Sample records for carboxylation

  1. Triphenylphosphine Stabilized Silver Carboxylates

    Institute of Scientific and Technical Information of China (English)

    Jian Lin HAN; Ying Zhong SHEN; Yi PAN


    A series of novel triphenylphosphine stabilized silver carboxylates, potential precursors for CVD growth of ultrafast interconnection link in microelectronic devices, have been prepared and characterized.

  2. Free carboxylate stretching modes

    NARCIS (Netherlands)

    Oomens, J.; Steill, J. D.


    We report the first IR spectroscopic observation of carboxylate stretching modes in free space, i.e., in the complete absence of solvent or counterions. Gas-phase spectra of a series of benzoate anions have been recorded and compared to condensed-phase spectra, revealing the profound influence of th

  3. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher


    Full Text Available In the title compound, C5H9NO2·H2O, the amino acid is in the usual zwitterionic form involving the α-carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7 and 0.118 (7. In the crystal, N—H...O and O—H...O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+ and donor (through a single carboxylate O from two different aminocyclobutane carboxylate moities], resulting in a two-dimensional layered structure lying parallel to (100.

  4. Breaking the Carboxyl Rule (United States)

    Balashov, Sergei P.; Petrovskaya, Lada E.; Imasheva, Eleonora S.; Lukashev, Evgeniy P.; Dioumaev, Andrei K.; Wang, Jennifer M.; Sychev, Sergey V.; Dolgikh, Dmitriy A.; Rubin, Andrei B.; Kirpichnikov, Mikhail P.; Lanyi, Janos K.


    A lysine instead of the usual carboxyl group is in place of the internal proton donor to the retinal Schiff base in the light-driven proton pump of Exiguobacterium sibiricum (ESR). The involvement of this lysine in proton transfer is indicated by the finding that its substitution with alanine or other residues slows reprotonation of the Schiff base (decay of the M intermediate) by more than 2 orders of magnitude. In these mutants, the rate constant of the M decay linearly decreases with a decrease in proton concentration, as expected if reprotonation is limited by the uptake of a proton from the bulk. In wild type ESR, M decay is biphasic, and the rate constants are nearly pH-independent between pH 6 and 9. Proton uptake occurs after M formation but before M decay, which is especially evident in D2O and at high pH. Proton uptake is biphasic; the amplitude of the fast phase decreases with a pKa of 8.5 ± 0.3, which reflects the pKa of the donor during proton uptake. Similarly, the fraction of the faster component of M decay decreases and the slower one increases, with a pKa of 8.1 ± 0.2. The data therefore suggest that the reprotonation of the Schiff base in ESR is preceded by transient protonation of an initially unprotonated donor, which is probably the ϵ-amino group of Lys-96 or a water molecule in its vicinity, and it facilitates proton delivery from the bulk to the reaction center of the protein. PMID:23696649

  5. Biocatalytic reduction of carboxylic acids. (United States)

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Winkler, Margit


    An increasing demand for non-petroleum-based products is envisaged in the near future. Carboxylic acids such as citric acid, succinic acid, fatty acids, and many others are available in abundance from renewable resources and they could serve as economic precursors for bio-based products such as polymers, aldehyde building blocks, and alcohols. However, we are confronted with the problem that carboxylic acid reduction requires a high level of energy for activation due to the carboxylate's thermodynamic stability. Catalytic processes are scarce and often their chemoselectivity is insufficient. This review points at bio-alternatives: currently known enzyme classes and organisms that catalyze the reduction of carboxylic acids are summarized. Two totally distinct biocatalyst lines have evolved to catalyze the same reaction: aldehyde oxidoreductases from anaerobic bacteria and archea, and carboxylate reductases from aerobic sources such as bacteria, fungi, and plants. The majority of these enzymes remain to be identified and isolated from their natural background in order to evaluate their potential as industrial biocatalysts.

  6. Carboxyl group reactivity in actin

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, M.


    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs.

  7. Trametes versicolor carboxylate reductase uncovered


    Winkler, Margit; Winkler, Christoph K.


    Abstract The first carboxylate reductase from Trametes versicolor was identified, cloned, and expressed in Escherichia coli. The enzyme reduces aromatic acids such as benzoic acid and derivatives, cinnamic acid, and 3-phenylpropanoic acid, but also aliphatic acids such as octanoic acid are reduced. Graphical abstract

  8. Structure Property Relationships of Carboxylic Acid Isosteres. (United States)

    Lassalas, Pierrik; Gay, Bryant; Lasfargeas, Caroline; James, Michael J; Tran, Van; Vijayendran, Krishna G; Brunden, Kurt R; Kozlowski, Marisa C; Thomas, Craig J; Smith, Amos B; Huryn, Donna M; Ballatore, Carlo


    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure-property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group.

  9. Recovery of carboxylic acids produced by fermentation. (United States)

    López-Garzón, Camilo S; Straathof, Adrie J J


    Carboxylic acids such as citric, lactic, succinic and itaconic acids are useful products and are obtained on large scale by fermentation. This review describes the options for recovering these and other fermentative carboxylic acids. After cell removal, often a primary recovery step is performed, using liquid-liquid extraction, adsorption, precipitation or conventional electrodialysis. If the carboxylate is formed rather than the carboxylic acid, the recovery process involves a step for removing the cation of the formed carboxylate. Then, bipolar electrodialysis and thermal methods for salt splitting can prevent that waste inorganic salts are co-produced. Final carboxylic acid purification requires either distillation or crystallization, usually involving evaporation of water. Process steps can often be combined synergistically. In-situ removal of carboxylic acid by extraction during fermentation is the most popular approach. Recovery of the extractant can easily lead to waste inorganic salt formation, which counteracts the advantage of the in-situ removal. For industrial production, various recovery principles and configurations are used, because the fermentation conditions and physical properties of specific carboxylic acids differ.

  10. Activation of carboxylic acids in asymmetric organocatalysis. (United States)

    Monaco, Mattia Riccardo; Poladura, Belén; Diaz de Los Bernardos, Miriam; Leutzsch, Markus; Goddard, Richard; List, Benjamin


    Organocatalysis, catalysis using small organic molecules, has recently evolved into a general approach for asymmetric synthesis, complementing both metal catalysis and biocatalysis. Its success relies to a large extent upon the introduction of novel and generic activation modes. Remarkably though, while carboxylic acids have been used as catalyst directing groups in supramolecular transition-metal catalysis, a general and well-defined activation mode for this useful and abundant substance class is still lacking. Herein we propose the heterodimeric association of carboxylic acids with chiral phosphoric acid catalysts as a new activation principle for organocatalysis. This self-assembly increases both the acidity of the phosphoric acid catalyst and the reactivity of the carboxylic acid. To illustrate this principle, we apply our concept in a general and highly enantioselective catalytic aziridine-opening reaction with carboxylic acids as nucleophiles.

  11. New structural motif for carboxylic acid perhydrolases


    Yin, Delu; Purpero, Vince M.; Fujii, Ryota; Jing, Qing; Kazlauskas, Romas J.


    Some serine hydrolases also catalyze a promiscuous reaction – reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five x-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (kcat comparison) than wild type. Surprisingly, satur...

  12. Understanding biocatalyst inhibition by carboxylic acids. (United States)

    Jarboe, Laura R; Royce, Liam A; Liu, Ping


    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  13. Understanding biocatalyst inhibition by carboxylic acids

    Directory of Open Access Journals (Sweden)

    Laura R Jarboe


    Full Text Available Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  14. Carboxylic acids as substrates in homogeneous catalysis. (United States)

    Goossen, Lukas J; Rodríguez, Nuria; Goossen, Käthe


    In organic molecules carboxylic acid groups are among the most common functionalities. Activated derivatives of carboxylic acids have long served as versatile connection points in derivatizations and in the construction of carbon frameworks. In more recent years numerous catalytic transformations have been discovered which have made it possible for carboxylic acids to be used as building blocks without the need for additional activation steps. A large number of different product classes have become accessible from this single functionality along multifaceted reaction pathways. The frontispiece illustrates an important reason for this: In the catalytic cycles carbon monoxide gas can be released from acyl metal complexes, and gaseous carbon dioxide from carboxylate complexes, with different organometallic species being formed in each case. Thus, carboxylic acids can be used as synthetic equivalents of acyl, aryl, or alkyl halides, as well as organometallic reagents. This review provides an overview of interesting catalytic transformations of carboxylic acids and a number of derivatives accessible from them in situ. It serves to provide an invitation to complement, refine, and use these new methods in organic synthesis.

  15. Novel Polymers with Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren


    Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4-hydroxybenzene......, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conducted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly(4-hydroxystyrene), poly(4...... the polymers in general exhibit [when poly(4-hydroxystyrene) is a substantial part] significant changes in the glass-transition temperature from the polar poly(4-hydroxystyrene) (120–130 °C) to the much less polar alkyne polymers (46–60 °C). A direct correlation between the nature of the pendant groups...


    Institute of Scientific and Technical Information of China (English)

    YU Yunchao; LI Yiming


    Carboxyl terminated polyethers, the adducts of hydroxyl terminated polytetrahydrofuran and maleic anhydride, were used as toughener for epoxy resins. The morphology of the toughened resins was investigated by means of turbidity measurement, dynamic mechanical testing and scanning electron microscope observation. It turned out that the molecular weight and the carboxyl content of the polyether and the cure conditions are important factors, which affect the particle size of the polyether-rich domains and, in turn, the mechanical properties of the cured resin. Carboxyl terminated polytetrahydrofurans have a low glass transition temperature, and in appropriate amount they do not affect the thermal resistance of the resin. These advantages make them preferable as toughener for epoxy resins.

  17. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)


    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  18. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery (United States)

    Nicholson, John W.; Wilson, Alan D.


    The conversion of carboxylic acids to ketones is a useful chemical transformation with a long history. Several chemists have claimed that they discovered the conversion of carboxylic acids to ketones yet in fact the reaction is actually known for centuries.

  19. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids. (United States)

    Naruto, Masayuki; Saito, Susumu


    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  20. 40 CFR 721.2950 - Carboxylic acid glycidyl esters. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl...

  1. Methyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Petr Štěpnička


    Full Text Available The title compound, [Fe(C5H5(C19H16O2P], obtained serendipitously during recrystallization of 1-hydroxybenzotriazolyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate from methanol, crystallizes in the chiral space group P212121. Its crystal structure not only confirms the anticipated absolute configuration but also establishes a rather regular geometry for the ferrocene unit, devoid of any significant deformation due to the attached substituents. In the crystal, symmetry-related molecules are linked via weak C—H...O interactions.

  2. Structure investigations of group 13 organometallic carboxylates. (United States)

    Justyniak, Iwona; Prochowicz, Daniel; Tulewicz, Adam; Bury, Wojciech; Goś, Piotr; Lewiński, Janusz


    The octet-compliant group 13 organometallics with highly polarized bonds in the metal coordination sphere exhibit a significant tendency to maximize their coordination number through the formation of adducts with a wide range of neutral donor ligands or by self-association to give aggregates containing tetrahedral and higher coordinated aluminium centres, and even in some cases molecular complexes equilibrate with ionic species of different coordination numbers of the metal centre. This work provides a comprehensive overview of the structural chemistry landscape of the group 13 carboxylates. Aside from a more systematic approach to the general structural chemistry of the title compounds, the structure investigations of [R2M(μ-O2CPh)]2-type benzoate complexes (where M = B, Al and Ga) and their Lewis acid-base adducts [(R2M)(μ-O2CPh)(py-Me)] are reported. DFT calculations were also performed to obtain a more in-depth understanding of both the changes in the bonding of group 13 organometallic carboxylate adducts with a pyridine ligand.

  3. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.


    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  4. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis. (United States)

    Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C


    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol.

  5. Carboxylates and the uptake of ammonium by excised maize roots

    NARCIS (Netherlands)

    Breteler, H.


    The effect of carboxylates (organic acid anions) on NH 4 uptake was studied by changing the carboxylate level of roots prior to uptake experi ments. Succinate was the most effective stimulator of ammonium uptake. The oxocarboxylates (α-oxoglutarate, oxaloacetate and

  6. New structural motif for carboxylic acid perhydrolases. (United States)

    Yin, DeLu Tyler; Purpero, Vince M; Fujii, Ryota; Jing, Qing; Kazlauskas, Romas J


    Some serine hydrolases also catalyze a promiscuous reaction--reversible perhydrolysis of carboxylic acids to make peroxycarboxylic acids. Five X-ray crystal structures of these carboxylic acid perhydrolases show a proline in the oxyanion loop. Here, we test whether this proline is essential for high perhydrolysis activity using Pseudomonas fluorescens esterase (PFE). The L29P variant of this esterase catalyzes perhydrolysis 43-fold faster (k(cat) comparison) than the wild type. Surprisingly, saturation mutagenesis at the 29 position of PFE identified six other amino acid substitutions that increase perhydrolysis of acetic acid at least fourfold over the wild type. The best variant, L29I PFE, catalyzed perhydrolysis 83-times faster (k(cat) comparison) than wild-type PFE and twice as fast as L29P PFE. Despite the different amino acid in the oxyanion loop, L29I PFE shows a similar selectivity for hydrogen peroxide over water as L29P PFE (β(0)=170 vs. 160 M(-1)), and a similar fast formation of acetyl-enzyme (140 vs. 62 U mg(-1)). X-ray crystal structures of L29I PFE with and without bound acetate show an unusual mixture of two different oxyanion loop conformations. The type II β-turn conformation resembles the wild-type structure and is unlikely to increase perhydrolysis, but the type I β-turn conformation creates a binding site for a second acetate. Modeling suggests that a previously proposed mechanism for L29P PFE can be extended to include L29I PFE, so that an acetate accepts a hydrogen bond to promote faster formation of the acetyl-enzyme.

  7. Carboxylate-bridged helical chains based on an azo carboxylate oximate ligand

    Institute of Scientific and Technical Information of China (English)

    KOU HuiZhong; ZHANG YanDong; CUI AiLi


    Two helical one-dimensional complexes[MnⅡ(MeOH)4][MnⅣ(L·)2]· 2MeOH(1)and[MnⅢ(salen)][MnⅢ(L)2](2)(H2L =HON=C(Ph)N=NC6H4CO2H)contain the noninnocent ligand[Mn(L·)2]2- and innocent low-spin[Mn(L)2]-.Intrachain anfiferromagnetic interaction between adjacent manganese ions via the syn-anti carboxylate bridges in complex 1.Alternate syn-anti and anti-anti carboxylate bridges have been found to transmit ferro- and antiferromagnetic coupling between high-spin and low-spin Mn(Ⅲ)ions in complex 2.

  8. Effect of choline carboxylate ionic liquids on biological membranes. (United States)

    Rengstl, Doris; Kraus, Birgit; Van Vorst, Matthew; Elliott, Gloria D; Kunz, Werner


    Choline carboxylates, ChCm, with m=2-10 and choline oleate are known as biocompatible substances, yet their influence on biological membranes is not well-known, and the effect on human skin has not previously been investigated. The short chain choline carboxylates ChCm with m=2, 4, 6 act as hydrotropes, solubilizing hydrophobic compounds in aqueous solution, while the longer chain choline carboxylates ChCm with m=8, 10 and oleate are able to form micelles. In the present study, the cytotoxicity of choline carboxylates was tested using HeLa and SK-MEL-28 cells. The influence of these substances on liposomes prepared from dipalmitoylphosphatidylcholine (DPPC) was also evaluated to provide insights on membrane interactions. It was observed that the choline carboxylates with a chain length of m>8 distinctly influence the bilayer, while the shorter ones had minimal interaction with the liposomes.

  9. Aqueous infrared carboxylate absorbances: Aliphatic di-acids (United States)

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.


    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  10. Silver-catalyzed decarboxylative chlorination of aliphatic carboxylic acids. (United States)

    Wang, Zhentao; Zhu, Lin; Yin, Feng; Su, Zhongquan; Li, Zhaodong; Li, Chaozhong


    Decarboxylative halogenation of carboxylic acids, the Hunsdiecker reaction, is one of the fundamental functional group transformations in organic chemistry. As the initial method requires the preparations of strictly anhydrous silver carboxylates, several modifications have been developed to simplify the procedures. However, these methods suffer from the use of highly toxic reagents, harsh reaction conditions, or limited scope of application. In addition, none is catalytic for aliphatic carboxylic acids. In this Article, we report the first catalytic Hunsdiecker reaction of aliphatic carboxylic acids. Thus, with the catalysis of Ag(Phen)(2)OTf, the reactions of carboxylic acids with t-butyl hypochlorite afforded the corresponding chlorodecarboxylation products in high yields under mild conditions. This method is not only efficient and general, but also chemoselective. Moreover, it exhibits remarkable functional group compatibility, making it of more practical value in organic synthesis. The mechanism of single electron transfer followed by chlorine atom transfer is proposed for the catalytic chlorodecarboxylation.

  11. Noncovalent catch and release of carboxylates in water. (United States)

    Beck, Christie L; Winter, Arthur H


    Association constants of a bis-(acetylguanidinium)ferrocene dication to various (di)carboxylates were determined through UV-vis titrations. Association constant values greater than 10(4) M(-1) were determined for both phthalate and maleate carboxylates to the bis-(acetylguanidinium)ferrocene salt in pure water. Density functional theory computations of the binding enthalpy of the rigid carboxylates for these complexes agree well with the experimentally determined association constants. Catch and release competitive binding experiments were done by NMR for the cation-carboxylate ion-pair complexes with cucurbit[7]uril, and they show dissociation of the ion-pair complex upon addition of cucurbit[7]uril and release of the free (di)carboxylate.

  12. Analysis of Chiral Carboxylic Acids in Meteorites (United States)

    Burton, A. S.; Elsila, J. E.; Hein, J. E.; Aponte, J. C.; Parker, E. T.; Glavin, D. P.; Dworkin, J. P.


    Homochirality of amino acids in proteins and sugars in DNA and RNA is a critical feature of life on Earth. In the absence of a chiral driving force, however, reactions leading to the synthesis of amino acids and sugars result in racemic mixtures. It is currently unknown whether homochirality was necessary for the origins of life or if it was a product of early life. The observation of enantiomeric excesses of certain amino acids of extraterrestrial origins in meteorites provides evidence to support the hypothesis that there was a mechanism for the preferential synthesis or destruction of a particular amino acid enantiomer [e.g., 1-3]. The cause of the observed chiral excesses is un-clear, although at least in the case of the amino acid isovaline, the degree of aqueous alteration that occurred on the meteorite parent body is correlated to the isovaline L-enantiomeric excess [3, 4]. This suggests that chiral symmetry is broken and/or amplified within the meteorite parent bodies. Besides amino acids, there have been only a few reports of other meteoritic compounds found in enantiomeric excess: sugars and sugar acids [5, 6] and the hydroxy acid lactic acid [7]. Determining whether or not additional types of molecules in meteorites are also present in enantiomeric excesses of extraterrestrial information will provide insights into mechanisms for breaking chiral symmetry. Though the previous measurements (e.g., enantiomeric composition of lactic acid [7], and chiral carboxylic acids [8]) were made by gas chromatography-mass spectrometry, the potential for increased sensitivity of liquid chromatography-mass spectrometry (LC-MS) analyses is important because for many meteorite samples, only small sample masses are available for study. Furthermore, at least in the case of amino acids, many of the largest amino acid enantiomeric excesses were observed in samples that contained lower abundances (tens of ppb) of a given amino acid enantiomer. In the present work, we describe

  13. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg


    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  14. Direct esterification of ammonium salts of carboxylic acids (United States)

    Halpern, Yuval


    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  15. Corrosion inhibition of steel in concrete by carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sagoe-Crentsil, K.K.; Glasser, F.P. (Univ. of Aberdeen, Old Aberdeen (United Kingdom). Dept. of Chemistry); Yilmaz, V.T. (Ondokuz Mayis Univ., Samsun (Turkey))


    Water soluble carboxylic acids have been used as corrosion inhibitors. They remain largely soluble after curing in cement for up to 90d. Corrosion current measurements are presented showing malonic acid, a dicarboxylic acid, to be a very effective corrosion inhibitor even in the presence of 2.5 wt % chloride. Unfortunately, it has an initial retarding effect on the set of Portland cement. The investigation suggests that corrosion inhibitors based on carboxylic acids remain a fruitful field of investigation.


    Goldberg, Marvin C.; Cunningham, Kirkwood M.


    Goethite ( alpha -FeOOH) is a common mineral constituent of suspended and bed sediments in aquatic environments. Many types of naturally-occurring organic molecules, including organic carboxylates, are known to sorb to its surface. Carboxylates should be susceptable to photo-oxidation. An experimental program was conducted with systems containing adsorbed films of oxalate, citrate, tartrate, glycolate, formate, maleate, fumarate, butanoate, and benzoate on Goethite, respectively. Photolytic effects were observed at pH 6. 5 and 5. 5.

  17. Ethyl coumarin-3-carboxylate: synthesis and chemical properties

    Directory of Open Access Journals (Sweden)

    Bakr F. Abdel-Wahab


    Full Text Available Ethyl coumarin-3-carboxylate occupies an important position in the organic synthesis and is used in production of biologically active compounds. Thus, the data published over the last few years on the methods of synthesis and chemical properties of ethyl coumarin-3-carboxylate are reviewed here for the first time. The reactions were classified as coumarin ring reactions and ester group reactions, and some of these reactions have been applied successfully to the synthesis of biologically and industrially important compounds.

  18. Carboxylic ester hydrolases in mitochondria from rat skeletal muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Zelander, T


    A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both organophosph......A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both...

  19. Carboxylic acid (bio)isosteres in drug design. (United States)

    Ballatore, Carlo; Huryn, Donna M; Smith, Amos B


    The carboxylic acid functional group can be an important constituent of a pharmacophore, however, the presence of this moiety can also be responsible for significant drawbacks, including metabolic instability, toxicity, as well as limited passive diffusion across biological membranes. To avoid some of these shortcomings while retaining the desired attributes of the carboxylic acid moiety, medicinal chemists often investigate the use of carboxylic acid (bio)isosteres. The same type of strategy can also be effective for a variety other purposes, for example, to increase the selectivity of a biologically active compound or to create new intellectual property. Several carboxylic acid isosteres have been reported, however, the outcome of any isosteric replacement cannot be readily predicted as this strategy is generally found to be dependent upon the particular context (i.e., the characteristic properties of the drug and the drug-target). As a result, screening of a panel of isosteres is typically required. In this context, the discovery and development of novel carboxylic acid surrogates that could complement the existing palette of isosteres remains an important area of research. The goal of this Minireview is to provide an overview of the most commonly employed carboxylic acid (bio)isosteres and to present representative examples demonstrating the use and utility of each isostere in drug design.

  20. Stereocontrol in proline-catalyzed asymmetric amination: a comparative assessment of the role of enamine carboxylic acid and enamine carboxylate. (United States)

    Sharma, Akhilesh K; Sunoj, Raghavan B


    The transition state models in two mechanistically distinct pathways, involving (i) an enamine carboxylic acid (path-A, 4) and (ii) an enamine carboxylate (path-B, 8), in the proline-catalyzed asymmetric α-amination have been examined using DFT methods. The path-A predicts the correct product stereochemistry under base-free conditions while path-B accounts for reversal of configuration in the presence of a base.

  1. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    FENG ZeWang; ZHAO XinQi; BI Hua


    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in dichloromethane at room temperature.

  2. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)


    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in di-chloromethane at room temperature.

  3. Kinetic and Thermodynamic Parameters for Uncatalyzed Esterification of Carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Kehinde S. Bankole


    Full Text Available A fundamental study on uncatalyzed esterification of various biomass-derived aliphatic carboxylic acids with stoichiometric amount of ethanol has been investigated in an isothermal batch reactor, with the objective to convert carboxylic acids to corresponding ethyl esters and to determine both the kinetic and thermodynamic parameters. The effects of temperature on the conversion of carboxylic acid, kinetic and thermodynamic parameters have been investigated. Temperature was found to have significant effect on the rate of reaction and conversion of carboxylic acid. A simple second order reversible kinetic model was developed to determine the kinetic and thermodynamic parameters. The thermodynamic and kinetic parameters varied for uncatalyzed esterification reaction of both short-chain and long-chain carboxylic acids considered. The predicted data from the kinetic model were correlated with experimental data and the two sets of data agreed reasonably well for the uncatalyzed esterification systems. It was observed that the Van’t Hoff plot for uncatalyzed esterification of linoleic acid was non-linear curve, whereas for the Arrhenius and Eyring plots, they were linear. Additional experiments to assess the catalytic and corrosion effects of several metallic substances revealed Inconel 625 alloy, nickel wire and stainless steel materials were susceptible to corrosion problem with uncatalyzed esterification reaction at elevated reaction temperatures. However, tantalum and grade-5 titanium materials were corrosion resistance metals, suitable for similar reaction conditions and this can encourage the design of a flow reactor system. Although, uncatalyzed esterification of carboxylic acids at elevated reaction temperature is still at laboratory scale. It is our hope that the estimated kinetic and thermodynamic parameters would be the guiding tools for reactor scale-up, thus providing a new perspective into the conversion of biomass-derived carboxylic

  4. Novel Polymers with a High Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren


    ABSTRACT: Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4......-hydroxybenzene, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conucted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly (4-hydroxystyrene...... investigations of ali the polymers in general exhibit [when poly(4-hydroxystyrene) is a subetantial parti significant changes in the glass-transition temperature from the polar poly(4-hydroxystyr- ene) (120—130 “C) to the much less polar alkyne polymers (46—60 DC). A direct correlation between the nature...

  5. Gas Phase Reactivity of Carboxylates with N-Hydroxysuccinimide Esters (United States)

    Peng, Zhou; McGee, William M.; Bu, Jiexun; Barefoot, Nathan Z.; McLuckey, Scott A.


    N-hydroxysuccinimide (NHS) esters have been used for gas-phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ɛ-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O18 were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas phase, where they are shown to be reactive, and the solution phase, where they are not regarded as reactive with NHS esters.

  6. Silver-Catalyzed Decarboxylative Azidation of Aliphatic Carboxylic Acids. (United States)

    Zhu, Yuchao; Li, Xinyao; Wang, Xiaoyang; Huang, Xiaoqiang; Shen, Tao; Zhang, Yiqun; Sun, Xiang; Zou, Miancheng; Song, Song; Jiao, Ning


    The catalytic decarboxylative nitrogenation of aliphatic carboxylic acids for the synthesis of alkyl azides is reported. A series of tertiary, secondary, and primary organoazides were prepared from easily available aliphatic carboxylic acids by using K2S2O8 as the oxidant and PhSO2N3 as the nitrogen source. The EPR experiment sufficiently proved that an alkyl radical process was generated in the process, and DFT calculations further supported the SET process followed by a stepwise SH2 reaction to afford azide product.

  7. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J


    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil......Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained...

  8. Synthesis, Crystal and Molecular Structure Studies and DFT Calculations of Phenyl Quinoline-2-Carboxylate and 2-Methoxyphenyl Quinoline-2-Carboxylate; Two New Quinoline-2 Carboxylic Derivatives

    Directory of Open Access Journals (Sweden)

    Edakot Fazal


    Full Text Available The crystal and molecular structures of the title compounds, phenyl quinoline-2-carboxylate and 2-methoxyphenyl quinoline-2-carboxylate, two new derivatives of quinolone-2-carboxylic acid, are reported and confirmed by single crystal X-ray diffraction and spectroscopic data. Compound (I, C16H11NO2, crystallizes in the monoclinic space group P21/c, with 8 molecules in the unit cell. The unit cell parameters are a = 14.7910(3 Å; b = 5.76446(12 Å; c = 28.4012(6 Å; β = 99.043(2°; V = 2391.45(9 Å3. Compound (II, C17H13NO5, crystallizes in the monoclinic space group P21/n with 4 molecules in the unit cell. The unit cell parameters are a = 9.6095(3 Å; b = 10.8040(3 Å; c = 13.2427(4 Å; β = 102.012(3°; V = 1344.76(7 Å3. Density functional theory (DFT geometry optimized molecular orbital calculations were performed and frontier molecular orbitals of each compound are displayed. Correlation between the calculated molecular orbital energies (eV for the surfaces of the frontier molecular orbitals to the electronic excitation transitions from the absorption spectra of each compound has been proposed. Additionally, similar correlations observed among six closely related compounds examining small structural differences to their frontier molecular orbital surfaces and from their DFT molecular orbital energies, provide further support for the suggested assignments of the title compounds.

  9. 21 CFR 177.1600 - Polyethylene resins, carboxyl modified. (United States)


    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as... resins used in food-packaging adhesives complying with § 175.105 of this chapter. ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene resins, carboxyl modified....

  10. Synthon preferences in cocrystals of cis-carboxamides:carboxylic acids

    NARCIS (Netherlands)

    Moragues-Bartolome, A.M.; Jones, W.; Cruz-Cabeza, A.J.


    We study synthon preferences in cocrystals of cis-carboxamides with carboxylic acids using a combination of database analyses, cocrystallisation experiments and theoretical calculations. We classify the cis-carboxamides into three families: primary amides, cyclic amides (lactams) and cyclic imides.

  11. Dimerization of Carboxylic Acids: An Equation of State Approach

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas


    The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess...

  12. Palladium-Catalyzed Carboxylation of Activated Vinylcyclopropanes with CO2. (United States)

    Mita, Tsuyoshi; Tanaka, Hiroyuki; Higuchi, Yuki; Sato, Yoshihiro


    By using a palladium catalyst with ZnEt2, activated vinylcyclopropanes were successfully converted into the corresponding β,γ-unsaturated carboxylic acids in high yields under a CO2 atmosphere (1 atm). The intermediate in this reaction is thought to be a nucleophilic η(1)-allylethylpalladium species, which would be produced from π-allylpalladium and ZnEt2 (umpolung reactivity).

  13. Improvement of ruthenium based decarboxylation of carboxylic acids (United States)

    The removal of oxygen atoms from biobased carboxylic acids is an attractive route to provide the drop in replacement feedstocks that industry needs to continue to provide high performance products. Through the use of ruthenium catalysis, an efficient method where this process can be accomplished on ...

  14. Dissolving Carboxylic Acids and Primary Amines on the Overhead Projector (United States)

    Solomon, Sally D.; Rutkowsky, Susan A.


    Liquid carboxylic acids (or primary amines) with limited solubility in water are dissolved by addition of aqueous sodium hydroxide (or hydrochloric acid) on the stage of an overhead projector using simple glassware and very small quantities of chemicals. This effective and colorful demonstration can be used to accompany discussions of the…

  15. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae. (United States)

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra


    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  16. Cyclodextrin derivatives with cyanohydrin and carboxylate groups as artificial glycosidases

    DEFF Research Database (Denmark)

    Bols, Mikael; Ortega-Caballero, Fernando


    Two cyclodextrin derivatives (1 and 2) were prepared in an attempt to create glycosidase mimics with a general acid catalyst and a nucleophilic carboxylate group. The catalysts 1 and 2 were found to catalyse the hydrolysis of 4-nitrophenyl beta-D-glucopyranoside at pH 8.0, but rapidly underwent...

  17. Light dependence of carboxylation capacity for C3 photosynthesis models (United States)

    Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...

  18. Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus (United States)

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  19. Carboxylate shifts steer interquinone electron transfer in photosynthesis. (United States)

    Chernev, Petko; Zaharieva, Ivelina; Dau, Holger; Haumann, Michael


    Understanding the mechanisms of electron transfer (ET) in photosynthetic reaction centers (RCs) may inspire novel catalysts for sunlight-driven fuel production. The electron exit pathway of type II RCs comprises two quinone molecules working in series and in between a non-heme iron atom with a carboxyl ligand (bicarbonate in photosystem II (PSII), glutamate in bacterial RCs). For decades, the functional role of the iron has remained enigmatic. We tracked the iron site using microsecond-resolution x-ray absorption spectroscopy after laser-flash excitation of PSII. After formation of the reduced primary quinone, Q(A)(-), the x-ray spectral changes revealed a transition (t½ ≈ 150 μs) from a bidentate to a monodentate coordination of the bicarbonate at the Fe(II) (carboxylate shift), which reverted concomitantly with the slower ET to the secondary quinone Q(B). A redox change of the iron during the ET was excluded. Density-functional theory calculations corroborated the carboxylate shift both in PSII and bacterial RCs and disclosed underlying changes in electronic configuration. We propose that the iron-carboxyl complex facilitates the first interquinone ET by optimizing charge distribution and hydrogen bonding within the Q(A)FeQ(B) triad for high yield Q(B) reduction. Formation of a specific priming intermediate by nuclear rearrangements, setting the stage for subsequent ET, may be a common motif in reactions of biological redox cofactors.

  20. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry (United States)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.


    Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10-19 for succinate to 1 × 10-18 mol cell-1 s-1 for formate at 17 °C and from 4 × 10-20 for succinate to 6 × 10-19 mol cell-1 s-1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora

  1. Synthesis of Stereoisomers of 3-Aminocyclohexanecarboxylic Acid and cis-3-Aminocyclohexene-5-carboxylic Acid

    Institute of Scientific and Technical Information of China (English)

    HU Yu; YU Sheng-Liang; YANG Yu-Jin; ZHU Jin; DENG Jin-Gen


    A practical synthesis of stereoisomers of 3-aminocyclohexanecarboxylic acid and cis-3-aminocyclohexene-5-carboxylic acid was achieved from cyclohexene-4-carboxylic acid via a key resolving approach with chiral 1-phenylethylamine.

  2. Highly Regioselective Palladium-Catalyzed Carboxylation of Allylic Alcohols with CO2. (United States)

    Mita, Tsuyoshi; Higuchi, Yuki; Sato, Yoshihiro


    Various allylic alcohols were carboxylated in the presence of a catalytic amount of PdCl2 and PPh3 using ZnEt2 as a stoichiometric transmetalation agent under a CO2 atmosphere (1 atm). This carboxylation proceeded in a highly regioselective manner to afford branched carboxylic acids predominantly. The β,γ-unsaturated carboxylic acid thus obtained was successfully converted into an optically active γ-butyrolactone, a known intermediate of (R)-baclofen.

  3. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  4. 40 CFR 721.2088 - Carboxylic acids, (C6-C9) branched and linear. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carboxylic acids, (C6-C9) branched and... Specific Chemical Substances § 721.2088 Carboxylic acids, (C6-C9) branched and linear. (a) Chemical... as carboxylic acids, (C6-C9) branched and linear (PMNs P-93-313, 314, 315, and 316) are subject...

  5. Kinetic resolution of racemic carboxylic acids through asymmetric protolactonization promoted by chiral phosphonous acid diester. (United States)

    Sakuma, Masayuki; Sakakura, Akira; Ishihara, Kazuaki


    Chiral phosphonium salts induce the kinetic resolution of racemic α-substituted unsaturated carboxylic acids through asymmetric protolactonization. Both the lactones and the recovered carboxylic acids are obtained with high enantioselectivities and high S (= kfast/kslow) values. Asymmetric protolactonization also leads to the desymmetrization of achiral carboxylic acids. Notably, chiral phosphonous acid diester not only induced the enantioselectivity but also promoted protolactonization.

  6. Density functional theory study of the oligomerization of carboxylic acids. (United States)

    Di Tommaso, Devis; Watson, Ken L


    We present a density functional theory [M06-2X/6-31+G(d,p)] study of the structures and free energies of formation of oligomers of four carboxylic acids (formic acid, acetic acid, tetrolic acid, and benzoic acid) in water, chloroform, and carbon tetrachloride. Solvation effects were treated using the SMD continuum solvation model. The low-lying energy structures of molecular complexes were located by adopting an efficient search procedure to probe the potential energy surfaces of the oligomers of carboxylic acids (CA)n (n = 2-6). The free energies of the isomers of (CA)n in solution were determined as the sum of the electronic energy, vibrational-rotational-translational gas-phase contribution, and solvation free energy. The assessment of the computational protocol adopted in this study with respect to the dimerization of acetic acid, (AA)2, and formic acid, (FA)2, located new isomers of (AA)2 and (FA)2 and gave dimerization constants in good agreement with the experimental values. The calculation of the self-association of acetic acid, tetrolic acid, and benzoic acid shows the following: (i) Classic carboxylic dimers are the most stable isomer of (CA)2 in both the gas phase and solution. (ii) Trimers of carboxylic acid are stable in apolar aprotic solvents. (iii) Molecular clusters consisting of two interacting classic carboxylic dimers (CA)4,(D+D) are the most stable type of tetramers, but their formation from the self-association of classic carboxylic dimers is highly unfavorable. (iv) For acetic acid and tetrolic acid the reactions (CA)2 + 2CA → (CA)4,(D+D) and (CA)3 + CA → (CA)4,(D+D) are exoergonic, but these aggregation pathways go through unstable clusters that could hinder the formation of tetrameric species. (v) For tetrolic acid the prenucleation species that are more likely to form in solution are dimeric and trimeric structures that have encoded structural motifs resembling the α and β solid forms of tetrolic acid. (vi) Stable tetramers of

  7. Rh(III)-catalyzed decarboxylative ortho-heteroarylation of aromatic carboxylic acids by using the carboxylic acid as a traceless directing group. (United States)

    Qin, Xurong; Sun, Denan; You, Qiulin; Cheng, Yangyang; Lan, Jingbo; You, Jingsong


    Highly selective decarboxylative ortho-heteroarylation of aromatic carboxylic acids with various heteroarenes has been developed through Rh(III)-catalyzed two-fold C-H activation, which exhibits a wide substrate scope of both aromatic carboxylic acids and heteroarenes. The use of naturally occurring carboxylic acid as the directing group avoids troublesome extra steps for installation and removal of an external directing group.

  8. Substrate specificity within a family of outer membrane carboxylate channels.

    Directory of Open Access Journals (Sweden)

    Elif Eren


    Full Text Available Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  9. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    Energy Technology Data Exchange (ETDEWEB)



    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.

  10. Propensity of salicylamide and ethenzamide cocrystallization with aromatic carboxylic acids. (United States)

    Przybyłek, Maciej; Ziółkowska, Dorota; Mroczyńska, Karina; Cysewski, Piotr


    The cocrystallization of salicylamide (2-hydroxybenzamide, SMD) and ethenzamide (2-ethoxybenzamide, EMD) with aromatic carboxylic acids was examined both experimentally and theoretically. The supramolecular synthesis taking advantage of the droplet evaporative crystallization (DEC) technique was combined with powder diffraction and vibrational spectroscopy as the analytical tools. This led to identification of eleven new cocrystals including pharmaceutically relevant coformers such as mono- and dihydroxybenzoic acids. The cocrystallization abilities of SMD and EMD with aromatic carboxylic acids were found to be unexpectedly divers despite high formal similarities of these two benzamides and ability of the R2,2(8) heterosynthon formation. The source of diversities of the cocrystallization landscapes is the difference in the stabilization of possible conformers by adopting alternative intramolecular hydrogen boding patterns. The stronger intramolecular hydrogen bonding the weaker affinity toward intermolecular complexation potential. The substituent effects on R2,2(8) heterosynthon properties are also discussed.

  11. Carboxylic Acids as Indicators of Parent Body Conditions (United States)

    Lerner N. R.; Chang, Sherwood (Technical Monitor)


    Alpha-hydroxy and alpha-amino carboxylic acids found on the Murchison meteorite are deuterium enriched. It is postulated that they arose from a common interstellar scurce: the reaction of carbonyl compounds in an aqueous mixture containing HCN and NH3. Carbonyl compounds react with HCN to form alpha-hydroxy nitriles, RR'CO + HCN right and left arrow RR'C(OH)CN. If ammonia is also present, the alpha-hydroxy nitriles will exist in equilibrium with the alpha-amino nitriles, RR'C(OH)CN + NH3 right and left arrow - RRCNH2CN + H2O. Both nitrites are hydrolyzed by water to form carboxylic acids: RR'C(OH)CN + H2O yields RR'C(OH)CO2H and RR'C(NH2)CN + H2O yields RR'C(NH2)CO2H.

  12. Influences of Carboxyl Methyl Cellulose on Performances of Mortar

    Institute of Scientific and Technical Information of China (English)

    WANG Yuli; ZHOU Mingkai; SHAN Junhong; XU Fang; YANG Yuhui


    Carboxyl methyl cellulose (CMC) was mixed into mortar to improve the waterretention performance of mortar, the quality of floated coat of aerated concrete became better. The consistency and compression strength of mortar with CMC were studied. The water absorption was studied with the method of filter paper. The micro mechanism was researched with X-ray diffraction and scanning electron microscopy(SEM). The experimental results show the water-holding performance of mortar with CMC is largely improved and it is better when the mixed amount is about 1.5%; the compression strength had a descending trend with the increase of CMC; CMC reacted with calcium hydroxide(CH) into the deposition of calcium carboxyl methyl cellulose.

  13. Quinoline based receptor in fluorometric discrimination of carboxylic acids

    Directory of Open Access Journals (Sweden)


    Full Text Available Quinoline and naphthalene-based fluororeceptors 1 and 2 have been designed and synthesized for detection of hydroxy carboxylic acids in less polar solvents. The receptor 1 shows monomer emission quenching followed by excimer emission upon hydrogen bond-mediated complexation of carboxylic acids. The excimer emission distinguishes aromatic dicarboxylic acids from aliphatic dicarboxylic acids and even long chain aliphatic dicarboxylic acids from short chain aliphatic dicarboxylic acids. The receptor 1 is found to be selective for citric acid with a strong excimer emission in CHCl3. On the contrary, the receptor 2 exhibited less binding constant value and did not form any excimer upon complexation with the same acids under similar conditions. This established the role of quinoline ring nitrogen in binding with the acids.


    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova


    Full Text Available We have studied carboxylic acids of the herb of Thymus cretaceus Klok. et Schost which is widespread on a territory of some regions (Belgorod, Voronezh. The study was carried out using gas-liquid chromatography at Agilent Technologies 6890 chromatographer with massspectrometric detector 5973 N. Acids concentration was calculated by means of inner standard.We have established that carboxylic acids of Thymus cretaceus are represented by 34 compounds. Palmitic (1779.02 mg/kg, behenic (1084.15 mg/kg, levulinic (986.24 mg/kg and linoleic acids (678.82 mg/kg predominate among fatty acids; citric (9835.14 mg/kg, malonic (447.91 mg/kg and oxalic acids (388.32 mg/kg predominate among organic acids; andferulic acid predominate amongphenolcarbonic acids.

  15. Silver-catalyzed arylation of (hetero)arenes by oxidative decarboxylation of aromatic carboxylic acids. (United States)

    Kan, Jian; Huang, Shijun; Lin, Jin; Zhang, Min; Su, Weiping


    A long-standing challenge in Minisci reactions is achieving the arylation of heteroarenes by oxidative decarboxylation of aromatic carboxylic acids. To address this challenge, the silver-catalyzed intermolecular Minisci reaction of aromatic carboxylic acids was developed. With an inexpensive silver salt as a catalyst, this new reaction enables a variety of aromatic carboxylic acids to undergo decarboxylative coupling with electron-deficient arenes or heteroarenes regardless of the position of the substituents on the aromatic carboxylic acid, thus eliminating the need for ortho-substituted aromatic carboxylic acids, which were a limitation of previously reported methods.

  16. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    Directory of Open Access Journals (Sweden)

    Hao Wang


    Full Text Available In this study, fluorescent nitrogen-doped carbon dots (NCDs were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  17. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu, E-mail:, E-mail: [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Gao, Peng; Zhang, Ke-Qin, E-mail:, E-mail:; Du, Dezhuang [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123 (China); Guo, Jun [Testing and Analysis Center, Soochow University, Suzhou 215123 (China)


    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  18. Crystal structure of ethyl 2,4-dichloroquinoline-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Alberto Cabrera


    Full Text Available In the crystal structure of the title compound, C12H9Cl2NO2, the mean planes through the quinoline and carboxylate groups have r.m.s. deviations of 0.006 and 0.021 Å, respectively, and form a dihedral angle of 87.06 (19°. In the crystal, molecules are linked via very weak C—H...O hydrogen bonds, forming chains, which propagate along the c-axis direction.


    Institute of Scientific and Technical Information of China (English)

    Li Xinping; Liu Ye; Lin Youfeng


    A novel starch derivative--carboxyl methyl starch (CMS) was investigated in this paper. Through a series of experiments, the results showed that CMS has considerable effect on paper strength as internal additive, and the better technology conditions are as follows: pH=7.0, CMS dosage is 1.0% (on o.d. pulp),mixing time is 45min and drying temperature is 105℃.


    Institute of Scientific and Technical Information of China (English)

    LiXinping; LiuYe; LinYoufeng


    A novel starch derivative--carboxyl methyl starch(CMS) was investigated in this paper. Through aseries of experiments, the results showed that CMShas considerable effect on paper strength as internaladditive, and the better technology conditions are asfollows: pH=7.0, CMS dosage is 1.0% (on o.d. pulp),mixing time is 45min and drying temperature is105~C.

  1. 2-Oxo-1,2-dihydroquinoline-4-carboxylic acid monohydrate

    Directory of Open Access Journals (Sweden)

    Yassir Filali Baba


    Full Text Available In the title compound, C10H7NO3·H2O, O—H...O hydrogen bonds involving the carboxyl groups, the keto groups and the lattice water molecules form stepped sheets approximately parallel to {010} which are tied together by pairwise N—H...O interactions. The asymmetric unit contains two independent quinolone derivatives and two water molecules, one of which is disordered over two positions, of equal occupancy.


    Institute of Scientific and Technical Information of China (English)

    C.G. Hu; W.L. Wang; K.J. Liao; W. Zhu


    The electrochemical behavior of a carboxyl-modified carbon nanotube films was investigated to explore its possibility in electroanalytical applicaton. Cyclic voltammetry of quinone was conducted in 1mol/L Na2SO4, which showed a stable, quasi-reversible voltammetric response for quinone / hydroquinone, and the anodic and the cathodic peak potentials were 0.657V and -0.029V (vs. SCE) at a scan rate of 0.1V.s-1, respectively. Both anodic and cathodic peak currents depended linearly on the square root of the scan rate over the range of 0.01-0. 5 V.s-1, which suggested that the process of the electrode reactions was diffusion-controlled. Carboxyl-modified carbon nanotube electrodes made it possible to determine low level of dopamine selectively in the presence of a large excess of ascorbic acid in acidic media using derivative voltammetry.The results obtained were discussed in details. This work demonstrates the potential of carboxyl-modified carbon nanotube electrodes for electroanalytical applications.

  3. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery (United States)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi


    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  4. Behavior of carboxylic acids upon complexation with beryllium compounds. (United States)

    Mykolayivna-Lemishko, Kateryna; Montero-Campillo, M Merced; Mó, Otilia; Yáñez, Manuel


    A significant acidity enhancement and changes on aromaticity were previously observed in squaric acid and its derivatives when beryllium bonds are present in those systems. In order to know if these changes on the chemical properties could be considered a general behavior of carboxylic acids upon complexation with beryllium compounds, complexes between a set of representative carboxylic acids RCOOH (formic acid, acetic acid, propanoic acid, benzoic acid, and oxalic acid) and beryllium compounds BeX2 (X = H, F, Cl) were studied by means of density functional theory calculations. Complexes that contain a dihydrogen bond or a OH···X interaction are the most stable in comparison with other possible BeX2 complexation patterns in which no other weak interactions are involved apart from the beryllium bond. Formic, acetic, propanoic, benzoic, and oxalic acid complexes with BeX2 are much stronger acids than their related free forms. The analysis of the topology of the electron density helps to clarify the reasons behind this acidity enhancement. Importantly, when the halogen atom is replaced by hydrogen in the beryllium compound, the dihydrogen bond complex spontaneously generates a new neutral complex [RCOO:BeH] in which a hydrogen molecule is lost. This seems to be a trend for carboxylic acids on complexing BeX2 compounds.

  5. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Zohreh; Badiei, Alireza, E-mail: [University of Tehran, School of Chemistry, College of Science (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Alzahra University, Research Laboratory of Pharmaceutical (Iran, Islamic Republic of)


    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N{sub 2} adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples.

  6. Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with Mitochondrial Defects

    Directory of Open Access Journals (Sweden)

    Andrew R. Mullen


    Full Text Available Mammalian cells generate citrate by decarboxylating pyruvate in the mitochondria to supply the tricarboxylic acid (TCA cycle. In contrast, hypoxia and other impairments of mitochondrial function induce an alternative pathway that produces citrate by reductively carboxylating α-ketoglutarate (AKG via NADPH-dependent isocitrate dehydrogenase (IDH. It is unknown how cells generate reducing equivalents necessary to supply reductive carboxylation in the setting of mitochondrial impairment. Here, we identified shared metabolic features in cells using reductive carboxylation. Paradoxically, reductive carboxylation was accompanied by concomitant AKG oxidation in the TCA cycle. Inhibiting AKG oxidation decreased reducing equivalent availability and suppressed reductive carboxylation. Interrupting transfer of reducing equivalents from NADH to NADPH by nicotinamide nucleotide transhydrogenase increased NADH abundance and decreased NADPH abundance while suppressing reductive carboxylation. The data demonstrate that reductive carboxylation requires bidirectional AKG metabolism along oxidative and reductive pathways, with the oxidative pathway producing reducing equivalents used to operate IDH in reverse.

  7. "S" shaped organotin(IV) carboxylates based on amide carboxylic acids: Syntheses, crystal structures and antitumor activities (United States)

    Xiao, Xiao; Li, Yan; Dong, Yuan; Li, Wenliang; Xu, Kun; Shi, Nianqiu; Liu, Xin; Xie, Jingyi; Liu, Peigen


    Three organotin carboxylates based on amide carboxylic acids: (Ph3Sn)2(L1) (1) (L1 = 3,3‧-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl)dipropionic acid), (Ph3Sn)2(L2)·C7H8 (2) (L2 = 3,3‧-(1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo [lmn][3,8]phenanthroline-2,7-diyl)dipropionic acid), [(Ph3Sn)(CH3CH2O)]2(L3) (3) (L3 = 2,2‧-(1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl) dibenzoic acid) were synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectroscopy and X-ray crystallography diffraction analyses. Complexes 1-3 are di-nuclear triphenlytin carboxylates owning "S" shaped monomer structures. Ligands in 1-3 adopt unidentate coordination. Intermolecular hydrogen bonds and Sn···O interactions help complexes 1-3 build their supramolecular structures which are discussed in detail. The preliminary antitumor activities of 1-3 against HepG2 cell lines have also been studied.

  8. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie


    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  9. Cu(I)-catalyzed (11)C carboxylation of boronic acid esters: a rapid and convenient entry to (11)C-labeled carboxylic acids, esters, and amides. (United States)

    Riss, Patrick J; Lu, Shuiyu; Telu, Sanjay; Aigbirhio, Franklin I; Pike, Victor W


    Rapid and direct: the carboxylation of boronic acid esters with (11)CO(2) provides [(11)C]carboxylic acids as a convenient entry into [(11)C]esters and [(11)C]amides. This conversion of boronates is tolerant to diverse functional groups (e.g., halo, nitro, or carbonyl).

  10. Physicochemical model of detonation synthesis of nanoparticles from metal carboxylates (United States)

    Tolochko, B. P.; Chernyshev, A. P.; Ten, K. A.; Pruuel, E. R.; Zhogin, I. L.; Zubkov, P. I.; Lyakhov, N. Z.; Luk'yanchikov, L. A.; Sheromov, M. A.


    We have shown previously that when metal carboxylates are subjected to a shock-wave action, diamond nanoparticles and nanoparticles of metals (Ag, Bi, Co, Fe, Pb) are formed and their characteristic size is about 30-200 Å. The metal nanoparticles formed are covered by an amorphous-carbon layer up to 20 Å thick. In this work we put forward a physicochemical model of the formation of diamond and metal nanoparticles from metal carboxylates upon shock-wave action. The energy released upon detonation inside the precursor is lower than in regions not occupied by the stearates. The characteristic time of temperature equalization has been estimated to be on the order of ˜10-3 s, which is greater by a factor of ˜103 than the characteristic reaction time. Due to the adiabatic nature of the processes occurring, the typical temperature of a "particle" will be lower than the temperature of the surrounding medium. In the framework of the model suggested, it has been assumed that the growth of metal clusters should occur by the diffusion mechanism; i.e., the "building material" is supplied through diffusion. The calculation using our previous experimental data on the reaction time and average size of metal particles has shown that the diffusion properties of the medium in which the metal nanoparticles are formed are close to those of the liquid state of the substance. The temperature and pressure under detonation conditions markedly exceed the analogous parameters characteristic of experiments on the thermodestruction of metal carboxylates. The small time of existence of the reaction mixture is compensated by the high mobility and concentration of reagents.

  11. Study on Copolymerization of Rare Earth-Carboxylic Acid Complex

    Institute of Scientific and Technical Information of China (English)

    Qiu Guanmin(邱关明); Zhang Ming(张明); Yan Chang hao(严长浩); Zhou Lanxiang(周兰香); Dai Shaojun(戴少俊); Okamo to Hiroshi


    Complex of rare earth with carboxylic acid was prepared by precipita tion and direct method. It was copolymerized with such monomers as acrylic acid and other ones to synthesize ionomer of rare earth and organic polymer with different rare earth contents. Its glass-transition temperature and heat stability were analyzed by TG and DTA. Infra-red detector was used to show its structure. The effect of rare earth complex prepared by different methods on copolymerization and properties of copolymers was also discussed.

  12. Bacterial conversion of phenylalanine and aromatic carboxylic acids into dihydrodiols. (United States)

    Wegst, W; Tittmann, U; Eberspächer, J; Lingens, F


    Strain E of chloridazon-degrading bacteria, when grown on L-phenylalanine accumulates cis-2,3-dihydro-2,3-dihydroxyphenylalanine. In experiments with resting cells and during growth the bacterium converts the aromatic carboxylic acids phenylacetate, phenylpropionate, phenylbutyrate and phenyl-lactate into the corresponding cis-2,3-dihydrodiol compounds. The amino acids L-phenylalanine, N-acetyl-L-phenylalanine and t-butyloxycarbonyl-L-phenylalanine were also transformed into dihydrodiols. All seven dihydrodiols, thus obtained, were characterized both by conventional analytical techniques and by the ability to serve as substrates for a cis-dihydrodiol dehydrogenase.

