WorldWideScience

Sample records for carbynes

  1. Carbyne formation by synchrotron radiation

    CERN Document Server

    Kaito, C; Hanamoto, K; Sasaki, M; Kimura, S; Nakada, Tatsuya; Saitô, Y; Koike, C; Nakayama, Y

    2001-01-01

    Thin carbon films prepared by vacuum evaporation using the arc method were mounted on a standard electron microscope copper grid. They were irradiated by white synchrotron radiation (SR) beam by the use of cylindrical and toroidal mirrors. The irradiated film was examined using a high-resolution electron microscope. alpha and alpha+beta mixture carbyne crystals were grown in round and the elongated shapes. The round crystals were composed of 5-10 nm crystallites of a carbyne form. The elongated crystal grew into a single crystal 100 nm in size. The c-axes of both grown crystals were oblique to the film. The growth of the carbynes was discussed as being the result of nucleation due to graphite microcrystallites formed by SR beam irradiation.

  2. Vibration of a carbyne nanomechanical mass sensor with surface effect

    Science.gov (United States)

    Agwa, M. A.; Eltaher, M. A.

    2016-04-01

    This paper presents a comprehensive model to investigate the influence of surface elasticity and residual surface tension on the natural frequency of flexural vibrations of nanomechanical mass sensor using a carbyne resonator. Carbyne is modeled as an equivalent continuum circular cross-section Timoshenko nanobeam including rotary inertia and shear deformation effects. Surface stress and surface elasticity are presented via the Young-Laplace equation. The analytical solution is presented and verified with molecular dynamics solution. The results show that the carbyne resonator can measure a very small mass with weight below 10-3 zg. The effects of surface elasticity, residual surface tension, carbyne length, and mass position on the fundamental frequencies are illustrated. This study is helpful for characterizing the mechanical behavior of high-precision measurement devices such as chemical and biological sensor.

  3. Stability of Carbyne: First Principles Approach

    Science.gov (United States)

    Kwon, Kevin; Holmes, Colin; Jang, Seung Soon

    Over the last decade, carbon based nanomaterials have gained attention due to the discovery of graphene and its extraordinary properties. This has inspired new research into other carbon allotropes to obtain their unique properties. Carbyne is one such allotrope composed of linear sp-hybridized carbon bonds that has promising results and characteristics to surpass graphene's mechanical strength and possess novel electrical properties. It has two semi-stable conformations: Polyyne (alternating triple and single bonds) and Polycumulene (repeating double bonds). We investigated the stability of these forms with infinite chain lengths by employing periodic boundary conditions. Geometric optimization was performed using DMoL3 with GGA PBE. After comparing the energies, the most stable form alternated between Polyyne and Polycumulene as the number of carbon atoms within each boundary increased; furthermore, every odd carbon atoms showed Polyyne as the most stable form, while every even number of carbon atoms showed Polycumulene as the most stable form. Considering k-point sampling resulted in the Polycumulene structure being the most stable as the number of k-points increased.

  4. Carbyne Polysulfide as a Novel Cathode Material for Rechargeable Magnesium Batteries

    OpenAIRE

    Yanna NuLi; Qiang Chen; Weikun Wang; Ying Wang; Jun Yang; Jiulin Wang

    2014-01-01

    We report the formation of carbyne polysulfide by coheating carbon containing carbyne moieties and elemental sulfur. The product is proved to have a sp2 hybrid carbon skeleton with polysulfide attached on it. The electrochemical performance of carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries is firstly investigated. The material exhibits a high discharge capacity of 327.7 mAh g−1 at 3.9 mA g−1. These studies show that carbyne polysulfide is a promising cand...

  5. Equilibrium distribution of the wave energy in a carbyne chain

    Science.gov (United States)

    Kovriguine, D. A.; Nikitenkova, S. P.

    2016-03-01

    The steady-state energy distribution of thermal vibrations at a given ambient temperature has been investigated based on a simple mathematical model that takes into account central and noncentral interactions between carbon atoms in a one-dimensional carbyne chain. The investigation has been performed using standard asymptotic methods of nonlinear dynamics in terms of the classical mechanics. In the first-order nonlinear approximation, there have been revealed resonant wave triads that are formed at a typical nonlinearity of the system under phase matching conditions. Each resonant triad consists of one longitudinal and two transverse vibration modes. In the general case, the chain is characterized by a superposition of similar resonant triplets of different spectral scales. It has been found that the energy equipartition of nonlinear stationary waves in the carbyne chain at a given temperature completely obeys the standard Rayleigh-Jeans law due to the proportional amplitude dispersion. The possibility of spontaneous formation of three-frequency envelope solitons in carbyne has been demonstrated. Heat in the form of such solitons can propagate in a chain of carbon atoms without diffusion, like localized waves.

