Sample records for carburetors

  1. Carburetor for heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Gautreau, L


    This invention relates to a carburetor for heavy oils in which the combustion liquid circulates successively in two annular spaces at the top and bottom of the vaporizer heated by the gas from the outlet and returning from there, after having been conveniently heated, to the constant level by an appropriate tube; the constant level can be surrounded by an annular chamber in which circulates a part of the gas from the outlet.

  2. Carburetor for internal combustion engines (United States)

    Csonka, John J.; Csonka, Albert B.


    A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

  3. Fuel control apparatus of carburetor in deceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, N


    A fuel control valve for carburetors during deceleration operation is described for fuel conservation. The device cuts off the fuel supply to the cylinder during deceleration. The control valve is regulated by a magnetic switch, and the electrical current to the switch is controlled through a device sensible to the pressure difference to both sides of the throttle valve in the carburetor. When the cylinder becomes lower in pressure than the atmospheric pressure, the pressure activates the electrical current switch, thus activating the magnetic switch to close the fuel control valve. The device also prevents the engine from running after the ignition key is disconnected.

  4. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents. (United States)


    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  5. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents. (United States)


    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.975 Fuel tank vents and carburetor vapor vents. (a) Each fuel tank must be vented... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...

  6. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents. (United States)


    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.975 Fuel tank vents and carburetor vapor vents. (a) Fuel tank vents. Each fuel tank must be vented from the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank vents and carburetor vapor vents...


    Directory of Open Access Journals (Sweden)

    Novie Susanto


    Full Text Available This study presents analysis of the area of interest (AOI and the gaze behavior of human during assembly task. This study aims at investigating the human behavior in detail using an eye‐tracking system during assembly task using LEGO brick and an actual manufactured product, a carburetor. An analysis using heat map data based on the recorded videos from the eye-tracking system is taken into account to examine and investigate the gaze behavior of human. The results of this study show that the carburetor assembly requires more attention than the product made from LEGO bricks. About 50% of the participants experience the necessity to visually inspect the interim state of the work object during the simulation of the assembly sequence on the screen. They also show the tendency to want to be more certain about part fitting in the actual work object.

  8. Light Aircraft Piston Engine Carburetor Ice Detector/Warning Device Sensitivity/Effectiveness. (United States)


    10kHz max), converting raw data into engineering units as established by operator, displaying eight different parameters on cathode ray tube (CRT) and...TN No. 1790, February 1949. f. icing - Protection Requirements for Reciprocating Engine Induction Systems, NCA Technical Report No. 982, June 1949. q

  9. 76 FR 54397 - Airworthiness Directives; Lycoming Engines (Type Certificate Previously Held by Textron Lycoming... (United States)


    ... Facet Aerospace Products Company, formerly Marvel-Schebler (BorgWarner)) HA-6 carburetors, inspecting... information identified in this proposed AD, contact Marvel-Schebler Aircraft Carburetors LLC, 125 Piedmont... We reviewed Marvel-Schebler Aircraft Carburetors LLC Emergency Service Bulletin (SB) No. SB-18, dated...

  10. Increasing Reliability of a Small 2-Stroke Internal Combustion Engine for Dynamically Changing Altitudes (United States)


    built on four caster wheels which allow the facility to be moved around the test location. The test location for the duration of this thesis is in...the Modifications Completed to the Initial Test Facility ................ 106 IV.2 Carburetor Results...performance with the stock carburetor a generic throttle body fuel injection (TBI) system was purchased for modification and installation on the test

  11. 40 CFR 1033.901 - Definitions. (United States)


    ..., fuel tank cap, fuel pump, fuel filters, fuel lines, carburetor or fuel-injection components, and all..., piston and piston rings, valves and ports for admission of charge air and discharge of exhaust gases...

  12. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To... (United States)


    ... closing temperature shall be measured on an increasing temperature change. C. Carburetor Accelerator Pumps.... Reserved for Camshafts N. Reserved for Pistons O. Oxidizing Catalytic Converters 1. Test Procedures and...

  13. An innovative system for supplying air and fuel mixture to a combustion chamber of an engine (United States)

    Saikumar, G. R. Bharath


    Conventional carburetors are being used since decades to ensure that the desired ratio of air and fuel enters the combustion chamber for combustion for the purpose of generating power in an Spark Ignition(SI) internal combustion engine. However to increase the efficiency, the carburetor system is gradually being replaced by fuel injection systems. Fuel injection systems use injectors to supply pressurized fuel into the combustion chamber. Owing to the high initial and maintenance cost, carburetors are still ruling in the low cost vehicle domain. An innovative concept is conceived, which is an alternative method to the carburetor system to supply the air and fuel mixture to a combustion chamber of an engine. This system comprises of an inner hollow cylinder with minute holes drilled along its length with an outer cylinder capable of sliding along its length or its longitudinal axis. This system is placed in the venturi instead of the conventional carburetor system. Fuel enters from the bottom inlet of the inner cylinder and flows out through the holes provided along its length. The fuel flow from the inner cylinder is dependent on the size and the number of holes exposed at that instance by the sliding outer cylinder which in turn is connected to the throttle or accelerator.

  14. 40 CFR 86.082-2 - Definitions. (United States)


    ... 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and... that they are produced by a separate division of a single manufacturer. Calibrating gas means a gas of... calibrations, fuel tank and carburetor bowl vent calibrations and other fuel system and evaporative emission...

  15. How Good Are Trainers' Personal Methods Compared to Two Structured Training Strategies? (United States)

    Walls, Richard T.; And Others

    Training methods naturally employed by trainers were analyzed and compared to systematic structured training procedures. Trainers were observed teaching retarded subjects how to assemble a bicycle brake, roller skate, carburetor, and lawn mower engine. Trainers first taught using their own (personal) method, which was recorded in terms of types of…

  16. Attempt of lean burn of a 4 cycle gasoline engine by the aid of low pressure air assisted in-cylinder injection; Tonai kuki nenryo funsha ni yoru lean burn no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, S; Kondo, M; Sekiya, Y; Murayama, T [Hokkaido Automotive Engineering College, Hokkaido (Japan)


    Comparable performance and exhaust emission with conventional carburetor was obtained by a low Pressure air assisted in-cylinder injection system. And lean burn of idling and light load operation till A/F=70 was realized by installing a spark Plug and a reed type injection nozzle in a divided combustion chambaer of a 4 cycle gasoline engine. 2 refs., 10 figs.

  17. Multiple Learning Strategies Project. Small Engine Repair Service. Regular Vocational. [Vol. 1. (United States)

    Pitts, Jim; And Others

    This instructional package is one of two designed for use by regular vocational students in the vocational area of small engine repair service. Contained in this document are forty-four learning modules organized into ten units: engine block; air cleaner; starters; fuel tanks; lines, filters, and pumps; carburetors; electrical; magneto systems;…

  18. Multiple Learning Strategies Project. Small Engine Repair. Visually Impaired. (United States)

    Foster, Don; And Others

    This instructional package designed for visually impaired students, focuses on the vocational area of small engine repair. Contained in this document are forty learning modules organized into fourteen units: engine block; starters; fuel tank, lines, filters and pumps; carburetors; electrical; test equipment; motorcycle; machining; tune-ups; short…

  19. 40 CFR 1051.115 - What other requirements apply? (United States)


    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission Standards and... parameters that control the air-fuel ratio may be treated separately under paragraph (d) of this section. An... engine parts (such as the carburetor jet size and needle configuration as a function of atmospheric...

