tumor growth were independent of daily UVB-dose. Therefore we speculated that UV-irradiation did not affect tumor growth after its appearance. Most UVB-induced tumors were squamous cell carcinoma, the rest were spindle cell carcinoma, papilloma and mixed type. We concluded that our experimental data with nude mice was in accordance with data with hairless mice in nature. (author)

  12. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis.

    Science.gov (United States)

    Xie, Guoxiang; Wang, Xiaoning; Huang, Fengjie; Zhao, Aihua; Chen, Wenlian; Yan, Jingyu; Zhang, Yunjing; Lei, Sha; Ge, Kun; Zheng, Xiaojiao; Liu, Jiajian; Su, Mingming; Liu, Ping; Jia, Wei

    2016-10-15

    Dysregulated bile acids (BAs) are closely associated with liver diseases and attributed to altered gut microbiota. Here, we show that the intrahepatic retention of hydrophobic BAs including deoxycholate (DCA), taurocholate (TCA), taurochenodeoxycholate (TCDCA), and taurolithocholate (TLCA) were substantially increased in a streptozotocin and high fat diet (HFD) induced nonalcoholic steatohepatitis-hepatocellular carcinoma (NASH-HCC) mouse model. Additionally chronic HFD-fed mice spontaneously developed liver tumors with significantly increased hepatic BA levels. Enhancing intestinal excretion of hydrophobic BAs in the NASH-HCC model mice by a 2% cholestyramine feeding significantly prevented HCC development. The gut microbiota alterations were closely correlated with altered BA levels in liver and feces. HFD-induced inflammation inhibited key BA transporters, resulting in sustained increases in intrahepatic BA concentrations. Our study also showed a significantly increased cell proliferation in BA treated normal human hepatic cell lines and a down-regulated expression of tumor suppressor gene CEBPα in TCDCA treated HepG2 cell line, suggesting that several hydrophobic BAs may collaboratively promote liver carcinogenesis. PMID:27273788

  13. Use of human epidermal cells in the study of carcinogenesis

    International Nuclear Information System (INIS)

    Because of the importance of human cells, particularly human epithelial cells, in cancer research, we have studied certain phases or events of carcinogenesis using human epidermal cells in primary culture. (1) We found that human epidermal cells are capable of metabolizing benzo[a]pyrene. Large inter-individual variations are found in the basal and induced arylhydrocarbon-hydroxylase activities. (2) UV-induced unscheduled DNA synthesis was demonstrated in human epidermal cells on autoradiographs. We also found that DNA repair is defective in epidermal cells isolated from xeroderma pigmentosum by a new explant-outgrowth culture. (3) Human epidermal cells are unique in that there is a large number of binding sites to phorbol esters compared with mouse epidermal cells, but there is no down-regulation. Further, human epidermal cells show essentially negative responses to tumor promoters, i.e., no stimulation of DNA synthesis, sugar uptake, and no induction of ornithine decarboxylase activity. (4) Human epidermal cells contain 1.5 x 10(5) binding sites per cell for epidermal growth factor (EGF), whereas squamous cell carcinomas of skin and oral cavity have larger amounts of EGF receptors in the order of 10(6) per cell. (5) Based on the above results, we attempted to transform human epidermal cells by the treatment with chemical carcinogens, but until now no transformation was obtained. 16 references

  14. Unique database study linking gingival inflammation and smoking in carcinogenesis.

    Science.gov (United States)

    Söder, Birgitta; Andersson, Leif C; Meurman, Jukka H; Söder, Per-Östen

    2015-02-01

    We investigated statistical association between gingival inflammation and cancer in a group of patients followed up for 26 years with the hypothesis that gingival inflammation affects carcinogenesis. Altogether, 1676 30- to 40-year-old subjects from Stockholm were clinically examined in 1985. In 2011, we compared the baseline oral examination and follow-up data with cancer diagnoses sourced from the Swedish national hospital register databases. Of 1676 individuals, 89 (55 women, 34 men) had got cancer by the year 2011. Women were found to be at higher risk for cancer than men. Smoking (expressed in pack-years) had been more prevalent in the cancer group than in those with no cancer diagnosis. Gingival index, marker of gingival inflammation, was higher in the cancer group than in subjects with no cancer. There were no significant differences between the groups regarding age, education, dental plaque and calculus index scores, or in the number of missing teeth. In multiple logistic regression analysis with cancer as the dependent variable and several independent variables, pack-years of smoking appeared to be a principal independent predictor with odds ratio (OR) 1.32 while gingival inflammation showed OR 1.29. Hence, our present findings showed that together with smoking, gingival inflammation indeed associated with the incidence of cancer in this cohort. PMID:25533098

  15. Concept theory

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2009-01-01

      Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge...... organizing systems (e.g. classification systems, thesauri and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe......). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science.  The importance of historicist and pragmatic theories of concepts...

  16. Possible Involvement of Pancreatic Fatty Infiltration in Pancreatic Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Mika Hori

    2016-03-01

    Full Text Available Pancreatic cancer is difficult to diagnose in its early stage and is one of the most lethal human cancers. Thus, it is important to clarify its major risk factors, predictive factors and etiology. Here, we focus on fatty infiltration of the pancreas and suggest that it could be a risk factor for pancreatic cancer. Fatty infiltration of the pancreas is observed as ectopic adipocytes infiltrating the pancreatic tissue and is positively correlated with obesity and the prevalence of diabetes mellitus, which are risk factors for pancreatic cancer. However, whether fatty infiltration is a major risk factor for pancreatic cancer has not been established. Recent clinical studies show there is a positive correlation between fatty infiltration of the pancreas and pancreatic precancerous lesions or ductal adenocarcinomas. Animal experimental studies also show an association between fatty infiltration of the pancreas and pancreatic precancerous lesions or ductal adenocarcinomas development. Syrian golden hamsters, which are sensitive to chemical carcinogens in the pancreas, develop fatty infiltration of the pancreas with age. The combination of a high-fat diet and a chemical carcinogen that induces a K-ras mutation increases the severity of fatty infiltration of the pancreas. Thus, fatty infiltration of the pancreas is suggested to promote pancreatic carcinogenesis via a K-ras activating mutation. It is assumed that increased expression of adipokines and of inflammatory and proliferation-associated factors elicited by fatty infiltration of the pancreas may contribute to pancreatic precancerous lesions or ductal adenocarcinomas development. Accumulating evidence suggests that in addition to suppression of Ras activation, methods to modulate fatty infiltration in the pancreas can be considered as a strategy for preventing pancreatic cancer.

  17. Carcinogenesis ofnasopharyngeal carcinoma:an alternate hypothetical mechanism

    Institute of Scientific and Technical Information of China (English)

    Sharon Shuxian Poh; Melvin Lee Kiang Chua; Joseph TS Wee

    2016-01-01

    Current proposed mechanisms implicate both early and latent Epstein–Barr virus (EBV) infection in the carcinogenic cascade, whereas epidemiological studies have always associated nasopharyngeal carcinoma (NPC) with early child-hood EBV infection and with chronic ear, nose, and sinus conditions. Moreover, most patients with NPC present with IgA antibody titers to EBV capsid antigen (VCA-IgA), which can precede actual tumor presentation by several years. If early childhood EBV infection indeed constitutes a key event in NPC carcinogenesis, one would have to explain the inability to detect the virus in normal nasopharyngeal epithelium of patients at a high risk for EBV infection. It is perhaps possible that EBV resides within the salivary glands, instead of the epithelium, during latency. This claim is indirectly supported by observations that the East Asian phenotype shares the characteristics of an increased sus-ceptibility to NPC and immature salivary gland morphogenesis, the latter of which is inlfuenced by the association of salivary gland morphogenesis with an evolutionary variant of the human ectodysplasin receptor gene (EDAR), EDARV370A. Whether the immature salivary gland represents a more favorable nidus for EBV is uncertain, but in patients with infectious mononucleosis, EBV has been isolated in this anatomical organ. The presence of EBV-induced lymphoepitheliomas in the salivary glands and lungs further addresses the possibility of submucosal spread of the virus. Adding to the fact that the fossa of Rosen Müller contains a transformative zone active only in the ifrst decade of life, one might be tempted to speculate the possibility of an alternative carcinogenic cascade for NPC that is perhaps not dissimilar to the model of human papillomavirus and cervical cancer.

  18. Role of gastrin-peptides in Barrett's and colorectal carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Eduardo Chueca; Angel Lanas; Elena Piazuelo

    2012-01-01

    Gastrin is the main hormone responsible for the stimulation of gastric acid secretion; in addition,gastrin and its derivatives exert proliferative and antiapoptotic effects on several cell types.Gastrin synthesis and secretion are increased in certain situations,for example,when proton pump inhibitors are used.The impact of sustained hypergastrinemia is currently being investigated.In vitro experiments and animal models have shown that prolonged hypergastrinemia may be related with higher cancer rates; although,this relationship is less clear in human beings.Higher gastrin levels have been shown to cause hyperplasia of several cell types; yet,the risk for developing cancer seems to be the same in normo-and hypergastrinemic patients.Some tumors also produce their own gastrin,which can act in an autocrine manner promoting tumor growth.Certain cancers are extremely dependent on gastrin to proliferate.Initial research focused only on the effects of amidated gastrins,but there has been an interest in intermediates of gastrin in the last few decades.These intermediates aren't biologically inactive;in fact,they may exert greater effects on proliferation and apoptosis than the completely processed forms.In certain gastrin overproduction states,they are the most abundant gastrin peptides secreted.The purpose of this review is to examine the gastrin biosynthesis process and to summarize the results from different studies evaluating the production,levels,and effects of the main forms of gastrin in different overexpression states and their possible relationship with Barrett's and colorectal carcinogenesis.

  19. Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis.

    Science.gov (United States)

    Miura, N; Horikawa, I; Nishimoto, A; Ohmura, H; Ito, H; Hirohashi, S; Shay, J W; Oshimura, M

    1997-01-01

    Telomeres shorten progressively with age in normal somatic cells in culture and in vivo. The maintenance of telomere length is assumed to be an obligatory step in the progression and immortalization of most human tumor cells. To understand the role of telomere dynamics in the development of hepatocellular carcinoma (HCC), we examined the length of terminal restriction fragment (TRF), as an indicator for telomere length, in HCC and surrounding tissues with chronic active hepatitis (CAH) or liver cirrhosis (LC). The study was performed in 12 hepatitis C virus (HCV) antibody-positive, 12 hepatitis B virus (HBV) antigen-positive tissues, and 4 tissue samples from virus-negative patients with HCC. The peak TRFs in all 3 types of HCC were significantly shorter than those of the surrounding tissues (i.e., LC or CAH). TRFs examined in one patient with atypical adenomatous hyperplasia (AAH) also was shortened. Thus, progressive TRF shortening occurs from normal to CAH to LC to HCC(AAH). Telomerase, an enzyme that adds repeated telomere sequences onto the chromosome ends and stabilizes telomere length in immortal cells, also was examined in tissues and detected in high levels almost exclusively in HCCs. Interestingly, the intensity of telomerase activity in the AAH case was similar to that of HCC. In addition, the telomerase activity of biopsy samples with a fine 21-gauge needle also was examined in 10 HCCs, 2 adenomatous hyperplasias (AHs), 2 LCs, and 2 CAHs. We found strong telomerase activity in all the HCCs and surprisingly in the 2 cases that were pathologically diagnosed as AH. Thus, the findings strongly suggest that persistent cell proliferation or rapid cell turnover through damage of hepatic cells result in a process of multistep hepatocellular carcinogenesis. Thus, progressive shortening of telomeres and the activation of telomerase may be a useful marker for the early detection of malignant progression in liver disease. PMID:9062581

  20. Comparative evaluation of antiproliferative, antiangiogenic and apoptosis inducing potential of black tea polyphenols in the hamster buccal pouch carcinogenesis model

    Directory of Open Access Journals (Sweden)

    Prathiba Duvuru

    2007-01-01

    Full Text Available Abstract Background To evaluate the relative chemopreventive efficacy of two black tea polyphenols, Polyphenon-B [P-B] and BTF-35 on 7,12-dimethylbenz [a]anthracene (DMBA-induced hamster buccal pouch (HBP carcinogenesis. Methods Hamsters were divided into 6 groups. The right buccal pouches of animals in groups 1–3 were painted with 0.5% of DMBA three times a week for 14 weeks. While hamsters in group 1 received no further treatment, animals in groups 2 and 3 received diet containing 0.05% P-B and BTF-35 respectively, four weeks before DMBA painting that was continued until the end of the experiments. Animals in groups 4 and 5 were given P-B and BTF-35 alone respectively as in groups 2 and 3. Group 6 animals served as the untreated control. All the animals were sacrificed after 18 weeks. The expression of p21, cyclin D1, glutathione S-transferase pi (GST-P, nuclear factor kappa B (NF-κB, Bcl-2, Bax, cytochrome C, caspase-3, caspase-9, poly(ADP-ribose polymerase (PARP, cytokeratins and vascular endothelial growth factor (VEGF was analysed by RT-PCR, immunohistochemical and Western blot analyses. Results DMBA treated animals developed buccal pouch carcinomas that displayed increased expression of p21, cyclin D1, GST-P, NF-κB, cytokeratins, VEGF and Bcl-2 with decreased expression of Bax, cytochrome C, caspase-3, caspase-9, and PARP. Dietary administration of both P-B and BTF-35 reduced the incidence of DMBA-induced HBP carcinomas by modulating markers of cell proliferation, cell survival, tumour infiltration, angiogenesis, and apoptosis. Conclusion The results of the present study provide a mechanistic basis for the chemopreventive potential of black tea polyphenols. The greater efficacy of BTF-35 in inhibiting HBP carcinogenesis and modulating multiple molecular targets may have a potential role in the prevention of oral cancer.

  1. Differential timing of oxidative DNA damage and telomere shortening in hepatitis C and B virus-related liver carcinogenesis.

    Science.gov (United States)

    Piciocchi, Marika; Cardin, Romilda; Cillo, Umberto; Vitale, Alessandro; Cappon, Andrea; Mescoli, Claudia; Guido, Maria; Rugge, Massimo; Burra, Patrizia; Floreani, Annarosa; Farinati, Fabio

    2016-02-01

    In viral hepatitis, inflammation is correlated with chronic oxidative stress, one of the biological events leading to DNA damage and hepatocellular carcinoma (HCC) development. Aim of this study was to investigate the complex molecular network linking oxidative damage to telomere length and telomerase activity and regulation in hepatitis C and B virus-related liver carcinogenesis. We investigated 142 patients: 21 with HCC (in both tumor and peritumor tissues) and 121 with chronic viral hepatitis in different stages. We evaluated 8-hydroxydeoxyguanosine (8-OHdG), marker of oxidative DNA damage, OGG1 gene polymorphism, telomere length, telomerase activity, TERT promoter methylation, and mitochondrial TERT localization. In hepatitis C-related damage, 8-OHdG levels increased since the early disease stages, whereas hepatitis B-related liver disease was characterized by a later and sharper 8-OHdG accumulation (P = 0.005). In C virus-infected patients, telomeres were shorter (P = 0.03), whereas telomerase activity was higher in tumors than that in the less advanced stages of disease in both groups (P = 0.0001, P = 0.05), with an earlier increase in hepatitis C. Similarly, TERT promoter methylation was higher in tumor and peritumor tissues in both groups (P = 0.02, P = 0.0001). Finally, TERT was localized in mitochondria in tumor and peritumor samples, with 8-OHdG levels significantly lower in mitochondrial than those in genomic DNA (P = 0.0003). These data describe a pathway in which oxidative DNA damage accumulates in correspondence with telomere shortening, telomerase activation, and TERT promoter methylation with a different time course in hepatitis B and C virus-related liver carcinogenesis. Finally, TERT localizes in mitochondria in HCC, where it lacks a canonical function. PMID:26408804

  2. The phytoestrogenic Cyclopia extract, SM6Met, increases median tumor free survival and reduces tumor mass and volume in chemically induced rat mammary gland carcinogenesis.

    Science.gov (United States)

    Visser, Koch; Zierau, Oliver; Macejová, Dana; Goerl, Florian; Muders, Michael; Baretton, Gustavo B; Vollmer, Günter; Louw, Ann

    2016-10-01

    SM6Met, a phytoestrogenic extract of Cyclopia subternata indigenous to the Western Cape province of South Africa, displays estrogenic attributes with potential for breast cancer chemoprevention. In this study, we report that SM6Met, in the presence of estradiol, induces a significant cell cycle G0/G1 phase arrest similar to the selective estrogen receptor modulator, tamoxifen. Furthermore, as a proof of concept, in the N-Methyl-N-nitrosourea induced rat mammary gland carcinogenesis model, SM6Met increases tumor latency by 7days and median tumor free survival by 42 days, while decreasing palpable tumor frequency by 32%, tumor mass by 40%, and tumor volume by 53%. Therefore, the current study provides proof of concept that SM6Met has definite potential as a chemopreventative agent against the development and progression of breast cancer. PMID:27142456

  3. Pro-apoptotic and anti-inflammatory potential of andrographolide during 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis

    Directory of Open Access Journals (Sweden)

    Karthikeyan Sekar

    2012-08-01

    Full Text Available Objective: Aim of the present study was to investigate the modulating effect of andrographolide on apoptotic and inflammatory markers during 7,12-dimethyl-benz[a]anthracene (DMBA induced hamster buccal pouch carcinogenesis. Methods: Oral tumors were developed in the buccal pouch of golden Syrian hamsters by painting with 0.5% DMBA in liquid paraffin three times a week for 14 weeks. The expression pattern of molecular markers were assayed using immunohistochemistry (p53, Bcl-2 and Bax, ELISA (COX-2 and real-time PCR (NFκB. Results: We noticed 100% tumor formation accompanied by deregulation in the apoptotic and inflammatory markers in the buccal mucosa of hamsters treated with DMBA alone. Oral administration of andrographolide at a dose of 50 mg/kg b.w to hamsters treated with DMBA, not only completely prevented the tumor formation but also modulated the status of above mentioned molecular markers in favor of inhibiting cell proliferation as evidenced by no tumor formation. Conclusion: The present study suggests that the anti-tumor effect of andrographolide could partly be attributed to its apoptotic and anti-inflammatory potential during DMBA-induced hamster buccal pouch carcinogenesis. [J Exp Integr Med 2012; 2(4: 313-319

  4. Cimetidine and Clobenpropit Attenuate Inflammation-Associated Colorectal Carcinogenesis in Male ICR Mice

    Directory of Open Access Journals (Sweden)

    Takuji Tanaka

    2016-02-01

    Full Text Available Histamine and histamine receptors (Hrhs have been identified as critical molecules during inflammation and carcinogenesis. This study was conducted to determine the effects of Hrh1-Hrh3 antagonists on inflammation-associated colorectal carcinogenesis. Male ICR mice were treated with azoxymethane (AOM, 10 mg/kg bw, i.p. and 1.5% dextran sodium sulfate (DSS, drinking water for 7 days to induce colorectal carcinogenesis. The mice were then fed diets containing test chemical (500 ppm terfenadine, 500 ppm cimetidine or 10 ppm clobenpropit for 15 weeks. At week 18, feeding with the diets containing cimetidine (Hrh2 antagonist and clobenpropit (Hrh3 antagonist/inverse agonist significantly lowered the multiplicity of colonic adenocarcinoma. Terfenadine (Hrh1 antagonist did not affect AOM-DSS-induced colorectal carcinogenesis. Adenocarcinoma cells immunohistochemically expressed Hrh1, Hrh2, Hrh3 and Hrh4 with varied intensities. Because clobenpropit is also known to be a Hrh4 receptor agonist, Hrh2, Hrh3 and Hrh4 may be involved in inflammation-related colorectal carcinogenesis. Additional data, including the mRNA expression of pro-inflammatory cytokines and inducible inflammatory enzymes in the colonic mucosa, are also presented.

  5. Travelling Concepts

    DEFF Research Database (Denmark)

    Simonsen, Karen-Margrethe

    2013-01-01

    Review of "Travelling Concepts, Metaphors, and Narratives: Literary and Cultural Studies in an Age of Interdisciplinary Research" ed. by Sibylle Baumgarten, Beatrice Michaelis and Ansagar Nünning, Trier; Wissenschaftlicher Verlag Trier, 2012......Review of "Travelling Concepts, Metaphors, and Narratives: Literary and Cultural Studies in an Age of Interdisciplinary Research" ed. by Sibylle Baumgarten, Beatrice Michaelis and Ansagar Nünning, Trier; Wissenschaftlicher Verlag Trier, 2012...

  6. [Progression of tumors: etiologic, morphologic and molecular-biological aspects].

    Science.gov (United States)

    Turosov, V S

    1992-01-01

    Two aspects can be distinguished in multistage carcinogenesis: etiological one (every stage is induced by a specific for this stage agent) and morphobiological aspect (every stage is characterized by specific morphological, genetic and other properties). The schema of the multistage carcinogenesis is presented in which morphological stages (diffuse and focal hyperplasia, benign tumours, dysplasia, carcinoma in situ, various phases of malignant tumour progression) are placed against genetic alterations. L. Foulds concept of tumour progression is discussed with special emphasis on precancerous stages, possibilities of cancer development de novo, and independent progression of different tumour characters. The following types of carcinogenesis are listed on the basis of interrelationship between etiological and genetic factors: 1) carcinogenesis induced by genotoxic agents; a) one agent is acting at high dose and for a long time thus ensuring the activation of protooncogenes and all stages of tumour progression (initiation, promotion, various phases of malignant tumour); b) those acting during a very short time, however sufficient for developing the genetic program working automatically without further exposure to known carcinogens (irradiation in case of the atomic bomb explosion or effect of short-living alkylating agents): in this case there is no stage of promotion; 2) carcinogenesis by non-genotoxic carcinogens (their mode of action is still unclear, the only human example is carcinogenesis by hormones); 3) development of tumours in frane of the two (or three) stage carcinogenesis when every stage is provoked by its own etiological factor, no human examples are known as yet; 4) development of tumours due to the genetic mechanism making the organism highly susceptible to the minimal doses of carcinogens as is the case with skin cancer by ultraviolet light in patients with xeroderma pigmentosum, the genetic damage in itself has nothing to do with tumour formation; 5

  7. From exposure to effect: a comparison of modeling approaches to chemical carcinogenesis.

    Science.gov (United States)

    van Leeuwen, I M; Zonneveld, C

    2001-10-01

    Standardized long-term carcinogenicity tests aim to reveal the relationship between exposure to a chemical and occurrence of a carcinogenic response. The analysis of such tests may be facilitated by the use of mathematical models. To what extent current models actually achieve this purpose is difficult to evaluate. Various aspects of chemically induced carcinogenesis are treated by different modeling approaches, which proceed very much in isolation of each other. With this paper we aim to provide for the non-mathematician a comprehensive and critical overview of models dealing with processes involved in chemical carcinogenesis. We cover the entire process of carcinogenesis, from exposure to effect. We succinctly summarize the biology underlying the models and emphasize the relationship between model assumptions and model formulations. The use of mathematics is restricted as far as possible with some additional information relegated to boxes. PMID:11673088

  8. A review of dietary factors and its influence on DNA methylation in colorectal carcinogenesis.

    Science.gov (United States)

    Arasaradnam, R P; Commane, D M; Bradburn, D; Mathers, J C

    2008-01-01

    Colorectal cancer (CRC) is the most common cancer in non-smokers posing a significant health burden in the UK. Observational studies lend support to the impact of environmental factors especially diet on colorectal carcinogenesis. Significant advances have been made in understanding the biology of CRC carcinogenesis in particular epigenetic modifications such as DNA methylation. DNA methylation is thought to occur at least as commonly as inactivation of tumor suppressor genes. In fact compared with other human cancers, promoter gene methylation occurs most commonly within the gastrointestinal tract. Emerging data suggest the direct influence of certain micronutrients for example folic acid, selenium as well as interaction with toxins such as alcohol on DNA methylation. Such interactions are likely to have a mechanistic impact on CRC carcinogenesis through the methylation pathway but also, may offer possible therapeutic potential as nutraceuticals.

  9. Combination of computational methods, adsorption isotherms and selectivity tests for the conception of a mixed non-covalent-semi-covalent molecularly imprinted polymer of vanillin.

    Science.gov (United States)

    Puzio, Kinga; Delépée, Raphaël; Vidal, Richard; Agrofoglio, Luigi A

    2013-08-01

    A novel molecularly imprinted polymer (MIP) for vanillin was prepared by photo initiated polymerization in dichloromethane using a mixed semi-covalent and non-covalent imprinting strategy. Taking polymerisable syringaldehyde as "dummy" template, acrylamide was chosen as functional monomer on B3LYP/6-31+G(d,p) density functional theory computational method basis with counterpoise. The binding parameters for the recognition of vanillin on imprinted polymers were studied with three different isotherm models (Langmuir, bi-Langmuir and Langmuir-Freundlich) and compared. The results indicate an heterogeneity of binding sites. It was found and proved by DFT calculations that the specific binding of vanillin in the cavities is due to non-covalent interactions of the template with the hydroxyphenyl- and the amide-moieties. The binding geometry of vanillin in the MIP cavity was also modelled. The obtained MIP is highly specific for vanillin (with an imprinting factor of 7.4) and was successfully applied to the extraction of vanillin from vanilla pods, red wine spike with vanillin, natural and artificial vanilla sugar with a recovery of 80%.

  10. Contribution to the study of markers in lungs carcinogenesis and analysis of factors predicting the benefit of chemotherapy

    International Nuclear Information System (INIS)

    A better definition of early bio markers in lung carcinogenesis should enhance the development of molecular means to perform screening, diagnostic, and chemo-prevention of patients at high risk of lung cancer. We studied epigenetic deregulation of multiple promoters (p16(INK4a), HOX A9, MAGE A 1 et MAGE B2) in sputum samples from smokers at high risk and from patients with non-small cell lung cancer (N.S.C.L.C.). This molecular test, based on easily accessible sample,s can be modulated according to the aims of the investigator (e.g. screening or confirmation of diagnosis). Secondly, we have studied two candidate proteins as predictive markers of the benefit of adjuvant chemotherapy in patients with resected lung cancer. The multivariate analysis shows that tumor expression of the catalytic sub-unit of telomerase is not able to predict survival in patients included in the lAL T study' of adjuvant chemotherapy. However, tumor expression of the DNA repair protein ERCC1 identifies a sub-group of patients (ERCC1 negative) whose chances of survival are increased by 35% by means of cisplatin-based adjuvant chemotherapy. Further, tumor ERCC1 expression has a positive prognostic value in the non-treated control group. The need for a deeper understanding in cancerology of the physiological role of the ERCC1 endonuclease is discussed in this thesis. (author)

  11. The Combination of Three Natural Compounds Effectively Prevented Lung Carcinogenesis by Optimal Wound Healing.

    Directory of Open Access Journals (Sweden)

    Linxin Liu

    Full Text Available The tumor stroma has been described as "normal wound healing gone awry". We explored whether the restoration of a wound healing-like microenvironment may facilitate tumor healing. Firstly, we screened three natural compounds (shikonin, notoginsenoside R1 and aconitine from wound healing agents and evaluated the efficacies of wound healing microenvironment for limiting single agent-elicited carcinogenesis and two-stage carcinogenesis. The results showed that three compounds used alone could promote wound healing but had unfavorable efficacy to exert wound healing, and that the combination of three compounds made up treatment disadvantage of a single compound in wound healing and led to optimal wound healing. Although individual treatment with these agents may prevent cancer, they were not effective for the treatment of established tumors. However, combination treatment with these three compounds almost completely prevented urethane-induced lung carcinogenesis and reduced tumor burden. Different from previous studies, we found that urethane-induced lung carcinogenesis was associated with lung injury independent of pulmonary inflammation. LPS-induced pulmonary inflammation did not increase lung carcinogenesis, whereas decreased pulmonary inflammation by macrophage depletion promoted lung carcinogenesis. In addition, urethane damaged wound healing in skin excision wound model, reversed lung carcinogenic efficacy by the combination of three compounds was consistent with skin wound healing. Further, the combination of these three agents reduced the number of lung cancer stem cells (CSCs by inducing cell differentiation, restoration of gap junction intercellular communication (GJIC and blockade of the epithelial-to-mesenchymal transition (EMT. Our results suggest that restoration of a wound healing microenvironment represents an effective strategy for cancer prevention.

  12. Complex Systems Analysis of Arrested Neural Cell Differentiation during Development and Analogous Cell Cycling Models in Carcinogenesis

    OpenAIRE

    Baianu, Professor I.C.; Prisecaru, M.S. V

    2004-01-01

    A new approach to the modular, complex systems analysis of nonlinear dynamics of arrested neural cell Differentiation--induced cell proliferation during organismic development and the analogous cell cycling network transformations involved in carcinogenesis is proposed. Neural tissue arrested differentiation that induces cell proliferation during perturbed development and Carcinogenesis are complex processes that involve dynamically inter-connected biomolecules in the intercellular, membrane...

  13. Senescence and immortality genes as markers of hepatocellular carcinogenesis

    OpenAIRE

    Ergül, Ayça Arslan

    2009-01-01

    Ankara : The Department of Molecular Biology and Genetics and the Institute of Engineering and Science of Bilkent University, 2009. Thesis (Ph. D.) -- Bilkent University, 2009. Includes bibliographical references leaves 94-106. Ergül, Ayça Arslan Ph. D.

  14. Proof of concept for low-dose molecular breast imaging with a dual-head CZT gamma camera. Part I. Evaluation in phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Hruska, Carrie B.; Weinmann, Amanda L.; O' Connor, Michael K. [Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905 (United States)

    2012-06-15

    Purpose: Molecular breast imaging (MBI) is a nuclear medicine technology that uses dual-head cadmium zinc telluride (CZT) gamma cameras to image functional uptake of a radiotracer, Tc-99m sestamibi, in the breast. An important factor in adoption of MBI in the screening setting is reduction of the necessary administered dose of Tc-99m sestamibi from the typically used dose of 740 MBq to approximately 148 MBq, such that MBI's whole-body effective dose is comparable to that of screening mammography. Methods that increase MBI count sensitivity may allow a proportional reduction in the necessary administered dose. Our objective was to evaluate the impact of two count sensitivity improvement methods on image quality by evaluating count sensitivity, spatial resolution, and lesion contrast in phantom simulations. Methods: Two dual-head CZT-based MBI systems were studied: LumaGem and Discovery NM 750b. Two count sensitivity improvement methods were implemented: registered collimators optimized for dedicated breast imaging and widened energy acceptance window optimized for use with CZT. System sensitivity, spatial resolution, and tumor contrast-to-noise ratio (CNR) were measured comparing standard collimation and energy window setting [126-154 keV (+10%, -10%)] with optimal collimation and a wide energy window [110-154 keV (+10%, -21%)]. Results: Compared to the standard collimator designs and energy windows for these two systems, use of registered optimized collimation and wide energy window increased system sensitivity by a factor of 2.8-3.6. Spatial resolution decreased slightly for both systems with new collimation. At 3 cm from the collimator face, LumaGem's spatial resolution was 4.8 and 5.6 mm with standard and optimized collimation; Discovery NM 750b's spatial resolution was 4.4 and 4.6 mm with standard and optimized collimation, respectively. For both systems, at tumor depths of 1 and 3 cm, use of optimized collimation and wide energy window

  15. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures

  16. Prevention of mammary carcinogenesis by short-term estrogen and progestin treatments

    International Nuclear Information System (INIS)

    Women who have undergone a full-term pregnancy before the age of 20 have one-half the risk of developing breast cancer compared with women who have never gone through a full-term pregnancy. This protective effect is observed universally among women of all ethnic groups. Parity in rats and mice also protects them against chemically induced mammary carcinogenesis. Seven-week-old virgin Lewis rats were given N-methyl-N-nitrosourea. Two weeks later the rats were treated with natural or synthetic estrogens and progestins for 7–21 days by subcutaneous implantation of silastic capsules. In our current experiment, we demonstrate that short-term sustained exposure to natural or synthetic estrogens along with progestins is effective in preventing mammary carcinogenesis in rats. Treatment with 30 mg estriol plus 30 mg progesterone for 3 weeks significantly reduced the incidence of mammary cancer. Short-term exposure to ethynyl estradiol plus megesterol acetate or norethindrone was effective in decreasing the incidence of mammary cancers. Tamoxifen plus progesterone treatment for 3 weeks was able to confer only a transient protection from mammary carcinogenesis, while 2-methoxy estradiol plus progesterone was effective in conferring protection against mammary cancers. The data obtained in the present study demonstrate that, in nulliparous rats, long-term protection against mammary carcinogenesis can be achieved by short-term treatments with natural or synthetic estrogen and progesterone combinations

  17. Effects of dietary fat on virus-induced pancreatic carcinogenesis in guinea fowl

    NARCIS (Netherlands)

    Kirev, T.; Woutersen, R.A.; Kril, A.

    2002-01-01

    The present study was performed to assess the effects of diets supplemented with low (5%) and high (20%) corn oil on a Pts 56 retrovirus-induced model of pancreatic carcinogenesis in guinea fowl. The early microscopic lesions appear after 3 mo after virus treatment and progress over time. Eight to 1

  18. In Vivo SILAC-Based Proteomics Reveals Phosphoproteome Changes during Mouse Skin Carcinogenesis

    DEFF Research Database (Denmark)

    Zanivan, Sara; Meves, Alexander; Behrendt, Kristina;

    2013-01-01

    SILAC technology in combination with high-resolution mass spectrometry (MS) can be successfully used to measure phosphoproteomes in vivo. Here, Zanivan, Mann, and colleagues have applied SILAC-based MS to investigate phosphoproteomic changes during skin carcinogenesis, using the DMBA/TPA two-stag...

  19. Transformation of human mesenchymal stem cells in radiation carcinogenesis: long-term effect of ionizing radiation

    DEFF Research Database (Denmark)

    Christensen, Rikke; Alsner, Jan; Sørensen, Flemming Brandt;

    2008-01-01

    Increasing evidence on cancer stem cells suggest that stem cells are susceptive to carcinogenesis and consequently can be the origin of many cancers. We have recently established a telomerase-transduced human mesenchymal stem cell line and subsequently irradiated this in order to achieve malignant...

  20. Astrophysical Concepts

    CERN Document Server

    Harwit, Martin

    2006-01-01

    This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail: it provides a series of astrophysical sketches. For this fourth edition, nearly every part of the text has been reconsidered and rewritten, new sections have been added to cover recent developments, and others have been extensively revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and enumerates some of the outstanding problems faced in the field today. The basic physics needed to tackle these questions are developed in the next few chapters using specific astronomical processes as examples. The second half of the book enlarges on these topics and shows how we can obtain quantitative insight into the structure and evolution of...