  6. Do Carbynes Exist as Interstellar Material After All?

    Science.gov (United States)

    Gilkes, K. W. R.; Gaskell, P. H.; Russell, S. S.; Arden, J. W.; Pillinger, C. T.

    1992-07-01

    In the early 1980s, it was speculated that various linear polytypes of carbon consisting of alternating single and triple bonds, and having the generic name carbyne, might be carriers of anomalous noble gases (Whittaker et al., 1980). Doubts were, however, expressed (Smith and Buseck, 1982) concerning the identification of carbynes within the meteorite residues studied by Whittaker et al. (1980). In fact, the very existence of a new allotropic form of carbon was questioned: was it indeed a mineral called chaoite present in ejecta from the Ries Crater, as suggested by El Goresy and Donnay (1968), and had it been made in the laboratory by condensation of a carbon vapor (Kasatochkin et al., 1967)? Since 1981 it has become apparent that acid residues prepared for the purpose of isolating the carrier of the noble gas component Xe(HL) are largely nm-sized diamond together with some amorphous diamond-like material (Lewis et al., 1987). While attempting to study the latter by high- resolution transmission, electron microscopy (HRTEM) using a residue (MIL) prepared from Murchison by HF/HCl/Cr2O7^2-/HClO4 treatment, we found crystalline regions with interplanar spacings higher than diamond (0.2 nm), silicon carbide (0.26 nm), and graphite (0.2 nm, 0.34 nm). We have acquired HRTEM images, SAED patterns, and EDX spectra from several of these particles, which tend to be very small, typically 10 nm, and therefore not likely to be airborne contaminants. Lattice images that match the {110} and {203} spacings of chaoite have been found for single crystals. The interplanar spacings calculated from the hexagonal electron diffraction data (using diamond as internal standard) can be compared favorably with chaoite (El Goresy and Donnay, 1968). EDX spectra for most grains show no evidence of elements with atomic number greater than 11 (Na), although in one or two cases peaks for Ca from an unknown source were observed. Diffraction data from Ca- contamined areas were not used for

  7. Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid

    Science.gov (United States)

    Giacomo Bettini, Luca; Della Foglia, Flavio; Piseri, Paolo; Milani, Paolo

    2016-03-01

    Nanostructured carbon sp2 (ns-C) thin films with up to 30% of sp-coordinated atoms (carbynes) were produced in a high vacuum by the low kinetic energy deposition of carbon clusters produced in the gas phase and accelerated by a supersonic expansion. Immediately after deposition the ns-C films were immersed in situ in an ionic liquid electrolyte. The interfacial properties of ns-C films in the ionic liquid electrolyte were characterized by electrochemical impedance spectroscopy and cyclic voltammetry (CV). The so-prepared carbyne-rich electrodes showed superior electric double layer (EDL) capacitance and electric conductivity compared to ns-C electrodes containing only sp2 carbon, showing the substantial influence of carbynes on the electrochemical properties of nanostructured carbon electrodes.

  8. Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid.

    Science.gov (United States)

    Bettini, Luca Giacomo; Della Foglia, Flavio; Piseri, Paolo; Milani, Paolo

    2016-03-18

    Nanostructured carbon sp(2) (ns-C) thin films with up to 30% of sp-coordinated atoms (carbynes) were produced in a high vacuum by the low kinetic energy deposition of carbon clusters produced in the gas phase and accelerated by a supersonic expansion. Immediately after deposition the ns-C films were immersed in situ in an ionic liquid electrolyte. The interfacial properties of ns-C films in the ionic liquid electrolyte were characterized by electrochemical impedance spectroscopy and cyclic voltammetry (CV). The so-prepared carbyne-rich electrodes showed superior electric double layer (EDL) capacitance and electric conductivity compared to ns-C electrodes containing only sp(2) carbon, showing the substantial influence of carbynes on the electrochemical properties of nanostructured carbon electrodes. PMID:26878188