  13. Uncatalysed Production of Coumarin-3-carboxylic Acids: A Green Approach

    Directory of Open Access Journals (Sweden)

    Joel Martínez


    Full Text Available A green contribution in short reaction times with moderate yields to produce coumarin-3-carboxylic acids is offered. Five different modes to activate the reactions (microwave, near-infrared, mechanical milling, and ultrasound were compared with mantle heating in the presence or absence of ethanol, a green solvent. Near-infrared and microwave irradiations deliver the best yields in contrast to ultrasound and mechanical milling; moreover, these four processes offered shorter reaction times in comparison with the conventional mantle heating method. It is also important to highlight that the obtained molecules were produced without the requirement of a catalyst and two nonconventional energies forms are presented as new processes.

  14. Azetidine-2-carboxylic acid in garden beets (Beta vulgaris). (United States)

    Rubenstein, Edward; Zhou, Haihong; Krasinska, Karolina M; Chien, Allis; Becker, Christopher H


    Azetidine-2-carboxylic acid (L-Aze) is a toxic and teratogenic non-protein amino acid. In many species, including man, L-Aze is misincorporated into protein in place of proline, altering collagen, keratin, hemoglobin, and protein folding. In animal models of teratogenesis, it causes a wide range of malformations. The role of L-Aze in human disease has been unexplored, probably because the compound has not been associated with foods consumed by humans. Herein we report the presence of L-Aze in the garden or table beet (Beta vulgaris).

  15. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters

    Indian Academy of Sciences (India)

    Aamer Saeed; Zaman Ashraf


    A number of important aromatic carboxylic acids precursors, or intermediates in the syntheses of natural products, are converted into methyl esters and reduced to the corresponding primary alcohols using a sodium borohydride-THF-methanol system. The alcohols are obtained in 70-92% yields in 2-5 hours, in a pure state. This two-step procedure not only provides a better alternative to aluminum hydride reduction of acids but also allows the selective reduction of esters in presence of acids, amides, nitriles or nitro functions which are not affected under these conditions.

  16. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B


    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  17. 2-Amino-4-methylpyridinium 6-carboxypyridine-2-carboxylate methanol monosolvate

    Directory of Open Access Journals (Sweden)

    Behrouz Notash


    Full Text Available In the title solvated molecular salt, C6H9N2+·C7H4NO4−·CH4O, the pyridine N atom of 2-amino-4-methylpyridine is protonated and one carboxyl group of pyridine-2,6-dicarboxylic acid is deprotonated. The dihedral angles between the –CO2 and –COH groups and the pyridine ring are 0.65 (13 and 7.4°. The crystal packing is stabilized by intermolecular N—H...O, O—H...O and weak C—H...O hydrogen bonds.

  18. A synthetic approach to carbon-14 labeled anti-bacterial naphthyridine and quinolone carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Ekhato, I.V.; Huang, C.C. (Parke, Davis and Co., Ann Arbor, MI (United States))


    Labeled versions of (S)-clinafloxacin (1) and two napththyridine carboxylic acid anti-bacterial compounds 2 and 3 which are currently in development were synthesized. Preparations started from hitherto unknown bromo compounds 22 and 10, from which the corresponding [sup 14]C-labeled aromatic carboxylic acids 23 and 12 were generated by metal-halogen exchange followed by carboxylation reaction. Details of these preparations are given. (author).

  19. Exploring the reductive capacity of Pyrococcus furiosus. The reduction of carboxylic acids and pyridine nucleotides


    Ban, van den, A.W.


    This Ph.D. project started in 1997 and its main goal was to obtain insight in the reductive capacity of the hyperthermophilic archaeon Pyrococcus furiosus . The research was focused on the biocatalytic reduction of carboxylic acids.Reductions of carboxylic acids are interesting reactions, since the generated products, aldehydes and alcohols, are potentially applicable in the fine-chemical industry. However, the reduction of carboxylic acids to the corresponding aldehydes is a thermodynamicall...

  20. Enhance decarboxylation reaction of carboxylic acids in clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Negron-Mendoza, A.; Ramos, S.; Albarran, G. [Instituto de Ciencias y Artes, Chiapas (Mexico). Escuela de Biologia


    Clay minerals are important constituents of the Earth`s crust. These minerals catalyze reactions in several ways: by energy transfer processes, redox reactions, stabilization of intermediates and by Broensted or Lewis acidity behavior. Important set of organic reactions can be improved in the precedence of clay minerals. Besides the properties of clays to catalyze chemical reactions, it is possible to enhance some of its reactions by using ionizing radiation. The phenomenon of radiation-induced catalysis may be connected with ionizing process in the solid and with the trapped non-equilibrium charge carriers. In this paper we are reporting the decarboxylation reaction of carboxylic acids catalyzed by clay and by irradiation of the system acid-clay. We studied the behaviour of several carboxylic acids and analyzed them by gas chromatography, X-ray and infrared spectroscopy. The results showed that decarboxylation of the target compound is the dominating pathway. The reaction is enhanced by gamma radiation in several orders of magnitude. (author).

  1. [Carboxyl nanodiamond as intracellular transporters of anticancer drug--podophyllotoxin]. (United States)

    Sun, Tao-Li; Wang, Bin; Peng, Yan; Ni, Jing-Man


    The purpose of this study is to investigate the intracellular transporters effect and the cytotoxicity of carboxyl nanodiamond (CND) - podophyllotoxin (PPT). Nanodiamond (ND) was treated with mixed carboxylic acid and finally got 64 nm CND by centrifugation, and then it was reacted with PPT to form CND-PPT. UV spectrophotometry was used to calculate the content of PPT in CND-PPT, the particle size distribution and zeta potential were measured by Dynamic laser scattering instrument. CND, PPT, CND-PPT and CND + PPT (physical mixture of CND and PPT) were characterized by Fourier transform infrared spectroscopy, at the same time, thermal analysis and element analysis were used to estimate the content of the PPT in CND-PPT. The affect of CND, PPT, CND-PPT on HeLa cell was measured with MTT assay. The results showed that content of PPT combined with CND accounted for about 10%. MTT assay showed that CND has low cytotoxicity and CND-PPT can increase the water soluble of PPT. As a conclusion, CND as a hydrophilic pharmaceutical carrier combined with PPT is able to increase the water solubility of PPT, at low concentration, CND-PPT can enhance the antitumor activity in comparison with PPT, so CND can be used as a potential anticancer drug carrier.

  2. Biocompatibility studies of polyacrylonitrile membranes modified with carboxylated polyetherimide

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, S.; Rajesh, S.; Jayalakshmi, A.; Mohan, D., E-mail:


    Poly (ether-imide) (PEI) was carboxylated and used as the hydrophilic modification agent for the preparation of polyacrylonitrile (PAN) membranes. Membranes were prepared with different blend compositions of PAN and CPEI by diffusion induced precipitation. The modified membranes were characterized by thermo gravimetric analysis (TGA), mechanical analysis, scanning electron microscopy (SEM) and contact angle measurement to understand the influence of CPEI on the properties of the membranes. The biocompatibility studies exhibited reduced plasma protein adsorption, platelet adhesion and thrombus formation on the modified membrane surface. The complete blood count (CBC) results of CPEI incorporated membranes showed stable CBC values and significant decrease in the complement activation were also observed. In addition to good cytocompatibility, monocytes cultured on these modified membranes exhibited improved functional profiles in 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Thus it could be concluded that PAN/CPEI membranes with excellent biocompatibility can be useful for hemodialysis. Highlights: • Carboxylated PEI was prepared and utilized as hydrophilic modification agent. • CPEI incorporated into PAN to improved biocompatibility and cyto compatibility • Biocompatibility of membranes was correlated with morphology and hydrophilicity. • Antifouling studies of the PAN/CPEI membranes was studied by BSA as model foulant.

  3. Integrated process for preparing a carboxylic acid from an alkane (United States)

    Benderly, Abraham; Chadda, Nitin; Sevon, Douglass


    The present invention relates to an integrated process for producing unsaturated carboxylic acids from the corresponding C.sub.2-C.sub.4 alkane. The process begins with performance of thermally integrated dehydrogenation reactions which convert a C.sub.2-C.sub.4 alkane to its corresponding C.sub.2-C.sub.4 alkene, and which involve exothermically converting a portion of an alkane to its corresponding alkene by oxidative dehydrogenation in an exothermic reaction zone, in the presence of oxygen and a suitable catalyst, and then feeding the products of the exothermic reaction zone to an endothermic reaction zone wherein at least a portion of the remaining unconverted alkane is endothermically dehydrogenated to form an additional quantity of the same corresponding alkene, in the presence of carbon dioxide and an other suitable catalyst. The alkene products of the thermally integrated dehydrogenation reactions are then provided to a catalytic vapor phase partial oxidation process for conversion of the alkene to the corresponding unsaturated carboxylic acid or nitrile. Unreacted alkene and carbon dioxide are recovered from the oxidation product stream and recycled back to the thermally integrated dehydrogenation reactions.

  4. Substituent effects on hydrogen bonding of aromatic amide-carboxylate (United States)

    Sen, Ibrahim; Kara, Hulya; Azizoglu, Akın


    N-(p-benzoyl)-anthranilic acid (BAA) derivatives have been synthesized with different substituents (X: Br, Cl, OCH3, CH3), and their crystal structures have been analyzed in order to understand the variations in their molecular geometries with respect to the substituents by using 1H NMR, 13C NMR, IR and X-ray single-crystal diffraction. The carboxylic acid group forms classic Osbnd H ⋯ O hydrogen bonded dimers in a centrosymmetric R22(8) ring motifs for BAA-Br and BAA-Cl. However, no carboxylic acid group forms classic Osbnd H ⋯ O hydrogen bonded dimers in BAA-OCH3 and BAA-CH3. The asymmetric unit consists of two crystallographically independent molecules in BAA-OCH3. DFT computations show that the interaction energies between monomer and dimer are in the range of 0.5-3.8 kcal/mol with the B3LYP/6-31 + G*, B3LYP/6-31 ++G*, B3LYP/6-31 ++G**, and B3LYP/AUG-cc-pVDZ levels of theory. The presence of different hydrogen bond patterns is also governed by the substrate. For monomeric compounds studied herein, theoretical calculations lead to two low-energy conformers; trans (a) and cis (b). Former one is more stable than latter by about 4 kcal/mol.

  5. Dispersion of Co-poly Carboxylate Superplasticizer Containing Polyether Side Chain

    Institute of Scientific and Technical Information of China (English)


    Free radical co-polymerization was employed to synthesize co-poly carboxylate (PC) superplasticizers with different amount of carboxyl and methyl polyethylene glycol (MPEG) side chain.Dispersion ability and retention of PC were compared with one another. The results show that increase of side chain is advantageous to dispersion, but it decreases when amount of MPEG is beyond a certain value which is different with the proportion of carboxyl. If the amount of carboxyl increases, the influence of side chain in copolymer on dispersion diminishes. Polyether side chain is advantageous to retention. And the author explained the mechanism of PC using the theory of steric repulsive force.

  6. Improved preparation of halopropyl bridged carboxylic ortho esters

    Directory of Open Access Journals (Sweden)

    Richard J. Petroski


    Full Text Available Bridged ortho esters of 3-halopropyl carboxylic acids were prepared by esterification of 3-methyl-3-hydroxymethyloxetane with 3-bromopropionyl chloride and pyridine in dry THF, followed by rearrangement with boron trifluoroetherate, to afford 1-(2-bromoethyl-4-methyl-2,6,7-trioxabicyclo[2,2,2]-octane. The 1-(2-iodoethyl-4-methyl-2,6,7-trioxabicyclo[2,2,2]-octane analogue could not be prepared directly by halogen exchange of 1-(2-bromoethyl-4-methyl-2,6,7-trioxabicyclo[2,2,2]-octane but could be prepared by halogen exchange of the (3-methyloxetan-3-ylmethyl 3-bromopropanoate with a mixture of sodium iodide and anhydrous sodium sulfate in acetone, followed by rearrangement with boron trifluoroetherate.

  7. Biohydrogen and carboxylic acids production from wheat straw hydrolysate. (United States)

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J


    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor.

  8. Spectrofluorimetric determination of gallium with calon-carboxylic acid

    Institute of Scientific and Technical Information of China (English)


    A simple and sensitive spectrofluorimetric procedure for the analysis of microquantities of gallium in alloy wasdescribed. The method is based on the formation of Ga(Ⅲ)-CCA (calon-carboxylic acid) complex. The emission of thefluorescent complex was measured at λ = 620 nm with excitation at λ = 584 nm. A good linearity was found in the galliumrange of 0.7-280 ng/mL. The precision of the method is good and the relative standard deviation is 1.9% for a gallium stan-dard solution of 70 ng/mL. The procedure was proved to be suitable in terms of accuracy and selectivity for the mi-croamount of gallium in alloy.

  9. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa


    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  10. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    黄承志; 李原芳; 黄新华; 范美坤


    The microarray of DNA probes with 5’ -NH2 and 5’ -Tex/3’ -NH2 modified terminus on 10 um carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) is characterized in the preseni paper. it was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentra-tion of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  11. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)


    The microarray of DNA probes with 5′-NH2 and 5′-Tex/3′-NH2 modified terminus on 10 m m carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)- carbodiimide (EDC) is characterized in the present paper. It was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentration of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  12. Plastic scintillators with high loading of one or more metal carboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, Nerine; Sanner, Robert Dean


    According to one embodiment, a method includes incorporating a metal carboxylate complex into a polymeric matrix to form an optically transparent material. According to another embodiment, a material includes at least one metal carboxylate complex incorporated into a polymeric matrix, where the material is optically transparent.

  13. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian


    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order...

  14. Exploring the reductive capacity of Pyrococcus furiosus. The reduction of carboxylic acids and pyridine nucleotides

    NARCIS (Netherlands)

    Ban, van den E.C.D.


    This Ph.D. project started in 1997 and its main goal was to obtain insight in the reductive capacity of the hyperthermophilic archaeon Pyrococcus furiosus . The research was focused on the biocatalytic reduction of carboxylic acids.Reductions of carboxylic acids are interes

  15. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining


    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  16. 3-Methyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Rajendiran Nagappan


    Full Text Available 3-Methyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxylic acid was synthesized chemoselectively from 3-formyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxylic acid, using Et3SiH/I2 as a reducing agent. The title compound was characterized by IR, 1H NMR, 13C NMR and LCMS.

  17. Olfactory sensitivity and odor structure-activity relationships for aliphatic carboxylic acids in CD-1 mice. (United States)

    Can Güven, Selçuk; Laska, Matthias


    Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic n-carboxylic acids (ethanoic acid to n-octanoic acid) and several of their isomeric forms was investigated. With all 14 odorants, the animals significantly discriminated concentrations as low as 0.03 ppm (parts per million) from the solvent, and with four odorants the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the unbranched carboxylic acids and carbon chain length can best be described as a U-shaped function with the lowest threshold values at n-butanoic acid. A significant positive correlation between olfactory detection thresholds and carbon chain length of the carboxylic acids with their branching next to the functional carboxyl group was found. In contrast, no such correlation was found for carboxylic acids with their branching at the distal end of the carbon chain relative to the functional carboxyl group. Finally, a significant correlation was found between olfactory detection thresholds and the position of the branching of the carboxylic acids. Across-species comparisons suggest that mice are more sensitive for short-chained (C(2) to C(4)) aliphatic n-carboxylic acids than other mammalian species, but not for longer-chained ones (C(5) to C(8)). Further comparisons suggest that odor structure-activity relationships are both substance class- and species-specific.

  18. Efficient Fixation of Carbon Dioxide by Electrolysis - Facile Synthesis of Useful Carboxylic Acids -

    Institute of Scientific and Technical Information of China (English)

    Masao Tokuda


    Electrochemical fixation of atmospheric pressure of carbon dioxide to organic compounds is a useful and attractive method for synthesizing of various carboxylic acids. Electrochemical fixation of carbon dioxide, electrochemical carboxylation, organic halides, organic triflates, alkenes, aromatic compounds, and carbonyl compounds can readily occur in the presence of an atmospheric pressure of carbon dioxide to form the corresponding carboxylic acids with high yields, when a sacrificial anode such as magnesium or aluminum is used in the electrolysis. The electrochemical carboxylation of vinyl bromides was successfully applied for the synthesis of the precursor of nonsteroidal anti-inflammatory agents such as ibuprofen and naproxen. On the other hand, supercritical carbon dioxide (scCO2) has significant potential as an environmentally benign solvent in organic synthesis and it could be used both as a solvent and as a reagent in these electrochemical carboxylations by using a small amount of cosolvent.

  19. Characterization and diagenesis of strong-acid carboxyl groups in humic substances (United States)

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.


    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  20. Thermal stability of carboxylic acid functionality in coal; Sekitanchu ni sonzaisuru karubokishiruki no netsubunkai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Y.; Aida, T. [Kinki University, Osaka (Japan). Faculty of Engineering


    Carboxyl in coal was focused in discussing its pyrolytic behavior while tracking change of its absolute amount relative to the heating temperatures. A total of four kinds of coals, consisting of two kinds brown coals, sub-bituminous coal and bituminous coal were used. Change in the absolute amount of carboxyl due to heating varies with coalification degree. Decomposition starts in the bituminous coal from around 300{degree}C, and is rapidly accelerated when 400{degree}C is exceeded. Carboxyls in brown coals exist two to three times as much as those in bituminous and sub-bituminous coals, of which 40% is decomposed at a temperature as low as about 300{degree}C. Their pyrolytic behavior at temperatures higher than 400{degree}C resembles that of the bituminous coal. Carboxyls consist of those easy to decompose and difficult to decompose. Aromatic and aliphatic carboxylic acids with simple structure are stable at temperatures lower than 300{degree}C, and decompose abruptly from about 400{degree}C, hence their behavior resembles that of carboxyls in bituminous and sub-bituminous coals. Structure of low-temperature decomposing carboxyls in brown coals is not known, but it is assumed that humic acid originated from natural materials remains in the structure. 4 refs., 3 figs., 1 tab.

  1. [Determination of the carboxyl content of oxidized starch by fourier transform infrared (FTIR) spectroscopy]. (United States)

    Ding, Long-Long; Zhang, Yan-Hua; Gu, Ji-You; Tan, Hai-Yan; Zhu, Li-Bin


    In the present study, the carboxyl content of oxidized starch was determined by FTIR spectroscopy. Standard curve was drawn in which the ordinate was carboxyl content determined by national standard method with the ratio of carbonyl absorbance to the key of C-H absorbance in FTIR spectroscopy as the abscissa. The ratio of absorbance of unknown oxidized starch tested by FTIR spectroscopy was obtained, The carboxyl content was calculated by standard curve, and then compared with the carboxyl content determined by national standard method, and the deviation is between 2% and 4%. In order to improve the accuracy of the experiment, standard sample was selected to draw standard curve to better ensure that the carboxyl content of the unknown oxidized starch is in the range of standard curve calculation limit, and deviates from the limit of standard curve. Compared with the carboxyl content determined by national standard method, testing with FTIR spectroscopy is simple, easy to operate, and of high efficiency and better accuracy. So, it is significant to forecast the carboxyl content of oxidized starch by FTIR spectroscopy.

  2. Influence of cyclic dimer formation on the phase behavior of carboxylic acids. (United States)

    Janecek, Jiri; Paricaud, Patrice


    A new thermodynamic approach based on the Sear and Jackson association theory for doubly bonded dimers [Mol. Phys.1994, 82, 1033] is proposed to describe the thermodynamic properties of carboxylic acids. The new model is able to simultaneously represent the vapor pressures, saturated densities, and vaporization enthalpies of the shortest acids and is in a much better agreement with experimental data than other approaches that do no consider the formation of cyclic dimers. The new model is applied to mixtures of carboxylic acids with nonassociating compounds, and a very good description of the vapor-liquid equilibria in mixtures of alkanes + carboxylic acids is obtained.

  3. Nano-sized carboxylates as anode materials for rechargeable lithium-ion batteries

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Wu; Jie Ma; Yong-Sheng Hu; Hong Li; Liquan Chen


    Nano-sized carboxylates Na2C7H3NO4 and Na2C6H2N2O4 were prepared and investigated as anode materials for lithium-ion batteries. Both carboxylates exhibit high reversible capacities around 190 mAh/g above a cut-off voltage of 0.8 V vs. Li+/Li, potentially improving the safety of the batteries. In addition, good rate performance and long cycle life of these carboxylates make them promising candidates as anode materials for lithium-ion batteries.

  4. A novel synthesis of carbon-labelled quinolone-3-carboxylic acid antibacterials

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.M.; Sutherland, D.R. (Glaxo Research and Development Ltd., Greenford (United Kingdom). Isotope Chemistry Group)


    3-Iodoquinolones were prepared from the corresponding quinolone-3-carboxylic acids by Hunsdiecker-type iododecarboxylation reactions with lead tetraacetate and iodine. Cyanation of the iodo compounds with mixtures of potassium [[sup 13]C]cyanide and copper (1) iodide, gave [3-[sup 13]C]cyanoquinolones which on acidic hydrolysis afforded quinolone-[3-[sup 13]C]carboxylic acids. In this way, nalidixic acid, an immediate precursor of norfloxacin, and quinolone WIN57273 were labelled with carbon-13 in the metabolically stable carboxylic acid fragment. (author).

  5. Carboxylated Capped Carbon Nanotubes Interacting with Nimesulide Molecules: Applied Electric Fields Effects

    Directory of Open Access Journals (Sweden)

    Vivian Machado de Menezes


    Full Text Available Interactions of carboxylated capped carbon nanotubes with nimesulide molecules under electric fields were investigated by ab initio simulations. Repulsive forces between the nimesulide molecules and the carboxyl group of the carbon nanotubes, except for the nimesulide radical configuration, were observed. To keep the original molecule in the pristine form, electric fields with different intensities were applied, where changes in the behavior of the interactions between the molecules were noticed. It was shown that the intensity of the interaction between the nimesulide and the hydrophilic carboxylated capped carbon nanotube can be modulated by the action of the external electric fields making promising systems for drug delivery applications.

  6. Chiral discrimination of secondary alcohols and carboxylic acids by NMR spectroscopy. (United States)

    Pal, Indrani; Chaudhari, Sachin R; Suryaprakash, Nagaraja Rao


    The manuscript reports two novel ternary ion-pair complexes, which serve as chiral solvating agents, for enantiodiscrimination of secondary alcohols and carboxylic acids. The protocol for discrimination of secondary alcohols is designed by using one equivalent mixture each of enantiopure mandelic acid, 4-dimethylaminopyridine (DMAP) and a chiral alcohol. For discrimination of carboxylic acids, the ternary complex is obtained by one equivalent mixture each of enantiopure chiral alcohol, DMAP and a carboxylic acid. The designed protocols also permit accurate measurement of enantiomeric composition.

  7. Nasal pungency and odor of homologous aldehydes and carboxylic acids. (United States)

    Cometto-Muñiz, J E; Cain, W S; Abraham, M H


    Airborne substances can stimulate both the olfactory and the trigeminal nerve in the nose, giving rise to odor and pungent (irritant) sensations, respectively. Nose, eye, and throat irritation constitute common adverse effects in indoor environments. We measured odor and nasal pungency thresholds for homologous aliphatic aldehydes (butanal through octanal) and carboxylic acids (formic, acetic, butanoic, hexanoic, and octanoic). Nasal pungency was measured in subjects lacking olfaction (i.e., anosmics) to avoid odor biases. Similar to other homologous series, odor and pungency thresholds declined (i.e., sensory potency increased) with increasing carbon chain length. A previously derived quantitative structure-activity relationship (QSAR) based on solvation energies predicted all nasal pungency thresholds, except for acetic acid, implying that a key step in the mechanism for threshold pungency involves transfer of the inhaled substance from the vapor phase to the receptive biological phase. In contrast, acetic acid - with a pungency threshold lower than predicted - is likely to produce threshold pungency through direct chemical reaction with the mucosa. Both in the series studied here and in those studied previously, we reach a member at longer chain-lengths beyond which pungency fades. The evidence suggests a biological cut-off, presumably based upon molecular size, across the various series.

  8. Preparation and evaluation of some amide ether carboxylate surfactants

    Directory of Open Access Journals (Sweden)

    M.M.A. El-Sukkary


    Full Text Available A homologous series of new mild surfactants, namely: Alkyl amide ether carboxylates surfactants (AEC RCO–NHCH2CH2O (CH2CH2O6CH2COONa, were synthesized by esterification, amidation, ethoxylation and carboxymethylation reaction steps of fatty acids (Lauric, Myristic, palmitic, stearic, oleic or linoleic. The chemical structures of the prepared compounds were confirmed using different spectroscopic techniques, FTIR spectroscopy, mass spectra and HNMR. The surface properties including surface and interfacial tensions, foaming height, emulsification power, calcium ion stability, stability to hydrolysis and critical micelle concentration (cmc were determined. The study of their surface properties showed their stability in hard water and in acidic and alkaline media. These compounds have high calcium ion stability. The low foaming power could have an application in the dyeing auxiliary industry. The lower values of the interfacial tension values indicate the ability of using these surfactants in several applications as corrosion inhibitors and biocides. The data revealed various advantages and potentials as a main surfactant as well as co- surfactants.

  9. Role of phosphate and carboxylate ions in maillard browning. (United States)

    Rizzi, George P


    The Maillard reaction of carbohydrates and amino acids is the underlying chemical basis for flavor and color formation in many processed foods. Phosphate and other polyatomic anions will accelerate the rate of Maillard browning, and this effect has been explained by invoking enhanced proton abstraction from intermediate Amadori compounds. In this work, the effect of phosphate and carboxylate ions on browning was measured for a series of reducing sugars with and without the presence of beta-alanine. Significant browning was observed for sugars alone suggesting that polyatomic anions contribute to Maillard browning by providing reactive intermediates directly from sugars. A mechanism is proposed for decomposition of sugars by polyatomic anions and efforts to trap reactive species using o-phenylenediamine (OPD) are described. The results of this study suggest how complications may arise from the popular usage of phosphate buffers in the study of Maillard reaction kinetics. In addition, the results imply how phosphates may be useful for enhancing browning during food processing.

  10. The crystalline structures of carboxylic acid monolayers adsorbed on graphite. (United States)

    Bickerstaffe, A K; Cheah, N P; Clarke, S M; Parker, J E; Perdigon, A; Messe, L; Inaba, A


    X-ray and neutron diffraction have been used to investigate the formation of solid crystalline monolayers of all of the linear carboxylic acids from C(6) to C(14) at submonolayer coverage and from C(8) to C(14) at multilayer coverages, and to characterize their structures. X-rays and neutrons highlight different aspects of the monolayer structures, and their combination is therefore important in structural determination. For all of the acids with an odd number of carbon atoms, the unit cell is rectangular of plane group pgg containing four molecules. The members of the homologous series with an even number of carbon atoms have an oblique unit cell with two molecules per unit cell and plane group p2. This odd-even variation in crystal structure provides an explanation for the odd-even variation observed in monolayer melting points and mixing behavior. In all cases, the molecules are arranged in strongly hydrogen-bonded dimers with their extended axes parallel to the surface and the plane of the carbon skeleton essentially parallel to the graphite surface. The monolayer crystal structures have unit cell dimensions similar to certain close-packed planes of the bulk crystals, but the molecular arrangements are different. There is a 1-3% compression on increasing the coverage over a monolayer.

  11. Studies of 1-Amino-2,2-difluorocyclopropane-1-carboxylic Acid: Mechanism of Decomposition and Inhibition of 1-Aminocyclopropane-1-carboxylic Acid Deaminase. (United States)

    Liu, Cheng-Hao; Wang, Shao-An; Ruszczycky, Mark W; Chen, Huawei; Li, Keqiang; Murakami, Kazuo; Liu, Hung-wen


    1-Amino-2,2-difluorocyclopropane-1-carboxylic acid (DFACC) is of interest in the study of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase due to the increased reactivity of its cyclopropyl functionality. It is shown that DFACC is unstable under near-physiological conditions where it primarily decomposes via specific-base catalysis to 3-fluoro-2-oxobut-3-enoic acid with a rate constant of 0.18 ± 0.01 min(-1). Upon incubation with ACC deaminase, DFACC is found to be a slow-dissociating inhibitor of ACC deaminase with submicromolar affinity.

  12. Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction

    DEFF Research Database (Denmark)

    Persson, Tobias; Yde, Christina W.; Rasmussen, Jakob Ewald


    Densely functionalised pyrazole carboxamides and carboxylic acids were synthesised in an expedient manner through saponification and transamidation, respectively, of ester-functionalised pyrazoles. This synthetic protocol allowed for three diversifying steps in which appendages on the pyrazole...

  13. Facile and efficient synthesis of quinoline-4-carboxylic acids under microwave irradiation

    Institute of Scientific and Technical Information of China (English)


    A facile and efficient method for the preparation of 2-non-substituted quinoline-4-carboxylic acids is described via the Pfitzinger reaction of isatins with sodium pyruvate following consequent decarboxylation under microwave irradiation.

  14. Measuring the concentration of carboxylic acid groups in torrefied spruce wood. (United States)

    Khazraie Shoulaifar, Tooran; Demartini, Nikolai; Ivaska, Ari; Fardim, Pedro; Hupa, Mikko


    Torrefaction is moderate thermal treatment (∼200-300°C) to improve the energy density, handling and storage properties of biomass fuels. In biomass, carboxylic sites are partially responsible for its hygroscopic. These sites are degraded to varying extents during torrefaction. In this paper, we apply methylene blue sorption and potentiometric titration to measure the concentration of carboxylic acid groups in spruce wood torrefied for 30min at temperatures between 180 and 300°C. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic acid sites. Thus both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction which provides new information to the chemical changes occurring during torrefaction.

  15. Theoretical study of structure and stability of small gadolinium carboxylate complexes in liquid scintillator solvents. (United States)

    Huang, Pin-Wen


    The structural properties of three small gadolinium carboxylate complexes in three liquid scintillator solvents (pseudocumene, linear alkylbenzene, and phenyl xylylethane) were theoretically investigated using density functional theory (B3LYP/LC-RECP) and polarizable continuum model (PCM). The average interaction energy between gadolinium atom and carboxylate ligand (E(int)) and the energy difference of the highest singly occupied molecular orbital and lowest unoccupied molecular orbital (Δ(SL)) were calculated to evaluate and compare the relative stability of these complexes in solvents. The calculation results show that the larger (with a longer alkyl chain) gadolinium carboxylate complex has greater stability than the smaller one, while these gadolinium carboxylates in linear alkylbenzene were found to have greater stability than those in the other two solvents.

  16. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release (United States)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.


    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  17. Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names? (United States)

    Leung, Sam H.


    Surveys the roots of the common names of organic compounds most likely to be encountered by undergraduate organic chemistry students. Includes information for 19 amino acids, 17 aromatic compounds, and 21 carboxylic acids. (WRM)

  18. Efficient Debromination of Vicinal (, (-Dibromo Carboxylic Acid Derivatives with the Sm/HOAc System

    Institute of Scientific and Technical Information of China (English)


    The α, β vicinal dibromo carboxylic acid and its derivatives were debrominated with Sm/HOAc system to afford the corresponding cinnamic acid and its derivatives in good yields under mild conditions.


    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorinated octanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary p...

  20. Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde production. (United States)

    Moura, Matthew; Pertusi, Dante; Lenzini, Stephen; Bhan, Namita; Broadbelt, Linda J; Tyo, Keith E J


    Chemicals with aldehyde moieties are useful in the synthesis of polymerization reagents, pharmaceuticals, pesticides, flavors, and fragrances because of their high reactivity. However, chemical synthesis of aldehydes from carboxylic acids has unfavorable thermodynamics and limited specificity. Enzymatically catalyzed reductive bioaldehyde synthesis is an attractive route that overcomes unfavorable thermodynamics by ATP hydrolysis in ambient, aqueous conditions. Carboxylic acid reductases (Cars) are particularly attractive, as only one enzyme is required. We sought to increase the knowledge base of permitted substrates for four Cars. Additionally, the Lys2 enzyme family was found to be mechanistically the same as Cars and two isozymes were also tested. Our results show that Cars prefer molecules where the carboxylic acid is the only polar/charged group. Using this data and other published data, we develop a support vector classifier (SVC) for predicting Car reactivity and make predictions on all carboxylic acid metabolites in iAF1260 and Model SEED.

  1. Synthesis and Anti-influenza Virus Activity of Ethyl 6-Bromo-5-hydroxyindole-3-carboxylate Derivatives

    Institute of Scientific and Technical Information of China (English)

    Yan Fang ZHAO; Jin Hua DONG; Ping GONG


    A series of ethyl 6-bromo-5-hydroxyindole-3-carboxylate derivatives were synthesized and their in vitro anti-influenza virus activity was evaluated. All the compounds were characterized by 1H NMR and MS.

  2. Layered transition metal carboxylates: efficient reusable heterogeneous catalyst for epoxidation of olefins. (United States)

    Sen, Rupam; Bhunia, Susmita; Mal, Dasarath; Koner, Subratanath; Miyashita, Yoshitaro; Okamoto, Ken-Ichi


    Layered metal carboxylates [M(malonato)(H(2)O)(2)](n) (M = Ni(II) and Mn(II)) that have a claylike structure have been synthesized hydrothermally and characterized. The interlayer separation in these layered carboxylates is comparable to that of the intercalation distance of the naturally occurring clay materials or layered double hydroxides (LDHs). In this study, we have demonstrated that, instead of intercalating the metal complex into layers of the clay or LDH, layered transition metal carboxylates, [M(malonato)(H(2)O)(2)](n), as such can be used as a recyclable heterogeneous catalyst in olefin epoxidation reaction. Metal carboxylates [M(malonato)(H(2)O)(2)](n) exhibit excellent catalytic performance in olefin epoxidation reaction.

  3. Copper-catalyzed intermolecular oxyamination of olefins using carboxylic acids and O-benzoylhydroxylamines

    Directory of Open Access Journals (Sweden)

    Brett N. Hemric


    Full Text Available This paper reports a novel approach for the direct and facile synthesis of 1,2-oxyamino moieties via an intermolecular copper-catalyzed oxyamination of olefins. This strategy utilizes O-benzoylhydroxylamines as an electrophilic amine source and carboxylic acids as a nucleophilic oxygen source to achieve a modular difunctionalization of olefins. The reaction proceeded in a regioselective manner with moderate to good yields, exhibiting a broad scope of carboxylic acid, amine, and olefin substrates.

  4. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen


    not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...... carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength....

  5. Silver-Catalyzed Decarboxylative Allylation of Aliphatic Carboxylic Acids in Aqueous Solution. (United States)

    Cui, Lei; Chen, He; Liu, Chao; Li, Chaozhong


    Direct decarboxylative radical allylation of aliphatic carboxylic acids is described. With K2S2O8 as the oxidant and AgNO3 as the catalyst, the reactions of aliphatic carboxylic acids with allyl sulfones in aqueous CH3CN solution gave the corresponding alkenes in satisfactory yields under mild conditions. This site-specific allylation method is applicable to all primary, secondary, and tertiary alkyl acids and exhibits wide functional group compatibility.

  6. Effect of the cement type on compatibility with carboxylate superplasticisers

    Directory of Open Access Journals (Sweden)

    Bundyra-Oracz, G.


    Full Text Available An empirical study was conducted to gain a fuller understanding of the interactions taking place in cementsuperplasticiser systems. To this end, two clinkers of known chemical and phase composition were prepared in this study to gain insight into such interactions. One contained no tricalcium aluminate (C1, while the other had a 9% C3A content (C2. These clinkers were ground to approximately 340 m2/kg and blended with gypsum only or gypsum and Klein compound (3CaO·3Al2O3·CaSO4 (1, 2. Sufficient compound was added to C1 to ensure the formation of about the same amount of ettringite after 0.5 and 1 h of hydration as found in cement C2 + gypsum. The admixture used was a carboxylate superplasticiser. Rheology measurements showed that while paste yield stress was correlated to ettringite formation, no such simple relationship was observed for plastic viscosity. Plastic viscosity depended on the total hydrates formed, i.e., not only as ettringite but also as C-S-H gel. The findings revealed that in clinkers with very low sulfate and potassium contents, the rheology of carboxylate-containing cement paste is primarily controlled by ettringite formation.

    En el presente trabajo se ha realizado un estudio empírico con el objetivo de profundizar en el conocimiento de las interacciones del sistema cemento-superplastificante. Con este fin, se prepararon dos clínkeres con una composición química y de fases conocida: el primero (C1 sin aluminato tricálcico y el segundo (C2 con un contenido en C3A del 9%. Ambos se molieron hasta obtener una superficie específica aproximada de 340 m2/kg y se emplearon con dos adiciones: yeso y el compuesto de Klein (3CaO·3Al2O3·CaSO4 (1, 2. Se añadió la cantidad necesaria del compuesto de Klein a C1 para garantizar la formación, tras 0,5 y 1ª h. de hidratación, de aproximadamente la misma cantidad de etringita en dicho

  7. Aerosol volatility and enthalpy of sublimation of carboxylic acids. (United States)

    Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias


    The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.

  8. Carbon isotope fractionation during photorespiration and carboxylation in Senecio. (United States)

    Lanigan, Gary J; Betson, Nicholas; Griffiths, Howard; Seibt, Ulli


    The magnitude of fractionation during photorespiration and the effect on net photosynthetic (13)C discrimination (Delta) were investigated for three Senecio species, S. squalidus, S. cineraria, and S. greyii. We determined the contributions of different processes during photosynthesis to Delta by comparing observations (Delta(obs)) with discrimination predicted from gas-exchange measurements (Delta(pred)). Photorespiration rates were manipulated by altering the O(2) partial pressure (pO(2)) in the air surrounding the leaves. Contributions from (13)C-depleted photorespiratory CO(2) were largest at high pO(2). The parameters for photorespiratory fractionation (f), net fractionation during carboxylation by Rubisco and phosphoenolpyruvate carboxylase (b), and mesophyll conductance (g(i)) were determined simultaneously for all measurements. Instead of using Delta(obs) data to obtain g(i) and f successively, which requires that b is known, we treated b, f, and g(i) as unknowns. We propose this as an alternative approach to analyze measurements under field conditions when b and g(i) are not known or cannot be determined in separate experiments. Good agreement between modeled and observed Delta was achieved with f = 11.6 per thousand +/- 1.5 per thousand, b = 26.0 per thousand +/- 0.3 per thousand, and g(i) of 0.27 +/- 0.01, 0.25 +/- 0.01, and 0.22 +/- 0.01 mol m(-2) s(-1) for S. squalidus, S. cineraria, and S. greyii, respectively. We estimate that photorespiratory fractionation decreases Delta by about 1.2 per thousand on average under field conditions. In addition, diurnal changes in Delta are likely to reflect variations in photorespiration even at the canopy level. Our results emphasize that the effects of photorespiration must be taken into account when partitioning net CO(2) exchange of ecosystems into gross fluxes of photosynthesis and respiration.

  9. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. (United States)

    Jiang, Lei; Shestov, Alexander A; Swain, Pamela; Yang, Chendong; Parker, Seth J; Wang, Qiong A; Terada, Lance S; Adams, Nicholas D; McCabe, Michael T; Pietrak, Beth; Schmidt, Stan; Metallo, Christian M; Dranka, Brian P; Schwartz, Benjamin; DeBerardinis, Ralph J


    Cells receive growth and survival stimuli through their attachment to an extracellular matrix (ECM). Overcoming the addiction to ECM-induced signals is required for anchorage-independent growth, a property of most malignant cells. Detachment from ECM is associated with enhanced production of reactive oxygen species (ROS) owing to altered glucose metabolism. Here we identify an unconventional pathway that supports redox homeostasis and growth during adaptation to anchorage independence. We observed that detachment from monolayer culture and growth as anchorage-independent tumour spheroids was accompanied by changes in both glucose and glutamine metabolism. Specifically, oxidation of both nutrients was suppressed in spheroids, whereas reductive formation of citrate from glutamine was enhanced. Reductive glutamine metabolism was highly dependent on cytosolic isocitrate dehydrogenase-1 (IDH1), because the activity was suppressed in cells homozygous null for IDH1 or treated with an IDH1 inhibitor. This activity occurred in absence of hypoxia, a well-known inducer of reductive metabolism. Rather, IDH1 mitigated mitochondrial ROS in spheroids, and suppressing IDH1 reduced spheroid growth through a mechanism requiring mitochondrial ROS. Isotope tracing revealed that in spheroids, isocitrate/citrate produced reductively in the cytosol could enter the mitochondria and participate in oxidative metabolism, including oxidation by IDH2. This generates NADPH in the mitochondria, enabling cells to mitigate mitochondrial ROS and maximize growth. Neither IDH1 nor IDH2 was necessary for monolayer growth, but deleting either one enhanced mitochondrial ROS and reduced spheroid size, as did deletion of the mitochondrial citrate transporter protein. Together, the data indicate that adaptation to anchorage independence requires a fundamental change in citrate metabolism, initiated by IDH1-dependent reductive carboxylation and culminating in suppression of mitochondrial ROS.

  10. Structure-activity relationship between carboxylic acids and T cell cycle blockade. (United States)

    Gilbert, Kathleen M; DeLoose, Annick; Valentine, Jimmie L; Fifer, E Kim


    This study was designed to examine the potential structure-activity relationship between carboxylic acids, histone acetylation and T cell cycle blockade. Toward this goal a series of structural homologues of the short-chain carboxylic acid n-butyrate were studied for their ability to block the IL-2-stimulated proliferation of cloned CD4+ T cells. The carboxylic acids were also tested for their ability to inhibit histone deacetylation. In addition, Western blotting was used to examine the relative capacity of the carboxlic acids to upregulate the cyclin kinase-dependent inhibitor p21cip1 in T cells. As shown earlier n-butyrate effectively inhibited histone deacetylation. The increased acetylation induced by n-butyrate was associated with the upregulation of the cyclin-dependent kinase inhibitor p21cip1 and the cell cycle blockade of CD4+ T cells. Of the other carboxylic acids studied, the short chain acids, C3-C5, without branching were the best inhibitors of histone deacetylase. This inhibition correlated with increased expression of the cell cycle blocker p21cip1, and the associated suppression of CD4+ T cell proliferation. The branched-chain carboxylic acids tested were ineffective in all the assays. These results underline the relationship between the ability of a carboxylic acid to inhibit histone deacetylation, and their ability to block T cell proliferation, and suggests that branching inhibits these effects.

  11. How many carboxyl groups does an average molecule of humic-like substances contain?

    Directory of Open Access Journals (Sweden)

    I. Salma


    Full Text Available The carboxyl groups of atmospheric humic-like substances (HULIS are of special interest because they influence the solubility in water, affect the water activity and surface tension of droplets in the air, and allow formation of chelates with biologically active elements. Experimentally determined abundances of the carboxyl group within HULIS by functional group analysis are consistent with our knowledge on the average molecular mass of HULIS if the number of dissociable carboxyl groups is assumed to be rather small. The best agreement between the average molecular mass derived from the existing abundance data and the average molecular mass published earlier occurs for assuming approximately one dissociable carboxyl group only. This implies that HULIS can not be regarded as polycarboxilic acid in diluted solutions. The average molecular mass of HULIS derived from our electrochemical measurements with the assumption of one dissociable carboxyl group or equivalently, one dissociable sulphate ester per molecule ranges from 250 to 310 Da. It was concluded that HULIS are a moderately strong/weak acid with a dissociation constant of about pK=3.4, which fits well into the interval represented by fulvic and humic acids. The mean number of dissociable hydrogen (i.e. of carboxyl groups and sulphate esters jointly in HULIS molecules was refined to be between 1.1 and 1.4 in acidic solutions.

  12. How many carboxyl groups does an average molecule of humic-like substances contain?

    Directory of Open Access Journals (Sweden)

    I. Salma


    Full Text Available The carboxyl groups of atmospheric humic-like substances (HULIS are of special interest because they influence the solubility in water, affect the water activity and surface tension of droplets in the air, and allow formation of chelates with biologically active elements. Experimentally determined abundances of the carboxyl group within HULIS by functional group analysis are consistent with our knowledge on the average molecular mass of HULIS if the number of dissociable carboxyl groups is assumed to be rather small. The best agreement between the average molecular mass derived from the existing abundance data and the average molecular mass published earlier occurs for assuming approximately one dissociable carboxyl group only. This implies that HULIS can not be regarded as polycarboxilic acid. The average molecular mass of HULIS derived from our electrochemical measurements with the assumption of one dissociable carboxyl group per molecule ranges from 248 to 305 Da. It was concluded that HULIS are a moderately strong/weak acid with a dissociation constant of about pK=3.4, which fits well into the interval represented by fulvic and humic acids. The mean number of dissociable carboxyl groups in HULIS molecules was refined to be between 1.1 and 1.4.

  13. Spectrophotometric tool for the determination of the total carboxylate content in proteins; molar extinction coefficient of the enol ester from Woodward's reagent K reacted with protein carboxylates

    NARCIS (Netherlands)

    Kosters, H.A.; Jongh,


    A number of relevant properties of Woodward's reagent K have been determined, such as the stability of the reactant and the optimal reaction conditions of the reactant with protein carboxylates. A Woodward's reagent K stock solution was stable at 4°C for prolonged time, whereas upon storage at 22°C,

  14. Ozone-driven photochemical formation of carboxylic acid groups from alkane groups

    Directory of Open Access Journals (Sweden)

    S. Liu


    Full Text Available Carboxylic acids are ubiquitous in atmospheric particles, and they play an important role in the physical and chemical properties of aerosol particles. During measurements in coastal California in the summer of 2009, carboxylic acid functional groups were highly associated with trajectories from an industrial region with high organic mass (OM, likely from fossil fuel combustion emissions. The concentration of carboxylic acid groups peaked during daytime, suggesting a photochemical secondary formation mechanism. This daytime increase in concentration was tightly correlated with O3 mixing ratio, indicating O3 was the likely driver in acid formation. Based on the diurnal cycles of carboxylic acid and alkane groups, the covariation of carboxylic acid groups with O3, and the composition of the Combustion factor resulted from the factor analyses, gas-phase alkane oxidation by OH radicals to form dihyfrofuran followed by further oxidation of dihydrofuran by O3 is the likely acid formation mechanism. Using the multi-day average of the daytime increase of carboxylic acid group concentrations and m/z 44-based Aged Combustion factor, we estimated the lower-bound contributions of secondary organic aerosol (SOA formed in 12-h daytime of processing in a single day to be 30% of the carboxylic acid groups and 25–45% of the Combustion factor concentration. These unique ambient observations of photochemically-driven acid formation suggest that gas-phase alkanes might be important sources of SOA formation in this coastal region.

  15. Modeling the antisymmetric and symmetric stretching vibrational modes of aqueous carboxylate anions. (United States)

    Sutton, Catherine C R; Franks, George V; da Silva, Gabriel


    The infrared spectra of six aqueous carboxylate anions have been calculated at the M05-2X/cc-pVTZ level of theory with the SMD solvent model, and validated against experimental data from the literature over the region of 1700 cm(-1) to 1250 cm(-1); this region corresponds to the stretching modes of the carboxylate group, and is often interrogated when probing bonding of carboxylates to other species and surfaces. The anions studied here were formate, acetate, oxalate, succinate, glutarate and citrate. For the lowest energy conformer of each anion, the carboxylate moiety antisymmetric stretching peak was predicted with a mean signed error of only 4 cm(-1) using the SMD solvent model, while the symmetric peak was slightly overestimated. Performing calculations in vacuum and scaling was found to generally over-predict the antisymmetric vibrational frequencies and under predict the symmetric peak. Different conformers of the same anion were found to have only slightly different spectra in the studied region and the inclusion of explicit water molecules was not found to significantly change the calculated spectra when the implicit solvent model is used. Overall, the use of density functional theory in conjunction with an implicit solvent model was found to result in infra-red spectra that are the best reproduction of the features found experimentally for the aqueous carboxylate ions in the important 1700 cm(-1) to 1250 cm(-1) region. The development of validated model chemistries for simulating the stretching modes of aqueous carboxylate ions will be valuable for future studies that investigate how carboxylate anions complex with multivalent metal cations and related species in solution.

  16. 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B. (United States)

    Zhi, Ying; Gao, Li-Xin; Jin, Yi; Tang, Chun-Lan; Li, Jing-Ya; Li, Jia; Long, Ya-Qiu


    Protein tyrosine phosphatase 1B is a negative regulator in the insulin and leptin signaling pathways, and has emerged as an attractive target for the treatment of type 2 diabetes and obesity. However, the essential pharmacophore of charged phosphotyrosine or its mimetic confer low selectivity and poor cell permeability. Starting from our previously reported aryl diketoacid-based PTP1B inhibitors, a drug-like scaffold of 4-quinolone-3-carboxylic acid was introduced for the first time as a novel surrogate of phosphotyrosine. An optimal combination of hydrophobic groups installed at C-6, N-1 and C-3 positions of the quinolone motif afforded potent PTP1B inhibitors with low micromolar IC50 values. These 4-quinolone-3-carboxylate based PTP1B inhibitors displayed a 2-10 fold selectivity over a panel of PTP's. Furthermore, the bidentate inhibitors of 4-quinolone-3-carboxylic acids conjugated with aryl diketoacid or salicylic acid were cell permeable and enhanced insulin signaling in CHO/hIR cells. The kinetic studies and molecular modeling suggest that the 4-quinolone-3-carboxylates act as competitive inhibitors by binding to the PTP1B active site in the WPD loop closed conformation. Taken together, our study shows that the 4-quinolone-3-carboxylic acid derivatives exhibit improved pharmacological properties over previously described PTB1B inhibitors and warrant further preclinical studies.

  17. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)


    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  18. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions. (United States)

    Shukla, Shashi Kant; Kumar, Anil


    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions.

  19. Carboxylic acids in crystallization of macromolecules: learning from successful crystallization experiments. (United States)

    Offermann, Lesa R; He, John Z; Mank, Nicholas J; Booth, William T; Chruszcz, Maksymilian


    The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.

  20. Automatic analyzer for highly polar carboxylic acids based on fluorescence derivatization-liquid chromatography. (United States)

    Todoroki, Kenichiro; Nakano, Tatsuki; Ishii, Yasuhiro; Goto, Kanoko; Tomita, Ryoko; Fujioka, Toshihiro; Min, Jun Zhe; Inoue, Koichi; Toyo'oka, Toshimasa


    A sensitive, versatile, and reproducible automatic analyzer for highly polar carboxylic acids based on a fluorescence derivatization-liquid chromatography (LC) method was developed. In this method, carboxylic acids were automatically and fluorescently derivatized with 4-(N,N-dimethylaminosulfonyl)-7-piperazino-2,1,3-benzoxadiazole (DBD-PZ) in the presence of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride by adopting a pretreatment program installed in an LC autosampler. All of the DBD-PZ-carboxylic acid derivatives were separated on the ODS column within 30 min by gradient elution. The peak of DBD-PZ did not interfere with the separation and the quantification of all the acids with the exception of lactic acid. From the LC-MS/MS analysis, we confirmed that lactic acid was converted to an oxytriazinyl derivative, which was further modified with a dimethoxy triazine group of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM). We detected this oxytriazinyl derivative to quantify lactic acid. The detection limits (signal-to-noise ratio = 3) for the examined acids ranged from 0.19 to 1.1 µm, which correspond to 95-550 fmol per injection. The intra- and inter-day precisions of typical, highly polar carboxylic acids were all carboxylic acids in various samples, which included fruit juices, red wine and media from cultured tumor cells.

  1. Application of flow-injection potentiometric system for determination of total concentration of aliphatic carboxylic acids. (United States)

    Mroczkiewicz, Monika; Górski, Łukasz; Zamojska-Jaroszewicz, Anna; Szewczyk, Krzysztof W; Malinowska, Elżbieta


    In this work, flow-injection system with potentiometric detection was tested for determination of total carboxylic acid concentration. Detection part of the examined system consists of ion-selective electrodes (ISEs) with polymer membranes of different compositions. First electrode is based on Zr(IV)-tetraphenylporphyrin as ionophore selective towards carboxylic acid anions, the membrane of second one contains only liphophilic anion exchanger - tridodecylmethylammonium chloride. Final response of the system is a result of combination of EMF signals from both electrodes. Combination of two detectors enables significant decrease of differences between potentiometric signals induced by mixtures of studied anions of various concentrations as compared to results obtained only with metalloporphyrin-based ISE. The use of anion-exchanger based detector allows for elimination of the influence of aliphatic carboxylic acids lipophilicity. Proposed potentiometric flow-injection system was employed for determination of short-chain aliphatic carboxylic acids (so-called VFA - volatile fatty acids) in samples originating from an anaerobic digester. Results obtained for these relatively complicated samples are in good agreement with results obtained with the use of reference colorimetric method. Linear response towards carboxylic acids was observed in the concentration range of 10(-4) to 10(-2)mold m(-3), with the slopes in the range of -110 to -150 mV dec(-1) (for acetate(-) and butyrate(-), respectively). System enables for determination of about 6 samples per hour. Life time of ISEs average about 2 months.

  2. Design, synthesis and evaluation of 3-quinoline carboxylic acids as new inhibitors of protein kinase CK2. (United States)

    Syniugin, Anatolii R; Ostrynska, Olga V; Chekanov, Maksym O; Volynets, Galyna P; Starosyla, Sergiy A; Bdzhola, Volodymyr G; Yarmoluk, Sergiy M


    In this article, the derivatives of 3-quinoline carboxylic acid were studied as inhibitors of protein kinase CK2. Forty-three new compounds were synthesized. Among them 22 compounds inhibiting CK2 with IC50 in the range from 0.65 to 18.2 μM were identified. The most active inhibitors were found among tetrazolo-quinoline-4-carboxylic acid and 2-aminoquinoline-3-carboxylic acid derivatives.