  20. 77 FR 9837 - Airworthiness Directives; Lycoming Engines Reciprocating Engines (United States)


    ... Airmotive Corporation, formerly Facet Aerospace Products Company, formerly Marvel-Schebler (BorgWarner)) HA... identified in this AD, contact Marvel-Schebler Aircraft Carburetors LLC, 125 Piedmont Avenue, Gibsonville NC... Precision Airmotive Corporation, formerly Facet Aerospace Products Company, formerly Marvel-Schebler (Borg...

  1. 40 CFR 610.33 - Durability tests. (United States)


    ....33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY... problems, deterioration in spark plug life, increase in carburetor or combustion chamber deposits, or..., then a durability run may be made as described in subpart E, in which fuel economy and exhaust...

  2. Multi-Cultural Competency-Based Vocational Curricula. Automotive Mechanics. Multi-Cultural Competency-Based Vocational/Technical Curricula Series. (United States)

    Hepburn, Larry; Shin, Masako

    This document, one of eight in a multi-cultural competency-based vocational/technical curricula series, is on automotive mechanics. This program is designed to run 36 weeks and cover 10 instructional areas: the engine; drive trains--rear ends/drive shafts/manual transmission; carburetor; emission; ignition/tune-up; charging and starting;…

  3. DTNSRDC Library Subject Thesaurus. (United States)



  4. Methanol toxicity secondary to inhalant abuse in adult men. (United States)

    Wallace, Erik A; Green, Adam S


    The purpose of this report is to evaluate the presentation, treatment, and outcomes of adults with methanol toxicity from inhalation of carburetor cleaning fluid fumes. Retrospective chart review of adults with positive serum volatile screen for methanol and history of carburetor cleaning fluid fume inhalation. Sixteen patients were admitted 68 times. Eleven Native American patients accounted for 90% of admissions. Sixty-five cases presented with nausea/vomiting; 27 with intoxication or altered mental status; 21 with specific visual complaints. About 93% had a pH or=10 mOsm/L, and 69% had anion gap >16. Ten had an initial serum methanol level or=50 mg/dL. Six patients had a measurable serum ethanol level. Of the 29 patients with a methanol level of 20-49 mg/dL, 20 received intravenous antidote (ethanol or fomepizole); three received an antidote and hemodialysis. All who presented with a serum methanol level >or=50 mg/dL received intravenous ethanol or fomepizole. All visual symptoms resolved before discharge and all patients survived without sequelae. Discussion. This is the largest reported number of cases of methanol toxicity from the inhalation of carburetor cleaning fluid fumes and demonstrates a problem with recurrent abuse among some older Native American men. Intentional inhalation of methanol fumes may produce toxicity. Clinicians need to question patients, especially older Native American men, regarding the possible inhalation of carburetor cleaning fluid fumes in those who present with an unexplained metabolic anion gap acidosis.

  5. 40 CFR 600.307-86 - Fuel economy label format requirements. (United States)


    ... metering system, including number of carburetor barrels, if applicable; (7) Transmission class; (8... Regulations for 1977 and Later Model Year Automobiles-Labeling § 600.307-86 Fuel economy label format... the city and highway estimates by 0.85, then rounding to the next lower integer value. (2) The upper...

  6. 40 CFR 86.096-24 - Test vehicles and engines. (United States)


    ... in the Production AMA Durability Program, the engine families covered by an application for...) Method of carburetor sealing. (iii) Method of air cleaner sealing. (iv) Vapor storage working capacity... and light-duty trucks, but does not apply to the production vehicles selected under paragraph (h) of...

  7. 40 CFR 85.2122 - Emission-critical parameters. (United States)


    ... mixture delivered to the engine by the carburetor during cold-engine start and cold-engine operation. (B...” means a spiral-wound coil of thermally-sensitive material which provides rotary force (torque) and/or...-by gasses and fresh air from the crankcase to the fuel induction system of the engine. (5) Breaker...


    African Journals Online (AJOL)

    "Africa" version of the Corolla passenger cars, model. 1988, in which among other simplifications the double barrel carburetor and the ignition system are not adapted in any way for high altitude operation. The ignition timing is to be set even some degrees later than normally speci- fied by the producer. Cars without systems ...

  9. An industrial demonstration of computer assisted tomography

    International Nuclear Information System (INIS)

    Lupton, L.R.


    Computerized tomography (CT) is a nondestructive testing technique for generating quantitative density (linear attenuation coefficient) maps of a cross section through an object. By using a series of parallel tomographic images taken at different elevations, a three-dimensional (3-D) map of the object can be obtained. To demonstrate the power of tomography, a 3-D region of a motorcycle carburetor has been imaged using twenty-four parallel two-dimensional images. From these data, new images in planes orthogonal to the original planes have been generated, thereby improving the user's ability to visualize the position of components within the carburetor. The data have also been used to demonstrate the relationship between tomography and radiography

  10. ASIL determination for motorbike’s Electronics Throttle Control System (ETCS) mulfunction


    Rokhani Fakhrul Zaman; Abdul Rahman Muhammad Taqiuddin; Kamsani Noor Ain; Mohd Sidek Roslina; Saripan M Iqbal; Samsudin Khairulmizam; Hassan Mohd Khair


    Electronics Throttle Control System (ETCS) is the principal electronic unit in all fuel injection engine motorbike, augmenting the engine performance efficiency in comparison to the conventional carburetor based engine. ETCS is regarded as a safety-critical component, whereby ETCS malfunction can cause unintended acceleration or deceleration event, which can be hazardous to riders. In this study, Hazard Analysis and Risk Assessment, an ISO26262 functional safety standard analysis has been app...


    Directory of Open Access Journals (Sweden)

    V. Korohodskyi


    Full Text Available With the help of 3-D modeling of the workflow of a two-stroke engine with spark ignition, crank-chamber scavenging and a carburetor feeding system in the modes of external speed characteristic the indices of gas exchange were evaluated. The simulation results are consistent with the experimental data and 3D simulation results in the AVL FIRE and MTFS® software complexes. The model allows performing optimized calculations of multiphase flow in ICE during experimental design work.

  12. Effect of Atmospheric Pressure and Temperature on a Small Spark Ignition Internal Combustion Engine’s Performance (United States)


    aid of a pump . A carbureted 10 engine uses the principles of a venturi or system of venturis to produce the required fuel flow. The carburetor...fuel R specific gas constant Sg specific gravity t time ttot total time T torque (Eq. 4), (Eq. 6) T temperature (Eq. 10), (Eq. 13), (Eq. 22...meters the fuel based on a pressure difference created by the venturi . This fuel flow mixes with the air stream in the intake of the engine before it

  13. Kajian Eksperimental Perbandingan Performansi Mesin Otto Bahan Bakar Premium dengan Bahan Bakar LPG


    Sitorus, Jefferson


    The decreasing availability of fossil fuels led to a variety of ideas how to solve this problem. LPG (Liquefied petroleum gas) is one alternative fuel that can be used in trending engine, one of which is a gasoline engine generator sets in 4-stroke. By modifying the carburetor so the engine can work as when using gasoline. Although the performance of the machine tends to not give optimal results such as engine performance when using gasoline, but has the advantage of LPG fuel, the emissions p...

