WorldWideScience

Sample records for carboxyl group reactivity

  1. Carboxyl group reactivity in actin

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs.

  2. Carboxyl group reactivity in actin

    International Nuclear Information System (INIS)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs

  3. Effect of the number of phenyl groups per molecule on the reactivity of hydroxyl or carboxyl group in hydrogen-isotope exchange reaction

    International Nuclear Information System (INIS)

    Okada, Minoru; Imaizumi, Hiroshi; Oguma, Shuichi

    1989-01-01

    Hydrogen-exchange reactions in solid alcohols (or solid carboxylic acids) which contain phenyl group(s) in each molecule have been observed in a gas-solid system or liquid-solid system at 40 ≅ 80deg C. The data thus obtained have been analyzed by using the A''-McKay plot method, and 'the acidities based on kinetic logic' have been obtained for those compounds. From the acidities the following four characteristics have been determined. (1) The acidity increases with increases of temperature. (2) The reactivities of carboxylic acids are larger than those of alcohols at any temperature. (3) The effect of the number of phenyl groups on the reactivity of the functional group in the molecule in question is fairly large. (4) Acidity based on kinetic logic can be applied not only to gas-solid reactions, but also to liquid-solid reactions. (orig.)

  4. Preparation and reactivity of carboxylic acid-terminated boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Niedziolka-Joensson, Joanna; Boland, Susan; Leech, Donal; Boukherroub, Rabah; Szunerits, Sabine

    2010-01-01

    The paper reports on the formation of carboxy-terminated boron-doped diamond (BDD) electrodes. The carboxylic acid termination was prepared in a controlled way by reacting photochemically oxidized BDD with succinic anhydride. The resulting interface was readily employed for the linking of an amine-terminated ligand such as an osmium complex bearing an amine terminal group. The interfaces were characterized using X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Contact angle measurements were used to follow the changes in surface wetting properties due to surface functionalization. The chemical reactivity of the carboxyl-terminated BDD was investigated by covalent coupling of the acid groups to an amine-terminated osmium complex.

  5. Kinetic analysis of the reactivity of aliphatic cyclic alcohols and carboxylic acids in the T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Tamura, Kiyoshi; Imaizumi, Hiroshi; Kano, Naoki

    2007-01-01

    In order to quantitatively evaluate the influence of tritium ( 3 He or T) on various functional groups in environment, the hydrogen isotope exchange reaction (T-for-H exchange reaction) between tritium-labeled poly-(vinyl alcohol) and each aliphatic cyclic alcohol (or carboxylic acid) has been dynamically observed in the range of 50 to 90degC. Consequently, the activities of the aliphatic cyclic alcohol and carboxylic acid increased with increasing reaction time. Applying in A''-McKay plot method to the observed data, the rate constants (k) for these materials were obtained. Using the k, the relation between the number of carbon atoms in the ring in each alcohol and the reactivity of the alcohol was quantitatively compared. Then, to clarify the effect of relative atomic charge of O atom (connected with the H atom in the hydroxy (or carboxy) group in the material) on the reactivity of the material, the MOPAC method was used. From both the above-mentioned and the obtained previously, the following nine items were found as to aliphatic cyclic alcohols (and carboxylic acids) in the T-for-H exchange reaction. (1) The reactivity of aliphatic cyclic alcohols (and carboxylic acids) depends on the temperature. (2) The reactivity of the cyclic materials decreases with increasing number of carbon atoms in the ring. (3) The reactivity of the aliphatic cyclic carboxylic acid seems to be smaller than that of aliphatic cyclic alcohol, and be larger than that of aliphatic cyclic amine. (4) For aliphatic cyclic alcohols, correlation exists between k and relative atomic charges of O atom obtained by the MOPAC method, but the tendency for aliphatic cyclic carboxylic acid is not clear. (5) As to having the same number of carbon atoms in each ring, the reactivity of the aliphatic cyclic carboxylic acid including the side chain is smaller than of the aliphatic cyclic carboxylic acid including no side chain. (6) The reactivity of aliphatic cyclic carboxylic acid is larger than that of

  6. Coupling of carboxylic groups onto the surface of polystyrene parts during fused filament fabrication

    Science.gov (United States)

    Nagel, Jürgen; Zimmermann, Philipp; Schubert, Oliver; Simon, Frank; Schlenstedt, Kornelia

    2017-11-01

    A method for the fabrication of polystyrene parts, modified with carboxylic groups during Fused Filament Fabrication (FFF), is being introduced. This method is based on the application of a thin layer of a reactive polymer carrying carboxylic groups on a substrate surface. A polystyrene film is printed on top of this layer. During contact between the hot melt and the reactive layer, a Friedel-Crafts type acylation using a green catalyst takes place, which attaches the reactive polymer to the polystyrene surface. The modified surface is homogeneous, hydrophilic and able to bind copper ions. The method could be used to fabricate unique parts of polystyrene with tailored surface functionalisation. It could be applied for laboratory use, e.g. for the manufacture of lab-on-a-chip devices.

  7. Rational design of carboxyl groups perpendicularly attached to a graphene sheet: a platform for enhanced biosensing applications.

    Science.gov (United States)

    Bonanni, Alessandra; Chua, Chun Kiang; Pumera, Martin

    2014-01-03

    electrode surface and improved the performance of graphene as a biosensor in comparison to GO. The proposed material can be used as a universal platform for biomolecule immobilization to facilitate rapid and sensitive detection of DNA or proteins for point-of-care investigations. Such reactive carboxyl groups grafted perpendicularly on GO holds promise for a highly efficient tailored biofunctionalization for applications in biosensing or drug delivery. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and bioactivities of Phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group.

    Science.gov (United States)

    Xiong, Zhipeng; Niu, Junfan; Liu, Hao; Xu, Zhihong; Li, Junkai; Wu, Qinglai

    2017-05-01

    Phenazine-1-carboxylic acid (PCA) as a natural product widely exists in microbial metabolites of Pseudomonads and Streptomycetes and has been registered for the fungicide against rice sheath blight in China. To find higher fungicidal activities compounds and study the effects on fungicidal activities after changing the carboxyl group of PCA, we synthesized a series of PCA derivatives by modifying the carboxyl group of PCA and their structures were confirmed by 1 H NMR and HRMS. Most compounds exhibited significant fungicidal activities in vitro. In particular, compound 6 exhibited inhibition effect against Rhizoctonia solani with EC 50 values of 4.35mg/L and compound 3b exhibited effect against Fusarium graminearum with EC 50 values of 8.30mg/L, compared to the positive control PCA with its EC 50 values of 7.88mg/L (Rhizoctonia solani) and 127.28mg/L (Fusarium graminearum), respectively. The results indicated that the carboxyl group of PCA could be modified to be amide group, acylhydrazine group, ester group, methyl, hydroxymethyl, chloromethyl and ether group etc. And appropriate modifications on carboxyl group of PCA were useful to extend the fungicidal scope. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. In Vitro Reactivity of Carboxylic Acid-CoA Thioesters with Glutathione

    DEFF Research Database (Denmark)

    Sidenius, Ulrik; Skonberg, Christian; Olsen, Jørgen

    2004-01-01

    was to investigate whether a correlation could be found between the structure of acyl-CoA thioesters and their reactivities toward the tripeptide, glutathione (ç- Glu-Cys-Gly).  The  acyl-CoA  thioesters  of  eight  carboxylic  acids  (ibuprofen,  clofibric  acid, indomethacin,  fenbufen,  tolmetin,  salicylic  acid......The chemical reactivity of acyl-CoA thioesters toward nucleophiles has been demonstrated in several recent studies. Thus, intracellularly formed acyl-CoAs of xenobiotic carboxylic acids may react covalently with endogenous proteins and potentially lead to adverse effects. The purpose of this study......,  2-phenoxypropionic  acid,  and  (4-chloro-2-methyl-phenoxy)acetic  acid  (MCPA))  were  synthesized,  and  each  acyl-CoA  (0.5  mM)  was incubated with glutathione (5.0 mM) in 0.1 M potassium phosphate (pH 7.4, 37 °C). All of the acyl-CoAs reacted with glutathione to form the respective acyl...

  10. Determination of carboxyl groups in wood fibers by headspace gas chromatography

    Science.gov (United States)

    X.-S. Chai; Q.X. Hou; J.Y. Zhu; S.-L. Chen; S.F. Wang; L. Lucia

    2003-01-01

    The phase reaction conversion (PRC) headspace gas chromatographic (HSGC) technique was employed to develop a method for the determination of the content of carboxyl groups in wood fibers. Acid treatment of the wood fibers using hydrochloric was applied to convert carboxyl groups to carboxyl acids. Bicarbonate solution is then used to react with carboxyl acids on the...

  11. Rhodium-catalyzed regioselective olefination directed by a carboxylic group.

    Science.gov (United States)

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-05-06

    The ortho-olefination of benzoic acids can be achieved effectively through rhodium-catalyzed oxidative coupling with alkenes. The carboxylic group is readily removable to allow ortho-olefination/decarboxylation in one pot. α,β-Unsaturated carboxylic acids such as methacrylic acid also undergo the olefination at the β-position. Under the rhodium catalysis, the cine-olefination of heteroarene carboxylic acids such as thiophene-2-carboxylic acid proceeds smoothly accompanied by decarboxylation to selectively produce the corresponding vinylheteroarene derivatives. © 2011 American Chemical Society

  12. Direct Carboxylation of the Diazo Group ipso-C(sp2)-H bond with Carbon Dioxide: Access to Unsymmetrical Diazomalonates and Derivatives.

    Science.gov (United States)

    Liu, Qianyi; Li, Man; Xiong, Rui; Mo, Fanyang

    2017-12-15

    The direct carboxylation of the ipso-C(sp 2 )-H bond of a diazo compound with carbon dioxide under mild reaction conditions is described. This method is transition-metal-free, uses a weak base, and proceeds at ambient temperature under atmospheric pressure in carbon dioxide. The carboxylation exhibits high reactivity and is amenable to subsequent diversification. A series of unsymmetrical 1,3-diester/keto/amide diazo compounds are obtained with moderate to excellent yields (up to 99%) with good functional group compatibility.

  13. Carboxylated Polyurethanes Containing Hyperbranched Polyester Soft Segments

    Directory of Open Access Journals (Sweden)

    Žigon, M.

    2006-09-01

    Full Text Available hyperbranched polyester soft segments (HB PU with functional carboxylic groups in order to enable the preparation of stable HB PU dispersions. Carboxylated hyperbranched polyurethanes were synthesized using a hyperbranched polyester based on 2,2-bis(methylolpropionic acid of the fourth pseudo-generation (Boltorn H40 and hexamethylene (HDI or isophorone diisocyanate (IPDI. The reactivity of hyperbranched polyester with HDI was lower than expected, possibly due to the presence of less reactive hydroxyl groups in the linear repeat units. A gel was formed at mole ratios rNCO/OH = 1:2 or 1:4. The synthesis of HB PU was performed with partly esterified hyperbranched polyester with lowered hydroxyl functionality. The carboxyl groups were incorporated in the HB PU backbone by reaction of residual hydroxyl groups with cis-1,2-cyclohexanedicarboxylic anhydride. HB PU aqueous dispersions were stable at least for two months, although their films were brittle. The tensile strength and Young's modulus of blends of linear and HB PU decreased with increasing content of HB PU whereas elongation at break remained nearly constant, which was explained in terms of looser chain packing due to more open tree-like hyperbranched structures.

  14. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity

    Directory of Open Access Journals (Sweden)

    Ching-Chia Tang

    2017-02-01

    Full Text Available The aim of the present study was to investigate whether glycated ovalbumin (OVA showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d-mannopyranoside. An increase in the number of modified carboxyl groups increased the membrane-damaging activity of Man-OVA on cell membrane-mimicking vesicles, whereas OVA did not induce membrane permeability in the tested phospholipid vesicles. The glycation of carboxyl groups caused a notable change in the gross conformation of OVA. Moreover, owing to their spatial positions, the Trp residues in Man-OVA were more exposed, unlike those in OVA. Fluorescence quenching studies suggested that the Trp residues in Man-OVA were located on the interface binds with the lipid vesicles, and their microenvironment was abundant in positively charged residues. Although OVA and Man-OVA showed a similar binding affinity for lipid vesicles, the lipid-interacting feature of Man-OVA was distinct from that of OVA. Chemical modification studies revealed that Lys and Arg residues, but not Trp residues, played a crucial role in the membrane-damaging activity of Man-OVA. Taken together, our data suggest that glycation of carboxyl groups causes changes in the structural properties and membrane-interacting features of OVA, generating OVA with membrane-perturbing activities at the lipid-water interface.

  15. Adsorption of UO2+2 by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group

    International Nuclear Information System (INIS)

    Choi, Seong-Ho; Nho, Young Chang

    2000-01-01

    The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO 2+ 2 was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO 2+ 2 . The complex structure of polyethylene with three functional groups and UO 2+ 2 was confirmed by Fourier Transform Infrared (FTIR) spectroscopy. (author)

  16. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release

    Science.gov (United States)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.

    2017-02-01

    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  17. Diastereoisomeric diversity dictates reactivity of epoxy groups in limonene dioxide polymerization

    Directory of Open Access Journals (Sweden)

    M. Soto

    2018-06-01

    Full Text Available Limonene dioxide (LDO has the potential to find a wide application as a bio-based epoxy resin. Its polymerizations by catalyzed ring-opening, and by polyaddition with diamines were compared with the polymerizations of the commercial epoxy resins bisphenol-A diglycidyl ether (BADGE, and 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate (ECC. Differential scanning calorimetry (DSC studies showed that LDO polymerizations suffer in all cases studied from incomplete conversions. Nuclear magnetic resonance (NMR studies revealed that in cis-isomers of LDO the internal epoxide rings were not reacting. The low reactivity of this epoxide group was explained by mechanistic considerations making use of the Fürst-Plattner rule, or trans-diaxial effect. Due to diastereomeric diversity approximately one-fourth of epoxide groups present in LDO could not react. Therefore, a diastereoselective epoxidation of limonene could provide a fully reactive bio-based epoxy resin.

  18. Measuring the concentration of carboxylic acid groups in torrefied spruce wood.

    Science.gov (United States)

    Khazraie Shoulaifar, Tooran; Demartini, Nikolai; Ivaska, Ari; Fardim, Pedro; Hupa, Mikko

    2012-11-01

    Torrefaction is moderate thermal treatment (∼200-300°C) to improve the energy density, handling and storage properties of biomass fuels. In biomass, carboxylic sites are partially responsible for its hygroscopic. These sites are degraded to varying extents during torrefaction. In this paper, we apply methylene blue sorption and potentiometric titration to measure the concentration of carboxylic acid groups in spruce wood torrefied for 30min at temperatures between 180 and 300°C. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic acid sites. Thus both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction which provides new information to the chemical changes occurring during torrefaction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Alves, P., E-mail: palves@eq.uc.pt [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Ferreira, P. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Kaiser, Jean-Pierre [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Salk, Natalie [Mikrofertigung – Micro Engineering, Fraunhofer IFAM, Wiener Strasse 12, D-288359 Bremen (Germany); Bruinink, Arie [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Sousa, Hermínio C. de; Gil, M.H. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal)

    2013-10-15

    The interaction of polymers with other materials is an important issue, being their surface properties clearly crucial. For some important polymer applications, their surfaces have to be modified. Surface modification aims to tailor the surface characteristics of a material for a specific application without affecting its bulk properties. Materials can be surface modified by using biological, chemical or physical methods. The aim of this work was to improve the reactivity of the thermoplastic polyurethane (TPU) material (Elastollan{sup ®}) surface and to make its surface cell repellent by grafting carboxylic groups onto its surface. Two TPU materials were studied: a polyether-based TPU and a polyester-based TPU. The grafting efficiency was evaluated by contact angle measurements and by analytical determination of the COOH groups. Scanning electron microscopy (SEM) of the membranes surface was performed as well as cell adhesion tests. It was proved that the surfaces of the TPUs membranes were successfully modified and that cell adhesion was remarkably reduced.

  20. Cyclodextrin derivatives with cyanohydrin and carboxylate groups as artificial glycosidases

    DEFF Research Database (Denmark)

    Bols, Mikael; Ortega-Caballero, Fernando

    2006-01-01

    Two cyclodextrin derivatives (1 and 2) were prepared in an attempt to create glycosidase mimics with a general acid catalyst and a nucleophilic carboxylate group. The catalysts 1 and 2 were found to catalyse the hydrolysis of 4-nitrophenyl beta-D-glucopyranoside at pH 8.0, but rapidly underwent...... decomposition with loss of hydrogen cyanide to convert the cyanohydrin to the corresponding aldehyde. The initial rate of the catalysis shows that the cyanohydrin group in these molecules functions as a good catalyst, but that the carboxylate has no positive effect. The decomposition product aldehydes display...

  1. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, Julien [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: julien.dron@up.univ-mrs.fr; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF{sub 3}/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L{sup -1}. Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  2. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    International Nuclear Information System (INIS)

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-01-01

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF 3 /methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L -1 . Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices

  3. Confinement effect of protonation/deprotonation of carboxylic group modified in nanochannel

    International Nuclear Information System (INIS)

    Gao, Hong-Li; Zhang, Hui; Li, Cheng-Yong; Xia, Xing-Hua

    2013-01-01

    Protonation and deprotonation processes are the key step of acid–base reaction and occur in many biological processes. Study on the deprotonation process of molecules and/or functional groups in confined conditions would help us understand the acid–base theory and confinement effect of biomolecules. In this paper, we use a recently established approach to the study of protonation and deprotonation processes of functional groups in porous anodic alumina array nanochannels by measuring the flux of electrochemical active probes (ferricyanide ions) using an Au film electrochemical detector sputtered at the end of nanochannels. The protonation and deprotonation processes of surface functional groups in nanochannels will change the surface charges and in turn modulate the transportation of charged electroactive probes through nanochannels. The titration curve for the deprotonation of carboxylic groups in nanochannel confined conditions is obtained by measuring the current signal of ferricyanide probe flowing through an carboxylic-anchored PAA nanochannels array at different solution pH. Results show that the deprotonation of carboxylic group in nanochannel occurs in one step with a pK 1/2 = 6.2. The present method provides an effective tool to study the deprotonation processes of various functional groups and biomolecules under confined conditions

  4. Two types of essential carboxyl groups in Rhodospirillum rubrum proton ATPase

    International Nuclear Information System (INIS)

    Ceccarelli, E.; Vallejos, R.H.