  3. Precursors of novel Gla-containing conotoxins contain a carboxy-terminal recognition site that directs gamma-carboxylation

    DEFF Research Database (Denmark)

    Brown, Mark A; Begley, Gail S; Czerwiec, Eva


    , and amino acid substitutions of these residues perturbed gamma-carboxylation of the Gla-TxXI peptide. The demonstration of a functional and transferable C-terminal postpeptide in these conotoxins indicates the presence of the gamma-carboxylation recognition site within the postpeptide and defines a novel...... precursor structure for vitamin K-dependent polypeptides. It also provides the first formal evidence to prove that gamma-carboxylation occurs as a post-translational rather than a cotranslational process....

  4. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.J.; King, C.J.


    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  5. Quantitative structure-property relationship of aromatic sulfur-containing carboxylates

    Institute of Scientific and Technical Information of China (English)

    LIU Xin-hui; YANG Zhi-feng; WANG Lian-sheng


    Based on quantum chemical calculations, TLSER model (theoretical linear solvation energy relationships) and atomic charge approach were applied to model the partition properties(water solubility and octanol/water partition coefficient) of 96 aromatic sulfur-containing carboxylates, including phenylthio, phenylsulfinyl and phenylsulfonyl carboxylates. In comparison with TLSER models, the atomic charge models are more accurate and reliable to predict the partition properties of the kind of compounds. For the atomic charge models, the molecular descriptors are molecular surface area( S ), molecular shape( O ), weight( Mw ), net charges on carboxyl group( QOC ), net charges of nitrogen atoms(Q N), and the most negative atomic charge( q- ) of the solute molecule. For water solubility (log Sw ) and octanol/water partition coefficient(log Kow), the correction coefficients r2adj(adjusted for degrees of freedom) are 0.936 and 0.938, and the standard deviations are 0.364 and 0.223, respectively.

  6. Chiral trans-1,2-diaminocyclohexane derivatives as chiral solvating agents for carboxylic acids

    Indian Academy of Sciences (India)

    Mariappan Periasamy; Manasi Dalai; Meduri Padmaja


    Efficient use of the readily accessible chiral 2-symmetric acyclic diamines (1-2) as well as macrocyclic amines (3-5) containing trans-1,2-diaminocyclohexyl moiety as chiral solvating agents (CSA) for the determination of enantiomeric excess of representative carboxylic acids (6-7) and an amino acid derivative (8) is illustrated. The enantiomeric composition of different carboxylic acids estimated here by the 1H NMR method, based on the integration of the corresponding methine proton signals are in good correlation with that determined using HPLC method. The data are in accordance with the formation of multimolecular diastereomeric complexes in solution, which render good splitting of NMR signals for the enantiomers of representative carboxylic acids as well as for -Ts-phenylglycine (up to = 0.295 ppm, 118 Hz).

  7. Carboxylated dithiafulvenes and tetrathiafulvalene vinylogues: synthesis, electronic properties, and complexation with zinc ions

    Directory of Open Access Journals (Sweden)

    Yunfei Wang


    Full Text Available A class of carboxyl and carboxylate ester-substituted dithiafulvene (DTF derivatives and tetrathiafulvalene vinylogues (TTFVs has been synthesized and their electronic and electrochemical redox properties were characterized by UV–vis spectroscopic and cyclic voltammetric analyses. The carboxyl-TTFV was applied as a redox-active ligand to complex with Zn(II ions, forming a stable Zn-TTFV coordination polymer. The structural, electrochemical, and thermal properties of the coordination polymer were investigated by infrared spectroscopy, cyclic voltammetry, powder X-ray diffraction, and differential scanning calorimetric analyses. Furthermore, the microscopic porosity and surface area of the Zn-TTFV coordination polymer were measured by nitrogen gas adsorption analysis, showing a BET surface of 148.2 m2 g−1 and an average pore diameter of 10.2 nm.

  8. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass. (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  9. Characterization of the chemical architecture of carbon-fiber microelectrodes. 1. Carboxylates. (United States)

    Pantano, P; Kuhr, W G


    A new method to characterize the chemical architecture of a carbon-fiber microelectrode surface is described. Derivatization of carboxyl groups on the carbon surface with a poly(oxyalkalene)diamine (Jeffamine ED-600), followed by biotinylation of the free amine, allowed the attachment of a fluorescein isothiocyanate (FITC) conjugate of ExtrAvidin. The fluorescence observed after excitation at 488 nm was imaged with a fluorescence microscope equipped with a CCD camera, yielding a spatial map of the distribution of modified carboxyl groups on the surface of the carbon fiber with 0.5-micron resolution. Colloidal gold particles (15 nm diameter) coated with ExtrAvidin were used in place of the FITC-ExtrAvidin, and the carbon-fiber surface was imaged with scanning electron microscopy on a submicron scale. This selective information regarding surface-bound functional groups (i.e. carboxylates) has proven invaluable toward the rational design of novel sensors based on surface-modified ultramicroelectrodes.

  10. Synthesis of Dl-methionine carboxyl {sup 14}C and its enzymatic optical resolution into L-methionine carboxyl {sup 14}C; Synthese de la DL-methionine carboxyle {sup 14}C et sa resolution enzymatique en L-methionine carboxyle {sup 14}C

    Energy Technology Data Exchange (ETDEWEB)

    Guermont, J.P.; Sharefkin, D.; Pichat, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    DL-methionine carboxyl {sup 14}C has been prepared by Strecker reaction from {sup 14}C N K and {beta}-methylmercapto-propionaldehyde with 61 per cent yield. The enzymatic resolution of N-acetyl DL-methionine gives rise to L-methionine carboxyl {sup 14}C with 78 per cent yield. (authors) [French] La DL-methionine carboxyle {sup 14}C a ete preparee par reaction de Strecker a partir de {sup 14}C N K et du {beta}-methylmercapto propionaldehyde avec un rendement de 61 pour cent. Par resolution enzymatique de l'acetyl-DL-methionine, la L-methonine carboxyde {sup 14}C a ete obtenue avec un rendement de 78 pour cent.

  11. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid–base pairs

    Energy Technology Data Exchange (ETDEWEB)

    Baylon, Rebecca A. L.; Sun, Junming; Martin, Kevin J.; Venkitasubramanian, Padmesh; Wang, Yong


    Dwindling petroleum reserves combined with increased energy demand and political factors encouraging an increase in energy independence have led to a large amount of research on sustainable alternatives. To this end, biomass conversion has been recognized as themost readily viable technology to produce biofuel concerning our reliance on liquid fuels for transportation and has the advantage of being easily integrated into our heavy use of combustion engines. The interest in biomass conversion has also resulted in reduced costs and a greater abundance of bio-oil, a mixture of hundreds of oxygenates including alcohols, aldehydes, carboxylic acids, and ketones. However, the presence of carboxylic acids in bio-oil derived from lignocellulose pyrolysis leads to low pH, instability, and corrosiveness. In addition, carboxylic acids (i.e. acetic acid) can also be produced via fermentation of sugars. This can be accomplished by a variety of homoacetogenic microorganisms that can produce acetic acid with 100% carbon yield.

  12. Esterification of Carboxylic Acids and Diacids by Trialkyl Borate under Solvent- and Catalyst-Free Conditions

    Institute of Scientific and Technical Information of China (English)

    MANSOORI Yagoub; TATAROGLU SEYIDOV Firdovsi; BOHLOOLI Shahrbanoo; ZAMANLOO Mohammad Reza; IMANZADEH Gholam Hassan


    Esterification or transesterification reactions are usually carried out in the presence of homogeneous or heterogeneous catalysts.However,recently a new method was reported for the esterification of carboxylic acids by tributyl borate under solvent- and catalyst-free conditions.In order to show the synthetic ability of trialkyl borate esters in the esterification reactions,here,the esterification of other carboxylic acids and diacids by tributyl-,triisoamyl-,and tribenzyl borate under the same conditions were reported.Some of the prepared ester and diester products have found wide applications as plasticizers and synthetic ester base lubricants.The esterification reactions have been cleanly carried out in the absence of any solvent under catalyst-free conditions.The maximum rate belongs to isoamyl trichloroacetate (Ⅵb) which reached about 76% within about 6.5 h.On the basis of obtained findings,it seems that electron withdrawing groups on carboxylic acid facilitate the esterification reaction.

  13. Carboxylic acid production from brewer's spent grain via mixed culture fermentation. (United States)

    Liang, Shaobo; Wan, Caixia


    This study aimed at investigating carboxylic acid production from brewer's spent grain (BSG) via mixed culture fermentation. The results showed that the distribution of fermentation products was significantly affected by pH conditions and the addition of electron donors. Lactic acid was the dominant component under acidic and alkaline conditions while volatile fatty acids (VFAs) became dominant under the neutral condition. Furthermore, the neutral condition favored the chain elongation of carboxylic acids, especially with ethanol as the electron donor. Ethanol addition enhanced valeric acid and caproic acid production by 44% and 167%, respectively. Lactic acid addition also had positive effects on VFAs production under the neutral condition but limited to C2-C4 products. As a result, propionic acid and butyric acid production was increased by 109% and 152%, respectively. These findings provide substantial evidence for regulating carboxylic acid production during mixed culture fermentation of BSG by controlling pH and adding electron donors.

  14. Target-Specific Capture of Environmentally Relevant Gaseous Aldehydes and Carboxylic Acids with Functional Nanoparticles. (United States)

    Campbell, McKenzie L; Guerra, Fernanda D; Dhulekar, Jhilmil; Alexis, Frank; Whitehead, Daniel C


    Aldehyde and carboxylic acid volatile organic compounds (VOCs) present significant environmental concern due to their prevalence in the atmosphere. We developed biodegradable functional nanoparticles comprised of poly(d,l-lactic acid)-poly(ethylene glycol)-poly(ethyleneimine) (PDLLA-PEG-PEI) block co-polymers that capture these VOCs by chemical reaction. Polymeric nanoparticles (NPs) preparation involved nanoprecipitation and surface functionalization with branched PEI. The PDLLA-PEG-PEI NPs were characterized by using TGA, IR, (1) H NMR, elemental analysis, and TEM. The materials feature 1°, 2°, and 3° amines on their surface, capable of capturing aldehydes and carboxylic acids from gaseous mixtures. Aldehydes were captured by a condensation reaction forming imines, whereas carboxylic acids were captured by acid/base reaction. These materials reacted selectively with target contaminants obviating off-target binding when challenged by other VOCs with orthogonal reactivity. The NPs outperformed conventional activated carbon sorbents.

  15. Preparation,Photo and Electroluminescence Properties of Novel Rare Earth Aromatic Carboxylates

    Institute of Scientific and Technical Information of China (English)

    林秦; 符连社; 等


    Novel soluble rare earth aromatic carboxylates were prepared.The triplet energy level of organic ligand was measured.The photoluminescence properties of the Tb3+and Eu3+aromatic carboxylates and lifetimes were investated ,which indicated that these rare earth complexes have high quantum efficiency,Because of their excellent solubility,polmer-doping rare earth carboxylates were fabricated as thin fimls by spin-coating method and theri luminescence properties were studied,Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color,The maximum luminacnce of the device of ITO/PVK/PVK:Tb(AS)3Phen:PBD/PBD/Al is 32cd·m-2at28V.

  16. Communication: Physical origins of ionization potential shifts in mixed carboxylic acids and water complexes (United States)

    Gu, Quanli; Tang, Zhen; Su, Peifeng; Wu, Wei; Yang, Zhijun; Trindle, Carl O.; Knee, Joseph L.


    The ionization potential (IP) of the aromatic alpha hydroxy carboxylic acid, 9-hydroxy-9-fluorene carboxylic acid (9HFCA), is shifted by complexation with hydrogen bonding ligands such as water and formic acid. Generalized Kohn-Sham energy decomposition analysis decomposes the intermolecular binding energies into a frozen energy term, polarization, correlation, and/or dispersion energy terms, as well as terms of geometric relaxation and zero point energy. We observe that in each dimer the attractive polarization always increases upon ionization, enhancing binding in the cation and shifting the IP toward the red. For 9HFCA—H2O, a substantial decrease of the repulsive frozen energy in cation further shifts the IP toward red. For 9HFCA—HCOOH, the increase of the frozen energy actually occurs in the cation and shifts the IP toward blue. Consistent with the experimental measurements, our analysis provides new, non-intuitive perspectives on multiple hydrogen bonds interactions in carboxylic acids and water complexes.

  17. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    Energy Technology Data Exchange (ETDEWEB)

    Starr, J.N.; King, C.J.


    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  18. Ni- and Fe-catalyzed Carboxylation of Unsaturated Hydrocarbons with CO2. (United States)

    Juliá-Hernández, Francisco; Gaydou, Morgane; Serrano, Eloisa; van Gemmeren, Manuel; Martin, Ruben


    The sustainable utilization of available feedstock materials for preparing valuable compounds holds great promise to revolutionize approaches in organic synthesis. In this regard, the implementation of abundant and inexpensive carbon dioxide (CO2) as a C1 building block has recently attracted considerable attention. Among the different alternatives in CO2 fixation, the preparation of carboxylic acids, relevant motifs in pharmaceuticals and agrochemicals, is particularly appealing, thus providing a rapid and unconventional entry to building blocks that are typically prepared via waste-producing protocols. While significant advances have been realized, the utilization of simple unsaturated hydrocarbons as coupling partners in carboxylation events is undoubtedly of utmost academic and industrial relevance, as two available feedstock materials can be combined in a catalytic fashion. This review article aims to describe the main achievements on the direct carboxylation of unsaturated hydrocarbons with CO2 by using cheap and available Ni or Fe catalytic species.

  19. Preparation, Photo and Electroluminescence Properties of Novel Rare Earth Aromatic Carboxylates

    Institute of Scientific and Technical Information of China (English)

    林秦; 符连社; 梁玉军; 郑佑轩; 林君; 张洪杰


    Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb3+ and Eu3+ aromatic carboxylates and lifetimes were investigated, which indicated that these rare earth complexes have high quantum efficiency. Because of their excellent solubility, polymer-doping rare earth carboxylates were fabricated as thin films by spin-coating method and their luminescence properties were studied. Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color. The maximum luminance of the device of ITO/PVK/PVK∶Tb(AS)3Phen∶PBD/PBD/Al is 32 cd*m-2 at 28 V.

  20. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian, E-mail: [Universidad de Chile, Santiago (Chile). Facultad de Ciencias Quimicas y Farmaceuticas. Lab. de Sintesis Organica y Fisicoquimica; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J. [Universidad de Chile, Santiago (Chile). Fac. de Ciencias Quimicas y Farmaceuticas. Lab. de Bioelectroquimica


    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  1. Room-temperature decarboxylative alkynylation of carboxylic acids using photoredox catalysis and EBX reagents. (United States)

    Le Vaillant, Franck; Courant, Thibaut; Waser, Jerome


    Alkynes are used as building blocks in synthetic and medicinal chemistry, chemical biology, and materials science. Therefore, efficient methods for their synthesis are the subject of intensive research. Herein, we report the direct synthesis of alkynes from readily available carboxylic acids at room temperature under visible-light irradiation. The combination of an iridium photocatalyst with ethynylbenziodoxolone (EBX) reagents allowed the decarboxylative alkynylation of carboxylic acids in good yields under mild conditions. The method could be applied to silyl-, aryl-, and alkyl- substituted alkynes. It was particularly successful in the case of α-amino and α-oxo acids derived from biomass.

  2. 5,6-dihydroxyindole-2-carboxylic acid (DHICA): a First Principles Density-Functional Study

    CERN Document Server

    Powell, B J


    We report first principles density functional calculations for 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and several reduced forms. DHICA and 5,6-dihydroxyindole (DHI) are believed to be the basic building blocks of the eumelanins. Our results show that carboxylation has a significant effect on the physical properties of the molecules. In particular, the relative stabilities and the HOMO-LUMO gaps (calculated with the $\\Delta$SCF method) of the various redox forms are strongly affected. We predict that, in contrast to DHI, the density of unpaired electrons, and hence the ESR signal, in DHICA is negligibly small.

  3. Photosensitization of Nanocrystalline TiO2 Electrode Modifiedwith C60 Carboxylic Acid Derivatives

    Institute of Scientific and Technical Information of China (English)

    张文; 史亚茹; 甘良兵; 黄春辉; 王艳琴; 虎民


    C60 carboxylic acid derivatives can be readily adsorbed on the surface of nanocrystalline TiO2 films act as charge-transfer sensitizer. The electron transport from TiO2 to the C60 derivatives results in the generation of the cathodic photocurrent. The short-circuit photocurrent of a C60 tetracarboxylic acid is 0.45 μA/cm2 under 464 um light illumination. The photoelectric behaviour of ITO electrodes modified by the same C60 carboxylic acids is different from that of the modified TiO2 electrodes, and shows anodic photocurrent.

  4. Guest-host chemistry with dendrimers—binding of carboxylates in aqueous solution

    DEFF Research Database (Denmark)

    Ficker, Mario; Petersen, Johannes Fabritius; Hansen, Jon Stefan;


    Recognition and binding of anions in water is difficult due to the ability of water molecules to form strong hydrogen bonds and to solvate the anions. The complexation of two different carboxylates with 1-(4-carbomethoxypyrrolidone)-terminated PAMAM dendrimers was studied in aqueous solution using...... NMR and ITC binding models. Sodium 2-naphthoate and sodium 3-hydroxy-2-naphthoate were chosen as carboxylate model compounds, since they carry structural similarities to many non-steroidal anti-inflammatory drugs and they possess only a limited number of functional groups, making them ideal to study...

  5. Silver-Catalyzed Decarboxylative Radical Azidation of Aliphatic Carboxylic Acids in Aqueous Solution. (United States)

    Liu, Chao; Wang, Xiaoqing; Li, Zhaodong; Cui, Lei; Li, Chaozhong


    We report herein an efficient and general method for the decarboxylative azidation of aliphatic carboxylic acids. Thus, with AgNO3 as the catalyst and K2S2O8 as the oxidant, the reactions of various aliphatic carboxylic acids with tosyl azide or pyridine-3-sulfonyl azide in aqueous CH3CN solution afforded the corresponding alkyl azides under mild conditions. A broad substrate scope and wide functional group compatibility were observed. A radical mechanism is proposed for this site-specific azidation.

  6. The discovery of novel benzofuran-2-carboxylic acids as potent Pim-1 inhibitors. (United States)

    Xiang, Yibin; Hirth, Bradford; Asmussen, Gary; Biemann, Hans-Peter; Bishop, Kimberly A; Good, Andrew; Fitzgerald, Maria; Gladysheva, Tatiana; Jain, Annuradha; Jancsics, Katherine; Liu, Jinyu; Metz, Markus; Papoulis, Andrew; Skerlj, Renato; Stepp, J David; Wei, Ronnie R


    Novel benzofuran-2-carboxylic acids, exemplified by 29, 38 and 39, have been discovered as potent Pim-1 inhibitors using fragment based screening followed by X-ray structure guided medicinal chemistry optimization. The compounds demonstrate potent inhibition against Pim-1 and Pim-2 in enzyme assays. Compound 29 has been tested in the Ambit 442 kinase panel and demonstrates good selectivity for the Pim kinase family. X-ray structures of the inhibitor/Pim-1 binding complex reveal important salt-bridge and hydrogen bond interactions mediated by the compound's carboxylic acid and amino groups.


    In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) ...

  8. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi


    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  9. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao


    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  10. Role of apparent pKa of carboxylic acids in lipase-catalyzed esterifications in biphasic systems

    NARCIS (Netherlands)

    Dominguez de Maria, Pablo; Fernandez-Alvaro, Elena; Kate, ten Antoon; Bargeman, Gerrald


    Lipase-catalyzed esterifications in biphasic media (heptane–water, 1:1) were conducted by using Thermomyces lanuginosus lipase (TLL) as biocatalyst. Different carboxylic acids (from acetic to lauric) were thus esterified with 1-butanol at different pH values (2–10). For all carboxylic acids tested,

  11. 40 CFR 721.4097 - 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, methyl ester. (United States)


    ..., methyl ester. 721.4097 Section 721.4097 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4097 7-Oxabicyclo heptane-3-carboxylic acid, methyl ester. (a) Chemical...-oxabicyclo heptane-3-carboxylic acid, methyl ester (PMN P-98-101) is subject to reporting under this...

  12. Multilayer Film Fabrication and Photoelectric Conversion Property of Two Pyrrolidinofullerene Carboxylic Acid Derivatives

    Institute of Scientific and Technical Information of China (English)


    Two multilayer films of pyrrolidinofullerene carboxylic acid derivatives, which exhibit photoelectric conversion property, are reported here. The first monolayers were fabricated on hydrophilic indium-tin-oxide (ITO), quartz, and mica by esterification reaction. The multilayers were characterized by contact angle and UV spectrum. The photoelectric conversion properties of both multilayer films were studied.

  13. Oxygenase-Catalyzed Desymmetrization of N,N-Dialkyl-piperidine-4-carboxylic Acids** (United States)

    Rydzik, Anna M; Leung, Ivanhoe K H; Kochan, Grazyna T; McDonough, Michael A; Claridge, Timothy D W; Schofield, Christopher J


    γ-Butyrobetaine hydroxylase (BBOX) is a 2-oxoglutarate dependent oxygenase that catalyzes the final hydroxylation step in the biosynthesis of carnitine. BBOX was shown to catalyze the oxidative desymmetrization of achiral N,N-dialkyl piperidine-4-carboxylates to give products with two or three stereogenic centers. PMID:25164544

  14. The cannabinoid type-1 receptor carboxyl-terminus, more than just a tail. (United States)

    Stadel, Rebecca; Ahn, Kwang H; Kendall, Debra A


    The cannabinoid type-1 (CB(1)) receptor is a G protein-coupled receptor that binds the main active ingredient of marijuana, Δ(9)-tetrahydrocannabinol, and has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. In the two decades since the discovery of CB(1), studies at the molecular level have centered on the transmembrane core. This interest has now expanded as we discover that other regions of CB(1), including the CB(1) carboxyl-terminus, have critical structures that are important for CB(1) activity and regulation. Following the recent description of the three dimensional structure of the full-length CB(1) carboxyl-terminal tail [Biopolymers (2009) vol. 91, pp. 565-573], several residues and structural motifs including two α-helices (termed H8 and H9) have been postulated to interact with common G protein-coupled receptor accessory proteins, such as G-proteins and β-arrestins. This discourse will focus on the CB(1) carboxyl-terminus; our current understanding of the structural features of this region, evidence for its interaction with proteins, and the impact of structure on the binding and regulatory function of CB(1) accessory proteins. The involvement of the carboxyl-terminus in the receptor life cycle including activation, desensitization, and internalization will be highlighted.

  15. Simple thiol-ene click chemistry modification of SBA-15 silica pores with carboxylic acids. (United States)

    Bordoni, Andrea V; Lombardo, M Verónica; Regazzoni, Alberto E; Soler-Illia, Galo J A A; Wolosiuk, Alejandro


    A straightforward approach for anchoring tailored carboxylic groups in mesoporous SiO2 colloidal materials is presented. The thiol-ene photochemical reaction between vinyltrimethoxysilane precursors and various thiocarboxylic acids which has, click chemistry features (i.e. high conversion yields, insensitivity to oxygen, mild reaction conditions), results in carboxylated silane precursors that can be readily used as surface modifiers. The carboxylic groups of acetic, undecanoic and succinic acid were immobilized on the silica mesopore walls of SBA-15 powders employing the synthesized silane precursors. Post-grafting has been confirmed through infrared spectrometry (FTIR), energy dispersive X-ray spectroscopy (EDS), elemental analysis (EA) and zeta potential measurements. Detailed field-emission gun scanning electron microscopy (FESEM) images and small angle X-ray scattering (SAXS) data revealed parallel mesopores and ordered mesostructures. It is shown that the immobilized COOH groups are chemically accessible for acid-base reactions as well as copper adsorption. Immobilization of easily synthesized tailored carboxylic modified alkoxide precursors within mesoporous systems provides a unique chemical nanoenvironment within these ordered frameworks.

  16. Identification of tetrahydro-beta-carboline-3-carboxylic acid in foodstuffs, human urine and human milk. (United States)

    Adachi, J; Mizoi, Y; Naito, T; Ogawa, Y; Uetani, Y; Ninomiya, I


    1-Methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid (MTCA) and 1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid (TCCA), both precursors of mutagenic N-nitroso compounds (N-nitrosamines, 1-methyl-2-nitroso-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid and 2-nitroso-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid), were detected in various food-stuffs, urine from healthy human subjects and human milk. A purification procedure, involving a chemically-bonded material followed by HPLC combined with fluorometric detection, was used for the quantitative determination of these compounds, allowing the separation of two diastereoisomers of MTCA. An HPLC and mass spectrometry method was also developed for their identification. Comparing the concentration of MTCA and TCCA in fermented products and raw materials suggested that tetrahydro-beta-carbolines may have been produced through fermentation or by condensation of tryptophan and acetaldehyde formed from ethanol added as a food preservative. This is the first report of excretion of tetrahydro-beta-carbolines in human urine and human milk. A comparison of the concentrations of tetrahydro-beta-carbolines in urine from human infants and human milk indicates that tetrahydro-beta-carbolines may be synthesized endogenously in humans. A possible pathway of tryptophan metabolism in plants and animals is presented.

  17. 78 FR 62443 - Perfluoroalkyl Sulfonates and Long-Chain Perfluoroalkyl Carboxylate Chemical Substances; Final... (United States)


    ... AGENCY 40 CFR Parts 9 and 721 RIN 2070-AJ95 Perfluoroalkyl Sulfonates and Long-Chain Perfluoroalkyl... new use rule (SNUR) for perfluoroalkyl sulfonate (PFAS) chemical substances to add PFAS chemical.... EPA is also finalizing a SNUR for long-chain perfluoroalkyl carboxylate (LCPFAC) chemical...

  18. Carboxylate-assisted C(sp³)-H activation in olefin metathesis-relevant ruthenium complexes. (United States)

    Cannon, Jeffrey S; Zou, Lufeng; Liu, Peng; Lan, Yu; O'Leary, Daniel J; Houk, K N; Grubbs, Robert H


    The mechanism of C-H activation at metathesis-relevant ruthenium(II) benzylidene complexes was studied both experimentally and computationally. Synthesis of a ruthenium dicarboxylate at a low temperature allowed for direct observation of the C-H activation step, independent of the initial anionic ligand-exchange reactions. A first-order reaction supports an intramolecular concerted metalation-deprotonation mechanism with ΔG(‡)(298K) = 22.2 ± 0.1 kcal·mol(-1) for the parent N-adamantyl-N'-mesityl complex. An experimentally determined ΔS(‡) = -5.2 ± 2.6 eu supports a highly ordered transition state for carboxylate-assisted C(sp(3))-H activation. Experimental results, including measurement of a large primary kinetic isotope effect (k(H)/k(D) = 8.1 ± 1.7), agree closely with a computed six-membered carboxylate-assisted C-H activation mechanism where the deprotonating carboxylate adopts a pseudo-apical geometry, displacing the aryl ether chelate. The rate of cyclometalation was found to be influenced by both the electronics of the assisting carboxylate and the ruthenium ligand environment.


    Directory of Open Access Journals (Sweden)



    Full Text Available Sodium salts of carboxylic acids were investigated to evaluate the corrosion properties of the water-glycol solutions. Corrosion tests were performed by methods of gravimetry and galvanostatic dissolution with metals used in cooling systems. The compositions of anticorrosion systems and their concentration that provide the most effective inhibition of metals were determined.

  20. A Novel Metal-free Reductive Esterification of N-Tosylhydrazones with Carboxylic Acids

    Institute of Scientific and Technical Information of China (English)

    周安坤; 吴磊; 李大志; 陈庆庆; 张晓; 夏吾炯


    A novel method for the synthesis of esters via reductive coupling of N-tosylhydrazones with carboxylic acids under metal-free conditions has been developed. Various functional groups were found to be tolerable under the re- action conditions to afford low to good yields.

  1. Highly Efficient Diastereoselective Synthesis of Tetrahydro-isoquinoline-3- carboxylate Ester Analogs from L-DOPA

    Institute of Scientific and Technical Information of China (English)

    WANG Ye; LIU Zhan-Zhu; CHEN Shi-Zhi; LIANG Xiao-Tian


    @@ Tetrahydroisoquinoline-3-carboxylate esters are an important motif of naturally occurring bioactive alkaloids and pharmacophores. They are generally regarded as neurotoxic compounds and are putatively involved in a variety of pathologic conditions of central nervous system, including alcoholism, phenylketonuria, and neurodegenerative disorders such as Parkinson's disease.

  2. Occurrence of Highly-Substituted Ethoxy-Carboxylates in Runoff Waters Near an Aircraft Deicing Facility (United States)

    Reports documenting the occurrence of the metabolites of alkylphenol ethoxylates (APEs) are common. However, few data show the occurrence of the oxidative metabolite of the APEs, the carboxylates, and especially those with substitution greater than the 5 ethoxymer. An important reason for this has...

  3. β-Cyclodextrin promoted oxidation of aldehydes to carboxylic acids in water

    Institute of Scientific and Technical Information of China (English)

    Dong Po Shi; Hong Bing Ji


    A facile,efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaC10 catalyzed by β-cyclodextdn in water has been developed.A series of aldehydes which could form inclusion complex with β-cyclodextrin(β-CD)were oxidized selectively with excellent yields.

  4. A Quick and Simple Conversion of Carboxylic Acids into Their Anilides of Heating with Phenyl Isothiocyanate. (United States)

    Ram, Ram N.; And Others


    Converting carboxylic acids into their anilides, which usually involves preparation of acid chloride or mixed anhydride followed by treatment with aniline, is tedious and/or time-consuming. A quick and easier procedure, using phenyl isothiocyanate, is provided. Reactions involved and a summary table of results are included. (JN)

  5. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin. (United States)

    Bai, Shijie; Dai, Jingcheng; Xia, Ming; Ruan, Jing; Wei, Hehong; Yu, Dianzhen; Li, Ronghui; Jing, Hongmei; Tian, Chunyuan; Song, Lirong; Qiu, Dongru


    Toxic Microcystis species are the main bloom-forming cyanobacteria in freshwaters. It is imperative to develop efficient techniques to control these notorious harmful algal blooms (HABs). Here, we present a simple, efficient, and environmentally safe algicidal way to control Microcystis blooms, by using intermediate carboxylic acids from the tricarboxylic acid (TCA) cycle. The citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid, and malic acid all exhibited strong algicidal effects, and particularly succinic acid could cause the rapid lysis of Microcystis in a few hours. It is revealed that the Microcystis-lysing activity of succinic acid and other carboxylic acids was due to their strong acidic activity. Interestingly, the acid-lysed Microcystis cells released large amounts of phycocyanin, about 27-fold higher than those of the control. On the other hand, the transcription of mcyA and mcyD of the microcystin biosynthesis operon was not upregulated by addition of alpha-ketoglutaric acid and other carboxylic acids. Consider the environmental safety of intermediate carboxylic acids. We propose that administration of TCA cycle organic acids may not only provide an algicidal method with high efficiency and environmental safety but also serve as an applicable way to produce and extract phycocyanin from cyanobacterial biomass.

  6. Biocatalytic Synthesis of Highly Enantiopure 1,4-Benzodioxane-2-carboxylic Acid and Amide

    Institute of Scientific and Technical Information of China (English)

    LIU Jun; WANG De-Xian; ZHENG Qi-Yu; WANG Mei-Xiang


    Catalyzed by Rhodococcus erythropolis A J270, a nitrile hydratase and amidase containing microbial whole-cell catalyst, at 10 ℃ and with the use of methanol as a co-solvent, nitrile and amide biotransformations produce 2S-1,4-benzodioxane-2-carboxamide and 2R-1,4-benzodioxane-2-carboxylic acid in high yields with excellent enantioselectivity.

  7. Application of partially fluorinated carboxylic acids as ion-pairing reagents in LC/ESI-MS. (United States)

    Yamamoto, Eiichi; Ishihama, Yasushi; Asakawa, Naoki


    This report describes the application of partially fluorinated carboxylic acids as ion-pairing reagents for basic analytes in high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (LC/ESI-MS) in positive-ion mode. Partially fluoridated carboxylic acids such as difluoroacetic acid, 3,3,3-trifluoropropionic acid and 3,3,3-trifluoromethyl-2-trifluoromethylpropionic acid functioned as volatile paired-ion similarly as trifluoroacetic acid (TFA). These acids provided basic analytes larger retention factor (k) compared to acetic acid or formic acid in LC. The ESI-MS signal strength of analytes with these acids were higher than that of TFA and was analogous to that of acetic acid or formic acid. The performances of partially fluorinated carboxylic acids in LC and ESI-MS for basic analytes were analyzed by multivariate statistical analysis using physicochemical descriptors of acids. Equations obtained in the analysis enabled us the quantitative evaluation of the performance of fluorinated carboxylic acids as ion-pair reagents for basic analytes in LC/ESI-MS.

  8. Preparation of mono- and diacetyl 4,4′-dimethylbiphenyl and their corresponding carboxylic acids

    DEFF Research Database (Denmark)

    Titinchi, Salam J.J.; Kamounah, Fadhil S.; Abbo, Hanna S.


    dimethylbiphenyls. In chloroalkane or carbon disulfide solvent, the yields of isomers were in the order: 2 -> 3-; in nitromethane 3-isomer predominated. On the other hand diacetylation of the hydrocarbon gave only the 2,3′-diacetyl isomer. The mono- and di-ketones are converted to the corresponding carboxylic acids...

  9. One-pot synthesis of arene-fused 2-acylcyclohexenones from propargylic carboxylates

    Institute of Scientific and Technical Information of China (English)


    From readily available propargylic carboxylates, two sequential transformations―gold-catalyzed tandem reactions and Sc(OTf)3-catalyzed cyclization―in a one-pot process led to the formation of 2-acylcyclohexenones with an electron-rich arene ring fused at the 4,5-positions.

  10. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid-base pairs. (United States)

    Baylon, Rebecca A L; Sun, Junming; Martin, Kevin J; Venkitasubramanian, Padmesh; Wang, Yong


    We report the direct conversion of mixed carboxylic acids to C-C olefins with up to 60 mol% carbon yield through cascade (cross) ketonization, (cross) aldolization and self-deoxygenation reactions. Co-feeding hydrogen provides an additional ketone hydrogenation/dehydration pathway to a wider range of olefins.

  11. Three closely related dibenzazepine carboxylic acids: hydrogen-bonded aggregation in one, two and three dimensions. (United States)

    Sanabría, Carlos M; Palma, Alirio; Cobo, Justo; Glidewell, Christopher


    In the structure of (6R*,11R*)-5-acetyl-11-ethyl-6,11-dihydro-5H-dibenzo[b,e]azepine-6-carboxylic acid, C19H19NO3, (I), the molecules are linked into sheets by a combination of O-H...O and C-H...O hydrogen bonds; in the structure of the monomethyl analogue (6RS,11SR)-5-acetyl-11-ethyl-2-methyl-6,11-dihydro-5H-dibenzo[b,e]azepine-6-carboxylic acid, C20H21NO3, (II), the molecules are linked into simple C(7) chains by O-H...O hydrogen bonds; and in the structure of the dimethyl analogue (6RS,11SR)-5-acetyl-11-ethyl-1,3-dimethyl-6,11-dihydro-5H-dibenzo[b,e]azepine-6-carboxylic acid, C21H23NO3, (III), a combination of O-H...O, C-H...O and C-H...π(arene) hydrogen bonds links the molecules into a three-dimensional framework structure. None of these structures exhibits the R2(2)(8) dimer motif characteristic of simple carboxylic acids.

  12. Carboxyl terminal of rhodopsin kinase is required for the phosphorylation of photo—activated rhodopsin

    Institute of Scientific and Technical Information of China (English)



    Human rhodopsin kinase (RK) and a carboxyl terminus-truncated mutant RK lacking the last 59 amino acids (RKC) were expressed in human embryonic kidney 293 cells to investigate the role of the carboxyl terminus of RK in recognition and phosphorylation of rhodopsin.RKC,like the wild-type RK,was detected in both plasma membranes and cytosolic fractions.The Cterminal truncated rhodopsin kinase was unable to phosphorylate photo-activated rhodopsin,but possesses kinase activity similar to the wild-type RK in phosphorylation of small peptide substrate.It suggests that the truncation did not disturb the gross structures of RK catalytic domain.Our results also show that RKC failed to translocate to photo-activated rod out segments.Taken together,our study demonstrate the carboxyl terminus of RK is required for phosphorylation of photo-activated rhodopsin and strongly indicate that carboxyl-terminus of RK may be involved in interaction with photo-activated rhodopsin.

  13. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.


    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  14. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol. (United States)

    Forster, Denis; DeKleva, Thomas W.


    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  15. Ion effects in the adsorption of carboxylate on oxide surfaces, studied with quartz crystal microbalance

    NARCIS (Netherlands)

    Wang, Lei; Siretanu, Igor; Duits, Michel H.G.; Cohen Stuart, Martien A.; Mugele, Frieder


    We chose water-soluble sodium hexanoate as a model organic molecule to study the role of salt ions (Ca2+, Na+, Cl−) in the adsorption of carboxylates to mineral surfaces (silica, alumina, gibbsite) of variable surface charge and chemistry. Quartz crystal microbalance (QCM-D) measurements reveal a qu

  16. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, Julien [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail:; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)


    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF{sub 3}/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L{sup -1}. Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  17. Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling

    KAUST Repository

    Burkhardt, Stephen E.


    The full realization of a renewable energy strategy hinges upon electrical energy storage (EES). EES devices play a key role in storing energy from renewable sources (which are inherently intermittent), to efficient transmission (e.g., grid load-leveling), and finally into the electrification of transportation. Organic materials represent a promising class of electrode active materials for Li-ion and post-Li-ion batteries. Organics consist of low-cost, lightweight, widely available materials, and their properties can be rationally tuned using the well-established principles of organic chemistry. Within the class of organic EES materials, carboxylates distinguish themselves for Li-ion anode materials based on their observed thermal stability, rate capability, and high cyclability. Further, many of the carboxylates studied to date can be synthesized from renewable or waste feedstocks. This report begins with a preliminary molecular density-functional theory (DFT) study, in which the calculated molecular properties of a set of 12 known Li-ion electrode materials based on carboxylate and carbonyl redox couples are compared to literature data. Based on the agreement between theoretical and experimental data, an expanded study was undertaken to identify promising materials and establish design principles for anodes based on Li-carboxylate salts. Predictive computational studies represent an important step forward for the identification of organic anode materials. © 2012 American Chemical Society.

  18. Mapping of Fab-1:VEGF Interface Using Carboxyl Group Footprinting Mass Spectrometry (United States)

    Wecksler, Aaron T.; Kalo, Matt S.; Deperalta, Galahad


    A proof-of-concept study was performed to demonstrate that carboxyl group footprinting, a relatively simple, bench-top method, has utility for first-pass analysis to determine epitope regions of therapeutic mAb:antigen complexes. The binding interface of vascular endothelial growth factor (VEGF) and the Fab portion of a neutralizing antibody (Fab-1) was analyzed using carboxyl group footprinting with glycine ethyl ester (GEE) labeling. Tryptic peptides involved in the binding interface between VEGF and Fab-1 were identified by determining the specific GEE-labeled residues that exhibited a reduction in the rate of labeling after complex formation. A significant reduction in the rate of GEE labeling was observed for E93 in the VEGF tryptic peptide V5, and D28 and E57 in the Fab-1 tryptic peptides HC2 and HC4, respectively. Results from the carboxyl group footprinting were compared with the binding interface identified from a previously characterized crystal structure (PDB: 1BJ1). All of these residues are located at the Fab-1:VEGF interface according to the crystal structure, demonstrating the potential utility of carboxyl group footprinting with GEE labeling for mapping epitopes.

  19. Palladium-catalyzed regioselective decarboxylative alkylation of arenes and heteroarenes with aliphatic carboxylic acids. (United States)

    Premi, Chanchal; Dixit, Ankit; Jain, Nidhi


    An unprecedented Pd(OAc)2-catalyzed decarboxylative alkylation of unactivated arenes, with aliphatic carboxylic acids as inexpensive alkyl sources, is reported. The alkylation, controlled by the directing group, is regioselective, shows high functional group tolerance, and provides mild access to alkylated indolines, 2-phenylpyridines, and azobenzenes under solvent-free conditions in moderate to high yields.

  20. Facilitation of peptide fibre formation by arginine-phosphate/carboxylate interactions

    Indian Academy of Sciences (India)

    K Krishna Prasad; Sandeep Verma


    This study describes peptide fibre formation in a hexapeptide, derived from the V3 loop of HIV-1, mediated by the interactions between arginine residues and phosphate/carboxylate anions. This charge neutralization approach was further confirmed when the deletion of arginine residue from the hexapeptide sequence resulted in fibre formation, which was studied by a combination of microscopic techniques.

  1. Ab Initio Molecular Dynamics Study on the Interactions between Carboxylate Ions and Metal Ions in Water. (United States)

    Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Trinh, Thuat T; Grimes, Brian A


    The interaction between a carboxylate anion (deprotonated propanoic acid) and the divalent Mg(2+), Ca(2+), Sr(2+), Ba(2+) metal ions is studied via ab initio molecular dynamics. The main focus of the study is the selectivity of the carboxylate-metal ion interaction in aqueous solution. The interaction is modeled by explicitly accounting for the solvent molecules on a DFT level. The hydration energies of the metal ions along with their diffusion and mobility coefficients are determined and a trend correlated with their ionic radius is found. Subsequently, a series of 16 constrained molecular dynamics simulations for every ion is performed, and the interaction free energy is obtained from thermodynamic integration of the forces between the metal ion and the carboxylate ion. The results indicate that the magnesium ion interacts most strongly with the carboxylate, followed by calcium, strontium, and barium. Because the interaction free energy is not enough to explain the selectivity of the reaction observed experimentally, more detailed analysis is performed on the simulation trajectories to understand the steric changes in the reaction complex during dissociation. The solvent dynamics appear to play an important role during the dissociation of the complex and also in the observed selectivity behavior of the divalent ions.

  2. 40 CFR 721.10142 - Oxabicycloalkane carboxylic acid alkanediyl ester (generic). (United States)


    ... alkanediyl ester (generic). 721.10142 Section 721.10142 Protection of Environment ENVIRONMENTAL PROTECTION... ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as oxabicycloalkane carboxylic acid alkanediyl ester (PMN P-06-199)...

  3. Carboxylate-bridged dinuclear manganese systems - From catalases to oxidation catalysis

    NARCIS (Netherlands)

    de Boer, Johannes W.; Browne, Wesley R.; Feringa, Ben L.; Hage, Ronald


    Dinuclear manganese based enzymes engage in processes as diverse as amino acid hydrolysis and hydrogen peroxide disproportionation. Despite the mechanistic diversity displayed by this class of enzymes, a common feature is the presence of carboxylate residues, which serve to bridge the manganese cent

  4. Effect of hydrogen and carbon dioxide on carboxylic acids patterns in mixed culture fermentation

    NARCIS (Netherlands)

    Arslan, D.; Steinbusch, K.J.J.; Diels, L.; Wever, De H.; Buisman, C.J.N.; Hamelers, H.V.M.


    This study investigated the carboxylate spectrum from mixed culture fermentation of three organic waste streams after supplying 2 bar hydrogen and carbon dioxide or a mixture of these two gases to the headspace. Under any modified headspace, propionate production was ceased and butyrate, caproate an

  5. Evaluation of the cyclopentane-1,2-dione as a potential bio-isostere of the carboxylic acid functional group. (United States)

    Ballatore, Carlo; Gay, Bryant; Huang, Longchuan; Robinson, Katie Herbst; James, Michael J; Trojanowski, John Q; Lee, Virginia M-Y; Brunden, Kurt R; Smith, Amos B


    Cycloalkylpolyones hold promise in drug design as carboxylic acid bio-isosteres. To investigate cyclopentane-1,2-diones as potential surrogates of the carboxylic acid functional group, the acidity, tautomerism, and geometry of hydrogen bonding of representative compounds were evaluated. Prototypic derivatives of the known thromboxane A2 prostanoid (TP) receptor antagonist, 3-(3-(2-((4-chlorophenyl)sulfonamido)-ethyl)phenyl)propanoic acid, in which the carboxylic acid moiety is replaced by the cyclopentane-1,2-dione unit, were synthesized and evaluated as TP receptor antagonists. Cyclopentane-1,2-dione derivative 9 was found to be a potent TP receptor antagonist with an IC50 value comparable to that of the parent carboxylic acid. These results indicate that the cyclopentane-1,2-dione may be a potentially useful carboxylic acid bio-isostere.

  6. Significant improvement in the pore properties of SBA-15 brought about by carboxylic acids and hydrothermal treatment

    Indian Academy of Sciences (India)

    Milan Kanti Naskar; M Eswaramoorthy


    A comparative study of the pore properties of SBA-15 samples prepared under nonhydrothermal and hydrothermal conditions, in the absence and presence of carboxylic acids such as succinic, tartaric and citric acids has been carried out. In the absence of carboxylic acid, flake-like and spheroid particles were generally obtained irrespective of the preparative procedures. On the other hand, stirring of the pre-mix induces a rod-like morphology in presence of carboxylic acids. The samples prepared under non-hydrothermal conditions exhibit a higher degree of silicate condensation compared to those synthesized under hydrothermal conditions. SBA-15 samples prepared under hydrothermal conditions show higher values of the d (100) spacing independent of the presence of carboxylic acids. Presence of carboxylic acids as well as hydrothermal treatment improves the pore properties of SBA-15.

  7. Ozone-driven daytime formation of secondary organic aerosol containing carboxylic acid groups and alkane groups

    Directory of Open Access Journals (Sweden)

    S. Liu


    Full Text Available Carboxylic acids are present in substantial quantities in atmospheric particles, and they play an important role in the physical and chemical properties of aerosol particles. During measurements in coastal California in the summer of 2009, carboxylic acid functional groups were exclusively associated with a fossil fuel combustion factor derived from factor analysis of Fourier transform infrared spectroscopic measurements and closely correlated with oxygenated organic factors from aerosol mass spectrometry measurements. The high fraction of acid groups and the high ratio of oxygen to carbon in this factor suggest that this factor is composed of secondary organic aerosol (SOA products of combustion emissions from the upwind industrial region (the ports of Los Angeles and Long Beach. Another indication of the photochemically-driven secondary formation of this combustion-emitted organic mass (OM was the daytime increase in the concentrations of acid groups and the combustion factors. This daytime increase closely tracked the O3 mixing ratio with a correlation coefficient of 0.7, indicating O3 was closely associated with the SOA maximum and thus likely the oxidant that resulted in acid group formation. Using a pseudo-Lagrangian framework to interpret this daytime increase of carboxylic acid groups and the combustion factors, we estimate that the carboxylic acid groups formed in a 12-h daytime period of one day ("Today's SOA" accounted for 25–33 % of the measured carboxylic acid group mass, while the remaining 67–75 % (of the carboxylic acid group mass was likely formed 1–3 days previously (the "Background SOA". A similar estimate of the daytime increase in the combustion factors suggests that "Today's SOA" and the "Background SOA" respectively contributed 25–50 % and 50–75 % of the combustion factor (the "Total SOA", for a "Total SOA" contribution to the OM of 60 % for the project average. Further, size

  8. Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge. (United States)

    Bambauer, A; Rainey, F A; Stackebrandt, E; Winter, J


    A gram-negative bacterium was isolated from activated sewage sludge with thiophene-2-carboxylate as the sole source of carbon and with nitrate as an electron acceptor. The isolate, strain NKK, was a motile, oxidase- and catalase-positive, rod-like bacterium with a G+C content of 61.7 mol%. Besides nitrate, oxygen could serve as a terminal electron acceptor. Among many carbon sources tested, only a few sugars, fatty acids, and thiophene-2-carboxylate supported growth. Other heterocyclic compounds were not used. The sulfur atom of thiophene-2-carboxylate was oxidized to thiosulfate when cells were grown aerobically, or to elemental sulfur when cells were grown anaerobically with nitrate. Nitrate was reduced to nitrite. Growth on thiophene-2-carboxylate was dependent on the addition of molybdate to the medium. Tungstate, a specific antagonist of molybdate, inhibited growth on thiophene-2-carboxylate at concentrations > 10(-7) M. Three inducible enzymes involved in the metabolism of thiophene-2-carboxylate were detected: an ATP-, CoA-, thiophene-2-carboxylate- and Mg2+-dependent thiophene-2-carboxyl-CoA ligase (AMP-forming), a molybdenum-containing thiophene-2-carboxyl-CoA dehydrogenase, and a thiophene-2-carboxyl-CoA thioesterase. The sequence of the 16S rRNA gene suggested a classification of strain NKK within the alpha-subgroup of the Proteobacteria as a new genus and species, Aquamicrobium defluvii gen. nov. sp. nov. (DSM 11603), closely related to Mesorhizobium sp. and Phyllobacterium sp., but representing a distinct lineage equal in depth to those of the two mentioned genera. Aquamicrobium defluvii can be distinguished from both genera by a distinct spectrum of substrates, the maximal growth temperature, and a different salt tolerance.

  9. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    Energy Technology Data Exchange (ETDEWEB)

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.


    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  10. Spectroscopic study on uranyl carboxylate complexes formed at the surface layer of Sulfolobus acidocaldarius. (United States)

    Reitz, Thomas; Rossberg, Andre; Barkleit, Astrid; Steudtner, Robin; Selenska-Pobell, Sonja; Merroun, Mohamed L


    The complexation of U(vi) at the proteinaceous surface layer (S-layer) of the archaeal strain Sulfolobus acidocaldarius was investigated over a pH range from pH 1.5 to 6 at the molecular scale using time-resolved laser-induced fluorescence spectroscopy (TRLFS) and U L(III)-edge extended X-ray absorption fine structure (EXAFS). The S-layer, which represents the interface between the cell and its environment, is very stable against high temperatures, proteases, and detergents. This allowed the isolation and purification of S-layer ghosts (= empty cells) that maintain the size and shape of the cells. In contrast to many other microbial cell envelope compounds the studied S-layer is not phosphorylated, enabling the investigation of uranyl carboxylate complexes formed at microbial surfaces. The latter are usually masked by preferentially formed uranyl phosphate complexes. We demonstrated that at highly acidic conditions (pH 1.5 to 3) no uranium was bound by the S-layer. In contrast to that, at moderate acidic pH conditions (pH 4.5 and 6) a complexation of U(vi) at the S-layer via deprotonated carboxylic groups was stimulated. Titration studies revealed dissociation constants for the carboxylic groups of glutamic and aspartic acid residues of pK(a) = 4.78 and 6.31. The uranyl carboxylate complexes formed at the S-layer did not show luminescence properties at room temperature, but only under cryogenic conditions. The obtained luminescence maxima are similar to those of uranyl acetate. EXAFS spectroscopy demonstrated that U(vi) in these complexes is mainly coordinated to carboxylate groups in a bidentate binding mode. The elucidation of the molecular structure of these complexes was facilitated by the absence of phosphate groups in the studied S-layer protein.

  11. Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations. (United States)

    Ferrando, Nicolas; Gedik, Ibrahim; Lachet, Véronique; Pigeon, Laurent; Lugo, Rafael


    In this work, a new transferable united-atom force field has been developed to predict phase equilibrium and hydration free energy of carboxylic acids. To take advantage of the transferability of the AUA4 force field, all Lennard-Jones parameters of groups involved in the carboxylic acid chemical function are reused from previous parametrizations of this force field. Only a unique set of partial electrostatic charges is proposed to reproduce the experimental gas phase dipole moment, saturated liquid densities and vapor pressures. Phase equilibrium properties of various pure carboxylic acids (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid) and one diacid (1,5-pentanedioic) are studied through Monte Carlo simulations in the Gibbs ensemble. A good accuracy is obtained for pure compound saturated liquid densities and vapor pressures (average deviation of 2% and 6%, respectively), as well as for critical points. The vaporization enthalpy is, however, poorly predicted for short acids, probably due to a limitation of the force field to correctly describe the significant dimerization in the vapor phase. Pressure-composition diagrams for two binary mixtures (acetic acid + n-butane and propanoic acid + pentanoic acid) are also computed with a good accuracy, showing the transferability of the proposed force field to mixtures. Hydration free energies are calculated for three carboxylic acids using thermodynamic integration. A systematic overestimation of around 10 kJ/mol is observed compared to experimental data. This new force field parametrized only on saturated equilibrium properties appears insufficient to reach an acceptable precision for this property, and only relative hydration free energies between two carboxylic acids can be correctly predicted. This highlights the limitation of the transferability feature of force fields to properties not included in the parametrization database.


    The complex photochemical transformations of biogenichydrocarbons such as isoprene and of anthropogenichydrocarbons such as aromatics are an important sourceof carboxylic acids in the troposphere. Theidentificationof unknown carboxylic acids can be difficul...