  1. Toxicogenomic outcomes predictive of forestomach carcinogenesis following exposure to benzo(a)pyrene: Relevance to human cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Sarah, E-mail: Sarah.Labib@hc-sc.gc.ca; Guo, Charles H., E-mail: Charles.Guo@hc-sc.gc.ca; Williams, Andrew, E-mail: Andrew.Williams@hc-sc.gc.ca; Yauk, Carole L., E-mail: Carole.Yauk@hc-sc.gc.ca; White, Paul A., E-mail: Paul.White@hc-sc.gc.ca; Halappanavar, Sabina, E-mail: Sabina.Halappanavar@hc-sc.gc.ca

    2013-12-01

    Forestomach tumors are observed in mice exposed to environmental carcinogens. However, the relevance of this data to humans is controversial because humans lack a forestomach. We hypothesize that an understanding of early molecular changes after exposure to a carcinogen in the forestomach will provide mode-of-action information to evaluate the applicability of forestomach cancers to human cancer risk assessment. In the present study we exposed mice to benzo(a)pyrene (BaP), an environmental carcinogen commonly associated with tumors of the rodent forestomach. Toxicogenomic tools were used to profile gene expression response in the forestomach. Adult Muta™Mouse males were orally exposed to 25, 50, and 75 mg BaP/kg-body-weight/day for 28 consecutive days. The forestomach was collected three days post-exposure. DNA microarrays, real-time RT-qPCR arrays, and protein analyses were employed to characterize responses in the forestomach. Microarray results showed altered expression of 414 genes across all treatment groups (± 1.5 fold; false discovery rate adjusted P ≤ 0.05). Significant downregulation of genes associated with phase II xenobiotic metabolism and increased expression of genes implicated in antigen processing and presentation, immune response, chemotaxis, and keratinocyte differentiation were observed in treated groups in a dose-dependent manner. A systematic comparison of the differentially expressed genes in the forestomach from the present study to differentially expressed genes identified in human diseases including human gastrointestinal tract cancers using the NextBio Human Disease Atlas showed significant commonalities between the two models. Our results provide molecular evidence supporting the use of the mouse forestomach model to evaluate chemically-induced gastrointestinal carcinogenesis in humans. - Highlights: • Benzo(a)pyrene-mediated transcriptomic response in the forestomach was examined. • The immunoproteosome subunits and MHC class I

  2. Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin

    International Nuclear Information System (INIS)

    Highlights: •Triclocarban exposure induces breast epithelial cell carcinogenesis. •Triclocarban induces the Erk–Nox pathway, ROS elevation, and DNA damage. •Physiological doses of triclocarban induce cellular carcinogenesis. •Non-cytotoxic curcumin blocks triclocarban-induced carcinogenesis and pathways. -- Abstract: More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens and co-carcinogens. To identify co-carcinogens with abilities to induce cellular pre-malignancy, we studied the activity of triclocarban (TCC), an antimicrobial agent commonly used in household and personal care products. Here, we demonstrated, for the first time, that chronic exposure to TCC at physiologically-achievable nanomolar concentrations resulted in progressive carcinogenesis of human breast cells from non-cancerous to pre-malignant. Pre-malignant carcinogenesis was measured by increasingly-acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth and increased cell proliferation, without acquisition of cellular tumorigenicity. Long-term TCC exposure also induced constitutive activation of the Erk–Nox pathway and increases of reactive oxygen species (ROS) in cells. A single TCC exposure induced transient induction of the Erk–Nox pathway, ROS elevation, increased cell proliferation, and DNA damage in not only non-cancerous breast cells but also breast cancer cells. Using these constitutively- and transiently-induced changes as endpoints, we revealed that non-cytotoxic curcumin was effective in intervention of TCC-induced cellular pre-malignancy. Our results lead us to suggest that the co-carcinogenic potential of TCC should be seriously considered in epidemiological studies to reveal the significance of TCC in the development of sporadic breast cancer. Using TCC-induced transient and constitutive endpoints as targets will likely help identify non-cytotoxic preventive

  3. Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Sood, Shilpa; Choudhary, Shambhunath; Wang, Hwa-Chain Robert, E-mail: hcrwang@utk.edu

    2013-09-06

    Highlights: •Triclocarban exposure induces breast epithelial cell carcinogenesis. •Triclocarban induces the Erk–Nox pathway, ROS elevation, and DNA damage. •Physiological doses of triclocarban induce cellular carcinogenesis. •Non-cytotoxic curcumin blocks triclocarban-induced carcinogenesis and pathways. -- Abstract: More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens and co-carcinogens. To identify co-carcinogens with abilities to induce cellular pre-malignancy, we studied the activity of triclocarban (TCC), an antimicrobial agent commonly used in household and personal care products. Here, we demonstrated, for the first time, that chronic exposure to TCC at physiologically-achievable nanomolar concentrations resulted in progressive carcinogenesis of human breast cells from non-cancerous to pre-malignant. Pre-malignant carcinogenesis was measured by increasingly-acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth and increased cell proliferation, without acquisition of cellular tumorigenicity. Long-term TCC exposure also induced constitutive activation of the Erk–Nox pathway and increases of reactive oxygen species (ROS) in cells. A single TCC exposure induced transient induction of the Erk–Nox pathway, ROS elevation, increased cell proliferation, and DNA damage in not only non-cancerous breast cells but also breast cancer cells. Using these constitutively- and transiently-induced changes as endpoints, we revealed that non-cytotoxic curcumin was effective in intervention of TCC-induced cellular pre-malignancy. Our results lead us to suggest that the co-carcinogenic potential of TCC should be seriously considered in epidemiological studies to reveal the significance of TCC in the development of sporadic breast cancer. Using TCC-induced transient and constitutive endpoints as targets will likely help identify non-cytotoxic preventive

  4. Age dependencies in the modelling of radiation carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kellerer, A.M. (Munich Univ. (Germany). Radiobiological Inst. GSF, Neuherberg (Germany). Inst. for Radiation Protection); Barclay, D. (GSF, Neuherberg (Germany). Inst. for Radiation Protection)

    1992-01-01

    Models for the dose and age dependence of radiation induced cancer have been based primarily on the follow-up of the atomic bomb survivors. Two different concepts have been deduced for leukaemias and for other cancers. The excess leukaemias appear in a distinct temporal wave with a maximum 5 to 10 years after radiation exposure; the distribution is more narrow for younger ages, but there is little dependence of the total attributable risk on age at exposure. For other cancers the latent periods are longer and, according to the current interpretation, the excess rates are then proportional to the age specific spontaneous rates, so that most excess cases would arise at old age. The factors of proportionality, and thus the attributable risks, are assumed to be markedly higher for young ages at exposure. It is argued here, that there is no firm support for this interpretation. (author).

  5. Identification of Ethanol and 4-Nitroquinoline-1-Oxide Induced Epigenetic and Oxidative Stress Markers During Oral Cavity Carcinogenesis

    Science.gov (United States)

    Urvalek, Alison M.; Osei-Sarfo, Kwame; Tang, Xiao-Han; Zhang, Tuo; Scognamiglio, Theresa; Gudas, Lorraine J.

    2015-01-01

    Background Head and neck squamous cell carcinoma (HNSCC) is a cancer that is characterized by its high morbidity and mortality rates. While tobacco use and alcohol consumption are two major contributing factors for HNSCC carcinogenesis, how the combination of tobacco and alcohol increases HNSCC risk is not understood. Methods We combined the 4-nitroquinoline-1-oxide (4-NQO) oral carcinogenesis and Meadows-Cook alcohol mouse models to elucidate the molecular events and to identify novel biomarkers associated with oral cancer development. Results By genome-wide RNA-seq of tongue samples (three mice per group) we identified changes in transcripts that mediate alcohol metabolism and oxidative stress (Aldh2, Aldh1a3, Adh1, Adh7, and Cyp2a5) in mice treated with 4-NQO followed by ethanol (4-NQO/EtOH) as compared to the vehicle control/untreated samples (V.C./Untr.). We measured major, global increases in specific histone acetylation and methylation epigenetic marks (H3K27ac, H3K9/14ac, H3K27me3, and H3K9me3) in the oral cavities of V.C./EtOH, 4-NQO/Untr. and 4-NQO/EtOH treatment groups compared to the V.C./Untr. group. We detected changes in histone epigenetic marks near regulatory regions of genes involved in ethanol metabolism by chromatin immunoprecipitation (ChIP). For instance, the Aldh2 promoter showed increased H3K27me3 marks, and Aldh2 mRNA levels were reduced by 10-fold in 4NQO/EtOH vs. V.C./Untr. tongue samples. 4-NQO/EtOH treatment also caused increases in markers of oxidative stress, including 4-HNE, MCT4/Slc16a3, and TOM20, as measured by immunohistochemistry. Conclusions We delineate a mechanism by which 4-NQO and ethanol can regulate gene expression during the development of HNSCC, and suggest that histone epigenetic marks and oxidative stress markers could be novel biomarkers and targets for the prevention of HNSCC. PMID:26207766

  6. Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice?

    OpenAIRE

    Sakorafas, George H; Vasileios Smyrniotis

    2012-01-01

    Context During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. Objective To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Methods Reports about clinical implications of molecular bio...

  7. Chemomodulatory Potential of Flaxseed Oil Against DMBA/Croton Oil-Induced Skin Carcinogenesis in Mice.

    Science.gov (United States)

    Sharma, Jyoti; Singh, Ritu; Goyal, P K

    2016-09-01

    The present study was conducted to evaluate the potential of flaxseed oil to prevent chemically induced skin cancer in mice. Cancer was induced on 2-stage skin carcinogenesis model by single topical application of 7,12 dimethylbenz [a]anthracene (DMBA), as, initiator, and two weeks later it was promoted by croton oil treatment thrice a week on the dorsal surface of mice for 16 weeks. Flaxseed oil (FSO; 100µL/animal/d) was orally administered 1 week before and 1 week after DMBA application (Peri-initiation stage). The animals of the FSO-administered group showed a significant reduction in tumor incidence (76.67%), cumulative number of tumors (37), tumor yield (3.7), and tumor burden (4.81) when compared with the carcinogen-treated control animals. Biochemical parameters in skin and liver tissue such as LPO and phase I enzymes were significantly (P croton oil-induced skin carcinogenesis in mice. PMID:26437861

  8. Chemomodulatory Potential of Flaxseed Oil Against DMBA/Croton Oil-Induced Skin Carcinogenesis in Mice.

    Science.gov (United States)

    Sharma, Jyoti; Singh, Ritu; Goyal, P K

    2016-09-01

    The present study was conducted to evaluate the potential of flaxseed oil to prevent chemically induced skin cancer in mice. Cancer was induced on 2-stage skin carcinogenesis model by single topical application of 7,12 dimethylbenz [a]anthracene (DMBA), as, initiator, and two weeks later it was promoted by croton oil treatment thrice a week on the dorsal surface of mice for 16 weeks. Flaxseed oil (FSO; 100µL/animal/d) was orally administered 1 week before and 1 week after DMBA application (Peri-initiation stage). The animals of the FSO-administered group showed a significant reduction in tumor incidence (76.67%), cumulative number of tumors (37), tumor yield (3.7), and tumor burden (4.81) when compared with the carcinogen-treated control animals. Biochemical parameters in skin and liver tissue such as LPO and phase I enzymes were significantly (P croton oil-induced skin carcinogenesis in mice.

  9. Use of medaka as a tool in studies of radiation effects and chemical carcinogenesis

    International Nuclear Information System (INIS)

    The medaka, Oryzias latipes, a small freshwater oviparous fish, is common in Japan and found in some parts of Asia. Adult fish are 3.0-3.5 cm long and weigh 0.5-0.7 g. The small fish have been used extensively in this laboratory for analysis of radiation effects and for study of chemical carcinogenesis. These fish are relatively easy to rear and their reproductive biology is well known. Recently, inbred strains of the fish have been established by full sister-brother mating. In this report, we will review experimental results using medaka in studies of : 1) radiation effects on spermatogenesis, and 2) induction of hepatic tumors by MAM acetate, we will also review use of medaka in related studies of radiation effects and chemical carcinogenesis. (author)

  10. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    Energy Technology Data Exchange (ETDEWEB)

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen

    2006-01-13

    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, and the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.

  11. Protocatechuic acid and human disease prevention: biological activities and molecular mechanisms.

    Science.gov (United States)

    Masella, R; Santangelo, C; D'Archivio, M; Li Volti, G; Giovannini, C; Galvano, F

    2012-01-01

    Epidemiological evidence has shown that a high dietary intake of vegetables and fruit rich in polyphenols is associated with a reduction of cancer incidence and mortality from coronary heart disease. The healthy effects associated with polyphenol consumption have made the study of the mechanisms of action a matter of great importance. In particular, the hydroxybenzoic acid protocatechuic acid (PCA) has been eliciting a growing interest for several reasons. Firstly, PCA is one of the main metabolites of complex polyphenols such as anthocyanins and procyanidins that are normally found at high concentrations in vegetables and fruit, and are absorbed by animals and humans. Since the daily intake of anthocyanins has been estimated to be much higher than that of other polyphenols, the nutritional value of PCA is increasingly recognized. Secondly, a growing body of evidence supports the concept that PCA can exert a variety of biological effects by acting on different molecular targets. It has been shown that PCA possesses antioxidant, anti-inflammatory as well as antihyperglycemic and neuroprotective activities. Furthermore, PCA seems to have chemopreventive potential because it inhibits the in vitro chemical carcinogenesis and exerts pro-apoptotic and anti-proliferative effects in different tissues. This review is aimed at providing an up-dated and comprehensive report on PCA giving a special emphasis on its biological activities and the molecular mechanisms of action most likely responsible for a beneficial role in human disease prevention. PMID:22519395

  12. Mechanisms linking obesity to altered metabolism in mice colon carcinogenesis.

    Science.gov (United States)

    Nimri, Lili; Saadi, Janan; Peri, Irena; Yehuda-Shnaidman, Einav; Schwartz, Betty

    2015-11-10

    There are an increasing number of reports on obesity being a key risk factor for the development of colon cancer. Our goal in this study was to explore the metabolic networks and molecular signaling pathways linking obesity, adipose tissue and colon cancer. Using in-vivo experiments, we found that mice fed a high-fat diet (HFD) and injected with MC38 colon cancer cells develop significantly larger tumors than their counterparts fed a control diet. In ex-vivo experiments, MC38 and CT26 colon cancer cells exposed to conditioned media (CM) from the adipose tissue of HFD-fed mice demonstrated significantly lower oxygen consumption rate as well as lower maximal oxygen consumption rate after carbonyl cyanide-4-trifluoromethoxy-phenylhydrazone treatment. In addition, in-vitro assays showed downregulated expression of mitochondrial genes in colon cancer cells exposed to CM prepared from the visceral fat of HFD-fed mice or to leptin. Interestingly, leptin levels detected in the media of adipose tissue explants co-cultured with MC38 cancer cells were higher than in adipose tissue explants cultures, indicating cross talk between the adipose tissue and the cancer cells. Salient findings of the present study demonstrate that this crosstalk is mediated at least partially by the JNK/STAT3-signaling pathway. PMID:26472027

  13. Expression of SRSF3 is Correlated with Carcinogenesis and Progression of Oral Squamous Cell Carcinoma

    OpenAIRE

    Peiqi, Liu; Zhaozhong, Guo; Yaotian, Yin; Jun, Jia; Jihua, Guo; Rong, Jia

    2016-01-01

    Objective: Oral squamous cell carcinoma (OSCC) is the most common malignancy of head and neck with high mortality rates. The mechanisms of initiation and development of OSCC remain largely unknown. Dysregulated alternative splicing of pre-mRNA has been associated with OSCC. Splicing factor SRSF3 is a proto-oncogene and overexpressed in multiple cancers. The aim of this study was to uncover the relationship between SRSF3 and carcinogenesis and progression of oral squamous cell carcinoma. Desig...

  14. Increased visceral fat mass and insulin signaling in colitis-related colon carcinogenesis model mice

    OpenAIRE

    Miyamoto, Shingo; Tanaka, Takuji; Murakami, Akira

    2010-01-01

    Leptin, a pleiotropic hormone regulating food intake and metabolism, plays an important role in the regulation of inflammation and immunity. We previously demonstrated that serum leptin levels are profoundly increased in mice which received azoxymethane (AOM) and dextran sulfate sodium (DSS) as tumor-initiator and -promoter, respectively, in a colon carcinogenesis model. In this study, we attempted to address underlying mechanism whereby leptin is up-regulated in this rodent model. Five-week-...

  15. Nano-architectural Alterations in Mucus Layer Fecal Colonocytes in Field Carcinogenesis: Potential for Screening

    OpenAIRE

    Hemant K. Roy; Damania, Dhwanil P.; DelaCruz, Mart; Kunte, Dhananjay P.; Subramanian, Hariharan; Crawford, Susan E.; Tiwari, Ashish K.; Wali, Ramesh K.; Backman, Vadim

    2013-01-01

    Current fecal tests (occult blood, methylation, DNA mutations) target minute amounts of tumor products among a large amount of fecal material and thus have suboptimal performance. Our group has focused on exploiting field carcinogenesis as a modality to amplify the neoplastic signal. Specifically, we have demonstrated that endoscopically normal rectal brushings have striking nano-architectural alterations which are detectable utilizing a novel optical technique, partial wave spectroscopic mic...

  16. Differentiation and carcinogenesis: an integrated multilevel study of mechanisms from molecules to man. Progress report

    International Nuclear Information System (INIS)

    This study sought to identify and characterize mesenchymal progenitor cells (MPCs) in vitro, to identify the in vivo equivalent of the in vitro MPCs, and to determine the relationship between the presence or response of these cells both in vitro and eventually in vivo to altered proliferative capacity (in vitro cellular senescence, in vivo organismal aging) and altered susceptibility to carcinogenesis (frequency of in vitro neoplastic transformation and age-related frequency of in vivo cancer incidence). 16 refs

  17. Adiponectin suppresses colorectal carcinogenesis under the high-fat diet condition

    OpenAIRE

    Fujisawa, T.; Endo, H; Tomimoto, A; Sugiyama, M; Takahashi, H; Saito, S.; Inamori, M.; Nakajima, N.; Watanabe, M.(Niigata University, 950-2181, Niigata, Japan); Kubota, N; Yamauchi, T.; Kadowaki, T; Wada, K.; Nakagama, H; Nakajima, A

    2008-01-01

    Background and aims: The effect of adiponectin on colorectal carcinogenesis has been proposed but not fully investigated. We investigated the effect of adiponectin deficiency on the development of colorectal cancer. Methods: We generated three types of gene-deficient mice (adiponectin-deficient, adiponectin receptor 1-deficient, and adiponectin receptor 2-deficient) and investigated chemical-induced colon polyp formation and cell proliferation in colon epithelium. Western blot analysis was pe...

  18. Protective Effect of Withaferin-A on Micronucleus Frequency and Detoxication Agents During Experimental Oral Carcinogenesis

    OpenAIRE

    Panjamurthy, Kuppusamy; Manoharan, Shanmugam; Balakrishnan, Subramanian; Suresh, Kathiresan; Nirmal, Madhavan R; Senthil, Namasivayam; Alias, Linsa Marry

    2008-01-01

    Our aim was to investigate the effect of Withaferin-A on bone marrow micronucleus frequency and buccal mucosa detoxication agents during 7, 12-dimethylbenz[a]anthracene (DMBA) induced hamster buccal pouch carcinogenesis. Oral squamous cell carcinoma was developed in hamsters' buccal pouches by painting 0.5% DMBA in liquid paraffin, three times per week for 14 weeks. We observed 100% tumor formation in DMBA painted hamsters. Elevated frequency of bone marrow micronucleated polychromatic erythr...

  19. Neutrophils Are Required for 3-Methylcholanthrene-Initiated, Butylated Hydroxytoluene-Promoted Lung Carcinogenesis

    OpenAIRE

    Vikis, Haris G.; Gelman, Andrew E.; Franklin, Andrew; Stein, Lauren; Rymaszewski, Amy; Zhu, Jihong; Liu, Pengyuan; Tichelaar, Jay W.; Krupnick, Alexander S.; You, Ming

    2011-01-01

    Multiple studies have shown a link between chronic inflammation and lung tumorigenesis. Inbred mouse strains vary in their susceptibility to methylcholanthrene (MCA)-initiated butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated whether neutrophils play a role in strain dependent differences in susceptibility to lung tumor promotion. We observed a significant elevation in homeostatic levels of neutrophils in the lungs of tumor-susceptible BALB/cByJ...

  20. Helicobacter pylori-infected animal models are extremely suitable for the investigation of gastric carcinogenesis

    OpenAIRE

    Kodama, Masaaki; Murakami, Kazunari; Sato, Ryugo; Okimoto, Tadayoshi; Nishizono, Akira; Fujioka, Toshio

    2005-01-01

    Although various animal models have been developed to clarify gastric carcinogenesis, apparent mechanism of gastric cancer was not clarified in recent years. Since the recognition of the pathogenicity of Helicobacter pylori (H pylori), several animal models with H pylori infection have been developed to confirm the association between H pylori and gastric cancer. Nonhuman primate and rodent models were suitable for this study. Japanese monkey model revealed atrophic gastritis and p53 mutation...

  1. Amarogentin regulates self renewal pathways to restrict liver carcinogenesis in experimental mouse model.

    Science.gov (United States)

    Sur, Subhayan; Pal, Debolina; Banerjee, Kaustav; Mandal, Suvra; Das, Ashes; Roy, Anup; Panda, Chinmay Kumar

    2016-07-01

    Amarogentin, a secoiridoid glycoside isolated from medicinal plant Swertia chirata, was found to restrict CCl4 /N-nitrosodiethyl amine (NDEA) induced mouse liver carcinogenesis by modulating G1/S cell cycle check point and inducing apoptosis. To understand its therapeutic efficacy on stem cell self renewal pathways, prevalence of CD44 positive cancer stem cell (CSC) population, expressions (mRNA/protein) of some key regulatory genes of self renewal Wnt and Hedgehog pathways along with expressions of E-cadherin and EGFR were analyzed during the liver carcinogenesis and in liver cancer cell line HepG2. It was observed that amarogentin could significantly reduce CD44 positive CSCs in both pre and post initiation stages of carcinogenesis than carcinogen control mice. In Wnt pathway, amarogentin could inhibit expressions of β-catenin, phospho β-catenin (Y-654) and activate expressions of antagonists sFRP1/2 and APC in the liver lesions. In Hedgehog pathway, decreased expressions of Gli1, sonic hedgehog ligand, and SMO along with up-regulation of PTCH1 were seen in the liver lesions due to amarogentin treatment. Moreover, amarogentin could up-regulate E-cadherin expression and down-regulate expression of EGFR in the liver lesions. Similarly, amarogentin could inhibit HepG2 cell growth along with expression and prevalence of CD44 positive CSCs. Similar to in vivo analysis, amarogentin could modulate the expressions of the key regulatory genes of the Wnt and hedgehog pathways and EGFR in HepG2 cells. Thus, our data suggests that the restriction of liver carcinogenesis by amarogentin might be due to reduction of CD44 positive CSCs and modulation of the self renewal pathways. © 2015 Wiley Periodicals, Inc. PMID:26154024

  2. Modulation of Estrogen Chemical Carcinogenesis by Botanical Supplements used for Postmenopausal Women’s Health

    OpenAIRE

    Snelten, Courtney S.; Dietz, Birgit; Bolton, Judy L.

    2012-01-01

    Breast cancer risk has been associated with long-term estrogen exposure including traditional hormone therapy (HT, formally hormone replacement therapy). To avoid traditional HT and associated risks, women have been turning to botanical supplements such as black cohosh, red clover, licorice, hops, dong gui, and ginger to relieve menopausal symptoms despite a lack of efficacy evidence. The mechanisms of estrogen carcinogenesis involve both hormonal and chemical pathways. Botanical supplements ...

  3. Role of cholecystokinin in dietary fat-promoted azaserine-induced pancreatic carcinogenesis in rats.

    OpenAIRE

    Appel, M J; Meijers, M.; Van Garderen-Hoetmer, A.; Lamers, C B; Rovati, L. C.; Sprij-Mooij, D.; Jansen, J B; Woutersen, R.A.

    1992-01-01

    The role of cholecystokinin in dietary fat-promoted pancreatic carcinogenesis was investigated in azaserine-treated rats, using lorglumide, a highly specific cholecystokinin-receptor antagonist. The animals were killed 8 months after the start of treatment. Cholecystokinin, but not dietary unsaturated fat, increased pancreatic weight. Rats treated with cholecystokinin developed more acidophilic atypical acinar cell nodules, adenomas and adenocarcinomas than control animals. Rats maintained on...

  4. Polyamines as mediators of APC-dependent intestinal carcinogenesis and cancer chemoprevention

    OpenAIRE

    Rial, Nathaniel S; Meyskens, Frank L.; Gerner, Eugene W.

    2009-01-01

    Combination chemoprevention for cancer was proposed a quarter of a century ago, but has not been implemented in standard medical practice owing to limited efficacy and toxicity. Recent trials have targeted inflammation and polyamine biosynthesis, both of which are increased in carcinogenesis. Preclinical studies have demonstrated that DFMO (difluoromethylornithine), an irreversible inhibitor of ODC (ornithine decarboxylase) which is the first enzyme in polyamine biosynthesis, combined with NS...

  5. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  6. Tamoxifen may prevent both ER+ and ER- breast cancers and select for ER- carcinogenesis: an alternative hypothesis

    OpenAIRE

    Esserman, Laura J.; Dowsett, Mitch; Slingerland, Joyce M.; Elissa M. Ozanne

    2005-01-01

    Introduction: Breast Cancer Prevention Trial (BCPT) and Multiple Outcomes of Raloxifene (MORE) data have been interpreted to indicate that tamoxifen reduces the risk of ER+ but not ER- breast carcinogenesis. We explored whether these data also support an alternative hypothesis, that tamoxifen influences the natural history of both ER+ and ER- cancers, that it may be equally effective in abrogating or delaying ER- and ER+ carcinogenesis, and place selection pressure, in some cases, for the out...

  7. Chronic exposure to combined carcinogens enhances breast cell carcinogenesis with mesenchymal and stem-like cell properties.

    Directory of Open Access Journals (Sweden)

    Lenora Ann Pluchino

    Full Text Available Breast cancer is the most common type of cancer affecting women in North America and Europe. More than 85% of breast cancers are sporadic and attributable to long-term exposure to small quantities of multiple carcinogens. To understand how multiple carcinogens act together to induce cellular carcinogenesis, we studied the activity of environmental carcinogens 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and benzo[a]pyrene (B[a]P, and dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP using our breast cell carcinogenesis model. Our study revealed, for the first time, that combined NNK and B[a]P enhanced breast cell carcinogenesis chronically induced by PhIP in both non-cancerous and cancerous breast cells. Co-exposure was more potent than sequential exposure to combined NNK and B[a]P followed by PhIP in inducing carcinogenesis. Initiation of carcinogenesis was measured by transient endpoints induced in a single exposure, while progression of carcinogenesis was measured by acquisition of constitutive endpoints in cumulative exposures. Transient endpoints included DNA damage, Ras-Erk-Nox pathway activation, reactive oxygen species elevation, and increased cellular proliferation. Constitutive endpoints included various cancer-associated properties and signaling modulators, as well as enrichment of cancer stem-like cell population and activation of the epithelial-to-mesenchymal transition program. Using transient and constitutive endpoints as targets, we detected that a combination of the green tea catechins ECG and EGCG, at non-cytotoxic levels, was more effective than individual agents in intervention of cellular carcinogenesis induced by combined NNK, B[a]P, and PhIP. Thus, use of combined ECG and EGCG should be seriously considered for early intervention of breast cell carcinogenesis associated with long-term exposure to environmental and dietary carcinogens.

  8. Adiponectin deficiency enhances colorectal carcinogenesis and liver tumor formation induced by azoxymethane in mice

    Institute of Scientific and Technical Information of China (English)

    Tamao Nishihara; Shinji Tamura; Norio Hayashi; Hiroyasu Iishi; Iichiro Shimornura; Miyako Baba; Morihiro Matsuda; Masahiro Inoue; Yasuko Nishizawa; Atsunori Fukuhara; Hiroshi Arald; Shinji Kihara; Tohru Funahashi

    2008-01-01

    AIM: To investigate the causal relationship between hypoadiponectinemia and colorectal carcinogenesis in in vivo experimental model, and to determine the con-tribution of adiponectin deficiency to colorectal cancer development and proliferation. METHODS: We examined the influence of adiponectin deficiency on colorectal carcinogenesis induced by the administration of azoxymethane (AOM) (7.5 mg/kg, in-traperitoneal injection once a week for 8 wk), by using adiponectin-knockout (KO) mice. RESULTS: At 53 wk after the first AOM treatment, KOmice developed larger and histologically more progres-sive colorectal tumors with greater frequency com-pared with wild-type (WT) mice, although the tumor incidence was not different between WT and KO mice. KO mice showed increased cell proliferation of colorec-tal tumor cells, which correlated with the expression levels of cyclooxygenase-2 (COX-2) in the colorectal tumors. In addition, KO mice showed higher incidence and frequency of liver tumors after AOI treatment. Thirteen percent of WT mice developed liver tumors, and these WT mice had only a single tumor. In contrast, 50% of K.O mice developed liver tumors, and 58% of these KO mice had multiple tumors. CONCLUSION: Adiponectin deficiency enhances colorectal carcinogenesis and liver tumor formation induced by AOM in mice. This study strongly suggests that hypoadiponectinemia could be involved in the pathogenesis for colorectal cancer and liver tumor in human subjects.

  9. 65Zn kinetics as a biomarker of DMH induced colon carcinogenesis

    International Nuclear Information System (INIS)

    Dietary factors are considered crucial for the prevention of initiating events in the multistep progression of colon carcinoma. There is substantial evidence that zinc may play a pivotal role in host defense against several malignancies, including colon cancer. The present study was conducted to evaluate the kinetics of zinc utilization following experimental colon carcinogenesis in rat model. The rats were segregated into two groups viz., untreated control and DMH treated. Colon carcinogenesis was established through weekly subcutaneous injections of DMH (30mg/Kg body weight) for 16 weeks. Whole body 65Zn kinetics followed two compartment kinetics, with Tb1 representing the initial fast component of the biological half-life and Tb2, the slower component. The present study revealed a significant depression in the Tb1 and Tb2 components of 65Zn in DMH treated rats. Further, DMH treatment caused a significant increase in the percent uptake values of 65Zn in the colon, small intestine, kidney and blood, whereas a significant decrease was observed in the liver. Subcellular distribution revealed a significant increase in 65Zn uptake in the mitochondrial and microsomal fractions following 16 weeks of DMH supplementation. The present study demonstrated a slow mobilization of zinc during promotion of experimentally induced colon carcinogenesis and provides a physiological basis for the role of zinc in colon tumorigenesis, a paradigm which may have clinical implications in the management of colon cancer. (author)

  10. Chemopreventive effect of Quercus infectoria against chemically induced renal toxicity and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Muneeb U Rehman

    2012-06-01

    Full Text Available In this study we have shown that Quercus infectoria attenuates Fe- NTA induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. Fe-NTA promoted DEN (N-diethyl nitrosamine initiated renal carcinogenesis by increasing the percentage incidence of tumors and induces early tumor markers viz. ornithine decarboxylase (ODC level and PCNA expression. Fe- NTA (9 mg Fe/kg body weight, intraperitoneally enhances renal Malondialdehyde, xanthine oxidase and hydrogen peroxide generation with reduction in renal glutathione content, antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase and phase-II metabolizing enzymes such as glutathione-S-transferase and quinone reductase. It also enhances blood urea nitrogen and serum creatinine. Fe-NTA also lead to increase in levels of some inflammatory markers viz NO and MPO and some proinflammatory cytokines viz PGE-2 and TNF-1. The chemopreventive efficacy of Quercus infectoria was studied in terms of xenobiotic metabolizing enzyme activities, LPO, redox status, serum toxicity markers, inflammatory and proinflammatory markers and cell proliferation in the kidney tissue. Oral administration of Quercus infectoria at doses of 75 and 150 mg/kg b wt effectively suppressed renal oxidative stress, inflammation and tumor incidence. Chemopreventive effects of Quercus infectoria were associated with up-regulation of xenobiotic metabolizing enzyme activities and down regulation of serum toxicity markers. Present study supports Quercus infectoria as a potent chemopreventive agent and suppresses Fe-NTA-induced renal carcinogenesis and oxidative and inflammatory response in Wistar rat.

  11. The level of claudin-7 is reduced as an early event in colorectal carcinogenesis

    Directory of Open Access Journals (Sweden)

    Tveit Kjell M

    2011-02-01

    Full Text Available Abstract Background Compromised epithelial barriers are found in dysplastic tissue of the gastrointestinal tract. Claudins are transmembrane proteins important for tight junctions. Claudins regulate the paracellular transport and are crucial for maintaining a functional epithelial barrier. Down-regulation of the oncogenic serine protease, matriptase, induces leakiness in epithelial barriers both in vivo and in vitro. We found in an in-silico search tight co-regulation between matriptase and claudin-7 expression. We have previously shown that the matriptase expression level decreases during colorectal carcinogenesis. In the present study we investigated whether claudin-7 expression is likewise decreased during colorectal carcinogenesis, thereby causing or contributing to the compromised epithelial leakiness of dysplastic tissue. Methods The mRNA level of claudin-7 (CLDN7 was determined in samples from 18 healthy individuals, 100 individuals with dysplasia and 121 colorectal cancer patients using quantitative real time RT-PCR. In addition, immunohistochemical stainings were performed on colorectal adenomas and carcinomas, to confirm the mRNA findings. Results A 2.7-fold reduction in the claudin-7 mRNA level was found when comparing the biopsies from healthy individuals with the biopsies of carcinomas (p claudin-7 mRNA levels were also detected in mild/moderate dysplasia (p Conclusions Our results show that the claudin-7 mRNA level is decreased already as an early event in colorectal carcinogenesis, probably contributing to the compromised epithelial barrier in adenomas.

  12. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    Science.gov (United States)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh M.; Turzhitsky, Vladimir; Subramanian, Hariharan; Roy, Hemant K.; Taflove, Allen; Dravid, Vinayak P.; Backman, Vadim

    2011-04-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed. Originally submitted for the special focus issue on physical oncology.

  13. Anti-tumour promoting activity of diphenylmethyl selenocyanate against two-stage mouse skin carcinogenesis.

    Science.gov (United States)

    Das, Rajat Kumar; Bhattacharya, Sudin

    2005-01-01

    Epidemiological, clinical and experimental evidence collectively suggests that Se in different inorganic and organic forms provides a potential cancer chemopreventive agent, active against several types of cancer. It can exert preventive activity in all the three stages of cancer: initiation, promotion and progression. Literature reports revealed that organoselenocyanates have more potential as chemopreventive agents than inorganic forms due to their lower toxicity. In our previous report we showed chemopreventive efficacy of diphenylmethyl selenocyanate during the initiation and pre- plus post-initiation phases of skin and colon carcinogenesis process. The present study was undertaken to explore the anti-tumour promoting activity of diphenylmethyl selenocyanate in a 7,12-dimethylbenz (a) anthracene (DMBA)-croton oil two-stage skin carcinogenesis model. The results obtained showed significant (pliver and skin. Thus, the present data strongly suggest that diphenylmethyl selenocyanate also has the potential to act as anti-tumour promoter agent in a two-stage skin carcinogenesis mouse model, pointing to possible general efficacy. PMID:16101330

  14. A comparison of UVB-carcinogenesis between nude mice and nude beige mice

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Yasuhito; Yasuda, Kazuhiro; Hashimoto, Noriyoshi; Hayakawa, Jun-ichiro; Nikaido, Osamu [Kanazawa Univ. (Japan). Faculty of Pharmaceutical Sciences; Hiai, Hiroshi

    1998-06-01

    To gain an insight into the relationship between UVB-carcinogenesis and natural killer activity, we examined ultraviolet light-induced carcinogenesis in mice with high natural killer activity (KSN) and mice with natural killer deficiency (KSN-bg). We exposed mice six times a week to three levels of daily ultraviolet B (UVB) doses; 320, 160 and 0 J/m{sup 2}/day. During the latency period of skin tumor development in KSN mice, we detected no suppression of the natural killer activity at both 320 and 160 J/m{sup 2}/day. Even at 1340 J/m{sup 2}/day, we could not detect any significant suppression of NK activity in KSN mice. When we irradiated spleen cells in vitro, we observed NK activity suppression. Next, we compared the carcinogenic effects of UVB-irradiation on KSN and KSN-bg mice. At 320 J/m{sup 2}/day, we detected no significant differences between them. In contrast, at 160 J/m{sup 2}/day, KSN-bg mice showed a significantly higher rate of skin tumor induction than KSN mice (p<0.05). Most UVB-induced tumors were squamous cell carcinoma, the rest were spindle cell carcinoma, papilloma and mixed type. Our results suggest that NK activity plays a protective role against UVB-carcinogenesis from low daily-doses of UVB-irradiation. (author)

  15. Effect of Cu supplementation on genomic instability in chemically-induced mammary carcinogenesis in the rat

    Directory of Open Access Journals (Sweden)

    Bobrowska Barbara

    2011-12-01

    Full Text Available Abstract Backround The aim of the present study was to assess the effect of dietary supplementation (copper or copper and resveratrol on the intensity of carcinogenesis and the frequency of microsatellite instability in a widely used model of mammary carcinogenesis induced in the rat by treatment with 7,12-dimethylbenz[a]anthracene (DMBA. Methods DNA was extracted from rat mammary cancers and normal tisues, amplified by PCR, using different polymorphic DNA markers and the reaction products were analyzed for microsatellite instability. Results It was found that irrespectively of the applied diet there was no inhibition of mammary carcinogenesis in the rats due to DMBA. Besides, in the groups supplemented with Cu (II or Cu (II and resveratrol the tumor formation was clearly accelerated. Unlike the animals that were fed with standard diet, the supplemented rats were characterized by the loss of heterozygosity of microsatellite D3Mgh9 in cancer tumors (by respectively 50 and 40%. When the animals received Cu (II and resveratrol supplemented diet the occurrence of genomic instability was additionally found in their livers in the case of microsatellite D1Mgh6 (which was stable in the animals without dietary supplementation. Conclusions Identification of the underlying mechanisms by which dietary factors affect genomic stability might prove useful in the treatment of mammary cancer as well as in the incorporation of dietary factors into mammary cancer prevention strategies.