    1983-01-01

    Two different types of essential carboxyl groups were detected in the extrinsic component of the proton ATPase of Rhodospirillum rubrum. Chemical modification of R. rubrum chromatophores or its solubilized ATPase by Woodward's reagent K resulted in inactivation of photophosphorylating and ATPase activities. The apparent order of reaction was nearly 1 with respect to reagent concentration and similar K1 were obtained for the soluble and membrane-bound ATPases suggesting that inactivation was associated with modification of one essential carboxyl group located in the soluble component of the proton ATPase. Inactivation was prevented by adenine nucleotides but not by divalent cations. Dicyclohexylcarbodiimide completely inhibited the solubilized ATPase with a K1 of 5.2 mM and a K2 of 0.81 min-1. Mg2+ afforded nearly complete protection with a Kd of 2.8 mM. Two moles of [14C]dicyclohexylcarbodiimide were incorporated per mole of enzyme for complete inactivation but in the presence of 30 mM MgCl2 only one mole was incorporated and there was no inhibition. The labeling was recovered mostly from the beta subunit. The incorporation of the labeled reagent into the ATPase was not prevented by previous modification with Woodward's reagent K. It is concluded that both reagents modified two different essential carboxyl groups in the soluble ATPase from R. rubrum

  5. Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s)

    Energy Technology Data Exchange (ETDEWEB)

    O’Donnell, Ryan M. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Sampaio, Renato N. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Li, Guocan [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Johansson, Patrik G. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Ward, Cassandra L. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Meyer, Gerald J. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States

    2016-03-10

    Excited state proton transfer studies of six Ru polypyridyl compounds with carboxylic acid/carboxylate group(s) revealed that some were photoacids and some were photobases. The compounds [RuII(btfmb)2(LL)]2+, [RuII(dtb)2(LL)]2+, and [RuII(bpy)2(LL)]2+, where bpy is 2,2'-bipyridine, btfmb is 4,4'-(CF3)2-bpy, and dtb is 4,4'-((CH3)3C)2-bpy, and LL is either dcb = 4,4'-(CO2H)2-bpy or mcb = 4-(CO2H),4'-(CO2Et)-2,2'-bpy, were synthesized and characterized. The compounds exhibited intense metal-to-ligand charge-transfer (MLCT) absorption bands in the visible region and room temperature photoluminescence (PL) with long τ > 100 ns excited state lifetimes. The mcb compounds had very similar ground state pKa’s of 2.31 ± 0.07, and their characterization enabled accurate determination of the two pKa values for the commonly utilized dcb ligand, pKa1 = 2.1 ± 0.1 and pKa2 = 3.0 ± 0.2. Compounds with the btfmb ligand were photoacidic, and the other compounds were photobasic. Transient absorption spectra indicated that btfmb compounds displayed a [RuIII(btfmb–)L2]2+* localized excited state and a [RuIII(dcb–)L2]2+* formulation for all the other excited states. Time dependent PL spectral shifts provided the first kinetic data for excited state proton transfer in a transition metal compound. PL titrations, thermochemical cycles, and kinetic analysis (for the mcb compounds) provided self-consistent pKa* values. The ability to make a single ionizable group photobasic or photoacidic through ligand design was unprecedented and was understood based on the orientation of the lowest-lying MLCT excited state dipole relative to the ligand that contained the carboxylic acid group(s).

  6. Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups

    International Nuclear Information System (INIS)

    Kralj, Slavko; Drofenik, Miha; Makovec, Darko

    2011-01-01

    General and versatile methods for the functionalization of superparamagnetic, silica-coated, maghemite nanoparticles by surface amino and/or carboxyl groups have been established. The nanoparticles were synthesized using co-precipitation from aqueous solutions and coated with a thin layer of silica using the hydrolysis and condensation of tetraethoxysilane (TEOS). For the amino functionalization, 3-(2-aminoethylamino)propylmethyldimethoxysilane (APMS) was grafted onto the nanoparticle surfaces in their aqueous suspensions. The grafting process was followed by measurements of the ζ-potential and a determination of the concentration of the surface amino groups with conductometric titrations. The surface concentration of the amino groups could be varied by increasing the amount of APMS in the grafting process up to approximately 2.3 –NH 2 groups per nm 2 . The carboxyl functionalization was obtained in two ways: (i) by a ring-opening linker elongation reaction of the surface amines at the functionalized nanoparticles with succinic anhydride (SA) in non-aqueous medium, and (ii) by reacting the APMS and SA first, followed by grafting of the carboxyl-terminated reagent onto the nanoparticle surfaces. Using the first method, the SA only reacted with the terminal primary amino groups (–NH 2 ) of the surface-grafted APMS molecules. Infra-red spectroscopy (ATR FTIR) and mass spectrometry (HRMS) showed that the second method enables the bonding of up to two SA molecules per one APMS molecule, since the SA reacted with both the primary (–NH 2 ) and secondary amino (–NH–) groups of the APMS molecule. When using both methods, the ratio between the surface amino and carboxyl groups can be controlled.

  7. Influence of carboxyl group formation on ammonia adsorption of NiO-templated nanoporous carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Long-Yue [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2012-11-15

    The scope of this work was to control the surface functional groups of nanoporous carbons (NPs) by oxidizing agents (nitric acid and hydrogen peroxide) treatments and to investigate the relation between carboxyl group and ammonia removal efficiency. The NPs were directly prepared from a cation exchange resin by the carbonization of a mixture with Ni acetate at 900 Degree-Sign C. N{sub 2}/-196 Degree-Sign C adsorption, Boehm's titrations, and X-ray photoelectron spectroscopy (XPS) analyzes were employed to confirm the physicochemical properties of NPs. The ammonia removal efficiency was confirmed by temperature programmed desorption (TPD) technique. In the result, the oxygen content of NPs increased after various treatments and the highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. It was also found that the oxidation treatment led to an increase in ammonia removal efficiency of NPs, mainly due to an increase of acid oxygen functional groups (such as carboxyl) on NPs surfaces. -- Graphical abstract: The nanoporous carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate for ammonia adsorption. Highlights: Black-Right-Pointing-Pointer The carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate. Black-Right-Pointing-Pointer The carbon surfaces were modified with HNO{sub 3}/H{sub 2}O{sub 2} solution at different volume radio. Black-Right-Pointing-Pointer The highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer The acid oxygen functional groups (such as carboxyl) on carbon surfaces led to an increase in ammonia adsorption.

  8. Effect of carboxyl anchoring groups in asymmetric zinc phthalocyanine with large steric hindrance on the dye-sensitized solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wenye; Peng, Bosi; Lin, Li; Li, Renjie; Zhang, Jing, E-mail: jzhang03@whu.edu.cn; Peng, Tianyou, E-mail: typeng@whu.edu.cn

    2015-08-01

    Asymmetric zinc phthalocyanines containing tribenzonaphtho-condensed porphyrazine with six bulky diphenylphenoxy and one or two carboxyl groups are used as sensitizers for dye-sensitized solar cells (DSSCs). It is found that Zn-tri-PcNc-4 having two carboxyl groups shows a slight redshift in the Q-band absorption but a significantly decreased absorbance as compared with Zn-tri-PcNc-8 having one carboxyl group, and Zn-tri-PcNc-4 can be more stably and perpendicularly grafted onto the TiO{sub 2} surface than Zn-tri-PcNc-8, which further leads to the differences in the interfacial charge transfer dynamics and dye-loaded amount. Zn-tri-PcNc-4 with two carboxyl groups grafted onto the TiO{sub 2} electrode surface of DSSC results in a photovoltaic conversion efficiency of 3.22%, higher than that (3.01%) of the analog with one carboxyl group (Zn-tri-PcNc-8), which exhibits a lower short-circuit current but much higher open-circuit voltage. The additional carboxyl group in Zn-tri-PcNc-4 leads to the enhanced dye-loaded amount and the molecular orbital energy level shift toward positive direction, causing more efficient electron injection and higher short-circuit current than Zn-tri-PcNc-8; while the two carboxyl groups of Zn-tri-PcNc-4 would cause more protonation of TiO{sub 2} surface, which possibly leads to the downward shift of TiO{sub 2} conduction band edge, and then to the decreased open-circuit voltage. The present results demonstrate the molecular engineering aspect of ZnPc dyes in which the fine tuning of the energy levels and molecular structures is crucial for high conversion efficiency of DSSCs. - Highlights: • ZnPcs with six diphenylphenoxy and one/two carboxyl groups are used as dyes for DSSCs. • Effect of carboxyl group number on the ZnPc-sensitized cell property are scrutinized. • Grafting two carboxyl groups on ZnPc leads to the enhanced photocurrent and efficiency. • ZnPc with one COOH has a higher open-circuit voltage than its analog with two

  9. First principles study of edge carboxylated graphene quantum dots

    Science.gov (United States)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  10. Interaction of 1-iodochlordecone, as radioactive tracer, with the carboxylate group on activated carbon

    International Nuclear Information System (INIS)

    Gamboa-Carballo, Juan José; Melchor-Rodríguez, Kenia; Hernández-Valdés, Daniel; Jáuregui-Haza, Ulises Javier

    2016-01-01

    Chlordecone is a synthetic organo chlorinated compound that has been used as pesticide. It has been identified and listed as persistent organic pollutant by the Stockholm Convention. The use of activated carbon filters is one of the most widely popular solutions for water decontamination. The chlordecone labeled with radioactive iodine (1-iodochordecone) is a potential radioactive tracer for studying adsorption, environmental availability and bio-distribution of chlordecone. The selection of the best suited activation carbon for this type of contaminants is mainly an empiric process, increasing the costs of research. A simplified activation carbon model, consisting of a seven ring graphene sheet with a functional group (carboxylate) was used to assess the interaction of chlordecone and 1-iodochlordecone with this surface group under neutral pH conditions over the adsorption process. The Multiple Minima Hypersurface methodology with the semiempirical Hamiltonian PM7 was used. The results indicate that for carboxylate, in neutral conditions, significant associations appear which suggest chemisorption in activated carbon. No significant differences were observed for the interactions of chlordecone and 1 iodochlordecone with carboxylate, making 1-iodochlordecone a good candidate as a radioactive tracer in medical research. (author)

  11. “Fifty Shades” of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties

    Directory of Open Access Journals (Sweden)

    Raffaella Micillo

    2016-05-01

    Full Text Available Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences in light absorption, antioxidant, paramagnetic and redox behavior, particle morphology, surface properties, metal chelation and resistance to photo-oxidative wear-and-tear. These variations are primarily governed by the extent of decarboxylation at critical branching points of the eumelanin and pheomelanin pathways, namely the rearrangement of dopachrome to 5,6-dihydroxyindole (DHI and 5,6-dihydroxyindole-2-carboxylic acid (DHICA, and the rearrangement of 5-S-cysteinyldopa o-quinoneimine to 1,4-benzothiazine (BTZ and its 3-carboxylic acid (BTZCA. In eumelanins, the DHICA-to-DHI ratio markedly affects the overall antioxidant and paramagnetic properties of the resulting pigments. In particular, a higher content in DHICA decreases visible light absorption and paramagnetic response relative to DHI-based melanins, but markedly enhances antioxidant properties. In pheomelanins, likewise, BTZCA-related units, prevalently formed in the presence of zinc ions, appear to confer pronounced visible and ultraviolet A (UVA absorption features, accounting for light-dependent reactive oxygen species (ROS production, whereas non-carboxylated benzothiazine intermediates seem to be more effective in inducing ROS production by redox cycling mechanisms in the dark. The possible biological and functional significance of carboxyl retention in the eumelanin and pheomelanin pathways is discussed.

  12. Functionalized carbon nanotubes containing isocyanate groups

    International Nuclear Information System (INIS)

    Zhao Chungui; Ji Lijun; Liu Huiju; Hu Guangjun; Zhang Shimin; Yang Mingshu; Yang Zhenzhong

    2004-01-01

    Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA)

  13. Intramolecular electron transfer through a bridging carboxylate group coordinated to two cobalt(III)-ions

    International Nuclear Information System (INIS)

    Wieghardt, K.

    1978-01-01

    Reduction of the binuclear μ-p-nitrobenzoato -di-μ-hydroxo -bis[triammine cobalt(III)] cation with (CH 3 ) 2 COH radicals yields a radical cation with the p-nitrobenzoato radical being coordinated to two cobalt(III) ions at the carboxylic group. The unprotonated form of this species undergoes intramolecular electron transfer producing Co(II) (k = (3.3 +- 0.3). x 10 3 s -1 ). The role of the carboxylate group in the intramolecular electron transfer process is tentatively assessed in terms of an intramolecular outer-sphere reaction because of lack of overlap of the donor orbitals (π) and the acceptor orbital (sigma). The protonated form of the radical cation (pKsub(a) = 2.5) disproportionates via a bimolecular process without production of Co(II). The effect of two coordinated Co(III) ions as compared to only one on the properties of the nitrobenzoate radical anion are discussed. (orig.) 891 HK 892 GM [de

  14. Mass spectrometric behaviour of carboxylated polyethylene glycols and carboxylated octylphenol ethoxylates.

    Science.gov (United States)

    Frańska, Magdalena; Zgoła, Agnieszka; Rychłowska, Joanna; Szymański, Andrzej; Łukaszewski, Zenon; Frański, Rafał

    2003-01-01

    Mass spectrometric behaviour of mono- and di-carboxylated polyethylene glycols (PEGCs and CPEGCs) and carboxylated octylphenol ethoxylates (OPECs) are discussed. The tendency for ionisation (deprotonation, protonation and cationisation by alkali metal cations) of carboxylated PEGs was compared with that of non-carboxylated correspondents by using both secondary ion mass spectrometry (SIMS) and electrospray ionisation (ESI). The fragmentation of the PEGCs and CPEGCs is discussed and also compared with their neutral correspondents, PEGs. The B/E mass spectra were recorded, using secondary ion mass spectrometry as a method for generation, for deprotonated and protonated molecules and molecules cationised by alkali metal cations. The fragmentation behaviour of PEGs is found to be different from that of CPEGCs, The presence of carboxylic groups may be confirmed not only by the determination of molecular weights of the ethoxylates studied, but also on the basis of the fragment ions formed. The metastable decomposition of the [OPEC-H](-) ions proceed through the cleavage of the bond between the octylphenol moiety and the ethoxylene chain leading to the octylphenoxy anions. It permits determination of the mass of the hydrophobic moiety of the studied carboxylated alkylphenol ethoxylate. ESI mass spectra recorded in the negative ion mode were found to be more suitable for the determination of the average molecular weight of carboxylated ethoxylates than SI mass spectra.

  15. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-08-01

    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  16. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  17. ATR-FTIR Spectroscopic Evidence for Biomolecular Phosphorus and Carboxyl Groups Facilitating Bacterial Adhesion to Iron Oxides

    Science.gov (United States)

    Parikh, Sanjai J.; Mukome, Fungai N.D.; Zhang, Xiaoming

    2014-01-01

    Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy has been used to probe the binding of bacteria to hematite (α-Fe2O3) and goethite (α-FeOOH). In situ ATR-FTIR experiments with bacteria (Pseudomonas putida, P. aeruginosa, Escherichia coli), mixed amino acids, polypeptide extracts, deoxyribonucleic acid (DNA), and a suite of model compounds were conducted. These compounds represent carboxyl, catecholate, amide, and phosphate groups present in siderophores, amino acids, polysaccharides, phospholipids, and DNA. Due in part to the ubiquitous presence of carboxyl groups in biomolecules, numerous IR peaks corresponding to outer-sphere or unbound (1400 cm−1) and inner-sphere (1310-1320 cm−1) coordinated carboxyl groups are noted following reaction of bacteria and biomolecules with α-Fe2O3 and α-FeOOH. However, the data also reveal that the presence of low-level amounts (i.e., 0.45-0.79%) of biomolecular phosphorous groups result in strong IR bands at ~1043 cm−1, corresponding to inner-sphere Fe-O-P bonds, underscoring the importance of bacteria associated P-containing groups in biomolecule and cell adhesion. Spectral comparisons also reveal slightly greater P-O-Fe contributions for bacteria (Pseudomonad, E. coli) deposited on α-FeOOH, as compared to α-Fe2O3. This data demonstrates that slight differences in bacterial adhesion to Fe oxides can be attributed to bacterial species and Fe-oxide minerals. However, more importantly, the strong binding affinity of phosphate in all bacteria samples to both Fe-oxides results in the formation of inner-sphere Fe-O-P bonds, signifying the critical role of biomolecular P in the initiation of bacterial adhesion. PMID:24859052

  18. Silsesquioxane nanoparticles with reactive internal functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Brozek, Eric M . [University of Utah, Department of Chemistry (United States); Washton, Nancy M.; Mueller, Karl T. [Environmental Molecular Sciences Laboratory (United States); Zharov, Ilya, E-mail: i.zharov@utah.edu [University of Utah, Department of Chemistry (United States)

    2017-02-15

    A series of silsesquioxane nanoparticles containing reactive internal organic functionalities throughout the entire particle body have been synthesized using a surfactant-free method with organosilanes as the sole precursors and a base catalyst. The organic functional groups incorporated are vinyl, allyl, mercapto, cyanoethyl, and cyanopropyl groups. The sizes and morphologies of the particles were characterized using SEM and nitrogen adsorption, while the compositions were confirmed using TGA, FT-IR, solid state NMR, and elemental analysis. The accessibility and reactivity of the functional groups inside the particles were demonstrated by performing bromination and reduction reactions in the interior of the particles.

  19. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhiyuan [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Yang, Zhanhong, E-mail: zhongnan320@gmail.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resource Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha 410083 (China); Hu, Youwang; Li, Jianping [College of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); Fan, Xinming [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-07-01

    In this paper, carboxyl and amino groups have been introduced onto the surface of the multi-walled carbon nanotubes (MWCNTs) by the mixed acid treatment and the diazonium reaction, respectively. The presence of multifunctionality groups on the MWCNTs has been characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TGA) analysis, Raman spectra, scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS). The multifunctionalized carbon nanotubes were further utilized to react with acetyl chloride and ethylenediamine (EDA). The formation of the amide bond in the grafting reaction has been confirmed by FT-IR spectroscopy. The result indicates that the further grafting is successful. The multifunctionalized MWCNTs can be a new versatile platform for many interesting applications.

  20. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    Science.gov (United States)

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-03

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. Copyright

  1. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Compounds Containing Carboxyl Groups Using CdTe and CuO Nanoparticles

    OpenAIRE

    Megumi Sakurai; Taro Sato; Jiawei Xu; Soichi Sato; Tatsuya Fujino

    2018-01-01

    Matrix-assisted laser desorption ionization mass spectrometry of compounds containing carboxyl groups was carried out by using semiconductor nanoparticles (CdTe and CuO) as the matrix. Salicylic acid (Sal), glucuronic acid (Glu), ibuprofen (Ibu), and tyrosine (Tyr) were ionized as deprotonated species (carboxylate anions) by using electrons ejected from CdTe after the photoexcitation. When CuO was used as the matrix, the peak intensity of Tyr became high compared with that obtained with CdTe....

  2. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Rivera, Lymaris, E-mail: luo105@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Bakaev, Victor A.; Banerjee, Joy [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Pantano, Carlo G. [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-05-01

    Highlights: • XPS revealed that these fiber surfaces contain sodium carbonate weathering products. • IGC–MS data confirms the products of acetic acid reaction with sodium carbonate. • NMR data shows two closely spaced, but distinct sodium carboxylate peaks. • Acetic acid reacts with both sodium in the glass and sodium in the sodium carbonate. - Abstract: Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a {sup 13}C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC–MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H

  3. Effects of carboxyl and ester anchoring groups on solar conversion efficiencies of TiO2 dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sepehrifard, A.; Stublla, A.; Haftchenary, S.; Chen, S.; Potvin, P.; Morin, S. [York Univ., Toronto, ON (Canada). Dept. of Chemistry

    2008-07-01

    This paper reported on a study in which 2 new Ruthenium (Ru(2)) dyes bearing different anchoring groups were applied to sensitize TiO2 for dye-sensitized solar cells (DSSCs). The solar conversion efficiencies were measured. Results for 2 of the dyes which carried ester and carboxyl anchoring groups were presented. The extent and nature of the surface binding was studied using electrochemical, UV-visible, fluorescence and FTIR measurements. Solar cell performance was discussed in terms of surface concentration of chemisorbed dyes, electronic properties of the photoanodes and electrochemical properties of adsorbed dyes. The study showed that carboxylic acid groups offer better dye adsorption than ester groups. However, sensitization with warm solutions improved the adsorption of the esterified dye, most likely through transesterification. It was concluded that this may be a useful means of improving solar conversion efficiencies of ester-bearing dyes. 6 refs., 1 tab., 2 figs.

  4. Localized conformational interrogation of antibody and antibody-drug conjugates by site-specific carboxyl group footprinting.