  13. Profiling of chiral and achiral carboxylic acid metabolomics: synthesis and evaluation of triazine-type chiral derivatization reagents for carboxylic acids by LC-ESI-MS/MS and the application to saliva of healthy volunteers and diabetic patients. (United States)

    Takayama, Takahiro; Kuwabara, Tomohiro; Maeda, Toshio; Noge, Ichiro; Kitagawa, Yutaka; Inoue, Koichi; Todoroki, Kenichiro; Min, Jun Zhe; Toyo'oka, Toshimasa


    Novel triazine-type chiral derivatization reagents, i.e., (S)-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidin-3-amine (DMT-3(S)-Apy) and (S)-4,6-dimethoxy-N-(pyrrolidin-3-yl)-1,3,5-triazin-2-amine (DMT-1(S)-Apy), were developed for the highly sensitive and selective detection of chiral carboxylic acids by UPLC-MS/MS analysis. Among the synthesized reagents, DMT-3(S)-Apy was a more efficient chiral reagent for the enantiomeric separation of chiral carboxylic acids in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The DMT-3(S)-Apy was used for the determination of 13 carboxylic acids in human saliva of healthy volunteers and diabetic patients. Various biological carboxylic acids including chiral carboxylic acids, and mono- and di-carboxylic acids were clearly identified in the saliva of healthy persons and diabetic patients. The concentrations of carboxylic acids detected in the saliva of diabetic patients were relatively higher than those in the healthy persons. Furthermore, the concentration of D-lactic acid (LA) and the ratio of D/L-LA in the diabetic patients were significantly higher than those in the healthy persons. The low ratio of D/L-LA in healthy persons was also identified to be independent of age and sex. These results suggest that the determination of the D/L-LA ratio in saliva might be applicable for the diagnosis of diabetes. Based on these observations, DMT-3(S)-Apy seems to be a useful chiral derivatization reagent for the determination not only of chiral carboxylic acids but also achiral ones. In conclusion, the proposed method using DMT-3(S)-Apy is useful for the carboxylic acid metabolomics study of various specimens.

  14. 40 CFR 180.426 - 2-[4,5-Dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinoline carboxylic acid... (United States)


    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 2- -3-quinoline carboxylic acid... Tolerances § 180.426 2- -3-quinoline carboxylic acid; tolerance for residues. A tolerance is established for residues of the herbicide 2- -3-quinoline carboxylic acid, in or on the raw agricultural commodity...

  15. Rapid and selective derivatizatin method for the nitrogen-sensitive detection of carboxylic acids in biological fluids prior to gas chromatographic analysis

    NARCIS (Netherlands)

    Lingeman, H.; Haan, H.B.P.; Hulshoff, A.


    A rapid and selective derivatization procedure is described for the pre-column labelling of carboxylic acids with a nitrogen-containing label. The carboxylic acid function is activated with 2-bromo-1-methylpyridinium iodide and the activated carboxylic acid function reacts with a primary or a second

  16. Wettability modification of graphene oxide by removal of carboxyl functional groups using non-thermal effects of microwave

    Energy Technology Data Exchange (ETDEWEB)

    Rasuli, R., E-mail:; Mokarian, Z.; Karimi, R.; Shabanzadeh, H.; Abedini, Y.


    We study the non-thermal effects of microwave on the wettability of graphene oxide. It is shown that removal of carboxyl compound by using the non-thermal microwave effects decrease the wettability of graphene oxide. X-ray photoelectron spectroscopy (C1s and O1s peaks) and Fourier transform infrared spectroscopy show that carboxyl compound decreases dramatically due to microwave irradiation while other functional groups were gradually reduced. Consequently, after 20 min microwave irradiation, carboxyl functional groups are removed. Wettability tests of carboxyl-reduced graphene oxide show that water uptake capability decreases to half and contact angle of water droplets increases from ~ 29.7° to ~ 69.9°. - Highlights: • Carboxyl compound is removed by using the non-thermal microwave effects after 20 min. • Water uptake capability decreases to half by removal of carboxyl functional groups. • Contact angle of water droplets increases from ~ 29.7° to ~ 69.9° in carboxyl-reduced graphene oxide.

  17. A novel derivatization reagent possessing a bromoquinolinium structure for biological carboxylic acids in HPLC-ESI-MS/MS. (United States)

    Mochizuki, Yuko; Inagaki, Shinsuke; Suzuki, Mayu; Min, Jun Zhe; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa


    A novel bromoquinolinium reagent, i.e. 1-(3-aminopropyl)-3-bromoquinolinium bromide (APBQ), was synthesized for the analysis of carboxylic acids. A simple and practical precolumn derivatization procedure using the APBQ in RP chromatography and MS (HPLC-MS) has been developed using bile acids and free fatty acids, as the representative carboxylic acids in biological samples. The APBQ efficiently reacted with carboxylic acids at 60°C for 60 min in the presence of N,N-dicyclohexylcarbodiimide and pyridine as the activation reagents. Because the APBQ possesses a bromine atom in the structure, the identification of a series of carboxylic acids was easily achieved due to the characteristic bromine isotope pattern in the mass spectra. The APBQ also has a quaternary amine structure, thus the positively charged derivatives are predominate for the highly sensitive detection of carboxylic acids. The APBQ was successfully applied to the selective determination of biological carboxylic acids in human plasma. The bile acids (chenodeoxycholic acid and deoxycholic acid) and several saturated (stearic acid and palmitic acid) and unsaturated free fatty acids (oleic acid and linoleic acid) were reasonably determined by HPLC-MS under the proposed procedure. Based on the results of analyses of human plasma and saliva, the proposed procedure using APBQ seems to be applicable for the qualitative and quantitative analyses of a series of carboxylic acids in biological samples.

  18. A Strained Disilane-Promoted Carboxylation of Organic Halides with CO2 under Transition-Metal-Free Conditions. (United States)

    Mita, Tsuyoshi; Suga, Kenta; Sato, Kaori; Sato, Yoshihiro


    By using a strained four-membered ring disilane (3,4-benzo-1,1,2,2-tetraethyldisilacyclobutene) and CsF, a wide range of aryl, alkenyl, alkynyl, benzyl, allyl, and alkyl halides was successfully carboxylated under an ambient CO2 atmosphere (CO2 balloon) at room temperature within 2 h. In this carboxylation, a highly reactive silyl anion, which is generated from the disilane and CsF, is a key to facilitating the formation of a carbanion equivalent. The resulting anionic species can be trapped with CO2 to produce carboxylic acids with high efficiency.

  19. Inhibition by 1-aminocyclobutane-1-carboxylate of the activity of 1-aminocyclopropane-1-carboxylate oxidase obtained from senescing petals of carnation (Dianthus caryophyllus L.) flowers. (United States)

    Kosugi, Y; Oyamada, N; Satoh, S; Yoshioka, T; Onodera, E; Yamada, Y


    We partially purified 1-aminocyclopropane-1-carboxylate (ACC) oxidase from senescing petals of carnation (Dianthus caryophyllus L. cv. Nora) flowers and investigated its general characteristics, and, in particular, the inhibition of its activity by ACC analogs. The enzyme had an optimum pH at 7-7.5 and required Fe2+, ascorbate and NaHCO3 for its maximal activity. The Km for ACC was calculated as 111-125 microM in the presence of NaHCO3. Its M(r) was estimated to be 35 and 36 kDa by gel-filtration chromatography on HPLC and SDS-PAGE, respectively, indicating that the enzyme exists in a monomeric form. These properties were in agreement with those reported previously with ACC oxidases from different plant tissues including senescing carnation petals. Among six ACC analogs tested, 1-aminocyclobutane-1-carboxylate (ACBC) inhibited most severely the activity of ACC oxidase from carnation petals. ACBC acted as a competitive inhibitor with the Ki of 20-30 microM. The comparison between the Km for ACC and the Ki for ACBC indicated that ACBC had an affinity which was ca. 5-fold higher than that of ACC. Whereas ACC inactivated carnation ACC oxidase in a time-dependent manner during incubation, ACBC did not cause the inactivation of the enzyme. Preliminary experiments showed that ACBC and its N-substituted derivatives delayed the onset of senescence in cut carnation flowers.

  20. Electron-transfer fluorescence quenching processes in coaggregates between excited N-alkylcarbazoles as electron donors and 2, 4-dinitrophenyl carboxylates or pentafiuorophenyl carboxylates as acceptors

    Institute of Scientific and Technical Information of China (English)

    SHI, Ji-Liang; YI, Hu-Nan; XU, Jia-Yi; JIANG, Xi-Kui


    Electron-transfer processes facilitated by hydrophobiclipophilic interaction (HLI) between excited N-alkylcarbazoles (1-n, n=4, 8, 12, 16) as electron donors and 2,4dinnrophenyl carboxylates (2-n, n = 4, 8, 12, 16) or pentafluorophenyl carboxylates (3-n, n = 4, 8, 12, 16) as electron acceptors have been investigated by means of fluorescence spectroscopy in aqueous or aquiorgano binary mixtures.The fluorescence quenching of-n* by2-n or-n indicates that preassociation precedes the electron transfer. The extent of HLI-drtven coaggregation of the acceptor and the donor may be assessed from the B value of the equation I0/I = A + B [Q]. The chain-length effect and possibly also a chain-foldability effect, as well as the solvent aggregating power (SAgP)effect have been observed. Comparison of the quenching constants ( B ) for 1-n* /2-n combinations and 1-n* / 3-n combinations shows that the order of increasing B values for the quenching processes is 3-n < 2-n.

  1. 2-Carboxyquinolinium–2,4,6-trinitrobenzenesulfonate–quinolinium-2-carboxylate (1/1/1

    Directory of Open Access Journals (Sweden)

    Graham Smith


    Full Text Available The structure of the title adduct compound, C10H8NO2+·C6H2N3O9S−·C10H7NO2, from the reaction of 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid with quinoline-2-carboxylic acid (quinaldic acid in 2-propanol–water, has been determined at 130 (2 K. The cation and the adduct species form a twisted cyclic hydrogen-bonded R22(10 pseudo-dimer which is extended into a one-dimensional chain structure through short head-to-tail carboxylic acid O—H...Ocarboxyl associations [O...O = 2.4711 (19 Å]. The picrylsulfonate anions are attached peripherally by single N—H...Osulfonate hydrogen bonds [N...O = 2.8643 (19 Å].

  2. Synthesis of cross-linked magnetic composite microspheres containing carboxyl groups

    Institute of Scientific and Technical Information of China (English)

    Jili ZHAO; Zhaorang HAN; Qiang SONG; Ying WANG; Dan SUN


    Fe3O4 magnetic nano-particles were prepared by a co-precipitation method and were modified using oleic acid. Then, the cross-linked magnetic composite microspheres containing a carboxyl group were prepared by using an improved emulsion polymerization with divinylbenzene (DVB) as the cross-linking agent. The composite microspheres comprised the Fe3O4 magnetic nano-partictes as cores and the copolymer of styrene and acrylic acid as shells. The morphology and structure of the composite microsphere were characterized by FT-IR, transmission electron microscopy (TEM), X-ray diffrac-tion (XRD), X-ray photoelectron spectrum (XPS) and so on. The results show that the composite microspheres were well dispersed in emulsion with uniform sizes and carboxyl groups on their surface. They were cross-linked and stable in 1 mol/L of HCl and DMF.

  3. Copper coordination polymers constructed from thiazole-5-carboxylic acid: Synthesis, crystal structures, and structural transformation (United States)

    Meundaeng, Natthaya; Rujiwatra, Apinpus; Prior, Timothy J.


    We have successfully prepared crystals of thiazole-5-carboxylic acid (5-Htza) (L) and three new thiazole-5-carboxylate-based Cu2+ coordination polymers with different dimensionality, namely, 1D [Cu2(5-tza)2(1,10-phenanthroline)2(NO3)2] (1), 2D [Cu(5-tza)2(MeOH)2] (2), and 3D [Cu(5-tza)2]·H2O (3). These have been characterized by single crystal X-ray diffraction and thermogravimetry. Interestingly, the 2D network structure of 2 can directly transform into the 3D framework of 3 upon removal of methanol molecules at room temperature. 2 can also undergo structural transformation to produce the same 2D network present in the known [Cu(5-tza)2]·1.5H2O upon heat treatment for 2 h. This 2D network can adsorb water and convert to 3 upon exposure to air.

  4. Variation in chemical, colloidal and electrochemical properties of carbon nanotubes with the degree of carboxylation (United States)

    Wu, Zheqiong; Wang, Zhiqian; Yu, Fang; Thakkar, Megha; Mitra, Somenath


    Multiwalled carbon nanotubes (CNTs) were carboxylated via microwave irradiation where the treatment time was varied to alter the degree of functionalization, and as many as one in 15 carbons in the CNT could be oxidized. Chemical, physical, electrochemical, and colloidal behavior of the carboxylated CNTs was studied. All properties changed with the degree of functionalization to a point beyond which they appeared to remain constant. The surface area increased from 173.9 to 270.9 m2/g while the critical coagulation concentration (CCC) values increased from 142.14 to 168.69 mM in the presence of NaCl, and the corresponding increase was from 0.97 to 5.32 mM in the presence of MgCl2. As seen from cyclic voltammetry curves, the functionalized CNTs showed mainly non-Faradic interactions with Na2SO4, but showed Faradic behaviors in alkaline KOH.

  5. Structural studies of aromatic carboxylic acids via computational chemistry and microwave spectroscopy (United States)

    Godfrey, Peter D.; McNaughton, Don


    The structures of three simple aromatic carboxylic acids: benzoic, isophthalic, and terephthalic have been investigated using a combination of theoretical high-level quantum chemical calculations and experimental millimeter-wave Stark-modulated free-jet absorption spectroscopy. Rotational and centrifugal distortion constants have been measured for one conformer of each of the species and for its -COOD isotopologue, leading to the experimental determination of the coordinates of the carboxyl hydrogen atom. Consideration of the observed inertial defect is consistent with a planar equilibrium structure for each species. Calculated structures, relative energies, and electric dipole moments, using ab initio methods at the MP2/cc-pVTZ level, are reported for all the lower-energy conformers of each species. The theoretical calculations lead to the unambiguous identification of the conformers involved in the observed microwave spectra. The match between theoretical and spectroscopic measurements was used to gauge the reliability of the quantum chemical structure optimization calculations.

  6. Arginine-responsive terbium luminescent hybrid sensors triggered by two crown ether carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lasheng [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Tang, Ke; Ding, Xiaoping [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhou, Zhan; Xiao, Rui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)


    Crown ether carboxylic acids constitute main building blocks for the synthesis of terbium containing covalent cross-linked luminescent materials. Both the complexes and the hybrid nanomaterials could exhibit remarkable green emissions in pure water. More importantly, they were found to have a profound effect on the luminescence responses to arginine compared with glutamic acid, histidine, tryptophan, threonine, tyrosine and phenylalanine in aqueous environment. The present study provided the possibility of using a host–guest mechanism as a way of signal transduction based on lanthanide supramolecular hybrid materials. - Highlights: • Crown ether carboxylic acids were found to sensitize terbium ions among a group of ethers. • The complexes and silica hybrid materials were both prepared and characterized. • They could exhibit remarkable green emissions in pure water.

  7. Adsorption Profile of Basic Dye onto Novel Fabricated Carboxylated Functionalized Co-Polymer Nanofibers

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady


    Full Text Available Acrylonitrile-Styrene co-polymer was prepared by solution polymerization and fabricated into nanofibers using the electrospinning technique. The nanofiber polarization was enhanced through its surface functionalization with carboxylic acid groups by simple chemical modification. The carboxylic groups’ presence was dedicated using the FT-IR technique. SEM showed that the nanofiber attains a uniform and porous structure. The equilibrium and kinetic behaviors of basic violet 14 dye sorption onto the nanofibers were examined. Both Langmuir and Temkin models are capable of expressing the dye sorption process at equilibrium. The intraparticle diffusion and Boyd kinetic models specified that the intraparticle diffusion step was the main decolorization rate controlling the process.

  8. Probing the orthosteric binding site of GABAA receptors with heterocyclic GABA carboxylic acid bioisosteres

    DEFF Research Database (Denmark)

    Petersen, Jette G; Bergmann, Rikke; Krogsgaard-Larsen, Povl;


    selective and potent GABAAR agonists. This review investigates the use of heterocyclic carboxylic acid bioisosteres within the GABAAR area. Several heterocycles including 3-hydroxyisoxazole, 3-hydroxyisoxazoline, 3-hydroxyisothiazole, and the 1- and 3-hydroxypyrazole rings have been employed in order to map...... the orthosteric binding site. The physicochemical properties of the heterocyclic moieties making them suitable for bioisosteric replacement of the carboxylic acid in the molecule of GABA are discussed. A variety of synthetic strategies for synthesis of the heterocyclic scaffolds are available. Likewise, methods...... for introduction of substituents into specific positions of the heterocyclic scaffolds facilitate the investigation of different regions in the orthosteric binding pocket in close vicinity of the core scaffolds of muscimol/GABA. The development of structural models, from pharmacophore models to receptor homology...

  9. C-6 aryl substituted 4-quinolone-3-carboxylic acids as inhibitors of hepatitis C virus. (United States)

    Chen, Yue-Lei; Zacharias, Jeana; Vince, Robert; Geraghty, Robert J; Wang, Zhengqiang


    Quinolone-3-carboxylic acid represents a highly privileged chemotype in medicinal chemistry and has been extensively explored as antibiotics and antivirals targeting human immunodeficiency virus (HIV) integrase (IN). Herein we describe the synthesis and anti-hepatitis C virus (HCV) profile of a series of C-6 aryl substituted 4-quinlone-3-carboxylic acid analogues. Significant inhibition was observed with a few analogues at low micromolar range against HCV replicon in cell culture and a reduction in replicon RNA was confirmed through an RT-qPCR assay. Interestingly, evaluation of analogues as inhibitors of NS5B in a biochemical assay yielded only modest inhibitory activities, suggesting that a different mechanism of action could operate in cell culture.

  10. Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Yuheng Deng


    Full Text Available This paper provides a brief review of recent progress in the field of metal coordination polymers assembled from azole-containing carboxylic acids and gives a diagrammatic summary of the diversity of topological structures in the resulting infinite metal-organic coordination networks (MOCNs. Azole-containing carboxylic acids are a favorable kind of multifunctional ligand to construct various metal complexes with isolated complexes and one, two and three dimensional structures, whose isolated complexes are not the focus of this review. An insight into the topology patterns of the infinite coordination polymers is provided. Analyzed topologies are compared with documented topologies and catalogued by the nature of nodes and connectivity pattern. New topologies which are not available from current topology databases are described and demonstrated graphically.

  11. Mechanism of arylboronic acid-catalyzed amidation reaction between carboxylic acids and amines. (United States)

    Wang, Chen; Yu, Hai-Zhu; Fu, Yao; Guo, Qing-Xiang


    Arylboronic acids were found to be efficient catalysts for the amidation reactions between carboxylic acids and amines. Theoretical calculations have been carried out to investigate the mechanism of this catalytic process. It is found that the formation of the acyloxyboronic acid intermediates from the carboxylic acid and the arylboronic acid is kinetically facile but thermodynamically unfavorable. Removal of water (as experimentally accomplished by using molecular sieves) is therefore essential for overall transformation. Subsequently C-N bond formation between the acyloxyboronic acid intermediates and the amine occurs readily to generate the desired amide product. The cleavage of the C-O bond of the tetracoordinate acyl boronate intermediates is the rate-determining step in this process. Our analysis indicates that the mono(acyloxy)boronic acid is the key intermediate. The high catalytic activity of ortho-iodophenylboronic acid is attributed to the steric effect as well as the orbital interaction between the iodine atom and the boron atom.

  12. Factors influencing the rate of non-enzymatic activation of carboxylic and amino acids by ATP (United States)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.


    The nonenzymatic formation of adenylate anhydrides of carboxylic and amino acids is discussed as a necessary step in the origin of the genetic code and protein biosynthesis. Results of studies are presented which have shown the rate of activation to depend on the pKa of the carboxyl group, the pH of the medium, temperature, the divalent metal ion catalyst, salt concentration, and the nature of the amino acid. In particular, it was found that of the various amino acids investigated, phenylalanine had the greatest affinity for the adenine derivatives adenosine and ATP. Results thus indicate that selective affinities between amino acids and nucleotides were important during prebiotic chemical evolution, and may have played a major role in the origin of protein synthesis and genetic coding.

  13. Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films. (United States)

    Woo, Kyoohee; Kim, Youngwoo; Lee, Byungyoon; Kim, Jonghee; Moon, Jooho


    The reduction effect of various carboxylic acids on inkjet-printed copper film was investigated. Carboxylic acids were exposed to the film by nitrogen gas that was bubbled through the liquid acids during the annealing process. It was observed that in the case of saturated monocarboxylic acid (formic, acetic, propionic, butyric), the acids with shorter hydrocarbon chains perform better in reducing the surface copper oxides in the printed copper conductive film. The printed films exposed to formic acid vapor exhibited the lowest resistivity (3.10 and 2.30 μΩ cm when annealed at 200 and 250 °C, respectively). In addition, the oxalic acid more effectively reduces copper oxide than formic acid and its usage can shorten the annealing time for highly conductive printed copper film. This reductive annealing process allows fabrication of copper patterns with low resistivity, (3.82 μΩ cm annealed at 250 °C) comparable to the resistivity of bulk copper.

  14. Influence of a Hydrophobic Environment on the Structure of Arginine—Carboxylate Salt Bridge

    Institute of Scientific and Technical Information of China (English)

    封勇; 刘磊; 穆廷巍; 郭庆祥


    The exact structure of an arginine-carboxylate salt bridge in different chemical environments remains a controversial problem.In the present work,the zwitterionic and neutral forms of arginine-carboxylate salt bridge were studied by the B3LYP/6-311G(d,p)//PM3 method.It turns out that the neutral forms are more stable than the zwitterionic coumterparts in gas phase.However,whnen bound by α-cyclodextrin,the zwitterionic forms become more stable than the corresponding neutral ones.It is suggested that the hydrophobic environment provided by the cyclodextrin cavity leads to such behavior.Therefore,the salt bridge still could be in a zwitterionic form in the hydrophobic interior of the real proteins.

  15. Influence of a Hydrophobic Environment on the Structure of Arginine-Carboxylate Salt Bridge

    Institute of Scientific and Technical Information of China (English)

    FENG,Yong(封勇); LIU,Lei(刘磊); MU,Ting-Wei(穆廷巍); GUO,Qing-Xiang(郭庆祥)


    The exact structure of an arginine-carboxylate salt bridge in different chemical environments remains a controversial problem. In the present work, the zwitterionic and neutral forms of arginine-carboxylate salt bridge were studied by the B3LYP/6-311G(d,p)//PM3 method. It turns out that the neutral forms are more stable than the zwitterionic counterparis in gas phase.However, when bound by c-cyclodextrin, the zwitterionic forms become more stable than the corresponding neutral ones.It is suggested that the hydrophobic environment provided by the cyclodextrin cavity leads to such behavior. Tnerefore, the salt bridge still could be in a zwitterionic form in the hydrophobic interior of the real proteins.

  16. Solution-processable carboxylate-capped CuO nanoparticles obtained by a simple solventless method (United States)

    Estruga, Marc; Roig, Anna; Domingo, Concepción; Ayllón, José A.


    Carboxylate-capped CuO nanoparticles were obtained via a simple solventless route, based on the thermal decomposition at 120 °C of solid precursors. The reaction mixture consisted of copper acetate monohydrate, acting as the CuO precursor, and different organic carboxylic acids (lauric, phenylvaleric or 3,6,9-trioxadecanoic acid) used as the capping agent. The proposed method, in good agreement with environmentally friendly practices, produced dry nanoparticles, thereby totally eliminating the need of washing, filtration, or other downstream steps. Transmission electron micrographs show crystalline roughly spherical CuO nanoparticles with average diameters between 3.1 and 5.5 nm depending on the capping ligand. The laurate-capped CuO nanoparticles showed a paramagnetic behaviour at room temperature, while a weak ferromagnetic component was detected at low temperature (acid tail enabled the straightforward dispersibility of nanoparticles in common solvents and assisted in the deposition of the material as thin films.

  17. 5-Amino-1H-1,2,4-triazol-4-ium-3-carboxylate hemihydrate

    Directory of Open Access Journals (Sweden)

    José A. Fernandes


    Full Text Available The asymmetric unit of the title compound, C3H4N4O2·0.5H2O, comprises two whole molecules of 5-amino-1H-1,2,4-triazole-3-carboxylic acid in its zwitterionic form (proton transfer occurs from the carboxylic acid group to the N heteroatom at position 1, plus one water molecule of crystallization. The organic moieties are disposed into supramolecular layers linked by N—H...O and N—H...N hydrogen bonds parallel to the bc plane. Additional O—H...O and N—H...O hydrogen bonds involving the water molecules and the organic molecules lead to the formation of double-deck supramolecular arrangements which are interconnected along the a axis via π–π stacking [centroid–centroid distance = 3.507 (3 Å].

  18. Preparation and reactivity of carboxylic acid-terminated boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Niedziolka-Joensson, Joanna [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Boland, Susan; Leech, Donal [School of Chemistry, National University of Irland, Galway (Ireland); Boukherroub, Rabah [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Szunerits, Sabine, E-mail: sabine.szunerits@iri.univ-lille1.f [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France)


    The paper reports on the formation of carboxy-terminated boron-doped diamond (BDD) electrodes. The carboxylic acid termination was prepared in a controlled way by reacting photochemically oxidized BDD with succinic anhydride. The resulting interface was readily employed for the linking of an amine-terminated ligand such as an osmium complex bearing an amine terminal group. The interfaces were characterized using X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Contact angle measurements were used to follow the changes in surface wetting properties due to surface functionalization. The chemical reactivity of the carboxyl-terminated BDD was investigated by covalent coupling of the acid groups to an amine-terminated osmium complex.

  19. Carboxylate groups play a major role in antitumor activity of Ganoderma applanatum polysaccharide. (United States)

    Sun, Xiaobo; Zhao, Chen; Pan, Wei; Wang, Jinping; Wang, Weijun


    In this paper, the structure difference between the polysaccharides isolated from fruit bodies (FGAP) and submerged fermentation system (SGAP) of Ganoderma applanatum was investigated by means of GPC, HPLC and IR, respectively. And their antitumor activities were evaluated against Sarcoma 180 in vivo. The results showed that FGAP and SGAP were typical polysaccharides with different molecular weights, monosaccharide components, and functional groups. Closely related to the distinct structures, FGAP exhibited a better antitumor activity than SGAP. Moreover, since FGAP contained carboxylate groups rather than SGAP, such groups were chemically introduced into SGAP (CSGAP) by carboxymethylation in order to identify their contribution to antitumor activity. The results demonstrated that the inhibition of CSGAP against Sarcoma 180 in vivo was significantly enhanced by comparison to the native SGAP and even higher than that of FGAP, suggesting that the carboxylate groups played a major role in antitumor activity of G. applanatum polysaccharide.

  20. Synthesis and antifungal activity of the derivatives of novel pyrazole carboxamide and isoxazolol pyrazole carboxylate. (United States)

    Sun, Jialong; Zhou, Yuanming


    A series of pyrazole carboxamide and isoxazolol pyrazole carboxylate derivatives were designed and synthesized in this study. The structures of the compounds were elucidated based on spectral data (infrared, proton nuclear magnetic resonance and mass spectroscopy). Then, all of the compounds were bioassayed in vitro against four types of phytopathogenic fungi (Alternaria porri, Marssonina coronaria, Cercospora petroselini and Rhizoctonia solani) using the mycelium growth inhibition method. The results showed that some of the synthesized pyrazole carboxamides displayed notable antifungal activity. The isoxazole pyrazole carboxylate 7ai exhibited significant antifungal activity against R. solani, with an EC50 value of 0.37 μg/mL. Nonetheless, this value was lower than that of the commercial fungicide, carbendazol.

  1. Effect of hydrogen and carbon dioxide on carboxylic acids patterns in mixed culture fermentation. (United States)

    Arslan, D; Steinbusch, K J J; Diels, L; De Wever, H; Buisman, C J N; Hamelers, H V M


    This study investigated the carboxylate spectrum from mixed culture fermentation of three organic waste streams after supplying 2 bar hydrogen and carbon dioxide or a mixture of these two gases to the headspace. Under any modified headspace, propionate production was ceased and butyrate, caproate and the total carboxylate concentrations were higher than in the reactors with N(2) headspace (control). Production of one major compound was achieved under hydrogen and carbon dioxide mixed headspace after 4 weeks of incubation. Both the highest acetate concentration (17.4 g COD/l) and the highest fraction (87%) were observed in reactors with mixed hydrogen and carbon dioxide headspace independent of the substrate used. In the control reactor, acetate made up maximum 67% of the total products. For other products, the highest concentration and fraction were seldom observed together. Selective butyrate production reaching a 75% fraction was found under the carbon dioxide headspace on the carbohydrate rich waste.

  2. A novel and expeditious method to fabricate superhydrophobic metal carboxylate surface (United States)

    Li, Feng; Geng, Xingguo; Chen, Zhi; Zhao, Lei


    This article has presented a novel method to fabricate superhydrophobic metal carboxylate surface on substrates like copper, ferrum, etc. This method markedly shortened the fabrication time to less than one second. The superhydrophobic effect is even better that the contact angle (CA) is 170±1° and the sliding angle (SA) fatty acid and metal salt plays a key role in this method. This method has tremendous potentials in industrial production of superhydrophobic materials.

  3. Removal of transition metals from dilute aqueous solution by carboxylic acid group containing absorbent polymers (United States)

    A new carboxylic acid group containing resin with cation exchange capacity, 12.67 meq/g has been used to remove Cu2+, Co2+ and Ni2+ ions from dilute aqueous solution. The resin has Cu2+, Co2+ and Ni2+ removal capacity, 216 mg/g, 154 mg/g and 180 mg/g, respectively. The selectivity of the resin to ...

  4. Synthesis, structure and masnetic properties of two new coordination polymers with carboxylate-substituted benzoimidazole lisands

    Institute of Scientific and Technical Information of China (English)

    HU BoWen; ZHAO JiongPeng; YANG Qian; ZHANG XiaoFeng; BU XianHe


    This paper reports two new coordination polymers formed by carboxylate-substituted benzoimidazole and formate ligands:[Mn(L)-(HCO2)]n (1) and [Co(L)·(HCO2)]n (2) (L = benzoimidazol-1-yl-acetate).Complexes 1 and 2 are isomorphous and adopt a new 3,6-connected three-nodal topology showing interesting magnetic properties:spin canted antiferromagnetism for Mn11 complex 1,but simple antiferromagnetic coupling for CoⅡ complex 2.

  5. Preparation and characterization of amino or carboxyl-functionalized ionic liquids

    Institute of Scientific and Technical Information of China (English)

    Yue Qin Cai; Feng Lu; Yan Qing Peng; Gong Hua Song


    New functionalized ionic liquids, 1-carboxylmethyl-3-methylimimidazolium hexafluorophosphate or fluoborate and l-aminoethyl-3-methylimimidazolium hexafluorophosphate or fluoborate have been synthesized and investigated. The obtained amino or carboxyl-functionalized ionic liquids were all characterized by FT-IR, 1H NMR and MS (ESI) and their properties such as freezing point, viscosity, solubility, specific gravity, surface tension, and interfacial tension were also determined.

  6. Pancreatic carboxyl ester lipase: a circulating enzyme that modifies normal and oxidized lipoproteins in vitro.


    Shamir, R.; Johnson, W. J.; Morlock-Fitzpatrick, K; R. Zolfaghari; Li, L; mas, e; Lombardo, D; Morel, D W; Fisher, E A


    Pancreatic carboxyl ester lipase (CEL) hydrolyzes cholesteryl esters (CE), triglycerides (TG), and lysophospholipids, with CE and TG hydrolysis stimulated by cholate. Originally thought to be confined to the gastrointestinal system, CEL has been reported in the plasma of humans and other mammals, implying its potential in vivo to modify lipids associated with LDL, HDL (CE, TG), and oxidized LDL (lysophosphatidylcholine, lysoPC). We measured the concentration of CEL in human plasma as 1.2+/-0....

  7. A new and efficient method for the synthesis of isoquinoline-3-carboxylate

    Institute of Scientific and Technical Information of China (English)

    Xiang Wei Liao; Bao He Guan; Zhan Zhu Liu


    An isoquinoline-3-carboxylate compound 3 was obtained with a moderate yield of 40% when N-acetyl-(3'-hydroxy-4'-methoxy-5'-methyl)phenylalanine methyl ester 1 was refluxed in HMTA/TFA. However, the anticipated product N-acetyl-(3'-hydroxy-4'-rnethoxy-5'-methyl-6'-formyl)phenylalanine methyl ester 2 could not be found. The possible mechanism was discussed in this article.

  8. Synthesis, structure and magnetic properties of two new coordination polymers with carboxylate-substituted benzoimidazole ligands

    Institute of Scientific and Technical Information of China (English)


    This paper reports two new coordination polymers formed by carboxylate-substituted benzoimidazole and formate ligands: [Mn(L)·(HCO2)]n (1) and [Co(L)·(HCO2)]n (2) (L = benzoimidazol-1-yl-acetate). Com-plexes 1 and 2 are isomorphous and adopt a new 3,6-connected three-nodal topology showing inter-esting magnetic properties: spin canted antiferromagnetism for MnⅡ complex 1, but simple antiferro-magnetic coupling for CoⅡ complex 2.

  9. Transcriptomic analysis of the role of carboxylic acids in metabolite signaling in Arabidopsis leaves. (United States)

    Finkemeier, Iris; König, Ann-Christine; Heard, William; Nunes-Nesi, Adriano; Pham, Phuong Anh; Leister, Dario; Fernie, Alisdair R; Sweetlove, Lee J


    The transcriptional response to metabolites is an important mechanism by which plants integrate information about cellular energy and nutrient status. Although some carboxylic acids have been implicated in the regulation of gene expression for select transcripts, it is unclear whether all carboxylic acids have the same effect, how many transcripts are affected, and how carboxylic acid signaling is integrated with other metabolite signals. In this study, we demonstrate that perturbations in cellular concentrations of citrate, and to a lesser extent malate, have a major impact on nucleus-encoded transcript abundance. Functional categories of transcripts that were targeted by both organic acids included photosynthesis, cell wall, biotic stress, and protein synthesis. Specific functional categories that were only regulated by citrate included tricarboxylic acid cycle, nitrogen metabolism, sulfur metabolism, and DNA synthesis. Further quantitative real-time polymerase chain reaction analysis of specific citrate-responsive transcripts demonstrated that the transcript response to citrate is time and concentration dependent and distinct from other organic acids and sugars. Feeding of isocitrate as well as the nonmetabolizable citrate analog tricarballylate revealed that the abundance of selected marker transcripts is responsive to citrate and not downstream metabolites. Interestingly, the transcriptome response to citrate feeding was most similar to those observed after biotic stress treatments and the gibberellin biosynthesis inhibitor paclobutrazol. Feeding of citrate to mutants with defects in plant hormone signaling pathways did not completely abolish the transcript response but hinted at a link with jasmonic acid and gibberellin signaling pathways. Our results suggest that changes in carboxylic acid abundances can be perceived and signaled in Arabidopsis (Arabidopsis thaliana) by as yet unknown signaling pathways.

  10. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I' region. (United States)

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan


    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I' band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D₂O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  11. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I‧ region (United States)

    Anderson, Benjamin A.; Literati, Alex; Ball, Borden; Kubelka, Jan


    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I‧ band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D2O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  12. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. (United States)

    Pritchard, James; Filonenko, Georgy A; van Putten, Robbert; Hensen, Emiel J M; Pidko, Evgeny A


    The catalytic reduction of carboxylic acid derivatives has witnessed a rapid development in recent years. These reactions, involving molecular hydrogen as the reducing agent, can be promoted by heterogeneous and homogeneous catalysts. The milestone achievements and recent results by both approaches are discussed in this Review. In particular, we focus on the mechanistic aspects of the catalytic hydrogenation and highlight the bifunctional nature of the mechanism that is preferred for supported metal catalysts as well as homogeneous transition metal complexes.

  13. Synthesis and physicochemical properties of unsaturated trifluoromethylated sodium carboxylates in aqueous media. (United States)

    Damas, Christine; Carcenac, Yvan; Abarbri, Mohamed; Coudert, Robert


    Structural modifications of unsaturated sodium carboxylate surfactants in terms of trifluoromethylation associated with the hydrocarbon chain length have been studied, the synthesis is described, and aggregation properties have been examined by conductimetry and vapor pressure osmometry between 30°C and 45°C. No strong effect of adding a CF3 group was observed on the Critical Micellar Concentrations. However, the thermodynamic study shows the specific effect exerted by the CF3 group through the enhancement of the entropic contribution.

  14. A novel application of horseradish peroxidase: Oxidation of alcohol ethoxylate to alkylether carboxylic acid

    Institute of Scientific and Technical Information of China (English)


    A novel application of horseradish peroxidase (HRP) in the oxidation of alcohol ethoxylate to alkylether carboxylie acid in the present of H2O2 was reported in this paper. We propose the mechanism for the catalytic oxidation reaction is that the hydrogen transfers from the substrate to the ferryl oxygen to form the a-hydroxy carbon radical intermediate. The reaction offers a new approach for further research structure and catalytic mechanism of HRP and production of alkylether carboxylic acid.

  15. Silver-Catalyzed Decarboxylative Addition/Cyclization of Activated Alkenes with Aliphatic Carboxylic Acids. (United States)

    Xia, Xiao-Feng; Zhu, Su-Li; Chen, Chao; Wang, Haijun; Liang, Yong-Min


    A silver-catalyzed decarboxylative addition/aryl migration/desulfonylation of N-phenyl-N-(phenylsulfonyl)methacrylamide with primary, secondary, and tertiary carboxylic acids was described. The protocol provides an efficient approach for the synthesis of α-all-carbon quaternary stereocenters amides and isoquinolinediones. It was proposed that the radical generated from the silver-catalyzed decarboxylation was involved in the sequence reaction.

  16. Hydrolytic activity of -alkoxide/acetato-bridged binuclear Cu(II) complexes towards carboxylic acid ester

    Indian Academy of Sciences (India)

    Weidong Jiang; Bin Xu; Zhen Xiang; Shengtian Huang; Fuan Liu; Ying Wang


    Two -alkoxide/acetate-bridged small molecule binuclear copper(II) complexes were synthesized, and used to promote the hydrolysis of a classic carboxylic acid ester, -nitrophenyl picolinate (PNPP). Both binuclear complexes exhibited good hydrolytic reactivity, giving rise to . 15547- and 17462-fold acceleration over background value for PNPP hydrolysis at neutral conditions, respectively. For comparing, activities of the other two mononuclear analogues were evaluated, revealing that binuclear complexes show approximately 150- and 171-fold kinetic advantage over their mononuclear analogues.

  17. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. (United States)

    Uchimiya, Minori; Bannon, Desmond I; Wartelle, Lynda H


    Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar's sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam-activated biochar having a low O/C ratio (0.04-0.06) and high fixed carbon content (~80% dry weight basis) were oxidized using concentrated H(2)SO(4)/HNO(3) and 30% HNO(3). Oxidized and unoxidized biochars were characterized for O/C ratio, total acidity, pH, moisture, ash, volatile matter, and fixed carbon contents, Brunauer-Emmett-Teller surface area, and attenuated total reflectance Fourier transform infrared spectral features. Characterized biochars were amended (2%, 5%, 10%, and 20% in grams of biochar per gram of soil) on a sandy, slightly acidic (pH 6.27) heavy metal contaminated small arms range soil fraction (carbon (0.518%) and low cation exchange capacity (0.95 cmol(c) kg(-1)). Oxidized biochars rich in carboxyl functional groups exhibited significantly greater Pb, Cu, and Zn stabilization ability compared to unoxidized biochars, especially in pH 4.9 acetate buffer (standard solution for the toxicity characteristic leaching procedure). Oppositely, only oxidized biochars caused desorption of Sb, indicating a counteracting impact of carboxyl functional groups on the solubility of anions and cations. The results suggested that appropriate selection of biochar oxidant will produce recalcitrant biochars rich in carboxyl functional groups for a long-term heavy metal stabilization strategy in contaminated soils.

  18. Effect of carboxylate compounds on the electrochemical behavior of dopamine at a mercury electrode


    Winter, Eduardo; Carvalho,Rosangela M. de; Kubota,Lauro T.; Rath,Susanne


    The electrochemical oxidation of dopamine leads to deposition of polymeric films on the surfaces of solid state electrodes, decreasing the electrode activity. With a mercury electrode, the oxidation of dopamine occurs in the potential region of mercury oxidation. However, in the presence of carboxylic compounds the cyclic voltammogram of dopamine is different and presents a new electroactive product resulting from the oxidation of dopamine. This work describes preliminary results for the elec...

  19. Low-molecular-weight poly-carboxylate as crystal growth modifier in biomineralization

    Indian Academy of Sciences (India)

    Ballav Moni Borah; Bhaskar Jyoti Bhuyan; Gopal Das


    Construction of modified inorganic mineral with controlled mineralization analogues of those produced by nature is now of current interest for understanding the mechanism of the in vivo biomineralization processes, as well as looking for fresh industrial and technological applications. Lowmolecular-weight chiral poly-carboxylate ligands derived from naturally occurring L--amino acids have been used as model systems to study the effect of molecular properties on crystal growth modification.

  20. Thermodynamic properties of furan-2-carboxylic and 3-(2-furyl)-2-propenoic acids (United States)

    Sobechko, I. B.; Van-Chin-Syan, Yu. Ya.; Kochubei, V. V.; Prokop, R. T.; Velychkivska, N. I.; Gorak, Yu. I.; Dibrivnyi, V. N.; Obushak, M. D.


    The standard enthalpies of combustion, formation, fusion, and sublimation of crystalline furan-2-carboxylic and 3-(2-furyl)-2-propenoic acids are determined by experimental methods and recalculated to 298 K. The possibility of using additive calculation schemes based on the principle of group contributions to calculate the standard enthalpies of vaporization and formation of substances with similar combinations of functional fragments in the gas phase is analyzed.

  1. "Fifty Shades" of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties. (United States)

    Micillo, Raffaella; Panzella, Lucia; Koike, Kenzo; Monfrecola, Giuseppe; Napolitano, Alessandra; d'Ischia, Marco


    Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo) protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences in light absorption, antioxidant, paramagnetic and redox behavior, particle morphology, surface properties, metal chelation and resistance to photo-oxidative wear-and-tear. These variations are primarily governed by the extent of decarboxylation at critical branching points of the eumelanin and pheomelanin pathways, namely the rearrangement of dopachrome to 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and the rearrangement of 5-S-cysteinyldopa o-quinoneimine to 1,4-benzothiazine (BTZ) and its 3-carboxylic acid (BTZCA). In eumelanins, the DHICA-to-DHI ratio markedly affects the overall antioxidant and paramagnetic properties of the resulting pigments. In particular, a higher content in DHICA decreases visible light absorption and paramagnetic response relative to DHI-based melanins, but markedly enhances antioxidant properties. In pheomelanins, likewise, BTZCA-related units, prevalently formed in the presence of zinc ions, appear to confer pronounced visible and ultraviolet A (UVA) absorption features, accounting for light-dependent reactive oxygen species (ROS) production, whereas non-carboxylated benzothiazine intermediates seem to be more effective in inducing ROS production by redox cycling mechanisms in the dark. The possible biological and functional significance of carboxyl retention in the eumelanin and pheomelanin pathways is discussed.

  2. Biocatalytic carboxylation of phenol derivatives: kinetics and thermodynamics of the biological Kolbe-Schmitt synthesis. (United States)

    Pesci, Lorenzo; Glueck, Silvia M; Gurikov, Pavel; Smirnova, Irina; Faber, Kurt; Liese, Andreas


    Microbial decarboxylases, which catalyse the reversible regioselective ortho-carboxylation of phenolic derivatives in anaerobic detoxification pathways, have been studied for their reverse carboxylation activities on electron-rich aromatic substrates. Ortho-hydroxybenzoic acids are important building blocks in the chemical and pharmaceutical industries and are currently produced via the Kolbe-Schmitt process, which requires elevated pressures and temperatures (≥ 5 bar, ≥ 100 °C) and often shows incomplete regioselectivities. In order to resolve bottlenecks in view of preparative-scale applications, we studied the kinetic parameters for 2,6-dihydroxybenzoic acid decarboxylase from Rhizobium sp. in the carboxylation- and decarboxylation-direction using 1,2-dihydroxybenzene (catechol) as starting material. The catalytic properties (K(m), V(max)) are correlated with the overall thermodynamic equilibrium via the Haldane equation, according to a reversible random bi-uni mechanism. The model was subsequently verified by comparing experimental results with simulations. This study provides insights into the catalytic behaviour of a nonoxidative aromatic decarboxylase and reveals key limitations (e.g. substrate oxidation, CO2 pressure, enzyme deactivation, low turnover frequency) in view of the employment of this system as a 'green' alternative to the Kolbe-Schmitt processes.

  3. Statistical investigation of lead removal with various functionalized carboxylate ferroxane nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moattari, Rozita M.; Rahimi, Safoora [Polymer Research Lab., Department of Chemical Engineering, College of Engineering, Razi University, Kermanshah (Iran, Islamic Republic of); Rajabi, Laleh, E-mail: [Polymer Research Lab., Department of Chemical Engineering, College of Engineering, Razi University, Kermanshah (Iran, Islamic Republic of); Derakhshan, Ali Ashraf [Young Researchers Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Keyhani, Mohammad [Polymer Research Lab., Department of Chemical Engineering, College of Engineering, Razi University, Kermanshah (Iran, Islamic Republic of)


    Graphical abstract: - Highlights: • Four new carboxylate ferroxane nanostructures were synthesized and characterized. • Carboxylate ferroxanes were used as nanosorbents for lead removal. • Taguchi method was used to design the experiments. • Statistical analyses evaluated the three model responses [R%, Logit (R%), C{sub ratio}]. • Maleate ferroxane performed the best of the four nanosorbents studied. - Abstract: Four new types of carboxylate-ferroxane nanoparticles, namely; maleate ferroxane (MF), fumarateferroxane (FF), para-amino benzoate ferroxane (PABF) and para-hydroxy benzoate ferroxane (PHBF) were synthesized, characterized and used for lead removal from aqueous solutions. Lepidocrocite nanoparticles were also synthesized and characterized asa precursorforcarboxylate-ferroxanes. FTIR, SEM and DLS analysis characterized the synthesized samplesand final Pb(II) concentration were analysed using inductively coupled plasma atomic emission spectrometer. Performance evaluation of the nanoparticlesin adsorption process was achieved using Taguchi experimental design. Variables in adsorption process were initial pH, contact time, adsorbent dose, adsorbent typeand initial concentration of Pb{sup 2+} ions. The initial Pb(II) concentration was the most influential factor in the adsorption process among the five factors. Adsorption of lead was performed through two possible mechanisms; ion exchange and complex formation. Maleate ferroxane performed the best lead removal efficiency among the four types of ferroxane nanostructures studied. The adsorption kinetic data described well with a pseudo-second-order model and the equilibrium data fitted well to the Frendlich isotherm.

  4. Aerobic biodegradation of two fluorotelomer sulfonamide-based aqueous film forming foam components produces perfluoroalkyl carboxylates. (United States)

    D'Agostino, Lisa A; Mabury, Scott A


    The biodegradation of 2 common fluorotelomer surfactants used in aqueous film forming foams (AFFFs), 6:2 fluorotelomer sulfonamide alkylamine (FTAA) and 6:2 fluorotelomer sulfonamide alkylbetaine (FTAB), was investigated over 109 d with aerobic wastewater treatment plant (WWTP) sludge. Results show that biodegradation of 6:2 FTAA and 6:2 FTAB produces 6:2 fluorotelomer alcohol (FTOH), 6:2 fluorotelomer carboxylic acid (FTCA), 6:2 fluorotelomer unsaturated carboxylic acid (FTUCA), 5:3 FTCA, and short chain perfluoroalkyl carboxylates (PFCAs). Additional degradation products included 6:2 fluorotelomer sulfonamide (FTSAm), which was a major degradation product in the presence of either active or sterilized sludge, while 6:2 fluorotelomer sulfonate (FTSA) production was measured with sterilized sludge only. Six additional degradation products were tentatively identified by quadrupole time-of-flight mass spectrometry (qTOF-MS) and were attributed to N-dealkylation and oxidation of 6:2 FTAA. This article is protected by copyright. All rights reserved.

  5. Carboxylated magnetic nanoparticles as MRI contrast agents: Relaxation measurements at different field strengths

    Energy Technology Data Exchange (ETDEWEB)

    Jedlovszky-Hajdu, Angela, E-mail: [Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad Sq 4, H-1089 Budapest (Hungary); Tombacz, Etelka, E-mail: [Department of Physical Chemistry and Material Science, University of Szeged, Aradi Vt. Sq 1, Szeged 6720 (Hungary); Banyai, Istvan, E-mail: [Department of Colloid and Environmental Chemistry, University of Debrecen (Hungary); Babos, Magor, E-mail: [Euromedic Diagnostics Szeged Ltd., Semmelweis St 6, Szeged 6720 (Hungary); Palko, Andras, E-mail: [Faculty of Medicine, Department of Radiology, University of Szeged (Hungary)


    At the moment the biomedical applications of magnetic fluids are the subject of intensive scientific interest. In the present work, magnetite nanoparticles (MNPs) were synthesized and stabilized in aqueous medium with different carboxylic compounds (citric acid (CA), polyacrylic acid (PAA), and sodium oleate (NaOA)), in order to prepare well stabilized magnetic fluids (MFs). The magnetic nanoparticles can be used in the magnetic resonance imaging (MRI) as contrast agents. Magnetic resonance relaxation measurements of the above MFs were performed at different field strengths (i.e., 0.47, 1.5 and 9.4 T) to reveal the field strength dependence of their magnetic responses, and to compare them with that of ferucarbotran, a well-known superparamagnetic contrast agent. The measurements showed characteristic differences between the tested magnetic fluids stabilized by carboxylic compounds and ferucarbotran. It is worthy of note that our magnetic fluids have the highest r2 relaxivities at the field strength of 1.5 T, where the most of the MRI works in worldwide. - Highlights: Black-Right-Pointing-Pointer Magnetic resonance relaxation measurements were done at different field strengths. Black-Right-Pointing-Pointer Results show characteristic differences between the tested carboxylated MFs. Black-Right-Pointing-Pointer r1 and r2 relaxivities depend on the thickness of the protecting layer. Black-Right-Pointing-Pointer MFs have high r2/r1 ratios at each magnetic field.

  6. Fluorescent carboxylic and phosphonic acids: comparative photophysics from solution to organic nanoparticles. (United States)

    Faucon, Adrien; Lenk, Romaric; Hémez, Julie; Gautron, Eric; Jacquemin, Denis; Le Questel, Jean-Yves; Graton, Jérôme; Brosseau, Arnaud; Ishow, Eléna


    Phosphonic and carboxylic fluorescent nanoparticles have been fabricated by direct reprecipitation in water. Their fluorescence properties strongly differ from those of the corresponding esters where strong H-bonding formation is prohibited. Comparative experiments between the two acid derivatives, differing only in their acid functions while keeping the same alkyl chain, have evidenced the peculiar behavior of the phosphonic acid derivative compared to its carboxylic analog. A dramatic emission quenching for the phosphonic acid in aprotic toluene could be observed while a fivefold increase in the fluorescence signal was observed for molecules assembled as nanoparticles. Such properties have been attributed on the theoretical basis to the formation of folded conformers in solution, leading to deactivation of the radiative excited state through intramolecular H-bonding. These studies evidence for the first time through time-resolved fluorescence measurements the stronger H-donating character of phosphonic acids compared to the carboxylic ones, and provide information on the degree of structural heterogeneity within the nanoparticles. They should pave the way for the rational fabrication of chelating acid fluorophores, able to complex metal oxides to yield stiff hybrid magnetofluorescent nanoparticles which are attracting considerable attention in the growing fields of bimodal imaging and vectorization applications.

  7. Synthesis of antimony tris(mercaptoethyl carboxylates) as thermal stabilizer for polyvinyl chloride

    Institute of Scientific and Technical Information of China (English)

    舒万艮; 刘又年; 陈启元


    A novel type of thermal stabilizers-antimony tris(mercaptoethyl carboxylates) (Sb(SCH2CH2OOCR) 3), was synthesized from carboxylic acid, antimony trioxide and 2-mercaptoethanol in two steps. The experimental results show that the molar ratio of carboxylic acid to antimony tris(2-hydroxyethyl mercaptide) is 1.2, when adding 0.6% tetra-n-butyl titanate as catalyst and xylene as isotropic solvent, heating and refluxing for about 2~4h. The thermal stability was measured by heat-aging oven test. The thermal stability time is about 8~40min(at 200℃) when adding 2% tetra-n-butyl titanate in polyvinyl chloride(PVC). Among these stabilizers, antimony tris(mercaptoethyl stearate) has best thermal stability. Its thermal stability is better than that of Ca-Zn complex and basic lead stabilizers, and equal to that of organotin. In addition, the stabilization mechanism of this kind of stabilizers for PVC was discussed briefly.

  8. Adsorption of gaseous formaldehyde and carboxylic acids by ammonium-ion-exchanged alpha-zirconium phosphate. (United States)

    Hayashi, A; Fujimoto, Y; Ogawa, Y; Nakayama, H; Tsuhako, M


    Ammonium-ion-exchanged alpha-Zr(HPO(4))(2)H(2)O (alpha-ZrP) was obtained as a single phase with the interlayer distance of 9.4 A by the ion-exchange of proton with ammonium ion. The ammonium ion-exchanged alpha-ZrP could adsorb ill-smelling gases, such as formaldehyde and carboxylic acids (formic acid, acetic acid, propionic acid, and butyric acid). The adsorption amounts of carboxylic acids increased in the order, butyric acidcarboxylic acid-adsorbed compounds decreased to 7.6 A due to release by the evacuation.

  9. Solution-processable carboxylate-capped CuO nanoparticles obtained by a simple solventless method

    Energy Technology Data Exchange (ETDEWEB)

    Estruga, Marc [Universitat Autonoma de Barcelona, Department of Chemistry (Spain); Roig, Anna; Domingo, Concepcion [CSIC, Institut de Ciencia de Materials de Barcelona (Spain); Ayllon, Jose A., E-mail: [Universitat Autonoma de Barcelona, Department of Chemistry (Spain)


    Carboxylate-capped CuO nanoparticles were obtained via a simple solventless route, based on the thermal decomposition at 120 Degree-Sign C of solid precursors. The reaction mixture consisted of copper acetate monohydrate, acting as the CuO precursor, and different organic carboxylic acids (lauric, phenylvaleric or 3,6,9-trioxadecanoic acid) used as the capping agent. The proposed method, in good agreement with environmentally friendly practices, produced dry nanoparticles, thereby totally eliminating the need of washing, filtration, or other downstream steps. Transmission electron micrographs show crystalline roughly spherical CuO nanoparticles with average diameters between 3.1 and 5.5 nm depending on the capping ligand. The laurate-capped CuO nanoparticles showed a paramagnetic behaviour at room temperature, while a weak ferromagnetic component was detected at low temperature (<40 K). It was also proved that the chemical structure of the carboxylic acid tail enabled the straightforward dispersibility of nanoparticles in common solvents and assisted in the deposition of the material as thin films.