  16. Dual preventive benefits of iron elimination by desferal in asbestos-induced mesothelial carcinogenesis.

    Science.gov (United States)

    Jiang, Li; Chew, Shan-Hwu; Nakamura, Kosuke; Ohara, Yuuki; Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Asbestos-induced mesothelial carcinogenesis is currently a profound social issue due to its extremely long incubation period and high mortality rate. Therefore, procedures to prevent malignant mesothelioma in people already exposed to asbestos are important. In previous experiments, we established an asbestos-induced rat peritoneal mesothelioma model, which revealed that local iron overload is a major cause of pathogenesis and that the induced genetic alterations are similar to human counterparts. Furthermore, we showed that oral administration of deferasirox modified the histology from sarcomatoid to the more favorable epithelioid subtype. Here, we used i.p. administration of desferal to evaluate its effects on asbestos-induced peritoneal inflammation and iron deposition, as well as oxidative stress. Nitrilotriacetate was used to promote an iron-catalyzed Fenton reaction as a positive control. Desferal significantly decreased peritoneal fibrosis, iron deposition, and nuclear 8-hydroxy-2'-deoxyguanosine levels in mesothelial cells, whereas nitrilotriacetate significantly increased all of them. Desferal was more effective in rat peritoneal mesothelial cells to counteract asbestos-induced cytotoxicity than in murine macrophages (RAW264.7). Furthermore, rat sarcomatoid mesothelioma cells were more dependent on iron for proliferation than rat peritoneal mesothelial cells. Because inflammogenicity of a fiber is proportionally associated with subsequent mesothelial carcinogenesis, iron elimination from the mesothelial environment can confer dual merits for preventing asbestos-induced mesothelial carcinogenesis by suppressing inflammation and mesothelial proliferation simultaneously. PMID:27088640

  17. DNA Damage in Inflammation-Related Carcinogenesis and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Shiho Ohnishi

    2013-01-01

    Full Text Available Infection and chronic inflammation have been recognized as important factors for carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS and reactive nitrogen species (RNS are generated from inflammatory and epithelial cells and result in oxidative and nitrative DNA damage, such as 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG and 8-nitroguanine. The DNA damage can cause mutations and has been implicated in the initiation and/or promotion of inflammation-mediated carcinogenesis. It has been estimated that various infectious agents are carcinogenic to humans (IARC group 1, including parasites (Schistosoma haematobium (SH and Opisthorchis viverrini (OV, viruses (hepatitis C virus (HCV, human papillomavirus (HPV, and Epstein-Barr virus (EBV, and bacterium Helicobacter pylori (HP. SH, OV, HCV, HPV, EBV, and HP are important risk factors for bladder cancer, cholangiocarcinoma, hepatocellular carcinoma, cervical cancer, nasopharyngeal carcinoma, and gastric cancer, respectively. We demonstrated that 8-nitroguanine was strongly formed via inducible nitric oxide synthase (iNOS expression at these cancer sites of patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in SH-associated bladder cancer tissues and in Oct3/4- and CD133-positive stem cells in OV-associated cholangiocarcinoma tissues. Therefore, it is considered that oxidative and nitrative DNA damage in stem cells may play a key role in inflammation-related carcinogenesis.

  18. Causal role of Helicobacter pylori infection and eradication therapy in gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Masanori Ito; Shinji Tanaka; Tomoari Kamada; Ken Haruma; Kazuaki Chayama

    2006-01-01

    Many epidemiological reports indicate that Helicobacter pylori(H pylori) infection plays an important role in gastric carcinogenesis. Several genetic and epigenetic alterations contribute to the initiation, promotion, and progression of the cancer cells in a multi-step manner.H pyloriis known to induce chronic inflammation in the gastric mucosa. Its products, including superoxides,participate in the DNA damage followed by initiation, and the inflammation-derived cytokines and growth factors contribute to the promotion of gastric carcinogenesis.By eradicating H pylori, gastric inflammation can be cured; the therapy diminishes the levels not only of inflammatory cell infiltration, but also atrophyl intestinal metaplasia in part. A randomized controlled trial revealed that the eradication therapy diminished the gastric cancer prevalence in cases without precancerous conditions. In addition, recent epidemiological studies from Japanese groups demonstrated that the development of gastric cancer, especially of the intestinal type, was decreased by successful eradication therapy, although these were designed in a nonrandomized manner. However, it should be mentioned that endoscopic detection is the only way to evaluate the degree of gastric carcinogenesis. We have reported that the endoscopic and histological morphologies could be modified by eradication therapy and it might contribute to the prevalence of gastric cancer development.Considering the biological nature of cancer cell proliferation, it is considered that a sufficiently long-term follow-up would be essential to discuss the anticancer effect of eradication therapy.

  19. Mathematical concepts

    CERN Document Server

    Jost, Jürgen

    2015-01-01

    The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: ·         simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure ·         by itself as a first introduction to abstract mathematics ·         together with existing textbooks, to put their results into a more general perspective ·         to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detaile...

  20. Metallothioneins in human tumors and potential roles in carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cherian, M. George; Jayasurya, A.; Bay, Boon-Huat

    2003-12-10

    Metallothioneins (MT) are a group of low-molecular weight, cysteine rich intracellular proteins, which are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins have been associated with protection against DNA damage, oxidative stress and apoptosis. Moreover, MT may potentially activate certain transcriptional factors by donating zinc. Although MT is a cytosolic protein in resting cells, it can be translocated transiently to the cell nucleus during cell proliferation and differentiation. A number of studies have shown an increased expression of MT in various human tumors of the breast, colon, kidney, liver, lung, nasopharynx, ovary, prostate, salivary gland, testes, thyroid and urinary bladder. However, MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors, but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. In certain tumors such as germ cell carcinoma, the expression of MT is closely related to the tumor grade and proliferative activity. Increased expression of MT has also been observed in less differentiated tumors. Thus, expression of MT may be a potential prognostic marker for certain tumors. There are few reports on the expression of the different isoforms of MT which have been analyzed by specific gene probes. They reveal that certain isoforms are expressed in specific cell types. The factors which can influence MT induction in human tumors are not yet understood. Down-regulation of MT synthesis in hepatic tumors may be related to hypermethylation of the MT-promoter or mutation of other genes such as the p53 tumor suppressor gene. In vitro studies using human cancer cells suggest a possible role for p53 and the estrogen-receptor on the expression and induction of MT in epithelial neoplastic cells

  1. Metallothioneins in human tumors and potential roles in carcinogenesis

    International Nuclear Information System (INIS)

    Metallothioneins (MT) are a group of low-molecular weight, cysteine rich intracellular proteins, which are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins have been associated with protection against DNA damage, oxidative stress and apoptosis. Moreover, MT may potentially activate certain transcriptional factors by donating zinc. Although MT is a cytosolic protein in resting cells, it can be translocated transiently to the cell nucleus during cell proliferation and differentiation. A number of studies have shown an increased expression of MT in various human tumors of the breast, colon, kidney, liver, lung, nasopharynx, ovary, prostate, salivary gland, testes, thyroid and urinary bladder. However, MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors, but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. In certain tumors such as germ cell carcinoma, the expression of MT is closely related to the tumor grade and proliferative activity. Increased expression of MT has also been observed in less differentiated tumors. Thus, expression of MT may be a potential prognostic marker for certain tumors. There are few reports on the expression of the different isoforms of MT which have been analyzed by specific gene probes. They reveal that certain isoforms are expressed in specific cell types. The factors which can influence MT induction in human tumors are not yet understood. Down-regulation of MT synthesis in hepatic tumors may be related to hypermethylation of the MT-promoter or mutation of other genes such as the p53 tumor suppressor gene. In vitro studies using human cancer cells suggest a possible role for p53 and the estrogen-receptor on the expression and induction of MT in epithelial neoplastic cells

  2. Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis.

    Science.gov (United States)

    Kaur, Gurpreet; Athar, Mohammad; Alam, M Sarwar

    2010-03-01

    The present study was designed to investigate the protective efficacy of eugenol against skin cancer and probe into the mechanistic aspects. Skin tumors were initiated by applying 160 nmol DMBA and promoted by twice weekly applications of 8.5 nmol TPA for 28 wk. All mice developed tumors by 13 wk of promotion. However, in mice pretreated with 30 microL eugenol, no tumors were detected until 8 wk (following anti-initiation protocol) and until 14 wk (following antipromotion protocol) of tumor promotion. PCNA and TUNEL immunohistochemistry of tumors revealed eugenol to ameliorate cell proliferation and elevate apoptosis respectively. The effect of eugenol was assessed on specific stages of carcinogenesis. Initiation with DMBA led to a significant upregulation of p53 expression with a concomitant increase in p21(WAF1) levels in epidermal cells indicating induction of damage to the DNA. However, pretreatment with eugenol led to overexpression of these genes, which probably helped stimulate apoptosis of the initiated cells. To ascertain the molecular mechanisms implicated in the antitumor promoting activity of eugenol, its effect was investigated on markers of tumor promotion and inflammation: ODC activity and iNOS and COX-2 expression, and on levels of proinflammatory cytokines (IL-6, TNF-alpha, and PGE(2)). Eugenol markedly inhibited all. Eugenol also inhibited the upstream signaling molecule: NF-kappaB, which regulates the expression of these genes. TPA-induced depletion of cutaneous GSH and antioxidant enzymes armory was also precluded by eugenol. From these results, it could be concluded that eugenol markedly protects against chemically induced skin cancer and acts possibly by virtue of its antiproliferative, anti-inflammatory, and antioxidant activities. PMID:20043298

  3. SKHIN/Sprd, a new genetically defined inbred hairless mouse strain for UV-induced skin carcinogenesis studies.

    Science.gov (United States)

    Perez, Carlos; Parker-Thornburg, Jan; Mikulec, Carol; Kusewitt, Donna F; Fischer, Susan M; Digiovanni, John; Conti, Claudio J; Benavides, Fernando

    2012-03-01

    Strains of mice vary in their susceptibility to ultra-violet (UV) radiation-induced skin tumors. Some strains of hairless mice (homozygous for the spontaneous Hr(hr) mutation) are particularly susceptible to these tumors. The skin tumors that develop in hairless mice resemble, both at the morphologic and molecular levels, UV-induced squamous cell carcinomas (SCC) and their precursors in human. The most commonly employed hairless mice belong to the SKH1 stock. However, these mice are outbred and their genetic background is not characterized, which makes them a poor model for genetic studies. We have developed a new inbred strain from outbred SKH1 mice that we named SKHIN/Sprd (now at generation F31). In order to characterize the genetic background of this new strain, we genotyped a cohort of mice at F30 with 92 microsatellites and 140 single nucleotide polymorphisms (SNP) evenly distributed throughout the mouse genome. We also exposed SKHIN/Sprd mice to chronic UV irradiation and showed that they are as susceptible to UV-induced skin carcinogenesis as outbred SKH1 mice. In addition, we proved that, albeit with low efficiency, inbred SKHIN/Sprd mice are suitable for transgenic production by classical pronuclear microinjection. This new inbred strain will be useful for the development of transgenic and congenic strains on a hairless inbred background as well as the establishment of syngeneic tumor cell lines. These new tools can potentially help elucidate a number of features of the cutaneous response to UV irradiation in humans, including the effect of genetic background and modifier genes.

  4. Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis.

    Science.gov (United States)

    Kaur, Gurpreet; Athar, Mohammad; Alam, M Sarwar

    2010-03-01

    The present study was designed to investigate the protective efficacy of eugenol against skin cancer and probe into the mechanistic aspects. Skin tumors were initiated by applying 160 nmol DMBA and promoted by twice weekly applications of 8.5 nmol TPA for 28 wk. All mice developed tumors by 13 wk of promotion. However, in mice pretreated with 30 microL eugenol, no tumors were detected until 8 wk (following anti-initiation protocol) and until 14 wk (following antipromotion protocol) of tumor promotion. PCNA and TUNEL immunohistochemistry of tumors revealed eugenol to ameliorate cell proliferation and elevate apoptosis respectively. The effect of eugenol was assessed on specific stages of carcinogenesis. Initiation with DMBA led to a significant upregulation of p53 expression with a concomitant increase in p21(WAF1) levels in epidermal cells indicating induction of damage to the DNA. However, pretreatment with eugenol led to overexpression of these genes, which probably helped stimulate apoptosis of the initiated cells. To ascertain the molecular mechanisms implicated in the antitumor promoting activity of eugenol, its effect was investigated on markers of tumor promotion and inflammation: ODC activity and iNOS and COX-2 expression, and on levels of proinflammatory cytokines (IL-6, TNF-alpha, and PGE(2)). Eugenol markedly inhibited all. Eugenol also inhibited the upstream signaling molecule: NF-kappaB, which regulates the expression of these genes. TPA-induced depletion of cutaneous GSH and antioxidant enzymes armory was also precluded by eugenol. From these results, it could be concluded that eugenol markedly protects against chemically induced skin cancer and acts possibly by virtue of its antiproliferative, anti-inflammatory, and antioxidant activities.

  5. Pilot Study of CYP2B6 Genetic Variation to Explore the Contribution of Nitrosamine Activation to Lung Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Rachel F. Tyndale

    2013-04-01

    Full Text Available We explored the contribution of nitrosamine metabolism to lung cancer in a pilot investigation of genetic variation in CYP2B6, a high-affinity enzymatic activator of tobacco-specific nitrosamines with a negligible role in nicotine metabolism. Previously we found that variation in CYP2A6 and CHRNA5-CHRNA3-CHRNB4 combined to increase lung cancer risk in a case-control study in European American ever-smokers (n = 860. However, these genes are involved in the pharmacology of both nicotine, through which they alter smoking behaviours, and carcinogenic nitrosamines. Herein, we separated participants by CYP2B6 genotype into a high- vs. low-risk group (*1/*1 + *1/*6 vs. *6/*6. Odds ratios estimated through logistic regression modeling were 1.25 (95% CI 0.68–2.30, 1.27 (95% CI 0.89–1.79 and 1.56 (95% CI 1.04–2.31 for CYP2B6, CYP2A6 and CHRNA5-CHRNA3-CHRNB4, respectively, with negligible differences when all genes were evaluated concurrently. Modeling the combined impact of high-risk genotypes yielded odds ratios that rose from 2.05 (95% CI 0.39–10.9 to 2.43 (95% CI 0.47–12.7 to 3.94 (95% CI 0.72–21.5 for those with 1, 2 and 3 vs. 0 high-risk genotypes, respectively. Findings from this pilot point to genetic variation in CYP2B6 as a lung cancer risk factor supporting a role for nitrosamine metabolic activation in the molecular mechanism of lung carcinogenesis

  6. Chemopreventive effect of Korean Angelica root extract on TRAMP carcinogenesis and integrative "omic" profiling of affected neuroendocrine carcinomas.

    Science.gov (United States)

    Zhang, Jinhui; Wang, Lei; Zhang, Yong; Li, Li; Tang, Suni; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2015-12-01

    Angelica gigas Nakai (AGN) root ethanol extract exerts anti-cancer activity in several allograft and xenograft models. Here we examined its chemopreventive efficacy through gavage administration against primary carcinogenesis in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Male C57BL/6 TRAMP mice and wild type littermates were given a daily gavage (5 mg/mouse, Monday-Friday) of AGN or vehicle, beginning at 8 wk of age (WOA). All mice were terminated at 24 WOA, unless earlier euthanasia was necessitated by large tumors. Whereas AGN-treated TRAMP mice decreased dorsolateral prostate lesion growth by 30% (P = 0.009), they developed fewer and smaller neuroendocrine-carcinomas (NE-Ca) (0.12 g/mouse) than vehicle-treated counterparts (0.81 g/mouse, P = 0.037). We analyzed the proteome and transcriptome of banked NE-Ca to gain molecular insights. Angiogenesis-antibody array detected a substantial reduction in AGN-treated NE-Ca of basic fibroblast growth factor (FGF2), an angiogenesis stimulator. iTRAQ proteomics plus data mining suggested changes of genes upstream and downstream of FGF2 functionally consistent with AGN inhibiting FGF2/FGFR1 signaling at different levels of the transduction cascade. Moreover, AGN upregulated mRNA of genes related to immune responses, restored expression of many tumor suppressor genes, and prostate function and muscle differentiation genes. On the other hand, AGN down-regulated mRNA of genes related to neuron signaling, oncofetal antigens, inflammation, and mast cells, Wnt signaling, embryonic morphogenesis, biosynthesis, cell adhesion, motility, invasion, and angiogenesis. These changes suggest not only multiple cancer cell targeting actions of AGN but also impact on the tumor microenvironments such as angiogenesis, inflammation, and immune surveillance.

  7. Intranasal Administration of Type V Collagen Reduces Lung Carcinogenesis through Increasing Endothelial and Epithelial Apoptosis in a Urethane-Induced Lung Tumor Model.

    Science.gov (United States)

    Parra, Edwin Roger; Alveno, Renata Antunes; Faustino, Carolina Brito; Corrêa, Paula Yume Sato Serzedello; Vargas, Camilla Mutai; de Morais, Jymenez; Rangel, Maristela Peres; Velosa, Ana Paula Pereira; Fabro, Alexandre Todorovic; Teodoro, Walcy Rosolia; Capelozzi, Vera Luiza

    2016-08-01

    Type V collagen (Col V) is a "minor" component of normal lung extracellular matrix, which is subjected to decreased and abnormal synthesis in human lung infiltrating adenocarcinoma. We previously reported that a direct link between low amounts of Col V and decreased cell apoptosis may favor cancer cell growth in the mouse lung after chemical carcinogenesis. Moreover, this collagen species was able to trigger DNA fragmentation and impair survival of neoplastic cells. In this study, we have extended our investigation with the aim to obtain further evidence that the death induced by Col V-treatment is of the caspase-9 apoptotic type. We used (1) optical and electron microscopy, (2) quantitation of TUNEL-labeled cells and (3) analysis of the expression levels of Col V and selected genes coding for apoptosis-linked factors, by conventional RT-PCR. BALB/c mice were injected intraperitoneally with 1.5 g/kg body weight of urethane. After urethane injection, the animals received intranasal administration of 20 µg/20 µl of Col V every day during 2 months. We report here that Col V treatment was able to determine significant increase in Col V protein and gene expression and in the percentage of TUNEL-positive cells, to up-regulate caspase-9, resulting in low growth of tumor cells. Our data validate chemical carcinogenesis as a suitable "in vivo" model for further and more detailed studies on the molecular mechanisms of the death response induced by Col V in lung infiltrating adenocarcinoma opening new strategies for treatment. PMID:27020095

  8. Intranasal Administration of Type V Collagen Reduces Lung Carcinogenesis through Increasing Endothelial and Epithelial Apoptosis in a Urethane-Induced Lung Tumor Model.

    Science.gov (United States)

    Parra, Edwin Roger; Alveno, Renata Antunes; Faustino, Carolina Brito; Corrêa, Paula Yume Sato Serzedello; Vargas, Camilla Mutai; de Morais, Jymenez; Rangel, Maristela Peres; Velosa, Ana Paula Pereira; Fabro, Alexandre Todorovic; Teodoro, Walcy Rosolia; Capelozzi, Vera Luiza

    2016-08-01

    Type V collagen (Col V) is a "minor" component of normal lung extracellular matrix, which is subjected to decreased and abnormal synthesis in human lung infiltrating adenocarcinoma. We previously reported that a direct link between low amounts of Col V and decreased cell apoptosis may favor cancer cell growth in the mouse lung after chemical carcinogenesis. Moreover, this collagen species was able to trigger DNA fragmentation and impair survival of neoplastic cells. In this study, we have extended our investigation with the aim to obtain further evidence that the death induced by Col V-treatment is of the caspase-9 apoptotic type. We used (1) optical and electron microscopy, (2) quantitation of TUNEL-labeled cells and (3) analysis of the expression levels of Col V and selected genes coding for apoptosis-linked factors, by conventional RT-PCR. BALB/c mice were injected intraperitoneally with 1.5 g/kg body weight of urethane. After urethane injection, the animals received intranasal administration of 20 µg/20 µl of Col V every day during 2 months. We report here that Col V treatment was able to determine significant increase in Col V protein and gene expression and in the percentage of TUNEL-positive cells, to up-regulate caspase-9, resulting in low growth of tumor cells. Our data validate chemical carcinogenesis as a suitable "in vivo" model for further and more detailed studies on the molecular mechanisms of the death response induced by Col V in lung infiltrating adenocarcinoma opening new strategies for treatment.

  9. Molecular Biology of Esophageal Cancer

    Institute of Scientific and Technical Information of China (English)

    HuanXi; JanBrabender; RalfMetzger; PaulM.Schneider

    2004-01-01

    There have been many new developments in our understanding of esophageal carcinoma biology over the past several years. Information regarding both of the major forms of this disease, adenocarcinoma and squamous cell carcinoma, has accumulated in conjunction with data on precursor conditions such as Barrett's esophagus. Interesting and promising findings have included overexpression of proto-oncogenes,loss of heterozygosity at multiple chromosomal loci, tumor suppressor gene inactivation, epigenetic silencing by DNA methylation, and mutations and deletions involving the tumor suppressor gene p53. Important cancer pathways, the cyclin kinase inhibitor cascade and the DNA mismatch repair process, implicated in the genesis of multiple tumor types have also been inculpated in esophageal carcinogenesis. Alterations in the p16 and p15 cyclin kinase inhibitors including point mutations and homozygous deletions have been reported in primary esophageal tumors. Further developments in the field of molecular carcinogenesis of esophageal malignancies promise to yield improvements in prevention, early detection, prognostic categorization, and perhaps gene-based therapy of this deadly disease.

  10. Explanation of the mechanism of carcinogenesis and syntheses of anticancer agents with high selectivity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In 1979, the mechanism of chemical carcinogenesis, a challenging and difficult scientific problem pending for a number of years, was explained by Dai Qianhuan. The mechanism named di-region theory predicted that a carcinogen always metabolizes to form a special bi-functional alkylating agent. This agent induces cross-linkages between the complementary base pairs in DNA and switches on initial mutageneses in genomes including point and frameshift mutations. This, in turn, induces further deep mutageneses including the production of various chimeric chromosomes, deletions and other aberrations found in genomes. In the end this initiates carcinogenesis of the whole cell through the reverse transcription mechanism after a lengthy incubation period. Recently, this laboratory has verified that physical carcinogenesis, including the oncogenesis induced by radiation and asbestos as well as the carcinogenesis induced by endogenous factors such as estrogen or diethylstilbestrol switch on carcinogenesis by inducing the formation of cross-linkages between the complementary base pairs in DNA. Di-region theory has now been supported by many experimental observations such as mutational spectra of various carcinogens. The potential for carcinogenesis, teratogenesis, sterility and mutagenesis lumped together as genetic toxicity appears to originate almost uniformly from the cross-linking between complementary bases, i.e. malignant cross-linking, which is in accordance with di-region theory. Other forms of cross-linking between non-complementary bases, benign cross-linkings, show bi-functional alkylation anticancer activity but lack genetic toxicity. The predictable design and synthesis of a high selectivity anticancer agent with high efficacy and low genetic toxicity, a goal long pursued in cancer chemotherapy, have been realized for the first time in this laboratory by inhibiting malignant and heightening benign cross-linking using the principles of di-region theory. A series of

  11. Concept mapping in lectures.

    OpenAIRE

    Lavery, Janet; Low, Adam

    2008-01-01

    Concept maps are an aid to a deep learning strategy. Developing concept maps would help students understand the relationships between concepts both within a domain and across related domains. To encourage students to explore the use of concept maps, we have integrated concept maps into a module’s lectures. We have trialled: a concept map developed by experts and given to students; another concept map developed collaboratively by the students in an interactive lecture supported by a free-tex...

  12. Long non-coding RNA HOTAIR promotes carcinogenesis and invasion of gastric adenocarcinoma

    International Nuclear Information System (INIS)

    Highlights: • HOTAIR expression was tested in fifty patients with gastric cancer. • Cell proliferation was measured after HOTAIR silencing in gastric cancer cell line. • siRNA–HOTAIR suppresses cell invasiveness and capacity of migration. • Knock down of HOTAR leads to decreased expression of EMT markers. • Inhibition of HOTAIR induces apoptosis and cell cycle arrest. - Abstract: Gastric cancer is one of the major causes of cancer death worldwide; however, the mechanism of carcinogenesis is complex and poorly understood. Long non-coding RNA HOTAIR (HOX transcript antisense RNA) recently emerged as a promoter of metastasis in various cancers including gastric cancer. Here we investigated the impact of HOTAIR on apoptosis, cell proliferation and cell cycle to dissect the carcinogenesis of gastric cancer. We examined the mechanism of invasion and metastasis and analyzed the clinical significance of HOTAIR. Downregulation of HOTAIR was confirmed by two different siRNAs. The expression of HOTAIR was significantly elevated in various gastric cancer cell lines and tissues compared to normal control. si-HOTAIR significantly reduced viability in MKN 28, MKN 74, and KATO III cells but not in AGS cells. si-HOTAIR induced apoptosis in KATO III cells. Lymphovascular invasion and lymph node metastasis were more common in the high level of HOTAIR group. si-HOTAIR significantly decreased invasiveness and migration. si-HOTAIR led to differential expression of epithelial to mesenchymal transition markers. We found that HOTAIR was involved in inhibition of apoptosis and promoted invasiveness, supporting a role for HOTAIR in carcinogenesis and progression of gastric cancer

  13. Differences in proximal (cardia) versus distal (antral) gastric carcinogenesis via retinoblastoma pathway

    Institute of Scientific and Technical Information of China (English)

    Christian Gulmann; Helen Hegarty; Antoinette Grace; Mary Leader; Stephen Patchett; Elaine Kay

    2004-01-01

    AIM: Disruption of cell cycle regulation is a critical event in carcinogenesis, and alteration of the retinoblastoma (pRb)tumour suppressor pathway is frequent. The aim of this study was to compare alterations in this pathway in proximal and distal gastric carcinogenesis in an effort to explain the observed striking epidemiological differences.METHODS: Immunohistochemistry was performed to investigate expression of p16 and pRb in the following groups of both proximal (cardia) and distal (antral) tissue samples: (a) biopsies showing normal mucosa, (b) biopsies showing intestinal metaplasia and, (c) gastric cancer resection specimens including uninvolved mucosa and tumour.RESULTS: In the antrum there were highly significant trends for increased p16 expression with concomitant (and in the group of carcinomas inversely proportional)decreased pRb expression from normal mucosa to intestinal metaplasia to uninvolved mucosa (from cancer resections)to carcinoma. In the cardia, there were no differences in p16 expression between the various types of tissue samples whereas pRb expression was higher in normal mucosa compared with intestinal metaplasia and tissue from cancer resections.CONCLUSION: Alterations in the pRb pathway appear to play a more significant role in distal gastric carcinogenesis.Tt may be an early event in the former location since the trend towards p16 overexpression with concomitant pRb underexpression was seen as early as between normal mucosa and intestinal metaplasia. Importantly, the marked differences in expression of pRb and p16 between the cardia and antrum strongly support the hypothesis that tumours of the two locations are genetically different which may account for some of the observed epidemiological differences.

  14. The level of claudin-7 is reduced as an early event in colorectal carcinogenesis

    International Nuclear Information System (INIS)

    Compromised epithelial barriers are found in dysplastic tissue of the gastrointestinal tract. Claudins are transmembrane proteins important for tight junctions. Claudins regulate the paracellular transport and are crucial for maintaining a functional epithelial barrier. Down-regulation of the oncogenic serine protease, matriptase, induces leakiness in epithelial barriers both in vivo and in vitro. We found in an in-silico search tight co-regulation between matriptase and claudin-7 expression. We have previously shown that the matriptase expression level decreases during colorectal carcinogenesis. In the present study we investigated whether claudin-7 expression is likewise decreased during colorectal carcinogenesis, thereby causing or contributing to the compromised epithelial leakiness of dysplastic tissue. The mRNA level of claudin-7 (CLDN7) was determined in samples from 18 healthy individuals, 100 individuals with dysplasia and 121 colorectal cancer patients using quantitative real time RT-PCR. In addition, immunohistochemical stainings were performed on colorectal adenomas and carcinomas, to confirm the mRNA findings. A 2.7-fold reduction in the claudin-7 mRNA level was found when comparing the biopsies from healthy individuals with the biopsies of carcinomas (p < 0.001). Reductions in the claudin-7 mRNA levels were also detected in mild/moderate dysplasia (p < 0.001), severe dysplasia (p < 0.01) and carcinomas (p < 0.01), compared to a control sample from the same individual. The decrease at mRNA level was confirmed at the protein level by immunohistochemical stainings. Our results show that the claudin-7 mRNA level is decreased already as an early event in colorectal carcinogenesis, probably contributing to the compromised epithelial barrier in adenomas

  15. Long non-coding RNA HOTAIR promotes carcinogenesis and invasion of gastric adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Na Keum; Lee, Jung Hwa; Park, Chan Hyuk; Yu, Dayeon; Lee, Yong Chan [Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cheong, Jae-Ho; Noh, Sung Hoon [Department of Surgery, Yonsei University College of Medicine (Korea, Republic of); Lee, Sang Kil, E-mail: sklee@yuhs.ac [Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-08-22

    Highlights: • HOTAIR expression was tested in fifty patients with gastric cancer. • Cell proliferation was measured after HOTAIR silencing in gastric cancer cell line. • siRNA–HOTAIR suppresses cell invasiveness and capacity of migration. • Knock down of HOTAR leads to decreased expression of EMT markers. • Inhibition of HOTAIR induces apoptosis and cell cycle arrest. - Abstract: Gastric cancer is one of the major causes of cancer death worldwide; however, the mechanism of carcinogenesis is complex and poorly understood. Long non-coding RNA HOTAIR (HOX transcript antisense RNA) recently emerged as a promoter of metastasis in various cancers including gastric cancer. Here we investigated the impact of HOTAIR on apoptosis, cell proliferation and cell cycle to dissect the carcinogenesis of gastric cancer. We examined the mechanism of invasion and metastasis and analyzed the clinical significance of HOTAIR. Downregulation of HOTAIR was confirmed by two different siRNAs. The expression of HOTAIR was significantly elevated in various gastric cancer cell lines and tissues compared to normal control. si-HOTAIR significantly reduced viability in MKN 28, MKN 74, and KATO III cells but not in AGS cells. si-HOTAIR induced apoptosis in KATO III cells. Lymphovascular invasion and lymph node metastasis were more common in the high level of HOTAIR group. si-HOTAIR significantly decreased invasiveness and migration. si-HOTAIR led to differential expression of epithelial to mesenchymal transition markers. We found that HOTAIR was involved in inhibition of apoptosis and promoted invasiveness, supporting a role for HOTAIR in carcinogenesis and progression of gastric cancer.

  16. Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands

    Directory of Open Access Journals (Sweden)

    Sugie Shigeyuki

    2005-05-01

    Full Text Available Abstract Background It is generally assumed that inflammatory bowel disease (IBD-related carcinogenesis occurs as a result of chronic inflammation. We previously developed a novel colitis-related mouse colon carcinogenesis model initiated with azoxymethane (AOM and followed by dextran sodium sulfate (DSS. In the present study we investigated whether a cyclooxygenase (COX-2 inhibitor nimesulide and ligands for peroxisome proliferator-activated receptors (PPARs, troglitazone (a PPARγ ligand and bezafibrate (a PPARα ligand inhibit colitis-related colon carcinogenesis using our model to evaluate the efficacy of these drugs in prevention of IBD-related colon carcinogenesis. Methods Female CD-1 (ICR mice were given a single intraperitoneal administration of AOM (10 mg/kg body weight and followed by one-week oral exposure of 2% (w/v DSS in drinking water, and then maintained on the basal diets mixed with or without nimesulide (0.04%, w/w, troglitazone (0.05%, w/w, and bezafibrate (0.05%, w/w for 14 weeks. The inhibitory effects of dietary administration of these compounds were determined by histopathological and immunohistochemical analyses. Results Feeding with nimesulide and troglitazone significantly inhibited both the incidence and multiplicity of colonic adenocarcinoma induced by AOM/DSS in mice. Bezafibrate feeding significantly reduced the incidence of colonic adenocarcinoma, but did not significantly lower the multiplicity. Feeding with nimesulide and troglitazone decreased the proliferating cell nuclear antigen (PCNA-labeling index and expression of β-catenin, COX-2, inducible nitric oxide synthase (iNOS and nitrotyrosine. The treatments increased the apoptosis index in the colonic adenocarcinoma. Feeding with bezafibrate also affected these parameters except for β-catenin expression in the colonic malignancy. Conclusion Dietary administration of nimesulide, troglitazone and bezafibrate effectively suppressed the development of colonic

  17. The Impact of Neural Stem Cell Biology on CNS Carcinogenesis and Tumor Types

    Directory of Open Access Journals (Sweden)

    K. M. Kurian

    2011-01-01

    Full Text Available The incidence of gliomas is on the increase, according to epidemiological data. This increase is a conundrum because the brain is in a privileged protected site behind the blood-brain barrier, and therefore partially buffered from environmental factors. In addition the brain also has a very low proliferative potential compared with other parts of the body. Recent advances in neural stem cell biology have impacted on our understanding of CNS carcinogenesis and tumor types. This article considers the cancer stem cell theory with regard to CNS cancers, whether CNS tumors arise from human neural stem cells and whether glioma stem cells can be reprogrammed.

  18. Progression of diethylnitrosamine-induced hepatic carcinogenesis in carnitine-depleted rats

    Institute of Scientific and Technical Information of China (English)

    Salim S Al-Rejaie; Abdulaziz M Aleisa; Abdulaziz A Al-Yahya; Saleh A Bakheet; Abdulmalik Alsheikh; Amal G Fatani; Othman A Al-Shabanah; Mohamed M Sayed-Ahmed

    2009-01-01

    AIM: To investigate whether carnitine deficiency is a risk factor during the development of diethylnitrosamine (DENA)-induced hepatic carcinogenesis.METHODS: A total of 60 male Wistar albino rats were divided into six groups with 10 animals in each group. Rats in group 1 (control group) received a single intraperitoneal (i.p.) injection of normal saline.Animals in group 2 (carnitine-supplemented group) were given L-carnitine (200 mg/kg per day) in drinking water for 8 wk. Animals in group 3 (carnitine-depleted group) were given D-carnitine (200 mg/kg per day) and mildronate (200 mg/kg per day) in drinking water for 8 wk. Rats in group 4 (DENA group) were injected with a single dose of DENA (200 mg/kg, i.p.) and 2 wk later received a single dose of carbon tetrachloride (2 mL/kg) by gavage as 1:1 dilution in corn oil. Animals in group 5 (DENA-carnitine depleted group) received the same treatment as group 3 and group 4. Rats in group 6 (DENA-carnitine supplemented group) received the same treatment as group 2 and group 4.RESULTS: Administration of DENA resulted in a significant increase in alanine transaminase (ALT),gamma-glutamyl t ransferase (G-GT) , alkal ine phosphatase (ALP), total bilirubin, thiobarbituric acid reactive substances (TBARS) and total nitrate/nitrite (NOx) and a significant decrease in reduced glutathione (GSH), glutathione peroxidase (GSHPx),catalase (CAT) and total carnitine content in liver tissues. In the carnitine-depleted rat model, DENA induced a dramatic increase in serum ALT, G-GT, ALP and total bilirubin, as well as a progressive reduction in total carnitine content in liver tissues. Interestingly,L-carnitine supplementation resulted in a complete reversal of the increase in liver enzymes, TBARS and NOx, and a decrease in total carnitine, GSH, GSHPx,and CAT induced by DENA, compared with the control values. Histopathological examination of liver tissues confirmed the biochemical data, where L-carnitine prevented DENA-induced hepatic

  19. High Dietary Salt Intake Exacerbates Helicobacter pylori-Induced Gastric Carcinogenesis

    OpenAIRE

    Gaddy, Jennifer A.; Jana N Radin; Loh, John T.; Feng ZHANG; Washington, M. Kay; Peek, Richard M.; Algood, Holly M. Scott; Cover, Timothy L.

    2013-01-01

    Persistent colonization of the human stomach with Helicobacter pylori is a risk factor for gastric adenocarcinoma, and H. pylori-induced carcinogenesis is dependent on the actions of a bacterial oncoprotein known as CagA. Epidemiological studies have shown that high dietary salt intake is also a risk factor for gastric cancer. To investigate the effects of a high-salt diet, we infected Mongolian gerbils with a wild-type (WT) cagA+ H. pylori strain or an isogenic cagA mutant strain and main...