    Science.gov (United States)

    Pan, Lucy Yan; Salas-Solano, Oscar; Valliere-Douglass, John F

    Establishing and maintaining conformational integrity of monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) during development and manufacturing is critical for ensuring their clinical efficacy. As presented here, we applied site-specific carboxyl group footprinting (CGF) for localized conformational interrogation of mAbs. The approach relies on covalent labeling that introduces glycine ethyl ester tags onto solvent-accessible side chains of protein carboxylates. Peptide mapping is used to monitor the labeling kinetics of carboxyl residues and the labeling kinetics reflects the conformation or solvent-accessibility of side chains. Our results for two case studies are shown here. The first study was aimed at defining the conformational changes of mAbs induced by deglycosylation. We found that two residues in C H 2 domain (D268 and E297) show significantly enhanced side chain accessibility upon deglycosylation. This site-specific result highlighted the advantage of monitoring the labeling kinetics at the amino acid level as opposed to the peptide level, which would result in averaging out of highly localized conformational differences. The second study was designed to assess conformational effects brought on by conjugation of mAbs with drug-linkers. All 59 monitored carboxyl residues displayed similar solvent-accessibility between the ADC and mAb under native conditions, which suggests the ADC and mAb share similar side chain conformation. The findings are well correlated and complementary with results from other assays. This work illustrated that site-specific CGF is capable of pinpointing local conformational changes in mAbs or ADCs that might arise during development and manufacturing. The methodology can be readily implemented within the industry to provide comprehensive conformational assessment of these molecules.

  5. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2014-02-01

    Full Text Available In the title compound, C5H9NO2·H2O, the amino acid is in the usual zwitterionic form involving the α-carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7 and 0.118 (7. In the crystal, N—H...O and O—H...O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+ and donor (through a single carboxylate O from two different aminocyclobutane carboxylate moities], resulting in a two-dimensional layered structure lying parallel to (100.

  6. Preparation of carboxyl group-modified palladium nanoparticles in an aqueous solution and their conjugation with DNA

    Science.gov (United States)

    Wang, Zhifei; Li, Hongying; Zhen, Shuang; He, Nongyue

    2012-05-01

    The use of nanomaterials in biomolecular labeling and their corresponding detection has been attracting much attention, recently. There are currently very few studies on palladium nanoparticles (Pd NPs) due to their lack of appropriate surface functionalities for conjugation with DNA. In this paper, we thus firstly present an approach to prepare carboxyl group-modified Pd NPs (with an average size of 6 nm) by the use of 11-mercaptoundecanoic acid (MUDA) as a stabilizer in the aqueous solution. The effect of the various reducing reaction conditions on the morphology of the Pd NPs was investigated. The particles were further characterized by TEM, UV-vis, FT-IR and XPS techniques. DNA was finally covalently conjugated to the surface of the Pd NPs through the activation of the carboxyl group, which was confirmed by agarose gel electrophoresis and fluorescence analysis. The resulting Pd NPs-DNA conjugates show high single base pair mismatch discrimination capabilities. This work therefore sets a good foundation for further applications of Pd NPs in bio-analytical research.

  7. Imidazolide monolayers for versatile reactive microcontact printing

    NARCIS (Netherlands)

    Hsu, S.H.; Reinhoudt, David; Huskens, Jurriaan; Velders, Aldrik

    2008-01-01

    Imidazolide monolayers prepared from the reaction of amino SAMs with N,N-carbonyldiimidazole (CDI) are used as a versatile platform for surface patterning with amino-, carboxyl- and alcohol-containing compounds through reactive microcontact printing (µCP). To demonstrate the surface reactivity of

  8. Novel Polymers with Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4-hydroxybenzene......, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conducted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly(4-hydroxystyrene), poly(4...... the polymers in general exhibit [when poly(4-hydroxystyrene) is a substantial part] significant changes in the glass-transition temperature from the polar poly(4-hydroxystyrene) (120–130 °C) to the much less polar alkyne polymers (46–60 °C). A direct correlation between the nature of the pendant groups...

  9. Acid-Base Behavior of Carboxylic Acid Groups Covalently Attached at the Surface of Polyethylene: The Usefulness of Contact Angle in Following the Ionization of Surface Functionality

    Science.gov (United States)

    1985-08-01

    additional check, we converted granular PE-CO 2H to granular PE-CO 2CH3 by acid -catalyzed esterification. This material had no titrable groups. Upon...Task No. NR-631-840 TECHNICAL REPORT NO. 85-1 Acid -Base Behavior of Carboxylic Acid Groups Covalently Attached at the Surface of Polyethylene: The...34I Acid -Base Behavior K-142 ofCarboxylicAcidGroupsAttached...______________________ 12. PERSIIMAL AUTHOR IS) S.R. Holmes-Farly., R.H. Reamey, T.J

  10. Radiation-curable coatings containing reactive pigment dispersants

    International Nuclear Information System (INIS)

    Ansel, R.E.

    1985-01-01

    Liquid coating compositions adapted to be cured by exposure to penetrating radiation are disclosed in which a liquid vehicle of coating viscosity having an ethylenically unsaturated portion comprising one or more polyethylenically unsaturated materials adapted to cure on radiation exposure, pigment dispersed in the vehicle, and an ethylenically unsaturated radiation-curable dispersant containing a carboxyl group for wetting the pigment and assisting in the stable dipsersion of the pigment in the vehicle. This dispersant is a half amide or half ester of an ethylenically unsaturated polycarboxylic acid anhydride, such as maleic anhydride, with an organic compound having a molecular weight of from 100 to 4000 and which contains a single hydroxy group or a single amino group as the sole reactive group thereof

  11. Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Kautzky, Jacob A; Wang, Tao; Evans, Ryan W; MacMillan, David W C

    2018-05-14

    Herein we disclose an efficient method for the conversion of carboxylic acids to trifluoromethyl groups via the combination of photoredox and copper catalysis. This transformation tolerates a wide range of functionality including heterocycles, olefins, alcohols, and strained ring systems. To demonstrate the broad potential of this new methodology for late-stage functionalization, we successfully converted a diverse array of carboxylic acid-bearing natural products and medicinal agents to the corresponding trifluoromethyl analogues.

  12. Carboxylate and amino group coated silver nanoparticles as joining materials for copper-to-copper silver joints.

    Science.gov (United States)

    Oestreicher, A; Röhrich, T; Lerch, M

    2012-12-01

    Organic silver complexes are introduced where silver is linked either with a carboxyl group or with an amino group. Upon heating, nanoparticles are generated if the respective ligands are long enough to act as stabilizing agents in the nanoparticulate regime. With decomposition and volatilization of the organic material, the sintering of silver occurs. The thermal characteristics of the carboxylates silver-n-octanoate, silver-n-decanoate, and AgOOC(CH2OCH2)2CH2OCH3 are compared with silver-n-alkylamines (n = 8, 9, and 12), and their thermal behavior is discussed based on thermogravimetry (TG) measurements. The consecutive stages of a metallization process are addressed based on the properties of AgOOC(CH2OCH2)2CH2OCH3, and the usable effects of the individual phases of this metal organic compound are analyzed by cross-sectional scanning electron microscope (SEM) images of silver joints. Selection criteria are addressed based on the thermal behavior. A mechanism for the joining process is proposed, considering formation and sintering of the nanoparticles. It was found that the bulk material can be used for low-temperature joining processes. Strong adherence to copper as a basic material can be achieved.

  13. Treatment of sewage from iodo-bromine industrial plants from the second group cations using carboxyl cationnites

    International Nuclear Information System (INIS)

    Kononova, G.N.; Dolbysheva, A.G.; Ksenzenko, V.I.; Ryazantseva, Zh.I.

    1977-01-01

    Effectiveness has been shown of purifying sewage from iodo-bromine plants from the second Group cations on a carboxyl cationite KB-4P. For strongly mineralized waters as industrial waters from iodo-bromine plants, the selectivity decreases in the series: Ca 2+ > Sr 2+ > Mg 2+ . It has been shown that the determining stage is an outside diffusion. SH nitric acid has been used for regeneration of cationite. The second Group cations are washed off with nitric acid simultaneously and at a high rate. Strontium can be separated from the eluate obtained by the halurgical method

  14. Controlled Growth of ZnSe Nanocrystals by Tuning Reactivity and Amount of Zinc Precursor

    Directory of Open Access Journals (Sweden)

    Lai-Jun Zhang

    2013-01-01

    Full Text Available Zinc selenide (ZnSe nanocrystals were synthesized via a phosphine-free route using the highly reactive alkylamine-H2Se complex as selenium precursor and zinc precursors with different reactivity. The reactivity of zinc precursor was tuned by using three kinds of zinc carboxylates with different alkyl chain lengths, including zinc acetate, zinc nonanoate, and zinc stearate. The effect of the reactivity and the amount of zinc precursor on nucleation and growth of ZnSe nanocrystals were investigated by ultraviolet-visible absorption and photoluminescence spectra. Result indicates that the growth and optical property of the resulting ZnSe nanocrystals are strongly dependent on the alkyl chain length and the amount of the zinc carboxylates and both shorter alkyl chain length, and more amount of zinc carboxylate will lead to faster growth of ZnSe nanocrystals. This allows that the controlled growth and excellent optical property of high-quality ZnSe nanocrystals can be achieved by combining the different reactivity and the used amount of zinc precursor, such as by using stoichiometric and reactive Zn precursor and Se precursor or by using larger amount of more unreactive Zn precursor relative to the highly reactive alkylamine-H2Se complex precursor.

  15. Chemical modification and pH dependence of kinetic parameters to identify functional groups in a glucosyltransferase from Strep. Mutans

    International Nuclear Information System (INIS)

    Bell, J.E.; Leone, A.; Bell, E.T.

    1986-01-01

    A glucosyltransferase, forming a predominantly al-6 linked glucan, was partially purified from the culture filtrate of S. mutans GS-5. The kinetic properties of the enzyme, assessed using the transfer of 14 C glucose from sucrose into total glucan, were studied at pH values from pH 3.5 to 6.5. From the dependence of km on pH, a group with pKa = 5.5 must be protonated to maximize substrate binding. From plots of V/sub max/ vs pH two groups, with pKa's of 4.5 and 5.5 were indicated. The results suggest the involvement of either two carboxyl groups (one protonated, one unprotonated in the native enzyme) or a carboxyl group (unprotonated) and some other protonated group such as histidine, cysteine. Chemical modification studies showed that Diethylyrocarbonate (histidine specific) had no effect on enzyme activity while modification with p-phydroxy-mercuribenzoate or iodoacetic acid (sulfhydryl reactive) and carbodimide reagents (carboxyl specific) resulted in almost complete inactivation. Activity loss was dependent upon time of incubation and reagent concentration. The disaccharide lylose, (shown to be an inhibitor of the enzyme with similar affinity to sucrose) offers no protection against modification by the sulfhydryl reactive reagents

  16. Separation of Trace Amount Zn (II Using Additional Carbonyl and Carboxyl Groups Functionalized-Nano Graphene

    Directory of Open Access Journals (Sweden)

    A. Moghimi

    2013-01-01

    Full Text Available A novel and selective method for the fast determination of trace amounts of Zn(IIions in water samples has been developed.  The first additional carbonyl and carboxyl functionalized-nano graphene (SPFNano graphene. The presence of additional carbonyl and carboxyl groups located at the edge of the sheets makes GO sheets strongly hydrophilic, allowing them to readily swell and disperse in water. Based on these oxygen functionalities, different model structures of GO were used as absorbent for extraction of Zn (II   ions by solid phase extraction method. The complexes were eluted with HNO3 (2M10% V.V-1 methanol in acetone and determined the analyte by flame atomic absorption spectrometry.  The procedure is based on the selective formation of Zn (II at optimum pH by elution with organic eluents and determination by flame atomic absorption spectrometry. The method is based on complex formation on the surface of the ENVI-18 DISKTM disks modified carbonyl and carboxyl functionalized-nano graphene oxide molecules covalently bonded together followed by stripping of the retained species by minimum amounts of appropriate organic solvents. The elution is efficient and quantitative. The effect of potential interfering ions, pH, SPFNano graphene, amount, stripping solvent, and sample flow rate were also investigated. Under the optimal experimental conditions, the break-through volume was found to about 1000mL providing a preconcentration factor of 500. The maximum capacity of the disks was found to be 456± 3 µg for Zn2+.The limit of detection of the proposed method is 5ng per 1000mL.The method was applied to the extraction and recovery of Zn in different water samples.

  17. Adsorption performance and mechanism in binding of Reactive Red 4 by coke waste

    International Nuclear Information System (INIS)

    Won, Sung Wook; Wu Guiping; Ma Hui; Liu Qiong; Yan Yao; Cui Longzhe; Liu Chengfu; Yun, Yeoung-Sang

    2006-01-01

    The protonated coke waste was used as a new type of adsorbent for the removal of Reactive Red 4. To identify the binding sites in the protonated coke waste, the waste was potentiometrically titrated. As a result, four types of functional groups were present in the waste, which was confirmed by FT-IR analysis. Among functional groups, primary amine groups (-NH 2 ) were likely the binding sites for anionic Reactive Red 4. It was also found that sulfonate, carboxyl and phosphonate groups played a role in electrostatic interference with the binding of dye molecules. The maximum adsorption capacities of the coke waste were 70.3 ± 11.1 and 24.9 ± 1.8 mg/g at pH 1 and 2, respectively. Kinetic study showed a pseudo-first-order rate of adsorption with respect to the solution. The uptake of Reactive Red 4 was not significantly affected by the high concentration of salts. These results of adsorption performance indicate the coke waste as a potentially economical adsorbent for dye removal

  18. Synthesis and characterization of carboxylic acid functionalized silicon nanoparticles

    Science.gov (United States)

    Shaner, Ted V.

    Silicon nanoparticles are of great interest in a great number of fields. Silicon nanoparticles show great promise particularly in the field of bioimaging. Carboxylic acid functionalized silicon nanoparticles have the ability to covalently bond to biomolecules through the conjugation of the carboxylic acid to an amine functionalized biomolecule. This thesis explores the synthesis of silicon nanoparticles functionalized by both carboxylic acids and alkenes and their carboxylic acid functionality. Also discussed is the characterization of the silicon nanoparticles by the use of x-ray spectroscopy. Finally, the nature of the Si-H bond that is observed on the surface of the silicon nanoparticles will be investigated using photoassisted exciton mediated hydrosilation reactions. The silicon nanoparticles are synthesized from both carboxylic acids and alkenes. However, the lack of solubility of diacids is a significant barrier to carboxylic acid functionalization by a mixture of monoacids and diacids. A synthesis route to overcome this obstacle is to synthesize silicon nanoparticles with terminal vinyl group. This terminal vinyl group is distal to the surface of the silicon nanoparticle. The conversion of the vinyl group to a carboxylic acid is accomplished by oxidative cleavage using ozonolysis. The carboxylic acid functionalized silicon nanoparticles were then successfully conjugated to amine functionalized DNA strand through an n-hydroxy succinimide ester activation step, which promotes the formation of the amide bond. Conjugation was characterized by TEM and polyacrylamide gel electrophoresis (PAGE). The PAGE results show that the silicon nanoparticle conjugates move slower through the polyacrylamide gel, resulting in a significant separation from the nonconjugated DNA. The silicon nanoparticles were then characterized by the use of x-ray absorption near edge spectroscopy (Xanes) and x-ray photoelectron spectroscopy (XPS) to investigate the bonding and chemical

  19. Coordination polymers: trapping of radionuclides and chemistry of tetravalent actinides (Th, U) carboxylates

    International Nuclear Information System (INIS)

    Falaise, Clement

    2014-01-01

    The use of nuclear energy obviously raises the question of the presence of radionuclides in the environment. Currently, their mitigation is a major issue associated with nuclear chemistry. This thesis focuses on both the trapping of radionuclides by porous solids called Metal-Organic Frameworks (MOF) and the crystal chemistry of the carboxylate of tetravalent actinides (AnIV). The academic knowledge of the reactivity of carboxylate of AnIV could help the understanding of actinides speciation in environment. We focused on the sequestration of iodine by aluminum based MOF. The functionalization (electron-donor group) of the MOF drastically enhances the iodine capture capacity. The removal of light actinides (Th and U) from aqueous solution was also investigated as well as the stability of (Al)-MOF under γ radiation. More than twenty coordination polymers based on tetravalent actinides have been synthesized and characterized by single crystal X-ray diffraction. The use of controlled hydrolysis promotes the formation of coordination polymers exhibiting polynuclear cluster ([U 4 ], [Th 6 ], [U 6 ] and [U 38 ]). In order to understand the formation of the largest cluster, the ex-situ study of the solvo-thermal synthesis of compound {U 38 } has also been investigated. (author)

  20. Synthesis and Biological Evaluation of Ru(II) and Pt(II) Complexes Bearing Carboxyl Groups as Potential Anticancer Targeted Drugs.

    Science.gov (United States)

    Martínez, Ma Ángeles; Carranza, M Pilar; Massaguer, Anna; Santos, Lucia; Organero, Juan A; Aliende, Cristina; de Llorens, Rafael; Ng-Choi, Iteng; Feliu, Lidia; Planas, Marta; Rodríguez, Ana M; Manzano, Blanca R; Espino, Gustavo; Jalón, Félix A

    2017-11-20

    The synthesis and characterization of Pt(II) (1 and 2) and Ru(II) arene (3 and 4) or polypyridine (5 and 6) complexes is described. With the aim of having a functional group to form bioconjugates, one uncoordinated carboxyl group has been introduced in all complexes. Some of the complexes were selected for their potential in photodynamic therapy (PDT). The molecular structures of complexes 2 and 5, as well as that of the sodium salt of the 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine ligand (cptpy), were determined by X-ray diffraction. Different techniques were used to evaluate the binding capacity to model DNA molecules, and MTT cytotoxicity assays were performed against four cell lines. Compounds 3, 4, and 5 showed little tendency to bind to DNA and exhibited poor biological activity. Compound 2 behaves as bonded to DNA probably through a covalent interaction, although its cytotoxicity was very low. Compound 1 and possibly 6, both of which contain a cptpy ligand, were able to intercalate with DNA, but toxicity was not observed for 6. However, compound 1 was active in all cell lines tested. Clonogenic assays and apoptosis induction studies were also performed on the PC-3 line for 1. The photodynamic behavior for complexes 1, 5, and 6 indicated that their nuclease activity was enhanced after irradiation at λ = 447 nm. The cell viability was significantly reduced only in the case of 5. The different behavior in the absence or presence of light makes complex 5 a potential prodrug of interest in PDT. Molecular docking studies followed by molecular dynamics simulations for 1 and the counterpart without the carboxyl group confirmed the experimental data that pointed to an intercalation mechanism. The cytotoxicity of 1 and the potential of 5 in PDT make them good candidates for subsequent conjugation, through the carboxyl group, to "selected peptides" which could facilitate the selective vectorization of the complex toward receptors that are overexpressed in

  1. Ru(II)-Catalyzed Oxidative Heck-Type Olefination of Aromatic Carboxylic Acids with Styrenes through Carboxylate-Assisted C-H Bond Activation.

    Science.gov (United States)

    Dana, Suman; Mandal, Anup; Sahoo, Harekrishna; Mallik, Sumitava; Grandhi, Gowri Sankar; Baidya, Mahiuddin

    2018-02-02

    A straightforward synthesis of 2-styrylbenzoic acids from aryl carboxylic acids is disclosed through a carboxylate-assisted coupling under Ru(II) catalysis. This protocol is simple and exhibits broad scope with high tolerance of common organic functional groups, providing good to excellent yields of diverse olefinated products. The efficacy of this protocol has been showcased through sequential syntheses of isochromanone, isocoumarin, and formal synthesis of anacardic acid derivative in good yields.

  2. Haemoglobins with multiple reactive sulfhydryl groups: reactions of ...

    African Journals Online (AJOL)

    The pH dependence profile of kapp, the apparent second-order rate constant, for the fast phase resembles the titration curve of a diprotic acid. Quantitative analysis indicates that the reactivity of the sulfhydryl group to which this phase may be attributed is linked to two ionizable groups with pKas of 6.4 0.1 and 7.8 0.2.