  14. Tomography

    International Nuclear Information System (INIS)


    Already widely accepted in medicine, tomography can also be useful in industry. The theory behind tomography and a demonstration of the technique to inspect a motorcycle carburetor is presented. To demonstrate the potential of computer assisted tomography (CAT) to accurately locate defects in three dimensions, a sectioned 5 cm gate valve with a shrink cavity made visible by the sectioning was tomographically imaged using a Co-60 source. The tomographic images revealed a larger cavity below the sectioned surface. The position of this cavity was located with an in-plane and axial precision of approximately +-1 mm. The volume of the cavity was estimated to be approximately 40 mm 3

  15. ASIL determination for motorbike's Electronics Throttle Control System (ETCS) mulfunction (United States)

    Zaman Rokhani, Fakhrul; Rahman, Muhammad Taqiuddin Abdul; Ain Kamsani, Noor; Sidek, Roslina Mohd; Saripan, M. Iqbal; Samsudin, Khairulmizam; Khair Hassan, Mohd


    Electronics Throttle Control System (ETCS) is the principal electronic unit in all fuel injection engine motorbike, augmenting the engine performance efficiency in comparison to the conventional carburetor based engine. ETCS is regarded as a safety-critical component, whereby ETCS malfunction can cause unintended acceleration or deceleration event, which can be hazardous to riders. In this study, Hazard Analysis and Risk Assessment, an ISO26262 functional safety standard analysis has been applied on motorbike's ETCS to determine the required automotive safety integrity level. Based on the analysis, the established automotive safety integrity level can help to derive technical and functional safety measures for ETCS development.

  16. Researches on direct injection in internal-combustion engines (United States)

    Tuscher, Jean E


    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  17. Fundamentals and applications of neutron imaging. Application part 3. Application of neutron imaging in aircraft, space rocket, car and gunpowder industries

    International Nuclear Information System (INIS)

    Ikeda, Yasushi


    Neutron imaging is applied to nondestructive test. Four neutron imaging facilities are used in Japan. The application examples of industries are listed in the table: space rocket, aircraft, car, liquid metal, and works of art. Neutron imaging of transportation equipments are illustrated as an application to industry. X-ray radiography testing (XRT) image and neutron radiography testing (NRT) image of turbine blade of aircraft engine, honeycomb structure of aircraft, helicopter rotor blade, trigger tube, separation nut of space rocket, carburetor of car, BMW engine, fireworks and ammunitions are illustrated. (S.Y.)

  18. Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method. (United States)

    Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan


    In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.

  19. The Use of Large Valve Overlap in Scavenging a Supercharged Spark-ignition Engine Using Fuel Injection (United States)

    Schey, Oscar W; Young, Alfred W


    This investigation was conducted to determine the effect of more complete scavenging on the full throttle power and the fuel consumption of a four-stroke-cycle engine. The NACA single-cylinder universal test engine equipped with both a fuel-injection system and a carburetor was used. The engine was scavenged by using a large valve overlap and maintaining a pressure in the inlet manifold of 2 inches of mercury above atmospheric. The maximum valve overlap used was 112 degrees. Tests were conducted for a range of compression ratios from 5.5 to 8.5. Except for variable speed tests, all tests were conducted at an engine speed of 1,500 r.p.m. The results of the tests show that the clearance volume of an engine can be scavenged by using a large valve overlap and about 2 to 5 inches of mercury pressure difference between the inlet and exhaust valve. With a fuel-injection system when the clearance volume was scavenged, a b.m.e.p. of over 185 pounds per square inch and a fuel consumption of 9.45 pound per brake horsepower per hour were obtained with a 6.5 compression ratio. An increase of approximately 10 pounds per square inch b.m.e.p. was obtained with a fuel-injection system over that with a carburetor.

  20. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine (United States)

    Cofaru, Corneliu


    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  1. Cowdung gas plant gets popular in U. P

    Energy Technology Data Exchange (ETDEWEB)

    Das, R


    Work at the Planning Research and Action Institute, Lucknow, was confined from 1957 to 1959 to constructing gas plants of 2.83 m/sup 3/ gas production capacity per day. A demonstration plant on the premises produced gas for lighting and cooking. Successful research at Chinhat demonstrated that small gasoline and kerosene engines could be run on the gas through carburetor modifications. Since 1960 workers at the gobar-gas research center at Ajitmal have developed a two-stage digester system of combined volume of 63.8 m/sup 3/ with a 35.5 m/sup 3/ gasholder. The primary digester is heated and mixed, gravity fed, and passes the slurry through a siphon to the secondary digester. Work continues on the conversion of diesel engines to biogas, the use of the gas for welding, development of stoves on which to bake flatbread, and more efficient use of the effluent.

  2. Preliminary results on performance testing of a turbocharged rotary combustion engine (United States)

    Meng, P. R.; Rice, W. J.; Schock, H. J.; Pringle, D. P.


    The performance of a turbocharged rotary engine at power levels above 75 kW (100 hp) was studied. A twin rotor turbocharged Mazda engine was tested at speeds of 3000 to 6000 rpm and boost pressures to 7 psi. The NASA developed combustion diagnostic instrumentation was used to quantify indicated and pumping mean effect pressures, peak pressure, and face to face variability on a cycle by cycle basis. Results of this testing showed that a 5900 rpm a 36 percent increase in power was obtained by operating the engine in the turbocharged configuration. When operating with lean carburetor jets at 105 hp (78.3 kW) and 4000 rpm, a brake specific fuel consumption of 0.45 lbm/lb-hr was measured.

  3. Opportunity to reduce the exhaust gases with engine adjust

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Mucevski, Kiril


    According to statistics in the Republic of Macedonia, the number of old vehicles is about 90%. These are vehicles produced between 1975 and 1990 with classical systems for forming and burning the fuel mixture. The most of them do not have system for processing exhaust gases (catalytic converter) and are serious air pollutants of carbon monoxide (CO). In this article we try to make an attempt to reduce exhaust gases in some kinds of these vehicles with adjusting to the system for burning fuel mixture and with adjusting to the system for forming fuel mixture (carburetor). At the same time the changes on the rotate bending moment and engine power are followed. It is noticed that with a proper adjustment the emission of exhaust gases can be reduced without a serious depreciation of the rotate bending moment and the engine power. (Author)

  4. Free automotive and heating fuels for home and farm

    International Nuclear Information System (INIS)

    Murray, K.