  10. Investigation of Carboxylic Acid-Neodymium Conversion Films on Magnesium Alloy (United States)

    Cui, Xiufang; Liu, Zhe; Lin, Lili; Jin, Guo; Wang, Haidou; Xu, Binshi


    The new carboxylic acid-neodymium anhydrous conversion films were successfully prepared and applied on the AZ91D magnesium alloy surface by taking absolute ethyl alcohol as solvent and four kinds of soluble carboxylic acid as activators. The corrosion resistance of the coating was measured by potentiodynamic polarization test in 3.5 wt.% NaCl solution in pH 7.0. The morphology, structure, and constituents of the coating were observed by scanning electron microscope, energy dispersivespectrum, x-ray photoelectron spectrum, and Fourier infrared spectrometer. Results show that corrosion resistance properties of samples coated with four different anhydrous conversion films were improved obviously. The corrosion potential increased, corrosion current density decreased, and polarization resistance increased. Among these four kinds of conversion films the one added with phytic exhibits the best corrosion resistant property. The mechanism of anhydrous-neodymium conversion film formation is also analyzed in this paper. It reveals that the gadolinium conversion coating is mainly composed of stable Nd2O3, MgO, Mg(OH)2, and carboxylate of Nd. And that the sample surface is rich in organic functional groups.

  11. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian, E-mail:


    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL{sup −1}, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  12. Gas Permeable Membranes Composed of Carboxylated Poly(vinyl chloride) and Polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chun Won; Kim, Chai Gyun; Kim, Wan Young; Jeong, Yong Seob; Lee, Youn Sik [Chonbuk National University, Jeonju (Korea, Republic of)


    Gas-permeable polymeric membranes containing carboxyl groups which are suitable for enzyme immobilization were investigated in order to use them as gas electrode membranes in biosensors. Carboxylated polyurethane (CPU) was synthesized via a reaction between 2,2-bis(hydroxymethyl)propionic acid as a chain extender and prepolymers prepared from polycarprolactone (Mn=2,000) and 4,4'-diphenylmethane diisocynate. It was difficult to prepare membranes from the pure CPU because of its high elasticity and cohesion. However, transparent free-standing membranes were easily prepared from the blend solutions of CPU and carboxylated poly(vinyl chloride) (CPVC) in tetrahydrofuran. Both elasticity and cohesion of the CPU/CPVC membranes were decreased with increasing the content of CPVC. DSC experiment suggests that CPU and CPVC may be well mixed. Permeability coefficients for O{sub 2} and CO{sub 2} (P{sub O2} and P{sub CO2}) in the membranes increased as the proportion of CPU increased. The addition of dioctyl phthalate (DOP), a plasticizer, significantly enhanced the P{sub O2} and P{sub CO2} which were 4.4 and 30 Barrer, respectively, in the CPU/CPVC (80/20 wt/wt) membranes containing 20% of DOP at 25 .deg. C and 100 psi. Thus this type of membranes may have a potential for the use as gas electrode membranes in biosensors

  13. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices (United States)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E. J.; Kaiser, Ralf I.


    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C5H5N)-carbon dioxide (CO2) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C5H4NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C5H3N(COOH)2) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical-radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  14. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Rupashree Shyama


    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO{sub 2}{sup 2+}, [UO{sub 2}OH]{sup +}, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  15. Effects of carboxylic acids on the uptake of non-transferrin-bound iron by astrocytes. (United States)

    Keenan, Belinda M; Robinson, Stephen R; Bishop, Glenda M


    The concentrations of non-transferrin-bound iron are elevated in the brain during pathological conditions such as stroke and Alzheimer's disease. Astrocytes are specialised for sequestering this iron, however little is known about the mechanisms involved. Carboxylates, such as citrate, have been reported to facilitate iron uptake by intestinal cells. Citrate binds iron and limits its redox activity. The presence of high citrate concentrations in the interstitial fluid of the brain suggests that citrate may be an important ligand for iron transport by astrocytes. This study investigates whether iron accumulation by cultured rat astrocytes is facilitated by citrate or other carboxylates. Contrary to expectations, citrate, tartrate and malate were found to block iron accumulation in a concentration-dependent manner; alpha-ketoglutarate had limited effects, while fumarate, succinate and glutarate had no effect. This blockade was not due to an inhibition of ferric reductase activity. Instead, it appeared to be related to the capacity of these carboxylates to bind iron, since phosphate, which also binds iron, diminished the capacity of citrate, tartrate and malate to block the cellular accumulation of iron. These findings raise the possibility that citrate may have therapeutic potential in the management of neurodegenerative conditions that involve cellular iron overload.

  16. Dark Fixation of CO(2) by Crassulacean Plants: Evidence for a Single Carboxylation Step. (United States)

    Sutton, B G; Osmond, C B


    Malic acid isolated from Bryophyllum pinnatum (Lamk.) Oken (B. calycinum Salisb.), Bryophyllum tubiflorum Harv., Kalanchoë diagremontiana Hamet et Perrier and Sedum guatamalense Hemsl. after dark (14)CO(2) fixation was degraded by an in vitro NADP-malic enzyme technique. In the short term (5 to 30 seconds) the malic acid was almost exclusively labeled in the C-4 carboxyl carbon (greater than 90%). The percentage of (14)C in the C-4 carboxyl of malic acid declined slowly with time, reaching 70% in B. tubiflorum and 54% in B. pinnatum after 14 hours of exposure to (14)CO(2). It was found that malic acid-adapted Lactobacillus arabinosus may seriously underestimate the C-4 carboxyl component of label in malic acid-(14)C. The amount of substrate which the bacteria can completely metabolize was easily exceeded; there was a significant level of randomization of label even when beta-decarboxylation proceeded to completion, and in extended incubation periods, more than 25% of label was removed from malic acid-U-(14)C. The significance of these findings in relation to pathways of carbohydrate metabolism and malic acid synthesis in Crassulacean acid metabolism is discussed.

  17. Variations in the saturation magnetization of nanosized NiFe2O4 particles on adsorption of carboxylic acids

    Directory of Open Access Journals (Sweden)

    Ryo Kurosawa


    Full Text Available This work investigated magnetization changes in NiFe2O4 nanoparticles induced by the adsorption of a series of carboxylic acids. The application of formic acid resulted in a significant 8.6% decrease in the magnetization of NiFe2O4 nanoparticles at 18,000 Oe. With increasing carbon bond number in the saturated carboxylic acids, reductions in the magnetization of NiFe2O4 nanoparticles became around 4%. All unsaturated carboxylic acids produced approximately equivalent reductions in the magnetization, regardless of their double bond content. Based on these results, the observed NiFe2O4 magnetization changes appear to depend on either the polarity or the molecular size of the carboxylic acids and are believed to be caused by canting or pinning of spins in the vicinity of particle surfaces following adsorption of the acids.

  18. Using the Chiral Organophosphorus Derivatizing Agents for Determination of the Enantiomeric Composition of Chiral Carboxylic Acids by 31PNMR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Chao CHE; Zhong Ning ZHANG; Gui Lan HUANG; Xin Xing WANG; Zhao Hai QIN


    The use of chiral organophosphorus derivatizing agents prepared in situ from chiral tartrate or chiral diamine for the 31PNMR determination of the enantiomeric composition of chiral carboxylic acids is described. The method is accurate, reliable and convenient.

  19. A one-dimensional carboxylate-bridged helical copper(II) complex containing (quinolin-8-yloxy)acetate. (United States)

    Wang, Yu-Hong; Lu, Fang


    The title compound, catena-poly[[bromocopper(II)]-mu-(quinolin-8-yloxy)acetato-kappa(4)N,O,O':O''], [CuBr(C(11)H(8)NO(3))](n), is a novel carboxylate-bridged one-dimensional helical copper(II) polymer. The metal ion exhibits an approximately square-pyramidal CuBrNO(3) coordination environment, with the three donor atoms of the ligand and the bromide ion occupying the basal positions, and an O atom belonging to the carboxylate group of an adjacent molecule in the apical site. Carboxylate groups are mutually cis oriented, and each anti-anti carboxylate group bridges two copper(II) ions via one apical and one basal position [Cu...Cu = 5.677 (1) A], resulting in the formation of a helical chain along the crystallographic b axis.

  20. Aliphatic carboxylic acids as new modifiers for separation of 2,4-dinitrophenyl amino acids by micellar liquid chromatography. (United States)

    Boichenko, Alexander P; Kulikov, Artem U; Loginova, Lidia P; Iwashchenko, Anna L


    The possibilities of isocratic separation of 2,4-dinitrophenyl derivatives of 12 amino acids that considerably differ in hydrophobicity by micellar mobile phases with different organic modifiers have been discussed. For the first time aliphatic carboxylic acids have been used as modifiers of micellar eluent in micellar liquid chromatography with C18 columns. Elution strength of hybrid micellar phases on the basis of sodium dodecylsulfate and aliphatic carboxylic acids increases in sequence: aceticacid. The effect of sodium dodecylsulfate micelles on aliphatic carboxylic acids has been characterized by their micellar-induced shifts of ionization constants. The use of aliphatic carboxylic acids as modifiers of SDS micellar eluents provides better overall resolution of 2,4-dinitrophenyl-amino acids in comparison with aliphatic alcohols.

  1. The Analysis of 2-amino-2-thiazoline-4-carboxylic Acid in the Plasma of Smokers and Non-Smokers (United States)


    formation of thiocyanate occurs when cyanide reacts with a sulfane sulfur donor (Isom and Baskin 1997), predominantly thiosulfate. This formation ...of cyanide exposure is to analyze biological matricies for 2-amino- thiazoline-4-carboxylic acid (ATCA). The formation of ATCA from cyanide, as...Borowitz et al. 2001). When cyanide reacts with cystine , ATCA or 2-iminothiazolidine-4-carboxylic acid (ITCA) is formed. These two tautomers, ATCA and

  2. Selenium speciation in urine by ion-pairing chromatography with perfluorinated carboxylic acids and ICP-MS detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Bendahl, L.; Sidenius, U.;


    Five aqueous standards, selenomethionine (SeMet), methylselenomethionine (MeSeMet), methylselenocysteine (MeSeCys), selenogammaaminobutyric acid (SeGaba) and the trimethylselenonium ion (TMSe), were separated in ion-pairing chromatographic systems based on perfluorinated carboxylic acids...... in methanol. Two different perfluorinated carboxylic acids, heptafluorobutanoic acid (HFBA) and nonafluoropentanoic acid (NFPA), were used as ion-pairing agents in the separation. The selectivities of the ion-pairing agents were different. The separation was performed on a microbore column, which...

  3. Bimane: A Visible Light Induced Fluorescent Photoremovable Protecting Group for the Single and Dual Release of Carboxylic and Amino Acids. (United States)

    Chaudhuri, Amrita; Venkatesh, Yarra; Behara, Krishna Kalyani; Singh, N D Pradeep


    A series of ester conjugates of carboxylic and amino acids were synthesized based on bimane fluorescent photoremovable protecting group (FPRPG). The photorelease of single and dual (same as well as different) carboxylic and amino acids is demonstrated from a single bimane molecule on irradiation with visible light (λ ≥ 410 nm). The detailed mechanistic study of photorelease revealed that the release of two caged acids is simultaneous but in a stepwise pathway.

  4. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Rana; Emami, Shahriar Hojjati, E-mail: [Amirkabir University of Technology, Department of Biomedical Engineering (Iran, Islamic Republic of); Faghihi, Shahab, E-mail:, E-mail: [National Institute of Genetic Engineering and Biotechnology, Tissue Engineering and Biomaterials Division (Iran, Islamic Republic of)


    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  5. Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress. (United States)

    Datta, Riddhi; Kumar, Deepak; Sultana, Asma; Hazra, Saptarshi; Bhattacharyya, Dipto; Chattopadhyay, Sharmila


    Glutathione (GSH) plays a fundamental role in plant defense-signaling network. Recently, we have established the involvement of GSH with ethylene (ET) to combat environmental stress. However, the mechanism of GSH-ET interplay still remains unexplored. Here, we demonstrate that GSH induces ET biosynthesis by modulating the transcriptional and posttranscriptional regulations of its key enzymes, 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Transgenic Arabidopsis (Arabidopsis thaliana) plants with enhanced GSH content (AtECS) exhibited remarkable up-regulation of ACS2, ACS6, and ACO1 at transcript as well as protein levels, while they were down-regulated in the GSH-depleted phytoalexin deficient2-1 (pad2-1) mutant. We further observed that GSH induced ACS2 and ACS6 transcription in a WRKY33-dependent manner, while ACO1 transcription remained unaffected. On the other hand, the messenger RNA stability for ACO1 was found to be increased by GSH, which explains our above observations. In addition, we also identified the ACO1 protein to be a subject for S-glutathionylation, which is consistent with our in silico data. However, S-glutathionylation of ACS2 and ACS6 proteins was not detected. Further, the AtECS plants exhibited resistance to necrotrophic infection and salt stress, while the pad2-1 mutant was sensitive. Exogenously applied GSH could improve stress tolerance in wild-type plants but not in the ET-signaling mutant ethylene insensitive2-1, indicating that GSH-mediated resistance to these stresses occurs via an ET-mediated pathway. Together, our investigation reveals a dual-level regulation of ET biosynthesis by GSH during stress.

  6. Rational design of carboxyl groups perpendicularly attached to a graphene sheet: a platform for enhanced biosensing applications. (United States)

    Bonanni, Alessandra; Chua, Chun Kiang; Pumera, Martin


    Graphene oxide (GO)-based materials offer great potential for biofunctionalization with applications ranging from biosensing to drug delivery. Such biofunctionalization utilizes specific functional groups, typically a carboxyl moiety, as anchoring points for biomolecule. However, due to the fact that the exact chemical structure of GO is still largely unknown and poorly defined (it was postulated to consist of various oxygen-containing groups, such as epoxy, hydroxyl, carboxyl, carbonyl, and peroxy in varying ratios), it is challenging to fabricate highly biofunctionalized GO surfaces. The predominant anchoring sites (i.e., carboxyl groups) are mainly present as terminal groups on the edges of GO sheets and thus account for only a fraction of the oxygen-containing groups on GO. Herein, we suggest a direct solution to the long-standing problem of limited abundance of carboxyl groups on GO; GO was first reduced to graphene and consequently modified with only carboxyl groups grafted perpendicularly to its surface by a rational synthesis using free-radical addition of isobutyronitrile with subsequent hydrolysis. Such grafted graphene oxide can contain a high amount of carboxyl groups for consequent biofunctionalization, at which the extent of grafting is limited only by the number of carbon atoms in the graphene plane; in contrast, the abundance of carboxyl groups on "classical" GO is limited by the amount of terminal carbon atoms. Such a graphene platform embedded with perpendicularly grafted carboxyl groups was characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy, and its application was exemplified with single-nucleotide polymorphism detection. It was found that the removal of oxygen functionalities after the chemical reduction enhanced the electron-transfer rate of the graphene. More importantly, the introduction of carboxyl groups promoted a more efficient immobilization of DNA probes on the

  7. Specific catalysis of asparaginyl deamidation by carboxylic acids: kinetic, thermodynamic, and quantitative structure-property relationship analyses. (United States)

    Connolly, Brian D; Tran, Benjamin; Moore, Jamie M R; Sharma, Vikas K; Kosky, Andrew


    Asparaginyl (Asn) deamidation could lead to altered potency, safety, and/or pharmacokinetics of therapeutic protein drugs. In this study, we investigated the effects of several different carboxylic acids on Asn deamidation rates using an IgG1 monoclonal antibody (mAb1*) and a model hexapeptide (peptide1) with the sequence YGKNGG. Thermodynamic analyses of the kinetics data revealed that higher deamidation rates are associated with predominantly more negative ΔS and, to a lesser extent, more positive ΔH. The observed differences in deamidation rates were attributed to the unique ability of each type of carboxylic acid to stabilize the energetically unfavorable transition-state conformations required for imide formation. Quantitative structure property relationship (QSPR) analysis using kinetic data demonstrated that molecular descriptors encoding for the geometric spatial distribution of atomic properties on various carboxylic acids are effective determinants for the deamidation reaction. Specifically, the number of O-O and O-H atom pairs on carboxyl and hydroxyl groups with interatomic distances of 4-5 Å on a carboxylic acid buffer appears to determine the rate of deamidation. Collectively, the results from structural and thermodynamic analyses indicate that carboxylic acids presumably form multiple hydrogen bonds and charge-charge interactions with the relevant deamidation site and provide alignment between the reactive atoms on the side chain and backbone. We propose that carboxylic acids catalyze deamidation by stabilizing a specific, energetically unfavorable transition-state conformation of l-asparaginyl intermediate II that readily facilitates bond formation between the γ-carbonyl carbon and the deprotonated backbone nitrogen for cyclic imide formation.

  8. Binding properties of solubilized gonadotropin-releasing hormone receptor: role of carboxylic groups

    Energy Technology Data Exchange (ETDEWEB)

    Hazum, E.


    The interaction of /sup 125/I-buserelin, a superactive agonist of gonadotropin-releasing hormone (GnRH), with solubilized GnRH receptor was studied. The highest specific binding of /sup 125/I-buserelin to solubilized GnRH receptor is evident at 4/sup 0/C, and equilibrium is reached after 2 h of incubation. The soluble receptor retained 100% of the original binding activity when kept at 4 or 22/sup 0/C for 60 min. Mono- and divalent cations inhibited, in a concentration-dependent manner, the binding of /sup 125/I-buserelin to solubilized GnRH receptor. Monovalent cations require higher concentrations than divalent cations to inhibit the binding. Since the order of potency with the divalent cations was identical with that of their association constants to dicarboxylic compounds, it is suggested that there are at least two carboxylic groups of the receptor that participate in the binding of the hormone. The carboxyl groups of sialic acid residues are not absolutely required for GnRH binding since the binding of /sup 125/I-buserelin to solubilized GnRH receptor was only slightly affected by pretreatment with neuraminidase and wheat germ agglutinin. The finding that polylysines stimulate luteinizing hormone (LH) release from pituitary cell cultures with the same efficacy as GnRH suggest that simple charge interactions can induce LH release. According to these results, the authors propose that the driving force for the formation of the hormone-receptor complex is an ionic interaction between the positively charged amino acid arginine in position 8 and the carboxyl groups in the binding site.

  9. Carbon dioxide utilization via carbonate-promoted C-H carboxylation. (United States)

    Banerjee, Aanindeeta; Dick, Graham R; Yoshino, Tatsuhiko; Kanan, Matthew W


    Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO3(2-)) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)--a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO3(2-)-promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.

  10. Effects of temperature and sodium carboxylate additives on mineralization of calcium oxalate in silica gel systems

    Institute of Scientific and Technical Information of China (English)

    OUYANG Jianming; DENG Suiping; LI Xiangping; TAN Yanhua; Bernd Tieke


    The effects of temperature and multifunctional sodium carboxylate additives on the phase composition and morphology of calcium oxalate (CaOxa) crystals grown in silica gel system were systematically investigated using scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and Fourier-transform infrared spectra (FT-IR). The sodium carboxylates investigated include: monocarboxylate sodium acetate (NaAc), disodium tartrate (Na2tart), trisodium citrate (Na3cit), and the disodium salt of ethylenediaminetetraacetic acid (Na2edta). The temperature range was from 7℃ to 67℃. The crystallization temperature affects the phase compositions, the growth rate, and the morphology of CaOxa. First, the logarithm of the percentage of calcium oxalate dihydrate (COD) formed at a certain temperature (T) is proportional to the reciprocal of temperature (1/T). Second, the weight of CaOxa crystals decreases as decreasing the temperature. At a given temperature, the ability of the sodium carboxylates to induce COD follows the order: Na2edta > Na3cit > Na2tart >> NaAc. Third, the multicarboxylates can decrease the surface area of calcium oxalate monohydrate (COM).It makes the edges and tips of COM crystals blunt and oval. All the three changes, an increase of the content of COD, a decrease of the weight of CaOxa crystals, and a decrease of the surfacearea of COM crystals,can inhibit the formation of CaOxa stones. These results support the clinical use of citrates and may be helpful in elucidating the mechanisms of the formation of CaOxa calculus.

  11. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs (United States)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao


    The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.

  12. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain. (United States)

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula


    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  13. Self-assembled metalla-bowls for selective sensing of multi-carboxylate anions. (United States)

    Mishra, Anurag; Vajpayee, Vaishali; Kim, Hyunuk; Lee, Min Hyung; Jung, Hyunji; Wang, Ming; Stang, Peter J; Chi, Ki-Whan


    Two new tetranuclear cationic metalla-bowls 4 and 5 were self-assembled from a bis-pyridine amide ligand (H(2)L) (1) and arene-ruthenium acceptors, [(Ru(2)(μ-η(4)-C(2)O(4))(η(6)-p-cymene)(2)](O(3)SCF(3))(2) (2) and [Ru(2)(dhnd)(η(6)-p-cymene)(2)](O(3)SCF(3))(2) (dhnd = 6,11-dihydroxy-5,12-naphthacenedionato) (3), respectively. The metalla-bowls were characterized by multinuclear NMR, ESI-MS, UV-Vis spectroscopy, and single crystal X-ray diffraction study of 4. The crystal structure of 4 reveals unambiguous proof for the molecular shape of the metalla-bowl and the encapsulation of one triflate anion in the cavity through hydrogen bonding. The metalla-bowl 5 has been evaluated for anion binding studies by use of amide ligand as a hydrogen bond donor and arene-Ru acceptor as a signalling unit. UV-Vis titration studies showed that 5 selectively binds with multi-carboxylate anions such as oxalate, tartrate and citrate in a 1 : 1 fashion with high binding constants of 4.0-5.5 × 10(4) M(-1). Furthermore, the addition of multi-carboxylate anions into a solution of 5 gave rise to a large enhancement of fluorescence intensity attributable to the blocking of a photo-induced electron transfer process from the arene-ruthenium moiety to the amidic donor in 5. However, the fluorescence intensity almost remains unchanged upon addition of other anions including F(-), Cl(-), PF(6)(-), MeCOO(-), NO(3)(-) and PhCOO(-), as identically seen in the UV-Vis titration experiments, pointing to the high selectivity of 5 for the sensing of multi-carboxylate anions.

  14. Carbon dioxide utilization via carbonate-promoted C-H carboxylation (United States)

    Banerjee, Aanindeeta; Dick, Graham R.; Yoshino, Tatsuhiko; Kanan, Matthew W.


    Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO32-) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)—a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO32--promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.

  15. Effect of side chain length on intrahelical interactions between carboxylate- and guanidinium-containing amino acids. (United States)

    Kuo, Hsiou-Ting; Yang, Po-An; Wang, Wei-Ren; Hsu, Hao-Chun; Wu, Cheng-Hsun; Ting, Yu-Te; Weng, Ming-Huei; Kuo, Li-Hung; Cheng, Richard P


    The charge-containing hydrophilic functionalities of encoded charged amino acids are linked to the backbone via different numbers of hydrophobic methylenes, despite the apparent electrostatic nature of protein ion pairing interactions. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on ion pairing interactions, α-helical peptides containing Zbb-Xaa (i, i + 3), (i, i + 4) and (i, i + 5) (Zbb = carboxylate-containing residues Aad, Glu, Asp in decreasing length; Xaa = guanidinium residues Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by circular dichroism spectroscopy (CD). The helicity of Aad- and Glu-containing peptides was similar and mostly pH independent, whereas the helicity of Asp-containing peptides was mostly pH dependent. Furthermore, the Arg-containing peptides consistently exhibited higher helicity compared to the corresponding Agp-, Agb-, and Agh-containing peptides. Side chain conformational analysis by molecular mechanics calculations showed that the Zbb-Xaa (i, i + 3) and (i, i + 4) interactions mainly involved the χ 1 dihedral combinations (g+, g+) and (g-, g+), respectively. These low energy conformations were also observed in intrahelical Asp-Arg and Glu-Arg salt bridges of natural proteins. Accordingly, Asp and Glu provides variation in helix characteristics associated with Arg, but Aad does not provide features beyond those already delivered by Glu. Importantly, nature may have chosen the side chain length of Arg to support helical conformations through inherent high helix propensity coupled with stabilizing intrahelical ion pairing interactions with the carboxylate-containing residues.

  16. Cationic zinc (II) dimers and one dimensional coordination polymer from ionic carboxylic acid

    Indian Academy of Sciences (India)

    Paladugu Suresh; Ganesan Prabusankar


    A rare example of chelating two tetra cationic paddle-wheel zinc dimers were synthesized from the reaction between flexible imidazolium carboxylate (LH2Br2) and corresponding zinc precursors. A zinc coordination polymer was synthesised by treating in situ generation of 2 in the presence of 4,4′-bipyridine. These new molecules, dimers and polymer, were characterized by FT-IR, NMR, UV-vis, fluorescent and single crystal X-ray diffraction techniques. Zinc polymer is the first example of 1D coordination polymer constructed by tetra cationic zinc dimer as a secondary building unit in coordination polymer.

  17. Controlled Electrochemical Carboxylation of Graphene To Create a Versatile Chemical Platform for Further Functionalization

    DEFF Research Database (Denmark)

    Bjerglund Pedersen, Emil; Kongsfelt, Mikkel; Shimizu, Kyoko;


    An electrochemical approach is introduced for the versatile carboxylation of multi-layered graphene in 0.1 M Bu4NBF4/MeCN. First, the graphene substrate (i.e., graphene chemically vapor-deposited on Ni) is negatively charged at -1.9 V versus Ag/AgI in a degassed solution to allow for intercalation......, this electrochemical method offers a versatile procedure to make all graphene sheets in a multi-layered but expanded structure accessible for functionalization. On a more general level, this approach will provide a versatile way of forming new hybrid materials based on intimate bond coupling to graphene via...

  18. Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals (United States)

    Swarna Sowmya, N.; Sampathkrishnan, S.; Vidyalakshmi, Y.; Sudhahar, S.; Mohan Kumar, R.


    Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1064 nm.

  19. Dielectric properties of supramolecular ionic structures obtained from multifunctional carboxylic acids and amines

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Yu, Liyun; Hvilsted, Søren;


    The dielectric properties of several supramolecular ionic polymers and networks, linked by the ammonium salts of hexamethylene diamine (HMDA), tris(2-aminoethyl)amine (TAEA), poly(propylene imine) (PPI) dendrimers and two short bis carboxymethyl ether-terminated poly(ethylene glycol)s (Di......), are investigated. Here the relative dielectric permittivities of the supramolecular ionic structures formed with the multifunctional carboxylic acids were lower than those from the supramolecular ionic structures formed with the two carboxymethyl ether-terminated poly(ethylene glycol)s....

  20. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lu; Shao, Jinyou, E-mail:; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao


    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H{sup +}) and hydroxide (OH{sup −}) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H{sup +} and OH{sup −} ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results

  1. Application of thermodynamic models to study micellar properties of sodium perfluoroalkyl carboxylates in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Perez, Alfredo [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)], E-mail:; Ruso, Juan M. [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero, Maria J. [Department of Inorganic Chemistry, Faculty of Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Blanco, Elena [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Prieto, Gerardo [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Sarmiento, Felix [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)


    Sodium perfluoroalkyl carboxylates (CnFONa) with n = 6, 9, 10 have been studied by conductivity measurements at different temperatures. The Krafft point was determined for C9FONa and C10FONa at the highest concentration studied by measuring the temperature dependence of the specific conductivity. The critical micelle concentration (cmc) and the ionization degree of the micelle ({beta}) were estimated from conductivity vs. molality plots at different temperatures. Using these data and previous results on temperature dependence of cmc and {beta} of sodium perfluoroheptanoate and perfluorooctanoate, different models were applied to obtain the thermodynamic properties of micellization. The results are discussed in terms of alkyl chain length.

  2. Unusual transient absorption dynamics of silver nanoparticles in solutions of carboxylated amine complexons (United States)

    Shevchenko, G. P.; Zhuravkov, V. A.; Tretyak, E. V.; Tikhomirov, S. A.; Buganov, O. V.; Ponyavina, A. N.; Pham, Hong Minh; Do, Hoang Tung; Duong Pham, Van; Nguyen, Dai Hung


    We present the results of research on fast relaxation dynamics in the electronic excitation of silver nanoparticles synthesized in the presence of carboxylated amine complexons (NTA, Na2EDTA, DTPA) without any reductant or polymeric stabilizer. Unusual transient absorption dynamics in these objects after femtosecond laser irradiation was found, manifesting as the appearance of an additional long-lived bleaching band. The effect may be assigned to the inhomogeneous and porous shell of silver nanoparticles synthesized by such a procedure, as the consequence of a partial fragmentation of this shell due to heating under femtosecond laser excitation of plasmonic nanoparticles and subsequent electron-phonon energy relaxation.

  3. Unusual Regioselectivity in the Opening of Epoxides by Carboxylic Acid Enediolates

    Directory of Open Access Journals (Sweden)

    José Segura


    Full Text Available Addition of carboxylic acid dianions appears to be a potential alternative to the use of aluminium enolates for nucleophilic ring opening of epoxides. These conditions require the use of a sub-stoichiometric amount of amine (10% mol for dianion generation and the previous activation of the epoxide with LiCl. Yields are good, with high regioselectivity, but the use of styrene oxide led, unexpectedly, to a mixture resulting from the attack on both the primary and secondary carbon atoms. Generally, a low diastereoselectivity is seen on attack at the primary center, however only one diastereoisomer was obtained from attack to the secondary carbon of the styrene oxide.

  4. Carboxylated Photoswitchable Diarylethenes for Biolabeling and Super-Resolution RESOLFT Microscopy. (United States)

    Roubinet, Benoît; Bossi, Mariano L; Alt, Philipp; Leutenegger, Marcel; Shojaei, Heydar; Schnorrenberg, Sebastian; Nizamov, Shamil; Irie, Masahiro; Belov, Vladimir N; Hell, Stefan W


    Reversibly photoswitchable 1,2-bis(2-ethyl-6-phenyl-1-benzothiophene-1,1-dioxide-3-yl)perfluorocyclopentenes (EBT) having fluorescent "closed" forms were decorated with four or eight carboxylic groups and attached to antibodies. Low aggregation, efficient photoswitching in aqueous buffers, specific staining of cellular structures, and good photophysical properties were demonstrated. Alternating light pulses of UV and blue light induce numerous reversible photochemical transformations between two stables states with distinct structures. Using relatively low light intensities, EBTs were applied in biology-related super-resolution microscopy based on the reversible saturable (switchable) optical linear fluorescence transitions (RESOLFT) and demonstrated optical resolution of 75 nm.

  5. Requirement of the Carboxyl Terminus of a Bacterial Chemoreceptor for Its Targeted Proteolysis (United States)

    Alley, M. R. K.; Maddock, Janine R.; Shapiro, Lucille


    The bacterium Caulobacter crescentus yields two different progeny at each cell division; a chemotactically competent swarmer cell and a sessile stalked cell. The chemotaxis proteins are synthesized in the predivisional cell and then partition only to the swarmer cell upon division. The chemoreceptors that were newly synthesized were located at the nascent swarmer pole of the predivisional cell, an indication that asymmetry was established prior to cell division. When the swarmer cell differentiated into a stalked cell, the chemoreceptor was specifically degraded by virtue of an amino acid sequence located at its carboxyl terminus. Thus, a temporally and spatially restricted proteolytic event was a component of this differentiation process.


    Institute of Scientific and Technical Information of China (English)

    WU Chinyung; YANG Chaoshiung; YANG Chong


    The present article deals with the exchange process of bivalent metal ions, such as Zn2 +, Cd2 + and Hg2+, etc., taken up by non-crosslinked carboxylated polypropylene (CPP) resin. The control factor of the exchange rate deduced from the kinetic data is governed basically by the chemical reaction rather than the mass transfer effect particle diffusion and/or liquid film diffusion. In solution, all the graft chains in the outer shell ofa CPP resin could form a "quasi-macromolecular solution" domain. This opinion further demonstrates the structural pattern of CPP resin proposed in earlier paper[1].

  7. 2-Pyrrole Carboxylic Acid Nitro-Phenylamide: New Colorimetric Sensor for Anion

    Institute of Scientific and Technical Information of China (English)

    YIN Zhen-Ming; YANG Wen-Zhi; HE Jia-Qi; ZHU Xiao-Qing; CHENG Jin-Pei


    @@ Due to the role played by anions in the field of biology and environmental chemistry, the development of selec tive and sensitive chemosensor for anion sensing is a topic of current attention. Colorimetric anion sensor, which does not require the use of a potentiostate or spectrometer to detect redox or optical perturbation, can give immediate qualitative anion sensing information by visual detection and therefore has advantages over other molecular sensors.According the anion binding ability of some pyrrolic amides reported by Schmuck and Gale, we linked the color reporter group of nitroanile to pyrrole moiety and synthesized two 2-pyrrole carboxylic acid nitro-phenylamides (1 and 2).

  8. Preparation, characterization, and antitumor activity of new ethylenediamine platinum(IV) complexes containing mixed carboxylate ligands. (United States)

    Khokhar, A R; Deng, Y; Kido, Y; Siddik, Z H


    A series of ethylenediamine platinum(IV) complexes of the type PtIV(en)XA2 and PtIV(en)X'2A2, where X = 1,1-cyclobutanedicarboxylato or malonato, X' = chloro, cyclobutanecarboxylato, cyclopentanecarboxylato, or cyclohexanecarboxylato, and A = acetato or trifluoroacetato were synthesized and characterized by elemental analysis, infrared, and NMR (13C and 195Pt) spectroscopic techniques. These compounds had good to excellent antitumor activity against murine leukemia L1210 cells. Complexes with axial trifluoroacetate groups were superior to those with acetate ligands. Those possessing both axial trifluoroacetate groups and monodentate bis-carboxylate ligands in the equatorial positions were the most active in the series investigated.


    Institute of Scientific and Technical Information of China (English)

    Jing Luo; Xian-hong Wang; Ji Li; Xiao-jiang Zhao; Fo-song Wang


    Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline(cPANI).The electrostatic interaction hybrids film displayed 1-2 orders of magnitude higher electrical conductivity in comparison with common hybrids film,showing remarkable conductivity stability against water soaking.Most strikingly,it displayed ideal electrochemical activity even in a solution with pH=14,which enlarged the conducting polyaniline application window to strong alkaline media.

  10. Cyclic Comonomers for the Synthesis of Carboxylic Acid and Amine Functionalized Poly(l-Lactic Acid

    Directory of Open Access Journals (Sweden)

    Markus Heiny


    Full Text Available Degradable aliphatic polyesters such as poly(lactic acid are widely used in biomedical applications, however, they lack functional moieties along the polymer backbone that are amenable for functionalization reactions or could be the basis for interactions with biological systems. Here we present a straightforward route for the synthesis of functional α-ω epoxyesters as comonomers for lactide polymerization. Salient features of these highly functionalized epoxides are versatility in functionality and a short synthetic route of less than four steps. The α-ω epoxyesters presented serve as a means to introduce carboxylic acid and amine functional groups into poly(lactic acid polymers via ring-opening copolymerization.

  11. Silver-catalyzed decarboxylative alkynylation of aliphatic carboxylic acids in aqueous solution. (United States)

    Liu, Xuesong; Wang, Zhentao; Cheng, Xiaomin; Li, Chaozhong


    C(sp(3))-C(sp) bond formations are of immense interest in chemistry and material sciences. We report herein a convenient, radical-mediated and catalytic method for C(sp(3))-C(sp) cross-coupling. Thus, with AgNO(3) as the catalyst and K(2)S(2)O(8) as the oxidant, various aliphatic carboxylic acids underwent decarboxylative alkynylation with commercially available ethynylbenziodoxolones in aqueous solution under mild conditions. This site-specific alkynylation is not only general and efficient but also functional group compatible. In addition, it exhibits remarkable chemo- and stereoselectivity.

  12. A Convenient, General Synthesis of 1,1-Dimethylallyl Esters as Protecting Groups for Carboxylic Acids (United States)

    Sedighi, Minoo; Lipton, Mark A.


    Carboxylic acids were converted in high yield to their 1,1-dimethylallyl (DMA) esters in two steps. Palladium-catalyzed deprotection of DMA esters was shown to be compatible with tert-butyl, benzyl and Fmoc protecting groups, and Fmoc deprotection could be carried out selectively in the presence of DMA esters. DMA esters were also shown to be resistant to nucleophilic attack, suggesting that they will serve as alternatives to tert-butyl esters when acidic deprotection conditions need to be avoided. PMID:15816730

  13. A convenient, general synthesis of 1,1-dimethylallyl esters as protecting groups for carboxylic acids. (United States)

    Sedighi, Minoo; Lipton, Mark A


    [reaction: see text] Carboxylic acids were converted in high yield to their 1,1-dimethylallyl (DMA) esters in two steps. Palladium-catalyzed deprotection of DMA esters was shown to be compatible with tert-butyl, benzyl, and Fmoc protecting groups, and Fmoc deprotection could be carried out selectively in the presence of DMA esters. DMA esters were also shown to be resistant to nucleophilic attack, suggesting that they will serve as alternatives to tert-butyl esters when acidic deprotection conditions need to be avoided.

  14. Wind tunnel investigations on the retention of carboxylic acids during riming (United States)

    Jost, Alexander; Szakáll, Miklós; Diehl, Karoline; Mitra, Subir K.; Borrmann, Stephan


    In mid-latitudes, precipitation is mainly initiated via the ice phase in mixed phase clouds. In such clouds the ice particles grow to precipitation sizes at the expense of liquid drops through riming which means that supercooled droplets collide with ice particles and subsequently freeze. Water-soluble trace substances present in the liquid phase might remain only fractionally in the ice phase after freezing. This fractionation is called retention and is an important ratio which quantifies the partitioning of atmospheric trace substances between the phases. Laboratory experiments were carried out at the Mainz vertical wind tunnel to determine the retention of lower mono- and di-carboxylic acids during riming. Due to their low molecular weight and their polarity these acids are water-soluble. In the atmosphere formic acid and acetic acid are the most abundant mono-carboxylic acids in the gas and aqueous phase, thus, they represent the major fraction of carboxylic acids in cloud water. Oxalic and malonic acid are common coatings on aerosol particles because of their relatively low saturation vapor pressure. These di-carboxylic acids might therefore promote the aerosol particles to act as cloud condensation nuclei and additionally contribute to the aqueous phase chemistry in cloud droplets. The conditions during the riming experiments in the wind tunnel were similar to those in atmospheric mixed phase clouds, i.e. temperatures from -18°C to -6 °C, liquid water contents between 0.5 and 1.5 g/m3, and liquid drop radii between 10 and 20 μm. The liquid phase concentrations ranged from 3 to 5 mg/l (4.1 water was analyzed by ion chromatography and the retention coefficients, i.e. the fractions of the species which remained in the ice phase were determined. Average retention coefficients of formic acid and acetic acid were 0.73 ± 0.07 and 0.62 ± 0.12, respectively; both oxalic and malonic acids had average retention coefficients of 0.98 ± 0.04. These variations can be

  15. Hydrolysis of carboxylate ester catalyzed by a new artificial abzyme based on molecularly imprinted polymer

    Institute of Scientific and Technical Information of China (English)


    A new kind of artificial abzyme MIP-3, which contains N-phenyl benzonic amide group and “nanochannel” formed by embedded ZnO nano materials, and is imprinted by a transition-state analogue of p-nitrophenyl methyphosphonate in the hydrolysis of p-nitrophenyl acetate, was prepared by radical co-polymerization. Hydrolytic kinetics of p-nitrophenyl carboxylate catalyzed by MIP-3 was investigated. The results showed that the artificial abzyme exhibited notable substructure selectivity and strong catalytic ability in hydrolysis of p-nitrophenyl acetate

  16. Dibromidobis(pyrazine-2-carboxylic acid-κN4mercury(II dihydrate

    Directory of Open Access Journals (Sweden)

    Guo-Wei Wang


    Full Text Available The asymmetric unit of the title compound, [HgBr2(C5H4N2O22]·2H2O, contains one half-molecule and one water molecule. The HgII ion, lying on a twofold rotation axis, is four-coordinated by two N atoms of pyrazine-2-carboxylic acid ligands and two bromide ions, forming a highly distorted tetrahedral geometry. In the crystal structure, intermolecular O—H...O and O—H...N hydrogen bonds link the molecules.

  17. catena-Poly[[bis(pyridine-3-carboxylic acid-κNmercury(II]-di-μ-chlorido

    Directory of Open Access Journals (Sweden)

    Sadif A. Shirvan


    Full Text Available In the title compound, [HgCl2(C6H5NO22]n, the HgII cation is located on an inversion center and is six-coordinated in a distorted octahedral geometry by two N atoms from two pyridine-3-carboxylic acid molecules and four bridging Cl− anions. The bridging function of the Cl− anions leads to polymeric chains running along the a axis. One Hg—Cl bond is much longer than the other. In the crystal, O—H...O and weak C—H...Cl hydrogen bonds are observed.

  18. The role of metal centres in reduction and carboxylation reactions utilizing carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Quaranta, E.; Tommasi, I. (Bari Univ. (Italy))


    The utilisation of carbon dioxide in synthesis of chemicals has been confined for a long time essentially to urea and salicylic acid synthesis. Quite recently, after the discovery of transition metal-carbon dioxide complexes, the direct carboxylation of organic substrates has been investigated, the reactions can be categorized as: functionalization of olefins, CO[sub 2] insertion into C-H bond via C-H activation, reaction with strained rings, reaction with amines to afford carbamates, synthesis or organic carbonates via reaction with oxetanes. (A.B.). 41 refs, 8 figs., 2 tabs.


    Institute of Scientific and Technical Information of China (English)

    YuShanxin; ZHAOZongbao; 等


    Polyvinyl Chloride reacted with chlorosulfonic acid to from a polymer catalyst PVC-SO3H.This polymer catalyst was found to have high activity for resterification reaction between carboxylic acids and alcohols.This paper deals with the conditions in synthesis of n-butlyacetate catalyzed with PVC-SO3H.The PVC-SO3H was used as a catalyst for preparing 11 esters of acetic acid,propionic acid and butyric acid with the yields of 82-92%.

  20. Corrosion and Heat Transfer Characteristics of Water Dispersed with Carboxylate Additives and Multi Walled Carbon Nano Tubes (United States)

    Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli


    This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.

  1. Self-assembly of indole-2-carboxylic acid at graphite and gold surfaces (United States)

    De Marchi, Fabrizio; Cui, Daling; Lipton-Duffin, Josh; Santato, Clara; MacLeod, Jennifer M.; Rosei, Federico


    Model systems are critical to our understanding of self-assembly processes. As such, we have studied the surface self-assembly of a small and simple molecule, indole-2-carboxylic acid (I2CA). We combine density functional theory gas-phase (DFT) calculations with scanning tunneling microscopy to reveal details of I2CA assembly in two different solvents at the solution/solid interface, and on Au(111) in ultrahigh vacuum (UHV). In UHV and at the trichlorobenzene/highly oriented pyrolytic graphite (HOPG) interface, I2CA forms epitaxial lamellar structures based on cyclic OH⋯O carboxylic dimers. The structure formed at the heptanoic acid/HOPG interface is different and can be interpreted in a model where heptanoic acid molecules co-adsorb on the substrate with the I2CA, forming a bicomponent commensurate unit cell. DFT calculations of dimer energetics elucidate the basic building blocks of these structures, whereas calculations of periodic two-dimensional assemblies reveal the epitaxial effects introduced by the different substrates.

  2. Novel carboxylated PEG-coating on magnetite nanoparticles designed for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Illés, Erzsébet, E-mail: [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged (Hungary); Tombácz, Etelka, E-mail: [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged (Hungary); Szekeres, Márta; Tóth, Ildikó Y. [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged (Hungary); Szabó, Ákos; Iván, Béla [Department of Polymer Chemistry, Research Centre for Natural Sciences, HAS, P.O. Box 286, H-1519 Budapest (Hungary)


    Fabrication of PEG coating on magnetite nanoparticles (MNPs) is one of the most favoured ways to ensure biocompatibility. Surface modification of magnetite by an own-prepared comb-like PEG-copolymer (PEGA-AA) was compared with two commercially available ones (carboxy-PEG (PEG-C) and phosphate-PEG (PEG-P)). ATR FT-IR data revealed that all polymers form complexes on the surface of MNPs. Electrophoresis and dynamic light scattering (DLS) experiments showed that both the type and quantity of the polymers' anchoring groups influence the aggregation of coated nanomagnets. PEG-C shell does not provide excess negative charges, so magnetite particles became aggregated. However PEG-P and PEGA-AA gradually modify the surface: neutralizing the originally positively charged MNPs below loading 0.5 mmol/g, while above it a polyanionic layer forms on nanomagnets dispersing them in salty media at pH ~6.5. The PEGA-AA comb-like copolymer is more efficient for MNPs PEGylation due to the uniform distribution of carboxylates and PEG chains along the carbon skeleton. - Highlights: • PEG-polymers were adsorbed through surface complexation on magnetite. • Increasing load of functionalized PEGs gradually modifies the MNP's surface. • MNPs coated completely by polyanionic shell can be dispersed in salty media at pH ~6.5. • Carboxylated comb-like PEG copolymer provides the most efficient biocompatible coating.

  3. Functionalization of carboxylated multiwall nanotubes with imidazole derivatives and their toxicity investigations

    Directory of Open Access Journals (Sweden)

    Javad Azizian


    Full Text Available Javad Azizian1, Hasan Tahermansouri1, Esmaeil Biazar2, Saeed Heidari3, Davood Chobfrosh Khoei11Department of Chemistry, Science and Research branch, Islamic Azad University, Ponak, Tehran, Iran; 2Young researchers club – Islamic Azad University, Tonekabon Branch, Iran; 3Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshty University of Medical Sciences,Tehran, IranAbstract: Imidazoles and their derivatives are compounds with chemotherapeutic applications. In this study, we investigated the chemical functionalization of carboxylated multiwalled carbon nanotubes (MWNT–COOH by 1,2-phenylendiamine. Multiwalled nanotube (MWNT–benzimidazole was obtained by an MWNT–amide reaction with POCl3 after 72 hours, which was confirmed by Fourier transform infrared, scanning electron microscopy, thermal gravimetric analysis, and elemental analysis. These functionalizations were chosen due to -NH2 and NHCO active sites in MWNT–amide for future application. Toxicity assays with fibroblast cells and MTT test for measurement of viable cell numbers were also performed. Cellular results did not show any toxicity change in modified samples from that of the reference samples.Keywords: functionalization, 1,2-phenylendiamine, carboxylated multiwall nanotubes, toxicity

  4. Affinity chromatography using protein immobilized via arginine residues: purification of ubiquitin carboxyl-terminal hydrolases. (United States)

    Duerksen-Hughes, P J; Williamson, M M; Wilkinson, K D


    4-(Oxoacetyl)phenoxyacetic acid (OAPA) forms a stable, covalent bond between its glyoxal group and the guanidino group of arginine and arginine derivatives [Duerksen, P. J., & Wilkinson, K. D. (1987) Anal. Biochem. 160, 444-454]. Studies were carried out to determine the chemical nature of this linkage, and the structure of the stable adduct between OAPA and methylguanidine was elucidated. The stable product results from an internal oxidation-reduction of the Schiff base adduct to form a cyclic alpha-aminoamide, 4-[4-(carboxymethoxy)phenyl]-2-(methylimino)-5-oxoimidazolidine. OAPA coupled to polyacrylamide beads was used to immobilize ubiquitin via its arginine residues, and the resulting affinity support was shown to specifically and reversibly bind a previously described enzyme, ubiquitin carboxyl-terminal hydrolase [Pickart, C. M., & Rose, I. A. (1985) J. Biol. Chem. 260, 7903-7910]. The resin was then used to isolate three newly identified ubiquitin carboxyl-terminal hydrolytic activities, which did not bind to ubiquitin immobilized via lysine residues. Significant purification was achieved in each case, and one isozyme was further purified to homogeneity.

  5. Omega-3 carboxylic acids monotherapy and combination with statins in the management of dyslipidemia

    Directory of Open Access Journals (Sweden)

    Benes LB


    Full Text Available Lane B Benes1, Nikhil S Bassi2, Michael H Davidson1 1Department of Medicine, Section of Cardiology, 2Department of Medicine, University of Chicago, Chicago, IL, USA Abstract: The 2013 American College of Cardiology/American Heart Association guidelines on cholesterol management placed greater emphasis on statin therapy given the well-established benefits in primary and secondary prevention of cardiovascular disease. Residual risk may remain after statin initiation, in part because of triglyceride-rich lipoprotein cholesterol. Several large trials have failed to show benefit with non-statin cholesterol-lowering medications in the reduction of cardiovascular events. Yet, subgroup analyses showed a benefit in those with hypertriglyceridemia and lower high-density lipoprotein cholesterol level, a high-risk pattern of dyslipidemia. This review discusses the benefits of omega-3 carboxylic acids, a recently approved formulation of omega-3 fatty acid with enhanced bioavailability, in the treatment of dyslipidemia both as monotherapy and combination therapy with a statin. Keywords: omega-3 carboxylic acids, non-HDL-C, hypertriglyceridemia, residual risk, statin

  6. Simple coupling chemistry linking carboxyl-containing organic molecules to silicon oxide surfaces under acidic conditions. (United States)

    Schmidt, Sebastian W; Christ, Timo; Glockner, Christian; Beyer, Martin K; Clausen-Schaumann, Hauke


    The coupling chemistry of carboxymethylated amylose with organo-silanized silicon oxide surfaces at pH 7.4 and 2.0 was investigated using atomic force microscopy (AFM) based single-molecule force spectroscopy. At close to neutral pH, carbodiimide activation of a carboxylic acid affords formation of an amide bond with an amino surface linker. At pH 2.0, no activation with carbodiimide was required to anchor carboxymethylated amylose between an AFM tip and a glass substrate. At the same time, the mean bond rupture force f(r) dropped from 1.65 ± 0.37 nN at pH 7.4 to 1.39 ± 0.30 nN at pH 2.0 without carbodiimide, indicating that a different link to the surface can be formed at low pH. The coupling mechanism at pH 2.0 was elucidated by a series of experiments, in which the surface was functionalized with four different organosilanes, each containing characteristic functional groups. The results are rationalized with an acid-catalyzed ester condensation between a carboxyl group and a free, unreacted silanol group in the surface anchor or on the surface.

  7. Ionic elastomers based on carboxylated nitrile rubber (XNBR and magnesium aluminum layered double hydroxide (hydrotalcite

    Directory of Open Access Journals (Sweden)

    A. Laskowska


    Full Text Available The presence of carboxyl groups in carboxylated nitrile butadiene rubber (XNBR allows it to be cured with different agents. This study considers the effect of crosslinking of XNBR by magnesium aluminum layered double hydroxide (MgAl-LDH, known also as hydrotalcite (HT, on rheometric, mechano-dynamical and barrier properties. Results of XNBR/HT composites containing various HT loadings without conventional curatives are compared with XNBR compound crosslinked with commonly used zinc oxide. Hydrotalcite acts as an effective crosslinking agent for XNBR, as is particularly evident from rheometric and Fourier transform infrared spectroscopy (FTIR studies. The existence of ionic crosslinks was also detected by dynamic mechanical analysis (DMA of the resulting composites. DMA studies revealed that the XNBR/HT composites exhibited two transitions – one occurring at low temperature is associated to the Tg of elastomer and the second at high temperature corresponds to the ionic transition temperature Ti. Simultaneous application of HT as a curing agent and a filler may deliver not only environmentally friendly, zinc oxide-free rubber product but also ionic elastomer composite with excellent mechanical, barrier and transparent properties.

  8. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)


    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  9. Tetrahydro-beta-carboline-3-carboxylic acids and contaminants of L-tryptophan. (United States)

    Adachi, J; Asano, M; Ueno, Y


    Methods for the separation, identification, and quantitative assay of contaminants of L-tryptophan implicated in eosinophilia-myalgia syndrome (EMS) are described. Propylsulfonic acid (PRS), benzenesulfonic acid (SCX), and octyl-derivatized silica (C8) bonded-phase cartridges were used for the separation; LC-MS and GC-MS for identification; and HPLC-UV-fluorescence detection for quantitative analyses of norharman, harman, tetrahydro-beta-carboline-3-carboxylic acid (TCCA), 1-methyltetrahydro-beta-carboline-3-carboxylic acid (MTCA), 1,1'-ethylidenbis(tryptophan) (EBT), and 3-(phenylamino)alanine (PAA). The tissue distribution, excretion, and metabolism of these contaminants of L-tryptophan associated with EMS after acute and chronic dosage regimens are described. Considerable amounts of EBT were observed in the large intestine of rats administered EBT, showing a transfer without decomposition in gastric fluid. In addition, MTCA was detected in the blood and urine as well as the organs of rats treated with EBT, suggesting MTCA as a major metabolite of EBT. PAA accumulated markedly in the brain, among the organs of rats, after both acute and chronic administration of PAA, while MTCA accumulated in the kidneys of rats after chronic dosage of MTCA. Ethanol and/or acetaldehyde-induced formation of MTCA, as well as tryptophan-induced formation of TCCA, occurred endogenously in man and animals.