  20. Identification problem for stochastic models with application to carcinogenesis, cancer detection and radiation biology

    Directory of Open Access Journals (Sweden)

    L. G. Hanin

    2002-01-01

    Full Text Available A general framework for solving identification problem for a broad class of deterministic and stochastic models is discussed. This methodology allows for a unified approach to studying identifiability of various stochastic models arising in biology and medicine including models of spontaneous and induced Carcinogenesis, tumor progression and detection, and randomized hit and target models of irradiated cell survival. A variety of known results on parameter identification for stochastic models is reviewed and several new results are presented with an emphasis on rigorous mathematical development.

  1. Human RecQL4 helicase plays critical roles in prostate carcinogenesis

    DEFF Research Database (Denmark)

    Su, Yanrong; Meador, Jarah A; Calaf, Gloria M;

    2010-01-01

    Prostate cancer is the second leading cause of cancer-associated deaths among men in the western countries. Here, we report that human RecQL4 helicase, which is implicated in the pathogenesis of a subset of cancer-prone Rothmund-Thomson syndrome, is highly elevated in metastatic prostate cancer c...... for prostate cancer promotion. Observation of a direct interaction of retinoblastoma (Rb) and E2F1 proteins with RecQL4 promoter suggests that Rb-E2F1 pathway may regulate RecQL4 expression. Collectively, our study shows that RecQL4 is an essential factor for prostate carcinogenesis....

  2. Thyroid cancer. Reevaluation of an experimental model for radiogenic endocrine carcinogenesis

    International Nuclear Information System (INIS)

    The status of experimental studies of radiogenic thyroid cancer is appraised, and some older data are reinterpreted in the light of more recent findings. Problems of thyroid dosimetry, particularly the dosimetry of internal radioiodides, are discussed. The steps in radiation carcinogenesis during the acute phase, the latent phase, and the phase of tumor growth are discussed in terms of thyroid epithelial cell population changes. The roles of three cell populations (undamaged or completely repaired epithelial cells, oncogenically initiated cells, and terminally damaged but functionally competent cells) in neoplasia are described. Finally, the implications for man of these experimental results and conclusions are discussed. 89 refs., 4 figs

  3. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications.

    Science.gov (United States)

    Cao, Yi

    2015-09-01

    Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.

  4. Thermoelectric properties of molecular nanostructures

    OpenAIRE

    Ermakov, Vladimir N.; Kruchinin, Sergei P.; Kim, Hyun Taki; Pruschke, Thomas

    2011-01-01

    We use the concept of resonant tunneling to calculate the thermopower of molecular nanosystems. It turns out that the sign of the thermovoltage under resonant tunneling conditions depends sensitively on the participating molecular orbital, and one finds a sign change when the transport channel switches from the highest occupied molecular orbital to the lowest unoccupied molecular orbital. Comparing our results to recent experimental data obtained for a BDT molecule contacted with an STM tip, ...

  5. Radiation carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1976-01-01

    The risk of iatrogenic tumors with radiation therapy is so outweighed by the benefit of cure that estimates of risk have not been considered necessary. However, with the introduction of chemotherapy, combined therapy, and particle radiation therapy, the comparative risks should be examined. In the case of radiation, total dose, fractionation, dose rate, dose distribution, and radiation quality should be considered in the estimation of risk. The biological factors that must be considered include incidence of tumors, latent period, degree of malignancy, and multiplicity of tumors. The risk of radiation induction of tumors is influenced by the genotype, sex, and age of the patient, the tissues that will be exposed, and previous therapy. With chemotherapy the number of cells at risk is usually markedly higher than with radiation therapy. Clearly the problem of the estimation of comparative risks is complex. This paper presents the current views on the comparative risks and the importance of the various factors that influence the estimation of risk.

  6. Metallomics: the concept and methodology.

    Science.gov (United States)

    Mounicou, Sandra; Szpunar, Joanna; Lobinski, Ryszard

    2009-04-01

    The emerging field of metallomics refers to the entirety of research activities aimed at the understanding of the molecular mechanisms of metal-dependent life processes. This critical review discusses the concept of metallomics with a focus on analytical techniques and methods for the probing of interactions between metal ions and the organism's genome and the derived -omes: proteome and metabolome. Particular attention is paid to the in vivo screening for the native metal-protein and metal-metabolite complexes by hyphenated techniques that combine a high-resolution separation technique (gel electrophoresis, chromatography or capillary electrophoresis) with sensitive elemental (inductively coupled plasma, ICP) or molecular (electrospray or MALDI) mass spectrometric detection. The contribution of bioinformatics to the prediction of metal-binding sequences in proteins and the role of molecular biology approaches for the detection of metal-dependent genes, proteins and metabolites are highlighted (115 references).

  7. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis.

    Science.gov (United States)

    Chen, San-Cher; Hu, Tsung-Hui; Huang, Chao-Cheng; Kung, Mei-Lang; Chu, Tian-Huei; Yi, Li-Na; Huang, Shih-Tsung; Chan, Hoi-Hung; Chuang, Jiin-Haur; Liu, Li-Feng; Wu, Han-Chung; Wu, Deng-Chyang; Chang, Min-Chi; Tai, Ming-Hong

    2015-06-30

    Hepatoma-derived growth factor (HDGF) overexpression is involved in liver fibrosis and carcinogenesis. However, the receptor(s) and signaling for HDGF remain unclear. By using affinity chromatography and proteomic techniques, nucleolin (NCL) was identified and validated as a HDGF-interacting membrane protein in hepatoma cells. Exogenous HDGF elicited the membrane NCL accumulation within 0.5 hour by protein stabilization and transcriptional NCL upregulation within 24 hours. Blockade of surface NCL by antibodies neutralization potently suppressed HDGF uptake and HDGF-stimulated phosphatidylinositol 3-kinase (PI3K)/Akt signaling in hepatoma cells. By using rescectd hepatocellular carcinoma (HCC) tissues, immunohistochemical analysis revealed NCL overexpression was correlated with tumour grades, vascular invasion, serum alpha-fetoprotein levels and the poor survival in HCC patients. Multivariate analysis showed NCL was an independent prognostic factor for survival outcome of HCC patients after surgery. To delineate the role of NCL in liver carcinogenesis, ectopic NCL overexpression promoted the oncogenic behaviours and induced PI3K/Akt activation in hepatoma cells. Conversely, NCL knockdown by RNA interference attenuated the oncogenic behaviours and PI3K/Akt signaling, which could be partially rescued by exogenous HDGF supply. In summary, this study provides the first evidence that surface NCL transmits the oncogenic signaling of HDGF and facilitates a novel diagnostic and therapeutic target for HCC. PMID:25938538

  8. A20 restricts wnt signaling in intestinal epithelial cells and suppresses colon carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Ling Shao

    Full Text Available Colon carcinogenesis consists of a multistep process during which a series of genetic and epigenetic adaptations occur that lead to malignant transformation. Here, we have studied the role of A20 (also known as TNFAIP3, a ubiquitin-editing enzyme that restricts NFκB and cell death signaling, in intestinal homeostasis and tumorigenesis. We have found that A20 expression is consistently reduced in human colonic adenomas than in normal colonic tissues. To further investigate A20's potential roles in regulating colon carcinogenesis, we have generated mice lacking A20 specifically in intestinal epithelial cells and interbred these with mice harboring a mutation in the adenomatous polyposis coli gene (APC(min. While A20(FL/FL villin-Cre mice exhibit uninflamed intestines without polyps, A20(FL/FL villin-Cre APC(min/+ mice contain far greater numbers and larger colonic polyps than control APC(min mice. We find that A20 binds to the β-catenin destruction complex and restricts canonical wnt signaling by supporting ubiquitination and degradation of β-catenin in intestinal epithelial cells. Moreover, acute deletion of A20 from intestinal epithelial cells in vivo leads to enhanced expression of the β-catenin dependent genes cyclinD1 and c-myc, known promoters of colon cancer. Taken together, these findings demonstrate new roles for A20 in restricting β-catenin signaling and preventing colon tumorigenesis.

  9. Experimental Animal Models of Pancreatic Carcinogenesis for Prevention Studies and Their Relevance to Human Disease

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Mami, E-mail: mtakahas@ncc.go.jp; Hori, Mika; Mutoh, Michihiro [Division of Cancer Development System, Carcinogenesis Research Group, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan); Wakabayashi, Keiji [Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526 (Japan); Nakagama, Hitoshi [Division of Cancer Development System, Carcinogenesis Research Group, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan)

    2011-02-09

    Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropyl)amine (BOP) into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5′ CpG islands or by homozygous deletions have been frequently observed in common in both the hamster and humans. Thus, this chemical carcinogenesis model has an advantage of histopathological and genetic similarity to human pancreatic cancer, and it is useful to study promotive and suppressive factors. Syrian golden hamsters are in a hyperlipidemic state even under normal dietary conditions, and a ligand of peroxizome proliferator-activated receptor gamma was found to improve the hyperlipidemia and suppress pancreatic carcinogenesis. Chronic inflammation is a known important risk factor, and selective inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 also have protective effects against pancreatic cancer development. Anti-inflammatory and anti-hyperlipidemic agents can thus be considered candidate chemopreventive agents deserving more attention.

  10. Experimental Animal Models of Pancreatic Carcinogenesis for Prevention Studies and Their Relevance to Human Disease

    International Nuclear Information System (INIS)

    Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropyl)amine (BOP) into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5′ CpG islands or by homozygous deletions have been frequently observed in common in both the hamster and humans. Thus, this chemical carcinogenesis model has an advantage of histopathological and genetic similarity to human pancreatic cancer, and it is useful to study promotive and suppressive factors. Syrian golden hamsters are in a hyperlipidemic state even under normal dietary conditions, and a ligand of peroxizome proliferator-activated receptor gamma was found to improve the hyperlipidemia and suppress pancreatic carcinogenesis. Chronic inflammation is a known important risk factor, and selective inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 also have protective effects against pancreatic cancer development. Anti-inflammatory and anti-hyperlipidemic agents can thus be considered candidate chemopreventive agents deserving more attention

  11. Chemopreventive potential of an Indian medicinal plant (Tinospora cordifolia) on skin carcinogenesis in mice.

    Science.gov (United States)

    Chaudhary, Ranu; Jahan, Swafiya; Goyal, P K

    2008-01-01

    Tinospora cordifolia (Guduchi), an Indian medicinal plant, was used to explore antitumor promoting activity in a two-stage skin carcinogenesis model. For this purpose, mice were treated by single application of DMBA (100 microg/100 microl of acetone) and two weeks later promoted by croton oil (1% in acetone three times a week) until the end of the experiment (i.e., 16 weeks). Oral administration of the above extract at the preinitiational stage (i.e., seven days before and seven days after DMBA application; group IV), promotional stage (i.e., from the time of croton oil application; group V), and both pre- and postintiational stage (i.e., from the time of DMBA application and continued until the end of the experiment; group VI; on the shaven backs of the mice at the dose of 100 mg/kg body weight/day for 16 weeks) recorded significant reduction in tumor weight, tumor incidence in comparison to control (i.e., mice treated with DMBA and croton oil; group III). Furthermore, cumulative number of papillomas, tumor yield, tumor burden, and tumor weight showed significant reduction along with significant elevation of phase II detoxifying enzymes, and inhibition of lipid peroxidation in liver and skin in the animals administered with such plant extract concomitant to carcinogen exposure. Thus, the present data strongly suggests that the Tinospora cordifolia extract has anti-tumor potential in a two-stage skin carcinogenesis mouse model. PMID:18652570

  12. Preventive Effects of Fermented Brown Rice and Rice Bran against Prostate Carcinogenesis in TRAP Rats.

    Science.gov (United States)

    Kuno, Toshiya; Nagano, Aya; Mori, Yukiko; Kato, Hiroyuki; Nagayasu, Yuko; Naiki-Ito, Aya; Suzuki, Shugo; Mori, Hideki; Takahashi, Satoru

    2016-01-01

    Fermented brown rice and rice bran with Aspergillus oryzae (FBRA) is considered to have the potential to prevent chemically-induced carcinogenesis in multiple organs of rodents. In the present study, we evaluated the possible chemopreventive effects of FBRA against prostate tumorigenesis. Six-week-old male rats of the transgenic rat for adenocarcinoma of prostate (TRAP) strain were fed diets containing 5% or 10% FBRA for 15 weeks. Animals were sacrificed at 21 weeks of age, and the ventral and lateral prostate were removed for histopathological evaluation and immunoblot analyses. FBRA decreased the incidence of adenocarcinoma in the lateral prostate and suppressed the progression of prostate carcinogenesis. Treatment with FBRA induced apoptosis and inhibited cell proliferation in histologically high-grade prostatic intraepithelial neoplasias. Phospho-AMP-activated kinase α (Thr172) was up-regulated in the prostate of rats fed the diet supplemented with FBRA. These results indicate that FBRA controls tumor growth by activating pathways responsive to energy deprivation and suggest that FBRA has translational potential for the prevention of human prostate cancer. PMID:27409632

  13. ICRP Publication 131: Stem cell biology with respect to carcinogenesis aspects of radiological protection.

    Science.gov (United States)

    Hendry, J H; Niwa, O; Barcellos-Hoff, M H; Globus, R K; Harrison, J D; Martin, M T; Seed, T M; Shay, J W; Story, M D; Suzuki, K; Yamashita, S

    2016-06-01

    Current knowledge of stem cell characteristics, maintenance and renewal, evolution with age, location in 'niches', and radiosensitivity to acute and protracted exposures is reviewed regarding haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. The identity of the target cells for carcinogenesis continues to point to the more primitive and mostly quiescent stem cell population (able to accumulate the protracted sequence of mutations necessary to result in malignancy), and, in a few tissues, to daughter progenitor cells. Several biological processes could contribute to the protection of stem cells from mutation accumulation: (1) accurate DNA repair; (2) rapid induced death of injured stem cells; (3) retention of the intact parental strand during divisions in some tissues so that mutations are passed to the daughter differentiating cells; and (4) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the vital niche. DNA repair mainly operates within a few days of irradiation, while stem cell replications and competition require weeks or many months depending on the tissue type. This foundation is used to provide a biological insight to protection issues including the linear-non-threshold and relative risk models, differences in cancer risk between tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age.

  14. [In vitro and in vivo effects of mango pulp (Mangifera indica cv. Azucar) in colon carcinogenesis].

    Science.gov (United States)

    Corrales-Bernal, Andrea; Amparo Urango, Luz; Rojano, Benjamín; Maldonado, Maria Elena

    2014-03-01

    Mango pulp contains ascorbic acid, carotenoids, polyphenols, terpenoids and fiber which are healthy and could protect against colon cancer. The aim of this study was to evaluate the antiproliferative and preventive capacity of an aqueous extract of Mangifera indica cv. Azúcar on a human colon adenocarcinoma cell line (SW480) and in a rodent model of colorectal cancer, respectively. The content of total phenolics, flavonoids and carotenoids were also analyzed in the extract. SW480 cell growth was inhibited in a dose and time dependent manner by 22.3% after a 72h exposure to the extract (200 µg/ mL). Colon carcinogenesis was initiated in Balb/c mice by two intra-peritoneal injections of azoxymethane (AOM) at the third and fourth week of giving mango in drinking water (0.3%, 0.6%, 1.25%). After 10 weeks of treatment, in the colon of mice receiving 0.3% mango, aberrant crypt foci formation was inhibited more than 60% (p=0,05) and the inhibition was dose-dependent when compared with controls receiving water. These results show that mango pulp, a natural food, non toxic, part of human being diet, contains bioactive compounds able to reduce growth of tumor cells and to prevent the appearance of precancerous lesions in colon during carcinogenesis initiation. PMID:25796713

  15. Possible contribution of rubiadin, a metabolite of madder color, to renal carcinogenesis in rats.

    Science.gov (United States)

    Inoue, Kaoru; Yoshida, Midori; Takahashi, Miwa; Fujimoto, Hitoshi; Ohnishi, Kuniyoshi; Nakashima, Koichi; Shibutani, Makoto; Hirose, Masao; Nishikawa, Akiyoshi

    2009-04-01

    Madder color (MC) has been shown to exert carcinogenic potential in the rat kidney in association with degeneration, karyomegaly, increased cell proliferation of renal tubule cells and increased renal 8-OHdG levels. To clarify the causal relationship of components and metabolites of MC to renal carcinogenesis, male F344 rats were fed lucidin-3-O-primeveroside (LuP) or alizarin (Alz), and the genotoxic LuP metabolites lucidin (Luc) or rubiadin (Rub) for up to 26 weeks. After one week and four weeks, Luc did not induce any renal changes. In contrast, after one week, cortical tubule degeneration was apparent in the Alz and LuP groups, and cytoplasmic swelling with basophilic change and karyomegaly in the outer medulla was observed only in the Rub group. LuP and Rub increased the proliferative activity of tubule cells in the outer medulla, and Alz and LuP increased renal 8-OHdG levels. After 26 weeks, Rub but not Alz induced atypical tubules, a putative preneoplastic lesion, and karyomegaly in the outer medulla. These results indicate that Rub may be a potent carcinogenic metabolite of MC, targeting proximal tubule cells in the outer medulla, although oxidative stress increased by Alz or LuP might also be involved in renal carcinogenesis by MC.

  16. Aggravation of serum Hepatocyte Growth Factor levels during hepato carcinogenesis in Rats

    International Nuclear Information System (INIS)

    Hepatocyte growth factor (HGF) has an essential role during liver development and it plays an important role in the regeneration and repair of injured tissues and acting as a mitogen, motogen and morphogens for a variety of epithelial cells. The role of HGF in carcinogenesis is in straggle and so, the present study aimed to through light through the level of HGF during different steps of carcinogenesis. Forty male rats were given diethylnitrosamine (DEN) in drinking water (100 mg/l) for up to 16 weeks. Eight rats were sacrificed at 8, 12 and 16 weeks. Besides, 8 hepatoma bearing rats were exposed to a single dose gamma irradiation (3 Gy) were sacrificed after 2 weeks from exposure (2 rats died, 36 hrs post irradiation) and 8 hepatoma bearing rats were sacrificed after 4 weeks from receiving a combined antioxidant (N-acetylcysteine and Lmethionine). Serum HGF was assayed by enzyme linked immunosorbent assay (ELISA). Serum HGF level in DEN treated rats and in exposed hepatoma bearing rats was significantly higher than in control rats whereas, serum HGF level after treatment with N acetylcysteine and L-methionine for 4 weeks was significantly decreased than DEN treated rats and concluded that serum HGF may play a role during promotion and progression of hepatocellular carcinoma (HCC) and during treatment

  17. Overexpression of Csk-binding protein contributes to renal cell carcinogenesis.

    Science.gov (United States)

    Feng, X; Lu, X; Man, X; Zhou, W; Jiang, L Q; Knyazev, P; Lei, L; Huang, Q; Ullrich, A; Zhang, Z; Chen, Z

    2009-09-17

    C-terminal Src kinase (Csk)-binding protein (Cbp) is a transmembrane adaptor protein that localizes exclusively in lipid rafts, where it regulates Src family kinase (SFK) activities through recruitment of Csk. Although SFKs are well known for their involvement in cancer, the function of Cbp in carcinogenesis remains largely unknown. In this study, we reported overexpression of Cbp in more than 70% of renal cell carcinoma (RCC) specimens and in the majority of tested RCC cell lines. Depletion of Cbp in RCC cells by RNA interference led to remarkable inhibition of cell proliferation, migration, anchorage-independent growth as well as tumorigenicity in nude mice. Strikingly, silencing of Cbp negatively affected the sustaining of Erk1/2 activation but not c-Src activation induced by serum. Besides, the RhoA activity in RCC cells was remarkably impaired when Cbp was knocked down. Overexpression of wild-type Cbp, but not its mutant Cbp/DeltaCP lacking C-terminal PDZ-binding motif, significantly enhanced RhoA activation and cell migration of RCC cells. These results provided new insights into the function of Cbp in modulating RhoA activation, by which Cbp might contribute to renal cell carcinogenesis. PMID:19581936

  18. Cell Cycle Phase Abnormalities Do Not Account for Disordered Proliferation in Barrett's Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Pierre Lao-Sirieix

    2004-11-01

    Full Text Available Barrett's esophagus (BE epithelium is the precursor lesion for esophageal adenocarcinoma. Cell cycle proteins have been advocated as biomarkers to predict the malignant potential in BE. However, whether disruption of the cell cycle plays a causal role in Barrett's carcinogenesis is not clear. Specimens from the Barrett's dysplasia—carcinoma sequence were immunostained for cell cycle phase markers (cyclin D1 for G1; cyclin A for S, G2, and M; cytoplasmic cyclin B1 for G2; and phosphorylated histone 3 for M phase and expressed as a proportion of proliferating cells. Flow cytometric analysis of the cell cycle phase of prospective biopsies was also performed. The proliferation status of nondysplastic BE was similar to gastric antrum and D2, but the proliferative compartment extended to the luminal surface. In dysplastic samples, the number of proliferating cells correlated with the degree of dysplasia (P < .001. The overall levels of cyclins A and B1 correlated with the degree of dysplasia (P < .001. However, the cell cycle phase distribution measured with both immunostaining and flow cytometry was conserved during all stages of BE, dysplasia, and cancer. Hence, the increased proliferation seen in Barrett's carcinogenesis is due to abnormal cell cycle entry or exit, rather than a primary abnormality within the cell cycle.

  19. NO-Donating NSAIDs, PPARδ, and Cancer: Does PPARδ Contribute to Colon Carcinogenesis?

    Directory of Open Access Journals (Sweden)

    Gerardo G. Mackenzie

    2008-01-01

    Full Text Available The chemopreventive NO-donating NSAIDs (NO-NSAIDs; NSAIDs with an NO-releasing moiety modulate PPARδ and offer the opportunity to revisit the controversial role of PPARδ in carcinogenesis (several papers report that PPARδ either promotes or inhibits cancer. This review summarizes the pharmacology of NO-NSAIDs, PPARδ cancer biology, and the relationship between the two. In particular, a study of the chemopreventive effect of two isomers of NO-aspirin on intestinal neoplasia in Min mice showed that, compared to wild-type controls, PPARδ is overexpressed in the intestinal mucosa of Min mice; PPARδ responds to m- and p-NO-ASA proportionally to their antitumor effect (p- >m-. This effect is accompanied by the induction of epithelial cell death, which correlates with the antineoplastic effect of NO-aspirin; and NO-aspirin's effect on PPARδ is specific (no changes in PPARα or PPARγ. Although these data support the notion that PPARδ promotes intestinal carcinogenesis and its inhibition could be therapeutically useful, more work is needed before a firm conclusion is reached.

  20. Frequent mtDNA mutations and its role in gastric carcino-genesis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to disclose the relationship between mutations of mitochondrial DNA (mtDNA) and gastric carcinogenesis, we screened the entire mtDNA sequence in 30 cases of human gastric cancer and matched normal tissues by using denaturing high-performance liquid chromatography (DHPLC) and DNA sequencing. Our data showed that high frequency (66.7%, 20/30) of mitochondrial genome mutation occur red in gastric cancer. Among these variants, 17 cases (56.7%, 17/30) were identified to be somatic mutation. High level mutant frequency was found in ND4, ND5 c oding genes and D-loop control region, which was 36.7%, 26.7% and 30% respective ly. Comparing with complexes Ⅲ, Ⅳ and Ⅴof the electron transport chain, we found that variants appeared to be more frequent in the subunit genes of complexⅠ . Most of mutations were base substitutions (85.4%, 41/48). Our results suggested that mutations of subunit genes encoding complex Ⅰ, especially ND3, ND4 and N D5 genes, might contribute to human gastric carcinogenesis.

  1. Paradoxes in Carcinogenesis: There Is Light at the End of That Tunnel!

    Science.gov (United States)

    Soto, Ana M; Sonnenschein, Carlos

    2013-05-01

    The exchange of opinions motivated by Dr. Baker's article "Paradoxes in carcinogenesis should spur new avenues of research: An historical perspective" illustrates the reasons why the field of cancer research is stuck in a dead end. This paralysis presents a rich opportunity for philosophers, historians and sociologists of science to decipher the whys of this impasse. On the strictly biological front, we suggest to reinstate in cancer research the time proven practice so productive in the physical sciences of discarding wrong hypotheses and theories. We share the suggestion by Dr. Baker to stop trying to unify the two main theories of carcinogenesis, i.e., the Somatic Mutation Theory (SMT) and the Tissue Organization Field Theory (TOFT) because they are incompatible. Dr. Baker suggests breaching the impasse by investing in paradox-driven research. We discuss the barriers to the implementation of this novel strategy, and the significant impact that this strategy will have on knowledge at large and its application for the prevention and cure of cancer. PMID:24587978

  2. CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs

    Science.gov (United States)

    De Luca, Paola; Dalton, Guillermo N.; Scalise, Georgina D.; Moiola, Cristian P.; Porretti, Juliana; Massillo, Cintia; Kordon, Edith; Gardner, Kevin; Zalazar, Florencia; Flumian, Carolina; Todaro, Laura; Vazquez, Elba S.; Meiss, Roberto; De Siervi, Adriana

    2016-01-01

    Metabolic syndrome (MeS) has been identified as a risk factor for breast cancer. C-terminal binding protein 1 (CtBP1) is a co-repressor of tumor suppressor genes that is activated by low NAD+/NADH ratio. High fat diet (HFD) increases intracellular NADH. We investigated the effect of CtBP1 hyperactivation by HFD intake on mouse breast carcinogenesis. We generated a MeS-like disease in female mice by chronically feeding animals with HFD. MeS increased postnatal mammary gland development and generated prominent duct patterns with markedly increased CtBP1 and Cyclin D1 expression. CtBP1 induced breast cancer cells proliferation. Serum from animals with MeS enriched the stem-like/progenitor cell population from breast cancer cells. CtBP1 increased breast tumor growth in MeS mice modulating multiple genes and miRNA expression implicated in cell proliferation, progenitor cells phenotype, epithelial to mesenchymal transition, mammary development and cell communication in the xenografts. These results define a novel function for CtBP1 in breast carcinogenesis. PMID:26933806

  3. Reduced susceptibility to colitis-associated colon carcinogenesis in mice lacking plasma membrane-associated sialidase.

    Directory of Open Access Journals (Sweden)

    Kazunori Yamaguchi

    Full Text Available Sialic acids are acidic monosaccharides that bind to the sugar chains of glycoconjugates and change their conformation, intermolecular interactions, and/or half-life. Thus, sialidases are believed to modulate the function of sialoglycoconjugates by desialylation. We previously reported that the membrane-associated mammalian sialidase NEU3, which preferentially acts on gangliosides, is involved in cell differentiation, motility, and tumorigenesis. The NEU3 gene expression is aberrantly elevated in several human cancers, including colon, renal, prostate, and ovarian cancers. The small interfering RNA-mediated knock-down of NEU3 in cancer cell lines, but not in normal cell-derived primary cultures, downregulates EGFR signaling and induces apoptosis. Here, to investigate the physiological role of NEU3 in tumorigenesis, we established Neu3-deficient mice and then subjected them to carcinogen-induced tumorigenesis, using a sporadic and a colitis-associated colon cancer models. The Neu3-deficient mice showed no conspicuous accumulation of gangliosides in the brain or colon mucosa, or overt abnormalities in their growth, development, behavior, or fertility. In dimethylhydrazine-induced colon carcinogenesis, there were no differences in the incidence or growth of tumors between the Neu3-deficient and wild-type mice. On the other hand, the Neu3-deficient mice were less susceptible than wild-type mice to the colitis-associated colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. These results suggest that NEU3 plays an important role in inflammation-dependent tumor development.

  4. Latest insights into the effects of Helicobacter pylori infection on gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Kazunari Murakami; Masaaki Kodama; Toshio Fujioka

    2006-01-01

    There appears to be the strong association between Helicobacter pylori (H pylori) and gastric cancer. We reviewed the latest evidences about the effects of H pylori infection on gastric carcinogenesis, classified into epidemiology, dynamics of gastric mucosal changes,DNA damages, virulence factors, host factors, and source of gastric malignancy. Through the considerable progress made in research into virulence factors resulting from differences between H pylori strains, such as cagA positivity, as well as into host factors, such as gene polymorphisms, a diverse spectrum of H pyloriassociated diseases, including gastric cancer, is beginning to lend itself to elucidation. The impact of the novel hypothesis advanced by Houghton et al proposing bonemarrow derived stem cells (BMDC) as a potential source of gastric malignancy on evolving research remains to be seen with interest. Further progress in research into H pylori eradication as a viable prophylaxis of gastric cancer, as well as into the mechanisms of gastric carcinogenesis, is to be eagerly awaited for the current year and beyond.

  5. Epigenetic regulation of DNA repair machinery in Helicobacter pylori-induced gastric carcinogenesis.

    Science.gov (United States)

    Santos, Juliana Carvalho; Ribeiro, Marcelo Lima

    2015-08-14

    Although thousands of DNA damaging events occur in each cell every day, efficient DNA repair pathways have evolved to counteract them. The DNA repair machinery plays a key role in maintaining genomic stability by avoiding the maintenance of mutations. The DNA repair enzymes continuously monitor the chromosomes to correct any damage that is caused by exogenous and endogenous mutagens. If DNA damage in proliferating cells is not repaired because of an inadequate expression of DNA repair genes, it might increase the risk of cancer. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes has been associated with carcinogenesis. Gastric cancer represents the second highest cause of cancer mortality worldwide. The disease develops from the accumulation of several genetic and epigenetic changes during the lifetime. Among the risk factors, Helicobacter pylori (H. pylori) infection is considered the main driving factor to gastric cancer development. Thus, in this review, we summarize the current knowledge of the role of H. pylori infection on the epigenetic regulation of DNA repair machinery in gastric carcinogenesis.

  6. Preventive Effects of Fermented Brown Rice and Rice Bran against Prostate Carcinogenesis in TRAP Rats

    Directory of Open Access Journals (Sweden)

    Toshiya Kuno

    2016-07-01

    Full Text Available Fermented brown rice and rice bran with Aspergillus oryzae (FBRA is considered to have the potential to prevent chemically-induced carcinogenesis in multiple organs of rodents. In the present study, we evaluated the possible chemopreventive effects of FBRA against prostate tumorigenesis. Six-week-old male rats of the transgenic rat for adenocarcinoma of prostate (TRAP strain were fed diets containing 5% or 10% FBRA for 15 weeks. Animals were sacrificed at 21 weeks of age, and the ventral and lateral prostate were removed for histopathological evaluation and immunoblot analyses. FBRA decreased the incidence of adenocarcinoma in the lateral prostate and suppressed the progression of prostate carcinogenesis. Treatment with FBRA induced apoptosis and inhibited cell proliferation in histologically high-grade prostatic intraepithelial neoplasias. Phospho-AMP-activated kinase α (Thr172 was up-regulated in the prostate of rats fed the diet supplemented with FBRA. These results indicate that FBRA controls tumor growth by activating pathways responsive to energy deprivation and suggest that FBRA has translational potential for the prevention of human prostate cancer.

  7. Helicobacter pylori-infected animal models are extremely suitable for the investigation of gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Masaaki Kodama; Kazunari Murakami; Ryugo Sato; Tadayoshi Okimoto; Akira Nishizono; Toshio Fujioka

    2005-01-01

    Although various animal models have been developed to clarify gastric carcinogenesis, apparent mechanism of gastric cancer was not clarified in recent years. Since the recognition of the pathogenicity of Helicobacter pylori (Hpylori), several animal models with Hpylori infection have been developed to confirm the association between Hpylori and gastric cancer. Nonhuman primate and rodent models were suitable for this study. Japanese monkey model revealed atrophic gastritis and p53mutation after long-term infection of Hpylori. Mongolian gerbil model showed the development of gastric carcinoma with H pylori infection alone, as well as with combination of chemical carcinogens, such as N-methylN-nitrosourea and N-methyl-N-nitro-N'-nitrosoguanidine.The histopathological changes of these animal models after Hpylori inoculation are closely similar to those in human beings with Hpylori infection. Eradication therapy attenuated the development of gastric cancer in Hpyloriinfected Mongolian gerbil. Although several features of animal models differ from those seen in human beings,these experimental models provide a starting point for further studies to clarify the mechanism of gastric carcinogenesis as a result of Hpylori infection and assist the planning of eradication therapy to prevent gastric carcinoma.

  8. Luteolin supplementation adjacent to aspirin treatment reduced dimethylhydrazine-induced experimental colon carcinogenesis in rats.

    Science.gov (United States)

    Osman, Neamt H A; Said, Usama Z; El-Waseef, Ahmed M; Ahmed, Esraa S A

    2015-02-01

    Previous studies have shown that aspirin is used in colon cancer treatment. However, long-term of Aspirin usage is limited to gastric and renal toxicity. Luteolin (LUT) has cancer prevention and anti-inflammatory effects. The present study was designed to investigate the effect of LUT supplementation and Aspirin treatment in dimethylhydrazine (DMH)-induced carcinogenesis in rats. DMH (20 mg/kg BW/week) treated rats received gavages with Aspirin (50 mg/kg BW/week) and LUT (0.2 mg/kg BW/day) for 15 weeks. DMH injections induce colon polyps and renal bleeding, significantly increasing carcinoembryonic antigen (CEA), cyclooxygenase-2 (COX-2), oxidative stress, and kidney function tests and reducing antioxidant markers. Either Aspirin or LUT gavages alone or combined produce a significant decrease in colon polyp number and size, significantly decreasing CEA, COX-2, and oxidative stress and increasing antioxidant markers. In conclusion, the supplementations of LUT adjacent to Aspirin in the treatment of DMH-induced carcinogenesis in rats reflect a better effect than the use of Aspirin alone. PMID:25342594

  9. Estimation of the effects of smoking and DNA repair capacity on coefficients of a carcinogenesis model for lung cancer

    Science.gov (United States)

    Deng, Li; Kimmel, Marek; Foy, Millennia; Spitz, Margaret; Wei, Qingyi; Gorlova, Olga

    2009-01-01

    Numerous prospective and retrospective studies have clearly demonstrated a dose-related increased lung cancer risk associated with cigarette smoking, with evidence also for a genetic component to risk. In this study, using the two-stage clonal expansion stochastic model framework, for the first time we investigated the roles of both genetic susceptibility and smoking history in the initiation, clonal expansion, and malignant transformation processes in lung carcinogenesis, integrating information collected by a case–control study and a large-scale prospective cohort study. Our results show that individuals with suboptimal DNA repair capacity have enhanced transition rates of key events in carcinogenesis. PMID:19123470

  10. Effect of ginger on lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced experimental colon carcinogenesis

    OpenAIRE

    V Manju; N Nalini

    2010-01-01

    The prevalence of colon cancer has rapidly risen during the last decade. In this study we have evaluated the chemopreventive efficacy of ginger in 1,2-dimethyl hydrazine (DMH) induced colon carcinogenesis. Rats were given a weekly subcutaneous injection of DMH at a dose of 20mg/kg body weight for 15 weeks. Ginger (50mg/kg body weight/day) was given at the initiation and also at the post-initiation stages of carcinogenesis to DMH treated rats every day. The animals were sacrificed at the end o...

  11. Conceptions of Parents, Conceptions of Self, and Conceptions of God.

    Science.gov (United States)

    Buri, John R.; Mueller, Rebecca A.

    Different theorists have suggested that an individual's view of God may be related to one's view of one's father, one's mother, or one's self. A study was conducted to examine the relationship of college students' conceptions of the wrathfulness-kindliness of God to their conceptions of their father's and mother's permissiveness, authoritarianism,…

  12. Study of the mechanism of carcinogenesis by carcinogens which are negative in the Ames test. Progress report, April 1-September 1, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Carcinogens ethionine, thioacetamide, and actinomycin D, all of which are negative in the Ames test and all of which raise the progesterone level in the chicken, were tested to determine their physiological role in carcinogenesis. The optimization of the carcinogenesis model also included evaluation of the chicken as the biological indicator of physiological changes relative to the above compounds. (PCS)

  13. The molecular biology of cancer.

    Science.gov (United States)

    Bertram, J S

    2000-12-01

    identifies key genes directly involved in carcinogenesis and demonstrates how mutations in these genes allow cells to circumvent cellular controls. This detailed understanding of the process of carcinogenesis at the molecular level has only been possible because of the advent of modern molecular biology. This new discipline, by precisely identifying the molecular basis of the differences between normal and malignant cells, has created novel opportunities and provided the means to specifically target these modified genes. Whenever possible this review highlights these opportunities and the attempts being made to generate novel, molecular based therapies against cancer. Successful use of these new therapies will rely upon a detailed knowledge of the genetic defects in individual tumors. The review concludes with a discussion of how the use of high throughput molecular arrays will allow the molecular pathologist/therapist to identify these defects and direct specific therapies to specific mutations.