    This book is for farmers or any landowners with access to free materials, such as agricultural wastes, that can be converted with minimum expense to heating fuel of to ethanol for automotive use. Farmers can learn how to make and use stoves, furnaces or stills for processing their own free materials for their own use or their neighbors. If one is a good mechanic one can learn how to adjust carburetors, to start a business converting engines to burn ethanol. The book is intended to provide the information you need to make practical use of waste materials and to save money. The book contains five chapters: Ethanol feedstocks; Crops for burning; Conversion to fuel; Fuel Utilization; and Business Opportunities. These chapters have been processed separately for inclusion on the data base

  5. Experimental studies on fumigation of ethanol in a small capacity Diesel engine

    International Nuclear Information System (INIS)

    Chauhan, Bhupendra Singh; Kumar, Naveen; Pal, Shyam Sunder; Du Jun, Yong


    To diversify the mix of domestic energy resources and to reduce dependence on imported oil, ethanol is widely investigated for applying in combination with Diesel fuel to reduce pollutants, including smoke and NO x . Present work aims at developing a fumigation system for introduction of ethanol in a small capacity Diesel engine and to determine its effects on emission. Fumigation was achieved by using a constant volume carburetor. Different percentages of ethanol fumes with air were then introduced in the Diesel engine, under various load conditions. Ethanol is an oxygenated fuel and lead to smooth and efficient combustion. Atomization of ethanol also results in lower combustion temperature. During the present study, gaseous emission has been found to be decreasing with ethanol fumigation. Results from the experiment suggest that ethanol fumigation can be effectively employed in existing compression ignition engine to achieve substantial saving of the limited Diesel oil. Results show that fumigated Diesel engine exhibit better engine performance with lower NOx, CO, CO 2 and exhaust temperature. Ethanol fumigation has resulted in increase of unburned hydrocarbon (HC) emission in the entire load range. Considering the parameters, the optimum percentage was found as 15% for ethanol fumigation. -- Research highlights: → To diversify energy resources and to reduce dependence on imported oil, ethanol is used in Diesel engine to reduce pollutants. → Developing a fumigation system to inject ethanol in a small capacity Diesel engine, to determine its effects on emissions. → Different percentages of ethanol fumes with air were introduced in Diesel engine, under various load conditions by using a constant volume carburetor. → Results show that fumigated Diesel engine exhibits better engine performance with lower NOx, CO, CO 2 and exhaust temperature. → Results show increase of unburned hydrocarbon emission in entire load range. Optimum percentage found as 15% for

  6. Designing a heat pipe to improve the exhaust emissions from petrol engines

    International Nuclear Information System (INIS)

    Elmabrouk, A.M.


    The national engineering Laboratory and the Shell research laboratory have co-operated in applying the heat pipe to the problem of exhaust emission from petrol engine. It is known that the carbon monoxide CO, un-burnt hydrocarbons (H x C y ) and oxides of Nitrogen (NO x ) content of the exhaust will vary with air to fuel ratio as shown in figure (1), in a conventional car engine the maximum efficiency is achieved at 15:1 and maximum power is obtained at 12:1. It's known that as the air fuel ratio increases, the CO content decreases and H x C y , NO x go through a minimum and maximum respectively. A considerable important in both CO and NO x content could be chivied by selecting a very weak mixture, but this not possible in a standard engine carburetor system due to the ignition difficulty, because the fuel is not fully vaporized, and because the fuel is not distributed equally between the cylinders and the vapor content is not as high as it should be due to the pressure of liquid fuel. This problem could be solved by designing a heat pipe that can transferring a certain quantities of heat from the exhaust to the induction manifold at the carburetor outlet as shown in figure (2). Under this condition a mixture as lean as 22:1 will ignite with out difficulty. In this paper, a complete design of heat pipe is carried out, taking into account the necessary criteria to decide various geometrical parameters. The design has been carried out using basic formulas in thermodynamics, heat transfer and physics. The result of this design have been checked for various practical limits. (author)

  7. Design of a new SI engine intake manifold with variable length plenum

    International Nuclear Information System (INIS)

    Ceviz, M.A.; Akin, M.


    This paper investigates the effects of intake plenum length/volume on the performance characteristics of a spark-ignited engine with electronically controlled fuel injectors. Previous work was carried out mainly on the engine with carburetor producing a mixture desirable for combustion and dispatching the mixture to the intake manifold. The more stringent emission legislations have driven engine development towards concepts based on electronic-controlled fuel injection rather than the use of carburetors. In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected onto the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. Engine performance characteristics such as brake torque, brake power, thermal efficiency and specific fuel consumption were taken into consideration to evaluate the effects of the variation in the length of intake plenum. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. According to the test results, plenum length must be extended for low engine speeds and shortened as the engine speed increases. A system taking into account the results of the study was developed to adjust the intake plenum length.

  8. Improving of diesel combustion-pollution-fuel economy and performance by gasoline fumigation

    International Nuclear Information System (INIS)

    Şahin, Zehra; Durgun, Orhan


    Highlights: • The effects of gasoline fumigation on the engine performance and NO x emission were investigated in Ford XLD 418 T automotive diesel engine. • Gasoline at approximately (2, 4, 6, 8 10, and 12)% (by vol.) ratios was injected into intake air by a carburetor. • GF enhances effective power and reduces brake specific fuel consumption, cost, and NO x emission. - Abstract: One of the most important objectives of the studies worldwide is to improve combustion of diesel engine to meet growing energy needs and to reduce increasing environmental pollution. To accomplish this goal, especially to reduce pollutant emissions, researchers have focused their interest on the field of alternative fuels and alternative solutions. Gasoline fumigation (GF) is one of these alternative solutions, by which diesel combustion, fuel economy, and engine performance are improved, and environmental pollution is decreased. In the fumigation method, gasoline is injected into intake air, either by a carburetor, which main nozzle section is adjustable or by a simple injection system. In the present experimental study, a simple carburetor was used, and the effects of gasoline fumigation at (2, 4, 6, 8, 10, 12)% (by vol.) gasoline ratios on the combustion, NO x emission, fuel economy, and engine performance sophisticatedly investigated for a fully instrumented, four-cylinder, water-cooled indirect injection (IDI), Ford XLD 418 T automotive diesel engine. Tests were conducted for each of the above gasoline fumigation ratios at three different speeds and for (1/1, 3/4, and 1/2) fuel delivery ratios (FDRs). GF test results showed that NO x emission is lower than that of neat diesel fuel (NDF). NO x emission decreases approximately 4.20%, 2.50%, and 9.65% for (1/1, 3/4, and 1/2) FDRs, respectively. Effective power increases approximately 2.38% for 1/1 FDR. At (2500 and 3000) rpms, effective power decreases at low gasoline ratios, but it increases at high gasoline ratios for 3/4 and 1

  9. Possible gasoline-induced chronic liver injury due to occupational malpractice in a motor mechanic: a case report. (United States)

    Gunathilaka, Mahesh Lakmal; Niriella, Madunil Anuk; Luke, Nathasha Vihangi; Piyarathna, Chathura Lakmal; Siriwardena, Rohan Chaminda; De Silva, Arjuna Priyadarshin; de Silva, Hithanadura Janaka