  3. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  4. An efficient method for the carboxylation of few-wall carbon nanotubes with little damage to their sidewalls

    Energy Technology Data Exchange (ETDEWEB)

    Martín, Olga [Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés-Madrid (Spain); Gutierrez, Humberto R. [Department of Physics and Astronomy, 102 Natural Science Building, University of Louisville, Louisville, KY 40292 (United States); Maroto-Valiente, Angel [Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, UNED, C/ Senda del Rey 9, 28040 Madrid (Spain); Terrones, Mauricio [Research Center for Exotic Nanocarbons (JST), Shinshu University, Wakasato 4-17-1, Nagano 380-8553 (Japan); Department of Physics, Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, 104 Davey Lab., University Park, PA 16802-6300 (United States); Blanco, Tamara [Materials and Processes Department, Airbus Operations S.L., Paseo John Lennon s/n, 28906 Getafe-Madrid (Spain); Baselga, Juan, E-mail: jbaselga@ing.uc3m.es [Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés-Madrid (Spain)

    2013-07-15

    We report a novel method that is able to efficiently functionalize carbon nanotubes (few-walled: from 1 to 6 layers and multiwalled) with a high yield of carboxyl groups, based on treatments with H{sub 2}O{sub 2} in the presence of UV light. The amount of carboxylic groups was quantified by X-ray photoelectron spectroscopy and back-titration, showing both measurements reasonable agreement. According to the zeta potential values and to the amount of suspended nanotubes, we demonstrate that the method is able to produce uniform and stable suspensions of carbon nanotubes in water. With the aid of scanning and transmission electron microscopy, thermogravimetric analysis, and Raman spectroscopy, we show that the surfaces of the tubes are not damaged by the treatment and that the functionalized tubes have an enhanced reactivity toward oxygen. This route is efficient and could now be used to fabricate polymer composites using few-walled and multiwalled carbon nanotubes. - Highlights: • We report an efficient method for acid functionalization of carbon nanotubes. • The method produces uniform and stable suspensions of carbon nanotubes in water. • The surfaces of the tubes are not damaged by the treatment.

  5. Experimental and theoretical elucidation of structural and antioxidant properties of vanillylmandelic acid and its carboxylate anion

    Science.gov (United States)

    Dimić, Dušan; Milenković, Dejan; Ilić, Jelica; Šmit, Biljana; Amić, Ana; Marković, Zoran; Dimitrić Marković, Jasmina

    2018-06-01

    Vanillylmandelic acid (VMA), an important metabolite of catecholamines that is routinely screened as tumor marker, was investigated by the various spectroscopic techniques (IR, Raman, UV-Vis, antioxidant decolorization assay and NMR). Structures optimized by the employment of five common functionals (M05-2X, M06-2X, B3LYP, CAM-B3LYP, B3LYP-D3) were compared with the crystallographic data. The M05-2X functional reproduced the most reliable experimental bond lengths and angles (correlation coefficient >0.999). The importance of intramolecular hydrogen bonds for structural stability was discussed and quantified by the NBO analysis. The most prominent bands in vibrational spectrum were analyzed and compared to the experimental data. The positions of the carbon and hydrogen atoms in NMR spectra were well reproduced. The differences in UV-Vis spectrum were investigated by adding the explicit solvent and by performing NBO and QTAIM analyses. The discrepancy in the two spectra of about 50 nm could be explained by the solvent effect on carboxyl group. The most probable antioxidant activity mechanism was discussed for VMA and its carboxylate anion. The Molecular Docking study with the C - reactive protein additionally proved that variety of functional groups present in VMA and its anion allowed strong hydrogen and hydrophobic interactions.

  6. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Bonaventure Gustavo

    2009-11-01

    Full Text Available Abstract Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. Results A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA and small polar molecules (e.g., jasmonic acid (JA, salicylic acid (SA containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. Conclusion The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the

  7. Plastic scintillators with high loading of one or more metal carboxylates

    Science.gov (United States)

    Cherepy, Nerine; Sanner, Robert Dean

    2016-01-12

    In one embodiment, a material includes at least one metal compound incorporated into a polymeric matrix, where the metal compound includes a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands includes a tertiary butyl group, and where the material is optically transparent. In another embodiment, a method includes: processing pulse traces corresponding to light pulses from a scintillator material; and outputting a result of the processing, where the scintillator material comprises at least one metal compound incorporated into a polymeric matrix, the at least one metal compound including a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands has a tertiary butyl group, and where the scintillator material is optically transparent and has an energy resolution at 662 keV of less than about 20%.

  8. Highly visible-light luminescence properties of the carboxyl-functionalized short and ultrashort MWNTs

    International Nuclear Information System (INIS)

    Luo Yongsong; Xia Xiaohong; Liang Ying; Zhang Yonggang; Ren Qinfeng; Li Jialin; Jia Zhijie; Tang Yiwen

    2007-01-01

    Luminescence of the short multiwalled carbon nanotubes (MWNTs) conjugated with carboxylic acid groups has been studied. The results show that the carboxyl-functionalized short MWNTs could emit luminescence and the emission peak appears at 500 nm with a corresponding optimal excitation wavelength centering at 310 nm. When the short MWNTs are filtered through 0.15 μm polytetrafluoroethylene (PTFE) membrane, the ultrashort MWNTs are obtained from the filtrate. An interesting feature for the ultrashort MWNTs is that the emission intensity is strengthened and the peak is slightly blue shifted to 460 nm. This result indicates that the luminescence properties of MWNTs are strongly affected by the tube length. After chemical oxidization cutting, defects and carboxylic acid groups at the tube end and/or sidewall can be produced; the more shorten of MWNTs, the better dispersion and carboxylic passivation of the nanotubes, and the more intense luminescence emissions. The broad emissions are logically attributed to the trapping of excitation energy by defect sites in the carboxyl-functionalized nanotube structure. - Graphical abstract: Luminescence of the short and ultrashort multiwalled carbon nanotubes (MWNTs) conjugated with carboxylic acid groups, which is logically attributed to the trapping of excitation energy by defect sites, has been studied

  9. Role of Extracellular Polymeric Substances in the Surface Chemical Reactivity of Hymenobacter aerophilus, a Psychrotolerant Bacterium▿

    Science.gov (United States)

    Baker, M. G.; Lalonde, S. V.; Konhauser, K. O.; Foght, J. M.

    2010-01-01

    Bacterial surface layers, such as extracellular polymeric substances (EPS), are known to play an important role in metal sorption and biomineralization; however, there have been very few studies investigating how environmentally induced changes in EPS production affect the cell's surface chemistry and reactivity. Acid-base titrations, cadmium adsorption assays, and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the surface reactivities of Hymenobacter aerophilus cells with intact EPS (WC) or stripped of EPS (SC) and purified EPS alone. Linear programming modeling of titration data showed SC to possess functional groups corresponding to phosphoryl (pKa ∼6.5), phosphoryl/amine (pKa ∼7.9), and amine/hydroxyl (pKa ∼9.9). EPS and WC both possess carboxyl groups (pKa ∼5.1 to 5.8) in addition to phosphoryl and amine groups. FT-IR confirmed the presence of polysaccharides and protein in purified EPS that can account for the additional carboxyl groups. An increased ligand density was observed for WC relative to that for SC, leading to an increase in the amount of Cd adsorbed (0.53 to 1.73 mmol/liter per g [dry weight] and 0.53 to 0.59 mmol/liter per g [dry weight], respectively). Overall, the presence of EPS corresponds to an increase in the number and type of functional groups on the surface of H. aerophilus that is reflected by increased metal adsorption relative to that for EPS-free cells. PMID:19915039

  10. Role of extracellular polymeric substances in the surface chemical reactivity of Hymenobacter aerophilus, a psychrotolerant bacterium.

    Science.gov (United States)

    Baker, M G; Lalonde, S V; Konhauser, K O; Foght, J M

    2010-01-01

    Bacterial surface layers, such as extracellular polymeric substances (EPS), are known to play an important role in metal sorption and biomineralization; however, there have been very few studies investigating how environmentally induced changes in EPS production affect the cell's surface chemistry and reactivity. Acid-base titrations, cadmium adsorption assays, and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the surface reactivities of Hymenobacter aerophilus cells with intact EPS (WC) or stripped of EPS (SC) and purified EPS alone. Linear programming modeling of titration data showed SC to possess functional groups corresponding to phosphoryl (pKa approximately 6.5), phosphoryl/amine (pKa approximately 7.9), and amine/hydroxyl (pKa approximately 9.9). EPS and WC both possess carboxyl groups (pKa approximately 5.1 to 5.8) in addition to phosphoryl and amine groups. FT-IR confirmed the presence of polysaccharides and protein in purified EPS that can account for the additional carboxyl groups. An increased ligand density was observed for WC relative to that for SC, leading to an increase in the amount of Cd adsorbed (0.53 to 1.73 mmol/liter per g [dry weight] and 0.53 to 0.59 mmol/liter per g [dry weight], respectively). Overall, the presence of EPS corresponds to an increase in the number and type of functional groups on the surface of H. aerophilus that is reflected by increased metal adsorption relative to that for EPS-free cells.

  11. Phase behavior and micellar properties of carboxylic acid end group modified pluronic surfactants

    NARCIS (Netherlands)

    Custers, J.P.A.; Broeke, van den L.J.P.; Keurentjes, J.T.F.

    2007-01-01

    The micellar behavior of three different carboxylic acid end standing (CAE) surfactants has been characterized using conductometry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. The CAE surfactants are modified high molecular weight Pluronic

  12. Cooperation of phosphates and carboxylates controls calcium oxalate crystallization in ultrafiltered urine.

    Science.gov (United States)

    Grohe, Bernd; Chan, Brian P H; Sørensen, Esben S; Lajoie, Gilles; Goldberg, Harvey A; Hunter, Graeme K

    2011-10-01

    Osteopontin (OPN) is one of a group of proteins found in urine that are believed to limit the formation of kidney stones. In the present study, we investigate the roles of phosphate and carboxylate groups in the OPN-mediated modulation of calcium oxalate (CaOx), the principal mineral phase found in kidney stones. To this end, crystallization was induced by addition of CaOx solution to ultrafiltered human urine containing either human kidney OPN (kOPN; 7 consecutive carboxylates, 8 phosphates) or synthesized peptides corresponding to residues 65-80 (pSHDHMDDDDDDDDDGD; pOPAR) or 220-235 (pSHEpSTEQSDAIDpSAEK; P3) of rat bone OPN. Sequence 65-80 was also synthesized without the phosphate group (OPAR). Effects on calcium oxalate monohydrate (COM) and dihydrate (COD) formation were studied by scanning electron microscopy. We found that controls form large, partly intergrown COM platelets; COD was never observed. Adding any of the polyelectrolytes was sufficient to prevent intergrowth of COM platelets entirely, inhibiting formation of these platelets strongly, and inducing formation of the COD phase. Strongest effects on COM formation were found for pOPAR and OPAR followed by kOPN and then P3, showing that acidity and hydrophilicity are crucial in polyelectrolyte-affected COM crystallization. At higher concentrations, OPAR also inhibited COD formation, while P3, kOPN and, in particular, pOPAR promoted COD, a difference explainable by the variations of carboxylate and phosphate groups present in the molecules. Thus, we conclude that carboxylate groups play a primary role in inhibiting COM formation, but phosphate and carboxylate groups are both important in initiating and promoting COD formation.

  13. Electrochemical properties of polyolefin nonwoven fabric modified with carboxylic acid group for battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Kang, Hae-Jeong; Ryu, Eun-Nyoung; Lee, Kwang-Pill E-mail: kplee@kyungpook.ac.kr

    2001-07-01

    Carboxylic acid group was introduced by radiation-induced grafting of acrylic acid (AAc) onto polyolefine nonwoven fabric (PNF), wherein the PNF comprises at least about 60% of a polyethylene having a melting temperature at {approx}132 deg. C and no more than about 40% of a second polypropylene having a lower melting temperature at {approx}162 deg. C, for a battery separator. The AAc-grafted PNF was characterized by XPS, SEM, DSC, TGA and porosimeter. The wetting speed, electrolyte retention, electrical resistance, and tensile strength were evaluated after grafting of AAc. It was found that the wetting speed, electrolyte retention, thickness, and ion-exchange capacity increased, whereas the electrical resistance decreased with increasing grafting yield. The tensile strength decreased with increasing grafting yield, whereas the elongation decreased with increasing grafting yield. (author)

  14. Electrochemical properties of polyolefine nonwoven fabric modified with carboxylic acid group for battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Park, Keung-Shik; Kang, Hae-Jeong; Ryu, Eun-Nyoung; Lee, Pill-Kwang [Department of Chemistry Graduate School, Kyungpook National University, Taegu (Korea)

    2000-07-01

    Carboxylic acid group was introduced by radiation-induced grafting of acrylic acid (AAc) onto polyolefine nonwoven fabric (PNF), wherein the PNF comprises at least about 60% of a polyethylene having a melting temperature at {approx}132degC and no more than about 40% of a second polypropylene having a lower melting temperature at {approx}162degC, for a battery separator. The AAc-grafted PNF was characterized by XPS, SEM, DSC, TGA and porosimeter. The wetting speed, electrolyte retention, electrical resistance, and tensile strength were evaluated after grafting of AAc. It was found that the wetting speed, electrolyte retention, thickness, and ion-exchange capacity increased, whereas the electrical resistance decreased with increasing grafting yield. The tensile strength decreased with increasing grafting yield, whereas the elongation decreased with increasing grafting yield. (author)

  15. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    Science.gov (United States)

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Functional Group Interconversion: Decarbonylative Borylation of Esters for the Synthesis of Organoboronates

    KAUST Repository

    Guo, Lin

    2016-09-26

    A new and efficient nickel-catalyzed decarbonylative borylation reaction of carboxylic acid esters with bis(pinacolato)-diboron has been developed. This transformation allows access to structurally diverse aryl as well as alkenyl and alkyl boronate esters with high reactivity, broad substrate scope, and excellent functional-group tolerance. Further experiments show that this protocol can be carried out on a gram scale and applied to orthogonal synthetic strategies.

  17. Functional Group Interconversion: Decarbonylative Borylation of Esters for the Synthesis of Organoboronates

    KAUST Repository

    Guo, Lin; Rueping, Magnus

    2016-01-01

    A new and efficient nickel-catalyzed decarbonylative borylation reaction of carboxylic acid esters with bis(pinacolato)-diboron has been developed. This transformation allows access to structurally diverse aryl as well as alkenyl and alkyl boronate esters with high reactivity, broad substrate scope, and excellent functional-group tolerance. Further experiments show that this protocol can be carried out on a gram scale and applied to orthogonal synthetic strategies.

  18. Hydrated electron: a destroyer of perfluorinated carboxylates?

    International Nuclear Information System (INIS)

    Huang Li; Dong Wenbo; Hou Huiqi

    2006-01-01

    As a class, perfluorinated carboxylate (PFCA) was ranked among the most prominent organohalogen contaminants in environment with respect to thermal, chemical and biological inertness. Hydrated electron (e aq - ), a highly reactive and strongly reductive species, has been reported to readily decompose perfluoroaromatic compounds via intermolecular electron transfer process in aqueous solution. Question then arose: what would happen if perfluorinated carboxylates encountered with hydrated electron? Original laboratory trial on the interaction between F(CF 2 ) n COO - (n=1, 3, 7) and hydrated electron was attempted by using laser flash photolysis technique in this research work. Abundant hydrated electron (e aq - ) could be produced by photolysis of 1.25 x 10 -4 M K 4 Fe(CN) 6 in nitrogen saturated water. In the presence of F(CF 2 ) n COO - (n=1, 3, 7), the decay of e aq - was observed to enhance dramatically, indicating e aq - was able to attack PFCAs. On addition of perfluorinated carboxylates, the loss of e aq - was mainly due to the following channels. By mixing the solution of K 4 Fe(CN) 6 with excess K 3 Fe(CN) 6 and PFCAs, e aq - turned to decayed corresponding to mixed first- and second-order kinetics. Rate constants for the reactions of e aq - with PFCAs could be then easily determined by monitoring the decay of e aq - absorption at 690 nm. Since perfluorinated carboxylates were salts, the influence of ionic strength on k 3 was examined systematically by carrying out experiments of varying ionic strength ranging from 0.009 up to 0.102 M by adding NaClO 4 . In this manner, the second order rate constants for e-aq with CF 3 COO - , C 3 F 7 COO - , C 7 F 15 COO - were derived to be (1.9±0.2) x 10 6 M -1 S -1 (μ=0), (7.1±0.2) x 10 6 M -1 S -1 (μ=0) and (1.7±0.5) x10 7 M -1 S -1 (μ=0.009 M) respectively. Apparently, the length of F(CF 2 ) n group exerted substantial influence on the rate constant. Further study on byproducts analysis by ion chromatography

  19. Synthesis, Reactivity and Stability of Aryl Halide Protecting Groups towards Di-Substituted Pyridines

    Directory of Open Access Journals (Sweden)

    Ptoton Mnangat Brian

    2016-03-01

    Full Text Available This paper reports the synthesis and reactivity of different Benzyl derivative protecting groups. The synthesis and stability of Benzyl halides, 4-methoxybenzyl halides, 3,5-dimethoxybenzyl halides, 3,4-dimethoxybenzyl halides, 3,4,5-trimethoxybenzyl halide protecting groups and their reactivity towards nitrogen atom of a di-substituted pyridine ring in formation of pyridinium salts is also reported.

  20. Silyl-protective groups influencing the reactivity and selectivity in glycosylations

    DEFF Research Database (Denmark)

    Bols, Mikael; Pedersen, Christian Marcus

    2017-01-01

    Silyl groups such as TBDPS, TBDMS, TIPS or TMS are well-known and widely used alcohol protective groups in organic chemistry. Cyclic silylene protective groups are also becoming increasingly popular. In carbohydrate chemistry silyl protective groups have frequently been used primarily as an ortho...... protected. Within the last decade polysilylated glycosyl donors have been found to have unusual properties such as high (or low) reactivity or high stereoselectivity. This mini review will summarize these findings...

  1. Determining the selectivity of divalent metal cations for the carboxyl group of alginate hydrogel beads during competitive sorption.

    Science.gov (United States)

    An, Byungryul; Lee, Healim; Lee, Soonjae; Lee, Sang-Hyup; Choi, Jae-Woo

    2015-11-15

    To investigate the competitive sorption of divalent metal ions such as Ca(2+), Cu(2+), Ni(2+), and Pb(2+) on alginate hydrogel beads, batch and column tests were conducted. The concentration of carboxyl group was found to be limited in the preparation of spherical hydrogel beads. From kinetic test results, 80% of sorption was observed within 4h, and equilibrium was attained in 48 h. According to the comparison of the total uptake and release, divalent metal ions were found to stoichiometrically interact with the carboxyl group in the alginate polymer chain. From the Langmuir equation, the maximum capacities of Pb(2+), Cu(2+), and Ni(2+) were calculated to be 1.1, 0.48, and 0.13 mmol/g, respectively. The separation factor (α) values for αPb/Cu, αPb/Ni, and αCu/Ni were 14.0, 98.9, and 7.1, respectively. The sorption capacity of Pb(2+) was not affected by the solution pH; however, the sorption capacities of Cu(2+) and Ni(2+) decreased with increasing solution pH, caused by competition with hydrogen. According to the result from the fixed column test, Pb(2+) exhibited the highest affinity, followed by Cu(2+) and Ni(2+), which is in exact agreement with those of kinetic and isotherm tests. The sorbent could be regenerated using 4% HCl, and the regenerated sorbent exhibited 90% capacity upto 9 cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation.

    Science.gov (United States)

    Liu, Yan; Xi, Xiaobing; Ye, Chengcheng; Gong, Tengfei; Yang, Zhiwei; Cui, Yong

    2014-12-08

    Two chiral carboxylic acid functionalized micro- and mesoporous metal-organic frameworks (MOFs) are constructed by the stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid-base interactions. The organocatalyst-loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.