  9. Confined linear carbon chains as a route to bulk carbyne.

    Science.gov (United States)

    Shi, Lei; Rohringer, Philip; Suenaga, Kazu; Niimi, Yoshiko; Kotakoski, Jani; Meyer, Jannik C; Peterlik, Herwig; Wanko, Marius; Cahangirov, Seymur; Rubio, Angel; Lapin, Zachary J; Novotny, Lukas; Ayala, Paola; Pichler, Thomas

    2016-06-01

    Strong chemical activity and extreme instability in ambient conditions characterize carbyne, an infinite sp(1) hybridized carbon chain. As a result, much less has been explored about carbyne as compared to other carbon allotropes such as fullerenes, nanotubes and graphene. Although end-capping groups can be used to stabilize carbon chains, length limitations are still a barrier for production, and even more so for application. We report a method for the bulk production of long acetylenic linear carbon chains protected by thin double-walled carbon nanotubes. The synthesis of very long arrangements is confirmed by a combination of transmission electron microscopy, X-ray diffraction and (near-field) resonance Raman spectroscopy. Our results establish a route for the bulk production of exceptionally long and stable chains composed of more than 6,000 carbon atoms, representing an elegant forerunner towards the final goal of carbyne's bulk production. PMID:27043782

  10. Mechanical properties of carbynes investigated by ab initio total-energy calculations

    DEFF Research Database (Denmark)

    Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola

    2012-01-01

    As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...

  11. Ballistic Thermal Transport in Carbyne and Cumulene with Micron-Scale Spectral Acoustic Phonon Mean Free Path

    Science.gov (United States)

    Wang, Mingchao; Lin, Shangchao

    2015-01-01

    The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30–110 ps and mean free path of 0.5–2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices. PMID:26658143

  12. Ballistic Thermal Transport in Carbyne and Cumulene with Micron-Scale Spectral Acoustic Phonon Mean Free Path

    Science.gov (United States)

    Wang, Mingchao; Lin, Shangchao

    2015-12-01

    The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30-110 ps and mean free path of 0.5-2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices.

  13. Silica-supported tungsten carbynes (≡SiO)xW(≡CH)(Me)y (x = 1, y = 2; X = 2, y = 1): New efficient catalysts for alkyne cyclotrimerization

    KAUST Repository

    Riache, Nassima

    2015-02-23

    The activity of silica-supported tungsten carbyne complexes (≡SiO)xW(≡CH)(Me)y (x = 1, y = 2; x = 2, y = 1) toward alkynes is reported. We found that they are efficient precatalysts for terminal alkyne cyclotrimerization with high TONs. We also demonstrate that this catalyst species is active for alkyne cyclotrimerization without the formation of significant alkyne metathesis products. Additional DFT calculations highlight the importance of the W coordination sphere in supporting this experimental behavior.

  14. Synthesis and structure of silicon-, germanium-, and tin-containing tungsten complexes of carbynes (ButO)3W ≡ C-EPh3 and [ButO)3W ≡ C]2EPh2 (E = Si, Ge, Sn)

    International Nuclear Information System (INIS)

    New carbyne complexes of tungsten (ButO)3W ≡ C-SiEPh3 and [ButO)3W ≡ C]2EPh2 (E = Si, Ge, Sn) were prepared in individual crystal state with 48-80% yield using reaction of (ButO)6W2 with Ph3SiC ≡ CPr or Ph2E(C ≡ CPr)2. The structure of previously synthesized compounds, i.e. (ButO)3W ≡ C-E'Ph3 (E' = Ge, Sn), and of the new complexes was identified by the method of X-ray diffraction analysis

  15. Direct observation of supported W bis-methylidene from supported W-methyl/methylidyne species

    KAUST Repository

    Callens, Emmanuel

    2014-01-01

    Extensive solid-state NMR analyses unambiguously determine the formation of silica supported W bis-methylidene methyl species by reaction of the corresponding methyl carbyne with trimethylphosphine or a cyclic olefin. © 2014 the Partner Organisations.