    Hydrocarbon-induced occupational liver injury is a well-known clinical entity among petroleum industry workers. There are many types of hydrocarbon exposure, with inhalation being the most common. Hydrocarbon-induced occupational liver injury is a rarely suspected and commonly missed etiological agent for liver injury. We report a case of a non-petroleum industry worker with chronic liver disease secondary to hydrocarbon-induced occupational liver injury caused by chronic low-grade hydrocarbon ingestion due to occupational malpractice. A 23-year-old Sri Lankan man who was a motor mechanic presented to our hospital with decompensated cirrhosis. He had been chronically exposed to gasoline via inadvertent ingestion due to occupational malpractice. He used to remove gasoline from carburetors by sucking and failed to practice mouth washing thereafter. On evaluation, he had histologically proven established cirrhosis. A comprehensive history and workup ruled out other nonoccupational etiologies for cirrhosis. The patient's long-term occupational gasoline exposure and clinical course led us to a diagnosis of hydrocarbon-induced occupational liver injury leading to decompensated cirrhosis. Hydrocarbon-induced occupational liver injury should be considered as a cause when evaluating a patient with liver injury with possible exposure in relevant occupations.

  10. Orbital compressed air and petroleum injury mimicking necrotizing fasciitis. (United States)

    Mellington, Faye E; Bacon, Annette S; Abu-Bakra, Mohammed A J; Martinez-Devesa, Pablo; Norris, Jonathan H


    Orbital injury secondary to petroleum-based products is rare. We report the first case, to our knowledge, of a combined compressed air and chemical orbital injury, which mimicked necrotizing fasciitis. A 58-year-old man was repairing his motorcycle engine when a piston inadvertently fired, discharging compressed air and petroleum-based carburetor cleaner into his left eye. He developed surgical emphysema, skin necrosis, and a chemical cellulitis, causing an orbital compartment syndrome. He was treated initially with antibiotics and subsequently with intravenous steroid and orbital decompression surgery. There was almost complete recovery by 4 weeks postsurgery. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Petroleum-based products can cause severe skin irritation and necrosis. Compressed air injury can cause surgical emphysema. When these two mechanisms of injury are combined, the resulting orbitopathy and skin necrosis can mimic necrotizing fasciitis and cause diagnostic confusion. A favorable outcome is achievable with aggressive timely management. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The Improvement of Carburater Efficiency Using Biogas-based Venturi

    Directory of Open Access Journals (Sweden)

    Lasmi Ni Ketut


    Full Text Available The elimination of the fossil fuel subsidy by the Indonesian government has caused an increase in fuel prices, and a solution to find a relatively cheap and environmentally friendly alternative energy is needed. Biogas is one of the sources of renewable energy that has a potential to be developed, especially in farming area where the abundant animal excrement is not yet optimally used and causes environmental problems. Addressing this issue, we have developed an innovation by making a biogas and air mixer instrument through venturi pipe, using the basic theory of fluid mechanism in order to increase the use of biogas as an electricity source. Usually, biogas-based electric generators use dual fuel system such as fossil fuel and biogas to perform combustion due to the low octane contained in the biogas. By replacing the readily available manufactured venturi with the modified venturi, optimal combustion can be reached with using only single fuel of biogas. The results of the experiments show that the biogas debit on carburetor increases from 13 to 439 watts consuming biogas fuel from 0.22 to 4.96 liter/minute, respectively. The amount of combusted biogas depends on the value of the load power. Within the scope of our results, the maximum voltage reached is about 211.13 – 211.76 volts which is feasible to use for 220 volts electrical appliances

  12. Low grade bioethanol for fuel mixing on gasoline engine using distillation process (United States)

    Abikusna, Setia; Sugiarto, Bambang; Suntoro, Dedi; Azami


    Utilization of renewable energy in Indonesia is still low, compared to 34% oil, 20% coal and 20% gas, utilization of energy sources for water 3%, geothermal 1%, 2% biofuels, and biomass 20%. Whereas renewable energy sources dwindling due to the increasing consumption of gasoline as a fuel. It makes us have to look for alternative renewable energy, one of which is bio ethanol. Several studies on the use of ethanol was done to the researchers. Our studies using low grade bio ethanol which begins with the disitillation independently utilize flue gas heat at compact distillator, produces high grade bio ethanol and ready to be mixed with gasoline. Stages of our study is the compact distillator design of the motor dynamic continued with good performance and emission testing and ethanol distilled. Some improvement is made is through the flue gas heat control mechanism in compact distillator using gate valve, at low, medium, and high speed engine. Compact distillator used is kind of a batch distillation column. Column design process using the shortcut method, then carried the tray design to determine the overall geometry. The distillation is done by comparing the separator with a tray of different distances. As well as by varying the volume of the feed and ethanol levels that will feed distilled. In this study, we analyzed the mixing of ethanol through variation between main jet and pilot jet in the carburetor separately interchangeably with gasoline. And finally mixing mechanism bio ethanol with gasoline improved with fuel mixer for performance.

  13. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement (United States)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J


    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  14. Experience with a biomass-fuelled power plant in Peru. Peru kokunai no biomass nenryoka no hatsuden plant no keiken

    Energy Technology Data Exchange (ETDEWEB)


    This paper describes the result of operating a 25-kW biomass-fuelled power plant for 500 hours installed for people in a small village in jungle along the Amazon basin in Peru. The gasifier plant consists of two invert type gas combustors combined with series cyclone dryer filters. Filtration used activated carbons and cotton cloths. The fuel for the plant is wood chips containing water at 5.5% to 11% with calorific power of 20 mJ/kg, consumed at 2.0 kg of lumber per kWh (25 kWh). A gas analysis showed values of CO2 at 13%, CO at 14%, H2 at 18%, CH4 at 3%, and N2 at 52%. Because the fuel of wood chips may cause problems if the size is too large, a size of about 10[times]20[times]30 mm was selected finally. Pressure drop in the gas purifying system was measured using a manometer, which verified that a textile filtering material can be used. The gasoline engine rotation was fixed at 2700 rpm upon discussions. The gasoline engine had no need of modification except at a pipe to the carburetor. This system can be installed at any small village. 1 ref., 1 fig.

  15. Effect of Biodiesel Fuel Injection Timing and Venture for Gaseous Fuel Induction on the Performance, Emissions and Combustion Characteristics of Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mallikarjun Bhovi


    Full Text Available Advancing or retarding pilot fuel injection timing in a diesel engine provided with either conventional mechanical fuel injection (CMFIS or high pressure injection as in common rail fuel injection (CRDI systems can significantly affect its performance and tail pipe emissions. Performance of diesel engine when fueled with various biofuels as well as gaseous fuels tends to vary with subsequent changes in pilot fuel injection timings. Biodiesel derived from rubber seed oil called Rubber Seed Oil Methyl Ester (RuOME and hydrogen (H2 and hydrogen enriched compressed natural gas called (HCNG both being renewable fuels when used in diesel engines modified to operate in dual fuel mode can provide complete replacement for fossil diesel. In the present study, effect of injection timings and venture design for gas mixing on the performance, combustion and emission characteristics of dual fuel engine fitted with both CMFIS and CRDI injection systems and operated on RuOME and HCNG/hydrogen has been investigated. Results showed that high pressure CRDI assisted injection of RuOME with optimized mixing chamber (carburetor for hydrogen induction in dual fuel engine performed improved compared to that with CMFIS. In addition, for the same fuel combinations, CRDI resulted in lower biodiesel consumption, lower carbon monoxide (BSCO and hydrocarbon (BSHC emissions and increased NOx emissions than CMFIS operation.