  14. Serrated polyposis syndrome: Molecular, pathological and clinical aspects

    Institute of Scientific and Technical Information of China (English)

    Carla Guarinos; Cristina Sánchez-Fortún; María Rodríguez-Soler; Cristina Alenda; Artemio Payá; Rodrigo Jover

    2012-01-01

    Hyperplastic polyps have traditionally been considered not to have malignant potential.New pathological classification of serrated polyps and recent discoveries about the serrated pathway of carcinogenesis have revolutionized the concepts and revitalized the research in this area.Until recently,it has been thought that most colorectal cancers arise from conventional adenomas via the traditional tumor suppressor pathway initiated by a mutation of the APC gene,but it has been found that this pathway accounts for only approximately 70%-80%of colorectal cancer (CRC) cases.The majority of the remaining colorectal cancer cases follow an alternative pathway leading to CpG island methylator phenotype carcinoma with BRAF mutation and with or without microsatellite instability.The mechanism of carcinomas arising from this alternative pathway seems to begin with an activating mutation of the BRAF oncogene.Serrated polyposis syndrome is a relatively rare condition characterized by multiple and/or large serrated polyps of the colon.Clinical characteristics,etiology and relationship of serrated polyposis syndrome to CRC have not been clarified yet.Patients with this syndrome show a high risk of CRC and both sporadic and hereditary cases have been described.Clinical criteria have been used for diagnosis and frequent colonoscopy surveillance should be performed in order to prevent colorectal cancer.In this review,we try to gather new insights into the molecular pathogenesis of serrated polyps in order to understand their possible clinical implications and to make an approach to the management of this syndrome.

  15. Concepts in Change

    Science.gov (United States)

    Rusanen, Anna-Mari; Poyhonen, Samuli

    2013-01-01

    In this article we focus on the concept of concept in conceptual change. We argue that (1) theories of higher learning must often employ two different notions of concept that should not be conflated: psychological and scientific concepts. The usages for these two notions are partly distinct and thus straightforward identification between them is…

  16. Effect of Anisomeles malabarica (L. R.Br. Methanolic extract on DMBA - induced HBP Carcinogenesis

    Directory of Open Access Journals (Sweden)

    R. Ranganathan

    2012-12-01

    Full Text Available In the present investigation, the effect of Anisomeles malabarica (L. R.Br. whole plants extract has been studied on cellular redox status during hamster buccal pouch carcinogenesis. The animals were randomized into experimental and control groups and divided into 8 groups of six animals each. In group 1, the right buccal pouches of hamsters were painted three times per week with a 0.5 percent solution of DMBA in liquid paraffin . Hamsters in groups 2 - 4 painted with DMBA as in group 1, received in addition, intragastric administration of Anisomeles malabarica methanolic extract of concentration 125, 250 and 500 mg/kg body weight respectively three times a week on days alternate to DMBA. Animals in groups 5 through 7 were administered Anisomeles malabarica metabolic extract alone (125, 250 and 500 mg/kg body weight respectively. Group 8 animals received the same volume of water and served as controls. Administration of AMME to DMBA - painted hamsters reduced the incidence of SCC and mean tumour burden in addition to preneoplastic lesions. In the buccal pouch, AMME reversed the susceptibility to lipid peroxidation while simultaneously increasing GSH-dependent antioxidant enzyme activities, whereas in the liver and erythrocytes, the extent of lipid peroxidation was reduced with elevation of antioxidants. Thus, modified oxidant status together with antioxidant adequacy in the target organ as well as in the liver and erythrocytes induced by AMME may significantly reduce cell proliferation and block tumour development in the HBP. The results of the present study are consistent with the free radical scavenging properties of AMME reported in literature. AMME has been shown to prevent the increase in lipid peroxidation and protect against oxidative DNA damage by improving antioxidant defences. Among the doses used in the present study, the medium dose and higher dose of AMME (250 mg/kg bw and 500 mg/kg bw were found to be more effective in inhibiting

  17. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression

    International Nuclear Information System (INIS)

    Hypoxia-inducible factor 1 alpha (HIF-1α) is involved in processes promoting carcinogenesis of many tumors. However, its role in the development of colorectal cancer is unknown. To investigate the significance of HIF-1α during colorectal carcinogenesis and progression we examined its expression in precursor lesions constituting the conventional and serrated pathways, as well as in non-metastatic and metastatic adenocarcinomas. Immunohistochemistry and Western blot is used to analyse HIF-1α expression in normal colonic mucosa, hyperplastic polyps (HPP), sessile serrated adenomas (SSA), low-grade (TA-LGD) and high-grade (TA-HGD) traditional adenomas as well as in non-metastatic and metastatic colorectal adenocarcinomas. Eight colorectal carcinoma cell lines are tested for their HIF-1α inducibility after lipopolysaccharide (LPS) stimulation using western blot and immunocytochemistry. In normal mucosa, HPP and TA-LGD HIF-1α was not expressed. In contast, perinuclear protein accumulation and nuclear expression of HIF-1α were shown in half of the examined SSA and TA-HGD. In all investigated colorectal carcinomas a significant nuclear HIF-1α overexpression compared to the premalignant lesions was observed but a significant correlation with the metastatic status was not found. Nuclear HIF-1α expression was strongly accumulated in perinecrotic regions. In these cases HIF-1α activation was seen in viable cohesive tumor epithelia surrounding necrosis and in dissociated tumor cells, which subsequently die. Enhanced distribution of HIF-1α was also seen in periiflammatory regions. In additional in vitro studies, treatment of diverse colorectal carcinoma cell lines with the potent pro-inflammatory factor lipopolysaccharide (LPS) led to HIF-1α expression and nuclear translocation. We conclude that HIF-1α expression occurs in early stages of colorectal carcinogenesis and achieves a maximum in the invasive stage independent of the metastatic status. Perinecrotic

  18. Age-dependent change in biological characteristics of stem cells in radiation-induced mammary carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Yoshiya; Nishimura, Mayumi; Kakinuma, Shizuko; Imaoka, Tatsuhiko [National Institute of Radiological Sciences, Anagawa, Chiba (Japan); Yasukawa-Barnes, Jane; Gould, Michael N.; Clifton, Kelly H. [Univ. of Wisconsin, Department of Human Oncology, Madison, WI (United States)

    2003-07-01

    If you ask what types of cells are the targets for carcinogenesis, a popular answer would be that cancer arises from stem cells. Stem cells are cells that are capable of both self-renewal and generation of differentiated progenies. If the hypothesis of 'cancer as stem cell disease' is correct, the risk of carcinogenesis should be a function of the number of stem cells and their responsiveness of carcinogen-induced damage. In the present study, we addressed the feasibility of this hypothesis using the rat mammary carcinogenesis model. One of the important conclusions emerging from studies on atomic bomb survivors concerns age-related changes in the susceptibility to breast cancer. The relative risk of breast cancer is very high among women exposed to ionizing radiation before or during puberty, and it decreases thereafter. Little information is available, however, on age-related changes in the radiobiological nature of mammary stem cells. We examined age-associated changes in the number of mammary stem-like cells (clonogens) and their susceptibility to radiation in terms of cell death and carcinogenic initiation frequency. The results were as follows. (1) During the prepubertal period, the total number of mammary clonogens per rat increased exponentially with a population doubling time of {approx}4 days. After puberty, the doubling time lengthened to {approx}30 days. The total number of clonogens in abdominal and inguinal mammary glands was {approx}200 in 2-week-old rats, while it was {approx}5600 in 8-week-old rats. (2) The survival curves of clonogenic cells after irradiation indicated that radiation sensitivity of the cells before and during puberty was much higher than after puberty. (3) The initiation frequency of the clonogens from prepubertal rats after 5 Gy irradiation was four times higher than that of the clonogens from post-pubertal rats. These results suggest that changes in the number of stem cells and their radiobiological characteristics

  19. Effects of Imbalance of Apoptosis and Proliferation on Large Bowel Carcinogenesis in Mice

    Institute of Scientific and Technical Information of China (English)

    BaocunSun; ShiwuZhang; XiulanZhao; LanWang

    2004-01-01

    OBJECTIVE To observe the pattern of changes in the proliferation and apoptosis at different stages of large bowel carcinoma in mice, and to explore the effects of the imbalance of apoptosis and proliferation at different stages of large-intestine carcinogenesis.METHODS An experimental animal model for large intestine carcinogenesis of KUNMING-strain mice was used. The carcinomas were induced by subcuteneous injection of dimethylhydrazine (DMH) and the distribution and density changes of proliferating and apoptotic cells observed through multistages toward cancer formation. The animals were killed in groups at the 12th, 18th, 24th,and 32nd weeks of carcinoma induction. The apoptotic and proliferating cells were labeled separately using TUNEL and PCNA immunohistochemical staining methodsRF, RESULTS In the normal mouse mucosa, all the apoptotic cells were situated in the superficial layers, however, the proliferating cells were situated in the basement layers, and the amount of both were small. In the early stage of carcinoma induction, the proliferation and the apoptotic cells slightly increased in amount, but there were no obvious changes in their ratio. In the medium stage, the densities of both distinctly increased, but there were no obvious changes in the ratio. In the late stage, the densities of the proliferating and the apoptotic cells in the non-carcinoma mucosa were higher than those at other stages. The proliferating cells in the dysplastic mucosa increased progressively with the increasing degree of the lesions. Although the apoptotic cells increased, their changes did not occur with the degree of the lesions. Their ratio showed a decreasing tendency with the degree of the lesions.CONCLUSIONS (①The presence of an imbalance between cell proliferation and apoptosis was confirmed in the course of large intestine carcinogenesis in a mouse model. ②In the early stage of carcinoma induction both proliferation and apoptosis were at a low level; in the medium

  20. Helicobacter pylori eradication to prevent gastric cancer:underlying molecular and cellular mechanisms

    Institute of Scientific and Technical Information of China (English)

    Shingo Tsuji; Norio Hayashi; Masahiko Tsujii; Hiroaki Murata; Tsutomu Nishida; Masato Komori; Masakazu Yasumaru; Shuji Ishii; Yoshiaki Sasayama; Sunao Kawano

    2006-01-01

    Numerous cellular and molecular events have been described in development of gastric cancer. In this article,we overviewed roles of Helicobacter pylori(H pylori) infection on some of the important events in gastric carcinogenesis and discussed whether these cellular and molecular events are reversible after cure of the infection. There are several bacterial components affecting gastric epithelial kinetics and promotion of gastric carcinogenesis. The bacterium also increases risks of genetic instability and mutations due to NO and other reactive oxygen species. Epigenetic silencing of tumor suppressor genes such as RUNX3 may alter the frequency of phenotype change of gastric glands to those with intestinal metaplasia. Host factors such as increased expression of growth factors, cytokines and COX-2 have been also reported in non-cancerous tissue in H pylori-positive subjects. It is noteworthy that most of the above phenomena are reversed after the cure of the infection. However,some of them including overexpression of COX-2 continue to exist and may increase risks for carcinogenesis in metaplastic or dysplastic mucosa even after successful H pylori eradication. Thus, H pylori eradication may not completely abolish the risk for gastric carcinogenesis. Efficiency of the cure of the infection in suppressing gastric cancer depends on the timing and the target population,and warrant further investigation.

  1. Molecular Modeling

    Science.gov (United States)

    Holmes, Jon L.

    1999-06-01

    Molecular modeling has trickled down from the realm of pharmaceutical and research laboratories into the realm of undergraduate chemistry instruction. It has opened avenues for the visualization of chemical concepts that previously were difficult or impossible to convey. I am sure that many of you have developed exercises using the various molecular modeling tools. It is the desire of this Journal to become an avenue for you to share these exercises among your colleagues. It is to this end that Ron Starkey has agreed to edit such a column and to publish not only the description of such exercises, but also the software documents they use. The WWW is the obvious medium to distribute this combination and so accepted submissions will appear online as a feature of JCE Internet. Typical molecular modeling exercise: finding conformation energies. Molecular Modeling Exercises and Experiments is the latest feature column of JCE Internet, joining Conceptual Questions and Challenge Problems, Hal's Picks, and Mathcad in the Chemistry Curriculum. JCE Internet continues to seek submissions in these areas of interest and submissions of general interest. If you have developed materials and would like to submit them, please see our Guide to Submissions for more information. The Chemical Education Resource Shelf, Equipment Buyers Guide, and WWW Site Review would also like to hear about chemistry textbooks and software, equipment, and WWW sites, respectively. Please consult JCE Internet Features to learn more about these resources at JCE Online. Email Announcements Would you like to be informed by email when the latest issue of the Journal is available online? when a new JCE Software title is shipping? when a new JCE Internet article has been published or is available for Open Review? when your subscription is about to expire? A new feature of JCE Online makes this possible. Visit our Guestbook to learn how. When you submit the form on this page, which includes your email address

  2. Effects of long term feeding of raw soya bean flour on virus- induced pancreatic carcinogenesis in guinea fowl

    NARCIS (Netherlands)

    Kirev, T.; Woutersen, R.A.; Kiril, A.

    1999-01-01

    The effects of a diet enriched with 25% raw soya bean flour (RSF) on the pancreas and on the avian retrovirus Pts 56-induced pancreatic carcinogenesis in guinea fowl were studied. It has been shown that prolonged RSF feeding of new-hatched virus-infected and uninfected guinea fowl-poults induced enl

  3. Potential role of septins in oral carcinogenesis: An update and avenues for future research

    Directory of Open Access Journals (Sweden)

    Rooban Thavarajah

    2012-01-01

    Full Text Available Septins belong to the GTPase superclass of conserved proteins and have been identified to play a role in diverse aspects of cell biology, from cytokinesis to the maintenance of cellular morphology. At least 14 septins have been identified in humans. With their complex patterns in gene expressions and interaction, it has been reported that alterations in septin expression are observed in human diseases. Although much is not known about the role of human septins in oral carcinogenesis, circumstantial evidence does indicate that it may play a major role. This review intends to summarize the basis of septin biology, with the focus being on the evidence for septin involvement in human oral cancer.

  4. Synergistic effect of radiation on colon carcinogenesis induced by methylazoxymethanol acetate in ACI/N rats

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Takuji; Morishita, Yukio; Kawamori, Toshihiko; Suzui, Masumi; Kojima, Toshihiro; Sugie, Shigeyuki; Mori, Hideki (Gifu Univ. (Japan). Faculty of Medicine)

    1993-10-01

    The effect on colon and liver carcinogenicity in rats of a single X-irradiation exposure given either before or after methylazoxymethanol (MAM) acetate was studied in ACI/N rats of both sexes. A single dose of X-irradiation (3 Gy) was administered either 3 months before or after three weekly s.c. injection of MAM acetate (25 mg/kg body weight). At 365 days after the start, the incidence and multiplicity of MAM acetate-induced intestinal tumors were enhanced by X-irradiation either prior to or after the MAM acetate treatment. In addition, X-irradiation before MAM acetate increased the incidence of hepatocellular foci in either sex. In females, X-irradiation either before or after MAM acetate exposure decreased intestinal tumorigenesis. These findings suggest an apparent synergism of these agents in intestinal carcinogenesis of male rats. (author).

  5. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    N.B.R. Colombo

    2015-01-01

    Full Text Available The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.

  6. Cell survival following alpha particle irradiation: critical sites and implications for carcinogenesis

    International Nuclear Information System (INIS)

    In experiments in which mammalian cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine we have confirmed the finding of others that the mean lethal dose (D0) is about 100 rad, but by measurements of the area of the cell nuclei as irradiated we found that this mean lethal dose corresponds not to 1, as expected, but to about 27 alpha particles per cell nucleus. (The exact number appears to change slightly with cell passage number.) This allows for the possibility that the direct action of alpha particles on the nucleus may be the important event in carcinogenesis, a theory which was previously difficult to accept if a single particle hitting the nucleus anywhere was considered to be lethal. Evidence is presented to implicate the nucleolus as a possible critical site for the inhibition of reproductive integrity of the cell

  7. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    International Nuclear Information System (INIS)

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis

  8. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Takai, Atsushi; Marusawa, Hiroyuki, E-mail: maru@kuhp.kyoto-u.ac.jp; Chiba, Tsutomu [Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)

    2011-06-22

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis.

  9. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID during Inflammation-Associated Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Tsutomu Chiba

    2011-06-01

    Full Text Available Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID, a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis.

  10. PREVENTION OF RADIATION CARCINOGENESIS IN RATS BY MEANS OF OXYPYRIDINE DERIVATIVE – GLUTAPYRONE

    Directory of Open Access Journals (Sweden)

    L. P. Vartanyan

    2012-01-01

    Full Text Available In experiments on rats (290 animals exposed to chronic γ-radiation in the total dose of 10.0 Gy it was detected that prescription of synthetic pharmaceutical of the dihydropyridine class-glutapyrone-together with drinking water during 6 months reduced the rate of malignant neoplasms from 26,5% in the control group to 13% in the treated animals. In radiation-exposed rats that received glutapyrone there was a narrowing of spectrum of the emerged neoplasms (connectively-tissual tumors only as compared to the animals of the radiated control group, where blastomas of epithelium and lymphoid origin were also revealed. Low toxicity of glutapyrone and its anticarcinogenic action show the possibility of practical application of preparation for prevention radiation carcinogenesis.  

  11. The Expression of miR-375 Is Associated with Carcinogenesis in Three Subtypes of Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Yi Jin

    Full Text Available Many studies demonstrated unique microRNA profiles in lung cancer. Nonetheless, the role and related signal pathways of miR-375 in lung cancer are largely unknown. Our study investigated relationships between carcinogenesis and miR-375 in adenocarcinoma, squamous cell carcinoma and small cell lung carcinoma to identify new molecular targets for treatment. We evaluated 723 microRNAs in microdissected cancerous cells and adjacent normal cells from 126 snap-frozen lung specimens using microarrays. We validated the expression profiles of miR-375 and its 22 putative target mRNAs in an independent cohort of 78 snap-frozen lung cancer tissues using quantitative reverse-transcriptase PCR. Moreover, we performed dual luciferase reporter assay and Western blot on 6 targeted genes (FZD8, ITGA10, ITPKB, LRP5, PIAS1 andRUNX1 in small cell lung carcinoma cell line NCI-H82. We also detected the effect of miR-375 on cell proliferation in NCI-H82. We found that miR-375 expression was significantly up-regulated in adenocarcinoma and small cell lung carcinoma but down-regulated in squamous cell carcinoma. Among the 22 putative target genes, 11 showed significantly different expression levels in at least 2 of 3 pair-wise comparisons (adenocarcinoma vs. normal, squamous cell carcinoma vs. normal or small cell lung carcinoma vs. normal. Six targeted genes had strong negative correlation with the expression level of miR-375 in small cell lung carcinoma. Further investigation revealed that miR-375 directly targeted the 3'UTR of ITPKB mRNA and over-expression of miR-375 led to significantly decreased ITPKB protein level and promoted cell growth. Thus, our study demonstrates the differential expression profiles of miR-375 in 3 subtypes of lung carcinomas and finds thatmiR-375 directly targets ITPKB and promoted cell growth in SCLC cell line.

  12. Raman spectroscopy detects biomolecular changes associated with nanoencapsulated hesperetin treatment in experimental oral carcinogenesis

    Science.gov (United States)

    Gurushankar, K.; Gohulkumar, M.; Kumar, Piyush; Krishna, C. Murali; Krishnakumar, N.

    2016-03-01

    Recently it has been shown that Raman spectroscopy possesses great potential in the investigation of biomolecular changes of tumor tissues with therapeutic drug response in a non-invasive and label-free manner. The present study is designed to investigate the antitumor effect of hespertin-loaded nanoparticles (HETNPs) relative to the efficacy of native hesperetin (HET) in modifying the biomolecular changes during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis using a Raman spectroscopic technique. Significant differences in the intensity and shape of the Raman spectra between the control and the experimental tissues at 1800-500 cm-1 were observed. Tumor tissues are characterized by an increase in the relative amount of proteins, nucleic acids, tryptophan and phenylalanine and a decrease in the percentage of lipids when compared to the control tissues. Further, oral administration of HET and its nanoparticulates restored the status of the lipids and significantly decreased the levels of protein and nucleic acid content. Treatment with HETNPs showed a more potent antitumor effect than treatment with native HET, which resulted in an overall reduction in the intensity of several biochemical Raman bands in DMBA-induced oral carcinogenesis being observed. Principal component and linear discriminant analysis (PC-LDA), together with leave-one-out cross validation (LOOCV) on Raman spectra yielded diagnostic sensitivities of 100%, 80%, 91.6% and 65% and specificities of 100%, 65%, 60% and 55% for classification of control versus DMBA, DMBA versus DMBA  +  HET, DMBA versus DMBA  +  HETNPs and DMBA  +  HET versus DMBA  +  HETNPs treated tissue groups, respectively. These results further demonstrate that Raman spectroscopy associated with multivariate statistical algorithms could be a valuable tool for developing a comprehensive understanding of the process of biomolecular changes, and could reveal the signatures of the

  13. Chemically induced immunotoxicity in a medium-term multiorgan bioassay for carcinogenesis with Wistar rats

    International Nuclear Information System (INIS)

    A variety of chemicals can adversely affect the immune system and influence tumor development. The modifying potential of chemical carcinogens on the lymphoid organs and cytokine production of rats submitted to a medium-term initiation-promotion bioassay for carcinogenesis was investigated. Male Wistar rats were sequentially initiated with N-nitrosodiethylamine (DEN), N-methyl-N-nitrosourea (MNU), N-butyl-N-(4hydroxybutyl)nitrosamine (BBN), dihydroxy-di-n-propylnitrosamine (DHPN), and 1,2-dimethylhydrazine (DMH) during 4 weeks. Two initiated groups received phenobarbital (PB) or 2-acetylaminofluorene (2-AAF) for 25 weeks and two noninitiated groups received only PB or 2-AAF. A nontreated group was used as control. Lymphohematopoietic organs, liver, kidneys, lung, intestines, and Zymbal's gland were removed for histological analysis. Interleukin (IL)-2, IL-12, interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-10, and transforming growth factor beta1 (TGF-β1) levels were determined by ELISA in spleen cell culture supernatants. At the fourth week, exposure to the initiating carcinogens resulted in cell depletion of the thymus, spleen and bone marrow, and impairment of IL-2, IL-12, and IFN-γ production. However, at the 30th week, no important alterations were observed both in lymphoid organs and cytokine production in the different groups. The results indicate that the initiating carcinogens used in the present protocol exert toxic effects on the lymphoid organs and affect the production of cytokines at the initiation step of carcinogenesis. This early and reversible depression of the immune surveillance may contribute to the survival of initiated cells facilitating the development of future neoplasia

  14. Defects in cytochrome c oxidase expression induce a metabolic shift to glycolysis and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Dawei W. Dong

    2015-12-01

    Full Text Available Mitochondrial metabolic dysfunction is often seen in cancers. This paper shows that the defect in a mitochondrial electron transport component, the cytochrome c oxidase (CcO, leads to increased glycolysis and carcinogenesis. Using whole genome microarray expression analysis we show that genetic silencing of the CcO subunit Cox4i1 in mouse C2C12 myoblasts resulted in metabolic shift to glycolysis, activated a retrograde stress signaling, and induced carcinogenesis. In the knockdown cells, the expression of Cox4i1 was less than 5% of the control and the expression of the irreversible glycolytic enzymes (Hk1, Pfkm and Pkm increased two folds, facilitating metabolic shift to glycolysis. The expression of Ca2+ sensitive Calcineurin (Ppp3ca and the expression of PI3-kinase (Pik3r4 and Pik3cb increased by two folds. This Ca2+/Calcineurin/PI3K retrograde stress signaling induced the up-regulation of many nuclear genes involved in tumor progression. Overall, we found 1047 genes with 2-folds expression change (with p-value less than 0.01 between the knockdown and the control, among which were 35 up-regulated genes in pathways in cancer (enrichment p-value less than 10−5. Functional analysis revealed that the up-regulated genes in pathways in cancer were dominated by genes in signal transduction, regulation of transcription and PI3K signaling pathway. These results suggest that a defect in CcO complex initiates a retrograde signaling which can induce tumor progression. Physiological studies of these cells and esophageal tumors from human patients support these results. GEO accession number = GSE68525.

  15. Aberrant promoter methylation and expression of UTF1 during cervical carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Samuel Guenin

    Full Text Available Promoter methylation profiles are proposed as potential prognosis and/or diagnosis biomarkers in cervical cancer. Up to now, little is known about the promoter methylation profile and expression pattern of stem cell (SC markers during tumor development. In this study, we were interested to identify SC genes methylation profiles during cervical carcinogenesis. A genome-wide promoter methylation screening revealed a strong hypermethylation of Undifferentiated cell Transcription Factor 1 (UTF1 promoter in cervical cancer in comparison with normal ectocervix. By direct bisulfite pyrosequencing of DNA isolated from liquid-based cytological samples, we showed that UTF1 promoter methylation increases with lesion severity, the highest level of methylation being found in carcinoma. This hypermethylation was associated with increased UTF1 mRNA and protein expression. By using quantitative RT-PCR and Western Blot, we showed that both UTF1 mRNA and protein are present in epithelial cancer cell lines, even in the absence of its two main described regulators Oct4A and Sox2. Moreover, by immunofluorescence, we confirmed the nuclear localisation of UTF1 in cell lines. Surprisingly, direct bisulfite pyrosequencing revealed that the inhibition of DNA methyltransferase by 5-aza-2'-deoxycytidine was associated with decreased UTF1 gene methylation and expression in two cervical cancer cell lines of the four tested. These findings strongly suggest that UTF1 promoter methylation profile might be a useful biomarker for cervical cancer diagnosis and raise the questions of its role during epithelial carcinogenesis and of the mechanisms regulating its expression.

  16. Chemopreventive effect of sinapic acid on 1,2-dimethylhydrazine-induced experimental rat colon carcinogenesis.

    Science.gov (United States)

    Balaji, C; Muthukumaran, J; Nalini, N

    2014-12-01

    Sinapic acid (SA) is a naturally occurring phenolic acid found in various herbal plants which is attributed with numerous pharmacological properties. This study was aimed to investigate the chemopreventive effect of SA on 1,2-dimethylhydrazine (DMH)-induced rat colon carcinogenesis. Rats were treated with DMH injections (20 mg kg(-1) bodyweight (b.w.) subcutaneously once a week for the first 4 consecutive weeks and SA (20, 40 and 80 mg kg(-1) b.w.) post orally for 16 weeks. At the end of the 16-week experimental period, all the rats were killed, and the tissues were evaluated biochemically. Our results reveal that DMH alone treatment decreased the levels/activities of lipid peroxidation by-products such as thiobarbituric acid reactive substances, conjugated dienes and antioxidants such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and reduced glutathione in the intestine and colonic tissues which were reversed on supplementation with SA. Moreover, the activities of drug-metabolizing enzymes of phase I (cytochrome P450 and P4502E1) were enhanced and those of phase II (glutathione-S-transferase, DT-diaphorase and uridine diphosphate glucuronosyl transferase) were diminished in the liver and colonic mucosa of DMH alone-treated rats and were reversed on supplementation with SA. All the above changes were supported by the histopathological observations of the rat liver and colon. These findings suggest that SA at the dose of 40 mg kg(-1) b.w. was the most effective dose against DMH-induced colon carcinogenesis, and thus, SA could be used as a potential chemopreventive agent. PMID:24532707

  17. Significance of CpG methylation for solar UV-induced mutagenesis and carcinogenesis in skin.

    Science.gov (United States)

    Ikehata, Hironobu; Ono, Tetsuya

    2007-01-01

    Mutations detected in the p53 gene in human nonmelanoma skin cancers show a highly UV-specific mutation pattern, a dominance of C --> T base substitutions at dipyrimidine sites plus frequent CC --> TT tandem substitutions, indicating a major involvement of solar UV in the skin carcinogenesis. These mutations also have another important characteristic of frequent occurrences at CpG dinucleotide sites, some of which actually show prominent hotspots in the p53 gene. Although mammalian solar UV-induced mutation spectra were studied intensively in the aprt gene using rodent cultured cells and the UV-specific mutation pattern was confirmed, the second characteristic of the p53 mutations in human skin cancers had not been reproduced. However, studies with transgenic mouse systems developed thereafter for mutation research, which harbor methyl CpG-abundant transgenes as mutation markers, yielded complete reproductions of the situation of the human skin cancer mutations in terms of both the UV-specific pattern and the frequent occurrence at CpG sites. In this review, we evaluate the significance of the CpG methylation for solar UV mutagenesis in the mammalian genome, which would lead to skin carcinogenesis. We propose that the UV-specific mutations at methylated CpG sites, C --> T transitions at methyl CpG-associated dipyrimidine sites, are a solar UV-specific mutation signature, and have estimated the wavelength range effective for the solar-UV-specific mutation as 310-340 nm. We also recommend the use of methyl CpG-enriched sequences as mutational targets for studies on solar-UV genotoxicity for human, rather than conventional mammalian mutational marker genes such as the aprt and hprt genes.

  18. Dietary chromium and nickel enhance UV-carcinogenesis in skin of hairless mice

    International Nuclear Information System (INIS)

    The skin cancer enhancing effect of chromium (in male mice) and nickel in UVR-irradiated female Skh1 mice was investigated. The dietary vitamin E and selenomethionine were tested for prevention of chromium-enhanced skin carcinogenesis. The mice were exposed to UVR (1.0 kJ/m2 3x weekly) for 26 weeks either alone, or combined with 2.5 or 5.0 ppm potassium chromate, or with 20, 100 or 500 ppm nickel chloride in drinking water. Vitamin E or selenomethionine was added to the lab chow for 29 weeks beginning 3 weeks before the start of UVR exposure. Both chromium and nickel significantly increased the UVR-induced skin cancer yield in mice. In male Skh1 mice, UVR alone induced 1.9 ± 0.4 cancers/mouse, and 2.5 or 5.0 ppm potassium chromate added to drinking water increased the yields to 5.9 ± 0.8 and 8.6 ± 0.9 cancers/mouse, respectively. In female Skh1 mice, UVR alone induced 1.7 ± 0.4 cancers/mouse, and the addition of 20, 100 or 500 ppm nickel chloride increased the yields to 2.8 ± 0.9, 5.6 ± 0.7 and 4.2 ± 1.0 cancers/mouse, respectively. Neither vitamin E nor selenomethionine reduced the cancer yield enhancement by chromium. These results confirm that chromium and nickel, while not good skin carcinogens per se, are enhancers of UVR-induced skin cancers in Skh1 mice. Data also suggest that the enhancement of UVR-induced skin cancers by chromate may not be oxidatively mediated since the antioxidant vitamin E as well as selenomethionine, found to prevent arsenite-enhanced skin carcinogenesis, failed to suppress enhancement by chromate

  19. Anticarcinogenesis effect of Gynura procumbens (Lour Merr on tongue carcinogenesis in 4NQO-induced rat

    Directory of Open Access Journals (Sweden)

    D. Agustina

    2006-09-01

    Full Text Available In Indonesia Gynura procumbens (Lour Merr leaves have been long used as various cancers medication. Many in vitro and in vivo studies have demonstrated anticarcinogenesis of ethanol extract of Gynura procumbens leaves. The aim of this study was to investigate the anticarcinogenesis of the ethanol extract of Gynura procumbens leaves on 4 nitroquinoline 1-oxide (4NQO-induced rat tongue carcinogenesis. Fifty six 4 week old male Sprague Dawley rats were used in this study and divided into 7 groups. Group 1, 2 and 3 were lingually induced by 4NQO for 8 weeks. In groups 2 and 3 the extract was given simultaneously with or after 4NQO induction finished, each for 10 weeks and 26 weeks, respectively. Groups 4, 5 and 6 were induced by 4NQO for 16 weeks. However, in groups 5 and 6 the extract was given as well simultaneously with or after the 4NQO induction, each for 18 weeks, respectively. Group 7 served as the as untreated control group. The results from microscopical assessment showed that tongue squamous cell carcinomas (SCC developed in 100% (3/3 of group 1. However, only 33.3% (2/6 and 25% (2/8 of rats in groups 2 and 3, respectively demonstrated tongue SCC. Among groups 4, 5 and 6, no significant difference of tongue SCC incidence was observed. From these results it is apparent that the ethanol extract of Gynura procumbens leaves could inhibit the progression of 4NQOinduced rat tongue carcinogenesis in the initiation phase.

  20. Increased visceral fat mass and insulin signaling in colitis-related colon carcinogenesis model mice.

    Science.gov (United States)

    Miyamoto, Shingo; Tanaka, Takuji; Murakami, Akira

    2010-01-27

    Leptin, a pleiotropic hormone regulating food intake and metabolism, plays an important role in the regulation of inflammation and immunity. We previously demonstrated that serum leptin levels are profoundly increased in mice which received azoxymethane (AOM) and dextran sulfate sodium (DSS) as tumor-initiator and -promoter, respectively, in a colon carcinogenesis model. In this study, we attempted to address underlying mechanism whereby leptin is up-regulated in this rodent model. Five-week-old male ICR mice were given a single intraperitoneal injection of AOM (week 0), followed by 1% DSS in drinking water for 7 days. Thereafter, the weights of visceral fats and the serum concentration of leptin were determined at week 20. Of interest, the relative epididymal fat pad and mesenteric fat weights, together with serum leptin levels in the AOM and/or DSS-treated mice were markedly increased compared to that in untreated mice. In addition, leptin protein production in epididymal fat pad with AOM/DSS-treated mice was 4.7-fold higher than that of control. Further, insulin signaling molecules, such as protein kinase B (Akt), S6, mitogen-activate protein kinase/extracellular signaling-regulated kinase 1/2, and extracellular signaling-regulated kinase 1/2, were concomitantly activated in epididymal fat of AOM/DSS-treated mice. This treatment also increased the serum insulin and IGF-1 levels. Taken together, our results suggest that higher levels of serum insulin and IGF-1 promote the insulin signaling in epididymal fat and thereby increasing serum leptin, which may play an crucial role in, not only obesity-related, but also -independent colon carcinogenesis. PMID:19931517

  1. Promoter hypermethylation of KLF4 inactivates its tumor suppressor function in cervical carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Wen-Ting Yang

    Full Text Available OBJECTIVE: The KLF4 gene has been shown to be inactivated in cervical carcinogenesis as a tumor suppressor. However, the mechanism of KLF4 silencing in cervical carcinomas has not yet been identified. DNA methylation plays a key role in stable suppression of gene expression. METHODS: The methylation status of the KLF4 promoter CpG islands was analyzed by bisulfite sequencing (BSQ in tissues of normal cervix and cervical cancer. KLF4 gene expression was detected by RT-PCR, immunohistochemistry and western blot. KLF4 promoter methylation in cervical cancer cell line was determined by BSQ and methylation-specific polymerase chain reaction (MS-PCR. Cell proliferation ability was detected by cell growth curve and MTT assay. RESULTS: The methylated allele was found in 41.90% of 24 cervical cancer tissues but only in 11.11% of 11 normal cervix tissues (P<0.005. KLF4 mRNA levels were significantly reduced in cervical cancer tissues compared with normal cervix tissues (P<0.01 and KLF4 mRNA expression showed a significant negative correlation with the promoter hypermethylation (r = -0.486, P = 0.003. Cervical cancer cell lines also showed a significant negative correlation between KLF4 expression and hypermethylation. After treatment with the demethylating agent 5-Azacytidine (5-Aza, the expression of KLF4 in the cervical cancer cell lines at both mRNA and protein levels was drastically increased, the cell proliferation ability was inhibited and the chemosensitivity for cisplatin was significantly increased. CONCLUSION: KLF4 gene is inactivated by methylation-induced silencing mechanisms in a large subset of cervical carcinomas and KLF4 promoter hypermethylation inactivates the gene's function as a tumor suppressor in cervical carcinogenesis.