    Science.gov (United States)

    Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming

    2014-03-01

    Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. Copyright © 2014. Published by Elsevier Ltd.

  4. Modification of polysulfone with pendant carboxylic acid functionality ...

    Indian Academy of Sciences (India)

    polysulfone (PSF) by in situ generated chloromethyl radical in presence of stannic chloride in tetrachloroethane and .... vert the nitrile group to carboxylic acid was reported (Reddy ..... PEG molecular weight vs rejection at 35 psi pressure.

  5. Spectroscopic and first principles investigation on 4-[(4-pyridinylmethylene)amino]-benzoic acid bearing pyridyl and carboxyl anchoring groups

    Science.gov (United States)

    Zhang, Lei; Wang, Qiaoyi

    2018-03-01

    We report a combined experimental and computational investigation on the structure and photophysics of 4-[(4-pyridinylmethylene)amino]-benzoic acid, a functional molecule bearing two anchoring groups for attachment onto a TiO2 surface and perovskite surface, for potential solar cell application. This molecule possesses interesting adsorption properties in perovskite solar cell because the pyridyl group serves as the Lewis base and targets Lewis acidic sites in the perovskite surface, while the carboxyl group targets TiO2 surface, improving the coupling between the perovskite surface and the TiO2 surface. The electronic structures of the molecule and its photochemistry are revealed by the UV-vis absorption spectra and the fluorescence spectra under visible light irradiation, which are combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) analysis. Considering the bi-anchoring groups and the conjugated π system embedded in the molecule, we anticipate it can molecular engineer the TiO2/perovskite interface in perovskite solar cell.

  6. Coordination of baseload power plant group control with static reactive power compensator control

    Directory of Open Access Journals (Sweden)

    Zbigniew Szczerba

    2012-06-01

    Full Text Available Reactive power sources in power system nodes: generators and static reactive power compensators, are controlled by control systems. Generators – by generator node group controllers, compensators – by voltage controllers. The paper presents issues of these control systems’ coordination and proposals for its implementation.

  7. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  8. Reducing Schoolchildren With Reactive Aggression Through Child, Parent, and Conjoint Parent-Child Group Interventions: A Longitudinal Outcome Effectiveness Study.

    Science.gov (United States)

    Fung, Annis Lai Chu

    2017-10-10

    This study was the first to evaluate the effectiveness of three different group interventions to reduce children's reactive aggression based on the social information processing (SIP) model. In the first stage of screening, 3,734 children of Grades 4-6 completed the Reactive-Proactive Aggression Questionnaire (RPQ) to assess their reactive and proactive aggression. Respondents with a total score of z ≥ 1 on the RPQ were shortlisted for the second stage of screening by qualitative interview. Interviews with 475 children were conducted to select those who showed reactive aggression featuring a hostile attributional bias. Finally, 126 children (97 males and 29 females) aged 8 to 14 (M = 9.71, SD = 1.23) were selected and randomly assigned to one of the three groups: a child group, a parent group, and a parent-child group. A significant Time × Intervention effect was found for general and reactive aggression. The parent-child group and child group showed a significant drop in general aggression and reactive aggression from posttest to 6-month follow-up, after controlling for baseline scores, sex, and age. However, the parent group showed no treatment effect: reactive aggression scores were significantly higher than those in the child group at 6-month follow-up. This study has provided strong evidence that children with reactive aggression need direct and specific treatment to reconstruct the steps of the SIP involving the selection and interpretation of cues. The intervention could help to prevent severe violent crimes at the later stage of a reactive aggressor. © 2017 Family Process Institute.

  9. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Uznanski, Pawel, E-mail: puznansk@cbmm.lodz.pl; Zakrzewska, Joanna [Centre of Molecular and Macromolecular Studies, PAS (Poland); Favier, Frederic, E-mail: fredf@univ-montp2.fr [Université Montpellier II, ICGM - UMR5253- Equipe AIME (France); Kazmierski, Slawomir; Bryszewska, Ewa [Centre of Molecular and Macromolecular Studies, PAS (Poland)

    2017-03-15

    A comparative study of amine and silver carboxylate adducts [R{sub 1}COOAg-2(R{sub 2}NH{sub 2})] (R{sub 1} = 1, 7, 11; R{sub 2} = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, {sup 13}C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ({sup 1}H and {sup 13}C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.

  10. 2-Isopropyl-5-methylcyclohexyl quinoline-2-carboxylate

    Directory of Open Access Journals (Sweden)

    E. Fazal

    2014-01-01

    Full Text Available In the title compound, C20H25NO2, the cyclohexyl ring adopts a slightly disordered chair conformation. The dihedral angle between the mean planes of the quinoline ring and the carboxylate group is 22.2 (6°. In the crystal, weak C—H...N interactions make chains along [010].

  11. Synthesis and fluorescence study of phenylcoumarin/cyanophenylbenzocoumarin-3-carboxylates

    Directory of Open Access Journals (Sweden)

    Hosanagara N. Harishkumar

    2012-01-01

    Full Text Available The absorption and fluorescence spectra of phenylcoumarin and cyanophenylbenzocoumarin-3-carboxylates 6a-f and 9a-e have been investigated in chloroform, acetonitrile and ethanol. The substituting groups with varying electron donating ability such as N,N-diethyl amine and morpholine at 7-position, in phenylcoumarin-3-carboxylate 6a-f exhibits fluorescence at a longer wavelength i.e. 420-460 nm in chloroform and 460-504 nm in acetonitrile. However the morpholine derivatives 6f-j did not show fluorescence in chloroform. In another series of cyanophenylbenzocoumarin-3-carboxylates 9a-e, the compound 9c exhibits fluorescence at 546 nm in ethanol and 256 nm in acetonitrile, and lower emission wavelength i.e. 356 nm in chloroform. Further the compounds 6e , 9b, 9d and 9e exhibited high quantum yield in ethanol i.e., Φ F = 0.79, 0.70, 0.80 and 0.74 respectively compare to Rhodamine B ( Φ F = 0.24 in ethanol.

  12. Synthesis and study of dioxouranium (6) carboxylate complexes with ammonia

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mazo, G.N.; Dunaev, K.M.; Santalova, N.A.

    1980-01-01

    Heterophase synthesis of a series of ammonia complexes of dioxouranium (6) carboxylates namely, UO 2 (HCOO) 2 x2NH 3 , UO 2 (CH 3 COO) 2 x2NH 3 , UO 2 (CH 3 CH 2 OO) 2 x2NH 3 is presented and their properties and structure are studied. Comparison of infrared spectra of dioxouranium (6) carboxylates and their ammonia complexes has shown that NH 3 molecule introduction changes in principle the coordination of azidoligand turning out bridge carboxylate groups into island ones and weakening their bonds with central cations. In spectra of all diammiacates the shift of bands of deformational and valent oscillations of N-H bond in comparison with spectrum of pure ammonia tells about NH 3 coordination with metal. Complexes thermolysis has been studied under iso- and polythermal conditions. General diagram of thermal decay is presented [ru

  13. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Zargarian, S. Sh.; Haddadi-Asl, V., E-mail: haddadi@aut.ac.ir; Hematpour, H. [Amirkabir University of Technology, Department of Polymer Engineering and Color Technology (Iran, Islamic Republic of)

    2015-05-15

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite.

  14. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    International Nuclear Information System (INIS)

    Zargarian, S. Sh.; Haddadi-Asl, V.; Hematpour, H.

    2015-01-01

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite

  15. Solid state structure of thorium(IV) complexes with common aminopoly-carboxylate ligands

    International Nuclear Information System (INIS)

    Thuery, Pierre

    2011-01-01

    The crystal structures of the complexes formed by reaction of thorium(IV) nitrate with iminodiacetic acid (H 2 IDA), nitrilotriacetic acid (H 3 NTA), and ethylenediaminetetraacetic acid (H 4 EDTA) under hydrothermal conditions are reported. In [Th(HIDA) 2 (C 2 O 4 )].H 2 O (1), the metal atom is chelated by two carboxylate groups from two HIDA - anions and by two oxalate ligands formed in situ; two additional oxygen atoms from two more HIDA - anions complete the ten-coordinate environment of bi-capped square anti-prismatic geometry. The uncoordinated nitrogen atom is protonated and involved in hydrogen bonding. Two different ligands are present in [Th(NTA)(H 2 NTA)(H 2 O)].H 2 O (2), one of them being a O 3 ,N-chelating tri-anion which acts also as a bridge toward two neighboring metal ions, and the other being a bis-monodentate bridging species with an uncoordinated carboxylic arm and a central ammonium group. An aqua ligand completes the nine-coordinated, capped square anti-prismatic metal environment. The EDTA 4- anion in [Th(EDTA)(H 2 O)].2H 2 O (3) is chelating through one oxygen atom from each carboxylate group and the two nitrogen atoms, as in a previously reported molecular complex. Two carboxylate groups are bridging, which, with the addition of an aqua ligand, gives a capped square anti-prismatic coordination polyhedron. Aminopoly-carboxylate ligands have been much investigated in relation with actinide decorporation and nuclear wastes management studies, and the present results add to the structural information available on their complexes with thorium(IV), which has mainly been obtained up to now by extended X-ray absorption fine structure (EXAFS) spectroscopy. In particular, the bridging (non-chelating) coordination mode of H 2 NTA - is a novel feature in this context. All three complexes crystallize as two-dimensional assemblies and are thus novel examples of thorium-organic coordination polymers. (author)

  16. Synthesis, crystal structures, and luminescent properties of two series' of new lanthanide (III) amino-carboxylate-phosphonates.

    Science.gov (United States)

    Zhou, Tian-Hua; Yi, Fei-Yan; Li, Pei-Xin; Mao, Jiang-Gao

    2010-02-01

    Hydrothermal reactions of lanthanide(III) chlorides with 4-HOOC-C(6)H(4)-CH(2)NHCH(2)PO(3)H(2) (H(3)L) at different ligand-to-metal (L/M) ratios afforded nine new lanthanide(III) carboxylate-phosphonates with two types of 3D network structures, namely, LnCl(HL)(H(2)O)(2) (Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Er, 6) and [Ln(2)(HL)(H(2)L)(L)(H(2)O)(2)].4H(2)O (Ln = Nd, 7; Sm, 8; Eu, 9). Compounds 1-6 are isostructural and feature a 3D network in which the LnO(7)Cl polyhedra are interconnected by bridging CPO(3) tetrahedra into 2D inorganic layers parallel to the bc plane. These layers are further cross-linked by organic groups of the carboxylate-phosphonate ligands via the coordination of the carboxylate groups into a pillared-layered architecture. Compounds 7-9 are also isostructural and feature a 3D open-framework composed of 1D lanthanide(III) phosphonate inorganic slabs which are further bridged by organic groups of the carboxylate-phosphonate liagnds via the coordination of the carboxylate groups, forming large 1D tunnels along the b-axis which are filled by lattice water molecules. Luminescent measurements indicate that compounds 2, 4, and 5 show strong emission bands in red, green, and yellow light region, respectively. Magnetic properties of 2, 3, 5, and 7 have also been studied.

  17. Low-Dose Daily Intake of Vitamin K(2) (Menaquinone-7) Improves Osteocalcin γ-Carboxylation: A Double-Blind, Randomized Controlled Trials.

    Science.gov (United States)

    Inaba, Naoko; Sato, Toshiro; Yamashita, Takatoshi

    2015-01-01

    Vitamin K is essential for bone health, but the effects of low-dose vitamin K intake in Japanese subjects remain unclear. We investigated the effective minimum daily menaquinone-7 dose for improving osteocalcin γ-carboxylation. Study 1 was a double-blind, randomized controlled dose-finding trial; 60 postmenopausal women aged 50-69 y were allocated to one of four dosage group and consumed 0, 50, 100, or 200 μg menaquinone-7 daily for 4 wk, respectively, with a controlled diet in accordance with recommended daily intakes for 2010 in Japan. Study 2 was a double-blind, randomized placebo-controlled trial based on the results of Study 1; 120 subjects aged 20-69 y were allocated to the placebo or MK-7 group and consumed 0 or 100 μg menaquinone-7 daily for 12 wk, respectively. In both studies, circulating carboxylated osteocalcin and undercarboxylated osteocalcin were measured. The carboxylated osteocalcin/undercarboxylated osteocalcin ratio decreased significantly from baseline in the 0 μg menaquinone-7 group, in which subjects consumed the recommended daily intake of vitamin K with vitamin K1 and menaquinone-4 (Study 1). Menaquinone-7 increased the carboxylated osteocalcin/undercarboxylated osteocalcin ratio dose dependently, and significant effects were observed in both the 100 and 200 μg groups compared with the 0 μg group. Undercarboxylated osteocalcin concentrations decreased significantly, and the carboxylated osteocalcin/undercarboxylated osteocalcin ratio increased significantly in the 100 μg menaquinone-7 group compared with the placebo group (Study 2). Daily menaquinone-7 intake ≥100 μg was suggested to improve osteocalcin γ-carboxylation.

  18. Analysis of carboxylate coordination function of the isomeric lanthanide pyridinedicarboxylates by means of vibration spectroscopy

    International Nuclear Information System (INIS)

    Puntus, L.; Zolin, V.; Kudryashova, V.

    2004-01-01

    The investigation of IR spectra of salts of six isomers of pyridinedicarboxylic acid (PDA): 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-pyridinedicarboxylic acids, have demonstrated that properties of these salts are dependent on the bonding manner of carboxylate groups and on coordination of heterocyclic nitrogen atom. The most prominent differences in properties and spectra of 2,6- and 3,4-PDA salts are conditioned correspondingly by monodentate and bidentate coordination functions of the carboxylate groups in these compounds. The correlation of the breathing vibration frequency, reflecting the rigidity of the heterocyclic ring, with position of the carboxylate substituents, conditioning intramolecular charge transfer (CT), was postulated and proved by shifts of the breathing vibration frequency dependent on the structure of isomeric ligand

  19. Photofunctional Co-Cr Alloy Generating Reactive Oxygen Species for Photodynamic Applications

    Directory of Open Access Journals (Sweden)

    Kang-Kyun Wang

    2013-01-01

    Full Text Available We report the fabrication of photofunctional Co-Cr alloy plate that is prepared by a simple modification process for photodynamic application. Photoinduced functionality is provided by the photosensitizer of hematoporphyrin (Hp that initially generates reactive oxygen species (ROS such as superoxide anion radical and singlet oxygen. The photosensitizer with carboxyl group was chemically bonded to the surface of the Co-Cr alloy plate by esterification reaction. Microstructure and elemental composition of the Co-Cr alloy plate were checked with scanning electron microscopy (SEM and energy dispersive X-ray spectrometer (EDS. Fabrication of the photofunctionality of the Co-Cr alloy plate was confirmed with X-ray photoelectron spectroscopy (XPS, reflectance UV-Vis absorption, and emission spectroscopy. Reactive oxygen generation from the photofunctional Co-Cr alloy plate was confirmed by using the decomposition reaction of 1,3-diphenylisobenzofuran (DPBF. The results suggest that the immobilized photosensitizer molecules on the surface of Co-Cr alloy plate still possess their optical and functional properties including reactive oxygen generation. To open the possibility for its application as a photodynamic material to biological system, the fabricated photofunctional Co-Cr alloy is applied to the decomposition of smooth muscle cells.

  20. [14C]-radiolabeling of {[trans-(8β)]-6-methyl-1-(1-methylethyl) ergoline-8-carboxylic acid, 4-methoxycyclohexyl ester (Z)-2-buteneidioate (1:1)}

    International Nuclear Information System (INIS)

    Marzoni, G.; Wheeler, W.J.; Garbrecht, W.L.

    1988-01-01

    The 5HT 2 -receptor antagonist, [ 14 C]-labeled brace[trans-(8β)]-6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid, 4-methoxycyclohexyl ester (Z)-2-butenedioate (1:1)brace (LY281067) was synthesized from unlabeled 6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid. The [ 14 C] label was introduced into the carboxyl group attached to the 8 position of the ergoline nucleus. This site is stable to metabolism. The synthesis involves removal of an unlabeled carboxyl group and subsequent reinsertion of a [ 14 C]-labeled carboxyl group into the same position. The radiolabel is not introduced until near the end of the synthesis which allows for ease of handling and scale-up of intermediates. (author)

  1. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion

    KAUST Repository

    Rehman, Ata Ur

    2013-10-01

    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes (MWCNTs) have been developed for the first time. The MWCNTs were treated with wet chemical oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface functionality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results consistently confirmed the formation of carboxyl functionalities on MWCNTs, while the structure of MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs. © 2013 Elsevier B.V.

  2. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion

    KAUST Repository

    Rehman, Ata Ur; Abbas, Syed Mustansar; Ammad, Hafiz Muhammad; Badshah, Amin; Ali, Zulfiqar; Anjum, Dalaver H.

    2013-01-01

    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes (MWCNTs) have been developed for the first time. The MWCNTs were treated with wet chemical oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface functionality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results consistently confirmed the formation of carboxyl functionalities on MWCNTs, while the structure of MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs. © 2013 Elsevier B.V.

  3. Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study.

    Science.gov (United States)

    Bassan, Arianna; Borowski, Tomasz; Schofield, Christopher J; Siegbahn, Per E M

    2006-11-24

    The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the reduction of dioxygen and oxidation of a reducing agent probably ascorbate. The reaction gives ethylene, CO(2), cyanide and two water molecules. A model including the mononuclear iron complex with ACC in the first coordination sphere was used to study the details of O-O bond cleavage and cyclopropane ring opening. Calculations imply that this unusual and complex reaction is triggered by a hydrogen atom abstraction step generating a radical on the amino nitrogen of ACC. Subsequently, cyclopropane ring opening followed by O-O bond heterolysis leads to a very reactive iron(IV)-oxo intermediate, which decomposes to ethylene and cyanoformate with very low energy barriers. The reaction is assisted by bicarbonate located in the second coordination sphere of the metal.

  4. Hydrothermal syntheses, characterizations and crystal structures of a new lead(II) carboxylate-phosphonate with a double layer structure and a new nickel(II) carboxylate-phosphonate containing a hydrogen-bonded 2D layer with intercalation of ethylenediamines

    International Nuclear Information System (INIS)

    Song, J.-L.; Mao, J.-G.; Sun, Y.-Q.; Zeng, H.-Y.; Kremer, R.K.; Clearfield, Abraham

    2004-01-01

    Hydrothermal reactions of N,N-bis(phosphonomethyl)aminoacetic acid (HO 2 CCH 2 N(CH 2 PO 3 H 2 ) 2 ) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2 [O 2 CCH 2 N(CH 2 PO 3 )(CH 2 PO 3 H)]·H 2 O (1) and {NH 3 CH 2 CH 2 NH 3 }{Ni[O 2 CCH 2 N(CH 2 PO 3 H) 2 ](H 2 O) 2 } 2 (2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2 CCH 2 N(CH 2 PO 3 H) 2 ][H 2 O] 2 } - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected

  5. Correction: Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones.

    Science.gov (United States)

    Yin, Feng; Garifullina, Ainash; Tanaka, Fujie

    2018-04-25

    Correction for 'Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones' by Feng Yin et al., Org. Biomol. Chem., 2017, 15, 6089-6092.

  6. Chemical modification as a probe of the topography and reactivity of horse-spleen apoferritin

    International Nuclear Information System (INIS)

    Wetz, K.; Crichton, R.R.; Louvain Univ.