  16. The impact of hydrogen-bearing gas to change indexes of car engine in operating conditions

    Directory of Open Access Journals (Sweden)

    Korpach A.


    Full Text Available Due to lower oil and petroleum products there is a constant problem of the growing use of alternative fuels. One of the most promising is hydrogen, but its use as a self-fuel is rather difficult, but using as the form of supplements has prospects for widespread use in road transport. In order to establish the effectiveness of its use as a hydrogen-containing gas as a product of the electrolysis of the alkaline solution, a series of tests conducted. Tests were carried out on the car ZAZ–1102 "Tavria", which is equipped with an engine MeMZ–245 with carburetor feed system and electrolyser SuperKit 10, which is powered by the vehicle electrical system. At the same time also used electrolytic League–02. The effect on fuel economy additives hydrogen-containing gas to the air charge is determined when the engine is idling. When using additives 1,34 % interest, from the weight of the fuel, fuel efficiency has increased by 1,9 %.

  17. Recent Efforts and Experiments in the Construction of Aviation Engines (United States)



    It became evident during World War I that ever-increasing demands were being placed on the mean power of aircraft engines as a result of the increased on board equipment and the demands of aerial combat. The need was for increased climbing efficiency and climbing speed. The response to these demands has been in terms of lightweight construction and the adaptation of the aircraft engine to the requirements of its use. Discussed here are specific efforts to increase flying efficiency, such as reduction of the number of revolutions of the propeller from 1400 to about 900 r.p.m. through the use of a reduction gear, increasing piston velocity, locating two crankshafts in one gear box, and using the two-cycle stroke. Also discussed are improvements in the transformation of fuel energy into engine power, the raising of compression ratios, the use of super-compression with carburetors constructed for high altitudes, the use of turbo-compressors, rotary engines, and the use of variable pitch propellers.


    Directory of Open Access Journals (Sweden)



    Full Text Available The target of the present study is to clarify ignition characteristics, combustion process and knock limit of methanol premixture in a dual fuel diesel engine, and also to improve the trade-off between NOx and smoke markedly without deteriorating the high engine performance. Experiment was conducted to evaluate the performance and emission characteristics of direct injection diesel engine operating in duel fuel mode using Pongamia methyl ester injection and methanol carburetion. Methanol is introduced into the engine at different throttle openings along with intake air stream by a carburetor which is arranged at bifurcated air inlet. Pongamia methyl ester fuel was supplied to the engine by conventional fuel injection. The experimental results show that exhaust gas temperatures are moderate and there is better reduction of NOx, HC, CO and CO2 at methanol mass flow rate of 16.2 mg/s. Smoke level was observed to be low and comparable. Improved thermal efficiency of the engine was observed.

  19. Super gas saver secrets

    Energy Technology Data Exchange (ETDEWEB)

    Wiseman, G.


    This book demonstrates how to save money by getting better fuel economy and increase automobile performance through hundreds of fuel saving tips and projects. The book gives practical advise to car drivers on how to reduce travel costs by more than 50 per cent. Conventional ways to save gas include adopting fuel saving habits such as shifting properly, accelerating smoothly, and going easy on the brakes. Some performance booster tips were also presented. These included tips such as turning off the alternator, using moth balls to boost the fuel octane rating, turning the air conditioner off and power boosting the power circuits. A total of 25 tips were provided. An entire section of the book was devoted to tips on making the carburetor more fuel efficient with air bleeds, gasoline preheaters, and fuel pressure regulators. Eagle Research's newly developed electrostatic gas saver was also presented. The final section of the book referred to the potential viability of using homemade fuels such as hydrogen, methane, alcohol and wood gas. refs., tabs., figs.

  20. Emulsification as an approach to the introduction of methanol/gasoline blends as a motor fuel in Canada

    Energy Technology Data Exchange (ETDEWEB)


    This report summarizes the work on a phase of a program which concentrates on the utilization of methanol-gasoline mixtures in spark-ignition engines. A fuel system having components for a 2.5 liter engine equipped with an oxygen sensor controlled carburetor, described in another report, was further developed. Extended cold start tests were carried out and the maximum amount of methanol that could be tolerated by the fuel system , without imparing engine operation, was 30% methanol in gasoline on a volume basis. The engine was installed in an automobile and road tests were conducted concentrating on cold starts and warm-up, fuel system performance, fuel economy and materials compatibility of components exposed to the methanol-gasoline blend. A second phase separation control system was developed for a 2.1 liter displacement engine equipped with a mechanical fuel injection system. The proportioning and pick-up components for the tank were incorporated in the existing fuel system. Cold start tests were performed and 20% methanol was found to be the upper limit. The engine was installed and the vehicle were road tested. Minor shortcomings identified during road testing were corrected. Overall performance and driveability of both vehicles were found acceptable. However, testing under low ambient temperature conditions remains to be done. 2 refs., 37 figs., 8 tabs.

  1. Investigation of the Behavior of Fuel in the Intake Manifold and its Relation to S. I. Engines, 1980-1983 (United States)

    Servati, Hamid Beyragh

    A liquid fuel film formation on the walls of an intake manifold adversely affects the engine performance and alters the overall air/fuel ratio from that scheduled by a fuel injector or carburetor and leads to adverse effects in vehicle driveability, exhaust emissions, and fuel economy. In this dissertation, the intake manifold is simulated by a horizontal circular duct. A model is provided to predict the rate of deposition and evaporation of the droplets in the intake manifold. The liquid fuel flow rate into the cylinders, mean film velocity and film thickness are determined as functions of engine parameters for both steady and transient operating conditions of the engine. A mathematical engine model is presented to simulate the dynamic interactions of the various engine components such as the air/fuel inlet element, intake manifold, combustion, dynamics and exhaust emissions. Inputs of the engine model are the intake manifold pressure and temperature, throttle angle, and air/fuel ratio. The observed parameters are the histories of fuel film thickness and velocity, fuel consumption, engine speed, engine speed hesitation time, and histories of CO, CO(,2), NO(,x), CH(,n), and O(,2). The effects of different air/fuel ratio control strategies on engine performance and observed parameters are also shown.