  2. Histopathological and in vivo evidence of regucalcin as a protective molecule in mammary gland carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Ricardo; Vaz, Cátia V.; Maia, Cláudio J. [CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Gomes, Madalena [IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto (Portugal); Gama, Adelina [Department of Veterinary Sciences, Animal and Veterinary Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD) (Portugal); Alves, Gilberto; Santos, Cecília R. [CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Schmitt, Fernando [IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto (Portugal); Medical Faculty, University of Porto, Porto (Portugal); Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto (Canada); Department of Pathology, University Health Network, Toronto (Canada); Socorro, Sílvia, E-mail: ssocorro@fcsaude.ubi.pt [CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal)

    2015-01-15

    Regucalcin (RGN) is a calcium-binding protein, which has been shown to be underexpressed in cancer cases. This study aimed to determine the association of RGN expression with clinicopathological parameters of human breast cancer. In addition, the role of RGN in malignancy of mammary gland using transgenic rats overexpressing the protein (Tg-RGN) was investigated. Wild-type (Wt) and Tg-RGN rats were treated with 7,12-dimethylbenz[α]anthracene (DMBA). Carcinogen-induced tumors were histologically classified and the Ki67 proliferation index was estimated. Immunohistochemistry analysis showed that RGN immunoreactivity was negatively correlated with the histological grade of breast infiltrating ductal carcinoma suggesting that progression of breast cancer is associated with loss of RGN. Tg-RGN rats displayed lower incidence of carcinogen-induced mammary gland tumors, as well as lower incidence of invasive forms. Moreover, higher proliferation was observed in non-invasive tumors of Wt animals comparatively with Tg-RGN. Overexpression of RGN was associated with diminished expression of cell-cycle inhibitors and increased expression of apoptosis inducers. Augmented activity of apoptosis effector caspase-3 was found in the mammary gland of Tg-RGN. RGN overexpression protected from carcinogen-induced mammary gland tumor development and was linked with reduced proliferation and increased apoptosis. These findings indicated the protective role of RGN in the carcinogenesis of mammary gland. - Highlights: • RGN immunoreactivity was negatively correlated with breast cancer differentiation. • Transgenic overexpression of RGN diminished incidence of carcinogen-induced tumors. • Transgenic overexpression of RGN restricted proliferation and fostered apoptosis. • RGN has a protective role in the carcinogenesis of mammary gland.

  3. Beclin 1 Expression is Closely Linked to Colorectal Carcinogenesis and Distant Metastasis of Colorectal Carcinoma

    Directory of Open Access Journals (Sweden)

    Mei-Ying Zhang

    2014-08-01

    Full Text Available Beclin 1 participates in development, autophagy, differentiation, anti- apoptosis, neurodegeneration, tumorigenesis and cancer progression. The roles of Beclin 1 in colorectal carcinogenesis and its subsequent progression are still unclear. Here, the mRNA and protein expression of Beclin 1 were determined in colorectal carcinoma and matched mucosa by Reverse transcriptase-polymerase chain reaction and Western blot. Immunohistochemistry and in situ hybridization (ISH were performed on tissue microarryer with colorectal carcinoma, adenoma and mucosa. The expression of Beclin 1 mRNA and protein was found to be higher in colorectal carcinoma than matched mucosa by real-time PCR and Western blot (p < 0.05. According to the ISH data, Beclin 1 expression was lower in colorectal non-neoplastic mucosa (NNM than adenoma and carcinoma (p < 0.05. Immunohistochemically, primary carcinoma showed stronger Beclin 1 expression than NNM and metastatic carcinoma in the liver (p < 0.05. Beclin 1 protein expression was negatively related to liver and distant metastasis (p < 0.05, but not correlated with age, sex, depth of invasion, lymphatic or venous invasion, lymph node metastasis, tumor-node-metastasis (TNM staging, differentiation or serum carcinoembryonic antigen (CEA concentration (p > 0.05. Survival analysis indicated that Beclin 1 expression was not linked to favorable prognosis of the patients with colorectal carcinoma (p > 0.05. Cox’s model indicated that depth of invasion and distant metastasis were independent prognostic factors for colorectal carcinomas (p < 0.05. It was suggested that Beclin 1 expression is closely linked to colorectal carcinogenesis and distant metastasis of colorectal carcinoma.

  4. Methylation-mediated transcriptional repression of microRNAs during cervical carcinogenesis

    Science.gov (United States)

    Wilting, Saskia M.; Verlaat, Wina; Jaspers, Annelieke; Makazaji, Nour A.; Agami, Reuven; Meijer, Chris J.L.M.; Snijders, Peter J.F.

    2013-01-01

    Deregulated expression of microRNAs (miRNAs) is common and biologically relevant in cervical carcinogenesis and appears only partly related to chromosomal changes. We recently identified 32 miRNAs showing decreased expression in high-grade cervical intraepithelial neoplasia (CIN) and carcinomas not associated with a chromosomal loss, 6 of which were located within a CpG island. This study aimed to investigate to what extent these miRNAs are subject to DNA methylation-mediated transcriptional repression in cervical carcinogenesis.   Methylation-specific PCR (MSP) analysis on a cell line panel representing different stages of human papillomavirus (HPV) induced transformation revealed an increase in methylation of hsa-miR-149, -203 and -375 with progression to malignancy, whereas expression of these miRNAs was restored upon treatment with a demethylating agent. All three miRNAs showed significantly increased levels of methylation in cervical carcinomas, whereas methylation levels of hsa-miR-203 and -375 were also significantly increased in high-grade CIN. A pilot analysis showed that increased hsa-miR-203 methylation was also detectable in HPV-positive cervical scrapes of women with high-grade CIN compared with controls. Similar to recent findings on hsa-miR-375, ectopic expression of hsa-miR-203 in cervical cancer cells decreased both the proliferation rate and anchorage independent growth. We found evidence for methylation-mediated transcriptional repression of hsa-miR-149, -203 and -375 in cervical cancer. Methylation of the latter two was already apparent in precancerous lesions and represent functionally relevant events in HPV-mediated transformation. Increased hsa-miR-203 methylation was detectable in scrapes of women with high-grade CIN, indicating that methylated miRNAs may provide putative markers to assess the presence of (pre)cancerous lesions. PMID:23324622

  5. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Gokhan Yildiz

    Full Text Available Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal" by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15

  6. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.

    Science.gov (United States)

    Yildiz, Gokhan; Arslan-Ergul, Ayca; Bagislar, Sevgi; Konu, Ozlen; Yuzugullu, Haluk; Gursoy-Yuzugullu, Ozge; Ozturk, Nuri; Ozen, Cigdem; Ozdag, Hilal; Erdal, Esra; Karademir, Sedat; Sagol, Ozgul; Mizrak, Dilsa; Bozkaya, Hakan; Ilk, Hakki Gokhan; Ilk, Ozlem; Bilen, Biter; Cetin-Atalay, Rengul; Akar, Nejat; Ozturk, Mehmet

    2013-01-01

    Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal") by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene

  7. Biologia molecular do câncer colorretal: uma revolução silenciosa em andamento Molecular biology of colorectal cancer: a silent revolution

    Directory of Open Access Journals (Sweden)

    Mauro de Souza Leite Pinho

    2008-09-01

    Full Text Available Embora os estudos sobre biologia molecular permaneçam como a principal expectativa para o surgimento de novos conceitos e recursos para o tratamento do câncer colorretal, a ausência de resultados de real impacto do ponto de vista clínico ao longo dos últimos anos podem representar uma frustração para quem não esteja acompanhando de perto a evolução das pesquisas nesta área. Assim sendo, nosso objetivo no presente texto é apresentar uma breve revisão do caminho percorrido até o momento desde os trabalhos pioneiros sobre carcinogênese colorretal até as pesquisas mais recentes sobre proteômica, demonstrando assim o constante fluxo de grandes avanços os quais possibilitam uma previsão realista a curto ou médio prazo da disponibilização de recursos de amplo impacto, com potencial para alterar de forma relevante os resultados do tratamento desta importante doença.Despite remaining as the main hope for emerging new concepts and strategies for treatment of colorectal cancer, the lack of results with clinical impact over the last years may contribute to frustrate those not entirely aware about current research data. So, the aim of this paper is to present a brief review since the first molecular biology studies in colorectal carcinogenesis until recent advances in proteomics, in order to demonstrate the consistent production of new data supporting a realistic expectancy for a near future availability of high impact resources that may change dramatically the results of treatment of colorectal cancer.

  8. Copper and resveratrol attenuates serum catalase, glutathione peroxidase, and element values in rats with DMBA-induced mammary carcinogenesis.

    Science.gov (United States)

    Skrajnowska, Dorota; Bobrowska-Korczak, Barbara; Tokarz, Andrzej; Bialek, Slawomir; Jezierska, Ewelina; Makowska, Justyna

    2013-12-01

    In this paper, a hypothesis was assessed whether or not the intoxication with copper and supplementation with copper plus resveratrol would result in changes in the activities of catalase and glutathione peroxidase and moreover if the characteristic changes would appear in concentrations of copper, iron, calcium, magnesium, and zinc in the serum of rats with chemically induced carcinogenesis. Female Sprague-Dawley rats were divided into study groups which, apart from the standard diet, were treated with copper (42.6 mg Cu/kg food as CuSO4·5H2O) or copper plus resveratrol (0.2 mg/kg body) via gavage for a period from 40 days until 20 weeks of age. In cancer groups, the rats were treated with a dose of 80 mg/body weight of 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) given in rapeseed oil at 50 and 80 days of age to induce mammary carcinogenesis. The control groups included the rats kept in the same conditions and fed with the same diet as the animals from the study groups, but not DMBA-treated. The activity of catalase significantly decreased in groups of rats with mammary carcinogenesis that were supplemented with copper (p copper plus resveratrol (p cancer groups of nonsupplemented rats, the increase of glutathione peroxidase activity was observed. The process of carcinogenesis and the applied supplementation significantly altered the concentrations of trace elements in serum, in particular as concerns iron and copper. The mean serum iron levels in rats with breast cancer were significantly lower than those in the control groups (p copper levels significantly decreased in the groups of rats with mammary carcinogenesis that were supplemented with copper or copper plus resveratrol in comparison with the control groups that received the same diets (p copper and zinc/iron ratios in blood may be used as one of the prognostic factors in breast cancer research.

  9. Theoretical Molecular Biophysics

    CERN Document Server

    Scherer, Philipp

    2010-01-01

    "Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models.

  10. Molecular physics

    CERN Document Server

    Williams, Dudley

    2013-01-01

    Methods of Experimental Physics, Volume 3: Molecular Physics focuses on molecular theory, spectroscopy, resonance, molecular beams, and electric and thermodynamic properties. The manuscript first considers the origins of molecular theory, molecular physics, and molecular spectroscopy, as well as microwave spectroscopy, electronic spectra, and Raman effect. The text then ponders on diffraction methods of molecular structure determination and resonance studies. Topics include techniques of electron, neutron, and x-ray diffraction and nuclear magnetic, nuclear quadropole, and electron spin reson

  11. The Extended Enterprise concept

    DEFF Research Database (Denmark)

    Larsen, Lars Bjørn; Vesterager, Johan; Gobbi, Chiara

    1999-01-01

    This paper provides an overview of the work that has been done regarding the Extended Enterprise concept in the Common Concept team of Globeman 21 including references to results deliverables concerning the development of the Extended Enterprise concept. The first section presents the basic concept...... picture from Globeman21, which illustrates the Globeman21 way of realising the Extended Enterprise concept. The second section presents the Globeman21 EE concept in a life cycle perspective, which to a large extent is based on the thoughts and ideas behind GERAM (ISO/DIS 15704)....

  12. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  13. Race concepts in medicine.

    Science.gov (United States)

    Hardimon, Michael O

    2013-02-01

    Confusions about the place of race in medicine result in part from a failure to recognize the plurality of race concepts. Recognition that the ordinary concept of race is not identical to the racialist concept of race makes it possible to ask whether there might be a legitimate place for the deployment of concepts of race in medical contexts. Two technical race concepts are considered. The concept of social race is the concept of a social group that is taken to be a racialist race. It is apt for use in examining and addressing the medical effects of discrimination. The populationist concept of race represents race as a kind of biological population. It makes it possible to frame the question whether biological race is a factor in disease susceptibility and drug responsiveness. It is apt for use in determining whether biological race is a medically significant category. PMID:23300217

  14. The education coaching concept

    OpenAIRE

    Borova T.A.

    2011-01-01

    The article deals with education coaching concept in the context of higher education. The main coaching and concept definitions are analyzed. The education coaching definition is given. The main ideas, principles and methodology approaches to the education coaching concept are identified and characterized. It is grounded the methodological approaches that are the basis of the educational coaching concept. The main points of education coaching are summarizes. The aim of education coaching is d...

  15. Key concepts in energy

    CERN Document Server

    Madureira, Nuno Luis

    2014-01-01

    Highlights how key energy concepts surfaced, tracing their evolution throughout history to encompasses four economic concepts and four technological-engineering concepts developed through their history to conclude with current economic and environmental sciences Considers the process of energy-substitutions through complementary usages, hybridization and technological mixes Combines a conceptual approach with key theoretical concepts from engineering, geological and economic sciences providing cross disciplinary overview of energy fundamentals in a short and focused reading

  16. Bracken Basic Concept Scale.

    Science.gov (United States)

    Naglieri, Jack A.; Bardos, Achilles N.

    1990-01-01

    The Bracken Basic Concept Scale, for use with preschool and primary-aged children, determines a child's school readiness and knowledge of English-language verbal concepts. The instrument measures 258 basic concepts in such categories as comparisons, time, quantity, and letter identification. This paper describes test administration, scoring and…

  17. Threshold Concepts in Biochemistry

    Science.gov (United States)

    Loertscher, Jennifer

    2011-01-01

    Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…

  18. Interferon-alpha gene therapy prevents aflatoxin and carbon tetrachloride promoted hepatic carcinogenesis in rats.

    Science.gov (United States)

    Aziz, Talaat Abdel; Aziz, Mohammed Abdel; Fouad, Hanan Hassan; Rashed, Laila Ahmed; Salama, Hosny; Abd-Alla, Samira; Wehab, Mosaad Attia Abdel; Ahmed, Tauseef

    2005-01-01

    Retrovirus-mediated interferon alpha (IFN-alpha) gene transfer was evaluated with regard to its possible protective effects against aflatoxin B1 (AFB1)-initiated and carbon tetrachloride (CCl4)-promoted hepatic carcinogenesis in rats. To our knowledge, this is the first time an experimental in vivo gene therapy trial was conducted in Egypt. Two genes were examined in liver tissue by RT-PCR: the first was glutathione-S-transferase placental (GST-P) isoenzyme, as an early marker to detect hepatic malignancy; the second was IFN-alpha gene expression to detect the efficiency of gene uptake and its persistence after transduction. Forty male rats, divided equally into 4 groups, were included in the study: the first group was the control; the second group received CCl4 0.2 ml subcutaneously twice weekly for 12 weeks and AFB1 0.25 mg/kg body wt intraperitoneally twice weekly for 6 weeks; the third group received IFN-alpha (10(8) pfu) intravenously in the tail vein prior to the start of CCl4 and AFB1 injections; and the fourth group received IFN-alpha (10(8) pfu) by intrahepatic injection under ultrasonography guide after termination of the CCl4 and AFB1 injection schedule. The results showed that IFN-alpha has a marked and significant protective effect against hepatic fibrogenesis as well as hepatic carcinogenesis. Pathological examination of liver tissue proved that IFN-alpha minimized both fibrotic and cirrhotic processes. The amount of fibrosis was less in both groups receiving IFN-alpha, with more protection in the group that received IFN-alpha intravenously prior to CCl4 and AFB1. The results of RT-PCR showed that the IFN-alpha gene was significantly expressed in both groups receiving IFN-alpha, with a more intense expression in the group that received IFN-alpha by intrahepatic injection after termination of CCl4 and AFB1 injections. The IFN-alpha gene was detected after three months of gene transduction in rats receiving IFN-alpha intravenously prior to CCl4 and AFB1

  19. Instant Update: Considering the Molecular Mechanisms of Mutation & Natural Selection

    Science.gov (United States)

    Hubler, Tina; Adams, Patti; Scammell, Jonathan

    2015-01-01

    The molecular basis of evolution is an important concept to understand but one that students and teachers often find challenging. This article provides training and guidance for teachers on how to present molecular evolution concepts so that students will associate molecular changes with the evolution of form and function in organisms. Included…

  20. Role of inflammation in the carcinogenesis of colorectal cancer%炎症在结直肠癌发生中的作用机制

    Institute of Scientific and Technical Information of China (English)

    徐春晓; 张艳; 朱益民

    2013-01-01

    结直肠癌是最常见的恶性肿瘤之一.流行病学和分子生物学研究表明炎症和结直肠癌发病之间存在着密切联系.目前关于炎症和结直肠癌发病有关的分子机制研究已有不少报道,但是尚不能完全阐释.若能发现结直肠癌发病的重要炎症基础,则可能为结直肠癌的预防和治疗提供新靶点.本文系统地对结直肠癌发病相关的炎症机制进行综述,以期为以后的进一步研究提供线索.%Colorectal cancer is one of the most common malignant tumors.Previous epidemiological and molecular biological studies have suggested that inflammation plays a pivotal role in the pathogenesis of colorectal cancer.Moreover,many studies have been focused on molecular pathways of inflammation in colorectal cancer.However,the explicit mechanisms involved remain to be fully elucidated.The identification of the key inflammatory mechanisms may provide new targets for intervention and treatment of colorectal cancer.Here we reviewed the inflammatory mechanisms relevant to the carcinogenesis of colorectal cancer,hoping to cast new lights on future research.

  1. A conundrum in molecular toxicology: molecular and biological changes during neoplastic transformation of human cells.

    Science.gov (United States)

    Milo, G E; Shuler, C F; Lee, H; Casto, B C

    1995-12-01

    The process of multistage carcinogenesis lends itself to the concept that the effects of carcinogens are mediated through dose-related, multi-hit, linear changes. Multiple in vitro model systems have been developed that are designed to examine the cellular changes associated with the progression of cells through the different stages in the process; however, these systems may have inherent limitations due to the cell lines used for these studies, the manner of assessing the effects of the carcinogens, and the subsequent growth and differentiation of the exposed cells. Each of these variables results in increasing levels of uncertainty relative to the correlation of the events with the actual process of human tumor development. Therefore, the prediction of the ultimate effect of any carcinogen is difficult. Moreover, relationships between individual biological endpoints resulting from carcinogen treatment appear at best to be approximations. The presence of an activated carcinogen inside the cell can give rise to multiple outcomes, only some of which may be critical events. For example, site-specific modification of the 12th and 13th codons of H-ras is different than that in the adjacent 14th and 15th codons. It is interesting to speculate what effect these differences might have on a biological outcome, e.g., transformation to anchorage-independent growth. The use of different model systems to examine the effects of activated carcinogens also creates additional problems. Comparisons of in vitro transformed cells with similar cells isolated from human tumors indicate that the culture environment appears to influence the expression of a particular phenotype, in that human tumor cells in culture express many of the same parameters as those found in cells transformed with carcinogens in vitro. If the process of transformation is linear, then less aggressive phenotypes should progress to a more aggressive transformed stage. However, in carcinogen-transformed human cells

  2. Adenovirus-expressed preS2 antibody inhibits hepatitis B virus infection and hepatic carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Qian Zhang; Zhi-Qing Li; Hu Liu; Jia-He Yang

    2012-01-01

    AIM: To investigate the inhibitory effect of hepatitis B virus (HBV) preS2 antibody (preS2Ab) against HBV infection and HBV-associated hepatic carcinogenesis. METHODS: An adenoviral vector carrying the fulllength light and heavy chains of the HBV preS2Ab gene, Ad315-preS2Ab, was constructed. Enzyme linked immunosorbent assay (ELISA) and Western blotting analyses were used to determine the preS2Ab expression levels in vitro . Immunofluorescent techniques were used to examine the binding affinity between the expressed HBV preS2Ab and HBV-positive liver cells. ELISAs were also used to determine hepatitis B surface antigen (HBsAg) levels to assess the inhibitory effect of the preS2Ab against HBV infection in L02 cells. The inhibitory effect of preS2Ab against hepatic carcinogenesiswas studied with diethylnitrosamine (DEN)-induced hepatocellular carcinomas (HCCs) in HBV transgenic mice. RESULTS: The expression of HBV preS2Ab increased with increases in the multiplicity of infection (MOI) of Ad315-preS2Ab in L02 cells, with 350.87 ± 17.37 μg/L of preS2Ab when the MOI was 100 plaque forming units (pfu)/cell. The expressed preS2Abs could recognize liver cells from HBV transgenic mice. ELISA results showed that L02 cells expressing preS2Ab produced less HBsAg after treatment with the serum of HBV patients than parental L02 cells expressing no preS2Ab. HBV transgenic mice treated with Ad315-preS2Ab had fewer and smaller cancerous nodes after induction with DEN than mice treated with a blank Ad315 vector or untreated mice. Additionally, the administration of Ad315-preS2Ab could alleviate hepatic cirrhosis and decrease the serum levels of alanine transaminase and aspartate transaminase. CONCLUSION: Adenovirus-mediated HBV preS2Ab expression could inhibit HBV infection in L02 cells, and then inhibit DEN-induced hepatocellular carcinogenesis and protect hepatic function in HBV transgenic mice.

  3. The effect of probiotic microorganisms and bioactive compounds on chemically induced carcinogenesis in rats.

    Science.gov (United States)

    Bertkova, I; Hijova, E; Chmelarova, A; Mojzisova, G; Petrasova, D; Strojny, L; Bomba, A; Zitnan, R

    2010-01-01

    Diet interventions and natural bioactive supplements have now been extensively studied to reduce risks of colon cancer, which is one of the major public health problem throughout the world. The objective of our investigation was to study the effects of probiotic, prebiotic, nutritional plant extract, and plant oil on selected biochemical and immunological parameters in rats with colon cancer induced by N,N dimethylhydrazine (DMH). Male and female Wistar albino rats were were fed by a high-fat (HF) diet (10% fat in the diet) and were divided into 9 groups: Control group; PRO group - HF diet supplemented with probiotic Lactobacillus plantarum to provide 3 x 109 c.f.u. of strain/1 ml of medium; PRE group - HF diet supplemented with inulin enriched with oligofructose (2% of HF diet); HES group - HF diet supplemented with plant extract of Aesculus hippocastanum L. (1% of HF diet); OIL group - HF diet comprised Linioleum virginale (2% of HF diet); and combination of probiotic microorganisms and bioactive compounds in the groups - PRO-PRE, PRO-HES, PRO-OIL, PRE-OIL. Carcinogenesis was initiated with subcutaneous injection of DMH (20 mg/kg) two times at week interval and dietary treatments were continued for the six weeks. Application of probiotic microorganisms and bioactive compounds in all treated groups significantly decreased the activities of bacterial enzymes (p<0.001), the fecal bile acids concentration (p<0.01; p<0.001) and significantly increased serum TNFalpha level (p<0.001) in comparison to the control rats. The number of coliforms was reduced in PRO, PRO-PRE, PRO-OIL and PRE-OIL groups and significantly higher count of lactobacilli (p<0.05) was observed in PRO-PRE, PRO-OIL and PRE-OIL groups in compare with the controls. In conclusion, the results of this study indicate that probiotic microorganisms and bioactive compounds could exert a preventive effect on colon carcinogenesis induced by DMH. PMID:20568896

  4. Inhibitory effects of Zengshengping fractions on DMBA-induced buccal pouch carcinogenesis in hamsters

    Institute of Scientific and Technical Information of China (English)

    GUAN Xiao-bing; SUN Zheng; CHEN Xiao-xin; WU Hong-ru; ZHANG Xin-yan

    2012-01-01

    Background Zengshengping (ZSP) tablets had inhibitory effects on oral precancerous lesions by reducing the incidence of oral cancer.However,the severe liver toxicity caused by systemic administration of ZSP limits the long-term use of this anti-cancer drug.The purpose of this study was to evaluate the tumor inhibitory effects due to the topical application of extracts from ZSP,a Chinese herbal drug,on 7,12-dimethlbenz(a)anthracene (DMBA) induced oral tumors in hamsters.The study also investigated the anti-cancer mechanisms of the ZSP extracts on oral carcinogenesis.Methods DMBA (0.5%) was applied topically to the buccal pouches of Syrian golden hamsters (6-8 weeks old) three times per week for six weeks in order to induce the development of oral tumors.Different fractions of ZSP were either applied topically to the oral tumor lesions or fed orally at varying dosages to animals with oral tumors for 18 weeks.Tumor volume was measured by histopathological examination.Tumor cell proliferation was evaluated by counting BrdU labeled cells and by Western blotting for mitogen-activated protein kinase (MAPK) protein levels.The protein levels of apoptosis marker Caspase-3 and regulator Bcl-2 protein were also measured by Western blotting.Results Topical application of DMBA to the left pouch of hamsters induced oral tumor formation.Animals treated with DMBA showed a loss in body weight while animals treated with ZSP maintained normal body weights.Both the ZSP n-butanol fraction and water fraction significantly reduced tumor volume by 32.6% (P <0.01) and 22.9% (P <0.01)respectively.Topical application of ZSP also markedly decreased the BrdU-positive cell numbers in oral tumor lesions and reduced the expression level of MAPK.In addition,ZSP promoted tumor cell apoptosis by increasing Caspase-3 expression but decreasing Bcl-2 protein production.Conclusion The n-butanol and water fractions of ZSP are effective at inhibiting tumor cell proliferation and stimulating

  5. Multistage Carcinogenesis Modelling of Low and Protracted Radiation Exposure for Risk Assessment

    Science.gov (United States)

    Brugmans, M. J. P.; Bijwaard, H.

    Exposure to cosmic radiation in space poses an increased risk for radiation-induced cancer later in life. Modelling is essential to quantify these excess risks from low and protracted exposures to a mixture of radiation types, since they cannot be determined directly in epidemiological studies. Multistage carcinogenesis models provide a mechanistic basis for the extrapolation of epidemiological data to the regime that is relevant for radiation protection. In recent years, we have exploited the well-known two-mutation carcinogenesis model to bridge the gap between radiobiology and epidemiology. We have fitted this model to a number of animal and epidemiological data sets, using dose-response relationships for the mutational steps that are well established in cellular radiobiology. The methodology and implications for radiation risks are illustrated with analyses of two radiation-induced tumours: bone cancer from internal (high-LET and low-LET) emitters and lung cancer after radon exposure. For the risks of bone-seeking radionuclides (Ra-226, Sr-90, Pu-239), model fits to beagle data show that the dose-effect relationship for bone cancer at low intakes is linear-quadratic. This is due to a combination of equally strong linear dose-effects in the two subsequent mutational steps in the model. This supra-linear dose-effect relationship is also found in a model analysis of bone cancer in radium dial painters. This implies that at low intakes the risks from bone seekers are significantly lower than estimated from a linear extrapolation from high doses. Model analyses of radon-exposed rats and uranium miners show that lung-cancer induction is dominated by a linear radiation effect in the first mutational step. For two miner cohorts with significantly different lung cancer baselines a uniform description of the effect of radon is obtained in a joint analysis. This demonstrates the possibility to model risk transfer across populations. In addition to biologically based risk

  6. Human colon carcinogenesis is associated with increased interleukin-17-driven inflammatory responses

    Directory of Open Access Journals (Sweden)

    Xie Z

    2015-03-01

    Full Text Available Zhaohui Xie,1 Yine Qu,2 Yanli Leng,2 Wenxiu Sun,2 Siqi Ma,2 Jingbo Wei,2 Jiangong Hu,3 Xiaolan Zhang1 1Department of Gastroenterology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China; 2Department of Histology and Embryology, Hebei United University School of Basic Medicine, Tangshan, Hebei, People’s Republic of China; 3Department of Pathology, the Second Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China Abstract: Inflammation is known to contribute to carcinogenesis in human colorectal cancer. Proinflammatory cytokine interleukin-17 (IL-17 or IL-17A has been shown to play a critical role in colon carcinogenesis in mouse models. However, few studies have investigated IL-17A in human colon tissues. In the present study, we assessed IL-17-driven inflammatory responses in 17 cases of human colon adenocarcinomas, 16 cases of human normal colon tissues adjacent to the resected colon adenocarcinomas, ten cases of human ulcerative colitis tissues from biopsies, and eight cases of human colon polyps diagnosed as benign adenomas. We found that human colon adenocarcinomas contained the highest levels of IL-17A cytokine, which was significantly higher than the IL-17A levels in the adenomas, ulcerative colitis, and normal colon tissues (P<0.01. The levels of IL-17 receptor A (IL-17RA were also the highest in human colon adenocarcinomas, followed by adenomas and ulcerative colitis. The increased levels of IL-17A and IL-17RA were accompanied with increased IL-17-driven inflammatory responses, including activation of extracellular signal-regulated kinase (ERK1/2 and c-Jun N-terminal kinase (JNK pathways, increase in expression of matrix metalloproteinase (MMP9, MMP7, MMP2, B-cell lymphoma (Bcl-2, and cyclin D1, decrease in Bcl-2-associated X protein (BAX expression, and increase in vascular endothelial growth factor (VEGF and VEGF receptor (VEGFR expression that

  7. Role of infectious agents in the carcinogenesis of brain and head and neck cancers

    Directory of Open Access Journals (Sweden)

    Alibek Kenneth

    2013-02-01

    Full Text Available Abstract This review concentrates on tumours that are anatomically localised in head and neck regions. Brain cancers and head and neck cancers together account for more than 873,000 cases annually worldwide, with an increasing incidence each year. With poor survival rates at late stages, brain and head and neck cancers represent serious conditions. Carcinogenesis is a multi-step process and the role of infectious agents in this progression has not been fully identified. A major problem with such research is that the role of many infectious agents may be underestimated due to the lack of or inconsistency in experimental data obtained globally. In the case of brain cancer, no infection has been accepted as directly oncogenic, although a number of viruses and parasites are associated with the malignancy. Our analysis of the literature showed the presence of human cytomegalovirus (HCMV in distinct types of brain tumour, namely glioblastoma multiforme (GBM and medulloblastoma. In particular, there are reports of viral protein in up to 100% of GBM specimens. Several epidemiological studies reported associations of brain cancer and toxoplasmosis seropositivity. In head and neck cancers, there is a distinct correlation between Epstein-Barr virus (EBV and nasopharyngeal carcinoma (NPC. Considering that almost every undifferentiated NPC is EBV-positive, virus titer levels can be measured to screen high-risk populations. In addition there is an apparent association between human papilloma virus (HPV and head and neck squamous cell carcinoma (HNSCC; specifically, 26% of HNSCCs are positive for HPV. HPV type 16 was the most common type detected in HNSCCs (90% and its dominance is even greater than that reported in cervical carcinoma. Although there are many studies showing an association of infectious agents with cancer, with various levels of involvement and either a direct or indirect causative effect, there is a scarcity of articles covering the role of

  8. Condutância molecular e biomolecular

    Directory of Open Access Journals (Sweden)

    Gama A. Arnóbio S. da

    2000-01-01

    Full Text Available The concept of molecular conductance is discussed in terms of the propagation of an electronic interaction, between electron donor and acceptor groups, through the bonds of a molecular structure where these groups are embedded. The electronic interaction propagation is described by a Green's function matrix element, in a donor-bridge-acceptor molecular system reduced to a two-level representation.

  9. Apc-Mutant Kyoto Apc Delta (KAD Rats Are Susceptible to 4-NQO-Induced Tongue Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Takuji Tanaka

    2014-07-01

    Full Text Available Despite widening interest in the possible association between infection/ inflammation and cancer development, knowledge of this issue in relation to oral cancer remains inadequate. This study aimed to determine the susceptibility of Apc-mutant Kyoto Apc Delta (KAD rats, which are vulnerable to developing inflammation-associated colorectal carcinogenesis, to 4-nitroquinoline 1-oxide (4-NQO-induced tongue carcinogenesis in order to clarify the role of inflammation in oral cancer. KAD (20 males and 22 females and F344/NS1c (22 males and 23 females rats received drinking water with or without 4-NQO (20 ppm for eight weeks. Histopathological and immunohistochemical analyses of the tongue were performed at week 20. Additionally, the mRNA expression of inflammatory cytokines in the tongue mucosa was determined at week 8. Tongue squamous cell carcinoma (SCC developed in the KAD and F344/NS1c rats that received 4-NQO. Regardless of gender, the incidence and multiplicity of tongue SCC were greater in the KAD rats than in the F344/NS1c rats. In addition, the multiplicity of tongue SCC in the female KAD rats was significantly greater than that observed in the male KAD (p < 0.01 and female F344/NS1c rats (p < 0.05. The levels of inflammation and the mRNA expression of inflammatory cytokines in the tongue in the 4-NQO-treated female KAD rats were the highest among the rats given 4-NQO. These results show that KAD rats, particularly females, are susceptible to 4-NQO-induced tongue carcinogenesis, suggesting the utility of models employing KAD rats for investigating the pathobiology of oral (tongue carcinogenesis associated with inflammation.

  10. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats

    OpenAIRE

    Ye, Qinyuan; Lian, Fuzhi; Chavez, Pollyanna R. G.; Chung, Jayong; Ling, Wenhua; Qin, Hua; Seitz, Helmut K.; Wang, Xiang-Dong

    2012-01-01

    Chronic alcohol ingestion increases hepatic cytochrome P450 2E1 (CYP2E1), which is associated with hepatocarcinogenesis. We investigated whether treatment with chlormethiazole (CMZ), a CYP2E1 inhibitor, protects against alcohol-associated hepatic carcinogenesis in rats. Rats were fed either an ethanol liquid diet or a non-ethanol liquid diet, with or without CMZ for one and ten months. A single intraperitoneal injection of diethylnitrosamine (DEN, 20 mg/kg) was given to initiate hepatic carci...

  11. CD44v6 expression in human skin keratinocytes as a possible mechanism for carcinogenesis associated with chronic arsenic exposure

    OpenAIRE

    Huang, S.; Guo, S.; Guo, F; Yang, Q.; XIAO, X.; Murata, M.; Ohnishi, S.; Kawanishi, S; Ma, N

    2013-01-01

    Inorganic arsenic is a well-known human skin carcinogen. Chronic arsenic exposure results in various types of human skin lesions, including squamous cell carcinoma (SCC). To investigate whether mutant stem cells participate in arsenic-associated carcinogenesis, we repeatedly exposed the human spontaneously immortalized skin keratinocytes (HaCaT) cell line to an environmentally relevant level of arsenic (0.05 ppm) in vitrofor 18 weeks. Following sodium arsenite administration, cell cycle, colo...

  12. Apc-Mutant Kyoto Apc Delta (KAD) Rats Are Susceptible to 4-NQO-Induced Tongue Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Takuji, E-mail: tmntt08@gmail.com [Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-1 Kashima-Cho, Gifu 500-8513 (Japan); Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Shimizu, Masahito; Kochi, Takahiro; Shirakami, Yohei [Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Mori, Takayuki [Department of Pharmacy, Ogaki Municipal Hospital, 4-86 Minaminokawa-cho, Ogaki 503-8502 (Japan); Watanabe, Naoki [Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-1 Kashima-Cho, Gifu 500-8513 (Japan); Naiki, Takafumi [Department of Clinical Laboratory, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu 500-8513 (Japan); Moriwaki, Hisataka [Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Yoshimi, Kazuto; Serikawa, Tadao; Kuramoto, Takashi [The Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501 (Japan)

    2014-07-21

    Despite widening interest in the possible association between infection/inflammation and cancer development, knowledge of this issue in relation to oral cancer remains inadequate. This study aimed to determine the susceptibility of Apc-mutant Kyoto Apc Delta (KAD) rats, which are vulnerable to developing inflammation-associated colorectal carcinogenesis, to 4-nitroquinoline 1-oxide (4-NQO)-induced tongue carcinogenesis in order to clarify the role of inflammation in oral cancer. KAD (20 males and 22 females) and F344/NS1c (22 males and 23 females) rats received drinking water with or without 4-NQO (20 ppm) for eight weeks. Histopathological and immunohistochemical analyses of the tongue were performed at week 20. Additionally, the mRNA expression of inflammatory cytokines in the tongue mucosa was determined at week 8. Tongue squamous cell carcinoma (SCC) developed in the KAD and F344/NS1c rats that received 4-NQO. Regardless of gender, the incidence and multiplicity of tongue SCC were greater in the KAD rats than in the F344/NS1c rats. In addition, the multiplicity of tongue SCC in the female KAD rats was significantly greater than that observed in the male KAD (p < 0.01) and female F344/NS1c rats (p < 0.05). The levels of inflammation and the mRNA expression of inflammatory cytokines in the tongue in the 4-NQO-treated female KAD rats were the highest among the rats given 4-NQO. These results show that KAD rats, particularly females, are susceptible to 4-NQO-induced tongue carcinogenesis, suggesting the utility of models employing KAD rats for investigating the pathobiology of oral (tongue) carcinogenesis associated with inflammation.

  13. Deficiency of CCAAT/enhancer binding protein family DNA binding prevents malignant conversion of adenoma to carcinoma in NNK-induced lung carcinogenesis in the mouse

    OpenAIRE

    Kimura Shioko; Paiz Jorge; Yoneda Mitsuhiro; Kido Taketomo; Vinson Charles; Ward Jerrold M

    2012-01-01

    Abstract Background The CCAAT/enhancer binding proteins (C/EBPs) play important roles in carcinogenesis of many tumors including the lung. Since multiple C/EBPs are expressed in lung, the combinatorial expression of these C/EBPs on lung carcinogenesis is not known. Methods A transgenic mouse line expressing a dominant negative A-C/EBP under the promoter of lung epithelial Clara cell secretory protein (CCSP) gene in doxycycline dependent fashion was subjected to 4-(methylnitrosamino)-1-(3-pyri...