    1976-01-01

    In apoferritin, but not in ferritin, 1.0 +- 0.1 cysteine residue per subunit can be modified. In ferritin 3.3 +- 0.3 lysine residues and 7.1 +- 0.7 carboxyl groups per subunit can be modified, whilst the corresponding values for apoferritin are 4.4 +- 0.4 lysine residues and 11.0 +- 0.4 carboxyl groups per subunit. Modification of lysine residues with maleic anhydride and of carboxyl groups with glycineamide in apoferritin which has been dissociated and denatured in guanidine hydrochloride leads to the introduction of 9.1 +- 0.5 maleyl groups per subunit and 22.0 +- 0.9 glycineamide residues per subunit. Whereas unmodified apoferritin subunit can be reassociated from guanidine hydrochloride to apoferritin monomer, the ability of maleylated apoferritin to reassociate is impaired. Apoferritin in which all the carboxyl group have been blocked with glycineamide cannot be reassociated to apoferritin and exists in solution as stable subunits. The modification of one cysteine residue per subunit, of 3 or 4 lysine per subunit or of 7 carboxyl groups per subunit has no effect on the catalytic activity of apoferritin. In contrast, the modification of 11 carboxyl groups per subunit completely abolishes the catalytic properties of the protein. We conclude that one or more carboxyl groups are essential for the catalytic activity of horse spleen apoferritin. (orig.) [de

  7. Carboxylic acids in crystallization of macromolecules: learning from successful crystallization experiments.

    Science.gov (United States)

    Offermann, Lesa R; He, John Z; Mank, Nicholas J; Booth, William T; Chruszcz, Maksymilian

    2014-03-01

    The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.

  8. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    Energy Technology Data Exchange (ETDEWEB)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E.J.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States); Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States)

    2016-06-15

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C{sub 5}H{sub 5}N)-carbon dioxide (CO{sub 2}) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C{sub 5}H{sub 4}NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C{sub 5}H{sub 3}N(COOH){sub 2}) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical–radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  9. Assessment of solid reactive mixtures for the development of biological permeable reactive barriers

    International Nuclear Information System (INIS)

    Pagnanelli, Francesca; Viggi, Carolina Cruz; Mainelli, Sara; Toro, Luigi

    2009-01-01

    Solid reactive mixtures were tested as filling material for the development of biological permeable reactive barriers for the treatment of heavy metals contaminated waters. Mixture selection was performed by taking into account the different mechanisms operating in sulphate and cadmium removal with particular attention to bioprecipitation and sorption onto the organic matrices in the mixtures. Suspensions of eight reactive mixtures were tested for sulphate removal (initial concentration 3 g L -1 ). Each mixture was made up of four main functional components: a mix of organic sources for bacterial growth, a neutralizing agent, a porous medium and zero-valent iron. The best mixture among the tested ones (M8: 6% leaves, 9% compost, 3% zero-valent iron, 30% silica sand, 30% perlite, 22% limestone) presented optimal conditions for SRB growth (pH 7.8 ± 0.1; E h = -410 ± 5 mV) and 83% sulphate removal in 22 days (25% due to bioreduction, 32% due to sorption onto compost and 20% onto leaves). M8 mixture allowed the complete abatement of cadmium with a significant contribution of sorption over bioprecipitation (6% Cd removal due to SRB activity). Sorption properties, characterised by potentiometric titrations and related modelling, were mainly due to carboxylic sites of organic components used in reactive mixtures.

  10. Chemo-spectroscopic sensor for carboxyl terminus overexpressed in carcinoma cell membrane.

    Science.gov (United States)

    Stanca, Sarmiza E; Matthäus, Christian; Neugebauer, Ute; Nietzsche, Sandor; Fritzsche, Wolfgang; Dellith, Jan; Heintzmann, Rainer; Weber, Karina; Deckert, Volker; Krafft, Christoph; Popp, Jürgen

    2015-10-01

    Certain carboxyl groups of the plasma membrane are involved in tumorgenesis processes. A gold core-hydroxyapatite shell (AuHA) nanocomposite is introduced as chemo-spectroscopic sensor to monitor these carboxyl groups of the cell membrane. Hydroxyapatite (HA) plays the role both of a chemical detector and of a biocompatible Raman marker. The principle of detection is based on chemical interaction between the hydroxyl groups of the HA and the carboxyl terminus of the proteins. The AuHA exhibits a surface enhanced Raman scattering (SERS) signal at 954 cm(-1) which can be used for its localization. The bio-sensing capacity of AuHA towards human skin epidermoid carcinoma (A431) and Chinese hamster ovary (CHO) cell lines is investigated using Raman microspectroscopic imaging. The localization of AuHA on cells is correlated with scanning electron microscopy, transmission electron microscopy and structured illumination fluorescence microscopy. This qualitative approach is a step towards a quantitative study of the proteins terminus. This method would enable further studies on the molecular profiling of the plasma membrane, in an attempt to provide accurate cell identification. Using a gold core-hydroxyapatite shell (AuHA) nanocomposite, the authors in this paper showed the feasibility of detecting and differentiating cell surface molecules by surface enhanced Raman scattering. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Evaluation of radioprotective efficacy of pyrimidine-5-carboxylate derivative on radiation induced oxidative stress using Drosophila melanogaster

    International Nuclear Information System (INIS)

    Sarojini, B.K.; Mohan, B.J.; Narayana, B.; Sanjeev, Ganesh

    2014-01-01

    In the present study, radioprotection efficacy of Ethyl 4-(4-fluorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetra hydropyrimidine-5-carboxylate (PYR) was evaluated against the gamma ray induced oxidative stress using drosophila melanogaster (Oregon K). The gamma ray irradiated flies were assayed for oxidative stress markers namely; Thiobarbituric acid reactive substances (TBARS) and enzymatic antioxidant SOD and CAT. The oxidative stress was induced at 6 Gy. (author)

  12. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Rana; Emami, Shahriar Hojjati, E-mail: semami@aut.ac.ir [Amirkabir University of Technology, Department of Biomedical Engineering (Iran, Islamic Republic of); Faghihi, Shahab, E-mail: shahabeddin.faghihi@mail.mcgill.ca, E-mail: sfaghihi@nigeb.ac.ir [National Institute of Genetic Engineering and Biotechnology, Tissue Engineering and Biomaterials Division (Iran, Islamic Republic of)

    2015-02-15

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  13. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Science.gov (United States)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-02-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets' surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50-100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high surface

  14. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    International Nuclear Information System (INIS)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-01-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  15. CARBOXYLIC ACIDS ELECTROOXIDATION ON SHUNGITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Oleksandr Davydenko

    2017-03-01

    Full Text Available Purpose: This article discusses the electrochemical method of directional conversion of carboxylic acids, which are the most aggressive hydrocarbons oxidation products back into the corresponding hydrocarbons. Existing methods for the regeneration of waste petroleum oils have significant drawbacks, which include the formation of new hard-reclaimed waste and loss of a significant part of the oil during regeneration. Methods: Electrooxidation processes of carboxylic acid on various electrode materials: platinum, graphite and shungite anodes were studied. Results: Potentiostatic polarization curves with simultaneous measurement of near-electrode solution pH showed differences in the process on these anode materials: dimer yield for Kolbe is decreased under the transition from platinum to shungite. At potentials higher than 2.0 v, carboxylic acid has a higher adsorbability compared to water. Therefore Faraday’s side-process of water oxidation doesn’t almost occur, which contributes to high yield of expected product according to current. Electrolysis of carboxylic acids solutions under controlled potential (2.0 and 2.4 V and chromatographic analysis of the formed products showed that along with the dimeric structures formation for Kolbe reaction, the occurrence of a hydrocarbons mixture takes place, which may be the result of disproportionation of hydrocarbon radicals (alkane and alkene and hydrocarbons of isomeric structure, by further oxidation of the hydrocarbon radical to carbocation and its subsequent transformation into the corresponding saturated and unsaturated isomers. Such statement is not supported by conception of the process of one- and two-electron carboxylic acid oxidation. Discussion: General carboxylic acid oxidation scheme according to one-electron mechanism (dimerization and disproportionation of the radical and two-electron mechanism (formation and carbocation rearrangement is proposed. The formation of hydrocarbons under

  16. DFT Study of Binding and Electron Transfer from a Metal-Free Dye with Carboxyl, Hydroxyl, and Sulfonic Anchors to a Titanium Dioxide Nanocluster

    Directory of Open Access Journals (Sweden)

    Corneliu I. Oprea

    2013-01-01

    Full Text Available We report results of density functional theory (DFT calculations of a metal-free dye, 5-(4-sulfophenylazosalicylic acid disodium salt, known as Mordant Yellow 10 (MY-10, used as sensitizer for TiO2 dye-sensitized solar cells (DSSCs. Given the need to better understand the behavior of the dyes adsorbed on the TiO2 nanoparticle, we studied various single and double deprotonated forms of the dye bound to a TiO2 cluster, taking advantage of the presence of the carboxyl, hydroxyl, and sulfonic groups as possible anchors. We discuss various binding configurations to the TiO2 substrate and the charge transfer from the pigment to the oxide by means of DFT calculations. In agreement with other reports, we find that the carboxyl group tends to bind in bidentate bridging configurations. The salicylate uses both the carboxyl and hydroxyl substituent groups for either a tridentate binding to adjacent Ti(IV ions or a bidentate Ti-O binding together with an O-H-O binding, due to the rotation of the carboxyl group out of the plane of the dye. The sulfonic group prefers a tridentate binding. We analyze the propensity for electron transfer of the various dyes and find that for MY-10, as a function of the anchor group, the DSSC performance decreases in the order hydroxyl + carboxyl > carboxyl > sulfonate.

  17. 2-Oxo-1,2-dihydroquinoline-4-carboxylic acid monohydrate

    Directory of Open Access Journals (Sweden)

    Yassir Filali Baba

    2016-06-01

    Full Text Available In the title compound, C10H7NO3·H2O, O—H...O hydrogen bonds involving the carboxyl groups, the keto groups and the lattice water molecules form stepped sheets approximately parallel to {010} which are tied together by pairwise N—H...O interactions. The asymmetric unit contains two independent quinolone derivatives and two water molecules, one of which is disordered over two positions, of equal occupancy.

  18. Thermodynamic properties of alkyl 1H-indole carboxylate derivatives: A combined experimental and computational study

    International Nuclear Information System (INIS)

    Carvalho, Tânia M.T.; Amaral, Luísa M.P.F.; Morais, Victor M.F.; Ribeiro da Silva, Maria D.M.C.

    2016-01-01

    Highlights: • Combustion of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate by static bomb calorimetry. • The Knudsen mass-loss effusion technique was used to measure the vapour pressures of compounds at different temperatures. • Enthalpies of sublimation of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate. • Gas-phase enthalpies of formation of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate have been derived. • Gas-phase enthalpies of formation estimated from G3(MP2) calculations. - Abstract: The standard (p"o = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate, at T = 298.15 K, were derived from measurements of the standard massic energies of combustion using a static bomb combustion calorimeter. The Knudsen effusion technique was used to measure the vapour pressures as a function of the temperature, which allowed determining the standard molar enthalpies of sublimation of these compounds. The standard (p"o = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were calculated by combining, for each compound, the standard molar enthalpy of formation, in the crystalline phase, and the standard molar enthalpy of sublimation, yielding −(207.6 ± 3.6) kJ·mol"−"1 and −(234.4 ± 2.4) kJ·mol"−"1, for methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate, respectively. Quantum chemical studies were also conducted, in order to complement the experimental study. The gas-phase enthalpies of formation were estimated from high level ab initio molecular orbital calculations, at the G3(MP2) level, for the compounds studied experimentally, extending the study to the methyl 1H-indole-2-carboxylate and ethyl 1H-indole-3-carboxylate. The results obtained were compared with the experimental data and were also analysed in terms of structural enthalpic group contributions.

  19. Production of carboxylic acid and salt co-products

    Science.gov (United States)

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  20. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    International Nuclear Information System (INIS)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-01-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N 2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples

  1. Comparison of the reactivity of the materials having two different kinds of functional groups by applying hydrogen-isotope exchange reaction

    International Nuclear Information System (INIS)

    Imaizumi, H.; Yumoto, Y.

    1995-01-01

    The hydrogen-isotope exchange reaction between m- (or p-) aminobenzoic acid and HTO vapor has been observed in order to estimate the scale of the reactivity of the material. Each rate constant has been obtained by the A''-McKay plot method. Comparing the rate constants, the following three items have been confirmed: (1) the reactivity of both COOH and NH 2 groups increases with temperature; (2) the degree of the effect of the COOH (or NH 2 ) group on the reactivity in m-aminobenzoic acid is larger than that in p-aminobenzoic acid; (3) the A''-McKay plot method is useful in studying the reactivity of the materials not only with one (or the same kinds of) functional group(s), but also with two different kinds of functional groups. (orig.)

  2. Methyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Petr Štěpnička

    2009-10-01

    Full Text Available The title compound, [Fe(C5H5(C19H16O2P], obtained serendipitously during recrystallization of 1-hydroxybenzotriazolyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate from methanol, crystallizes in the chiral space group P212121. Its crystal structure not only confirms the anticipated absolute configuration but also establishes a rather regular geometry for the ferrocene unit, devoid of any significant deformation due to the attached substituents. In the crystal, symmetry-related molecules are linked via weak C—H...O interactions.

  3. Carboxylic Terminated Thermo-Responsive Copolymer Hydrogel and Improvement in Peptide Release Profile

    Directory of Open Access Journals (Sweden)

    Zi-Kun Rao

    2018-02-01

    Full Text Available To improve the release profile of peptide drugs, thermos-responsive triblock copolymer poly (ε-caprolactone-co-p-dioxanone-b-poly (ethylene glycol-b-poly (ε-caprolactone-co-p-dioxanone (PECP was prepared and end capped by succinic anhydride to give its carboxylic terminated derivative. Both PCEP block copolymer and its end group modified derivative showed temperature-dependent reversible sol-gel transition in water. The carboxylic end group could significantly decrease the sol-gel transition temperature by nearly 10 °C and strengthen the gel due to enhanced intermolecular force among triblock copolymer chains. Furthermore, compared with the original PECP triblock copolymer, HOOC–PECP–COOH copolymer displayed a retarded and sustained release profile for leuprorelin acetate over one month while effectively avoiding the initial burst. The controlled release was believed to be related to the formation of conjugated copolymer-peptide pair by ionic interaction and enhanced solubility of drug molecules into the hydrophobic domains of the hydrogel. Therefore, carboxyl terminated HOOC–PECP–COOH hydrogel was a promising and well-exhibited sustained release carrier for peptide drugs with the advantage of being able to develop injectable formulation by simple mixing.

  4. Automatized Assessment of Protective Group Reactivity: A Step Toward Big Reaction Data Analysis.

    Science.gov (United States)

    Lin, Arkadii I; Madzhidov, Timur I; Klimchuk, Olga; Nugmanov, Ramil I; Antipin, Igor S; Varnek, Alexandre

    2016-11-28

    We report a new method to assess protective groups (PGs) reactivity as a function of reaction conditions (catalyst, solvent) using raw reaction data. It is based on an intuitive similarity principle for chemical reactions: similar reactions proceed under similar conditions. Technically, reaction similarity can be assessed using the Condensed Graph of Reaction (CGR) approach representing an ensemble of reactants and products as a single molecular graph, i.e., as a pseudomolecule for which molecular descriptors or fingerprints can be calculated. CGR-based in-house tools were used to process data for 142,111 catalytic hydrogenation reactions extracted from the Reaxys database. Our results reveal some contradictions with famous Greene's Reactivity Charts based on manual expert analysis. Models developed in this study show high accuracy (ca. 90%) for predicting optimal experimental conditions of protective group deprotection.

  5. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    Science.gov (United States)

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B.

  6. Organocatalyzed, Visible-Light Photoredox-Mediated, One-Pot Minisci Reaction Using Carboxylic Acids via N-(Acyloxy)phthalimides.

    Science.gov (United States)

    Sherwood, Trevor C; Li, Ning; Yazdani, Aliza N; Dhar, T G Murali

    2018-03-02

    An improved, one-pot Minisci reaction has been developed using visible light, an organic photocatalyst, and carboxylic acids as radical precursors via the intermediacy of in situ-generated N-(acyloxy)phthalimides. The conditions employed are mild, demonstrate a high degree of functional group tolerance, and do not require a large excess of the carboxylic acid reactant. As a result, this reaction can be applied to drug-like scaffolds and molecules with sensitive functional groups, enabling late-stage functionalization, which is of high interest to medicinal chemistry.

  7. Decellularized Bovine Articular Cartilage Matrix Reinforced by Carboxylated-SWCNT for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Zari Majidi Mohammadie

    2018-01-01

    Full Text Available ABSTRACT Nanotubes with their unique properties have diversified mechanical and biological applications. Due to similarity of dimensions with extracellular matrix (ECM elements, these materials are used in designing scaffolds. In this research, Carboxylated Single-Wall Carbon Nanotubes in optimization of decellularized scaffold of bovine articular cartilage was used. At first, the articular cartilage was decellularized. Then the scaffolds were analyzed in: (i decellularized scaffolds, and (ii scaffolds plunged into homogenous suspension of nanotubes in distilled water, were smeared with Carboxylated-SWCNT. The tissue rings derived from the rabbit's ear were assembled with reinforced scaffolds and they were placed in a culture media for 15 days. The scaffolds in two groups and the assembled scaffolds underwent histologic and electron microscopy. Scanning electron microscopy showed that the structure of ECM of articular cartilage has been maintained well after decellularization. Fourier transform infrared analysis showed that the contents of ECM have not been changed under treatment process. Atomic force microscopy analysis showed the difference in surface topography and roughness of group (ii scaffolds in comparison with group (i. Transmission electron microscopy studies showed the Carboxylated-SWCNT bond with the surface of decellularized scaffold and no penetration of these compounds into the scaffold. The porosity percentage with median rate of 91.04 in group (i scaffolds did not have significant difference with group (ii scaffolds. The electron microscopy observations confirmed migration and penetration of the blastema cells into the group (ii assembled scaffolds. This research presents a technique for provision of nanocomposite scaffolds for cartilage engineering applications.

  8. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian, E-mail: pnavarre@vtr.ne [Universidad de Chile, Santiago (Chile). Facultad de Ciencias Quimicas y Farmaceuticas. Lab. de Sintesis Organica y Fisicoquimica; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J. [Universidad de Chile, Santiago (Chile). Fac. de Ciencias Quimicas y Farmaceuticas. Lab. de Bioelectroquimica

    2010-07-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  9. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    International Nuclear Information System (INIS)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J.