  2. Chemical characterization of emissions from modern two-stroke mopeds complying with legislative regulation in Europe (EURO-2). (United States)

    Adam, T; Farfaletti, A; Montero, L; Martini, G; Manfredi, U; Larsen, B; Santi, G De; Krasenbrink, A; Astorga, C


    In view of a new amendment to the European legislative regulation on emissions from two-stroke mopeds a study was carried out to comprehensively characterize exhaust gases of mopeds complying current EURO-2 emission standards. Three mopeds with different engine types (carburetor, direct injection, and electronic carburetion system ECS) where investigated by applying two different driving cycles, the legislative cycle ECE47 and the worldwide motorcycle test cycle WMTC. Thereby, particulate matter (PM), regulated compounds, carbonyls, volatile hydrocarbons (VOC), and particle-associated polyaromatic hydrocarbons (PAH) were analyzed and ozone formation potentials (OFP) as well as toxicity equivalents (TEQ) determined. The ECE47 emission factors for almost all species and moped types were much higher in the nonregulated, prior cold phase than in the hot phase, which is considered for legislation. Great differences for the mopeds could be observed for NO(x), VOC, and PM, whereas discrepancies between the driving cycles ECE47 and WMTC were smaller. In addition, a positive influence on exhaust composition caused by technical modifications of the ECS engine was determined. Results indicate that regulation of total hydrocarbons (THC) alone might not be sufficient to regulate PM, especially for direct injection engines. Moreover, recommendations for a revised future test protocol are demonstrated and discussed, whereby the cold phase and the hot phase are taken into account.

  3. Modification and tuning of diesel bus engine for biogas electricity production

    Directory of Open Access Journals (Sweden)

    Sittiboon Siripornakarachai


    Full Text Available This study is to convert and tune a bus diesel engine for electricity production in a farm using biogas as fuel. The engine under study is a Hino K-13CTI 13,000 cc 24 valve turbocharged engine coupled to a 3 phase 4 pole induction motor to produce electricity at 50 Hz. Modifications include an addition of biogas carburetor for air-fuel mixing, replacing the fuel injection system with spark ignition system, reduction of compression ratio from the original 16:1 to 8:1 using a cylinder head spacer, and modification of the turbocharger waste gate so the boost pressure can be adjusted. When the induction motor is synchronized to the power grid, the running speed of the engine is 1,500 rpm. Optimal engine efficiency was achieved at 28.6% by setting the lambda factor at 1.097, ignition timing at 54o before top dead center, and the turbocharger boost at 56 kPa. With this setting, the generator power output is 134.20 kilowatt with emission of CO and NOX being 1,154 and 896 ppm respectively.

  4. Diesel oil combustion in fluidized bed; Combustion de aceite diesel en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Cazares, Mario [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)


    The effect of the fluidized bed depth in the combustion in burning diesel oil in a fluidized bed, was analyzed. A self sustained combustion was achieved injecting the oil with an injector that utilized a principle similar to an automobile carburetor venturi. Three different depths were studied and it was found that the deeper the bed, the greater the combustion efficiency. Combustion efficiencies were attained from 82% for a 100mm bed depth, up to 96% for a 200mm bed depth. The diminution in the efficiency was mainly attributed to unburned hydrocarbons and to the carbon carried over, which was observed in the black smoke at the stack outlet. Other phenomena registered were the temperature gradient between the lower part of the bed and the upper part, caused by the fluidization velocity; additionally it was observed that the air employed for the oil injection (carbureting air) is the most important parameter to attain a complete combustion. [Espanol] Se analizo el efecto de la profundidad del lecho en la combustion al quemar aceite diesel en un lecho fluidizado experimental. Se logro combustion autosostenida inyectando el aceite con un inyector que utilizo un principio similar al venturi del carburador de automovil. Se estudiaron tres diferentes profundidades del lecho y se encontro que a mayor profundidad del lecho, mayor eficiencia de la combustion. Se lograron eficiencias de la combustion desde 82% para el lecho de 100 mm de profundidad hasta 96% para el de 200 mm. La disminucion de la eficiencia se atribuyo, principalmente, a los hidrocarburos no quemados y al carbon arrastrado, lo cual se observo en el humo negro a la salida de la chimenea. Otros fenomenos registrados fueron el gradiente de temperatura entre la parte baja del lecho y la parte superior causado por la velocidad de fluidizacion; ademas, se observo que el aire utilizado para inyectar el aceite (aire de carburacion) es el parametro mas importante para lograr una combustion completa.

  5. Quality Uncertainty Erodes Trust in Science

    Directory of Open Access Journals (Sweden)

    Simine Vazire


    Full Text Available When consumers of science (readers and reviewers lack relevant details about the study design, data, and analyses, they cannot adequately evaluate the strength of a scientific study. Lack of transparency is common in science, and is encouraged by journals that place more emphasis on the aesthetic appeal of a manuscript than the robustness of its scientific claims. In doing this, journals are implicitly encouraging authors to do whatever it takes to obtain eye-catching results. To achieve this, researchers can use common research practices that beautify results at the expense of the robustness of those results (e.g., p-hacking. The problem is not engaging in these practices, but failing to disclose them. A car whose carburetor is duct-taped to the rest of the car might work perfectly fine, but the buyer has a right to know about the duct-taping. Without high levels of transparency in scientific publications, consumers of scientific manuscripts are in a similar position as buyers of used cars – they cannot reliably tell the difference between lemons and high quality findings. This phenomenon – quality uncertainty – has been shown to erode trust in economic markets, such as the used car market. The same problem threatens to erode trust in science. The solution is to increase transparency and give consumers of scientific research the information they need to accurately evaluate research. Transparency would also encourage researchers to be more careful in how they conduct their studies and write up their results. To make this happen, we must tie journals’ reputations to their practices regarding transparency. Reviewers hold a great deal of power to make this happen, by demanding the transparency needed to rigorously evaluate scientific manuscripts. The public expects transparency from science, and appropriately so – we should be held to a higher standard than used car salespeople.


    Directory of Open Access Journals (Sweden)

    A. V. Bizhaev


    Full Text Available The water additive to fuel became one of effective ways of the solution of the main problems of the piston internal combustion engines (ICE as it reduces thermal factor of the engine, toxic emissions of exhaust products, and also increases efficiency by some operating modes. The way of fuel and air mix with water feeding in the combustion chamber has a great influence on process of combustion. Experimental installation for obtaining comparative characteristics of the main methods of water supply in the ICE combustion chamber was created. It was defined that there are two ways of water supply in the combustion chamber. At the first way water feed is carried out in the form of a water fuel emulsion which moves to the combustion chamber through a nozzle by means of the fuel pump with a high pressure. At the second way water arrives with air through the spraying element - the carburetor or a nozzle. This way is very simple in difference of emulsion feeding. The easiest way is nozzles application. It was established that the emulsion as the non-uniform highly dispersed fluid can be divide into components. Therefore it is necessary to use during the feeding system operation special emulsifiers with air for the uniformity water getting to the cylinder. The system for each nozzle opening at some point was offered. System of feedback with sensors of exhaust gases temperature in a final collector for adjustment of duration of injection was worked out. It was showed that at the developed experimental stand it is possible to carry out tests at various power modes. As result it will be possible to estimate both ways of fuel and air mix with water feeding.

  7. Effect of zirconium addition on the ductility and toughness of cast zinc-aluminum alloy5, zamak5, grain refined by titanium plus boron

    International Nuclear Information System (INIS)

    Adnan, I.O.