  14. Molecular Pathogenesis and Extraovarian Origin of Epithelial Ovarian Cancer. Shifting the Paradigm

    OpenAIRE

    Kurman, Robert J; Shih, Ie-Ming

    2011-01-01

    Recent morphologic, immunohistochemical and molecular genetic studies have led to the development of a new paradigm for the pathogenesis and origin of epithelial ovarian cancer (EOC) based on a dualistic model of carcinogenesis that divides EOC into two broad categories designated type I and type II. Type I tumors are comprised of low-grade serous, low-grade endometrioid, clear cell and mucinous carcinomas and Brenner tumors. They are generally indolent, present in stage I (tumor confined to ...

  15. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaojun [The Methodist Hospital Research Institute, Houston, TX 77030 (United States); Park, Eunmi [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Fischer, Susan M. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78967 (United States); Hu, Yinling, E-mail: huy2@mail.nih.gov [Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701 (United States)

    2013-02-15

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside.

  16. Strawberry Phytochemicals Inhibit Azoxymethane/Dextran Sodium Sulfate-Induced Colorectal Carcinogenesis in Crj: CD-1 Mice

    Directory of Open Access Journals (Sweden)

    Ni Shi

    2015-03-01

    Full Text Available Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg−1 body weight. One week after injection, mice were administered 2% (w/v dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05. The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease.

  17. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis.

    Science.gov (United States)

    Lesina, Marina; Wörmann, Sonja Maria; Morton, Jennifer; Diakopoulos, Kalliope Nina; Korneeva, Olga; Wimmer, Margit; Einwächter, Henrik; Sperveslage, Jan; Demir, Ihsan Ekin; Kehl, Timo; Saur, Dieter; Sipos, Bence; Heikenwälder, Mathias; Steiner, Jörg Manfred; Wang, Timothy Cragin; Sansom, Owen J; Schmid, Roland Michael; Algül, Hana

    2016-08-01

    Tumor suppression that is mediated by oncogene-induced senescence (OIS) is considered to function as a safeguard during development of pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms that regulate OIS in PDAC are poorly understood. Here, we have determined that nuclear RelA reinforces OIS to inhibit carcinogenesis in the Kras mouse model of PDAC. Inactivation of RelA accelerated pancreatic lesion formation in Kras mice by abrogating the senescence-associated secretory phenotype (SASP) gene transcription signature. Using genetic and pharmacological tools, we determined that RelA activation promotes OIS via elevation of the SASP factor CXCL1 (also known as KC), which activates CXCR2, during pancreatic carcinogenesis. In Kras mice, pancreas-specific inactivation of CXCR2 prevented OIS and was correlated with increased tumor proliferation and decreased survival. Moreover, reductions in CXCR2 levels were associated with advanced neoplastic lesions in tissue from human pancreatic specimens. Genetically disabling OIS in Kras mice caused RelA to promote tumor proliferation, suggesting a dual role for RelA signaling in pancreatic carcinogenesis. Taken together, our data suggest a pivotal role for RelA in regulating OIS in preneoplastic lesions and implicate the RelA/CXCL1/CXCR2 axis as an essential mechanism of tumor surveillance in PDAC. PMID:27454298

  18. Inhibitory effects of polysaccharides isolated from Phellinus gilvus on benzo(a)pyrene-induced forestomach carcinogenesis in mice

    Institute of Scientific and Technical Information of China (English)

    Jae-Sung Bae; Kwang-Ho Jang; Hyunee Yim; Seung-Chun Park; Hee-Kyung Jin

    2005-01-01

    AIM: Although polysaccharides from Phellinus mushrooms are a well-known material with anti-tumor properties, there is no information about the effect of polysaccharides from Phellinus gilvus (PG) on tumor. The modulating effect of polysaccharides isolated from PG on the benzo(a)pyrene (BaP)-induced forestomach carcinogenesis in ICR female mice was investigated in this study.METHODS: A forestomach carcinogenesis model was established in 40 ICR female mice receiving oral administration of BaP for 4 wk. The mice were randomly assigned to 4 groups (10 each). The mice in each group were treated with sterile water or PG for 4 and 8 wk (SW4,PGW4, SW8, and PGW8 groups). Eight or 12 wk after the first dose of BaP, forestomachs were removed for histopathological and RT-PCR analysis.RESULTS: In histopathological changes and RT-PCR analysis, sterile water-treated mice showed significant hyperplasia of the gastric mucosa with a significantly increased expression of mutant p53 mRNA compared to mice treated with PG for 8 wk.CONCLUSION: Polysaccharides isolated from PG may inhibit BaP-induced forestomach carcinogenesis in mice bydown-regulating mutant p53 expression.

  19. Bases moleculares de la cancerización de cavidad oral Molecular basis on oral cavity cancerization

    Directory of Open Access Journals (Sweden)

    M.A. González-Moles

    2008-02-01

    Full Text Available Se presenta una revisión bibliográfica breve sobre los principales aspectos moleculares de interés en la cancerización de cavidad oral. Se hace referencia a los conocimientos más recientes sobre las aberraciones cromosómicas más comunes y las alteraciones de los oncogenes y genes supresores tumorales que están implicados en la carcinogénesis oral. Así mismo, se resume la teoría molecular actual que explica el proceso de cancerización de campo.A review about the main molecular aspects on oral cavity cancerization is presented, with special reference to the common chromosomal aberration, oncogenes and tumour suppressor genes implied in oral carcinogenesis. A summary about molecular theory explaining the field cancerization process is also presented.

  20. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis.

    Science.gov (United States)

    Sivaprakasam, Sathish; Prasad, Puttur D; Singh, Nagendra

    2016-08-01

    Epidemiological studies have linked increased incidence of inflammatory diseases and intestinal cancers in the developed parts of the world to the consumption of diets poor in dietary fibers and rich in refined carbohydrates. Gut bacteria residing in the intestinal lumen exclusively metabolize dietary fibers. Butyrate, propionate and acetate, which are collectively called short-chain fatty acids (SCFAs), are generated by fermentation of dietary fibers by gut microbiota. Evidences indicate that SCFAs are key players in regulating beneficial effect of dietary fibers and gut microbiota on our health. SCFAs interact with metabolite-sensing G protein-coupled receptors GPR41, GPR43 and GPR109A expressed in gut epithelium and immune cells. These interactions induce mechanisms that play a key role in maintaining homeostasis in gut and other organs. This review summarizes the protective roles of GPR41, GPR43 and GPR109A in dietary fibers-, gut microbiota- and SCFAs-mediated suppression of inflammation and carcinogenesis in gut and other organs. PMID:27113407

  1. Jejunitis and brown bowel syndrome with multifocal carcinogenesis of the small bowel.

    Science.gov (United States)

    Raithel, Martin; Rau, Tilman T; Hagel, Alexander F; Albrecht, Heinz; de Rossi, Thomas; Kirchner, Thomas; Hahn, Eckhart G

    2015-09-28

    This is the first report describing a case where prolonged, severe malabsorption from brown bowel syndrome progressed to multifocally spread small bowel adenocarcinoma. This case involves a female patient who was initially diagnosed with chronic jejunitis associated with primary diffuse lymphangiectasia at the age of 26 years. The course of the disease was clinically, endoscopically, and histologically followed for 21 years until her death at the age 47 due to multifocal, metastasizing adenocarcinoma of the small bowel. Multiple lipofuscin deposits (so-called brown bowel syndrome) and severe jejunitis were observed microscopically, and sections of the small bowel showed dense lymphoplasmacytic infiltration of the lamina propria as well as blocked lymphatic vessels. After several decades, multifocal nests of adenocarcinoma cells and extensive, flat, neoplastic mucosal proliferations were found only in the small bowel, along with a loss of the mismatch repair protein MLH1 as a long-term consequence of chronic jejunitis with malabsorption. No evidence was found for hereditary nonpolyposis colon carcinoma syndrome. This article demonstrates for the first time multifocal carcinogenesis in the small bowel in a malabsorption syndrome in an enteritis-dysplasia-carcinoma sequence. PMID:26420973

  2. Protective effects of yacon (Smallanthus sonchifolius) intake on experimental colon carcinogenesis.

    Science.gov (United States)

    de Moura, Nelci A; Caetano, Brunno F R; Sivieri, Kátia; Urbano, Luis H; Cabello, Claudio; Rodrigues, Maria A M; Barbisan, Luis F

    2012-08-01

    Yacon (Smallanthus sonchifolius), a tuberous root native to the Andean region of South America, contains high concentration of fructans with potential for colon cancer prevention. This study investigated the potential beneficial of yacon intake on colon carcinogenesis induced by 1,2-dimethylhydrazine (DMH) in male Wistar rats. After 4 weeks of DMH-initiation, groups were fed basal diet (G1 and G6) or basal diet containing dried extract of yacon root at 0.5% (G2), 1.0% (G3 and G5) or a synbiotic formulation (G4) (1.0% yacon plus Lactobacillus casei at 2.5 × 10(10)CFU per g diet) for 13 weeks. At week 20, a significant reduction in number and multiplicity of aberrant crypt foci (ACF) and in number of invasive adenocarcinomas was observed in the groups orally treated with 1.0% yacon (G3) or the synbiotic formulation (G4) (0.05yacon (G3) or the synbiotic formulation (G4). Therefore, the findings this study indicate that yacon and yacon plus L. casei intake may reduce the development of chemically-induced colon cancer. PMID:22595329

  3. Radiation carcinogenesis. Progress report V, 16 May 1977--15 May 1978

    International Nuclear Information System (INIS)

    Experiments are underway on the cocarcinogenic effects of asbestos and carcinogenic hydrocarbons using rats and mice as test objects. None of the protocols of these experiments have as yet been completed. The study of tumorigenesis in irradiated parabiont rats has been completed. Study of the benign tumors indicates that radiation is an effective neoplastic stimulus for only a limited number of organs and tissues, chiefly ovary, adrenal, mammary tissue, islands of Langerhans, and liver. In general the benign tumors did not seriously affect health, and in only a very few animals did they become malignant. The incidence of malignant tumors in the parabiont series has been tabulated and analyzed. Parabiosis alone appears to increase the incidence of leukemia and solid lymphoid tumors in NEDH rats. Our study of radiation tumorigenesis in the adrenal cortest in the mouse has been completed. The cortex is highly resistant to tumor induction by irradiation. Cortical tumorigenesis is strongly influenced by changes in pituitary and ovarian hormones. Proliferation of capsular ''A'' cells appears to be an important early factor in carcinogenesis. Hormonal imbalance continues to be an important factor in tumorigenesis in the parabiont pairs. If each of a pair of parabiont rats is irradiated sequentially at intervals, 30 days after a lethal dose of radiation is enough to permit the irradiated rat to support its partner through a like dose as effectively as would an unirradiated animal. The transplantable radiation-induced functioning pheochromocytoma and insulinoma of rats continue to be valuable research tools

  4. The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes.

    Science.gov (United States)

    Chung, K T

    1983-04-01

    Azo dyes are widely used in textile, printing, cosmetic, drug and food-processing industries. They are also used extensively in laboratories as either biological stains or pH indicators. The extent of such use is related to the degree of industrialization. Since intestinal cancer is more common in highly industrialized countries, a possible connection may exist between the increase in the number of cancer cases and the use of azo dyes. Azo dyes can be reduced to aromatic amines by the intestinal microflora. The mutagenicity of a number of azo dyes is reviewed in this paper. They include Trypan Blue, Ponceau 3R, Pinceau 2R, Methyl Red, Methyl Yellow, Methyl Orange, Lithol Red, Orange I, Orange II, 4-Phenylazo-Naphthylamine, Sudan I, Sudan IV, Acid Alizarin Violet N, Fast Garnet GBC, Allura Red, Ponceau SX, Sunset Yellow, Tartrazine, Citrus Red No. 2, Orange B, Yellow AB, Carmoisine, Mercury Orange, Ponceau S, Versatint Blue, Phenylazophenol, Evan's Blue and their degraded aromatic amines. The significance of azo reduction in the mutagenesis and carcinogenesis of azo dyes is discussed.

  5. Imbalance between apoptosis and cell proliferation during early stages of mammary gland carcinogenesis in ACI rats

    Energy Technology Data Exchange (ETDEWEB)

    Kutanzi, Kristy R.; Koturbash, Igor [Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4 (Canada); Bronson, Roderick T. [Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 (United States); Pogribny, Igor P., E-mail: igor.pogribny@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Kovalchuk, Olga, E-mail: olga.kovalchuk@uleth.ca [Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4 (Canada)

    2010-12-10

    Estrogen and ionizing radiation are well-documented human breast carcinogens, yet the exact mechanisms of their deleterious effects on mammary gland remain to be discerned. Here we analyze the balance between cellular proliferation and apoptosis in the mammary glands of rats exposed to estrogen and X-ray radiation and the combined action of these carcinogenic agents. For the first time, we show that combined exposure to estrogen and radiation has a synergistic effect on cell proliferation in the mammary glands of ACI rats, as evidenced by a substantially greater magnitude of cell proliferation, especially after 12 and 18 weeks of treatment, when compared to mammary glands of rats exposed to estrogen or radiation alone. We also demonstrate that an imbalance between cell proliferation and apoptosis, rather than enhanced cell proliferation or apoptosis suppression alone, may be a driving force for carcinogenesis. Our studies further suggest that compromised functional activity of p53 may be one of the mechanisms responsible for the proliferation/apoptosis imbalance. In sum, the results of our study indicate that evaluation of the extent of cell proliferation and apoptosis before the onset of preneoplastic lesions may be a potential biomarker of breast cancer risk after exposure to breast carcinogens.

  6. Modeling Lung Carcinogenesis in Radon-Exposed Miner Cohorts: Accounting for Missing Information on Smoking.

    Science.gov (United States)

    van Dillen, Teun; Dekkers, Fieke; Bijwaard, Harmen; Brüske, Irene; Wichmann, H-Erich; Kreuzer, Michaela; Grosche, Bernd

    2016-05-01

    Epidemiological miner cohort data used to estimate lung cancer risks related to occupational radon exposure often lack cohort-wide information on exposure to tobacco smoke, a potential confounder and important effect modifier. We have developed a method to project data on smoking habits from a case-control study onto an entire cohort by means of a Monte Carlo resampling technique. As a proof of principle, this method is tested on a subcohort of 35,084 former uranium miners employed at the WISMUT company (Germany), with 461 lung cancer deaths in the follow-up period 1955-1998. After applying the proposed imputation technique, a biologically-based carcinogenesis model is employed to analyze the cohort's lung cancer mortality data. A sensitivity analysis based on a set of 200 independent projections with subsequent model analyses yields narrow distributions of the free model parameters, indicating that parameter values are relatively stable and independent of individual projections. This technique thus offers a possibility to account for unknown smoking habits, enabling us to unravel risks related to radon, to smoking, and to the combination of both.

  7. HMGA1 drives metabolic reprogramming of intestinal epithelium during hyperproliferation, polyposis, and colorectal carcinogenesis.

    Science.gov (United States)

    Williams, Michael D; Zhang, Xing; Belton, Amy S; Xian, Lingling; Huso, Tait; Park, Jeong-Jin; Siems, William F; Gang, David R; Resar, Linda M S; Reeves, Raymond; Hill, Herbert H

    2015-03-01

    Although significant progress has been made in the diagnosis and treatment of colorectal cancer (CRC), it remains a leading cause of cancer death worldwide. Early identification and removal of polyps that may progress to overt CRC is the cornerstone of CRC prevention. Expression of the High Mobility Group A1 (HMGA1) gene is significantly elevated in CRCs as compared with adjacent, nonmalignant tissues. We investigated metabolic aberrations induced by HMGA1 overexpression in small intestinal and colonic epithelium using traveling wave ion mobility mass spectrometry (TWIMMS) in a transgenic model in which murine Hmga1 was misexpressed in colonic epithelium. To determine if these Hmga1-induced metabolic alterations in mice were relevant to human colorectal carcinogenesis, we also investigated tumors from patients with CRC and matched, adjacent, nonmalignant tissues. Multivariate statistical methods and manual comparisons were used to identify metabolites specific to Hmga1 and CRC. Statistical modeling of data revealed distinct metabolic patterns in Hmga1 transgenics and human CRC samples as compared with the control tissues. We discovered that 13 metabolites were specific for Hmga1 in murine intestinal epithelium and also found in human CRC. Several of these metabolites function in fatty acid metabolism and membrane composition. Although further validation is needed, our results suggest that high levels of HMGA1 protein drive metabolic alterations that contribute to CRC pathogenesis through fatty acid synthesis. These metabolites could serve as potential biomarkers or therapeutic targets.

  8. High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC

    Energy Technology Data Exchange (ETDEWEB)

    Sands, A.T.; Abuin, A. [Baylor Coll. of Medicine, Houston (United States). Dept. of Molecular and Human Genetics; Sanchez, A.; Bradley, A. [Baylor Coll. of Medicine, Houston (United States). Dept. of Molecular and Human Genetics]|[Baylor Coll. of Medicine, Houston (United States). Howard Hughes Medical Inst.; Conti, C.J. [Univ. of Texas (United States). Dept. of Carcinogenesis

    1995-09-14

    Compromise of genetic information by mutation may result in the dysregulation of cellular growth control and subsequent tumour formation. Xeroderma pigmentosum (XP) is a rare autosomal disease characterized by hypersensitivity of the skin to sunlight and >1,000-fold increased risk of skin cancers in sun-exposed parts of the body. Cell fusion studies have revealed eight complementation groups in XP (A-G, and an XP-variant form); group C is one of the most common forms of the disease. We have isolated a mouse homologue of the human gene for XP group C and generated XPC-deficient mice by using embryonic stem cell technology. Mice homozygous for the XPC mutant allele (xpc{sup m1}/xpc{sup m1}) are viable and do not exhibit an increased susceptibility to spontaneous tumour generation at one year of age. However, xpc{sup m1}/xpc{sup m1} mice were found to be highly susceptible to ultraviolet-induced carcinogenesis compared with mice heterozygous for the mutant allele (xpc{sup m1}/+) and wild-type controls. Homozygous xpc{sup m1} mutant mice also display a spectrum of ultraviolet-exposure-related pathological skin and eye changes consistent with the human disease xeroderma pigmentosum group C. (Author).

  9. Modeling Lung Carcinogenesis in Radon-Exposed Miner Cohorts: Accounting for Missing Information on Smoking.

    Science.gov (United States)

    van Dillen, Teun; Dekkers, Fieke; Bijwaard, Harmen; Brüske, Irene; Wichmann, H-Erich; Kreuzer, Michaela; Grosche, Bernd

    2016-05-01

    Epidemiological miner cohort data used to estimate lung cancer risks related to occupational radon exposure often lack cohort-wide information on exposure to tobacco smoke, a potential confounder and important effect modifier. We have developed a method to project data on smoking habits from a case-control study onto an entire cohort by means of a Monte Carlo resampling technique. As a proof of principle, this method is tested on a subcohort of 35,084 former uranium miners employed at the WISMUT company (Germany), with 461 lung cancer deaths in the follow-up period 1955-1998. After applying the proposed imputation technique, a biologically-based carcinogenesis model is employed to analyze the cohort's lung cancer mortality data. A sensitivity analysis based on a set of 200 independent projections with subsequent model analyses yields narrow distributions of the free model parameters, indicating that parameter values are relatively stable and independent of individual projections. This technique thus offers a possibility to account for unknown smoking habits, enabling us to unravel risks related to radon, to smoking, and to the combination of both. PMID:27198876

  10. Role of environmental chemicals, processed food derivatives, and nutrients in the induction of carcinogenesis.

    Science.gov (United States)

    Persano, Luca; Zagoura, Dimitra; Louisse, Jochem; Pistollato, Francesca

    2015-10-15

    In recent years it has been hypothesized that cancer stem cells (CSCs) are the actual driving force of tumor formation, highlighting the need to specifically target CSCs to successfully eradicate cancer growth and recurrence. Particularly, the deregulation of physiological signaling pathways controlling stem cell proliferation, self-renewal, differentiation, and metabolism is currently considered as one of the leading determinants of cancer formation. Given their peculiar, slow-dividing phenotype and their ability to respond to multiple microenvironmental stimuli, stem cells appear to be more susceptible to genetic and epigenetic carcinogens, possibly undergoing mutations resulting in tumor formation. In particular, some animal-derived bioactive nutrients and metabolites known to affect the hormonal milieu, and also chemicals derived from food processing and cooking, have been described as possible carcinogenic factors. Here, we review most recent literature in this field, highlighting how some environmental toxicants, some specific nutrients and their secondary products can induce carcinogenesis, possibly impacting stem cells and their niches, thus causing tumor growth.

  11. Utility of microRNAs and siRNAs in cervical carcinogenesis.

    Science.gov (United States)

    Díaz-González, Sacnite del Mar; Deas, Jessica; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3'-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer. PMID:25874209

  12. Utility of MicroRNAs and siRNAs in Cervical Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Sacnite del Mar Díaz-González

    2015-01-01

    Full Text Available MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3′-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer.

  13. Role of copper accumulation in spontaneous renal carcinogenesis in Long-Evans Cinnamon rats.

    Science.gov (United States)

    Kitaura, K; Chone, Y; Satake, N; Akagi, A; Ohnishi, T; Suzuki, Y; Izumi, K

    1999-04-01

    Spontaneous renal cell tumors in totals of 223 male and female Long-Evans Cinnamon (LEC) rats of 51-120 weeks old, 157 male F344 rats of 51-120 weeks old, and 14 male Long-Evans Agouti (LEA) rats of 51-70 weeks old were examined histologically. The incidences of renal cell tumors increased with age in male and female LEC rats, but no tumors developed in F344 or LEA rats. Dilated atypical tubules of the kidneys were observed at high incidence in aged LEC rats. Copper staining of LEC rat kidneys showed a positive reaction in proximal tubules of the cortex and the outer stripe of the medulla. The renal copper concentration of LEC rats reached a peak in the period of necrotizing hepatitis with renal tubular necrosis, and was higher than that in F344 rats for up to 106 weeks. In contrast, the renal iron concentration of LEC rats was lower than that in F344 rats except in the period of necrotizing hepatitis. Long-term treatment of LEC rats with D-penicillamine, a copper-chelating agent, inhibited accumulation of copper, but not iron, in the kidneys, and inhibited the development of karyomegaly of proximal tubules and dilated atypical tubules. These results suggest that persistent copper accumulation after toxic necrosis of tubules is the major cause of spontaneous renal carcinogenesis in LEC rats.

  14. Evolution of Tumor Metabolism might Reflect Carcinogenesis as a Reverse Evolution process (Dismantling of Multicellularity)

    Energy Technology Data Exchange (ETDEWEB)

    Alfarouk, Khalid O., E-mail: Alfarouk@Hala-alfarouk.org [Department of Evolution of Tumor Metabolism and Pharmacology, Hala Alfarouk Cancer Center, Khartoum 11123 (Sudan); Shayoub, Mohammed E.A. [Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111 (Sudan); Muddathir, Abdel Khalig [Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum 11111 (Sudan); Elhassan, Gamal O. [General Directorate of Pharmacy, Federal Ministry of Health, Khartoum 11111 (Sudan); Bashir, Adil H.H. [Department of Evolution of Tumor Metabolism and Pharmacology, Hala Alfarouk Cancer Center, Khartoum 11123 (Sudan); Al Jawda Medical Hospital, Khartoum 11111 (Sudan)

    2011-07-22

    Carcinogenesis occurs through a series of steps from normal into benign and finally malignant phenotype. This cancer evolutionary trajectory has been accompanied by similar metabolic transformation from normal metabolism into Pasteur and/or Crabtree-Effects into Warburg-Effect and finally Cannibalism and/or Lactate-Symbiosis. Due to lactate production as an end-product of glycolysis, tumor colonies acquire new phenotypes that rely on lactate as energetic fuel. Presence of Warburg-Effect indicates that some tumor cells undergo partial (if not complete) de-endosymbiosis and so cancer cells have been become unicellular microorganism (anti-Dollo's Law) specially when they evolve to develop cannibalism as way of metabolism while oxidative types of cells that rely on lactate, as their energetic fuel, might represent extra-endosymbiosis. Thus, at the end, the cancer colony could be considered as integrated metabolic ecosystem. Proper understanding of tumor metabolism will contribute to discover potential anticancer agents besides conventional chemotherapy.

  15. Mutation detection of E6 and LCR genes from HPV 16 associated with carcinogenesis.

    Science.gov (United States)

    Mosmann, Jessica P; Monetti, Marina S; Frutos, Maria C; Kiguen, Ana X; Venezuela, Raul F; Cuffini, Cecilia G

    2015-01-01

    Human papillomavirus (HPV) is responsible for one of the most frequent sexually transmitted infections. The first phylogenetic analysis was based on a LCR region fragment. Nowadays, 4 variants are known: African (Af-1, Af-2), Asian-American (AA) and European (E). However the existence of sub-lineages of the European variant havs been proposed, specific mutations in the E6 and LCR sequences being possibly related to persistent viral infections. The aim of this study was a phylogenetic study of HPV16 sequences of endocervical samples from Cordoba, in order to detect the circulating lineages and analyze the presence of mutations that could be correlated with malignant disease. The phylogenetic analysis determined that 86% of the samples belonged to the E variant, 7% to AF-1 and the remaining 7% to AF-2. The most frequent mutation in LCR sequences was G7521A, in 80% of the analyzed samples; it affects the binding site of a transcription factor that could contribute to carcinogenesis. In the E6 sequences, the most common mutation was T350G (L83V), detected in 67% of the samples, associated with increased risk of persistent infection. The high detection rate of the European lineage correlated with patterns of human migration. This study emphasizes the importance of recognizing circulating lineages, as well as the detection of mutations associated with high-grade neoplastic lesions that could be correlated to the development of carcinogenic lesions. PMID:25735347

  16. Effect of evening primrose and fish oils on two stage skin carcinogenesis in mice.

    Science.gov (United States)

    Ramesh, G; Das, U N

    1998-09-01

    The effect of fish oil (FO, given in the form of MaxEPA) rich in n-3 fatty acids and evening primrose oil (EPO) rich in n-6 fatty acids on two-stage skin carcinogenesis in mice was studied. Both FO and EPO inhibited the papilloma formation to a significant degree only during the promotion stage which was associated with an increase in lipid peroxidation. Both FO and EPO inhibited the binding of benzo(a)-pyrene to skin cell DNA suggesting that this could be one of the mechanism(s) by which these oils could be preventing papilloma development. Neither EPO nor FO influenced epidermal cell proliferation. In the FO group, LA (linoleic acid), AA (arachidonic acid) and DHA (docosahexaenoic acid) were increased, whereas in the EPO group a significant increase in the AA content was noted. No specific changes in the fatty acid pattern were observed in any of the groups that could be attributed to the papilloma incidence. These results suggest that FO and EPO can influence papilloma formation which can be attributed, at least in part, to their ability to prevent benzo(a)pyrene binding to DNA and to an increase the lipid peroxidation process. PMID:9844986

  17. The Potential Protective Effects of Polyphenols in Asbestos-Mediated Inflammation and Carcinogenesis of Mesothelium.

    Science.gov (United States)

    Benvenuto, Monica; Mattera, Rosanna; Taffera, Gloria; Giganti, Maria Gabriella; Lido, Paolo; Masuelli, Laura; Modesti, Andrea; Bei, Roberto

    2016-01-01

    Malignant Mesothelioma (MM) is a tumor of the serous membranes linked to exposure to asbestos. A chronic inflammatory response orchestrated by mesothelial cells contributes to the development and progression of MM. The evidence that: (a) multiple signaling pathways are aberrantly activated in MM cells; (b) asbestos mediated-chronic inflammation has a key role in MM carcinogenesis; (c) the deregulation of the immune system might favor the development of MM; and (d) a drug might have a better efficacy when injected into a serous cavity thus bypassing biotransformation and reaching an effective dose has prompted investigations to evaluate the effects of polyphenols for the therapy and prevention of MM. Dietary polyphenols are able to inhibit cancer cell growth by targeting multiple signaling pathways, reducing inflammation, and modulating immune response. The ability of polyphenols to modulate the production of pro-inflammatory molecules by targeting signaling pathways or ROS might represent a key mechanism to prevent and/or to contrast the development of MM. In this review, we will report the current knowledge on the ability of polyphenols to modulate the immune system and production of mediators of inflammation, thus revealing an important tool in preventing and/or counteracting the growth of MM. PMID:27171110

  18. Rat Urinary Bladder Carcinogenesis by Dual-Acting PPARα+γ Agonists

    Directory of Open Access Journals (Sweden)

    Martin B. Oleksiewicz

    2008-01-01

    Full Text Available Despite clinical promise, dual-acting activators of PPARα and γ (here termed PPARα+γ agonists have experienced high attrition rates in preclinical and early clinical development, due to toxicity. In some cases, discontinuation was due to carcinogenic effect in the rat urothelium, the epithelial layer lining the urinary bladder, ureters, and kidney pelvis. Chronic pharmacological activation of PPARα is invariably associated with cancer in rats and mice. Chronic pharmacological activation of PPARγ can in some cases also cause cancer in rats and mice. Urothelial cells coexpress PPARα as well as PPARγ, making it plausible that the urothelial carcinogenicity of PPARα+γ agonists may be caused by receptor-mediated effects (exaggerated pharmacology. Based on previously published mode of action data for the PPARα+γ agonist ragaglitazar, and the available literature about the role of PPARα and γ in rodent carcinogenesis, we propose a mode of action hypothesis for the carcinogenic effect of PPARα+γ agonists in the rat urothelium, which combines receptor-mediated and off-target cytotoxic effects. The proposed mode of action hypothesis is being explored in our laboratories, towards understanding the human relevance of the rat cancer findings, and developing rapid in vitro or short-term in vivo screening approaches to faciliate development of new dual-acting PPAR agonist compounds.

  19. Inhibition of Bladder Tumor Growth by Chitooligosaccharides in an Experimental Carcinogenesis Model

    Directory of Open Access Journals (Sweden)

    João C. Fernandes

    2012-11-01

    Full Text Available Urinary bladder cancer is one of the most common cancers worldwide, with the highest incidence in industrialized countries. Patients with cancer commonly use unconventional and complementary therapy including nutraceuticals. In this study we evaluated the efficacy of chitooligosaccharides (in orange juice in rat bladder cancer chemoprevention and as therapeutic agent, on a rat model of urinary bladder carcinogenesis induced with N-butyl-N-(4-hydroxybutyl nitrosamine. Results indicate that chitooligosaccharides may have a preventive effect on bladder cancer development and a curative effect upon established bladder tumors, dependent on the concentration ingested 500 mg/kg b.w., every three days, showed capacity to inhibit and prevent the proliferation of bladder cancer; however, this was associated with secondary effects such as hypercholesterolemia and hypertriglyceridemia. The use of lower doses (50 and 250 mg/kg b.w. showed only therapeutic effects. It is further suggested that this antitumor effect might be due to its expected anti-inflammatory action, as well as by mechanisms not directly dependent of COX-2 inhibition, such as cellular proliferation control and improvement in antioxidant profile.

  20. Reducing the weight of cancer: mechanistic targets for breaking the obesity-carcinogenesis link.

    Science.gov (United States)

    Hursting, Stephen D; Lashinger, Laura M; Wheatley, Karrie W; Rogers, Connie J; Colbert, Lisa H; Nunez, Nomeli P; Perkins, Susan N

    2008-08-01

    The prevalence of obesity, an established epidemiologic risk factor for many cancers, has risen steadily for the past several decades in the US. The increasing rates of obesity among children are especially alarming and suggest continuing increases in the rates of obesity-related cancers for many years to come. Unfortunately, the mechanisms underlying the association between obesity and cancer are not well understood. In particular, the effects on the carcinogenesis process and mechanistic targets of interventions that modulate energy balance, such as reduced-calorie diets and physical activity, have not been well characterized. The purpose of this review is to provide a strong foundation for the translation of mechanism-based research in this area by describing key animal and human studies of energy balance modulations involving diet or physical activity and by focusing on the interrelated pathways affected by alterations in energy balance. Particular attention is placed on signaling through the insulin and insulin-like growth factor-1 receptors, including components of the Akt and mammalian target of rapamycin (mTOR) signaling pathways downstream of these growth factor receptors. These pathways have emerged as potential targets for disrupting the obesity-cancer link. The ultimate goal of this work is to provide the missing mechanistic information necessary to identify targets for the prevention and control of cancers related to or caused by excess body weight.

  1. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis.

    Science.gov (United States)

    Liu, Zhenyi; Brunskill, Eric; Varnum-Finney, Barbara; Zhang, Chi; Zhang, Andrew; Jay, Patrick Y; Bernstein, Irv; Morimoto, Mitsuru; Kopan, Raphael

    2015-07-15

    Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals. PMID:26062937

  2. Fifty years of tobacco carcinogenesis research: from mechanisms to early detection and prevention of lung cancer.

    Science.gov (United States)

    Hecht, Stephen S; Szabo, Eva

    2014-01-01

    The recognition of the link between cigarette smoking and lung cancer in the 1964 Surgeon General's Report initiated definitive and comprehensive research on the identification of carcinogens in tobacco products and the relevant mechanisms of carcinogenesis. The resultant comprehensive data clearly illustrate established pathways of cancer induction involving carcinogen exposure, metabolic activation, DNA adduct formation, and consequent mutation of critical genes along with the exacerbating influences of inflammation, cocarcinogenesis, and tumor promotion. This mechanistic understanding has provided a framework for the regulation of tobacco products and for the development of relevant tobacco carcinogen and toxicant biomarkers that can be applied in cancer prevention. Simultaneously, the recognition of the link between smoking and lung cancer paved the way for two additional critical approaches to cancer prevention that are discussed here: detection of lung cancer at an early, curable stage, and chemoprevention of lung cancer. Recent successes in more precisely identifying at-risk populations and in decreasing lung cancer mortality with helical computed tomography screening are notable, and progress in chemoprevention continues, although challenges with respect to bringing these approaches to the general population exist. Collectively, research performed since the 1964 Report demonstrates unequivocally that the majority of deaths from lung cancer are preventable.

  3. Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective.