  16. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Microscopic phase transformation from graphite to sp-bonded carbon chains (carbyne) and nanodiamond has been induced by femtosecond laser pulses on graphite surface. UV/surface enhanced Raman scattering spectra and x-ray photoelectron spectra displayed the local synthesis of carbyne in the melt zone while nanocrystalline diamond and trans-polyacetylene chains form in the edge area of gentle ablation. These results evidence possible direct 'writing' of variable chemical bonded carbons by femtosecond laser pulses for carbon-based applications

  17. Coherent Quantum Optics Phenomena in Carbon Low-Dimensional Systems

    OpenAIRE

    Dovlatova, Alla; Yerchuck, Dmitri

    2011-01-01

    Brief review of the theoretical and experimental results, based mainly on the works of authors, in the application of quantum field theory to the study of carbon low-dimensional systems - quasi-1D carbon nanotubes, carbynes and graphene with emphasis on formation of longlived coherent states of joint photon-electron and joint resonance phonon-electron systems of given materials is presented.

  18. Effect of Support on Metathesis of n-Decane: Drastic Improvement in Alkane Metathesis with WMe5 Linked to Silica-Alumina

    KAUST Repository

    Samantaray, Manoja

    2015-03-11

    [WMe6] (1) supported on the surface of SiO2-Al2O3(500) (2) has been extensively characterized by solid-state NMR spectroscopy, elemental analysis, and gas quantification, which clearly reveal the formation of a mixture of monopodal and bipodal species with the migration of methyl from W to Al. The supported species SiO2-Al2O3(500) (2) transformed at 120°C into two types of carbynic centers, one of which is cationic and the other neutral. These species are very efficient for the metathesis of n-decane. Comparison with already-synthesized neutral bipodal tungsten indicates that the high increase in activity is due to the cationic character of the grafted tungsten.

  19. Effect of support on metathesis of n-decane: drastic improvement in alkane metathesis with WMe5 linked to silica-alumina.

    Science.gov (United States)

    Samantaray, Manoja K; Dey, Raju; Abou-Hamad, Edy; Hamieh, Ali; Basset, Jean-Marie

    2015-04-13

    [WMe6 ] (1) supported on the surface of SiO2 -Al2 O3(500) (2) has been extensively characterized by solid-state NMR spectroscopy, elemental analysis, and gas quantification, which clearly reveal the formation of a mixture of monopodal and bipodal species with the migration of methyl from W to Al. The supported species SiO2 -Al2 O3(500) (2) transformed at 120 °C into two types of carbynic centers, one of which is cationic and the other neutral. These species are very efficient for the metathesis of n-decane. Comparison with already-synthesized neutral bipodal tungsten indicates that the high increase in activity is due to the cationic character of the grafted tungsten. PMID:25760771

  20. [Pigmentation abnormalities in the course of topical immunotherapy of alopecia areata].

    Science.gov (United States)

    Valsecchi, R; Pansera, B; Rossi, A; Cainelli, T

    1989-01-01

    Pigmentation troubles have been associated in the past years with contact dermatitis and patch-testing. Contact allergy and increase of pigmentation has been associated with Tinopal; on the other hand contact allergy and depigmentation have been associated with many substances such as DNCB, squaric acid dibutylester (SADBE), carbyne, alstroemeria. Leukoderma can also be produced by irritant compound such as phenols, catechols and mercaptoamines. During 1978 and 1984 we have treated 132 patients suffering from alopecia areata with DNCB or SADBE: 51 patients have been treated by DNCB and 81 by SADBE. During the treatment 10 patients developed a leukoderma vitiligo-like localized to the areas of topical application of the allergens and to the flare-up site; one patient had an increase of pigmentation. Lesions vitiligo-like appeared 10-15 weeks after the onset of treatment. Among the patients who developed leukoderma, 4 had a personal history of vitiligo. The possible pathogenetic mechanisms are discussed. PMID:2527809

  1. Chains of carbon atoms: A vision or a new nanomaterial?

    Directory of Open Access Journals (Sweden)

    Florian Banhart

    2015-02-01

    Full Text Available Linear strings of sp1-hybridized carbon atoms are considered as a possible phase of carbon since decades. Whereas the debate about the stability of the corresponding bulk phase carbyne continues until today, the existence of isolated chains of carbon atoms has meanwhile been corroborated experimentally. Since graphene, as the two-dimensional sp2-bonded allotrope of carbon, has become a vast field, the question about the importance of one-dimensional carbon became of renewed interest. The present article gives an overview of the work that has been carried out on chains of carbon atoms in the past one or two decades. The review concentrates on isolated chains of carbon atoms and summarizes the experimental observations to date. While the experimental information is still very limited, many calculations of the physical and chemical properties have been published in the past years. Some of the most important theoretical studies and their importance in the present experimental situation are reviewed.