  10. Calixarene based chiral solvating agents for α-hydroxy carboxylic acids (United States)

    Bozkurt, Selahattin


    Novel chiral calix[4]arene derivatives functionalized at the lower rim have been prepared from the reaction of p-tert-butylcalix[4]arene diamine derivative with N-Phthaloyl-L-phenylalanine or (2S)-2-((benzyloxy)carbonyl)amino)-3-hydroxypropanoic acid or (2S,3R)-2-((benzyloxy)carbonyl)amino-3-hydroxybutanoic acid in 63-81% yield. The structures of these receptors were characterized by FTIR, 1H, 13C and 2D COSY NMR spectroscopy. The enantioselective recognition of these receptors towards the enantiomers of racemic carboxylic acids was studied by 1H NMR spectroscopy. The molar ratios of the chiral compounds with each of the enantiomers of guests were determined by using Job plots. The Job plots indicate that the hosts form 1:2 instantaneous complexes with all guests. The receptors exhibited different chiral recognition abilities toward the enantiomers of racemic guests. NMR studies demonstrated that the receptors function as highly effective chiral shift reagents for determining the enantiomeric purity of a series of carboxylic acids.

  11. Recovery of carboxylic acids at pH greater than pK{sub a}

    Energy Technology Data Exchange (ETDEWEB)

    Tung, L.A.


    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pK{sub a} and regenerability depend on sorbent basicity; apparent pK{sub a} and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  12. Inhibition of the β-class carbonic anhydrases from Mycobacterium tuberculosis with carboxylic acids. (United States)

    Maresca, Alfonso; Vullo, Daniela; Scozzafava, Andrea; Manole, Gheorghe; Supuran, Claudiu T


    The growth of Mycobacterium tuberculosis is strongly inhibited by weak acids although the mechanism by which these compounds act is not completely understood. A series of substituted benzoic acids, nipecotic acid, ortho- and para-coumaric acid, caffeic acid and ferulic acid were investigated as inhibitors of three β-class carbonic anhydrases (CAs, EC from this pathogen, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the scaffold present in the carboxylic acid. mtCA 3 was the isoform mostly inhibited by these compounds (K(I)s in the range of 0.11-0.97 µM); followed by mtCA 2 (K(I)s in the range of 0.59-8.10 µM), whereas against mtCA 1, these carboxylic acids showed inhibition constants in the range of 2.25-7.13 µM. This class of relatively underexplored β-CA inhibitors warrant further in vivo studies, as they may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug or extensive multi-drug resistance.

  13. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends. (United States)

    Martins, Andréa Bercini; Santana, Ruth Marlene Campomanes


    In this work, polypropylene/thermoplastic starch (PP/TPS) blends were prepared as an alternative material to use in disposable packaging, reducing the negative polymeric environmental impact. Unfortunately, this material displays morphological characteristics typical of immiscible polymer blends and a compatibilizer agent is needed. Three different carboxyl acids: myristic (C14), palmitic (C16) and stearic acids (C18) were used as natural compatibilizer agent (NCA). The effects of NCA on the mechanical, physical, thermal and morphological properties of PP/TPS blends were investigated and compared against PP/TPS with and without PP-grafted maleic anhydride (PPgMA). When compared to PP/TPS, blends with C18, PPgMA and C14 presented an improvement of 25, 22 and 17% in tensile strength at break and of 180, 194 and 259% in elongation at break, respectively. The highest increase, 54%, in the impact strength was achieved with C14 incorporation. Improvements could be seen, through scanning electron microscopy (SEM) images, in the compatibility between the immiscible components by acids incorporation. These results showed that carboxylic acids, specifically C14, could be used as compatibilizer agent and could substitute PPgMA.

  14. LAT1 activity of carboxylic acid bioisosteres: Evaluation of hydroxamic acids as substrates. (United States)

    Zur, Arik A; Chien, Huan-Chieh; Augustyn, Evan; Flint, Andrew; Heeren, Nathan; Finke, Karissa; Hernandez, Christopher; Hansen, Logan; Miller, Sydney; Lin, Lawrence; Giacomini, Kathleen M; Colas, Claire; Schlessinger, Avner; Thomas, Allen A


    Large neutral amino acid transporter 1 (LAT1) is a solute carrier protein located primarily in the blood-brain barrier (BBB) that offers the potential to deliver drugs to the brain. It is also up-regulated in cancer cells, as part of a tumor's increased metabolic demands. Previously, amino acid prodrugs have been shown to be transported by LAT1. Carboxylic acid bioisosteres may afford prodrugs with an altered physicochemical and pharmacokinetic profile than those derived from natural amino acids, allowing for higher brain or tumor levels of drug and/or lower toxicity. The effect of replacing phenylalanine's carboxylic acid with a tetrazole, acylsulfonamide and hydroxamic acid (HA) bioisostere was examined. Compounds were tested for their ability to be LAT1 substrates using both cis-inhibition and trans-stimulation cell assays. As HA-Phe demonstrated weak substrate activity, its structure-activity relationship (SAR) was further explored by synthesis and testing of HA derivatives of other LAT1 amino acid substrates (i.e., Tyr, Leu, Ile, and Met). The potential for a false positive in the trans-stimulation assay caused by parent amino acid was evaluated by conducting compound stability experiments for both HA-Leu and the corresponding methyl ester derivative. We concluded that HA's are transported by LAT1. In addition, our results lend support to a recent account that amino acid esters are LAT1 substrates, and that hydrogen bonding may be as important as charge for interaction with the transporter binding site.

  15. Carboxylated nanodiamonds can be used as negative reference in in vitro nanogenotoxicity studies. (United States)

    Moche, H; Paget, V; Chevalier, D; Lorge, E; Claude, N; Girard, H A; Arnault, J C; Chevillard, S; Nesslany, F


    Nanodiamonds (NDs) are promising nanomaterials for biomedical applications. However, a few studies highlighted an in vitro genotoxic activity for detonation NDs, which was not evidenced in one of our previous work quantifying γ-H2Ax after 20 and 100 nm high-pressure high-temperature ND exposures of several cell lines. To confirm these results, in the present work, we investigated the genotoxicity of the same 20 and 100 nm NDs and added intermediate-sized NDs of 50 nm. Conventional in vitro genotoxicity tests were used, i.e., the in vitro micronucleus and comet assays that are recommended by the French National Agency for Medicines and Health Products Safety for the toxicological evaluation of nanomedicines. In vitro micronucleus and in vitro comet assays (standard and hOGG1-modified) were therefore performed in two human cell lines, the bronchial epithelial 16HBE14o- cells and the colon carcinoma T84 cells. Our results did not show any genotoxic activity, whatever the test, the cell line or the size of carboxylated NDs. Even though these in vitro results should be confirmed in vivo, they reinforce the potential interest of carboxylated NDs for biomedical applications or even as a negative reference nanoparticle in nanotoxicology. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Effect of Alkyl Chain Length on Carboxylic Acid SAMs on Ti-6Al-4V

    Directory of Open Access Journals (Sweden)

    Gavin A. Buckholtz


    Full Text Available The formation of methyl-terminated carboxylic acid self-assembled monolayers (SAMs with even numbers of carbons, from eighteen to thirty, was investigated on the oxide surface of Ti-6Al-4V and component metal oxides. Modified surfaces were characterized using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT, matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS and contact angle analysis. Infrared spectroscopy indicated that using aerosol spray deposition techniques, stable, all-trans SAMs of octacosanoic (28 carbons and triacontanoic (30 carbons acids were formed on the alloy. Films were similarly formed on titanium and aluminum oxide. The surface of vanadium oxide exhibited limited reactivity. MALDI-TOF MS confirmed that formed films were monolayers, without multilayers or aggregates present. Water contact angles are indicative of the presence of hydrophobic methyl groups at the interface. This stable carboxylic acid SAM formation could be a useful alternative to phosphonic acid SAMs for corrosion and other applications.

  17. Green synthesis of biocompatible carboxylic curdlan-capped gold nanoparticles and its interaction with protein. (United States)

    Yan, Jing-Kun; Liu, Jin-Lin; Sun, Yu-Jia; Tang, Shuang; Mo, Zheng-Ying; Liu, Yuan-Shuai


    This study demonstrates a facile, green strategy for the preparation of gold nanoparticles (AuNPs) from chloroauric acid (HAuCl4) using carboxylic curdlan (Cc) as both reducing and stabilizing agent. The as-prepared AuNPs are characterized by UV-vis spectroscopy, high resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectrometry and Fourier transform infrared spectroscopy. The results indicated that the particle size of the AuNPs changes with variations in the reaction time and concentrations of Cc and HAuCl4. The spherical AuNPs are well dispersed, exhibiting high stability even after six months storage. The carboxylic groups (COO(-)) in the Cc molecules tend to adsorb and stabilize the surface of the AuNPs. The interaction between BSA and the Cc-capped AuNPs was investigated using fluorescence and circular dichroism spectroscopies. The results indicated that the BSA molecules adsorb on the surface of the AuNPs, without significant change in its helical structure even after conjugation with the AuNPs.

  18. Effects of long and short carboxylated or aminated multiwalled carbon nanotubes on blood coagulation.

    Directory of Open Access Journals (Sweden)

    Jie Meng

    Full Text Available In this work the effects of four different multiwalled carbon nanotubes (MWCNTs, including long carboxylated (L-COOH, short carboxylated (S-COOH, long aminated (L-NH(2 and short aminated (S-NH(2 ones, on the integrity of red blood cells, coagulation kinetics and activation of platelets were investigated with human whole blood. We found that the four MWCNTs induced different degrees of red blood cell damage as well as a mild level of platelet activation (10-25%. L-COOH and L-NH(2 induced a higher level of platelet activation than S-COOH and S-NH(2 respectively; meanwhile L-NH(2 caused marked reductions in platelet viability. The presence of the four MWCNTs led to earlier fibrin formation, L-NH(2 increased the clots hardness significantly, while L-COOH and S-NH(2 made the clots become softer. It was concluded that the four MWCNTs affected blood coagulation process and the clots mechanical properties; they also altered the integrity of the red blood cells and the viability of the platelets, as well as induced platelets activation. The effects of MWCNTs depended on the size and chemistry of the nanotubes and the type of cells they contacted.

  19. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent's antiviral efficacy. (United States)

    Lembo, David; Swaminathan, Shankar; Donalisio, Manuela; Civra, Andrea; Pastero, Linda; Aquilano, Dino; Vavia, Pradeep; Trotta, Francesco; Cavalli, Roberta


    Cyclodextrin-based nanosponges (NS) are solid nanoparticles, obtained from the cross-linking of cyclodextrins that have been proposed as delivery systems for many types of drugs. Various NS derivatives are currently under investigation in order that their properties might be tuned for different applications. In this work, new carboxylated cyclodextrin-based nanosponges (Carb-NS) carrying carboxylic groups within their structure were purposely designed as novel Acyclovir carriers. TEM measurements revealed their spherical shape and size of about 400 nm. The behaviour of Carb-NS, with respect to the incorporation and delivery of Acyclovir, was compared to that of NS, previously investigated as a drug carrier. DSC, XRPD and FTIR analyses were used to investigate the two NS formulations. The results confirm the incorporation of the drug into the NS structure and NS-Acyclovir interactions. The Acyclovir loading into Carb-NS was higher than that obtained using NS, reaching about 70% (w/w). In vitro release studies showed the release kinetics of Acyclovir from Carb-NS to be prolonged in comparison with those observed with NS, with no initial burst effect. The NS uptake into cells was evaluated using fluorescent Carb-NS and revealed the nanoparticle internalisation. Enhanced antiviral activity against a clinical isolate of HSV-1 was obtained using Acyclovir loaded in Carb-NS.

  20. Adsorption of Co(II) by a carboxylate-functionalized polyacrylamide grafted lignocellulosics. (United States)

    Shibi, I G; Anirudhan, T S


    A new adsorbent (PGBS-COOH) having carboxylate functional group at the chain end was synthesized by graft copolymerization of acrylamide onto banana stalk, BS (Musa Paradisiaca) using ferrous ammonium sulphate/H2O2 redox initiator system. The efficiency of the adsorbent in the removal of cobalt [Co(II)] from water was investigated using batch adsorption technique. The adsorbent exhibits very high adsorption potential for Co(II) and under optimum conditions more than 99% removal was achieved. The maximum adsorption capacity was observed at the pH range 6.5-9.0. The equilibrium isotherm data were analysed using three isotherm models, Langmuir, Freundlich and Scatchard, to determine the best fit equation for the sorption of Co(II) on the PGBS-COOH. A comparative study with a commercial cation exchanger, Ceralite IRC-50, having carboxylate functional group showed that PGBS-COOH is 2.8 times more effective compared to Ceralite IRC-50 at 30 degrees C. Synthetic nuclear power plant coolant water samples were also treated by the adsorbent to demonstrate its efficiency in removing Co(II) from water in the presence of other metal ions. Acid regeneration was tried for several cycles to recover the adsorbed metal ions and also to restore the sorbent to its original state.

  1. Separation of Aliphatic and Aromatic Carboxylic Acids by Conventional and Ultra High Performance Ion Exclusion Chromatography. (United States)

    Mansour, Fotouh R; Kirkpatrick, Christine L; Danielson, Neil D


    An ion exclusion chromatography (IELC) comparison between a conventional ion exchange column and an ultra-high performance liquid chromatography (UHPLC) dynamically surfactant modified C18 column for the separation of an aliphatic carboxylic acid and two aromatic carboxylic acids is presented. Professional software is used to optimize the conventional IELC separation conditions for acetylsalicylic acid and the hydrolysis products: salicylic acid and acetic acid. Four different variables are simultaneously optimized including H2SO4 concentration, pH, flow rate, and sample injection volume. Thirty different runs are suggested by the software. The resolutions and the time of each run are calculated and feed back to the software to predict the optimum conditions. Derringer's desirability functions are used to evaluate the test conditions and those with the highest desirability value are utilized to separate acetylsalicylic acid, salicylic acid, and acetic acid. These conditions include using a 0.35 mM H2SO4 (pH 3.93) eluent at a flow rate of 1 mL min(-1) and an injection volume of 72 μL. To decrease the run time and improve the performance, a UHPLC C18 column is used after dynamic modification with sodium dodecyl sulfate. Using pure water as a mobile phase, a shorter analysis time and better resolution are achieved. In addition, the elution order is different from the IELC method which indicates the contribution of the reversed-phase mode to the separation mechanism.

  2. [Analysis of aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography]. (United States)

    Ito, Kazuaki; Sakamoto, Jun; Nagaoka, Kazuya; Takayama, Yohichi; Kanahori, Takashi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko


    The analysis of seven aliphatic carboxylic acids (formic, acetic, propionic, iso-butyric, n-butyric, iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion chromatography with dilute acidic eluents (benzoic acid, perfluorobutyric acid (PFBA) and sulfuric acid) and non-suppressed conductivity/ultraviolet (UV) detection. The columns used were a styrene/divinylbenzene-based strongly acidic cation-exchange resin column (TSKgel SCX) and a polymethacrylate-based weakly acidic cation-exchange resin column (TSKgel Super IC-A/C). Good separation was performed on the TSKgel SCX in shorter retention times. For the TSKgel Super IC-A/C, peak shape of the acids was sharp and symmetrical in spite of longer retention times. In addition, the mutual separation of the acids was good except for iso- and n-butyric acids. The better separation and good detection was achieved by using the two columns (TSKgel SCX and TSKgel Super IC-A/C connected in series), lower concentrations of PFBA and sulfuric acid as eluents, non-suppressed conductivity detection and UV detection at 210 nm. This analysis was applied to anaerobic digestion process waters. The chromatograms with conductivity detection were relatively simpler compared with those of UV detection. The use of two columns with different selectivities for the aliphatic carboxylic acids and the two detection modes was effective for the determination and identification of the analytes in anaerobic digestion process waters containing complex matrices.

  3. Dual effects of aliphatic carboxylic acids on cresolase and catecholase reactions of mushroom tyrosinase. (United States)

    Gheibi, N; Saboury, A A; Haghbeen, K; Rajaei, F; Pahlevan, A A


    Catecholase and cresolase activities of mushroom tyrosinase (MT) were studied in presence of some n-alkyl carboxylic acid derivatives. Catecholase activity of MT achieved its optimal activity in presence of 1.0, 1.25, 2.0, 2.2 and 3.2 mM of pyruvic acid, acrylic acid, propanoic acid, 2-oxo-butanoic acid, and 2-oxo-octanoic acid, respectively. Contrarily, the cresolase activity of MT was inhibited by all type of the above acids. Propanoic acid caused an uncompetitive mode of inhibition (K(i)=0.14 mM), however, the pyruvic, acrylic, 2-oxo-butanoic and 2-oxo-octanoic acids showed a competitive manner of inhibition with the inhibition constants (K(i)) of 0.36, 0.6, 3.6 and 4.5 mM, respectively. So, it seems that, there is a physical difference in the docking of mono- and o-diphenols to the tyrosinase active site. This difference could be an essential determinant for the course of the catalytic cycle. Monophenols are proposed to bind only the oxyform of the tyrosinase. It is likely that the binding of acids occurs through their carboxylate group with one copper ion of the binuclear site. Thus, they could completely block the cresolase reaction, by preventing monophenol binding to the enzyme. From an allosteric point of view, n-alkyl acids may be involved in activation of MT catecholase reactions.

  4. Carboxylic acid terminated, solution exfoliated graphite by organic acylation and its application in drug delivery

    Indian Academy of Sciences (India)



    Graphite nanosheets are considered as a promising material for a range of applications from flexible electronics to functional nanodevices such as biosensors, intelligent coatings and drug delivery. Chemical functionalizationof graphite nanosheets with organic/inorganic materials offers an alternative approach to control the electronic properties of graphene, which is a zero band gap semiconductor in pristine form. In this paper, we report the aromatic electrophilic substitution of solution exfoliated graphite nanosheets (SEGn). The highly conjugated π-electronic system of graphite nanosheets enable it to have an amphiphilic characteristic in aromatic substitution reactions. The substitution was achieved through Friedel–Crafts (FC) acylation reaction under mild conditions using succinic anhydride as acylating agent and anhydrous aluminum chloride as Lewisacid. Such reaction renders towards the carboxylic acid terminated graphite nanosheets (SEGn–FC) that usually requires harsh reaction conditions. The product thus obtained was characterized using various spectroscopicand microscopic techniques. Highly stable water-dispersed sodium salt of carboxylic acid terminated graphite nanosheets (SEGn–FC-Na) was also prepared. A comparative sheet-resistance measurements of SEGn, SEGn–FC and SEGn–FC-Na were also done. Finally, the anticancer drug doxorubicin (DOX) was loaded on water dispersible SEGn–FC-Na with a loading capacity of 0.266 mg mg−1 of SEGn–FC-Na and the release of DOX from this water-soluble DOX-loaded SEGn–FC-Na at two different temperatures was found to be strongly pHdependent.

  5. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes (United States)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.


    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  6. Host-Guest Complexes of Carboxylated Pillar[n]arenes With Drugs. (United States)

    Wheate, Nial J; Dickson, Kristie-Ann; Kim, Ryung Rae; Nematollahi, Alireza; Macquart, René B; Kayser, Veysel; Yu, Guocan; Church, W Bret; Marsh, Deborah J


    Pillar[n]arenes are a new family of nanocapsules that have shown application in a number of areas, but because of their poor water solubility their biomedical applications are limited. Recently, a method of synthesizing water-soluble pillar[n]arenes was developed. In this study, carboxylated pillar[n]arenes (WP[n], n = 6 or 7) have been examined for their ability to form host-guest complexes with compounds relevant to drug delivery and biodiagnostic applications. Both pillar[n]arenes form host-guest complexes with memantine, chlorhexidine hydrochloride, and proflavine by (1)H nuclear magnetic resonance and modeling. Binding is stabilized by hydrophobic effects within the cavities, and hydrogen bonding and electrostatic interactions at the portals. Encapsulation within WP[6] results in the complete and efficient quenching of proflavine fluorescence, giving rise to "on" and "off" states that have potential in biodiagnostics. The toxicity of the pillar[n]arenes was examined using in vitro growth assays with the OVCAR-3 and HEK293 cell lines. The pillar[n]arenes are relatively nontoxic to cells except at high doses and after prolonged continuous exposure. Overall, the results show that there could be a potentially large range of medical applications for carboxylated pillar[n]arene nanocapsules.

  7. Carboxyl group (-CO2 H) functionalized coordination polymer nanoparticles as efficient platforms for drug delivery. (United States)

    Novio, Fernando; Lorenzo, Julia; Nador, Fabiana; Wnuk, Karolina; Ruiz-Molina, Daniel


    Functionalization of nanoparticles can significantly influence their properties and potential applications. Although researchers can now functionalize metal, metal oxide, and organic polymer nanoparticles with a high degree of precision, controlled surface functionalization of nanoscale coordination polymer particles (CPPs) has remained a significant challenge. The lack of methodology is perhaps one of the greatest roadblocks to the advancement of CPPs into high added-value drug delivery applications. Here, we report having achieved this goal through a stepwise formation and functionalization protocol. We fabricated robust nanoparticles with enhanced thermal and colloidal stabilities by incorporation of carboxyl groups and these surface carboxyl groups could be subsequently functionalized through well-known peptide coupling reactions. The set of chemistries that we employed as proof-of-concept enabled a plethora of new functional improvements for the application of CPPs as drug delivery carriers, including enhanced colloidal stabilities and the incorporation of additional functional groups such as polyethylene glycol (PEG) or fluorescent dyes that enabled tracking of their cellular uptake. Finally, we ascertained the cytotoxicity of the new CPP nanoparticles loaded with camptothecin to human breast adenocarcinoma (MCF-7). Efflux measurements show that the encapsulation of camptothecin enhances the potency of the drug 6.5-fold and increases the drug retention within the cell.

  8. Synthesis and characterization of a novel carboxyl group containing (copolyimide with sulfur in the polymer backbone

    Directory of Open Access Journals (Sweden)

    Miroslav Mrsevic


    Full Text Available Soluble functional (copolyimides are of great interest in the area of separation processes or optical applications, due to their excellent mechanical-, thermal- and optical properties, their superior processability and the ability to adapt their properties to a wide range of special applications. Therefore, two series of novel (copolyimides containing fluorinated sulfur- and carboxylic acid groups consisting of 4,4′-(hexafluoroisopropylidenedi(phthalic anhydride (6FDA, 3,5-diaminobenzoic acid (DABA, 4,4′-diaminodiphenylsulfide (4,4′-SDA and 3,3′-diaminodiphenylsulfone (3,3′-DDS were synthesized in a two-step polycondensation reaction. The synthesized copolymers were characterized by using NMR, FTIR, GPC, and DSC. Furthermore, with regard to processing and potential applications, the thermal stability, solubility in common organic solvents, moisture uptake, and transparency were investigated. Compared to commercially available transparent polymers, i.e., polymethylmethacrylate and cycloolefin polymers, the sulfur (copolyimides containing carboxyl groups showed much higher glass-transition temperatures, comparably low moisture uptake and high transmission at the sodium D-line. Furthermore, good solubility in commonly used organic solvents makes them very attractive as high-performance coating materials.

  9. In Vitro Reactivity of Carboxylic Acid-CoA Thioesters with Glutathione

    DEFF Research Database (Denmark)

    Sidenius, Ulrik; Skonberg, Christian; Olsen, Jørgen


    was to investigate whether a correlation could be found between the structure of acyl-CoA thioesters and their reactivities toward the tripeptide, glutathione (ç- Glu-Cys-Gly).  The  acyl-CoA  thioesters  of  eight  carboxylic  acids  (ibuprofen,  clofibric  acid, indomethacin,  fenbufen,  tolmetin,  salicylic  acid......The chemical reactivity of acyl-CoA thioesters toward nucleophiles has been demonstrated in several recent studies. Thus, intracellularly formed acyl-CoAs of xenobiotic carboxylic acids may react covalently with endogenous proteins and potentially lead to adverse effects. The purpose of this study......,  2-phenoxypropionic  acid,  and  (4-chloro-2-methyl-phenoxy)acetic  acid  (MCPA))  were  synthesized,  and  each  acyl-CoA  (0.5  mM)  was incubated with glutathione (5.0 mM) in 0.1 M potassium phosphate (pH 7.4, 37 °C). All of the acyl-CoAs reacted with glutathione to form the respective acyl...

  10. Carboxyl-ebselen-based layer-by-layer films as potential antithrombotic and antimicrobial coatings. (United States)

    Cai, Wenyi; Wu, Jianfeng; Xi, Chuanwu; Ashe, Arthur J; Meyerhoff, Mark E


    A carboxyl-ebselen-based layer-by-layer (LbL) film was fabricated by alternatively assembling carboxyl-ebselen immobilized polyethylenimine (e-PEI) and alginate (Alg) onto substrates followed by salt annealing and cross-linking. The annealed films exhibiting significantly improved stability are capable of generating nitric oxide (NO) from endogeneous S-nitrosothiols (RSNOs) in the presence of a reducing agent. The NO generation behaviors of different organoselenium species in solution phase are compared and the annealing mechanism to create stable LbL films is studied in detail. An LbL film coated polyurethane catheter is capable of generating physiological levels of NO from RSNOs even after blood soaking for 24 h, indicating potential antithrombotic applications of the coating. Further, the LbL film is also demonstrated to be capable of reducing living bacterial surface attachment and killing a broad spectrum of bacteria, likely through generation of superoxide (O(2)(·-)) from oxygen. This type of film is expected to have potential application as an antithrombotic and antimicrobial coating for different biomedical device surfaces.

  11. Solvent induced reactivity of 3,5-dimethylpyrazole towards zinc (II) carboxylates. (United States)

    Sarma, Rupam; Kalita, Dipjyoti; Baruah, Jubaraj B


    The reactions of 3,5-dimethylpyrazole with zinc(II)acetate dihydrate and varieties of aromatic carboxylic acids led to formation of mono-nuclear zinc complexes of composition [Zn(HDMP)2(RCO2)2] (R = C6H5, p-CH3-C6H4, p-NO2-C6H4 etc. HDMP = 3,5-dimethylpyrazole) in methanol, whereas the same reactants in dimethylformamide (DMF) gave binuclear 3,5-dimethylpyrazolato bridged zinc carboxylate complexes containing monodentate 3,5-dimethylpyraozole ligands with composition [Zn2(mu-DMP)2(HDMP)2(RCO2)2]. The mononuclear complexes can be converted to the corresponding binuclear complexes by simply dissolving in DMF. The reaction of zinc(II)acetate dihydrate with p-nitrobenzoic acid and 3,5-dimethylpyrazole in different solvents gave solvated mononuclear complexes of the corresponding solvent. All these solvated complexes having the core [Zn(HDMP)2(p-NO2-C6H4CO2)2] contain two structurally independent molecules in the asymmetric unit (Z' = 2).

  12. New radioiodinated carboxylic and hydroxamic matrix metalloproteinase inhibitor tracers as potential tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Oltenfreiter, Ruth E-mail:; Staelens, Ludovicus; Lejeune, Annabelle; Dumont, Filip; Frankenne, Francis; Foidart, Jean-Michel; Slegers, Guido


    Several studies have demonstrated a positive correlation between tumor progression and expression of extracellular proteinases such as matrix metalloproteinases (MMPs). MMP-2 and MMP-9 have become attractive targets for cancer research because of their increased expression in human malignant tumor tissues of various organs, providing a target for medical imaging techniques. Radioiodinated carboxylic and hydroxamic MMP inhibitors 2-(4'-[{sup 123}I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionic acid (9) and 2-(4'-[{sup 123}I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionamide (11) were synthesized by electrophilic aromatic substitution of the tributylstannyl derivatives and resulted in radiochemical yields of 60% {+-} 5% (n = 3) and 70% {+-} 5% (n = 6), respectively. In vitro zymography and enzyme assays showed high inhibition capacities of the inhibitors on gelatinases. In vivo biodistribution showed no long-term accumulation in organs and the possibility to accumulate in the tumor. These results warrant further studies of radioiodinated carboxylic and hydroxamic MMP inhibitor tracers as potential SPECT tumor imaging agents.

  13. Assessment of Shock Pretreatment of Corn Stover Using the Carboxylate Platform. (United States)

    Darvekar, Pratik; Holtzapple, Mark T


    Corn stover was pretreated with lime and shock, a mechanical process that uses a shockwave to alter the biomass structure. Two pretreatments (lime-only and lime + shock) were evaluated using enzymatic hydrolysis, batch mixed-culture fermentations, and continuous countercurrent mixed-culture fermentation. In a 120-h enzymatic hydrolysis, shock pretreatment increased the glucan digestibility of submerged lime pretreatment (SLP) corn stover by 3.5 % and oxidative lime pretreatment (OLP) corn stover by 2.5 %. The continuum particle distribution model (CPDM) was used to simulate a four-stage continuous countercurrent mixed-culture fermentation using empirical rate models obtained from simple batch experiments. The CPDM model determined that lime + shock pretreatment increased the total carboxylic acids yield by 28.5 % over lime-only pretreatment in a countercurrent fermentation with a volatile solids loading rate (VSLR) of 12 g/(L/day) and liquid retention time (LRT) of 30 days. In a semi-continuous countercurrent fermentation performed in the laboratory for 112 days with a VSLR of 1.875 g/(L day) and LRT of 16 days, lime + shock pretreatment increased the total carboxylic acid yield by 14.8 %. The experimental results matched closely with CPDM model predictions (4.05 % error).

  14. Deletion of the carboxyl-terminal region of 1-aminocyclopropane-1-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalytically hyperactive, monomeric enzyme. (United States)

    Li, N; Mattoo, A K


    1-Aminocyclopropane-1-carboxylic acid (ACC) synthase is a key enzyme regulating biosynthesis of the plant hormone ethylene. The expression of an enzymatically active, wound-inducible tomato (Lycopersicon esculentum L. cv Pik-Red) ACC synthase (485 amino acids long) in a heterologous Escherichia coli system allowed us to study the importance of hypervariable COOH terminus in enzymatic activity and protein conformation. We constructed several deletion mutants of the gene, expressed these in E. coli, purified the protein products to apparent homogeneity, and analyzed both conformation and enzyme kinetic parameters of the wild-type and truncated ACC syntheses. Deletion of the COOH terminus through Arg429 results in complete inactivation of the enzyme. Deletion of 46-52 amino acids from the COOH terminus results in an enzyme that has nine times higher affinity for the substrate S-adenosylmethionine than the wild-type enzyme. The highly efficient, truncated ACC synthase was found to be a monomer of 52 +/- 1.8 kDa as determined by gel filtration, whereas the wild-type ACC synthase, analyzed under similar conditions, is a dimer. These results demonstrate that the non-conserved COOH terminus of ACC synthase affects its enzymatic function as well as dimerization.

  15. Influence of cyclic dimer formation on the phase behavior of carboxylic acids. II. Cross-associating systems. (United States)

    Janeček, Jiří; Paricaud, Patrice


    The doubly bonded dimer association scheme (DBD) proposed by Sear and Jackson is extended to mixtures exhibiting both self- and cross-associations. The PC-SAFT equation of state is combined with the new DBD association contribution to describe the vapor-liquid equilibria of binary mixtures of carboxylic acids + associating compounds (water, alcohols, and carboxylic acids). The effect of doubly bonded dimers on the phase behavior in such systems is less important than in mixtures of carboxylic acids with nonassociating compounds, due to the cross-associations that compete with the formation of DBDs. Nevertheless, a clear improvement in the description of vapor-liquid coexistence curves is achieved over the classical 2B association model, particularly for the dew point curves.

  16. The stereodirecting effect of the glycosyl C5-carboxylate ester: stereoselective synthesis of beta-mannuronic acid alginates. (United States)

    Codée, Jeroen D C; van den Bos, Leendert J; de Jong, Ana-Rae; Dinkelaar, Jasper; Lodder, Gerrit; Overkleeft, Herman S; van der Marel, Gijsbert A


    Glycosylations of mannuronate ester donors proceed highly selectively to produce the 1,2-cis-linked products. We here forward a mechanistic rationale for this counterintuitive selectivity, based on the remote stereodirecting effect of the C5-carboxylate ester, which has been demonstrated using pyranosyl uronate ester devoid of ring substituents other than the C5- carboxylate ester. It is postulated that the C5-carboxylate ester prefers to occupy an axial position in the oxacarbenium intermediate, thereby favoring the formation of the (3)H4 half-chair over the (4)H3 conformer. Nucleophilic attack on the (3)H4 half-chair intermediate occurs in a beta-fashion, providing the 1,2-cis-mannuronates with excellent stereoselectivity. The potential of the mannuronate ester donors in the formation of the beta-mannosidic linkage has been capitalized upon in the construction of a mannuronic acid alginate pentamer using a convergent orthogonal glycosylation strategy.

  17. Extraction, purification, methylation and GC-MS analysis of short-chain carboxylic acids for metabolic flux analysis. (United States)

    Tivendale, Nathan D; Jewett, Erin M; Hegeman, Adrian D; Cohen, Jerry D


    Dynamic metabolic flux analysis requires efficient and effective methods for extraction, purification and analysis of a plethora of naturally-occurring compounds. One area of metabolism that would be highly informative to study using metabolic flux analysis is the tricarboxylic acid (TCA) cycle, which consists of short-chain carboxylic acids. Here, we describe a newly-developed method for extraction, purification, derivatization and analysis of short-chain carboxylic acids involved in the TCA cycle. The method consists of snap-freezing the plant material, followed by maceration and a 12-15h extraction at -80 °C. The extracts are then subject to reduction (to stabilize β-keto acids), purified by strong anion exchange solid phase extraction and methylated with methanolic HCl. This method could also be readily adapted to quantify many other short-chain carboxylic acids.

  18. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion

    KAUST Repository

    Rehman, Ata Ur


    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes (MWCNTs) have been developed for the first time. The MWCNTs were treated with wet chemical oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface functionality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results consistently confirmed the formation of carboxyl functionalities on MWCNTs, while the structure of MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs. © 2013 Elsevier B.V.

  19. Diaqua-(5-methyl-1H-pyrazole-3-carboxyl-ato)(4-nitro-benzoato)copper(II). (United States)

    Hu, Fei-Long; Yin, Xian-Hong; Feng, Yu; Mi, Yan; Zhang, Shan-Shan


    In the title complex, [Cu(C(7)H(4)NO(4))(C(5)H(5)N(2)O(2))(H(2)O)(2)], the Cu(II) ion is coordinated in a slightly distorted square-pyramidal enviroment. The basal plane is formed by an N atom and an O atom from a 5-methyl-1H-pyrazole-3-carboxyl-ate ligand and by two O atoms from two water ligands. The apical position is occupied by a carboxylate O atom from a 4-nitro-benzoate ligand. In the crystal structure, inter-molecular O-H⋯O and N-H⋯O hydrogen bonds link complex moleclues, forming extended chains parallel to the a axis.

  20. Biomimetic Decarboxylation of Carboxylic Acids with PhI(OAc)2 Catalyzed by Manganese Porphyrin [Mn(TPP)OAcl

    Institute of Scientific and Technical Information of China (English)

    GHOLAM REZA Karimipour; ROXANA Ahmadpour


    Manganese(Ⅲ) meso-tetraphenylporphyrin acetate [Mn(TPP)OAc] served as an effective catalyst for the oxidative decarboxylation of carboxylic acids with (diacetoxyiodo)benzene [Phl(OAc)2] in CH2C12-H2O(95:5,volume ratio),The aryl substituted acetic acids are more reactive than the less electron rich linear carboxylic acids in the presence of catalyst Mn(TPP)OAc,In the former case,the formation of carbonyl products was complete within just a few minutes with >97% selectivities,and no further oxidation of the produced aldehydes was achieved under these catalytic conditions,This method provides a benign procedure owing to the utilization of low toxic(diacetoxyiodo)benzene,biologically relevant manganese porphyrins,and carboxylic acids.

  1. Importance of the carboxyl terminus in the folding and function of alpha-hemolysin of Staphylococcus aureus. (United States)

    Sangha, N; Kaur, S; Sharma, V; Krishnasastry, M V


    The physical state of two model mutants of alpha-hemolysin (alphaHL), alphaHL(1-289), a carboxyl-terminal deletion mutant (CDM), and alphaHL(1-331), a carboxyl-terminal extension mutant (CEM), were examined in detail to identify the role of the carboxyl terminus in the folding and function of native alphaHL. Denatured alphaHL can be refolded efficiently with nearly total recovery of its activity upon restoration of nondenaturing conditions. Various biophysical and biochemical studies on the three proteins have revealed the importance of an intact carboxyl terminus in the folding of alphaHL. The CDM exhibits a marked increase in susceptibility to proteases as compared with alphaHL. alphaHL and CEM exhibit similar fluorescence emission maxima, and that of the CDM is red-shifted by 9 nm, which indicates a greater solvent exposure of the tryptophan residues of the CDM. In addition, the CDM binds 8-anilino-1-naphthalene sulfonic acid (ANS) and increases its fluorescence intensity significantly unlike alphaHL and CEM, which show marginal binding. The circular dichroism studies point that the CDM possesses significant secondary structure, but its tertiary structure is greatly diminished as compared with alphaHL. These data show that the CDM has several of the features that characterize a molten globule state. Experiments with freshly translated mutants, using coupled in vitro transcription and translation, have further supported our observations that deletion at the carboxyl terminus leads to major structural perturbations in the water-soluble form of alphaHL. The studies demonstrate a critical role of the carboxyl terminus of alphaHL in attaining the native folded state.

  2. Synthesis and Transformations of di-endo-3-Aminobicyclo-[2.2.2]oct-5-ene-2-carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Márta Palkó


    Full Text Available all-endo-3-amino-5-hydroxybicyclo[2.2.2]octane-2-carboxylic acid (13 and all-endo-5-amino-6-(hydroxymethylbicyclo[2.2.2]octan-2-ol (10 were prepared via dihydro-1,3-oxazine or g-lactone intermediates by the stereoselective functionalization of an N-protected derivative of endo-3-aminobicyclo[2.2.2]oct-5-ene-2-carboxylic acid (2. Ring closure of b-amino ester 4 resulted in tricyclic pyrimidinones 15 and 16. The structures, stereochemistry and relative configurations of the synthesized compounds were determined by IR and NMR.

  3. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids. (United States)

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu


    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.

  4. Gas-Phase Partial Oxidation of Lignin to Carboxylic Acids over Vanadium Pyrophosphate and Aluminum-Vanadium-Molybdenum. (United States)

    Lotfi, Samira; Boffito, Daria C; Patience, Gregory S


    Lignin is a complex polymer that is a potential feedstock for aromatic compounds and carboxylic acids by cleaving the β-O-4 and 5-5' linkages. In this work, a syringe pump atomizes an alkaline solution of lignin into a catalytic fluidized bed operating above 600 K. The vanadium heterogeneous catalysts convert all the lignin into carboxylic acids (up to 25 % selectivity), coke, carbon oxides, and hydrogen. Aluminum-vanadium-molybdenum mostly produced lactic acid (together with formic acid, acrylic acid, and maleic anhydride), whereas the vanadium pyrophosphate catalyst produced more maleic anhydride.

  5. Structurally characterized luminescent lanthanide zinc carboxylate precursors for Ln-Zn-O nanomaterials. (United States)

    Boyle, Timothy J; Raymond, Rebecca; Boye, Daniel M; Ottley, Leigh Anna M; Lu, Ping


    A novel family of lanthanide zinc carboxylate compounds was synthesized, characterized (structural determination and luminescent behavior), and investigated for utility as single-source precursors to Ln-Zn-O nanoparticles. Carboxylic acids [H-ORc = H-OPc (H-O(2)CCH(CH(3))(2), H-OBc (H-O(2)CC(CH(3))(3), H-ONc (H-O(2)CCH(2)C(CH(3))(3))] were individually reacted with diethyl zinc (ZnEt(2)) to yield a set of previously unidentified zinc carboxylates: (i) [Zn(mu-ORc)(3)Zn(mu-ORc)](n) [ORc = OPc (1), ONc (2)], (ii) [(py)Zn](2)(mu-ORc)(4) [ORc = OBc (3), ONc (4), and py = pyridine], or (iii) Zn(ORc)(2)(solv)(2) [ORc/solv = OPc/py (5), O(c)Nc/H(2)O (6) (O(c)Rc = chelating)]. Introduction of lanthanide cation [Ln[N(SiMe(3))(2)](3), ZnEt(2), and HOBc in py] yielded the mixed cationic species structurally characterized as: (i) (O(c)Bc)Ln[(mu-OBc)(3)Zn(py)](2) [Ln = Pr (7), Nd (8), Sm (9)] or (ii) (py)(2)Zn(mu-OBc)(3)Ln(O(c)Bc)(2)(py) [Ln = Tb (10), Dy (11), Er (12), Y (13), Yb (14)]. Exploration of alternative starting materials [Ln(NO(3))(3).nH(2)O, Zn(O(2)CCH(3))(2), HOBc in py] led to the isolation of (NO(3)(c))Ln[(mu-OBc)(3)Zn(py)](2) [Ln = La (15), Ce (16), Pr (17), Nd (18), Sm (19), Eu (20), Gd (21), Tb (22) Dy (23), and Er (24); NO(3)(c) = chelating]. The UV-vis spectra of 7-24 revealed standard absorption spectra for the Ln cations. Representative compounds were used to generate nanoparticles from an established 1,4-butanediol-based solution precipitation route. The nanoproducts isolated adopted either a mixed zincite/lanthanum oxide (18n or 22n) or pure zincite (8n or 10n) phase dependent on NO(3) or OBc moiety. Fluorescence was not observed for any of these nanomaterials possibly due to phase separation, low crystallinity, surface traps, and/or quenching based on elevated Ln cation content.

  6. Synthesis, structural characterization and antimicrobial activities of diorganotin(IV) complexes with azo-imino carboxylic acid ligand: Crystal structure and topological study of a doubly phenoxide-bridged dimeric dimethyltin(IV) complex appended with free carboxylic acid groups (United States)

    Roy, Manojit; Roy, Subhadip; Devi, N. Manglembi; Singh, Ch. Brajakishor; Singh, Keisham Surjit


    Diorganotin(IV) complexes appended with free carboxylic acids were synthesized by reacting diorganotin(IV) dichlorides [R2SnCl2; R = Me (1), Bu (2) and Ph (3)] with an azo-imino carboxylic acid ligand i.e. 2-{4-hydroxy-3-[(2-hydroxyphenylimino)methyl]phenylazo}benzoic acid in presence of triethylamine. The complexes were characterized by elemental analysis, IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy. The structure of 1 in solid state has been determined by X-ray crystallography. Crystal structure of 1 reveals that the compound crystallizes in monoclinic space group P21/c and is a dimeric dimethyltin(IV) complex appended with free carboxylic acid groups. In the structure of 1, the Sn(IV) atoms are hexacoordinated and have a distorted octahedral coordination geometry in which two phenoxy oxygen atoms and the azomethine nitrogen atom of the ligand coordinate to each tin atom. One of the phenoxy oxygen atom bridges the two tin centers resulting in a planar Sn2O2 core. Topological analysis is used for the description of molecular packing in 1. Tin NMR spectroscopy study indicates that the complexes have five coordinate geometry around tin atom in solution state. Since the complexes have free carboxylic acids, these compounds could be further used as potential metallo-ligands for the synthesis of other complexes. The synthesized diorganotin(IV) complexes were also screened for their antimicrobial activities and compound 2 showed effective antimicrobial activities.

  7. Catalytic, Conjugate Reduction-Aldol Addition Reaction of β'Oxoal kyl α, β-Unsatu rated Carboxylates%Catalytic, Conjugate Reduction-Aldol Addition Reaction of β'Oxoal kyl α, β-Unsatu rated Carboxylates

    Institute of Scientific and Technical Information of China (English)

    郑爱军; 姜岚; 李争宁


    Intramolecular conjugate reduction-aldol addition reactions of β'-oxoalkyl a,fl-unsaturated carboxylates were performed in the presence of copper catalysts generated in situ from copper salts, phosphine ligands and silanes. Moderate to good yields and high diastereoselectivities were obtained in 15 min to 3 h using bis[(2-diphenyl- phosphino)phenyl] ether as the ligand.

  8. Polymorphism in Self-Assembled Structures of 9-Anthracene Carboxylic Acid on Ag(111

    Directory of Open Access Journals (Sweden)

    Bo Xu


    Full Text Available Surface self-assembly process of 9-anthracene carboxylic acid (AnCA on Ag(111 was investigated using STM. Depending on the molecular surface density, four spontaneously formed and one annealed AnCA ordered phases were observed, namely a straight belt phase, a zigzag double-belt phase, two simpler dimer phases, and a kagome phase. The two high-density belt phases possess large unit cells on the scale length of 10 nm, which are seldom observed in molecular self-assembled structures. This structural diversity stems from a complicated competition of different interactions of AnCA molecules on metal surface, including intermolecular and molecular-substrate interactions, as well as the steric demand from high molecular surface density.

  9. Absorption of carbon dioxide in aqueous solutions of imidazolium ionic liquids with carboxylate anions

    Energy Technology Data Exchange (ETDEWEB)

    Baj, Stefan; Krawczyk, Tomasz; Dabrowska, Aleksandra; Siewniak, Agnieszka [Silesian University of Technology, Gliwice (Poland); Sobolewski, Aleksander [Institute for Chemical Processing of Coal, Zabrze (Poland)


    The solubility of carbon dioxide at atmospheric pressure in aqueous mixtures of 1,3-alkyl substituted imidazolium ionic liquids (ILs) containing carboxylic anions was studied. The ILs showed increased solubility of CO{sub 2} with decreasing water concentration. The relationship between the CO{sub 2} concentration in solution and the mole fraction of water in the ILs describes a sigmoidal curve. The regression constants of a logistic function were used to quantitatively assess the absorbent capacity and the effect of water on CO{sub 2} absorption. ILs containing the most basic anions, such as pivalate, propionate and acetate, had the best properties. It was observed that the impact of water on absorption primarily depended on the cation structure. The best absorption performance was observed for 1,3-dibutylimidazolium pivalate and 1-butyl-3-methyl imidazolium acetate.

  10. Enriched surface acidity for surfactant-free suspensions of carboxylated carbon nanotubes purified by centrifugation

    Directory of Open Access Journals (Sweden)

    Elizabeth I. Braun


    Full Text Available It is well known that surfactant-suspended carbon nanotube (CNT samples can be purified by centrifugation to decrease agglomerates and increase individually-dispersed CNTs. However, centrifugation is not always part of protocols to prepare CNT samples used in biomedical applications. Herein, using carboxylated multi-walled CNTs (cMWCNTs suspended in water without a surfactant, we developed a Boehm titrimetric method for the analysis of centrifuged cMWCNT suspensions and used it to show that the surface acidity of oxidized carbon materials in aqueous cMWCNT suspensions was enriched by ∼40% by a single low-speed centrifugation step. This significant difference in surface acidity between un-centrifuged and centrifuged cMWCNT suspensions has not been previously appreciated and is important because the degree of surface acidity is known to affect the interactions of cMWCNTs with biological systems.

  11. Oxidized amylose with high carboxyl content: A promising solubilizer and carrier of linalool for antimicrobial activity. (United States)

    Zhou, Ying; Ye, Youxin; Zhang, Wenwen; Li, Songling; Chen, Jing; Wang, Shiting; Li, Defu; Mu, Changdao


    The oxidized amyloses with different carboxyl content were prepared to include linalool for antimicrobial activity in aqueous environment. The results show that linalool can be effectively reserved from volatilization through encapsulation into amylose and oxidized amyloses. The inclusion ability of oxidized amyloses towards linalool is decreasing with the increase of oxidation level due to the depolymerization of amylose. However, the solubilization effect of oxidized amyloses to linalool is enhanced efficiently owning to the high water solubility of oxidized amyloses. It is interesting that the inclusion complexes have good antimicrobial activity in aqueous environment. Linalool solubilized by oxidized amyloses presents better antimicrobial performance than that solubilized by amylose, mainly resulting from that amylose-linalool inclusion complex would aggregate and retrograde fast in aqueous solution, which is disadvantageous for the release of linalool. The study suggests that oxidized amylose is a promising solubilizer and carrier of linalool for antimicrobial activity in aqueous environment.

  12. Synthesis and anticancer evaluation of 2-phenyl thiaolidinone substituted 2-phenyl benzothiazole-6-carboxylic acid derivatives

    Directory of Open Access Journals (Sweden)

    Padmavathi P. Prabhu


    Full Text Available A novel series of 2-(3-(4-oxo-2-substituted phenyl thiazolidin-3-ylphenylbenzo[d]thiazole-6-carboxylic acid derivatives PP1–PP8 were synthesized by various benzothiazole Schiff’s bases by reaction with thioglycollic acid. Their structures were established on the basis of IR, 1H-NMR, 13C-NMR, mass spectral data and elemental analysis. All the synthesized compounds were screened for their in vitro anticancer activity by 3-(4,5-dimethyl thiazole-2yl-2,5-diphenyltetrazoliumbromide (MTT assay on human cervical cancer cell line (HeLa cell lines. Among these compound PP2 exhibited most significant activity as compared with PP5, PP7 and PP8. However, the activity was less as compared to the standard drug Cisplatin.

  13. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Isabel Bento


    Full Text Available A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2nCO2R of different lengths (n = 0-6, 9, 10 are described.Nucleophilic substitution reactions on halo esters (X(CH2nCO2R by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultinuclear NMR and IR spectroscopies, MS spectrometry and elemental analysis; theNMR spectroscopic data were used for structural assignment of the N-1 and N-2 isomers.The molecular structure of indazol-2-yl-acetic acid (5b was determined by X-raydiffraction, which shows a supramolecular architecture involving O2-H...N1intermolecular hydrogen bonds.

  14. Novel ethyl-5-amino-3-methylthio-1H-pyrazole-4-carboxylates: Synthesis and pharmacological activity

    Directory of Open Access Journals (Sweden)

    S.N. Thore


    Full Text Available A series of novel ethyl-5-amino-3-methylthio-1H-pyrazole-4-carboxylates 3a–j were synthesized from condensation of various hydrazides 2a–j with ketene dithioacetal. The synthesized compounds were screened for in vivo analgesic and anti-inflammatory activities using acetic acid writhing test in mice and carrageenan-induced paw edema test in rat, respectively. Diclofenac sodium was used as a standard drug for comparison. Compounds 3a, 3c and 3d exhibited significant analgesic and anti-inflammatory activities at a dose of 25 mg/kg and showed quite less ulcerogenic index in the range of 0.9–1.12 whereas diclofenac sodium showed 3.10.

  15. Synthesis,structure and physical properties of the one-dimensional chain complex of tetrathiafulvalene carboxylate

    Institute of Scientific and Technical Information of China (English)


    A new Co(Ⅱ) coordination polymer bearing TTF carboxylate group, [{Co2(trioTTF)2(H2O)6}·5H2O]n (1) (trioTTF=2-(5,6,8,9,11,12,14,15-octahydro-[1,3]dithiolo[4,5-h][1,4,13,7,10]trioxadithiacyclopentadecin-2-ylidene)-1,3-dithiole-4,5-dicarboxylate), has been prepared and characterized. In the structure of 1, shorter intermolecular S····S contacts (3.565 △) are found between the trioTTF groups from neighboring chains. The electric conductivity of 1 is poor due to the bulky crown-ether group, but it exhibits ferromagnetic interaction at low temperature.

  16. Dichloridobis(4-pyridylmethyl 1H-pyrrole-2-carboxylate-κNzinc

    Directory of Open Access Journals (Sweden)

    Guilong Zhang


    Full Text Available In the title molecule, [ZnCl2(C11H10N2O22], the ZnII ion, situated on a twofold axis, is in a distorted tetrahedral coordination environment formed by two chloride anions and two pyridine N atoms of the two organic ligands. In the pyrrole-2-carboxylate unit, the pyrrole N—H group and the carbonyl group point approximately in the same direction. The dihedral angle between the two pyridine rings is 54.8 (3°. The complex molecules are connected into chains extending along [101] by N—H...Cl hydrogen bonds. The chains are further assembled into (-101 layers by C—H...O and C—H...Cl interactions.

  17. Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Sq. 2, 162 06 Prague 6 (Czech Republic)]. E-mail:; Rittich, Bohuslav [Masaryk University Brno, Tvrdeho 14, 602 00 Brno (Czech Republic)]. E-mail:; Spanova, Alena [Masaryk University Brno, Tvrdeho 14, 602 00 Brno (Czech Republic)]. E-mail:


    Magnetite nanoparticles about 14nm in diameter were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts with aqueous ammonia in the presence of poly(ethylene glycol) (PEG). Magnetic poly(glycidyl methacrylate) (PGMA) microspheres about 1{mu}m in diameter were prepared by dispersion polymerization of GMA in aqueous ethanol in the presence of PEG-coated magnetite nanoparticles. The microspheres were hydrolyzed and carboxyl groups introduced by oxidation with KMnO{sub 4}. The particles reversibly bound bacterial DNA of Bifidobacterium and Lactobacillus genera in the presence of high concentrations of PEG 6000 and sodium chloride from crude cell lysates of various dairy products (butter milk, cheese, yoghurt, probiotic tablets) or from cell lyophilisates. The presence of Bifidobacterium and Lactobacillus DNA in samples was confirmed by PCR amplification.

  18. Fluorescence of complexes of Eu( Ⅱ ) with aromatic carboxylic acid-1, 1O-phenanthroline

    Institute of Scientific and Technical Information of China (English)


    The 1, 10-phenanthroline-aromatic carboxylic acid (benzoic acid and o-phthalic acid) binary and ternary complexes of europium were synthesized. The fluorescence and FT-IR spectroscopy, elemental analysis, UV spectroscopic studies on these complexes were also performed. These complexes can emit strong red fluorescence of Eu( m ) excited by UV light. At the same excited wavelength, the fluorescence spectra of the complexes were also studied. The results indi cated that the fluorescence intensities of ternary complexes are stronger than that of binary complexes. The reason is that phenanthroline has higher electron density and higher orbit scope in the conjugated system and consequently an easier ener gy transfer to the europium ion, which makes the fluorescence intensity of ternary complexes be stronger than that of bi nary complexes.