    Zinc-aluminum casting alloys are frequently employed in design. They are inexpensive and have mechanical properties in many respects superior to aluminum and copper alloys. Common applications of zinc-aluminum alloys are in the automobile industry for manufacturing carburetors bodies, fuel pump bodies, driving wheels and door handles. They are mainly used for die casting due to their low melting points which ranges from 375 to 487 degree C, good fluidity, pollution free melting in addition to their high corrosion resistance. Against these advantages there exists the deficiency as these alloys solidify in a coarse dentititic structure which tends to deteriorate the mechanical properties and impact strength. It was found that addition of some rare earth materials e.g. titanium or titanium plus boron results in modifying its structure into a petal-like or nodular type. The available literature reveals that most of the published work is directed towards the metallurgical aspects and little or no work is published on the effect of those elements on its mechanical strength, ductility, toughness and impact strength. In this paper, the effect of addition of Zirconium on the microstructure, mechanical behavior, hardness, ductility and impact strength of zinc-aluminum alloy5, Zamak5, is investigated. It was found that addition of Ti+B or Zr or Ti+B+Zr resulted in modifying the coarse dentritic structure of the Zamak5 alloy into a fine nodular one. Further more, addition of any of these elements alone or together resulted in enhancement of the mechanical strength, hardness, ductility, toughness and impact strength of this alloy, for example an increase of 11% in hardness was achieved in case of Zr addition and 100% increase of ductility and 12.5% increase in impact strength were achieved in case of Ti+B addition. (author)

  8. Information draft on the development of air standards for methanol

    Energy Technology Data Exchange (ETDEWEB)



    Methanol is a clear, colourless. very mobile liquid with a slightly alcoholic odour in pure form, but a repulsive pungent odour in crude form. Methanol is the raw material in the production of many gasoline additives, is used as a solvent or antifreeze in paint strippers, aerosol spray paints, wall paints, carburetor cleaners, and car windshield washer compounds. Methanol is one of the top pollutants by release quantities in Ontario, the highest release being generated by the pulp and paper industry. Other large emissions come from the plastics and synthetic resin industry. Total release to the air in Canada was 3,668 tonnes in 1996 and the top ten methanol emitting facilities were in Ontario. Methanol is readily absorbed through inhalation, ingestion and skin exposures. Once absorbed, it is oxidized to formaldehyde and then to formic acid. Common symptoms of exposure are visual disturbances, dizziness, nausea, vertigo, pain in the extremities, and headaches. No information was found as to the carcinogenicity of methanol to humans or animals. Current Ontario half-hour POI standard for methanol is 84,000 microgram/cubic meter and the 24-hour AAQC is 28,000 microgram/cubic meter. Both values were established more than 20 years ago. Review of relevant literature, summarized in this report, indicates that five US states have promulgated air quality guidelines or reference exposure levels for methanol, based on occupational exposure limits. The US Environmental Protection Agency is currently reviewing its reference concentration value for methanol. The World Health Organization and the Canadian federal government have not set air quality guidelines for methanol. 37 refs., 1 tab., appendix.

  9. Fuel additive improves plant`s air quality

    Energy Technology Data Exchange (ETDEWEB)

    Kratch, K.


    Employees of a major pulp and paper manufacturer complained to the Michigan Department of Public Health that emissions from liquefied petroleum gas-powered fork-lifts used in one of the facility`s warehouses were making them ill. The new and tight building was locking in carbon monoxide emissions, according to the plant`s vehicle maintenance supervisor. Although LPG is a clean-burning fuel, it absorbs impurities from pipelines, resulting in emissions problems. After the company introduced a fuel additive to the LPG, employees` symptoms disappeared. According to the maintenance supervisor, there have been no complaints since the additive was introduced five years ago. A major US auto manufacturer also found the additive helpful in reducing carbon monoxide emissions from forklift trucks in a large parts warehouse to levels within OSHA limits. The carmaker conducted a test of 10 forklifts at its Toledo, Ohio, plant to determine the additive`s effectiveness. Trucks were equipped with new or rebuilt vaporizers, and their carburetors were adjusted for the lowest carbon monoxide and hydrocarbon emissions levels prior to the test. According to Advanced Technology, five trucks were filled with LPG and treated with CGX-4, and five used fuel from the same stock but without the additive. All were operated 16 hours a day, six days a week without further tuning or adjusting. Carbon monoxide and hydrocarbon emissions were measured at 30-, 45- and 65-day intervals. Test results show that all of the trucks using the additive maintained low levels of carbon monoxide and hydrocarbon emissions longer than trucks not using the additive.

  10. Experimental investigation of gasoline fumigation in a single cylinder direct injection (DI) diesel engine

    International Nuclear Information System (INIS)

    Sahin, Z.; Durgun, O.; Bayram, C.


    In the presented study, the effects of gasoline fumigation have been investigated experimentally in a single cylinder direct injection (DI) diesel engine. Gasoline has been introduced into the inlet air flow using an elementary carburetor and no other modification on the engine has been done. The effects of 2%, 4%, 6%, 8% and 10% (by vol.) gasoline fumigation have been investigated experimentally at the speeds of (900-1600) (rpm) and at the selected compression ratios of (18-23). From the experimental results it is determined that by application of gasoline fumigation effective power output increases at the levels of 4-9%, effective efficiency increases by approximately 1.5-4% and specific fuel consumption decreases by approximately 1.5-4%. It is also determined that 4-6% fumigation ratio range is the most favorable percentage interval of gasoline at the selected compression ratios for this engine. Because cost of gasoline is higher than diesel fuel in Turkey as well as in many of the other countries and the decrease ratio of specific fuel consumption is low, gasoline fumigation is not economic for this engine. In the presented study, heat balance tests have also been performed for 18 and 21 compression ratios. The heat balance has been investigated experimentally in respect of effective power, heat rejected to the cooling water, heat lost through exhaust, and other losses (unaccounted-for losses). Heat lost through exhaust decreases until 4-6% gasoline fumigation ratios and after these fumigation ratios it starts to increase because of increasing exhaust gas temperature. Heat rejected to the cooling water decreases at low fumigation ratios, but at high fumigation ratios it increases. Other losses generally exhibit an increasing tendency at low fumigation ratios

  11. Real-world vehicle emission factors in Chinese metropolis city--Beijing. (United States)

    Wang, Qi-dong; He, Ke-bin; Huo, Hong; Lents, James


    The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15 + EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15 + EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are - 0.42-2.99, -0.32-0.81 and -0.11-11 with FTP75 testing, 0.11-1.29, -0.77-0.64 and 0.47-10.50 with Beijing 1997 testing and 0.25-1.83, 0.09-0.75 and - 0.58-1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI + TWC vehicles' pollution emissionfactors decrease with different degree. The retrofit vehicle (Santana) will reduce 4.44%-58.44% CO, -4.95%-36.79% NOx, -32.32%-33.89% HC, and -9.39%-14.29% fuel consumption, and especially that the MPI + TWC vehicle will decrease CO by 82.48%-91.76%, NOx by 44.87%-92.79%, HC by 90.00%-93.89% and fuel consumption by 5.44%-10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.