  2. Dehalogenative Homocoupling of Terminal Alkynyl Bromides on Au(111): Incorporation of Acetylenic Scaffolding into Surface Nanostructures.

    Science.gov (United States)

    Sun, Qiang; Cai, Liangliang; Ma, Honghong; Yuan, Chunxue; Xu, Wei

    2016-07-26

    On-surface C-C coupling reactions of molecular precursors with alkynyl functional groups demonstrate great potential for the controllable fabrication of low-dimensional carbon nanostructures/nanomaterials, such as carbyne, graphyne, and graphdiyne, which demand the incorporation of highly active sp-hybridized carbons. Recently, through a dehydrogenative homocoupling reaction of alkynes, the possibility was presented to fabricate surface nanostructures involving acetylenic linkages, while problems lie in the fact that different byproducts are inevitably formed when triggering the reactions at elevated temperatures. In this work, by delicately designing the molecular precursors with terminal alkynyl bromide, we introduce the dehalogenative homocoupling reactions on the surface. As a result, we successfully achieve the formation of dimer structures, one-dimensional molecular wires and two-dimensional molecular networks with acetylenic scaffoldings on an inert Au(111) surface, where the unexpected C-Au-C organometallic intermediates are also observed. This study further supplements the database of on-surface dehalogenative C-C coupling reactions, and more importantly, it provides us an alternative efficient way for incorporating the acetylenic scaffolding into low-dimensional surface nanostructures. PMID:27326451

  3. Cohesion energetics of carbon allotropes: Quantum Monte Carlo study

    International Nuclear Information System (INIS)

    We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp3-bonded diamond, sp2-bonded graphene, sp–sp2 hybridized graphynes, and sp-bonded carbyne. The computed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values determined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases systematically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of γ-graphyne, the most energetically stable graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experimental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally, we conclude that the cohesive energy of a newly proposed graphyne can be accurately estimated with the carbon–carbon bond energies determined from the cohesive energies of graphene and three different graphynes considered here

  4. CHEMICAL ACTIVATION OF MOLECULES BY METALS: EXPERIMENTAL STUDIES OF ELECTRON DISTRIBUTIONS AND BONDING

    Energy Technology Data Exchange (ETDEWEB)

    LICHTENBERGER, DENNIS L.

    2002-03-26

    This research program is directed at obtaining detailed experimental information on the electronic interactions between metals and organic molecules. These interactions provide low energy pathways for many important chemical and catalytic processes. A major feature of the program is the continued development and application of our special high-resolution valence photoelectron spectroscopy (UPS), and high-precision X-ray core photoelectron spectroscopy (XPS) instrumentation for study of organometallic molecules in the gas phase. The study involves a systematic approach towards understanding the interactions and activation of bound carbonyls, C-H bonds, methylenes, vinylidenes, acetylides, alkenes, alkynes, carbenes, carbynes, alkylidenes, alkylidynes, and others with various monometal, dimetal, and cluster metal species. Supporting ligands include -aryls, alkoxides, oxides, and phosphines. We are expanding our studies of both early and late transition metal species and electron-rich and electron-poor environments in order to more completely understand the electronic factors that serve to stabilize particular organic fragments and intermediates on metals. Additional new directions for this program are being taken in ultra-high vacuum surface UPS, XPS, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments on both physisorbed and chemisorbed organometallic thin films. The combination of these methods provides additional electronic structure information on surface-molecule and molecule-molecule interactions. A very important general result emerging from this program is the identification of a close relationship between the ionization energies of the species and the thermodynamics of the chemical and catalytic reactions of these systems.