    2010-01-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  10. Complexation of vanadium with amidoxime and carboxyl groups. Uncovering the competitive role of vanadium in uranium extraction from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Shi, Wei-Qun [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Chai, Zhi-Fang [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences (RAD-X); Wu, Guo-Zhong [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics

    2017-09-01

    At present, amidoxime-based adsorbents are considered to be the most promising materials for extraction of uranium from seawater. However, the high concentrations of transition metals especially vanadium strongly compete with uranium in the sequestration process, which is extremely limited the commercial use of amidoxime-based adsorbents. In this work, the coordination modes, bonding nature, and stabilities of possible vanadium(IV) (VO{sup 2+}) and (V) (VO{sub 2}{sup +}, VO{sup 3+}, V{sup 5+}) complexes with amidoximate (AO{sup -}), carboxyl (Ac{sup -}), glutarimidedioximate (HA{sup -}) and deprotonated glutarimidedioximate (A{sup 2-}) on single and double alkyl chains (R=C{sub 13}H{sub 26}) are systematically explored by quantum chemical calculations. Different from the uranyl (UO{sub 2}{sup 2+}) complexes, the AO{sup -} groups of the vanadium(IV) and (V) complexes prefer to coordinate as monodentate and chelate ligands, while few species with AO{sup -} groups in η{sup 2}-binding mode have been observed in the vanadium complexes. Besides, the vanadium complexes are predicted to have obvious covalent metal-ligand bonds. According to thermodynamic stability analysis, all the vanadium complexes with AO{sup -}, Ac{sup -}, HA{sup -} and A{sup 2-} ligands on double alkyl chains are found to be more stable than corresponding complexes with ligands on a single chain. The synergistic effect of the amidoxime and carboxyl groups can be observed in most of VO{sub 2}{sup +} and VO{sup 3+} complexes with mixed ligands (AO{sup -}/Ac{sup -}). The vanadium(IV) and (V) complexes are more stable than the corresponding uranyl complexes, and the adsorption capability of the amidoxime-based adsorbents toward vanadium(V) ions decrease in the order of VO{sub 2}{sup +}>VO{sup 3+}> V{sup 5+}. The dioxovanadium cation VO{sub 2}{sup +} is predicted to form multinuclear vanadium complex in the sequestration process, possibly resulting in higher stable VO{sub 2}{sup +} complexes. Therefore

  11. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries

    Science.gov (United States)

    2016-01-01

    Michael addition is a premier synthetic method for carbon–carbon and carbon–heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  12. Reactive-ion etching of nylon fabric meshes using oxygen plasma for creating surface nanostructures

    International Nuclear Information System (INIS)

    Salapare, Hernando S.; Darmanin, Thierry; Guittard, Frédéric

    2015-01-01

    Graphical abstract: - Highlights: • Reactive-ion etching (RIE) is employed to nylon 6,6 fabrics to achieve surface texturing and improved wettability. • FTIR spectra of the treated samples exhibited decreased transmittance of amide and carboxylic acid groups due to etching. • Etching is enhanced for higher power plasma treatments and for samples with larger mesh sizes. • Decreased crystallinity was achieved after plasma treatment. • Higher power induced higher negative DC self-bias voltage on the samples that favored anisotropic and aggressive etching. - Abstract: A facile one-step oxygen plasma irradiation in reactive ion etching (RIE) configuration is employed to nylon 6,6 fabrics with different mesh sizes to achieve surface nanostructures and improved wettability for textile and filtration applications. To observe the effects of power and irradiation time on the samples, the experiments were performed using constant irradiation time in varying power and using constant power in varying irradiation times. Results showed improved wettability after the plasma treatment. The FTIR spectra of all the treated samples exhibited decreased transmittance of the amide and carboxylic acid groups due to surface etching. The changes in the surface chemistry are supported by the SEM data wherein etching and surface nanostructures were observed for the plasma-treated samples. The etching of the surfaces is enhanced for higher power plasma treatments. The thermal analysis showed that the plasma treatment resulted in decreased crystallinity. Surface chemistry showed that the effects of the plasma treatment on the samples have no significant difference for all the mesh sizes. However, surface morphology showed that the sizes of the surface cracks are the same for all the mesh sizes but samples with larger mesh sizes exhibited enhanced etching as compared to the samples with smaller mesh sizes. Higher power induced higher negative DC self-bias voltage on the samples that

  13. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    International Nuclear Information System (INIS)

    Odio, Oscar F.; Lartundo-Rojas, Luis; Palacios, Elia Guadalupe; Martínez, Ricardo; Reguera, Edilso

    2016-01-01

    Graphical abstract: Poly-thiols capping of magnetite nanoparticles for Pb(2+) and Cd(2+) adsorption. Display Omitted - Highlights: • A novel magnetic nano-platform containing free thiol and carboxyl groups is reported. • Thiols are protected by disulfide bridges during magnetite functionalization. • Adsorption of Pb"2"+ and Cd"2"+ onto the nano-platform was studied by XPS measurements. • Metal-sulfur interactions dominate if free thiol groups are present. • Metal-carboxyl interactions dominate if thiol groups are depleted by oxidation. - Abstract: We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free −SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe_3O_4@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe_3O_4@PAA-HEDred nanoparticles were tested as sorbent for Pb"2"+ and Cd"2"+ cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe_3O_4 nanoparticles and a nanosystem with disulfide groups (Fe_3O_4@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high resolution spectra for the nanostructured materials

  14. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    Energy Technology Data Exchange (ETDEWEB)

    Odio, Oscar F. [Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana 10400 (Cuba); Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, IPN, 11500 México City (Mexico); Lartundo-Rojas, Luis [Centro de Nanociencias y Micro-Nanotecnologías, IPN, 07738 México City (Mexico); Palacios, Elia Guadalupe [Instituto Politécnico Nacional, ESIQIE, UPALM Zacatenco, 07738 México City (Mexico); Martínez, Ricardo [Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana 10400 (Cuba); Reguera, Edilso, E-mail: edilso.reguera@gmail.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, IPN, 11500 México City (Mexico)

    2016-11-15

    Graphical abstract: Poly-thiols capping of magnetite nanoparticles for Pb(2+) and Cd(2+) adsorption. Display Omitted - Highlights: • A novel magnetic nano-platform containing free thiol and carboxyl groups is reported. • Thiols are protected by disulfide bridges during magnetite functionalization. • Adsorption of Pb{sup 2+} and Cd{sup 2+} onto the nano-platform was studied by XPS measurements. • Metal-sulfur interactions dominate if free thiol groups are present. • Metal-carboxyl interactions dominate if thiol groups are depleted by oxidation. - Abstract: We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free −SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe{sub 3}O{sub 4}@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe{sub 3}O{sub 4}@PAA-HEDred nanoparticles were tested as sorbent for Pb{sup 2+} and Cd{sup 2+} cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe{sub 3}O{sub 4} nanoparticles and a nanosystem with disulfide groups (Fe{sub 3}O{sub 4}@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high

  15. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration.

    Science.gov (United States)

    Sehaqui, H; Kulasinski, K; Pfenninger, N; Zimmermann, T; Tingaut, P

    2017-01-09

    We report herein the preparation of 4-6 nm wide carboxyl-functionalized cellulose nanofibers (CNF) via the esterification of wheat fibers with cyclic anhydrides (maleic, phtalic, and succinic) followed by an energy-efficient mechanical disintegration process. Remarkable results were achieved via succinic anhydride esterification that enabled CNF isolation by a single pass through the microfluidizer yielding a transparent and thick gel. These CNF carry the highest content of carboxyl groups ever reported for native cellulose nanofibers (3.8 mmol g -1 ). Compared to conventional carboxylated cellulose nanofibers prepared via Tempo-mediated oxidation of wheat fibers, the present esterified CNF display a higher molar-mass and a better thermal stability. Moreover, highly carboxylated CNF from succinic anhydride esterification were effectively integrated into paper filters for the removal of lead from aqueous solution and are potentially of interest as carrier of active molecules or as transparent films for packaging, biomedical or electronic applications.

  16. Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation.

    Science.gov (United States)

    Kulkarni, Vihangraj V; Golder, Animes Kumar; Ghosh, Pranab Kumar

    2018-01-05

    A new carboxylic bio-resin was synthesized from raw arecanut husk through mercerization and ethylenediaminetetraacetic dianhydride (EDTAD) carboxylation. The synthesized bio-resin was characterized using thermogravimetric analysis, field emission scanning electron microscopy, proximate & ultimate analyses, mass percent gain/loss, potentiometric titrations, and Fourier transform infrared spectroscopy. Mercerization extracted lignin from the vesicles on the husk and EDTAD was ridged in to, through an acylation reaction in dimethylformamide media. The reaction induced carboxylic groups as high as 0.735mM/g and a cation exchange capacity of 2.01meq/g functionalized mercerized husk (FMH). Potentiometric titration data were fitted to a newly developed single-site proton adsorption model (PAM) that gave pKa of 3.29 and carboxylic groups concentration of 0.741mM/g. FMH showed 99% efficiency in Pb(II) removal from synthetic wastewater (initial concentration 0.157mM), for which the Pb(II) binding constant was 1.73×10 3 L/mol as estimated from modified PAM. The exhaustion capacity was estimated to be 18.7mg/g of FMH. Desorption efficiency of Pb(II) from exhausted FMH was found to be about 97% with 0.1N HCl. The FMH simultaneously removed lead and cadmium below detection limit from a real lead acid battery wastewater along with the removal of Fe, Mg, Ni, and Co. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Proton-conducting membranes based on benzimidazole-containing sulfonated poly(ether ether ketone) compared with their carboxyl acid form

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Wu, Jing; Zhao, Chengji; Zhang, Gang; Zhang, Yang; Shao, Ke; Xu, Dan; Lin, Haidan; Han, Miaomiao; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-10-15

    A series of sulfonated poly(ether ether ketone) containing pendant carboxyl (C-SPEEKs) have been synthesized using a nucleophilic polycondesation reaction. A condensation reaction between 1,2-diaminobenzene and carboxyl resulted in a new series of copolymers containing benzimidazole groups (SPEEK-BIms). The expected structures of the sulfonated copolymers are confirmed by {sup 1}H NMR. The dependence of ion exchange capacity, water uptake, proton conductivity and methanol diffusion coefficient of SPEEK-BIm membranes has been studied and compared with their carboxyl acid form. The results suggest that the introduction of benzimidazole groups may be responsible for many excellent properties of the membranes for fuel cell. It is noticeable that the markedly improved oxidative stability is benefit for the application of membrane. (author)

  18. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peñ a, Gerardo D.J.; Alrefaai, Mhd Maher; Yang, Seung Yeon; Raj, Abhijeet; Brito, Joaquin L.; Stephen, Samuel; Anjana, Tharalekshmy; Pillai, Vinu; Al Shoaibi, Ahmed; Chung, Suk-Ho

    2016-01-01

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  19. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peña, Gerardo D.J.

    2016-07-23

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  20. Recovery and esterification of aqueous carboxylates by using CO

    NARCIS (Netherlands)

    Cabrera-Rodríguez, Carlos I.; Paltrinieri, Laura; Smet, De Louis C.P.M.; Wielen, Van Der Luuk A.M.; Straathof, Adrie J.J.

    2017-01-01

    The recovery of carboxylic acids from fermentation broth is one of the main bottlenecks for the industrial production of bio-based esters. This paper proposes an alternative for the recovery of carboxylates produced by fermentations at pH values above the pKa of the carboxylic acid. In this

  1. Data on synthesis and thermo-mechanical properties of stimuli-responsive rubber materials bearing pendant anthracene groups.

    Science.gov (United States)

    Manhart, Jakob; Ayalur-Karunakaran, Santhosh; Radl, Simone; Oesterreicher, Andreas; Moser, Andreas; Ganser, Christian; Teichert, Christian; Pinter, Gerald; Kern, Wolfgang; Griesser, Thomas; Schlögl, Sandra

    2016-12-01

    The photo-reversible [4πs+4πs] cycloaddition reaction of pendant anthracene moieties represents a convenient strategy to impart wavelength dependent properties into hydrogenated carboxylated nitrile butadiene rubber (HXNBR) networks. The present article provides the 1 H NMR data on the reaction kinetics of the side chain functionalization of HXNBR. 2-(Anthracene-9-yl)oxirane with reactive epoxy groups is covalently attached to the polymer side chain of HXNBR via ring opening reaction between the epoxy and the carboxylic groups. Along with the identification, 1 H NMR data on the quantification of the attached functional groups are shown in dependence on reaction time and concentration of 2-(anthracene-9-yl)oxirane. Changes in the modification yield are reflected in the mechanical properties and DMA data of photo-responsive elastomers are illustrated in dependence on the number of attached anthracene groups. DMA curves over repeated cycles of UV induced crosslinking ( λ >300 nm) and UV induced cleavage ( λ =254 nm) are further depicted, demonstrating the photo-reversibility of the thermo-mechanical properties. Interpretation and discussion of the data are provided in "Design and application of photo-reversible elastomer networks by using the [4πs+4πs] cycloaddition reaction of pendant anthracene groups" (Manhart et al., 2016) [1].

  2. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes

    KAUST Repository

    Li, Yang; Tu, Xingchen; Wang, Minglang; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2014-01-01

    © 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

  3. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes

    KAUST Repository

    Li, Yang

    2014-11-07

    © 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green\\'s function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

  4. Design and Optimisation of a Simple Filter Group for Reactive Power Distribution

    Directory of Open Access Journals (Sweden)

    Ryszard Klempka

    2016-01-01

    Full Text Available Basic methods are presented to design a simple filter group and a method of shaping the resultant of the filter group’s impedance characteristics (distribution of the characteristics’ extremes and then project equations were transformed into a uniform, common form that addresses issues of the reactive power distribution between component filters. The analysis also takes into account the filters’ detuning from the reduced harmonics and quality factors of passive elements. Another important factor of the analysis considered was the power grid equivalent impedance affecting the filtration effectiveness. A criterion for the filter group’s filtration effectiveness evaluation was proposed and optimisation was completed for the reactive power distribution between separate filters in the function of the power grid’s equivalent inductance.

  5. The Activity of [60]Fullerene Derivatives Bearing Amine and Carboxylic Solubilizing Groups against Escherichia coli: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Dmitry G. Deryabin

    2014-01-01

    Full Text Available We report a comparative investigation of the antibacterial activity of two water-soluble fullerene derivatives bearing protonated amine (AF and deprotonated carboxylic (CF groups appended to the fullerene cage via organic linkers. The negatively charged fullerene derivative CF showed no tendency to bind to the bacterial cells and, consequently, no significant antibacterial activity. In contrast, the compound AF loaded with cationic groups showed strong and partially irreversible binding to the negatively charged Escherichia coli K12 TG1 cells and to human erythrocytes, also possessing negative zeta potential. Adsorption of AF on the bacterial surface was visualized by atomic force microscopy revealing the formation of specific clusters (AF aggregates surrounding the bacterial cell. Incubation of E. coli K12 TG1 with AF led to a dose-dependent bactericidal effect with LD50 = 79.1 µM. The presence of human erythrocytes in the test medium decreased the AF antibacterial activity. Thus we reveal that the water-soluble cationic fullerene derivative AF possesses promising antibacterial activity, which might be utilized in the development of novel types of chemical disinfectants.

  6. New trends and applications in carboxylation for isotope chemistry.

    Science.gov (United States)

    Bragg, Ryan A; Sardana, Malvika; Artelsmair, Markus; Elmore, Charles S

    2018-05-08

    Carboxylations are an important method for the incorporation of isotopically labeled 14 CO 2 into molecules. This manuscript will review labeled carboxylations since 2010 and will present a perspective on the potential of recent unlabeled methodology for labeled carboxylations. The perspective portion of the manuscript is broken into 3 major sections based on product type, arylcarboxylic acids, benzylcarboxylic acids, and alkyl carboxylic acids, and each of those sections is further subdivided by substrate. © 2018 AstraZeneca. Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons, Ltd.

  7. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    Science.gov (United States)

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. © FEMS 2015.

  8. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  9. Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications.

    Science.gov (United States)

    Kohara, Kaori; Yamamoto, Shinpei; Seinberg, Liis; Murakami, Tatsuya; Tsujimoto, Masahiko; Ogawa, Tetsuya; Kurata, Hiroki; Kageyama, Hiroshi; Takano, Mikio

    2013-03-28

    Carboxylated SiO2-coated α-Fe nanoparticles have been successfully prepared via CaH2-mediated reduction of SiO2-coated Fe3O4 nanoparticles followed by surface carboxylation. These α-Fe-based nanoparticles, which are characterized by ease of coating with additional functional groups, a large magnetization of 154 emu per g-Fe, enhanced corrosion resistivity, excellent aqueous dispersibility, and low cytotoxicity, have potential to be a versatile platform in biomedical applications.

  10. Thermodynamics of formation of cadmium dicarboxylate and carboxylate mixed complexes with benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonov, G V; Bolotov, V M; Kharitonova, R I [Voronezhskij Tekhnologicheskij Inst. (USSR)

    1980-01-01

    Thermodynamic parameters of the mixed complexing of cadmium propionate, butyrate, valerate, succinate, maleinate and malate with benzimidazole in 20 % aqUeous-ethanol solution of 0.1 M KNO/sub 3/ are studied using polarographic method. It is shown that stability of mixed complexes of cadmium carboxylates with benzimidazole is connected with the process enthalpy and is determined by covalency of the metal-carboxylate bond. Increasing length of hydrocarbon chain of acyl group of monobasic acids hampers amine coordination with central complexing agent (..delta..S<0). The presence of dicarboxylate-ion in the inner coordination sphere decreases the enthalpy and increases the entropy of the process (..delta..S>0).

  11. Influence of substituents in vinyl groups on reactivity of parylene during polymerization process

    International Nuclear Information System (INIS)

    Freza, Sylwia; Skurski, Piotr; Bobrowski, Maciej

    2010-01-01

    The MCSCF calculations indicate that both triplet and singlet state of biradical di-para-xylylene can exist during polymerization of parylene in gas phase and both can potentially react with vinyl molecules. The singlet-state open-shell dimer turned out to exhibit multiconfigurational character. In the case of triplet state of the dimer two mechanisms of the reactions with various species containing vinyl groups have been examined at the B3LYP/6-31G level. The kinetic and thermodynamical barriers have been estimated for the reaction path involving the π-bond cleavage as well as for the route describing the hydrogen atom transfer. It was found that the overall reactions are thermodynamically favorable, whereas appropriate kinetic barriers for certain derivatives are very small (close to 0 kcal/mol) which in turn makes allowances for easy reactivity under accessible conditions. The calculated mechanisms indicate the influence of substituents in vinyl groups for reactivity of parylene during LPCVD process.

  12. O-Methylisourea Can React with the α-Amino Group of Lysine: Implications for the Analysis of Reactive Lysine.

    Science.gov (United States)

    Hulshof, Tetske G; Rutherfurd, Shane M; Sforza, Stefano; Bikker, Paul; van der Poel, Antonius F B; Hendriks, Wouter H

    2017-02-01

    The specificity of O-methylisourea (OMIU) to bind to the ε-amino group of Lys, an important supposition for the OMIU-reactive Lys analysis of foods, feeds, ingredients, and digesta, was investigated. Crystalline l-Lys incubated under standard conditions with OMIU resulted in low homoarginine recoveries. The reaction of OMIU with the α-amino group of Lys was confirmed by MS analysis, with double derivatized Lys being identified. None of the changes in reaction conditions (OMIU pH, OMIU to Lys ratio, and reaction time) with crystalline l-Lys resulted in 100% recovery of homoarginine. The average free Lys content in ileal digesta of growing pigs and broilers was found to be 13% of total Lys, which could result in a significant underestimation of the reactive Lys content. The reaction of OMIU with α-amino groups may necessitate analysis of free Lys to accurately quantify reactive lysine in samples containing a large proportion of Lys with a free α-amino group.

  13. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    Science.gov (United States)

    Nicholson, John W.; Wilson, Alan

    2004-09-01

    This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries. The best known version of the process is the Dakin West reaction (1928), which applies to α-amino acids and also involves the simultaneous conversion of the amine group to amido functionality. Unlike other examples, this particular reaction has attracted a reasonable amount of attention and it appears to be better known than the conversion of simple carboxylic acids to ketones. However, this reaction was described as long ago as 1612, when Beguin published an account of it in his book, Tyrocinium Chymicum . Since then, many chemists have rediscovered the reaction, apparently independently. One of the earliest modern accounts was by W. H. Perkin, Sr., in 1886, who made various simple ketones by refluxing the appropriate carboxylic acids with base. However, this work has been largely ignored, including by his son, W. H. Perkin, Jr., who used a more complicated base-catalyzed ketonization to prepare small ring compounds in the early years of the 20th century. Other articles detailing the application of ketonization to organic acids are discussed, including our own work, which employed the process to crosslink carboxylated polymers for possible technical application in coatings. Despite its relative obscurity, the reaction was used by Woodward et al. in the total synthesis of strychnine, reported in 1963, and this is discussed in detail at the end of the article. See Featured Molecules .

  14. Human Cells as Platform to Produce Gamma-Carboxylated Proteins.

    Science.gov (United States)

    de Sousa Bomfim, Aline; de Freitas, Marcela Cristina Corrêa; Covas, Dimas Tadeu; de Sousa Russo, Elisa Maria

    2018-01-01

    The gamma-carboxylated proteins belong to a family of proteins that depend on vitamin K for normal biosynthesis. The major representative gamma-carboxylated proteins are the coagulation system proteins, for example, factor VII, factor IX, factor X, prothrombin, and proteins C, S, and Z. These molecules have harbored posttranslational modifications, such as glycosylation and gamma-carboxylation, and for this reason they need to be produced in mammalian cell lines. Human cells lines have emerged as the most promising alternative to the production of gamma-carboxylated proteins. In this chapter, the methods to generate human cells as a platform to produce gamma-carboxylated proteins, for example the coagulation factors VII and IX, are presented. From the cell line modification up to the vitamin K adaptation of the produced cells is described in the protocols presented in this chapter.