  19. Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands (United States)

    Sullivan, Matthew R.; Sokkalingam, Punidha; Nguyen, Thong; Donahue, James P.; Gibb, Bruce C.


    In participation of the fifth statistical assessment of modeling of proteins and ligands (SAMPL5), the strength of association of six guests ( 3- 8) to two hosts ( 1 and 2) were measured by 1H NMR and ITC. Each host possessed a unique and well-defined binding pocket, whilst the wide array of amphiphilic guests possessed binding moieties that included: a terminal alkyne, nitro-arene, alkyl halide and cyano-arene groups. Solubilizing head groups for the guests included both positively charged trimethylammonium and negatively charged carboxylate functionality. Measured association constants ( K a ) covered five orders of magnitude, ranging from 56 M-1 for guest 6 binding with host 2 up to 7.43 × 106 M-1 for guest 6 binding to host 1.

  20. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). (United States)

    Krippner, Johanna; Falk, Sandy; Brunn, Hubertus; Georgii, Sebastian; Schubert, Sven; Stahl, Thorsten


    Uptake of perfluoroalkyl acids (PFAAs) by maize represents a potential source of exposure for humans, either directly or indirectly via feed for animals raised for human consumption. The aim of the following study was, therefore, to determine the accumulation potential of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). Two different concentrations of PFAAs were applied as aqueous solution to the soil to attain target concentrations of 0.25 mg or 1.00 mg of PFAA per kg of soil. Maize was grown in pots, and after harvesting, PFAA concentrations were measured in the straw and kernels of maize. PFCA and PFSA concentrations of straw decreased significantly with increasing chain length. In maize kernels, only PFCAs with a chain length ≤ C8 as well as perfluorobutanesulfonic acid (PFBS) were detected. The highest soil-to-plant transfer for both straw and kernels was determined for short-chained PFCAs and PFSAs.

  1. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters. (United States)

    Li, Yuehui; Topf, Christoph; Cui, Xinjiang; Junge, Kathrin; Beller, Matthias


    Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity.

  2. Fluorescent derivatization of aromatic carboxylic acids with horseradish peroxidase in the presence of excess hydrogen peroxide. (United States)

    Odo, Junichi; Inoguchi, Masahiko; Aoki, Hiroyuki; Sogawa, Yuto; Nishimura, Masahiro


    The fluorescent derivatization of aromatic carboxylic acids by the catalytic activity of horseradish peroxidase (HRP) in the presence of excess H2O2 was investigated. Four monocarboxylic acids, nine dicarboxylic acids, and two tricarboxylic acids, all of which are non- or weakly fluorescent, were effectively converted into fluorescent compounds using this new method. This technique was further developed for the fluorometric determination of trace amounts of terephthalic acid (3c) and lutidinic acid (2b), and linear calibration curves for concentrations between 2.5 and 20.0 nmol of terephthalic acid (3c) and 1.0 and 10.0 nmol of lutidinic acid (2b) were demonstrated. Compound III, an intermediate of HRP, played an essential role in this process. Additionally, lactoperoxidase and manganese peroxidase, peroxidases similar to HRP, showed successful fluorescent derivatization of nicotinic acid (1b), lutidinic acid (2b), and hemimellitic acid (4a) in the presence of excess H2O2.

  3. Addition of omega-3 carboxylic acids to statin therapy in patients with persistent hypertriglyceridemia. (United States)

    Davidson, Michael H; Phillips, Alyssa K; Kling, Douglas; Maki, Kevin C


    The incidence of hypertriglyceridemia has grown alongside that of obesity. Statin therapy has been widely recommended for the treatment of dyslipidemias. Omega-3 (OM3) fatty acid concentrates are commonly prescribed concurrently with statins in patients with persistent hypertriglyceridemia for additional lowering of triglyceride and non-HDL cholesterol. The bioavailability of currently available OM3 ethyl ester drugs is limited by their need for hydrolysis by pancreatic lipases, largely stimulated by dietary fat, prior to intestinal absorption. This review will discuss the chemistry, pharmacokinetics and clinical efficacy of a novel OM3 carboxylic acid drug that provides polyunsaturated docosahexaenoic and eicosapentaenoic acids in the free fatty acid form, which is readily absorbed by the intestine. This drug was approved in May 2014 as an adjunct to diet to reduce triglyceride levels in adults with severe (≥500 mg/dl) hypertriglyceridemia.

  4. Application of L-thiazolidine-4-carboxylic acid monolayer in electrochemical determination of copper(Ⅱ)

    Institute of Scientific and Technical Information of China (English)


    L-Thiazolidine-4-carboxylic acid monolayer was prepared on gold electrodes through the self-assembly approach.Such novel thioether-based monolayer could efficiently preconcentrate Cu2+,which provided a simple,stable and reproducible method for the determination of Cu2+.The modified electrodes were stable enough to be continuously used for one week(more than 30 times regeneration) with lower than 10% decrease in the response.They retained their initial activity for more than one month if used once a day.The calibration curve was linear for Cu2+ from 0.6 to 158.8 μg L?1 with a detection limit of 0.38 μg L?1.The relative standard deviation was 3.2% for a series of six successive measurements.The proposed method was applied in the determination of Cu2+ in mineral water and human hair samples.

  5. Omega-3 carboxylic acids monotherapy and combination with statins in the management of dyslipidemia. (United States)

    Benes, Lane B; Bassi, Nikhil S; Davidson, Michael H


    The 2013 American College of Cardiology/American Heart Association guidelines on cholesterol management placed greater emphasis on statin therapy given the well-established benefits in primary and secondary prevention of cardiovascular disease. Residual risk may remain after statin initiation, in part because of triglyceride-rich lipoprotein cholesterol. Several large trials have failed to show benefit with non-statin cholesterol-lowering medications in the reduction of cardiovascular events. Yet, subgroup analyses showed a benefit in those with hypertriglyceridemia and lower high-density lipoprotein cholesterol level, a high-risk pattern of dyslipidemia. This review discusses the benefits of omega-3 carboxylic acids, a recently approved formulation of omega-3 fatty acid with enhanced bioavailability, in the treatment of dyslipidemia both as monotherapy and combination therapy with a statin.

  6. SAR studies on carboxylic acid series M(1) selective positive allosteric modulators (PAMs). (United States)

    Kuduk, Scott D; Beshore, Douglas C


    There is mounting evidence from preclinical and early proof-of-concept studies suggesting that selective modulation of the M1 muscarinic receptor is efficacious in cognitive models of Alzheimer's disease (AD). A number of nonselective M1 muscarinic agonists have previously shown positive effects on cognitive function in AD patients, but were limited due to cholinergic adverse events thought to be mediated by pan activation of the M2 to M5 sub-types. Thus, there is a need to identify selective activators of the M1 receptor to evaluate their potential in cognitive disorders. One strategy to confer selectivity for M1 is the identification of allosteric agonists or positive allosteric modulators, which would target an allosteric site on the M1 receptor rather than the highly conserved orthosteric acetylcholine binding site. BQCA has been identified as a highly selective carboxylic acid M1 PAM and this review focuses on an extensive lead optimization campaign undertaken on this compound.

  7. Electrochemical Reduction and Carboxylation of Ethyl Cinnamate in MeCN

    Institute of Scientific and Technical Information of China (English)

    WANG Huan; DU Yan-Fang; LIN Mei-Yu; ZHANG Kai; LU Jia-Xing


    The electrochemical reduction and carboxylation of ethyl cinnamate have been carded out in an undivided cell equipped with a Mg sacrificial anode using MeCN as solvent.Direct electroreduction led to the formation of the hydrodimers and saturated ester.And electrocarboxylation was carried out in the presence of CO2.The global yield and the ratio of mono- to dicarboxylic acids were strongly affected by various factors:electrode material,electrolysis potential,the substrate concentration and temperature.The high yield (78%) was obtained under an optimized reaction condition (cathode:Ni;electrolysis potential:-1.7V;substrate concentration:0.1 mol·L-1;and temperature:-10℃).

  8. Recommended Correlations for the Surface Tension of Aliphatic, Carboxylic, and Polyfunctional Organic Acids (United States)

    Mulero, A.; Cachadiña, I.; Sanjuán, E. L.


    In previous papers, we have proposed specific correlations to reproduce the surface tension values for several sets of fluids and for wide ranges of temperatures. In this paper, we focus our attention on organic fatty (aliphatic, carboxylic, and polyfunctional) acids. We have taken into account the available data and values in the DIPPR and DETHERM databases and also Wohlfarth and Wohlfarth's (1997) book. In some cases we have also considered new data published elsewhere. All the data and values have been carefully filtered and subsequently fitted with the use of the model currently implemented in NIST's REFPROP program, calculating two or four adjustable coefficients for each fluid. As a result, we propose recommended correlations for 99 acids, providing mean absolute percentage deviations below 1.6% in all cases.

  9. Isolation and Molecular Characterization of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Jia-Hong Zhu


    Full Text Available Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1–7 of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment. These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production.

  10. Red-emitting alkaline-earth rare-earth pentaoxometallates powders prepared by metal carboxylates solution

    Indian Academy of Sciences (India)

    Kyu-Seog Hwang; Sung-Dae Kim; Seung Hwangbo; Jin-Tae Kim


    Moisture-insensitive metal carboxylates that are mostly liquids at room temperature have been first applied to the preparation of strontium europium aluminate (Sr2EuAlO5) powders for red-emitting phosphor under near ultraviolet radiation. Strontium naphthenate, aluminium-2-ethylhexanoate and europium-2-ethylhexanoate were dissolved with toluene to prepare starting solution. Precursor pyrolyzed at 500 °C for 240 min was finally annealed at 900–1200 °C for 240 min in Ar. X-ray diffraction analysis, field emission–scanning electron microscope and fluorescent spectrophotometer were used to evaluate structural and optical properties. For the 1000 °C-annealed powders with regular shape and narrow size distribution confirmed by FE–SEM observation, strong red emission at 615nm under the excitation of 395nm maximum was reached, then the higher annealed samples at above 1100 °C gave the lower emission intensities.

  11. Kinetics of the esterification of active pharmaceutical ingredients containing carboxylic Acid functionality in polyethylene glycol

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie V; Hansen, Steen Honoré; Moesgaard, Birthe;


    Polyethylene glycols (PEGs) are attractive as excipients in the manufacture of drug products because they are water soluble and poorly immunogenic. They are used in various pharmaceutical preparations. However, because of their terminal hydroxyl groups, PEGs can participate in esterification...... reactions. In this study, kinetics of two active pharmaceutical ingredients, cetirizine and indomethacin possessing carboxylic acid functionality, has been studied in PEG 400 and PEG 1000 at 50°C, 60°C, 70°C, and 80°C. HPLC-UV was applied for the determination of concentrations in the kinetic studies......, it is important to be aware of this drug-excipient interaction, as it can reduce the shelf-life of a low-average molecular weight PEG formulation considerably. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:2424-2433, 2014....

  12. Hemp oil ingestion causes positive urine tests for delta 9-tetrahydrocannabinol carboxylic acid. (United States)

    Costantino, A; Schwartz, R H; Kaplan, P


    A hemp oil product (Hemp Liquid Gold) was purchased from a specialty food store. Fifteen milliliters was consumed by seven adult volunteers. Urine samples were taken from the subjects before ingestion and at 8, 24, and 48 h after the dose was taken. All specimens were screened by enzyme immunoassay with SYVA EMIT II THC 20, THC 50, and THC 100 kits. The tetrahydrocannabinol carboxylic acid (THCA) concentration was determined on all samples by gas chromatography-mass spectrometry (GC-MS) (5). A total of 18 postingestion samples were submitted. Fourteen of the samples screened above the 20-ng cutoff, seven were above the 50-ng cutoff, and two screened greater than the 100-ng cutoff. All of the postingestion samples showed the presence of THCA by GC-MS.

  13. Conjugates of 1'-Aminoferrocene-1-carboxylic Acid and Proline: Synthesis, Conformational Analysis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Monika Kovačević


    Full Text Available Our previous studies showed that alteration of dipeptides Y-Fca-Ala-OMe (III into Y-Ala-Fca-OMe (IV (Y = Ac, Boc; Fca = 1'-aminoferrocene-1-carboxylic acid significantly influenced their conformational space. The novel bioconjugates Y-Fca-Pro-OMe (1, Y = Ac; 2, Y = Boc and Y-Pro-Fca-OMe (3, Y = Boc; 4, Y = Ac have been prepared in order to investigate the influence of proline, a well-known turn-inducer, on the conformational properties of small organometallic peptides with an exchanged constituent amino acid sequences. For this purpose, peptides 1–4 were subjected to detailed spectroscopic analysis (IR, NMR, CD spectroscopy in solution. The conformation of peptide 3 in the solid state was determined. Furthermore, the ability of the prepared conjugates to inhibit the growth of estrogen receptor-responsive MCF-7 mammary carcinoma cells and HeLa cervical carcinoma cells was tested.

  14. Enhanced diastereoselectivity via confinement: photoisomerization of 2,3-diphenylcyclopropane-1-carboxylic acid derivatives within zeolites. (United States)

    Sivaguru, J; Sunoj, Raghavan B; Wada, Takehiko; Origane, Yumi; Inoue, Yoshihisa; Ramamurthy, Vaidhyanathan


    From the perspective of asymmetric induction, the photochemistry of 24 chiral esters and amides of cis-2,3-diphenylcyclopropane-1-carboxylic acid from excited singlet and triplet states has been investigated within zeolites. The chiral auxiliaries placed at a remote location from the isomerization site functioned far better within a zeolite than in solution. Generally, chiral auxiliaries with an aromatic or a carbonyl substituent performed better than the ones containing only alkyl substituents. A model based on cation-binding-dependent flexibility of the chiral auxiliary accounts for the observed variation in de between aryl (and carbonyl) and alkyl chiral auxiliaries within zeolites. Cation-dependent diastereomer switch was also observed in select examples.

  15. Growth aspects, structural, optical, thermal and mechanical properties of benzotriazole pyridine-2-carboxylic acid single crystal (United States)

    Thirunavukkarsu, A.; Sujatha, T.; Umarani, P. R.; Nizam Mohideen, M.; Silambarasan, A.; Kumar, R. Mohan


    Benzotriazole pyridine-2-carboxylic acid single crystal (BTPCA) was grown by slow evaporation solution growth technique. The cell parameters and crystallinity of BTPCA crystal were found by single crystal and powder X-ray diffraction studies. The presence of functional groups was studied by FT-IR analysis. UV-vis-NIR transmission studies reveal that the BTPCA crystal is transparent in the entire visible region with lower optical cut-off wavelength of 306 nm. The thermal stability, melting point and decomposition stages of BTPCA were analysed from the thermogravimetric and differential thermal analyses. The second harmonic output power of BTPCA was measured to be 2.5 times that of KDP reference crystal. Hardness studies reveal that grown crystal shows the reverse indentation size effect and breakeven point due to release of internal fatigue generated during indentation.

  16. Solid-Phase Synthesis of Amine/Carboxyl Substituted Prolines and Proline Homologues: Scope and Limitations. (United States)

    Zhou, Ziniu; Scott, William L; O'Donnell, Martin J


    A solid-phase procedure is used to synthesize racemic peptidomimetics based on the fundamental peptide unit. The peptidomimetics are constructed around proline or proline homologues variably substituted at the amine and carbonyl sites. The procedure expands the diversity of substituted peptidomimetic molecules available to the Distributed Drug Discovery (D3) project. Using a BAL-based solid-phase synthetic sequence the proline or proline homologue subunit is both constructed and incorporated into the peptidomimetic by an α-alkylation, hydrolysis and intramolecular cyclization sequence. Further transformations on solid-phase provide access to a variety of piperazine derivatives representing a class of molecules known to exhibit central nervous system activity. The procedure works well with proline cores, but with larger six- and seven-membered ring homologues the nature of the carboxylic acid acylating the cyclic amine can lead to side reactions and result in poor overall yields.

  17. Facile Synthesis of N-Methylated Amino Acids from Chiral Aziridine-2-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jihye; Ha, Hyun-Joon [Hankuk University of Foreign Studies, Yongin (Korea, Republic of)


    Our recent success with the so-called N-methylative aziridine ring-opening reaction of nonactivated aziridines led us to the preparation of N-methylated amino acids. The nucleophilic ring-opening reaction of nonactivated aziridines requires the prerequisite of activation of aziridine as aziridinium ion, as shown in Scheme 1. We activate this nonactivated aziridine by methylation with methyltriflate to methylated aziridinium ion whose counterpart triflate anion is not nucleophilic enough to open the aziridine ring. The following external nucleophiles are applicable to the ringopening reaction, yielding N-methylated aziridine. In conclusion, we described an efficient preparation of Nmethylated α- and β-amino acids by N-methylative aziridine ring-opening reaction of aziridine-2-carboxylate and carboxamide with various nucleophiles.

  18. Electrochemiluminescence Study of Europium (III Complex with Coumarin3-Carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Stefan Lis


    Full Text Available The europium (III complex of coumarin-3-carboxylic acid (C3CA has been prepared and characterized on the basis of elemental analysis, IR, and emission (photoluminescence and electrochemiluminescence spectroscopy. The synthesised complex having a formula Eu(C3CA2(NO3(H2O2 was photophysically characterized in solution and in the solid state. Electrochemiluminescence, ECL, of the system containing the Eu(III/C3CA complex was studied using an oxide-covered aluminium electrode. The goal of these studies was to show the possibility of the use of electrochemical excitation of the Eu(III ion in aqueous solution for emission generation. The generated ECL emission was very weak, and therefore its measurements and spectral analysis were carried out with the use of cut-off filters method. The studies proved a predominate role of the ligand-to-metal energy transfer (LMET in the generated ECL.

  19. Nonlinear optical and optical limiting properties of polymeric carboxyl phthalocyanine coordinated with rare earth atom (United States)

    Zhao, Peng; Wang, Zonghua; Chen, Jishi; Zhou, Yu; Zhang, Fushi


    The nonlinear optical properties of the polymeric carboxyl phthalocyanine with lanthanum (LaPPc.COOH), holmium (HoPPc.COOH) and ytterbium (YbPPc.COOH) as centric atom, were investigated by the Z-scan method using a picosecond 532 nm laser. The synthesized phthalocyanines had steric polymeric structure and dissolved well in aqueous solution. The nonlinear optical response of them was attributed to the reverse saturable absorption and self-focus refraction. The nonlinear absorption properties decreased with the centric atoms changing from La, Ho to Yb. The largest second-order hyperpolarizability and optical limiting response threshold of LaPPc.COOH were 3.89 × 10-29 esu and 0.32 J/cm2, respectively. The reverse saturable absorption was explained by a three level mode of singlet excited state under the picosecond irradiation. The result indicates the steric structure presented additive stability of these polymeric phthalocyanines for their application as potential optical limiting materials.

  20. The benzodiazepine receptor in rat brain and its interaction with ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Martin, I.L.; Doble, A.


    (3H)Ethyl beta-carboline-3-carboxylate ((3H) beta-CCE) binds to a homogeneous population of recognition sites in rat whole brain membranes with high affinity. The (3H)beta-CCE binding is completely displaceable by low concentrations of a number of benzodiazepines with similar potencies found when using a 3H-benzodiazepine as the ligand. This suggests that the recognition sites for beta-CCE and the benzodiazepines are identical or that they are involved in a close interaction. The binding of (3H)beta-CCE does not obey simple mass-action kinetics. (3H)Flunitrazepam dissociation from its receptor population is biphasic, and different methods of initiation of this dissociation indicate that cooperative interactions take place within the receptor population. We conclude that the benzodiazepine receptor is a single entity that can exist in two conformations, the equilibrium between which may be controlled by some as yet unidentified factor.

  1. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhiyuan [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Yang, Zhanhong, E-mail: [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resource Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha 410083 (China); Hu, Youwang; Li, Jianping [College of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); Fan, Xinming [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)


    In this paper, carboxyl and amino groups have been introduced onto the surface of the multi-walled carbon nanotubes (MWCNTs) by the mixed acid treatment and the diazonium reaction, respectively. The presence of multifunctionality groups on the MWCNTs has been characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TGA) analysis, Raman spectra, scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS). The multifunctionalized carbon nanotubes were further utilized to react with acetyl chloride and ethylenediamine (EDA). The formation of the amide bond in the grafting reaction has been confirmed by FT-IR spectroscopy. The result indicates that the further grafting is successful. The multifunctionalized MWCNTs can be a new versatile platform for many interesting applications.

  2. Quantification of the xylem-to-phloem transfer of amino acids by use of inulin [14C]carboxylic acid as xylem transport marker

    NARCIS (Netherlands)

    Bel, A.J.E. van


    Inulin [¹⁴C] carboxylic acid and ¹⁴C.labelled amino acid (a-aminoisobutyric acid (aib) and valine) solutions were introduced into the transpiration stream through the cut stem bases of young (4-12 leaves) tomato plants. Inulin carboxylic acid (inu) was translocated exclusively by the xylem, whereas

  3. The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae sensu stricto

    NARCIS (Netherlands)

    Smallegange, R.C.; Qiu, Y.T.; Bukovinszkine-Kiss, G.; Loon, van J.J.A.; Takken, W.


    The role of aliphatic carboxylic acids in host-seeking response of the malaria mosquito Anopheles gambiae sensu stricto was examined both in a dual-choice olfactometer and with indoor traps. A basic attractive blend of ammonia + lactic acid served as internal standard odor. Single carboxylic acids w

  4. Recurrent De Novo Mutations Affecting Residue Arg1 38 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa

    NARCIS (Netherlands)

    Fischer-Zirnsak, Bjoern; Escande-Beillard, Nathalie; Ganesh, Jaya; Tan, Yu Xuan; Al Bughaili, Mohammed; Lin, Angela E.; Sahai, Inderneel; Bahena, Paulina; Reichert, Sara L.; Loh, Abigail; Wright, Graham D.; Liu, Jaron; Rahikkala, Elisa; Pivnick, Eniko K.; Choudhri, Asim F.; Krueger, Ulrike; Zemojtel, Tomasz; van Ravenswaaij-Arts, Conny; Mostafavi, Roya; Stolte-Dijkstra, Irene; Symoens, Sofie; Pajunen, Leila; Al-Gazali, Lihadh; Meierhofer, David; Robinson, Peter N.; Mundlos, Stefan; Villarroel, Camilo E.; Byers, Peter; Masri, Amira; Robertson, Stephen P.; Schwarze, Ulrike; Callewaert, Bert; Reversade, Bruno; Kornak, Uwe


    Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively,

  5. Transition-metal-free visible-light photoredox catalysis at room-temperature for decarboxylative fluorination of aliphatic carboxylic acids by organic dyes. (United States)

    Wu, Xinxin; Meng, Chunna; Yuan, Xiaoqian; Jia, Xiaotong; Qian, Xuhong; Ye, Jinxing


    We report herein an efficient, general and green method for decarboxylative fluorination of aliphatic carboxylic acids. By using a transition-metal-free, organocatalytic photoredox system, the reaction of various aliphatic carboxylic acids with the Selectfluor reagent afforded the corresponding alkyl fluorides in satisfactory yields under visible light irradiation at room temperature.


    NARCIS (Netherlands)



    N-(4-Aminobutyl)-N-ethylisoluminol was used for labelling of carboxylic acids. The derivatization reaction was carried out with 1-hydroxybenzotriazole as pre-activator of the carboxylic acid function and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide as the coupling reagent. Optimum conditions for t

  7. Metallaphotoredox-catalysed sp3-sp3 cross-coupling of carboxylic acids with alkyl halides (United States)

    Johnston, Craig P.; Smith, Russell T.; Allmendinger, Simon; MacMillan, David W. C.


    In the past 50 years, cross-coupling reactions mediated by transition metals have changed the way in which complex organic molecules are synthesized. The predictable and chemoselective nature of these transformations has led to their widespread adoption across many areas of chemical research. However, the construction of a bond between two sp3-hybridized carbon atoms, a fundamental unit of organic chemistry, remains an important yet elusive objective for engineering cross-coupling reactions. In comparison to related procedures with sp2-hybridized species, the development of methods for sp3-sp3 bond formation via transition metal catalysis has been hampered historically by deleterious side-reactions, such as β-hydride elimination with palladium catalysis or the reluctance of alkyl halides to undergo oxidative addition. To address this issue, nickel-catalysed cross-coupling processes can be used to form sp3-sp3 bonds that utilize organometallic nucleophiles and alkyl electrophiles. In particular, the coupling of alkyl halides with pre-generated organozinc, Grignard and organoborane species has been used to furnish diverse molecular structures. However, the manipulations required to produce these activated structures is inefficient, leading to poor step- and atom-economies. Moreover, the operational difficulties associated with making and using these reactive coupling partners, and preserving them through a synthetic sequence, has hindered their widespread adoption. A generically useful sp3-sp3 coupling technology that uses bench-stable, native organic functional groups, without the need for pre-functionalization or substrate derivatization, would therefore be valuable. Here we demonstrate that the synergistic merger of photoredox and nickel catalysis enables the direct formation of sp3-sp3 bonds using only simple carboxylic acids and alkyl halides as the nucleophilic and electrophilic coupling partners, respectively. This metallaphotoredox protocol is suitable for

  8. Biological roles and therapeutic potential of hydroxy-carboxylic acid receptors

    Directory of Open Access Journals (Sweden)

    Kashan eAhmed


    Full Text Available In the recent past, deorphanization studies have described intermediates of energy metabolism to activate G protein-coupled receptors (GPCRs and to thereby regulate metabolic functions. GPR81, GPR109A and GPR109B, formerly known as the nicotinic acid receptor family, are encoded by clustered genes and share a high degree of sequence homology. Recently, hydroxy-carboxylic acids were identified as endogenous ligands of GPR81, GPR109A and GPR109B, and therefore these receptors have been placed into a novel receptor family of hydroxy-carboxylic acid (HCA receptors. The HCA1 receptor (GPR81 is activated by the glycolytic metabolite 2-hydroxy-propionic acid (lactate, the HCA2 receptor is activated by the ketone body 3-hydroxy-butyric acid and the HCA3 receptor (GPR109B is a receptor for the β-oxidation intermediate 3-hydroxy-octanoic acid. While HCA1 and HCA2 receptors are present in most mammalian species, the HCA3 receptor is exclusively found in humans and higher primates. HCA receptors are expressed in adipose tissue and mediate anti-lipolytic effects in adipocytes through Gi-type G-protein-dependent inhibition of adenylyl cyclase. HCA2 and HCA3 inhibit lipolysis during conditions of increased β-oxidation such as prolonged fasting, whereas HCA1 mediates the anti-lipolytic effects of insulin in the fed state. As HCA2 is a receptor for the established anti-dyslipidemic drug nicotinic acid, HCA1 and HCA3 also represent promising drug targets and several synthetic ligands for HCA receptors have been developed. In this article, we will summarize the deorphanization and pharmacological characterization of HCA receptors. Moreover, we will discuss recent progress in elucidating the physiological and pathophysiological role to further evaluate the therapeutic potential of the HCA receptor family for the treatment of metabolic disease.

  9. Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups. (United States)

    Wang, Cong-Zhi; Lan, Jian-Hui; Wu, Qun-Yan; Luo, Qiong; Zhao, Yu-Liang; Wang, Xiang-Ke; Chai, Zhi-Fang; Shi, Wei-Qun


    Recovery of uranium from seawater is extremely challenging but important for the persistent development of nuclear energy, and thus exploring the coordination structures and bonding nature of uranyl complexes becomes essential for designing highly efficient uranium adsorbents. In this work, the interactions of uranium and a series of adsorbents with various well-known functional groups including amidoximate (AO(-)), carboxyl (Ac(-)), glutarimidedioximate (HA(-)), and bifunctional AO(-)/Ac(-), HA(-)/Ac(-) on different alkyl chains (R'═CH3, R″═C13H26) were systematically studied by quantum chemical calculations. For all the uranyl complexes, the monodentate and η(2) coordination are the main binding modes for the AO(-) groups, while Ac(-) groups act as monodentate and bidentate ligands. Amidoximes can also form cyclic imide dioximes (H2A), which coordinate to UO2(2+) as tridentate ligands. Kinetic analysis of the model displacement reaction confirms the rate-determining step in the extraction process, that is, the complexing of uranyl by amidoxime group coupled with the dissociation of the carbonate group from the uranyl tricarbonate complex [UO2(CO3)3](4-). Complexing species with AO(-) groups show higher binding energies than the analogues with Ac(-) groups. However, the obtained uranyl complexes with Ac(-) seem to be more favorable according to reactions with [UO2(CO3)3](4-) as reactant, which may be due to the higher stability of HAO compared to HAc. This is also the reason that species with mixed functional group AO(-)/Ac(-) are more stable than those with monoligand. Thus, as reported in the literature, the adsorbability of uranium can be improved by the synergistic effects of amidoxime and carboxyl groups.

  10. Revised molecular basis of the promiscuous carboxylic acid perhydrolase activity in serine hydrolases. (United States)

    Yin, DeLu Tyler; Kazlauskas, Romas J


    Several serine hydrolases catalyze a promiscuous reaction: perhydrolysis of carboxylic acids to form peroxycarboxylic acids. The working hypothesis is that perhydrolases are more selective than esterases for hydrogen peroxide over water. In this study, we tested this hypothesis, and focused on L29P-PFE (Pseudomonas fluorescens esterase), which catalyzes perhydrolysis of acetic acid 43-fold faster than wild-type PFE. This hypothesis predicts that L29P-PFE should be approximately 43-fold more selective for hydrogen peroxide than wild-type PFE, but experiments show that L29P-PFE is less selective. The ratio of hydrolysis to perhydrolysis of methyl acetate at different concentrations of hydrogen peroxide fit a kinetic model for nucleophile selectivity. L29P-PFE (β(0)=170  M(-1)) is approximately half as selective for hydrogen peroxide over water than wild-type PFE (β(0)=330  M(-1)), which contradicts the working hypothesis. An alternative hypothesis is that carboxylic acid perhydrolases increase perhydrolysis by forming the acyl-enzyme intermediate faster. Consistent with this hypothesis, the rate of acetyl-enzyme formation, measured by (18)O-water exchange into acetic acid, was 25-fold faster with L29P-PFE than with wild-type PFE, which is similar to the 43-fold faster perhydrolysis with L29P-PFE. Molecular modeling of the first tetrahedral intermediate (T(d)1) suggests that a closer carbonyl group found in perhydrolases accepts a hydrogen bond from the leaving group water. This revised understanding can help design more efficient enzymes for perhydrolysis and shows how subtle changes can create new, unnatural functions in enzymes.

  11. Δ(1-pyrroline-5-carboxylate/glutamate biogenesis is required for fungal virulence and sporulation.

    Directory of Open Access Journals (Sweden)

    Ziting Yao

    Full Text Available Proline dehydrogenase (Prodh and Δ(1-pyrroline-5-carboxylate dehydrogenase (P5Cdh are two key enzymes in the cellular biogenesis of glutamate. Recombinant Prodh and P5Cdh proteins of the chestnut blight fungus Cryphonectria parasitica were investigated and showed activity in in vitro assays. Additionally, the C. parasitica Prodh and P5Cdh genes were able to complement the Saccharomyces cerevisiae put1 and put2 null mutants, respectively, to allow these proline auxotrophic yeast mutants to grow on media with proline as the sole source of nitrogen. Deletion of the Prodh gene in C. parasitica resulted in hypovirulence and a lower level of sporulation, whereas deletion of P5Cdh resulted in hypovirulence though no effect on sporulation; both Δprodh and Δp5cdh mutants were unable to grow on minimal medium with proline as the sole nitrogen source. In a wild-type strain, the intracellular level of proline and the activity of Prodh and P5Cdh increased after supplementation of exogenous proline, though the intracellular Δ(1-pyrroline-5-carboxylate (P5C content remained unchanged. Prodh and P5Cdh were both transcriptionally down-regulated in cells infected with hypovirus. The disruption of other genes with products involved in the conversion of arginine to ornithine, ornithine and glutamate to P5C, and P5C to proline in the cytosol did not appear to affect virulence; however, asexual sporulation was reduced in the Δpro1 and Δpro2 mutants. Taken together, our results showed that Prodh, P5Cdh and related mitochondrial functions are essential for virulence and that proline/glutamate pathway components may represent down-stream targets of hypovirus regulation in C. parasitica.

  12. Evaluation of toxic effects of several carboxylic acids on bacterial growth by toxicodynamic modelling

    Directory of Open Access Journals (Sweden)

    Vázquez José


    Full Text Available Abstract Background Effects of organic acids on microbial fermentation are commonly tested in investigations about metabolic behaviour of bacteria. However, they typically provide only descriptive information without modelling the influence of acid concentrations on bacterial kinetics. Results We developed and applied a mathematical model (secondary model to capture the toxicological effects of those chemicals on kinetic parameters that define the growth of bacteria in batch cultures. Thus, dose-response kinetics were performed with different bacteria (Leuconostoc mesenteroides, Carnobacterium pisicola, Escherichia coli, Bacillus subtilis and Listonella anguillarum exposed at increasing concentrations of individual carboxylic acids (formic, acetic, propionic, butyric and lactic. In all bioassays the acids affected the maximum bacterial load (Xm and the maximum growth rate (vm but only in specific cases the lag phase (λ was modified. Significance of the parameters was always high and in all fermentations the toxicodynamic equation was statistically consistent and had good predictability. The differences between D and L-lactic acid effects were significant for the growth of E. coli, L. mesenteroides and C. piscicola. In addition, a global parameter (EC50,τ was used to compare toxic effects and provided a realistic characterization of antimicrobial agents using a single value. Conclusions The effect of several organic acids on the growth of different bacteria was accurately studied and perfectly characterized by a bivariate equation which combines the basis of dose-response theory with microbial growth kinetics (secondary model. The toxicity of carboxylic acids was lower with the increase of the molecular weight of these chemicals.

  13. Analysis of aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography

    Institute of Scientific and Technical Information of China (English)

    Kazuaki ITO; Kazuhiko TANAKA; Jun SAKAMOTO; Kazuya NAGAOKA; Yohichi TAKAYAMA; Takashi KANAHORI; Hiroshi SUNAHARA; Tsuneo HAYASHI; Shinji SATO; Takeshi HIROKAWA


    The analysis of seven aliphatic carboxylic acids ( formic,acetic,propionic,iso-butyric,n-butyric,iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion chromatography with dilute acidic eluents (benzoic acid,perfluorobutyric acid (PFBA) and sulfuric acid) and non-suppressed conductivity/ultraviolet (UV) detection.The columns used were a styrene/divinylbenzene-based strongly acidic cation-exchange resin column ( TSKgel SCX) and a polymethacrylate-based weakly acidic cation-exchange resin column ( TSKgel Super IC-A/C ).Good separation was performed on the TSKgel SCX in shorter retention times.For the TSKgel Super IC-A/C,peak shape of the acids was sharp and symmetrical in spite of longer retention times.In addition,the mutual separation of the acids was good except for iso- and n-butyric acids.The better separation and good detection was achieved by using the two columns (TSKgel SCX and TSKgel Super IC-A/C connected in series),lower concentrations of PFBA and sulfuric acid as eluents,non-suppressed conductivity detection and UV detection at 210 nm.This analysis was applied to anaerobic digestion process waters.The chromatograms with conductivity detection were relatively simpler compared with those of UV detection.The use of two columns with different selectivities for the aliphatic carboxylic acids and the two detection modes was effective for the determination and identification of the analytes in anaerobic digestion process waters containing complex matrices.

  14. A new fluorinated urethane dimethacrylate with carboxylic groups for use in dental adhesive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Tinca, E-mail: [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Melinte, Violeta [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Aldea, Horia [Gr. T. Popa University of Medicine and Pharmacy, Faculty of Dentistry, 16 University Str., 700115 Iasi (Romania); Pelin, Irina M.; Buruiana, Emil C. [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania)


    A urethane macromer containing hexafluoroisopropylidene, poly(ethylene oxide) and carboxylic moieties (UF-DMA) was synthesized and used in proportions varying between 15 and 35 wt.% (F1–F3) in dental adhesive formulations besides BisGMA, triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The FTIR and {sup 1}H ({sup 13}C) NMR spectra confirmed the chemical structure of the UF-DMA. The experimental adhesives were characterized with regard to the degree of conversion, water sorption/solubility, contact angle, diffusion coefficient, Vickers hardness, and morphology of the crosslinked networks and compared with the specimens containing 10 wt.% hydroxyapatite (HAP) or calcium phosphate (CaP). The conversion degree (after 180 s of irradiation with visible light) ranged from 59.5% (F1) to 74.8% (F3), whereas the water sorption was between 23.15 μg mm{sup −3} (F1) and 40.52 μg mm{sup −3} (F3). Upon the addition of HAP or CaP this parameter attained values of 37.82–49.14 μg mm{sup −3} (F1–F3-HAP) and 34.58–45.56 μg mm{sup −3}, respectively. Also, the formation of resin tags through the infiltration of a dental composition (F3) was visualized by SEM analysis. The results suggest that UF-DMA taken as co-monomer in dental adhesives of acrylic type may provide improved properties in the moist environment of the mouth. - Highlights: • Fluorinated urethane dimethacrylate with carboxylic units (UF-DMA) was proposed as co-monomer in dental adhesives. • UF-DMA exhibits good photoreactivity in mixture with commercial dental monomers. • Water sorption/solubility and diffusion coefficient depend on the amount of UF-DMA. • The infiltration of adhesive mixture into the dentin tubules was evidenced by SEM.

  15. Oxidized Cellulose with Different Carboxyl Content: Structure and Properties before and after Beating (United States)

    Vendula, Hejlová; Miloslav, Milichovský

    Our recent studies concentrated in investigating influence of beating oxidized cellulose, with different carboxyl content, on changing their basic properties (degree of polymerization, WRV - water resistant value and X-ray diffraction). Cellulose samples of oxidized cellulose were beated by toroidal beating machine. Cellulose consists of both amorphous and crystalline regions. Cellulose consists of linear chains of poly[ß-1,4-D- anhydroglucopyranose] (C6nH10n + 2O5n + 1 (n = degree of polymerization of glucose)), which crystallize through hydrogen bonding between the chains and has cellobiose as repeat unit. Oxidized cellulose is preparing by oxidation of cellulose in the C6 position of the glucopyranose units to carboxylic group (-COOH) and polyanhydroglukuronic acid (PAGA) is arised. An other option is oxidation with sodium hypochlorite with catalytic amounts of sodium bromide and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) under various conditions. Beating and refining or mechanical treatment of fibers in water is an important step in using pulps for papermaking. It is an energy intensive process. The purpose of the treatment is to modify fiber properties to obtain the most desirable paper machine runnability and product properties. End of beating pulps was characterized by position, when all beated pulps under mixture passed through of riddle (about sizes mesh of 50). During beating of samples about different ratio of oxidation it was found, that samples with higher contents of COOH groups in starting pulp are characterized by a significantly lower specific beating energy consumption needed to achieving the same sizes of particles. X-ray analyse shows that for non-beated oxidized cellulose was perceptible high share amorphous contents compared with beated oxidized cellulose.

  16. Water and carboxyl group environments in the dehydration blueshift of bacteriorhodopsin. (United States)

    Renthal, R; Gracia, N; Regalado, R


    The proton channels of the bacteriorhodopsin (BR) proton pump contain bound water molecules. The channels connect the purple membrane surfaces with the protonated retinal Schiff base at the membrane center. Films of purple membrane equilibrated at low relative humidity display a shift of the 570 nm retinal absorbance maximum to 528 nm, with most of the change occurring below 15% relative humidity. Purple membrane films were dehydrated to defined humidities between about 50 and 4.5% and examined by Fourier transform infrared difference spectroscopy. In spectra of dehydrated-minus-hydrated purple membrane, troughs are observed at 3645 and 3550 cm-1, and peaks are observed at 3665 and 3500 cm-1. We attribute these changes to water dissociation from the proton uptake channel and the resulting changes in hydrogen bonding of water that remains bound. Also, in the carboxylic acid spectral region, a trough was observed at 1742 cm-1 and a peak at 1737 cm-1. The magnitude of the trough to peak difference between 1737 and 1742 cm-1 correlates linearly with the extent of the 528 nm pigment. This suggests that a carboxylic acid group or groups is undergoing a change in environment as a result of dehydration, and that this change is linked to the appearance of the 528 nm pigment. Dehydration difference spectra with BR mutants D96N and D115N show that the 1737-1742 cm-1 change is due to Asp 96 and Asp 115. A possible mechanism is suggested that links dissociation of water in the proton uptake channel to the environmental change at the Schiff base site.

  17. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes (United States)

    Li, Yang; Tu, Xingchen; Wang, Minglang; Wang, Hao; Sanvito, Stefano; Hou, Shimin


    The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

  18. Characterization of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase-Containing Pseudomonas spp. in the Rhizosphere of Salt-Stressed Canola

    NARCIS (Netherlands)

    Akhgar, A.; Arzanlou, M.; Bakker, Peter; Hamidpour, M.


    When exposed to biotic or abiotic stress conditions, plants produce ethylene from its immediate precursor 1-aminocyclopropane-1- carboxylate (ACC), leading to retarded root growth and senescence. Many plant growth-promoting rhizobacteria contain the enzyme ACC deaminase and this enzyme can cleave AC

  19. Occurrence of carboxylic acids in different steps of two drinking-water treatment plants using different disinfectants. (United States)

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes


    The occurrence of 35 aliphatic and aromatic carboxylic acids within two full scale drinking-water treatment plants was evaluated for the first time in this research. At the intake of each plant (raw water), the occurrence of carboxylic acids varied according to the quality of the water source although in both cases 13 acids were detected at average concentrations of 6.9 and 4.7 μg/L (in winter). In the following steps in each treatment plant, the concentration patterns of these compounds differed depending on the type of disinfectant applied. Thus, after disinfection by chloramination, the levels of the acids remained almost constant (average concentration, 6.3 μg/L) and four new acids were formed (butyric, 2-methylbutyric, 3-hydroxybenzoic and 2-nitrobenzoic) at low levels (1.1-5 μg/L). When ozonation/chlorination was used, the total concentration of the carboxylic acids in the raw water sample (4.7 μg/L) increased up to 6 times (average concentration, 26.3 μg/L) after disinfection and 6 new acids (mainly aromatic) were produced at high levels (3.5-100 μg/L). Seasonal variations of the carboxylic acids under study showed that in both plants, maximum levels of all the analytes were reached in the coldest months (autumn and winter), aromatic acids only being found in those seasons.

  20. Design, Synthesis and Anti-HIV Integrase Evaluation of 4-Oxo-4H-quinolizine-3-carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Li-Ming Hu


    Full Text Available 4-Oxo-4H-quinolizine-3-carboxylic acid derivatives bearing sulfamido, carboxylamido, benzimidazole and benzothiazole substituents have been designed and synthesized. The structures of these new compounds were confirmed by 1H-NMR, 13C- NMR, IR and ESI (or HRMS spectra. Compounds were screened for possible HIV integrase inhibitory activity.

  1. An efficient and mild carboxylation of multiwall carbon nanotubes using H2O2 in the presence of heteropolyacid

    Institute of Scientific and Technical Information of China (English)

    M.Z. Kassaee; H. Zandi; J. Akbari; E. Motamedi


    A clean,fast,and facile oxidation of multiwalled carbon nanotubes (MWCNTs) by H2O2/heteropolyacid (H3PW12O40) gave highly carboxylated MWCNTs under mild conditions,at a conveniently accessible temperature.After an easy workup,the product was characterized by SEM,XRD,and FY-IR.

  2. Characterisation and application of new carboxylic acid-functionalised ruthenium complexes as dye-sensitisers for solar cells

    DEFF Research Database (Denmark)

    Duprez, Virginie; Biancardo, Matteo; Krebs, Frederik C


    A series of ruthenium complexes with and without TiO2, anchoring carboxylic acid groups have been synthesised and characterised using nuclear magnetic resonance (NMR), UV-vis and luminescence. These complexes were adsorbed on thin films of the wide band-gap semiconductor anatase and were tested...

  3. Properties and applications of trinuclear ruthenium carboxylate clusters; Propriedades e aplicacoes de clusters trinucleares de carboxilatos de rutenio

    Energy Technology Data Exchange (ETDEWEB)

    Alexiou, Anamaria D.P.; Dovidauskas, Sergio; Toma, Henrique E. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica


    A review with 94 references focusing on {mu}{sub 3}-oxo-tri-ruthenium carboxylate clusters is presented. The electronic, magnetic, electrochemical, and catalytic properties of these compounds are discussed. Main synthetic routes and structural characteristics , including their use as building blocks is supramolecular systems are described. (author)

  4. Carboxylate-Assisted C(sp3)–H Activation in Olefin Metathesis-Relevant Ruthenium Complexes (United States)


    The mechanism of C–H activation at metathesis-relevant ruthenium(II) benzylidene complexes was studied both experimentally and computationally. Synthesis of a ruthenium dicarboxylate at a low temperature allowed for direct observation of the C–H activation step, independent of the initial anionic ligand-exchange reactions. A first-order reaction supports an intramolecular concerted metalation–deprotonation mechanism with ΔG⧧298K = 22.2 ± 0.1 kcal·mol–1 for the parent N-adamantyl-N′-mesityl complex. An experimentally determined ΔS⧧ = −5.2 ± 2.6 eu supports a highly ordered transition state for carboxylate-assisted C(sp3)–H activation. Experimental results, including measurement of a large primary kinetic isotope effect (kH/kD = 8.1 ± 1.7), agree closely with a computed six-membered carboxylate-assisted C–H activation mechanism where the deprotonating carboxylate adopts a pseudo-apical geometry, displacing the aryl ether chelate. The rate of cyclometalation was found to be influenced by both the electronics of the assisting carboxylate and the ruthenium ligand environment. PMID:24731019

  5. Anodic coupling of carboxylic acids to electron-rich double bonds: A surprising non-Kolbe pathway to lactones

    Directory of Open Access Journals (Sweden)

    Robert J. Perkins


    Full Text Available Carboxylic acids have been electro-oxidatively coupled to electron-rich olefins to form lactones. Kolbe decarboxylation does not appear to be a significant competing pathway. Experimental results indicate that oxidation occurs at the olefin and that the reaction proceeds through a radical cation intermediate.

  6. Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols and Hydroxide Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Santilli, Carola; Makarov, Ilya; Fristrup, Peter;


    Primary alcohols have been reacted with hydroxide and the ruthenium complex [RuCl2(IiPr)(p-cymene)] to afford carboxylic acids and dihydrogen. The dehydrogenative reaction is performed in toluene, which allows for a simple isolation of the products by precipitation and extraction. The transformat...

  7. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes

    KAUST Repository

    Li, Yang


    © 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green\\'s function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

  8. Chiral dirhodium(II) carboxylates and carboxamidates as effective chemzymes in asymmetric synthesis of three-membered carbocycles. (United States)

    Adly, Frady G; Ghanem, Ashraf


    In this review the recent advances in the utilization of two of the most important classes of dirhodium(II) paddlewheel complexes, dirhodium(II) carboxylates and carboxamidates, as chemzymes in inter- and intramolecular asymmetric cyclopropanation, as well as cyclopropenation reactions are discussed.

  9. Synthesis of new series of 4, 5-dihydroisoxazole-5-carboxylate derivatives for the study of their liquid crystalline properties

    Indian Academy of Sciences (India)



    A new series of 4,5-dihydroisoxazole-5-carboxylate derivatives were synthesized via [3+2] cycloaddition reaction between ethyl acrylate and nitrile oxide generated in situ in presence of Chloramine-T. The synthesized derivatives were characterized by Mass, IR and NMR Spectroscopy and their mesomorphic behavior were studied using DSC and Polarising Optical Microscopy.

  10. The measurement of urinary Delta(1)-piperideine-6-carboxylate, the alter ego of alpha-aminoadipic semialdehyde, in Antiquitin deficiency.

    NARCIS (Netherlands)

    Struys, E.A.; Bok, L.A.; Emal, D.; Houterman, S.; Willemsen, M.A.A.P.; Jakobs, C.


    The assessment of urinary alpha-aminoadipic semialdehyde (alpha-AASA) has become the diagnostic laboratory test for pyridoxine dependent seizures (PDS). alpha-AASA is in spontaneous equilibrium with its cyclic form Delta(1)-piperideine-6-carboxylate (P6C); a molecule with a heterocyclic ring structu


    Determination of carboxylic acids using non-suppressed conductivity and UV detections is described. The background conductance of 1-octanesulfonic acid, hexane sulfonic acid and sulfuric acid at varying concentrations was determined. Using 0.2 mM 1-octanesulfonic acid as a mobile...


    Adsorption isotherms were measured for each compound adsorbed on commercially available ZSM-5 (Si/Al = 140) powder from binary and ternary liquid mixtures of ethanol, carboxylic acids, and water at room temperature. The amounts adsorbed were measured using a recently developed t...

  13. The influence of pendant carboxylic acid loading on surfaces of statistical poly(4-hydroxystyrene)-co-styrene)s

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hvilsted, Søren


    synthesis with propargyl bromide and the copolymers were functionalized with pendant aliphatic or aromatic carboxylic acids by click chemistry. Differential scanning calorimetry of the copolymers demonstrates the large influence on Tg ofthe different functional groups and the backbone composition...... of acid groups on the surface....

  14. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid (United States)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)


    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  15. Erbium trifluoromethanesulfonate-catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hansen, Poul Erik; Nguyen, Hai Truong;


    Erbium trifluoromethanesulfonate is found to be a good catalyst for the Friedel–Crafts acylation of arenes containing electron-donating substituents using aromatic carboxylic acids as the acylating agents under microwave irradiation. An effective, rapid and waste-free method allows the preparation...

  16. Synthesis of Fischer indole derivatives using carboxyl-functionalized ionic liquid as an efficient and recyclable catalyst

    Institute of Scientific and Technical Information of China (English)

    Feng Ping Yi; Hai Yang Sun; Xian Hua Pan; Yuan Xu; Ji Zong Li


    Fischer indole cyclization of phenylhydrazine and various ketones using carboxyl-functionalized ionic liquid, 1-carboxymethyl-3-methylimidazolium tetrafluoroborate (abbreviated as [cmmim][BF4]) as catalyst was successfully performed. The yields of thetarget compounds were 80-92%, the purities were 96-98%. The catalyst could be rocovered and reused for at least six times without significant loss in activity.

  17. Copper-Catalyzed N-Arylation of Amides Using (S-N-Methylpyrrolidine-2-carboxylate as the Ligand

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ma


    Full Text Available (S-N-methylpyrrolidine-2-carboxylate, a derivative of natural L-proline, was found to be an efficient ligand for the copper-catalyzed Goldberg-type N-arylation of amides with aryl halides under mild conditions. A variety of N-arylamides were synthesized in good to high yields.

  18. Silver-mediated decarboxylative C-S cross-coupling of aliphatic carboxylic acids under mild conditions. (United States)

    Wang, Peng-Fei; Wang, Xiao-Qing; Dai, Jian-Jun; Feng, Yi-Si; Xu, Hua-Jian


    A silver-mediated decarboxylative C-S cross-coupling reaction of aliphatic carboxylic acid is described. This reaction occurs smoothly under mild conditions and shows good tolerance of functional groups. It provides an alternative approach for the synthesis of alkyl aryl sulfides.

  19. Selective preparation of terminal alkenes from aliphatic carboxylic acids by a palladium-catalysed decarbonylation-eliminiation reaction

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.


    Trialkylamines were used as additives in the decarbonylation–elimination reaction catalysed by the combination of palladium(II) chloride and DPE-Phos. Aliphatic carboxylic acids were transformed at relatively low temperature into terminal alkenes in high yield and high selectivity, without the need

  20. Methyl 6-Methyl-1-(4-methylphenyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate

    Directory of Open Access Journals (Sweden)

    Haiping Wang


    Full Text Available Methyl 6-methyl-1-(4-methylphenyl-2-oxo-4-phenyl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylate has been synthesized via the modified Biginelli reaction from benzaldehyde, p-tolylurea, and methyl acetoacetate, promoted with microwave irradiation and catalyzed by TsOH under solvent-free conditions in high yield.

  1. Effects of compound carboxylate-urea system on nano Ni-Cr/SiC composite coatings from trivalent chromium baths. (United States)

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Wu, Luye


    The effects of compound carboxylate-urea system on the nano Ni-Cr/SiC composite coatings from trivalent chromium baths have been investigated in ultrasonic field. These results indicated that the SiC and Cr contents and the thickness of the Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that both of the Cr(III) and Ni(II) cathodic polarization could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction. XRD data showed that the as-posited coating was Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the Ni-Cr/SiC composite coatings with 3.8 wt.% SiC and 24.68 wt.% Cr were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Ni-Cr/SiC composite coatings.

  2. RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. (United States)

    Turovskaya, Olga; Foell, Dirk; Sinha, Pratima; Vogl, Thomas; Newlin, Robbin; Nayak, Jonamani; Nguyen, Mien; Olsson, Anna; Nawroth, Peter P; Bierhaus, Angelika; Varki, Nissi; Kronenberg, Mitchell; Freeze, Hudson H; Srikrishna, Geetha


    Patients with inflammatory bowel diseases are at increased risk for colorectal cancer, but the molecular mechanisms linking inflammation and cancer are not well defined. We earlier showed that carboxylated N-glycans expressed on receptor for advanced glycation end products (RAGE) and other glycoproteins mediate colitis through activation of nuclear factor kappa B (NF-kappaB). Because NF-kappaB signaling plays a critical role in the molecular pathogenesis of colitis-associated cancer (CAC), we reasoned that carboxylated glycans, RAGE and its ligands might promote CAC. Carboxylated glycans are expressed on a subpopulation of RAGE on colon cancer cells and mediate S100A8/A9 binding to RAGE. Colon tumor cells express binding sites for S100A8/A9 and binding leads to activation of NF-kappaB and tumor cell proliferation. Binding, downstream signaling and tumor cell proliferation are blocked by mAbGB3.1, an anti-carboxylate glycan antibody, and by anti-RAGE. In human colon tumor tissues and in a mouse model of CAC, we found that myeloid progenitors expressing S100A8 and S100A9 infiltrate regions of dysplasia and adenoma. mAbGB3.1 administration markedly reduces chronic inflammation and tumorigenesis in the mouse model of CAC and RAGE-deficient mice are resistant to the onset of CAC. These findings show that RAGE, carboxylated glycans and S100A8/A9 play essential roles in tumor-stromal interactions, leading to inflammation-associated colon carcinogenesis.