  5. Investigational research on highly functional carbon and related materials (HF-CRMs); Tansokei kokino zairyo no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper arranged a fiscal 1997 guiding study of highly functional carbon and related materials (HF-CRMs). In the material invention field, described were the composition by interatomic control technology and the characteristics of pure carbon nanotubes, carbynes, graphite, fullerene polymer, porous carbon, etc. Heteroelement substituted materials were also described. The paper also reported the application of HF-CRMs to the electric/chemical field, and arranged the basement technology and applicability of diamond in particular. The subjects are enhancement of composition technology and reduction of the price of processing technology. Especially, the control of impurities and defects is a must for the electric use. The application of HF-CRMs to the mechanical field was reported. Superlubricant, wear resistant and high temperature corrosion resistant materials were taken up, and were surveyed in terms of their use mostly to refuse incineration power generation boilers, and thermal power generation use turbines. In the development of mechanical materials, technologies were surveyed especially for large area/complex shape film formation to form films for various parts, functionally gradient film formation for relaxation of thermal stress and residual stress in the film, and high speed film formation for quantity production. 363 refs., 88 figs., 10 tabs.

  6. CHEMICAL ACTIVATION OF MOLECULES BY METALS: EXPERIMENTAL STUDIES OF ELECTRON DISTRIBUTIONS AND BONDING; FINAL

    International Nuclear Information System (INIS)

    This research program is directed at obtaining detailed experimental information on the electronic interactions between metals and organic molecules. These interactions provide low energy pathways for many important chemical and catalytic processes. A major feature of the program is the continued development and application of our special high-resolution valence photoelectron spectroscopy (UPS), and high-precision X-ray core photoelectron spectroscopy (XPS) instrumentation for study of organometallic molecules in the gas phase. The study involves a systematic approach towards understanding the interactions and activation of bound carbonyls, C-H bonds, methylenes, vinylidenes, acetylides, alkenes, alkynes, carbenes, carbynes, alkylidenes, alkylidynes, and others with various monometal, dimetal, and cluster metal species. Supporting ligands include -aryls, alkoxides, oxides, and phosphines. We are expanding our studies of both early and late transition metal species and electron-rich and electron-poor environments in order to more completely understand the electronic factors that serve to stabilize particular organic fragments and intermediates on metals. Additional new directions for this program are being taken in ultra-high vacuum surface UPS, XPS, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments on both physisorbed and chemisorbed organometallic thin films. The combination of these methods provides additional electronic structure information on surface-molecule and molecule-molecule interactions. A very important general result emerging from this program is the identification of a close relationship between the ionization energies of the species and the thermodynamics of the chemical and catalytic reactions of these systems

  7. The Effect of Nitrogen Surface Ligands on Propane Metathesis: Design and Characterizations of N-modified SBA15-Supported Schrock-type Tungsten Alkylidyne

    KAUST Repository

    Eid, Ahmed A.

    2014-04-01

    Catalysis, which is primarily a molecular phenomenon, is an important field of chemistry because it requires the chemical conversion of molecules into other molecules. It also has an effect on many fields, including, but not limited to, industry, environment and life Science[1]. Surface Organometallic Chemistry is an effective methodology for Catalysis as it imports the concept and mechanism of organometallic chemistry, to surface science and heterogeneous catalysis. So, it bridges the gap between homogenous and heterogeneous catalysis[1]. The aim of the present research work is to study the effect of Nitrogen surface ligands on the activity of Alkane, Propane in particular, metathesis. Our approach is based on the preparation of selectively well-defined group (VI) transition metal complexes supported onto mesoporous materials, SBA15 and bearing amido and/or imido ligands. We choose nitrogen ligands because, according to the literature, they showed in some cases better catalytic properties in homogenous catalysis in comparison with their oxygen counterparts[2]. The first section covers the modification of a highly dehydroxylated SBA15 surface using a controlled ammonia treatment. These will result in the preparation of two kind of Nitrogen surface ligands: -\\tOne with vicinal silylamine/silanol, (≡SiNH2)(≡SiOH), noted [N,O]SBA15 and, -\\tAnother\\tone\\twith\\tvicinal\\tbis-silylamine moieties (≡SiNH2)2, noted [N,N]SBA15[3]. The second section covers the reaction of Schrock type Tungsten Carbyne [W(≡C- tBu)(CH2-tBu)3] with those N-surface ligands and their characterizations by FT-IR, multiple quantum solid state NMR (1H, 13C), elemental analysis and gas phase analysis. The third section covers the generation of the active site, tungsten hydride species. Their performance toward propane metathesis reaction using the dynamic reactor technique PID compared toward previous well-known catalysts supported on silica oxide or mesoporous materials[4]. A fairly good