    Science.gov (United States)

    Feng, Hui-Yi; Chen, Yang-Chao

    2016-09-01

    The role of bile acids in colorectal cancer has been well documented, but their role in pancreatic cancer remains unclear. In this review, we examined the risk factors of pancreatic cancer. We found that bile acids are associated with most of these factors. Alcohol intake, smoking, and a high-fat diet all lead to high secretion of bile acids, and bile acid metabolic dysfunction is a causal factor of gallstones. An increase in secretion of bile acids, in addition to a long common channel, may result in bile acid reflux into the pancreatic duct and to the epithelial cells or acinar cells, from which pancreatic adenocarcinoma is derived. The final pathophysiological process is pancreatitis, which promotes dedifferentiation of acinar cells into progenitor duct-like cells. Interestingly, bile acids act as regulatory molecules in metabolism, affecting adipose tissue distribution, insulin sensitivity and triglyceride metabolism. As a result, bile acids are associated with three risk factors of pancreatic cancer: obesity, diabetes and hypertriglyceridemia. In the second part of this review, we summarize several studies showing that bile acids act as cancer promoters in gastrointestinal cancer. However, more question are raised than have been solved, and further oncological and physiological experiments are needed to confirm the role of bile acids in pancreatic cancer carcinogenesis. PMID:27672269

  4. Helicobacter pylori in tonsillar and adenoid tissue and its possible role in oropharyngeal carcinogenesis.

    Science.gov (United States)

    Lukes, P; Astl, J; Pavlík, E; Potuzníková, B; Sterzl, I; Betka, J

    2008-01-01

    Helicobacter pylori is a well-known gastric pathogen. It plays a major role in the pathogenesis of chronic gastritis, duodenal and gastric ulcers, adenocarcinoma and gastric lymphoma. HP infection is one of the most common bacterial infections worldwide. Recently, the oral cavity was proposed as an extragastric reservoir of HP infection. HP was detected by culture and PCR in both dental plaque and saliva. It is supposed that HP infection can cause the same immunological changes in the oropharyngeal mucosa as in gastric mucosa and can also contribute to the progression of oropharyngeal diseases. HP can induce production of different cytokines and regulatory molecules, which are suggested to play a role in carcinogenesis of the oropharynx. Only a few studies have explored the presence of HP in tonsillar and adenoid tissue, where MALT is present similar to the gastric mucosa. The results of these studies were inconsistent. The question of persistence of HP in tonsillar and adenoid tissue and its role in the pathogenesis of oropharyngeal diseases still remains unclear. In this review, recent findings about oral HP are considered. Possibilities of diagnostics of HP in oral specimens are discussed. PMID:18498719

  5. Inhibition of chemically induced carcinogenesis by drugs used in homeopathic medicine.

    Science.gov (United States)

    Kumar, K B Hari; Sunila, E S; Kuttan, Girija; Preethi, K C; Venugopal, C Nimita; Kuttan, Ramadasan

    2007-01-01

    Homeopathy is considered as one modality for cancer therapy. However, there are only very few clinical reports on the activity of the drugs, as well as in experimental animals. Presently we have evaluated the inhibitory effects of potentized homeopathic preparations against N'-nitrosodiethylamine (NDEA) induced hepatocellular carcinoma in rats as well as 3-methylcholanthrene-induced sarcomas in mice. We have used Ruta, Hydrastis, Lycopodium and Thuja, which are commonly employed in homeopathy for treating cancer. Administration of NDEA in rats resulted in tumor induction in the liver and elevated marker enzymes such as gamma-glutamyl transpeptidase, glutamate pyruvate transaminase, glutamate oxaloacetate transaminase and alkaline phosphatase in the serum and in liver. Concomitant administration of homeopathic drugs retarded the tumor growth and significantly reduced the elevated marker enzymes level as revealed by morphological, biochemical and histopathological evaluation. Out of the four drugs studied, Ruta 200c showed maximum inhibition of liver tumor development. Ruta 200c and phosphorus 1M were found to reduce the incidence of 3-methylcholanthrene-induced sarcomas and also increase the life span of mice harboring the tumours. These studies demonstrate that homeopathic drugs, at ultra low doses, may be able to decrease tumor induction by carcinogen administration. At present we do not know the mechanisms of action of these drugs useful against carcinogenesis. PMID:17477781

  6. Medical radiation exposure and human carcinogenesis-genetic and epigenetic mechanisms.

    Science.gov (United States)

    Dincer, Yildiz; Sezgin, Zeynep

    2014-09-01

    Ionizing radiation (IR) is a potential carcinogen. Evidence for the carcinogenic effect of IR radiation has been shown after long-term animal investigations and observations on survivors of the atom bombs in Hiroshima and Nagasaki. However, IR has been widely used in a controlled manner in the medical imaging for diagnosis and monitoring of various diseases and also in cancer therapy. The collective radiation dose from medical imagings has increased six times in the last two decades, and grow continuously day to day. A large number of evidence has revealed the increased cancer risk in the people who had frequently exposed to x-rays, especially in childhood. It has also been shown that secondary malignancy may develop within the five years in cancer survivors who have received radiotherapy, because of IR-mediated damage to healthy cells. In this article, we review the current knowledge about the role of medical x-ray exposure in cancer development in humans, and recently recognized epigenetic mechanisms in IR-induced carcinogenesis. PMID:25256861

  7. Do Alterations in Mitochondrial DNA Play a Role in Breast Carcinogenesis?

    Directory of Open Access Journals (Sweden)

    Thomas E. Rohan

    2010-01-01

    Full Text Available A considerable body of evidence supports a role for oxidative stress in breast carcinogenesis. Due to their role in producing energy via oxidative phosphorylation, the mitochondria are a major source of production of reactive oxygen species, which may damage DNA. The mitochondrial genome may be particularly susceptible to oxidative damage leading to mitochondrial dysfunction. Genetic variants in mtDNA and nuclear DNA may also contribute to mitochondrial dysfunction. In this review, we address the role of alterations in mtDNA in the etiology of breast cancer. Several studies have shown a relatively high frequency of mtDNA mutations in breast tumor tissue in comparison with mutations in normal breast tissue. To date, several studies have examined the association of genetic variants in mtDNA and breast cancer risk. The G10398A mtDNA polymorphism has received the most attention and has been shown to be associated with increased risk in some studies. Other variants have generally been examined in only one or two studies. Genome-wide association studies may help identify new mtDNA variants which modify breast cancer risk. In addition to assessing the main effects of specific variants, gene-gene and gene-environment interactions are likely to explain a greater proportion of the variability in breast cancer risk.

  8. Radionuclides in cigarettes may lead to carcinogenesis via p16{sup INK4a} inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Prueitt, Robyn L.; Goodman, Julie E. [Gradient Corporation, 20 University Road, Cambridge, MA 02138 (United States); Valberg, Peter A. [Gradient Corporation, 20 University Road, Cambridge, MA 02138 (United States)], E-mail: pvalberg@gradientcorp.com

    2009-02-15

    It is widely accepted that tobacco smoke is responsible for the vast majority of lung cancers worldwide. There are many known and suspected carcinogens present in cigarette smoke, including {alpha}-emitting radioisotopes. Epidemiologic studies have shown that increased lung cancer risk is associated with exposure to ionizing radiation, and it is estimated that the majority of smoking-induced lung cancers may be at least partly attributable to the inhaled and deposited radiation dose from radioisotopes in the cigarette smoke itself. Recent research shows that silencing of the tumor suppressor gene p16{sup INK4a} (p16) by promoter methylation plays a role in smoking-related lung cancer. Inactivation of p16 has also been associated with lung cancer incidence in radiation-exposed workers, suggesting that radionuclides in cigarette smoke may be acting with other compounds to cause smoking-induced lung cancer. We evaluated the mechanism of ionizing radiation as an accepted cause of lung cancer in terms of its dose from tobacco smoke and silencing of p16. Because both radiation and cigarette smoking are associated with inactivation of p16, and p16 inactivation has been shown to play a major role in carcinogenesis, ionizing radiation from cigarette smoke likely plays a role in lung cancer risk. How large a role it plays, relative to chemical carcinogens and other modes of action, remains to be elucidated.

  9. Evolution of Tumor Metabolism might Reflect Carcinogenesis as a Reverse Evolution process (Dismantling of Multicellularity

    Directory of Open Access Journals (Sweden)

    Adil H.H. Bashir

    2011-07-01

    Full Text Available Carcinogenesis occurs through a series of steps from normal into benign and finally malignant phenotype. This cancer evolutionary trajectory has been accompanied by similar metabolic transformation from normal metabolism into Pasteur and/or Crabtree-Effects into Warburg-Effect and finally Cannibalism and/or Lactate-Symbiosis. Due to lactate production as an end-product of glycolysis, tumor colonies acquire new phenotypes that rely on lactate as energetic fuel. Presence of Warburg-Effect indicates that some tumor cells undergo partial (if not complete de-endosymbiosis and so cancer cells have been become unicellular microorganism (anti-Dollo’s Law specially when they evolve to develop cannibalism as way of metabolism while oxidative types of cells that rely on lactate, as their energetic fuel, might represent extra-endosymbiosis. Thus, at the end, the cancer colony could be considered as integrated metabolic ecosystem. Proper understanding of tumor metabolism will contribute to discover potential anticancer agents besides conventional chemotherapy.

  10. EXPRESSION OF P16 AND CYCLIN D1 IN THE COURSE OF CARCINOGENESIS OF THE STOMACH

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-long; XU Feng; LI Yan-jie

    1999-01-01

    Objective: To determine p16 and cyclin D1 expression in the specimen of gastric carcinoma, atypic hyperplasia, atrophic gastritis, superficial gastritis and normal gastric mucosa. Methods: Using immunohistochemical method (ABC), the samples of 58 adenocarcinomas, 22 atypic hyperplasias, 28 atrophic gastritis,27 superficial gastritis and 15 gastric epitheliums were analyzed. Results: Positive immunostaining rate for p16 protein was the highest in normal gastric mucosa and decreased with the lesions progressing from superficial gastritis to atrophic gastritis to atypital hyperplasia and to adenocarcinoma (85%, 78.6%, 31.8%,48.3% respectively); Positive immunostaining of cyclin D1 can observed in atrophic gastritis. With the lesions progressing from atrophic gastritis to atypical hyperplasia to adenocarcinoma, its expression rate increased (17.9%, 36.4%, 53.4% respectively), and there was a significant difference between adenocarcinoma and atrophic gastritis group (P<0.05). An interesting observation was that inverse expression between p16and cyclin D1, was shown in most of gastric cancer detected. Conclusion: It is indicated that p16 and cyclin D1 play an important role in the gastric carcinogenesis, the inverse expression between p16 and cyclin D1 suggested that there is a suppression trend in them.

  11. Melatonin attenuates lipid peroxidation and enhances circulatory antioxidants during mammary carcinogenesis in rats

    Directory of Open Access Journals (Sweden)

    Sankaran Mirunalini

    2010-08-01

    Full Text Available The possible protective effect of Melatonin was investigated for its antioxidant and lipid peroxidation activity against 7,12-dimethylbenz(aanthracene (DMBA induced mammary carcinogenesis in female albino Wistar rats. Mammary tumor was developed to the animals by administering 5mg/kg body weight of DMBA orally at weekly intervals for one month. Intraperitoneal administration of melatonin 5mg/ml per animals for 15 days prior to the first oral administration of DMBA was continued for a month. After the experimental period, oxidative stress parameters were assessed in plasma of both control and experimental groups. A significant increase in lipid peroxidation levels were observed in cancer induced rats while the activities of enzymic and non-enzymic antioxidants were decreased in cancer-bearing animals when compared to control animals. Administration of melatonin remarkably reduced the lipid peroxidation activity and increased the antioxidants level in drug treated animals. This result suggests that melatonin shows antioxidant activity and play a protective role against 7, 12-dimethylbenz(aanthracene induced breast cancer. The inhibitory effect of melatonin on tumor cells and its lack of side–effects, indicate that melatonin should be considered as an adjuvant drug in the treatment of neoplastic diseases.

  12. Immunological and Biochemical Markers in Oral Carcinogenesis: The Public Health Perspective

    Directory of Open Access Journals (Sweden)

    Sunali Khanna

    2008-12-01

    Full Text Available Oral health is an integral component of general health and well being and a basic human right. Dental public health is probably the most challenging specialty of dentistry. Because of the lack of adequate resources among other factors, many people are likely to suffer from dental diseases. Despite great improvements in the oral health status of populations across the world, the burden and impact of dental diseases are still high. This is particularly true among underprivileged groups in both developed and developing communities. Oral diseases and conditions, including oral cancer, oral manifestations of HIV/AIDS, dental trauma, craniofacial anomalies, and noma, all have broad impacts on health and well-being. Oral cancer, the sixth most common cancer worldwide continues to be most prevalent cancer related to the consumption of tobacco, alcohol and other carcinogenic products. Nevertheless, significant reduction in mortality can be achieved by advances in early diagnosis and implementation of multidisciplinary treatment programs leading to improvement of survivorship and better quality of life. The present study was designed to evaluate the immunologic and biochemical markers in oral carcinogenesis using circulating immune complexes (CIC, copper, iron, and selenium concentrations as assessment endpoints. Study results indicated an increase in CIC and copper levels, and a decrease in iron and selenium concentrations in oral cancer patients compared to controls. The implications of these findings for public health are discussed.

  13. Role of nitric oxide in the pathogenesis ofBarrett's-associated carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Barrett's esophagus (BE), a premalignant condition toBarrett's adenocarcinoma (BAC), is closely associatedwith chronic inflammation due to gastro-esophagealreflux. Caudal type homeobox 2 (CDX2), a representativemarker of BE, is increased during the metaplasticand neoplastic transformation of BE. Nitric oxide (NO)has been proposed to be a crucial mediator of Barrett'scarcinogenesis. We previously demonstrated that CDX2 might be induced directly under stimulation oflarge amounts of NO generated around the gastroesophagealjunction (GEJ) by activating epithelial growthfactor receptor in a ligand-independent manner. Thus,we reviewed recent developments on the role of NOin Barrett's carcinogenesis. Notably, recent studieshave reported that microbial communities in the distalesophagus are significantly different among groupswith a normal esophagus, reflux esophagitis, BE orBAC, despite there being no difference in the bacterialquantity. Considering that microorganism componentscan be one of the major sources of large amounts ofNO, these studies suggest that the bacterial compositionin the distal esophagus might play an important rolein regulating NO production during the carcinogenicprocess. Controlling an inflammatory reaction due togastro-esophageal reflux or bacterial composition aroundthe GEJ might help prevent the progression of Barrett'scarcinogenesis by inhibiting NO production.

  14. The Marketing Concept

    OpenAIRE

    G. Nazan Gunay

    2001-01-01

    Since the term "Market Orientation" is recognised as the critical factor in business success there has been an overwhelming increase in research issues linking market orientation with company performance. The term market orientation has been employed by scholars to indicate the implementation of the marketing concept. In order to understand market orientation, one believes that there is a need to recall what the marketing concept is. Therefore, this study reviews the "marketing concept" as a ...

  15. The concept of employability

    OpenAIRE

    McQuaid, Ronald W.; Lindsay, Colin Dale

    2005-01-01

    The concept of ‘employability’ plays a crucial role in informing labour market policy in the UK, the EU and beyond. This paper analyses current and previous applications of the term and discusses its value as an exploratory concept and a framework for policy analysis. It then traces the development of the concept, discusses its role in current labour market and training strategies (with particular reference to the UK) and seeks to identify an approach to defining employability that can better...

  16. Fragment oriented molecular shapes.

    Science.gov (United States)

    Hain, Ethan; Camacho, Carlos J; Koes, David Ryan

    2016-05-01

    Molecular shape is an important concept in drug design and virtual screening. Shape similarity typically uses either alignment methods, which dynamically optimize molecular poses with respect to the query molecular shape, or feature vector methods, which are computationally less demanding but less accurate. The computational cost of alignment can be reduced by pre-aligning shapes, as is done with the Volumetric-Aligned Molecular Shapes (VAMS) method. Here, we introduce and evaluate fragment oriented molecular shapes (FOMS), where shapes are aligned based on molecular fragments. FOMS enables the use of shape constraints, a novel method for precisely specifying molecular shape queries that provides the ability to perform partial shape matching and supports search algorithms that function on an interactive time scale. When evaluated using the challenging Maximum Unbiased Validation dataset, shape constraints were able to extract significantly enriched subsets of compounds for the majority of targets, and FOMS matched or exceeded the performance of both VAMS and an optimizing alignment method of shape similarity search. PMID:27085751

  17. Modeling concept drift

    DEFF Research Database (Denmark)

    Borchani, Hanen; Martinez, Ana Maria; Masegosa, Andrés R.;

    2015-01-01

    graphical models, that explicitly represents concept drift using latent variables. To ensure efficient inference and learning, we re- sort to a variational Bayes inference scheme. As a proof of concept, we demonstrate and analyze the proposed framework using synthetic data sets as well as a real financial......An often used approach for detecting and adapting to concept drift when doing classification is to treat the data as i.i.d. and use changes in classification accuracy as an indication of concept drift. In this paper, we take a different perspective and propose a framework, based on probabilistic...

  18. Fundamental concepts of geometry

    CERN Document Server

    Meserve, Bruce E

    1983-01-01

    Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.

  19. Magnetismo Molecular (Molecular Magentism)

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Mario S [Universidade Federal Fluminense, Brasil; Moreira Dos Santos, Antonio F [ORNL

    2010-07-01

    The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

  20. Molecular Information Technology

    OpenAIRE

    Zauner, Klaus-Peter

    2005-01-01

    Molecular materials are endowed with unique properties of unrivaled potential for high density integration of computing systems. Present applications of molecules range from organic semiconductor materials for low-cost circuits to genetically modified proteins for commercial imaging equipment. To fully realize the potential of molecules in computation, information processing concepts that relinquish narrow prescriptive control over elementary structures and functions are needed, and self-orga...

  1. Children's Conceptions of Jesus

    Science.gov (United States)

    Aylward, Karen; Freathy, Rob

    2008-01-01

    This paper presents findings from a recent study investigating young children's (aged 10-11) conceptions of Jesus in England. The overall picture revealed by the study is that whilst there was a general assent amongst pupils in our sample towards an ethical and humanistic conception of the historical Jesus, there was less of a consensus about…

  2. Kierkegaard's concepts: Hypocrisy

    DEFF Research Database (Denmark)

    Fauth Hansen, Thomas Martin

    2014-01-01

    Kierkegaard’s Concepts is a comprehensive, multi-volume survey of the key concepts and categories that inform Kierkegaard’s writings. Each article is a substantial, original piece of scholarship, which discusses the etymology and lexical meaning of the relevant Danish term, traces the development...

  3. Badminton--Teaching Concepts.

    Science.gov (United States)

    Gibbs, Marilyn J.

    1988-01-01

    Teaching four basic badminton concepts along with the usual basic skill shots allows players to develop game strategy awareness as well as mechanical skills. These four basic concepts are: (1) ready position, (2) flight trajectory, (3) early shuttle contact, and (4) camouflage. (IAH)

  4. Data Transmission Concepts.

    Science.gov (United States)

    Christenson, Chris

    1995-01-01

    Introduces some basic concepts related to the transmission of data from a computer to its peripherals to help distance educators make decisions regarding computer equipment purchases for their institutions. The following data transmission concepts are described: cables, serial and parallel, synchronous and asynchronous, bandwidth, and analog and…

  5. Concepts of Human Security

    NARCIS (Netherlands)

    D.R. Gasper (Des)

    2011-01-01

    markdownabstract__Abstract__ Concepts of human security have been debated and disputed at length during the past twenty years or more. Many lists of definitions exist and various comparative analyses of definitions.1 These reveal not a single concept but a family with many variants, all of which mi

  6. Hedging structured concepts

    NARCIS (Netherlands)

    W.M. Koolen; M.K. Warmuth; J. Kivinen

    2010-01-01

    We develop an online algorithm called Component Hedge for learning structured concept classes when the loss of a structured concept sums over its components. Example classes include paths through a graph (composed of edges) and partial permutations (composed of assignments). The algorithm maintains

  7. The LDC detector concept

    Indian Academy of Sciences (India)

    Ties Behnke; LDC Concept Group

    2007-11-01

    In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design force behind the LDC is the particle flow concept.

  8. The Concept of Validity

    Science.gov (United States)

    Borsboom, Denny; Mellenbergh, Gideon J.; van Heerden, Jaap

    2004-01-01

    This article advances a simple conception of test validity: A test is valid for measuring an attribute if (a) the attribute exists and (b) variations in the attribute causally produce variation in the measurement outcomes. This conception is shown to diverge from current validity theory in several respects. In particular, the emphasis in the…

  9. Threshold Concepts in Economics

    Science.gov (United States)

    Shanahan, Martin

    2016-01-01

    Purpose: The purpose of this paper is to examine threshold concepts in the context of teaching and learning first-year university economics. It outlines some of the arguments for using threshold concepts and provides examples using opportunity cost as an exemplar in economics. Design/ Methodology/Approach: The paper provides an overview of the…

  10. Concept Modeling with Superwords

    CERN Document Server

    El-Arini, Khalid; Guestrin, Carlos

    2012-01-01

    In information retrieval, a fundamental goal is to transform a document into concepts that are representative of its content. The term "representative" is in itself challenging to define, and various tasks require different granularities of concepts. In this paper, we aim to model concepts that are sparse over the vocabulary, and that flexibly adapt their content based on other relevant semantic information such as textual structure or associated image features. We explore a Bayesian nonparametric model based on nested beta processes that allows for inferring an unknown number of strictly sparse concepts. The resulting model provides an inherently different representation of concepts than a standard LDA (or HDP) based topic model, and allows for direct incorporation of semantic features. We demonstrate the utility of this representation on multilingual blog data and the Congressional Record.

  11. Molecular vibrational generalized inverse theory and its software

    Institute of Scientific and Technical Information of China (English)

    郑重德

    1995-01-01

    The general concept of flexibility and activity are presented,the generalized inverse theory of molecular vibrations is set up,and the computation software of molecular flexibilities and normal coordinates(MFNC)is elaborately programed.

  12. [Effect of epitalon and melatonin on life span and spontaneous carcinogenesis in senescence accelerated mice (SAM)].

    Science.gov (United States)

    Anisimov, V N; Popovich, I G; Zabezhinskiĭ, M A; Rozenfel'd, S V; Khavinson, V Kh; Semenchenko, A V; Iashin, A I

    2005-01-01

    Female senescence accelerated mice SAMP-1. (prone) and SAMR-1 (resistant) were exposed 5 times a week monthly to melatonin (with drinking water 20mg/ml during the night hours) or to s.c. injections of epitalon (Ala-Glu-Asp-Gly) at a single dose 1mkg/mouse. Control mice were intact or exposed to injection of 0.1 ml normal saline. The body weight and temperature, food consumption, estrous function were monitored regularly. The life span and tumor incidence were evaluated as well. As age advanced, the weight increased whereas food consumption and body temperature did not change. There was no significant substrain difference in these parameters. Exposure to melatonin or epitalon also failed to influence those indices. As age advanced, the incidence of irregular estrous cycles increased both in SAMP-1 and SAMR-1, whereas the treatment with both melatonin and epitalon prevented such disturbances. SAMP-1 revealed some features of accelerated aging as compared to SAMR-1. The mean life span of the 10% of the last survivors among treated SAMP-1 was shorter than that of SAMR-1, aging rate increased and mortality doubling time decreased. There was a direct correlation between body mass of the two substrains at the age of 3 and 12 months matched by body mass increase and longer life span. Melatonin or epitalon treatment was followed by longer mean and maximum survival in the 10% of the last survivors among SAMP-1. Melatonin involved decreased aging rate and increased mortality doubling time. Malignant lymphomas predominated in SAM without any significant difference in frequency between the substrains. While melatonin failed to influence tumor incidence or term of detection in SAMP-1, neither did epitalon affect frequency. However, it was followed by longer survival in tumor-free animals. No link between melatonin or epitalon treatment, on the one hand, and carcinogenesis, on the other, was reported in SAMR-1. PMID:15909815

  13. The effect of childbirth on carcinogenesis of DMBA-induced breast cancer in female SD rats

    Institute of Scientific and Technical Information of China (English)

    Ji-An Zhao; Jin-Jun Chen; Ying-Chao Ju; Jian-Hua Wu; Cui-Zhi Geng; Hui-Chai Yang

    2011-01-01

    Many epidemiologic and clinical studies have indicated that the frequency of breast cancer was lower in parous women than in nulliparous women.Moreover,the incidence of breast cancer has been reported to be lower in women with early childbirth than in women with late childbirth.To verify the effect of childbirth and the age at first childbirth on carcinogenesis and progression of breast cancer,we induced breast cancer by 7,12-dimethylbenanthracene (DMBA) in 120 female Sprague-Dawley (SD) rats,and divided them into control or experimental (DMBA-treated) nulliparous,early childbirth,and late childbirth groups to observe the incidence,latency,and size of breast cancer.Argyrophilic nucleolar organizer regions (AgNOR) count and the expression of C-erbB-2,proliferating cell nuclear antigen (PCNA),Ki-67,and minichromosome maintenance protein 2 (MCM2) in breast cancer tissues were detected by immunohistochemistry.The breast cancer incidences were 95.0%,16.7%,and 58.8% in the experimental nulliparous,early childbirth,and late childbirth groups,respectively (all P < 0.05).Between any two of these groups,the latency was significantly different,but tumor size was similar.AgNOR count and the expression of C-erbB-2,PCNA,Ki-67,and MCM2 were significantly higher in the experimental nulliparous group than in the experimental early or late childbirth groups (P < 0.05),but no significant differences were observed between the latter two groups.Taken together,the results suggest that childbirth,especially early childbirth,can reduce the incidence and postpone the onset of DMBA-induced breast cancer.

  14. Flavonoids Extracted from Licorice Prevents Colitis-Associated Carcinogenesis in AOM/DSS Mouse Model.

    Science.gov (United States)

    Huo, Xiaowei; Liu, Dongyu; Gao, Li; Li, Liyong; Cao, Li

    2016-08-24

    Inflammatory bowel disease (IBD) is generally considered as a major risk factor in the progression of colitis-associated carcinogenesis (CAC). Thus, it is well accepted that ameliorating inflammation creates a potential to achieve an inhibitory effect on CAC. Licorice flavonoids (LFs) possess strong anti-inflammatory activity, making it possible to investigate its pharmacologic role in suppressing CAC. The purpose of the present study was to evaluate the anti-tumor potential of LFs, and further explore the underlying mechanisms. Firstly, an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mouse model was established and administered with or without LFs for 10 weeks, and then the severity of CAC was examined macroscopically and histologically. Subsequently, the effects of LFs on expression of proteins associated with apoptosis and proliferation, levels of inflammatory cytokine, expression of phosphorylated-Janus kinases 2 (p-Jak2) and phosphorylated-signal transducer and activator of transcription 3 (p-Stat3), and activation of nuclear factor-κB (NFκB) and P53 were assessed. We found that LFs could significantly reduce tumorigenesis induced by AOM/DSS. Further study revealed that LFs treatment substantially reduced activation of NFκB and P53, and subsequently suppressed production of inflammatory cytokines and phosphorylation of Jak2 and Stat3 in AOM/DSS-induced mice. Taken together, LFs treatment alleviated AOM/DSS induced CAC via P53 and NFκB/IL-6/Jak2/Stat3 pathways, highlighting the potential of LFs in preventing CAC.

  15. Early indicators of exocrine pancreas carcinogenesis produced by non-genotoxic agents.

    Science.gov (United States)

    Woutersen, R A; van Garderen-Hoetmer, A; Lamers, C B; Scherer, E

    1991-06-01

    In the past 40 years the incidence of pancreatic cancer in many Western countries had increased. Since no single factor responsible for the development of pancreatic cancer has been identified, it is believed that non-genotoxic factors may play an important role in the pathogenesis of this highly fatal form of cancer. Focal abnormalities of acinar cells, referred to as atypical acinar cell foci or nodules, occur spontaneously in rats and some other species. Their incidence increases with age from zero at birth to about 75% in 2-year-old rats. These spontaneous lesions have a phenotype that cannot be distinguished from the putative, atypical preneoplastic, acinar cell foci induced in rat pancreas by the carcinogen azaserine. Unsaturated fat (corn oil) has been found to increase the incidence of atypical acinar cell nodules and adenomas in the pancreas of non-carcinogen-treated rats without influencing the weight of the pancreas. Furthermore, unsaturated fat has a specific promoting effect on the growth potential of atypical acinar cell foci and nodules induced in rat pancreas by azaserine, resulting in an increase in the number and size of these lesions. Rats fed raw soya flour or trypsin inhibitors develop an enlarged pancreas as a result of hypertrophy and hyperplasia. They also develop acidophilic atypical acinar cell foci and nodules, adenomas and adenocarcinomas after being fed full-fat raw soya flour for 2 years. It may be concluded from the observations in rat pancreas that non-genotoxic compounds or conditions that enhance pancreatic growth may be classified as non-genotoxic pancreatic tumour promoters. The observations with corn oil, however, indicate that there may be non-genotoxic compounds that specifically enhance growth of spontaneous initiated atypical acinar cell foci without causing hyperplasia of the pancreas. The possible mechanisms whereby unsaturated fat and trypsin inhibitors exert their effects on exocrine pancreatic carcinogenesis are

  16. Inflammation-Related Carcinogenesis and Prevention in Esophageal Adenocarcinoma Using Rat Duodenoesophageal Reflux Models

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Takashi, E-mail: tphuji@staff.kanazawa-u.ac.jp; Oyama, Katsunobu; Sasaki, Shozo; Nishijima, Koji; Miyashita, Tomoharu; Ohta, Tetsuo [Gastroenterologic Surgery, Kanazawa University Hospital, Kanazawa, Japan, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641 (Japan); Koichi, Miwa [Houju Memorial Hospital, Nomi, Japan, 11-71 Midorigaoka, Nomi, Ishikawa 923-1226 (Japan); Takanori, Hattori [Division of Molecular and Diagnostic Pathology, Shiga University of Medical Science, Otsu, Japan, Seta Tsukinowa-cho, Otsu, Shiga 520-2192 (Japan)

    2011-08-10

    Development from chronic inflammation to Barrett's adenocarcinoma is known as one of the inflammation-related carcinogenesis routes. Gastroesophageal reflux disease induces regurgitant esophagitis, and esophageal mucosa is usually regenerated by squamous epithelium, but sometimes and somewhere replaced with metaplastic columnar epithelium. Specialized columnar epithelium, so-called Barrett's epithelium (BE), is a risk factor for dysplasia and adenocarcinoma in esophagus. Several experiments using rodent model inducing duodenogastroesophageal reflux or duodenoesophageal reflux revealed that columnar epithelium, first emerging at the proliferative zone, progresses to dysplasia and finally adenocarcinoma, and exogenous carcinogen is not necessary for cancer development. It is demonstrated that duodenal juice rather than gastric juice is essential to develop esophageal adenocarcinoma in not only rodent experiments, but also clinical studies. Antireflux surgery and chemoprevention by proton pump inhibitors, nonsteroidal anti-inflammatory drugs, selective cyclooxygenase-2 inhibitors, green tea, retinoic acid and thioproline showed preventive effects on the development of Barrett's adenocarcinoma in rodent models, but it remains controversial whether antireflux surgery could regress BE and prevent esophageal cancer in clinical observation. The Chemoprevention for Barrett's Esophagus Trial (CBET), a phase IIb, multicenter, randomized, double-masked study using celecoxib in patients with Barrett's dysplasia failed to prove to prevent progression of dysplasia to cancer. The AspECT (Aspirin Esomeprazole Chemoprevention Trial), a large multicenter phase III randomized trial to evaluate the effects of esomeprazole and/or aspirin on the rate of progression to high-grade dysplasia or adenocarcinoma in patients with BE is now ongoing.

  17. Cancer stem cells in Helicobacter pylori infection and aging: Implications for gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Edi; Levi; Paula; Sochacki; Nabiha; Khoury; Bhaumik; B; Patel; Adhip; PN; Majumdar

    2014-01-01

    AIM: To demonstrated the combined effects of aging and carcinogen treatment on cancer stem/stem-like cells(CSCs) of gastric mucosa in an animal model. METHODS: In this study we investigated the effects of aging and Helicobacter pylori(H. pylori) inflammation as a model for inflammation induced carcinogenesis in human and rat gastric mucosa samples. In aging studies, we compared 4-mo old(young) with 22 mo(aged) old Fischer-344 rats. For human studies, gastric biop-sies and resection specimens representing normal mucosa or different stages of H. pylori gastritis and gastric adenocarcinomas were used for determining the expression of stem cell markers CD166, ALDH1 and LGR5. In addition we performed immunofluorescent double labeling for B-catenin and Lgr5 in both rat and human gastric tissues to examine the status of Wnt signaling in these cells. RESULTS: CSC markers ALDH1, LGR5, and CD166 were expressed in very low levels in normal human gastric mucosa or young rat gastric mucosa. In contrast, level of expression for all three markers significantly increased in H. pylori gastritis and gastric adenocarcinomas as well as in normal gastric mucosa in aged rats. We also observed cytoplasmic B-catenin staining in both aged rat and human H. pylori inflamed gastric mucosa, which were found to be colocalized with Lgr5 immunoreactive cells. The increased number of ALDH1, CD166 and LGR5 positive cells in H. pylori gastritis indicates that increased number of stem-like cells in gastric mucosa is an early event, and may constitute an important step in the progression to neoplasia. CONCLUSION: Our observation of the age-related increase in cancer stem/stem-like cells in the gastric mucosa may explain the increased incidence of gastric cancer during aging. Combination of aging and H. pylori infection may have additive effects in progression to neoplasia.

  18. Temporal evolution in caveolin 1 methylation levels during human esophageal carcinogenesis

    International Nuclear Information System (INIS)

    Esophageal cancer ranks eighth among frequent cancers worldwide. Our aim was to investigate whether and at which neoplastic stage promoter hypermethylation of CAV1 is involved in human esophageal carcinogenesis. Using real-time quantitative methylation-specific PCR (qMSP), we examined CAV1 promoter hypermethylation in 260 human esophageal tissue specimens. Real-time RT-PCR and qMSP were also performed on OE33 esophageal cancer cells before and after treatment with the demethylating agent, 5-aza-2’-deoxycytidine (5-Aza-dC). CAV1 hypermethylation showed highly discriminative ROC curve profiles, clearly distinguishing esophageal adenocarcinomas (EAC) and esophageal squamous cell carcinomas (ESCC) from normal esophagus (NE) (EAC vs. NE, AUROC = 0.839 and p < 0.0001; ESCC vs. NE, AUROC = 0.920 and p < 0.0001). Both CAV1 methylation frequency and normalized methylation value (NMV) were significantly higher in Barrett’s metaplasia (BE), low-grade and high-grade dysplasia occurring in BE (D), EAC, and ESCC than in NE (all p < 0.01, respectively). Meanwhile, among 41 cases with matched NE and EAC or ESCC, CAV1 NMVs in EAC and ESCC (mean = 0.273) were significantly higher than in corresponding NE (mean = 0.146; p < 0.01, Student’s paired t-test). Treatment of OE33 EAC cells with 5-Aza-dC reduced CAV1 methylation and increased CAV1 mRNA expression. CAV1 promoter hypermethylation is a frequent event in human esophageal carcinomas and is associated with early neoplastic progression in Barrett’s esophagus

  19. Chemopreventive effect of zingerone against colon carcinogenesis induced by 1,2-dimethylhydrazine in rats.

    Science.gov (United States)

    Vinothkumar, Rajenderan; Vinothkumar, Rajamanickam; Sudha, Mani; Nalini, Namasivayam

    2014-09-01

    Zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butane], one of the active phenolic components isolated from Zingiber officinale, has antioxidant and anticarcinogenic properties. In our study, we have evaluated the effect of different doses of zingerone on lipid peroxidation (thiobarbituric acid-reactive substances, lipid hydroxyl radical and conjugated dienes), tissue enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase), and nonenzymatic antioxidants (reduced glutathione, vitamin E, vitamin C), and also the formation of aberrant crypt foci (ACF) in male albino Wistar rats with colon cancer induced using 1,2-dimethylhydrazine (DMH). The rats were divided into six groups. Group 1 served as a control group and received a modified pellet diet; the rats in group 2 received a modified pellet diet along with zingerone (40 mg/kg b.w., orally every day); groups 3-6 were administered DMH (20 mg/kg b.w., subcutaneously) once a week for the first 4 weeks; and groups 4-6 received zingerone at three different doses of 10, 20 and 40 mg/kg b.w., respectively, every day for 16 weeks. Increased tumour incidence and ACF formation were accompanied by a decrease in the tissue lipid peroxidation, enzymatic and nonenzymatic antioxidant activities observed in the colon of DMH-treated rats. Supplementation with zingerone in DMH-treated rats led to a significant decrease in the tumour incidence and ACF formation with simultaneous modulation in the level of tissue lipid peroxidation and antioxidant status. Thus, in conclusion, we can suggest that zingerone effectively inhibits DMH-induced colon carcinogenesis in male Wistar rats. PMID:23903760

  20. Effect of nisin and doxorubicin on DMBA-induced skin carcinogenesis--a possible adjunct therapy.

    Science.gov (United States)

    Preet, Simran; Bharati, Sanjay; Panjeta, Anshul; Tewari, Rupinder; Rishi, Praveen

    2015-11-01

    In view of the emergence of multidrug-resistant cancer cells, there is a need for therapeutic alternatives. Keeping this in mind, the present study was aimed at evaluating the synergism between nisin (an antimicrobial peptide) and doxorubicin (DOX) against DMBA-induced skin carcinogenesis. The possible tumoricidal activity of the combination was evaluated in terms of animal bioassay observations, changes in hisotological architecture of skin tissues, in situ apoptosis assay (TUNEL assay) and in terms of oxidant and antioxidant status of the skin tissues. In vivo additive effect of the combination was evidenced by larger decreases in mean tumour burden and tumour volume in mice treated with the combination than those treated with the drugs alone. Histological observations indicated that nisin-DOX therapy causes chromatin condensation and marginalisation of nuclear material in skin tissues of treated mice which correlated well with the results of TUNEL assay wherein a marked increase in the rate of apoptosis was revealed in tissues treated with the combination. A slightly increased oxidative stress in response to the adjunct therapy as compared to dox-alone-treated group was revealed by levels of lipid peroxidation (LPO) and nitrite generation in skin tissue-treated mice. An almost similar marginal enhancement in superoxide dismutase levels corresponding with a decrease in catalase activity could also be observed in nisin + DOX-treated groups as compared to nisin and dox-alone-treated groups. These results point towards the possible use of nisin as an adjunct to doxorubicin may help in developing alternate strategies to combat currently developing drug resistance in cancer cells.