  3. Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity. (United States)

    Richter, Hanno; Loftus, Sarah E; Angenent, Largus T


    To ensure economic implementation of syngas fermentation as a fuel-producing platform, engineers and scientists must both lower operating costs and increase product value. A considerable part of the operating costs is spent to procure chemicals for fermentation medium that can sustain sufficient growth of carboxydotrophic bacteria to convert synthesis gas (syngas: carbon monoxide, hydrogen, and carbon dioxide) into products such as ethanol. Recently, we have observed that wildtype carboxydotrophic bacteria (including Clostridium ljungdahlii) can produce alcohols with a longer carbon chain than ethanol via syngas fermentation when supplied with the corresponding carboxylic acid precursors, resulting in possibilities of increasing product value. Here, we evaluated a proof-of-concept system to couple syngas fermentation with the carboxylate platform to both lower medium costs and increase product value. Our carboxylate platform concept consists of an open culture, anaerobic fermentor that is fed with corn beer from conventional yeast fermentation in the corn kernel-to-ethanol industry. The mixed-culture anaerobic fermentor produces a mixture ofcarboxylic acids at dilute concentrations within the carboxylate platform effluent (CPE). Besides providing carboxylic acid precursors, this effluent may represent an inexpensive growth medium. An elemental analysis demonstrated that the CPE lacked certain essential trace metals, but contained ammonium, phosphate, sodium, chloride, potassium, magnesium, calcium, and sulphate at required concentrations. CPE medium with the addition of a trace metal solution supported growth and alcohol production of C. ljungdahlii at similar or better levels compared with an optimized synthetic medium (modified ATCC 1754 medium). Other expensive supplements, such as yeast extract or macro minerals (ammonium, phosphate), were not required. Finally, n-butyric acid and n-caproic acid within the CPE were converted into their corresponding medium

  4. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond. (United States)

    Liu, Kuang-Kai; Chen, Mei-Fang; Chen, Po-Yi; Lee, Tony J F; Cheng, Chia-Liang; Chang, Chia-Ching; Ho, Yen-Peng; Chao, Jui-I


    Biological molecules conjugating with nanoparticles are valuable for applications including bio-imaging, bio-detection, and bio-sensing. Nanometer-sized diamond particles have excellent electronic and chemical properties for bio-conjugation. In this study, we manipulated the carboxyl group produced on the surface of nanodiamond (carboxylated nanodiamond, cND) for conjugating with alpha-bungarotoxin (α-BTX), a neurotoxin derived from Bungarus multicinctus with specific blockade of alpha7-nicotinic acetylcholine receptor (α7-nAChR). The electrostatic binding of cND-α-BTX was mediated by the negative charge of the cND and the positive charge of the α-BTX in physiological pH conditions. Sodium dodecyl sulfate-polyacrylamide gel analysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF-MS) spectra displayed that α-BTX proteins were conjugated with cND particles via non-covalent bindings. The green fluorescence of the cND particles combining with the red fluorescence of tetramethylrhodamine-labeled α-BTX presented a yellow color at the same location, which indicated that α-BTX proteins were conjugated with cND particles. Xenopus laevis's oocytes expressed the human α7-nAChR proteins by microinjection with α7-nAChR mRNA. The cND-α-BTX complexes were bound to α7-nAChR locating on the cell membrane of oocytes and human lung A549 cancer cells analyzed by laser scanning confocal microscopy. The choline-evoked α7-nAChR-mediated inward currents of the oocytes were blocked by cND-α-BTX complexes in a concentration-dependent manner using two-electrode voltage-clamp recording. Furthermore, the fluorescence intensity of cND-α-BTX binding on A549 cells could be quantified by flow cytometry. These results indicate that cND-conjugated α-BTX still preserves its biological activity in blocking the function of α7-nAChR, and provide a visual system showing the binding of α-BTX to α7-nAChR.

  5. Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells (United States)

    Santacruz-Gomez, K.; Silva-Campa, E.; Melendrez-Amavizca, R.; Teran Arce, F.; Mata-Haro, V.; Landon, P. B.; Zhang, C.; Pedroza-Montero, M.; Lal, R.


    Nanodiamonds when carboxylated (cNDs) act as reducing agents and hence could limit oxidative damage in biological systems. Gamma (γ)-irradiation of whole blood or its components is required in immunocompetent patients to prevent transfusion-associated graft versus host disease (TA-GVHD). However, γ-irradiation of blood also deoxygenates red blood cells (RBCs) and induces oxidative damage, including abnormalities in cellular membranes and hemolysis. Using atomic force microscopy (AFM) and Raman spectroscopy, we examined the effect of cNDs on γ-irradiation mediated deoxygenation and morphological damage of RBCs. γ-Radiation induced several morphological phenotypes, including stomatocytes, codocytes and echinocytes. While stomatocytes and codocytes are reversibly damaged RBCs, echinocytes are irreversibly damaged. AFM images show significantly fewer echinocytes among cND-treated γ-irradiated RBCs. The Raman spectra of γ-irradiated RBCs had more oxygenated hemoglobin patterns when cND-treated, resembling those of normal, non-irradiated RBCs, compared to the non-cND-treated RBCs. cND inhibited hemoglobin deoxygenation and morphological damage, possibly by neutralizing the free radicals generated during γ-irradiation. Thus cNDs have the therapeutic potential to preserve the quality of stored blood following γ-irradiation.Nanodiamonds when carboxylated (cNDs) act as reducing agents and hence could limit oxidative damage in biological systems. Gamma (γ)-irradiation of whole blood or its components is required in immunocompetent patients to prevent transfusion-associated graft versus host disease (TA-GVHD). However, γ-irradiation of blood also deoxygenates red blood cells (RBCs) and induces oxidative damage, including abnormalities in cellular membranes and hemolysis. Using atomic force microscopy (AFM) and Raman spectroscopy, we examined the effect of cNDs on γ-irradiation mediated deoxygenation and morphological damage of RBCs. γ-Radiation induced several

  6. Qualitative identification of carboxylic acids, boronic acids, and amines using cruciform fluorophores. (United States)

    Schwaebel, Thimon; Lirag, Rio Carlo; Davey, Evan A; Lim, Jaebum; Bunz, Uwe H F; Miljanić, Ognjen Š


    Molecular cruciforms are X-shaped systems in which two conjugation axes intersect at a central core. If one axis of these molecules is substituted with electron-donors, and the other with electron-acceptors, cruciforms' HOMO will localize along the electron-rich and LUMO along the electron-poor axis. This spatial isolation of cruciforms' frontier molecular orbitals (FMOs) is essential to their use as sensors, since analyte binding to the cruciform invariably changes its HOMO-LUMO gap and the associated optical properties. Using this principle, Bunz and Miljanić groups developed 1,4-distyryl-2,5-bis(arylethynyl)benzene and benzobisoxazole cruciforms, respectively, which act as fluorescent sensors for metal ions, carboxylic acids, boronic acids, phenols, amines, and anions. The emission colors observed when these cruciform are mixed with analytes are highly sensitive to the details of analyte's structure and - because of cruciforms' charge-separated excited states - to the solvent in which emission is observed. Structurally closely related species can be qualitatively distinguished within several analyte classes: (a) carboxylic acids; (b) boronic acids, and (c) metals. Using a hybrid sensing system composed from benzobisoxazole cruciforms and boronic acid additives, we were also able to discern among structurally similar: (d) small organic and inorganic anions, (e) amines, and (f) phenols. The method used for this qualitative distinction is exceedingly simple. Dilute solutions (typically 10(-6) M) of cruciforms in several off-the-shelf solvents are placed in UV/Vis vials. Then, analytes of interest are added, either directly as solids or in concentrated solution. Fluorescence changes occur virtually instantaneously and can be recorded through standard digital photography using a semi-professional digital camera in a dark room. With minimal graphic manipulation, representative cut-outs of emission color photographs can be arranged into panels which permit quick naked

  7. 2-substituted thiazolidine-4(R)-carboxylic acids as prodrugs of L-cysteine. Protection of mice against acetaminophen hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, H.T.; Goon, D.J.; Muldoon, W.P.; Zera, R.T.


    A number of 2-alkyl- and 2-aryl-substituted thiazolidine-4(R)-carboxylic acids were evaluated for their protective effect against hepatotoxic deaths produced in mice by LD/sub 90/ doses of acetaminophen. 2(RS)-Methyl-, 2(RS)-n-propyl-, and 2(RS)-n- pentylthiazolidine -4(R)-carboxylic acids (compounds 1b,d,e, respectively) were nearly equipotent in their protective effect based on the number of surviving animals at 48 h as well as by histological criteria. 2(RS)-Ethyl-, 2(RS)-phenyl-, and 2(RS)-(4-pyridyl)thiazolidine-4(R)-carboxylic acids (compounds 1c,f,g) were less protective. The enantiomer of 1b, viz., 2(RS)- methylthiazolidine -4(S)-carboxylic acid (2b), was totally ineffective in this regard. Thiazolidine-4(R)-carboxylic acid (1a), but not its enantiomer, 2a, was a good substrate for a solubilized preparation of rat liver mitochondrial proline oxidase (K/sub m/ 1.1 x 10(-4) M; V/sub max/ . 5.4 mumol min-1 (mg of protein)-1). Compound 1b was not a substrate for proline oxidase but dissociated to L-cysteine in this system. At physiological pH and temperature, the hydrogens on the methyl group of 1b underwent deuterium exchange with solvent D/sub 2/O (k1 . 2.5 X 10(-5) s), suggesting that opening of the thiazolidine ring must have taken place. Indeed, 1b labeled with /sup 14/C in the 2 and methyl positions was rapidly metabolized by the rat to produce /sup 14/CO/sub 2/, 80% of the dose being excreted in this form in the expired air after 24 h. It is suggested that these 2-substituted thiazolidine-4(R)-carboxylic acids are prodrugs of L-cysteine that liberate this sulfhydryl amino acid in vivo by nonenzymatic ring opening, followed by solvolysis.

  8. Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy, 3,4 epoxy cyclohexylmethyl, 3',4'-epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (CTBN)

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Garima [Department of Plastic Technology, H. B. Technological Institute, Kanpur 208002 (India); Srivastava, Deepak [Department of Plastic Technology, H. B. Technological Institute, Kanpur 208002 (India)], E-mail:


    Toughening of blend of diglycidyl ether of bisphenol-A (DGEBA) and 3,4 epoxy cyclohexylmethyl, 3',4'-epoxycylohexane carboxylate, i.e. cycloaliphatic epoxy resin (CAE) with varying weight ratios (0-25 wt%) of carboxyl terminated butadiene acrylonitrile (CTBN) copolymer have been investigated. Fourier transform infrared (FTIR) spectroscopic analysis established that the interaction between oxirane groups of DGEBA, CAE and CTBN were responsible for characteristics peak shifts in the blends compared to their counterparts. Physico-mechanical properties of the prepared samples, e.g. tensile, flexural and impact strengths showed an optimum concentration of CTBN (15 wt%) into epoxy matrix, which offered maximum toughening. Thermal stability of the prepared samples was analyzed by dynamic thermogravimetric runs. Cross-sections of the cured samples which failed during impact testing have been critically studied through scanning electron microscopic (SEM) analysis to gain insight into the phase morphology.

  9. Crystal structures of ethyl 6-(4-methylphenyl-4-oxo-4H-chromene-2-carboxylate and ethyl 6-(4-fluorophenyl-4-oxo-4H-chromene-2-carboxylate

    Directory of Open Access Journals (Sweden)

    Ligia R. Gomes


    Full Text Available The crystal structures of two chromone derivatives, viz. ethyl 6-(4-methylphenyl-4-oxo-4H-chromene-2-carboxylate, C19H16O4, (1, and ethyl 6-(4-fluorophenyl-4-oxo-4H-chromene-2-carboxylate C18H13FO4, (2, have been determined: (1 crystallizes with two molecules in the asymmetric unit. A comparison of the dihedral angles beween the mean planes of the central chromone core with those of the substituents, an ethyl ester moiety at the 2-position and a para-substituted phenyl ring at the 6-position shows that each molecule differs significantly from the others, even the two independent molecules (a and b of (1. In all three molecules, the carbonyl groups of the chromone and the carboxylate are trans-related. The supramolecular structure of (1 involves only weak C—H...π interactions between H atoms of the substituent phenyl group and the phenyl group, which link molecules into a chain of alternating molecules a and b, and weak π–π stacking interactions between the chromone units. The packing in (2 involves C—H...O interactions, which form a network of two intersecting ladders involving the carbonyl atom of the carboxylate group as the acceptor for H atoms at the 7-position of the chromone ring and from an ortho-H atom of the exocyclic benzene ring. The carbonyl atom of the chromone acts as an acceptor from a meta-H atom of the exocyclic benzene ring. π–π interactions stack the molecules by unit translation along the a axis.

  10. A novel ubiquitin carboxyl terminal hydrolase is involved in toad oocyte maturation

    Institute of Scientific and Technical Information of China (English)


    p28, a 28kD protein from toad (Bufo bufo gargarizans) oocytes, was identified by using p13suc1-agaroseaffinity chromatography. Sequence homology analysis of the full-length cDNA of p28 (Gene Bank accessionnumber: AF 314091) indicated that it encodes a protein containing 224 amino-acids with about 55% iden-tities and more than 70% positives to human, rat or mouse UCH-L1, and contains homological functionaldomains of UCH family. Anti-p28 monoclonal antibody, on injecting into the oocytes, could inhibit theprogesterone-induced resumption of meiotic division in a dose-dependent manner. The recombinant proteinp28 showed similar SDS/PAGE behaviors to the native one, and promoted ubiquitin ethyl ester hydrolysis,a classical catalytic reaction for ubiquitin carboxyl terminai hydrolases (UCHs). The results in this paperreveal that a novel protein, p28, exists in the toad oocytes, is a UCH L1 homolog, was engaged in theprocess of progesterone-induced oocyte maturation possibly through an involvement in protein turnover anddegradation.

  11. The cysteine releasing pattern of some antioxidant thiazolidine-4-carboxylic acids. (United States)

    Önen Bayram, F Esra; Sipahi, Hande; Acar, Ebru Türköz; Kahveci Ulugöl, Reyhan; Buran, Kerem; Akgün, Hülya


    Oxidative stress that corresponds to a significant increase in free radical concentration in cells can cause considerable damage to crucial biological macromolecules if not prevented by cellular defense mechanisms. The low-molecular-weight thiol glutathione (GSH) constitutes one of the main intracellular antioxidants. It is synthesized via cysteine, an amino acid found only in limited amounts in cells because of its neurotoxicity. Thus, to ensure an efficient GSH synthesis in case of an oxidative stress, cysteine should be provided extracellularly. Yet, given its nucleophilic properties and its rapid conversion into cystine, its corresponding disulfide, cysteine presents some toxicity and therefore is usually supplemented in a prodrug approach. Here, some thiazolidine-4-carboxylic acids were synthesized and evaluated for their antioxidant properties via the DDPH and CUPRAC assays. Then, the cysteine releasing capacity of the obtained compounds was investigated in aqueous and organic medium in order to correlate the relevant antioxidant properties of the molecules with their cysteine releasing pattern. As a result, the structures' antioxidative properties were not only attributed to cysteine release but also to the thiazolidine cycle itself.

  12. Substitution reactions of thorium(IV) acetate to synthesize nano-sized carboxylate complexes. (United States)

    Baranwal, Balram P; Fatma, Talat; Varma, Anand; Singh, Alok K


    Some mixed-ligand thorium(IV) complexes with the general formula [Th(OOCCH(3))(4-n)L(n)] (L=anions of myristic, palmitic or stearic acid and n=1-4) have been synthesized by the stepwise substitution of acetate ions of thorium(IV) acetate with straight chain carboxylic acids in toluene under reflux. The complexes were characterized by elemental analyses, spectral (electronic, infrared, NMR and powder XRD) studies, electrical conductance and magnetic susceptibility measurements. Doubly and triply bridged coordination modes of the ligands were established by their infrared spectra and nano-size of the complexes by powder XRD. Room temperature magnetic susceptibility measurements revealed diamagnetic nature of the complexes. Electronic absorption spectra of the complexes showed pi-->pi*, n-->pi* and charge transfer transitions. Molar conductance values indicated the complex to be non-electrolytes. These are a new type of mixed-ligand thorium(IV) complexes for which a nano-sized, oxygen bridged polymeric structure has been established on the basis of physico-chemical studies.

  13. Synthesis and Structural Characterization of Carboxylate-Based Metal-Organic Frameworks and Coordination Networks (United States)

    Calderone, Paul

    Coordination networks (CNs) and metal-organic frameworks (MOFs) are crystalline materials composed of metal ions linked by multifunctional organic ligands. From these connections, infinite arrays of one-, two-, or three-dimensional networks can be formed. Exploratory synthesis and research of novel CNs and MOFs is of current interest because of their many possible industrial applications including gas storage, catalysis, magnetism, and luminescence. A variety of metal centers and organic ligands can be used to synthesize MOFs and CNs under a range of reaction conditions, leading to extraordinary structural diversity. The characteristics of the metals and linkers, such as properties and coordination preferences, play the biggest role in determining the structure and properties of the resulting network. Thus, the choice of metal and linker is dictated by the desired traits of the target network. The pervasive use of transition metal centers in MOF synthesis stems from their well-known coordination behavior with carboxylate-based linkers, thus facilitating design strategies. Conversely, CNs and MOFs based on s-block and lanthanide metals are less studied because each group presents unique challenges to structure prediction. Lanthanide metals have variable coordination spheres capable of accommodating up to twelve atoms, while the bonding in s-block metals takes on a mainly ionic character. In spite of these obstacles, lanthanide and s-block CNs are worthwhile synthetic targets because of their unique properties. Interesting photoluminescent and sensing materials can be developed using lanthanide metals, whereas low atomic weight s-block metals may afford an advantage in gravimetric advantages for gas storage applications. The aim of this research was to expand the current understanding of carboxylate-based CN and MOF synthesis by varying the metals, solvents, and temperatures used. To this end, magnesium-based CNs were examined using a variety of aromatic carboxylate

  14. Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives

    Directory of Open Access Journals (Sweden)

    Lesyk R. B.


    Full Text Available The aim of present research was investigation of anticancer activity of 4-azolidinone-3-carboxylic acids derivatives, and studies of structure–activity relationships (SAR aspects. Methods. Organic synthesis; spectral methods; anticancer screening was performed according to the US NCI protocol (Developmental Therapeutic Program. Results. The data of new 4-thiazolidinone-3-alkanecarboxylic acids derivatives in vitro anticancer activity were described. The most active compounds which belong to 5-arylidene-2,4- thia(imidazolidinone-3-alkanecarboxylic acids; 5-aryl(heterylidenerhodanine-3-succinic acids derivatives were selected. Determination of some SAR aspects which allowed to determine directions in lead- compounds structure optimization, as well as desirable molecular fragments for design of potential anticancer agents based on 4-azolidinone scaffold were performed. 5-Arylidenehydantoin-3-acetic acids amides were identified as a new class of significant selective antileukemic agents. Possible pharmacophore scaffold of 5-ylidenerhodanine-3-succinic acids derivatives was suggested. Conclusions. The series of active compounds with high anticancer activity and/or selectivity levels were selected. Some SAR aspects were determined and structure design directions were proposed.

  15. Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb(II) from aqueous solution. (United States)

    Lu, Jiao; Jin, Ru-Na; Liu, Chao; Wang, Yan-Fei; Ouyang, Xiao-Kun


    A novel magnetic carboxylated cellulose nanocrystal composite (CCN-Fe3O4) was prepared as an adsorbent for the adsorption of Pb(II) from aqueous solution. The new adsorbent was characterized by transmission electron microscopy, vibrating sample magnetometry, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Batch experiments were carried out to investigate the effects of contact time, adsorbent dose, pH, and temperature on adsorption capacity. Pb(II) adsorption onto CCN-Fe3O4 reached equilibrium in 240min, and the maximum adsorption capacity of Pb(II) was 63.78mgg(-1) at 298.2K. The equilibrium data fitted the Langmuir isotherm model better than the Freundlich isotherm model, and they were well explained in terms of pseudo-second-order kinetics. Thermodynamics studies indicated that the adsorption of Pb(II) onto CCN-Fe3O4 was spontaneous and endothermic in nature. The adsorbent could also be regenerated with acid treatment and successfully reapplied.

  16. Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells. (United States)

    Santacruz-Gomez, K; Silva-Campa, E; Melendrez-Amavizca, R; Teran Arce, F; Mata-Haro, V; Landon, P B; Zhang, C; Pedroza-Montero, M; Lal, R


    Nanodiamonds when carboxylated (cNDs) act as reducing agents and hence could limit oxidative damage in biological systems. Gamma (γ)-irradiation of whole blood or its components is required in immunocompetent patients to prevent transfusion-associated graft versus host disease (TA-GVHD). However, γ-irradiation of blood also deoxygenates red blood cells (RBCs) and induces oxidative damage, including abnormalities in cellular membranes and hemolysis. Using atomic force microscopy (AFM) and Raman spectroscopy, we examined the effect of cNDs on γ-irradiation mediated deoxygenation and morphological damage of RBCs. γ-Radiation induced several morphological phenotypes, including stomatocytes, codocytes and echinocytes. While stomatocytes and codocytes are reversibly damaged RBCs, echinocytes are irreversibly damaged. AFM images show significantly fewer echinocytes among cND-treated γ-irradiated RBCs. The Raman spectra of γ-irradiated RBCs had more oxygenated hemoglobin patterns when cND-treated, resembling those of normal, non-irradiated RBCs, compared to the non-cND-treated RBCs. cND inhibited hemoglobin deoxygenation and morphological damage, possibly by neutralizing the free radicals generated during γ-irradiation. Thus cNDs have the therapeutic potential to preserve the quality of stored blood following γ-irradiation.

  17. From Alkanes to Carboxylic Acids: Terminal Oxygenation by a Fungal Peroxygenase. (United States)

    Olmedo, Andrés; Aranda, Carmen; Del Río, José C; Kiebist, Jan; Scheibner, Katrin; Martínez, Angel T; Gutiérrez, Ana


    A new heme-thiolate peroxidase catalyzes the hydroxylation of n-alkanes at the terminal position-a challenging reaction in organic chemistry-with H2 O2 as the only cosubstrate. Besides the primary product, 1-dodecanol, the conversion of dodecane yielded dodecanoic, 12-hydroxydodecanoic, and 1,12-dodecanedioic acids, as identified by GC-MS. Dodecanal could be detected only in trace amounts, and 1,12-dodecanediol was not observed, thus suggesting that dodecanoic acid is the branch point between mono- and diterminal hydroxylation. Simultaneously, oxygenation was observed at other hydrocarbon chain positions (preferentially C2 and C11). Similar results were observed in reactions of tetradecane. The pattern of products formed, together with data on the incorporation of (18) O from the cosubstrate H2 (18) O2 , demonstrate that the enzyme acts as a peroxygenase that is able to catalyze a cascade of mono- and diterminal oxidation reactions of long-chain n-alkanes to give carboxylic acids.

  18. Conserved expression of ubiquitin carboxyl-terminal esterase L1 (UCHL1) in mammalian testes. (United States)

    Devi, Lalitha; Pawar, Rahul Mohanchandra; Makala, Himesh; Goel, Sandeep


    Spermatogonia, the adult germ cells that initiate spermatogenesis in mammalian testis, are capable of dividing both mitotically and meiotically. Isolation and preservation of spermatogonia helps in preserving genetic pool of endangered animals. In this context, identification of marker(s) that can distinguish spermatogonia from other cells in testis gains significance. Here, we examined the expression of ubiquitin carboxyl-terminal esterase L1 (UCHL1) gene and protein in the testes of several mammals, including highly endangered species. Semi-quantitative-reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed presence of UCHL1 amplicon of 442 bp in all the 18 mammals studied. Nucleotide sequence analysis of these amplicons and their predicted protein sequences revealed 88-99% and 95-100% homology with available human UCHL1 and UCHL1 sequences of other available species in the GenBank, respectively. Western blot analysis showed that UCHL1 protein size was unique in all wild mammals. Immunohistology results confirmed UCHL1 expression in the spermatogonia/gonocytes in testes of several mammals belonging to eight distinct families including highly endangered Felidae, Canidae and Cercopithecoidae. These findings suggest that UCHL1 expression is conserved in the mammalian testis, and could be used as a specific marker for gonocytes/spermatogonia for developing male germ-cell based conservation techniques.

  19. Synthesis and decomposition of a novel carboxylate precursor to indium oxide (United States)

    Hepp, Aloysius F.; Andras, Maria T.; Duraj, Stan A.; Clark, Eric B.; Hehemann, David G.; Scheiman, Daniel A.; Fanwick, Phillip E.


    Reaction of metallic indium with benzoyl peroxide in 4-1 methylpyridine (4-Mepy) at 25 C produces an eight-coordinate mononuclear indium(III) benzoate, In(eta(sup 2)-O2CC6H5)3(4-Mepy)2 4H2O (I), in yields of up to 60 percent. The indium(III) benzoate was fully characterized by elemental analysis, spectroscopy, and X-ray crystallography; (I) exists in the crystalline state as discrete eight-coordinate molecules; the coordination sphere around the central indium atom is best described as pseudo-square pyramidal. Thermogravimetric analysis of (I) and X-ray diffraction powder studies on the resulting pyrolysate demonstrate that this new benzoate is an inorganic precursor to indium oxide. Decomposition of (I) occurs first by loss of 4-methylpyridine ligands (100 deg-200 deg C), then loss of benzoates with formation of In2O3 at 450 C. We discuss both use of carboxylates as precursors and our approach to their preparation.

  20. A physiologically based pharmacokinetic model for quinoxaline-2-carboxylic acid in rats, extrapolation to pigs. (United States)

    Yang, X; Zhou, Y-F; Yu, Y; Zhao, D-H; Shi, W; Fang, B-H; Liu, Y-H


    A multi-compartment physiologically based pharmacokinetic (PBPK) model to describe the disposition of cyadox (CYX) and its metabolite quinoxaline-2-carboxylic acid (QCA) after a single oral administration was developed in rats (200 mg/kg b.w. of CYX). Considering interspecies differences in physiology and physiochemistry, the model efficiency was validated by pharmacokinetic data set in swine. The model included six compartments that were blood, muscle, liver, kidney, adipose, and a combined compartment for the rest of tissues. The model was parameterized using rat plasma and tissue concentration data that were generated from this study. Model simulations were achieved using a commercially available software program (ACSLXL ibero version Results supported the validity of the model with simulated tissue concentrations within the range of the observations. The correlation coefficients of the predicted and experimentally determined values for plasma, liver, kidney, adipose, and muscles in rats were 0.98, 0.98, 0.98, 0.99, and 0.95, respectively. The rat model parameters were then extrapolated to pigs to estimate QCA disposition in tissues and validated by tissue concentration of QCA in swine. The correlation coefficients between the predicted and observed values were over 0.90. This model could provide a foundation for developing more reliable pig models once more data are available.

  1. Highly selective and sensitive fluorescent sensor: Thiacalix[4]arene-1-naphthalene carboxylate for Zn2+ ions (United States)

    Darjee, Savan M.; Modi, Krunal M.; Panchal, Urvi; Patel, Chirag; Jain, Vinod K.


    Thiacalix[4]arene based fluorescent sensor bearing two naphthoyl groups, thiacalix-1-naphthalene carboxylate (TCNC) has been synthesized and characterized by 1H NMR, 13C NMR, FTIR, ESI-MS spectroscopic techniques. The interaction behavior of TCNC with various metal ions like Fe3+, Hg2+, Co2+, Ni2+, Cu2+, Cd2+, Pb2+, Mg2+, K+, Na+, and Zn2+ was studied by UV-visible and emission spectrophotometry. It was observed that TCNC recognizes Zn2+ ions with high selectivity and sensitivity. The enhancement of fluorescence intensity due to presence of Zn2+ ions was not perturbed in the presence of high concentration of other associated metal ions. The 1:1 stoichiometry of TCNC:Zn2+ complex was confirmed by job's plot, ESI-MS study and 1H NMR titration. The binding constant and quantum yield were also calculated by using spectrofluorimetric titration data. Linear detection range of zinc ions was found to be 1 nM-740 nM. Furthermore, molecular docking study was performed to evaluate the binding affinity and possible interactions between TCNC and Zn2+ depicting that TCNC interact with Zn2+ via weak intramolecular forces. In addition to that molecular dynamics has also been performed to evaluate the conformational changes and it's structural stability in the particular environment.

  2. Radioimmunoassay for anileridine, meperidine, and other N-substituted phenylpiperidine carboxylic acid esters

    Energy Technology Data Exchange (ETDEWEB)

    Van Vunakis, H.; Freeman, D.S.; Gjika, H.B.


    Antibodies that bind an /sup 125/I-tyramyl derivative of N-succinylanileridine have been produced in animals immunized with N-succinylanileridine-hemocyanin conjugate. Several congeners and metabolites have been tested as competitors of this antigen-antibody reaction. The concentrations (in picomoles) required for 50 percent inhibition have been found to be: anileridine (0.2), meperidine (3.5), piminodine (3.8), diphenoxylate (20.5), normeperidine (20.0), meperidine acid (45,000) and anileridine acid (3,400). Although ester hydrolysis results in changes in inhibiting capacities on the order of 10/sup 4/, major structural changes in the substituent on the nitrogen of the piperidine ring are not readily recognized by the antibody. This radioimmunoassay can be used to study a variety of N-substituted phenylpiperidine carboxylic acid esters by relating the results to the standard curve obtained for the drug under investigation. For all practical purposes, alphaprodine, morphine and methadone do not interfere with the assay.

  3. Carboxylate platform: the MixAlco process part 2: process economics. (United States)

    Granda, Cesar B; Holtzapple, Mark T; Luce, Gary; Searcy, Katherine; Mamrosh, Darryl L


    The MixAlco process employs a mixed culture of acid-forming microorganisms to convert biomass to carboxylate salts, which are concentrated via vapor-compression evaporation and subsequently chemically converted to other chemical and fuel products. To make alcohols, hydrogen is required, which can be supplied from a number of processes, including gasifying biomass, separation from fermentor gases, methane reforming, or electrolysis. Using zeolite catalysts, the alcohols can be oligomerized into hydrocarbons, such as gasoline. A 40-tonne/h plant processing municipal solid waste ($45/tonne tipping fee) and using hydrogen from a pipeline or refinery ($2.00/kg H(2)) can sell alcohols for $1.13/gal or gasoline for $1.75/gal with a 15% return on investment ($0.61/gal of alcohol or $0.99/gal of gasoline for cash costs only). The capital cost is $1.95/annual gallon of mixed alcohols. An 800-tonne/h plant processing high-yield biomass ($60/tonne) and gasifying fermentation residues and waste biomass to hydrogen ($1.42/kg H(2)) can sell alcohols for $1.33/gal or gasoline for $2.04/gal with a 15% return on investment ($1.08/gal of alcohol or $1.68/gal of gasoline for cash costs only). The capital cost for the alcohol and gasification plants at 800 tonne/h is $1.45/annual gallon of mixed alcohols.

  4. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation

    Directory of Open Access Journals (Sweden)

    Ali Ahmed Mahmoud Abdelhaleem


    Full Text Available This study addressed the possibility of forming of co-amorphous systems between clozapine (CZ and various carboxylic acid plasticizers (CAPs. The aim was to improve the solubility and oral bioavailability of clozapine. Co-amorphous dispersions were prepared using modified solvent evaporation methodology at drug/plasticizer stoichiometric ratios of 1:1, 1:1.5 and 1:2. Solid state characterization was performed using differential scanning calorimetry, X-ray diffraction and infra red spectroscopy. Highly soluble homogeneous co-amorphous dispersions were formed between clozapine and CAPs via hydrogen bonding. The co-amorphous dispersions formed with tartaric acid (1:2 showed the highest dissolution percentage (> 95 % in 20 minutes compared to pure crystalline CZ (56 %. Highly stable solutions were obtained from co-amorphous CZ-citric and CZ-tartaric acid at 1:1.5 molar ratio. The prepared dispersions suggest the possibility of peroral or sublingual administration of highly soluble clozapine at a reduced dose with the great chance to bypass the first pass metabolism.

  5. Identification of polypropylene glycols and polyethylene glycol carboxylates in flowback and produced water from hydraulic fracturing. (United States)

    Thurman, E Michael; Ferrer, Imma; Rosenblum, James; Linden, Karl; Ryan, Joseph N


    The purpose of the study was to separate and identify the unknown surfactants present in flowback and produced water from oil and gas wells in the Denver-Julesburg Basin (Niobrara Formation) in Weld County, Colorado, USA. Weld County has been drilled extensively during the last five years for oil and gas between 7000-8000 feet below land-surface. Polypropylene glycols (PPGs) and polyethylene glycols carboxylates (PEG-Cs) were found for the first time in these flowback and produced water samples. These ethoxylated surfactants may be used as friction reducers, clay stabilizers, and surfactants. Ultrahigh-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UHPLC/QTOF-MS) was used to separate and identify the different classes of PPGs, PEG-Cs, and their isomers. The Kendrick mass scale was applied along with mass spectrometry/mass spectrometry (MS-MS) with accurate mass for rapid and unequivocal identification. The PPGs and their isomers occur at the ppm concentration range and may be useful as "fingerprints" of hydraulic-fracturing. Comparing these detections to the compounds used in the fracturing process from FracFocus 3.0 (, it appears that both PPGs and polyethylene glycols (PEGs) are commonly named as additives, but the PEG-Cs have not been reported. The PEG-Cs may be trace impurities or degradation products of PEGs.

  6. The antimicrobial effects and metabolomic footprinting of carboxyl-capped bismuth nanoparticles against Helicobacter pylori. (United States)

    Nazari, P; Dowlatabadi-Bazaz, R; Mofid, M R; Pourmand, M R; Daryani, N E; Faramarzi, M A; Sepehrizadeh, Z; Shahverdi, A R


    Organic salts of bismuth are currently used as antimicrobial agents against Helicobacter pylori. This study evaluated the antibacterial effect of elemental bismuth nanoparticles (Bi NPs) using a serial agar dilution method for the first time against different clinical isolates and a standard strain of H. pylori. The Bi NPs were biologically prepared and purified by a recently described method and subjected to further characterization by infrared spectroscopy and anti-H. pylori evaluation. Infrared spectroscopy results showed the presence of carboxyl functional groups on the surface of biogenic Bi NPs. These biogenic nanoparticles showed good antibacterial activity against all tested H. pylori strains. The resulting MICs varied between 60 and 100 μg/ml for clinical isolates of H. pylori and H. pylori (ATCC 26695). The antibacterial effect of bismuth ions was also tested against all test strains. The antimicrobial effect of Bi ions was lower than antimicrobial effect of bismuth in the form of elemental NPs. The effect of Bi NPs on metabolomic footprinting of H. pylori was further evaluated by (1)H NMR spectroscopy. Exposure of H. pylori to an inhibitory concentration of Bi NPs (100 μg/ml) led to release of some metabolites such as acetate, formic acid, glutamate, valine, glycine, and uracil from bacteria into their supernatant. These findings confirm that these nanoparticles interfere with Krebs cycle, nucleotide, and amino acid metabolism and shows anti-H. pylori activity.

  7. Toxicokinetics of seven perfluoroalkyl sulfonic and carboxylic acids in pigs fed a contaminated diet. (United States)

    Numata, Jorge; Kowalczyk, Janine; Adolphs, Julian; Ehlers, Susan; Schafft, Helmut; Fuerst, Peter; Müller-Graf, Christine; Lahrssen-Wiederholt, Monika; Greiner, Matthias


    The transfer of a mixture of perfluoroalkyl acids (PFAAs) from contaminated feed into the edible tissues of 24 fattening pigs was investigated. Four perfluoroalkyl sulfonic (PFSAs) and three perfluoroalkyl carboxylic acids (PFCAs) were quantifiable in feed, plasma, edible tissues, and urine. As percentages of unexcreted PFAA, the substances accumulated in plasma (up to 51%), fat, and muscle tissues (collectively, meat 40-49%), liver (under 7%), and kidney (under 2%) for most substances. An exception was perfluorooctanesulfonic acid (PFOS), with lower affinity for plasma (23%) and higher for liver (35%). A toxicokinetic model is developed to quantify the absorption, distribution, and excretion of PFAAs and to calculate elimination half-lives. Perfluorohexanoic acid (PFHxA), a PFCA, had the shortest half-life at 4.1 days. PFSAs are eliminated more slowly (e.g., half-life of 634 days for PFOS). PFAAs in pigs exhibit longer elimination half-lives than in most organisms reported in the literature, but still shorter than in humans.

  8. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. (United States)

    Paget, V; Sergent, J A; Grall, R; Altmeyer-Morel, S; Girard, H A; Petit, T; Gesset, C; Mermoux, M; Bergonzo, P; Arnault, J C; Chevillard, S


    Although nanodiamonds (NDs) appear as one of the most promising nanocarbon materials available so far for biomedical applications, their risk for human health remains unknown. Our work was aimed at defining the cytotoxicity and genotoxicity of two sets of commercial carboxylated NDs with diameters below 20 and 100 nm, on six human cell lines chosen as representative of potential target organs: HepG2 and Hep3B (liver), Caki-1 and Hek-293 (kidney), HT29 (intestine) and A549 (lung). Cytotoxicity of NDs was assessed by measuring cell impedance (xCELLigence® system) and cell survival/death by flow cytometry while genotoxicity was assessed by γ-H2Ax foci detection, which is considered the most sensitive technique for studying DNA double-strand breaks. To validate and check the sensitivity of the techniques, aminated polystyrene nanobeads were used as positive control in all assays. Cell incorporation of NDs was also studied by flow cytometry and luminescent N-V center photoluminescence (confirmed by Raman microscopy), to ensure that nanoparticles entered the cells. Overall, we show that NDs effectively entered the cells but NDs do not induce any significant cytotoxic or genotoxic effects on the six cell lines up to an exposure dose of 250 µg/mL. Taken together these results strongly support the huge potential of NDs for human nanomedicine but also their potential as negative control in nanotoxicology studies.

  9. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice

    Institute of Scientific and Technical Information of China (English)

    Jinfeng Qi; Yonggen Lou; Jiancai Li; Xiu Han; Ran Li; Jianqiang Wu; Haixin Yu; Lingfei Hu; Yutao Xiao; Jing Lu


    Jasmonic acid (JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase (JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate (MeJA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene, OsJMT1, whose encoding protein was localized in the cytosol, we found that the recombinant OsJMT1 protein catalyzed JA to MeJA. OsJMT1 is up-regulated in response to infestation with the brown planthopper (BPH; Nilaparvata lugens). Plants in which OsJMT1 had been overexpressed (oe-JMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased MeJA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine (JA-Ile). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs, probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H2O2 and MeJA in oe-JMT plants. These results indicate that OsJMT1, by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice.

  10. The Ameliorative Effects of L-2-Oxothiazolidine-4-Carboxylate on Acetaminophen-Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Jun Ho Shin


    Full Text Available The aim of the study was to investigate the ameliorative effects and the mechanism of action of L-2-oxothiazolidine-4-carboxylate (OTC on acetaminophen (APAP-induced hepatotoxicity in mice. Mice were randomly divided into six groups: normal control group, APAP only treated group, APAP + 25 mg/kg OTC, APAP + 50 mg/kg OTC, APAP + 100 mg/kg OTC, and APAP + 100 mg/kg N-acetylcysteine (NAC as a reference control group. OTC treatment significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels in a dose dependent manner. OTC treatment was markedly increased glutathione (GSH production and glutathione peroxidase (GSH-px activity in a dose dependent manner. The contents of malondialdehyde and 4-hydroxynonenal in liver tissues were significantly decreased by administration of OTC and the inhibitory effect of OTC was similar to that of NAC. Moreover, OTC treatment on APAP-induced hepatotoxicity significantly reduced the formation of nitrotyrosin and terminal deoxynucleotidyl transferase dUTP nick end labeling positive areas of liver tissues in a dose dependent manner. Furthermore, the activity of caspase-3 in liver tissues was reduced by administration of OTC in a dose dependent manner. The ameliorative effects of OTC on APAP-induced liver damage in mice was similar to that of NAC. These results suggest that OTC has ameliorative effects on APAP-induced hepatotoxicity in mice through anti-oxidative stress and anti-apoptotic processes.

  11. Carboxylated ficolls: preparation, characterization, and electrophoretic behavior of model charged nanospheres. (United States)

    Guo, Xuhong; Kirton, Gavin F; Dubin, Paul L


    Carboxylated ficolls were prepared as model spherical colloids of variable charge and size, with radii ranging from 3.0 to 19.3 nm. Capillary electrophoresis (CE), electrophoretic light scattering (ELS), and potentiometric titration were used to determine mobilities as a function of pH, degree of ionization alpha, and surface potential psi(0). Measured mobilities typically display a plateau at high pH, corresponding to high alpha and psi(0), confirming the general nature of this effect for charged spheres, seen also for charged dendrimers and charged latex particles. This result is examined in the context of a discontinuity in mobility predicted by the Wiersema, O'Brien, and White (WOW) theory and a more recent primitive model electrophoresis (PME) theory, in which bound counterions are considered either as point charges or as hard spheres. While no mobility maximum can be determined as expected by these two theories, our data seem more to support Belloni's theoretical expectations on charged polymers and spheres. Here we explain the mobility plateaus in terms of counterions accumulated close to the surface (surface potential-determining ions) or within the shear plane (mobility-determining ions).

  12. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits

    Energy Technology Data Exchange (ETDEWEB)

    Olson, D.C.; White, J.A.; Edelman, L.; Kende, H. (Michigan State Univ., East Lansing (United States)); Harkins, R.N. (Berlex Biosciences, Alameda, CA (United States))


    1-Aminocyclopropane-1-carboxylate synthase is the regulated enzyme in the biosynthetic pathway of the plant hormone ethylene. A full-length cDNA encoding this enzyme has been cloned from tomato fruits. The authors report here the complete nucleotide and derived amino acid sequences of a cDNA encoding a second isoform of ACC synthase from tomato fruits. The cDNAs coding for both isoforms contain highly conserved regions that are surrounded by regions of low homology, especially at the 5{prime} and 3{prime} ends. Gene-specific probes were constructed to examine the expression of transcripts encoding the two ACC synthase isoforms under two conditions of enhanced ethylene formation--namely, during fruit ripening and in response to mechanical stress (wounding). The level of mRNA encoding both isoforms, ACC synthase 1 and 2, increased during ripening. In contrast, wounding caused an increase in only the level of mRNA coding for ACC synthase 1. Blot analysis of genomic DNA digested with restriction enzymes confirmed that ACC synthase 1 and 2 are encoded by different genes.

  13. Effect of A Long Chain Carboxylate Acid on Sodium Dodecyl Sulfate Micelle Structure: A SANS Study (United States)

    Patriati, Arum; Giri Rachman Putra, Edy; Seok Seong, Baek


    The effect of a different hydrocarbon chain length of carboxylate acid, i.e. dodecanoic acid, CH3(CH)10COOH or lauric acid and hexadecanoic acid, CH3(CH2)14COOH or palmitic acid as a co-surfactant in the 0.3 M sodium dedecyl sulfate, SDS micellar solution has been studied using small angle neutron scattering (SANS). The present of lauric acid has induced the SDS structural micelles. The ellipsoid micelles structures changed significantly in length (major axis) from 22.6 Å to 37.1 Å at a fixed minor axis of 16.7 Å in the present of 0.005 M to 0.1 M lauric acid. Nevertheless, this effect did not occur in the present of palmitic acid with the same concentration range. The present of palmitic acid molecules performed insignificant effect on the SDS micelles growth where the major axis of the micelle was elongated from 22.9 Å to 25.3 Å only. It showed that the appropriate hydrocarbon chain length between surfactant and co-surfactant molecules emerged as one of the determining factors in forming a mixed micelles structure.

  14. Synthesis and antituberculosis activity of novel mefloquine-isoxazole carboxylic esters as prodrugs. (United States)

    Mao, Jialin; Yuan, Hai; Wang, Yuehong; Wan, Baojie; Pak, Dennis; He, Rong; Franzblau, Scott G


    5-(2,8-Bis(trifluoromethyl)quinolin-4-yloxymethyl)isoxazole-3-carboxylic acid ethyl ester (compound 3) was reported to have excellent antituberculosis activity against both replicating and non-replicating Mycobacterium tuberculosis, with a minimum inhibitory concentration (MIC) of 0.9 microM and 12.2 microM, respectively. In this study, the antituberculosis activity of compound 3 was further investigated. Its activity appeared to be very specific for organisms of the M. tuberculosis complex and it effected significant reductions of bacterial numbers in infected macrophages with an EC(90) of 4.1 microM. More importantly, the increased in vitro antituberculosis activity of the corresponding acid (compound 4) at pH 6.0 suggested that it may be active in vivo in an acidic environment produced as a consequence of inflammation in the lungs of TB patients. The fact that various ester bioisosteres of compound 3 lost anti-TB activity further suggested that the ester compound 3 may function as a prodrug. The detailed structure-activity relationships (SARs) from this study should facilitate our ultimate goal of improving the anti-TB potency of this isoxazole ester series.

  15. Copper Complexes of Nicotinic-Aromatic Carboxylic Acids as Superoxide Dismutase Mimetics

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul


    Full Text Available Nicotinic acid (also known as vitamin B3 is a dietary element essential for physiological and antihyperlipidemic functions. This study reports the synthesis of novel mixed ligand complexes of copper with nicotinic and other select carboxylic acids (phthalic, salicylic and anthranilic acids. The tested copper complexes exhibited superoxide dismutase (SOD mimetic activity and antimicrobial activity against Bacillus subtilis ATCC 6633, with a minimum inhibition concentration of 256 μg/mL. Copper complex of nicotinic-phthalic acids (CuNA/Ph was the most potent with a SOD mimetic activity of IC50 34.42 μM. The SOD activities were observed to correlate well with the theoretical parameters as calculated using density functional theory (DFT at the B3LYP/LANL2DZ level of theory. Interestingly, the SOD activity of the copper complex CuNA/Ph was positively correlated with the electron affinity (EA value. The two quantum chemical parameters, highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO, were shown to be appropriate for understanding the mechanism of the metal complexes as their calculated energies show good correlation with the SOD activity. Moreover, copper complex with the highest SOD activity were shown to possess the lowest HOMO energy. These findings demonstrate a great potential for the development of value-added metallovitamin-based therapeutics.

  16. Syntheses, structures, and properties of multidimensional lithium coordination polymers based on aliphatic carboxylic acids. (United States)

    Cheng, Pei-Chi; Lin, Wei-Cheng; Tseng, Feng-Shuen; Kao, Ching-Che; Chang, Ting-Guang; Senthil Raja, Duraisamy; Liu, Wei-Ren; Lin, Chia-Her


    Three lithium coordination polymers, [Li4(H2O)2(EDTA)] (1), [Li4(H2O)4(BTCA)] (2), and (H2NMe2)2[Li2(H2O)2(BTCA)] (3) (H4EDTA = ethylenediaminetetraacetic acid, H4BTCA = 1,2,3,4-butane tetracarboxylic acid, H2NMe2 = dimethyl amine), have been synthesized by reacting lithium salts with aliphatic carboxylic acids using a solvothermal method. The structures of all the three complexes have been determined by single crystal X-ray diffraction studies. The single crystal structure analysis revealed that complex 1 has a three-dimensional framework, whereas complex 2 has 2D sheets and complex 3 has 1D chains. In addition, these lithium complexes contain various inorganic motifs with a tetramer in 1 and 2, and discrete tetrahedra in 3 and have further been connected through organic ligands to construct multidimensional structures. Further, the electrochemical properties of complexes 1–3 have been studied to evaluate these compounds as electrode materials for lithium ion batteries with discharge capacities of around 100 mA h g(-1) in the first thirty cycles.

  17. Aliphatic carboxylic acids and alcohols as efficiency and elution strength enhancers in micellar liquid chromatography. (United States)

    Boichenko, Alexander P; Berthod, Alain


    Micellar liquid chromatography (MLC) uses surfactant solutions as mobile phases with added organic additives to enhance both the elution strength and the chromatographic efficiency. Two aliphatic carboxylic acids (1-butanoic and 1-pentanoic) were used as MLC additives and compared with the two corresponding alcohols (1-butanol, 1-pentanol) in terms of elution strength, efficiency and selectivity. A set of 11 phenol derivatives was used as probe compounds. All micellar mobile phases were prepared with sodium dodecylsulfate (SDS) with concentration ranging from 0.05 to 0.15M and the modifier content within 1.0 and 5.0% (v/v). The elution strength of different mobile phases containing a constant amount of SDS and different amounts of modifiers; and mobile phases containing a constant amount of modifier and different SDS concentration were determined and discussed. The effect of the acid modifiers on efficiency was studied constructing van Deemter plots that showed no minimum within the 0.01-0.7mL/min flow rate range studied. Temperature effects were also studied constructing the classical van't Hoff plots. The slight curvature of the plots in the 25-70 degrees C range may indicate some modification of the surfactant-bonded moiety layer on the stationary phase surface. Since no definitive advantage of the use of aliphatic acids were established compared to their alcohol counterpart, their terrible smell will probably preclude their use as MLC organic modifiers.

  18. Clustering of carboxylated magnetite nanoparticles through polyethylenimine: Covalent versus electrostatic approach (United States)

    Tóth, Ildikó Y.; Nesztor, Dániel; Novák, Levente; Illés, Erzsébet; Szekeres, Márta; Szabó, Tamás; Tombácz, Etelka


    Carboxylated magnetite nanoparticles (MNPs) are frequently used to develop materials with enhanced properties for MRI and hyperthermia. The controlled clustering of MNPs via covalent or electrostatic approaches provides opportunity to prepare high quality materials. MNPs were prepared by co-precipitation and coated by poly(acrylic acid-co-maleic acid) (PAM@MNP). The clusters were synthesized from purified PAM@MNPs and polyethylenimine (PEI) solution via electrostatic interaction and covalent bond formation (ES-cluster and CB-cluster, respectively). The electrostatic adhesion (-NH3+ and -COO-) and the formed amide bond were confirmed by ATR-FTIR. The averaged area of CB-clusters was about twice as large as that of ES-cluster, based on TEM. The SAXS results showed that the surface of MNPs was smooth and the nanoparticles were close packed in both clusters. The pH-dependent aggregation state and zeta potential of clusters were characterized by DLS and electrophoresis measurements, the clusters were colloidally stable at pH>5. In hyperthermia experiments, the values of SAR were about two times larger for the chemically bonded cluster. The MRI studies showed exceptionally high transversion relaxivities, the r2 values are 457 mM-1 s-1 and 691 mM-1 s-1 for ES-cluster and CB-cluster, respectively. Based on these results, the chemically clustered product shows greater potential for feasible biomedical applications.

  19. The pentose phosphate pathway and pyruvate carboxylation after neonatal hypoxic-ischemic brain injury. (United States)

    Brekke, Eva M F; Morken, Tora S; Widerøe, Marius; Håberg, Asta K; Brubakk, Ann-Mari; Sonnewald, Ursula


    The neonatal brain is vulnerable to oxidative stress, and the pentose phosphate pathway (PPP) may be of particular importance to limit the injury. Furthermore, in the neonatal brain, neurons depend on de novo synthesis of neurotransmitters via pyruvate carboxylase (PC) in astrocytes to increase neurotransmitter pools. In the adult brain, PPP activity increases in response to various injuries while pyruvate carboxylation is reduced after ischemia. However, little is known about the response of these pathways after neonatal hypoxia-ischemia (HI). To this end, 7-day-old rats were subjected to unilateral carotid artery ligation followed by hypoxia. Animals were injected with [1,2-(13)C]glucose during the recovery phase and extracts of cerebral hemispheres ipsi- and contralateral to the operation were analyzed using (1)H- and (13)C-NMR (nuclear magnetic resonance) spectroscopy and high-performance liquid chromatography (HPLC). After HI, glucose levels were increased and there was evidence of mitochondrial hypometabolism in both hemispheres. Moreover, metabolism via PPP was reduced bilaterally. Ipsilateral glucose metabolism via PC was reduced, but PC activity was relatively preserved compared with glucose metabolism via pyruvate dehydrogenase. The observed reduction in PPP activity after HI may contribute to the increased susceptibility of the neonatal brain to oxidative stress.

  20. Using carboxylated nanocrystalline cellulose as an additive in cellulosic paper and poly (vinyl alcohol) fiber paper. (United States)

    Cha, Ruitao; Wang, Chengyu; Cheng, Shaoling; He, Zhibin; Jiang, Xingyu


    Specialty paper (e.g. cigarette paper and battery diaphragm paper) requires extremely high strength properties. The addition of strength agents plays an important role in increasing strength properties of paper. Nanocrystalline cellulose (NCC), or cellulose whiskers, has the potential to enhance the strength properties of paper via improving inter-fibers bonding. This paper was to determine the potential of using carboxylated nanocrystalline cellulose (CNCC) to improve the strength properties of paper made of cellulosic fiber or poly (vinyl alcohol) (PVA) fiber. The results indicated that the addition of CNCC can effectively improve the strength properties. At a CNCC dosage of 0.7%, the tear index and tensile index of the cellulosic paper reached the maximum of 12.8 mN m2/g and 100.7 Nm/g, respectively. More importantly, when increasing the CNCC dosage from 0.1 to 1.0%, the tear index and tensile index of PVA fiber paper were increased by 67.29%, 22.55%, respectively.