  15. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres

    Science.gov (United States)

    Liu, Huiyu; Chen, Dong; Tang, Fangqiong; Du, Gangjun; Li, Linlin; Meng, Xianwei; Liang, Wei; Zhang, Yangde; Teng, Xu; Li, Yi

    2008-11-01

    A new approach towards the design of gold nanoshells on carboxylated polystyrene spheres (GNCPSs) is reported here. Gold nanoshells were self-assembled on the surface of carboxylated polystyrene spheres by a seed growth method. Chitosan (CHI) was used as a functional agent of carboxylated polystyrene spheres for attaching gold seeds. The surface plasmon resonance (SPR) peak of GNCPSs can be tuned, greatly redshifted, over a broad spectral range including the near-infrared (NIR) wavelength region, which provides maximal penetration of light through tissue. Irradiation of GNCPSs at their peak extinction coefficient results in the conversion of light to heat energy that produces a local rise in temperature. Our study revealed that the Lewis lung carcinoma (LLC) in mice treated with GNCPSs exposed to a low dose of NIR light (808 nm, 4 W cm-2) induced irreversible tissue damage. The tumor volumes of the treatment group by GNCPSs were significantly lower than those of control groups, with an average inhibition rate over 55% (P<0.005). This study proves that GNCPSs are promising in plasmonic photothermal tumor therapy.

  16. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres

    International Nuclear Information System (INIS)

    Liu Huiyu; Chen Dong; Tang Fangqiong; Li Linlin; Meng Xianwei; Li Yi; Du Gangjun; Liang Wei; Zhang Yangde; Teng Xu

    2008-01-01

    A new approach towards the design of gold nanoshells on carboxylated polystyrene spheres (GNCPSs) is reported here. Gold nanoshells were self-assembled on the surface of carboxylated polystyrene spheres by a seed growth method. Chitosan (CHI) was used as a functional agent of carboxylated polystyrene spheres for attaching gold seeds. The surface plasmon resonance (SPR) peak of GNCPSs can be tuned, greatly redshifted, over a broad spectral range including the near-infrared (NIR) wavelength region, which provides maximal penetration of light through tissue. Irradiation of GNCPSs at their peak extinction coefficient results in the conversion of light to heat energy that produces a local rise in temperature. Our study revealed that the Lewis lung carcinoma (LLC) in mice treated with GNCPSs exposed to a low dose of NIR light (808 nm, 4 W cm -2 ) induced irreversible tissue damage. The tumor volumes of the treatment group by GNCPSs were significantly lower than those of control groups, with an average inhibition rate over 55% (P<0.005). This study proves that GNCPSs are promising in plasmonic photothermal tumor therapy.

  17. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies.

    Science.gov (United States)

    Bruijnincx, Pieter C A; van Koten, Gerard; Klein Gebbink, Robertus J M

    2008-12-01

    Iron-containing enzymes are one of Nature's main means of effecting key biological transformations. The mononuclear non-heme iron oxygenases and oxidases have received the most attention recently, primarily because of the recent availability of crystal structures of many different enzymes and the stunningly diverse oxidative transformations that these enzymes catalyze. The wealth of available structural data has furthermore established the so-called 2-His-1-carboxylate facial triad as a new common structural motif for the activation of dioxygen. This superfamily of mononuclear iron(ii) enzymes catalyzes a wide range of oxidative transformations, ranging from the cis-dihydroxylation of arenes to the biosynthesis of antibiotics such as isopenicillin and fosfomycin. The remarkable scope of oxidative transformations seems to be even broader than that associated with oxidative heme enzymes. Not only are many of these oxidative transformations of key biological importance, many of these selective oxidations are also unprecedented in synthetic organic chemistry. In this critical review, we wish to provide a concise background on the chemistry of the mononuclear non-heme iron enzymes characterized by the 2-His-1-carboxylate facial triad and to discuss the many recent developments in the field. New examples of enzymes with unique reactivities belonging to the superfamily have been reported. Furthermore, key insights into the intricate mechanistic details and reactive intermediates have been obtained from both enzyme and modeling studies. Sections of this review are devoted to each of these subjects, i.e. the enzymes, biomimetic models, and reactive intermediates (225 references).

  18. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  19. Injury incidence, reactivity and ease of handling of horses kept in groups: A matched case control study in four Nordic countries

    DEFF Research Database (Denmark)

    Keeling, L.J.; Bøe, K.E.; Christensen, Janne Winther

    2016-01-01

    evaluated. It was hypothesized that a more socially variable group composition has beneficial effects on behaviour, ease of handling and reducing reactivity whereas frequent changes in group composition has negative consequences, resulting in more injuries. We found that differences in treatment effects...... horses from groups and horses’ reactivity to a fearful stimulus. Using a matched case control design, 61 groups of horses were studied in Denmark, Norway, Finland and Sweden. They were allocated into groups of similar or different age and sex or where membership changed regularly or remained stable....... Injuries were recorded before mixing the horses into treatment groups, the day after mixing and four weeks later. Reactivity of horses to a moving novel object and the behaviour of a horse being removed from its group and the reactions of other group members towards this horse and the handler were...

  20. Data on synthesis and thermo-mechanical properties of stimuli-responsive rubber materials bearing pendant anthracene groups

    Directory of Open Access Journals (Sweden)

    Jakob Manhart

    2016-12-01

    Full Text Available The photo-reversible [4πs+4πs] cycloaddition reaction of pendant anthracene moieties represents a convenient strategy to impart wavelength dependent properties into hydrogenated carboxylated nitrile butadiene rubber (HXNBR networks. The present article provides the 1H NMR data on the reaction kinetics of the side chain functionalization of HXNBR. 2-(Anthracene-9-yloxirane with reactive epoxy groups is covalently attached to the polymer side chain of HXNBR via ring opening reaction between the epoxy and the carboxylic groups. Along with the identification, 1H NMR data on the quantification of the attached functional groups are shown in dependence on reaction time and concentration of 2-(anthracene-9-yloxirane. Changes in the modification yield are reflected in the mechanical properties and DMA data of photo-responsive elastomers are illustrated in dependence on the number of attached anthracene groups. DMA curves over repeated cycles of UV induced crosslinking (λ>300 nm and UV induced cleavage (λ=254 nm are further depicted, demonstrating the photo-reversibility of the thermo-mechanical properties. Interpretation and discussion of the data are provided in “Design and application of photo-reversible elastomer networks by using the [4πs+4πs] cycloaddition reaction of pendant anthracene groups” (Manhart et al., 2016 [1].

  1. CsF-promoted carboxylation of aryl(hetaryl) terminal alkynes with atmospheric CO_2 at room temperature

    International Nuclear Information System (INIS)

    Yu, B.; Yang, Z.Z.; Zhao, Y.F.; Zhang, H.Y.; Yang, P.; Gao, X.; Liu, Z.M.

    2017-01-01

    A CsF-promoted carboxylation of aryl(hetaryl) terminal alkynes with atmospheric CO_2 in the presence of trimethylsilylacetylene was developed to give functionalized propiolic acid products at room temperature. A wide range of propiolic acids bearing functional groups was successfully obtained in good to excellent yields. Mechanistic studies demonstrate that in the carboxylation process the alkynyl-silane intermediate was first in situ generated, which was then trapped by CO_2, giving rise to the corresponding functionalized propiolic acids after acidification. The advantages of this approach include avoiding use of transition-metal catalysts, wide substrate scope together with excellent functional group tolerance, ambient conditions and a facile work-up procedure. (authors)

  2. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    International Nuclear Information System (INIS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-01-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure

  3. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samira; Ibrahim, Fatimah [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Djordjevic, Ivan, E-mail: ivan.djordjevic@um.edu.my [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Koole, Leo H. [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Biomedical Engineering, Faculty of Health. Medicine and Life Science, Maastricht University, PO Box 616, NL 6200 MD Maastricht (Netherlands)

    2014-05-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  4. Performances of carbon-based screen-printed electrodes modified by diazonium salts with various carboxylic functions for trace metal sensors

    International Nuclear Information System (INIS)

    Bouden, Sarra; Bellakhal, Nizar; Chausse, Annie; Vautrin-Ul, Christine

    2014-01-01

    The electrochemically induced functionalization of carbon-based screen-printed-electrodes (SPEs) by phenyl groups, having one or two carboxylic functions, was achieved by reduction of in situ generated diazonium salts in aqueous media. The corresponding diazonium cations of 4-aminobenzoic acid, 4-aminophthalic acid, 3-(4-aminophenyl) propionic acid, 3-(4-aminophenyl)-2-propenoic acid and 5-aminoisophthalic acid were generated in situ with sodium nitrite in aqueous H_2SO_4. The electrochemical detection of Pb(II) with the grafted SPEs was investigated using Pb(II) 5 * 10"-"8 M solutions. The performances of the grafted SPEs were found to be dependent on the number of carboxylic groups, on their position on the phenyl ring, on the olefinic or the aliphatic character of the chain bearing the carboxylic group. The performances of mono-4-carboxyphenyl and 3,5-dicarboxyphenyl grafted SPEs for Cd(II) and Cu(II) trace detection were tested and compared. (authors)

  5. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.

    Science.gov (United States)

    Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D

    2017-09-01

    1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3.  19 F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.

  6. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  7. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali...

  8. Actinic-radiation curable polymers prepared from a reactive polymer, halogenated cyclic anhydride and glycidyl ester

    International Nuclear Information System (INIS)

    Pastor, S.D.

    1979-01-01

    A novel class of photosensitive polymers are disclosed which are prepared by the reaction, preferably in the presence of a catalyst, of a reactive polymer, a halogenated cyclic anhydride and glycidyl ester of an alpha, beta-unsaturated carboxylic acid. These polymers are capable of undergoing vinyl-type polymerization when exposed to actinic radiation

  9. Surface reactivity measurements as required for grouping and read-across: An advanced FRAS protocol

    International Nuclear Information System (INIS)

    Gandon, Arnaud; Werle, Kai; Neubauer, Nicole; Wohlleben, Wendel

    2017-01-01

    Oxidative stress is a widely accepted paradigm associated with different adverse outcomes of particulate matter, including nanomaterials. It has frequently been identified in in vitro and in vivo studies and different assays have been developed for this purpose. Here we describe a newly developed multi-dose protocol of the FRAS assay (Ferric Reduction Ability of Serum). The purpose of this SOP is the measurement of the surface reactivity of nanomaterials under physiological conditions. Antioxidative components as present in human blood serum (HBS) serve as reporter molecules. The assay separates the oxidative damage from the read-out of the reporter molecules. The results show significantly enhanced repeatability with better sensitivity towards low reactivity, enabling application of FRAS both to a rough grouping by reactive vs. passive nanomaterials and further to substantiation of read-across by enhanced resolution of the similarity between different nanoforms of the same substance. (paper)

  10. Surface reactivity measurements as required for grouping and read-across: An advanced FRAS protocol

    Science.gov (United States)

    Gandon, Arnaud; Werle, Kai; Neubauer, Nicole; Wohlleben, Wendel

    2017-06-01

    Oxidative stress is a widely accepted paradigm associated with different adverse outcomes of particulate matter, including nanomaterials. It has frequently been identified in in vitro and in vivo studies and different assays have been developed for this purpose. Here we describe a newly developed multi-dose protocol of the FRAS assay (Ferric Reduction Ability of Serum). The purpose of this SOP is the measurement of the surface reactivity of nanomaterials under physiological conditions. Antioxidative components as present in human blood serum (HBS) serve as reporter molecules. The assay separates the oxidative damage from the read-out of the reporter molecules. The results show significantly enhanced repeatability with better sensitivity towards low reactivity, enabling application of FRAS both to a rough grouping by reactive vs. passive nanomaterials and further to substantiation of read-across by enhanced resolution of the similarity between different nanoforms of the same substance.

  11. Investigations of the reactivity of pyridine carboxylic acids with diazodiphenylmethane in protic and aprotic solvents.

    Directory of Open Access Journals (Sweden)

    ALEKSANDAR D. MARINKOVIC

    2005-04-01

    Full Text Available Rate constants for the reaction of diazodiphenylmethane with isomeric pyridine carboxylic acids were determined in chosen protic and aprotic solvents at 30 °C, using the well known UV spectrophotometric method. The values of the rate constants of the investigated acids in protic solvents were higher than those in aprotic solvents. The second order rate constants were correlated with solvent parameters using the Kamlet-Taft solvatochromic equation in the form: log k = log k0 + sp* + aa + bb . The correlation of the obtained kinetic data were performed by means of multiple linear regression analysis taking appropriate solvent parameters. The signs of the equation coefficients were in agreement with the postulated reaction mechanism. The mode of the influence of the solvent on the reaction rate in all the investigated acids are discussed on the basis of the correlation results.

  12. 1-(3-aminopropyl)-3-butylimidazolium bromide for carboxyl group derivatization: potential applications in high sensitivity peptide identification by mass spectrometry.

    Science.gov (United States)

    Qiao, Xiaoqiang; Zhou, Yuan; Hou, Chunyan; Zhang, Xiaodan; Yang, Kaiguang; Zhang, Lihua; Zhang, Yukui

    2013-03-01

    The cationic reagent 1-(3-aminopropyl)-3-butylimidazolium bromide (BAPI) was exploited for the derivatization of carboxyl groups on peptides. Nearly 100% derivatization efficiency was achieved with the synthetic peptide RVYVHPI (RI-7). Furthermore, the peptide derivative was stable in a 0.1% TFA/water solution or a 0.1% (v/v) TFA/acetonitrile/water solution for at least one week. The effect of BAPI derivatization on the ionization of the peptide RI-7 was further investigated, and the detection sensitivity was improved >42-fold via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), thus outperforming the commercial piperazine derivatization approach. Moreover, the charge states of the peptide were largely increased via BAPI derivatization by electrospray ionization (ESI) MS. The results indicate the potential merits of BAPI derivatization for high sensitivity peptide analysis by MS.

  13. Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces.

    Science.gov (United States)

    Shimizu, Michiko; Saito, Tsuguyuki; Fukuzumi, Hayaka; Isogai, Akira

    2014-11-10

    Hydrophobic, ductile, and transparent nanocellulose films were prepared by casting and drying aqueous dispersions of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibrils (TOCNs) with quaternary alkylammoniums (QAs) as counterions for the surface carboxylate groups. TOCN films with tetramethylammonium and tetraethylammonium carboxylates showed high optical transparencies, strain-to-failure values (14-22%), and work-of-fracture values (20-27 MJ m(-3)). The ductility of these films was likely caused by the alkyl chains of the QA groups densely covering the TOCN surfaces and being present at the interfaces between the TOCN elements in the films. The water contact angle of the TOCN-QA films increased to ∼100° by introducing tetra(n-butyl)ammonium groups as counterions. Thus, TOCN film properties can be controlled by changing the chemical structure of the counterions from Na to QAs. The hydrophilic TOCN surfaces can be changed to hydrophobic simply and efficiently by the conversion from TOCN-Na to TOCN-QA, when TOCNs are used as nanofillers in hydrophobic polymer matrices.

  14. A new fluorinated urethane dimethacrylate with carboxylic groups for use in dental adhesive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Tinca, E-mail: tbur@icmpp.ro [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Melinte, Violeta [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Aldea, Horia [Gr. T. Popa University of Medicine and Pharmacy, Faculty of Dentistry, 16 University Str., 700115 Iasi (Romania); Pelin, Irina M.; Buruiana, Emil C. [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2016-05-01

    A urethane macromer containing hexafluoroisopropylidene, poly(ethylene oxide) and carboxylic moieties (UF-DMA) was synthesized and used in proportions varying between 15 and 35 wt.% (F1–F3) in dental adhesive formulations besides BisGMA, triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The FTIR and {sup 1}H ({sup 13}C) NMR spectra confirmed the chemical structure of the UF-DMA. The experimental adhesives were characterized with regard to the degree of conversion, water sorption/solubility, contact angle, diffusion coefficient, Vickers hardness, and morphology of the crosslinked networks and compared with the specimens containing 10 wt.% hydroxyapatite (HAP) or calcium phosphate (CaP). The conversion degree (after 180 s of irradiation with visible light) ranged from 59.5% (F1) to 74.8% (F3), whereas the water sorption was between 23.15 μg mm{sup −3} (F1) and 40.52 μg mm{sup −3} (F3). Upon the addition of HAP or CaP this parameter attained values of 37.82–49.14 μg mm{sup −3} (F1–F3-HAP) and 34.58–45.56 μg mm{sup −3}, respectively. Also, the formation of resin tags through the infiltration of a dental composition (F3) was visualized by SEM analysis. The results suggest that UF-DMA taken as co-monomer in dental adhesives of acrylic type may provide improved properties in the moist environment of the mouth. - Highlights: • Fluorinated urethane dimethacrylate with carboxylic units (UF-DMA) was proposed as co-monomer in dental adhesives. • UF-DMA exhibits good photoreactivity in mixture with commercial dental monomers. • Water sorption/solubility and diffusion coefficient depend on the amount of UF-DMA. • The infiltration of adhesive mixture into the dentin tubules was evidenced by SEM.

  15. Engineering Copper Carboxylate Functionalities on Water Stable Metal–Organic Frameworks for Enhancement of Ammonia Removal Capacities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jayraj N.; Garcia-Gutierrez, Erika Y.; Moran, Colton M.; Deneff, Jacob I.; Walton, Krista S.

    2017-02-02

    Functionalization of copper carboxylate groups on a series of UiO-66 metal organic framework (MOF) analogues and their corresponding impact on humid and dry ammonia adsorption behavior were studied. Relative locations of possible carboxylic acid binding sites for copper on the MOF analogues were varied on ligand and missing linker defect sites. Materials after copper incorporation exhibited increased water vapor and ammonia affinity during isothermal adsorption and breakthrough experiments, respectively. The introduction of copper markedly increased ammonia adsorption capacities for all adsorbents possessing carboxyl binding sites. In particular, the new MOF UiO-66-(COOCu)2 displayed the highest ammonia breakthrough capacities of 6.38 and 6.84 mmol g–1 under dry and humid conditions, respectively, while retaining crystallinity and porosity. Relative carboxylic acid site locations were also found to impact sorbent stability, as missing linker defect functionalized materials degraded under humid conditions after copper incorporation. Postsynthetic metal insertion provides a method for adding sites that are analogous to open metal sites while maintaining good structural stability.

  16. Ion exchange properties of carboxylate bagasse

    International Nuclear Information System (INIS)

    Nada, A.M.A.; Hassan, M.L.

    2005-01-01

    Bagasse fibers were chemically modified using three different reactions: esterification using monochloro acetic acid, esterification using succinic anhydride, and oxidation using sodium periodate and sodium chlorite to prepare cation exchanger bearing carboxylic groups. Bagasse was crosslinked using epichlorohydrin before chemical modification to avoid loss of its constituents during the chemical modification. The structure of the prepared derivatives was proved using Fourier transform infrared (FTIR) and chemical methods. The ability of the prepared bagasse cation exchangers to adsorb heavy metal ions (Cu +2 , Ni +2 , Cr +3 , Fe +3 ), on a separate basis or in a mixture of them, at different metal ion concentration was tested. Thermal stability of the different bagasse derivative was studied using thermogravimetric analysis (TGA)

  17. Protic ammonium carboxylate ionic liquids: insight into structure, dynamics and thermophysical properties by alkyl group functionalization.

    Science.gov (United States)

    Reddy, Th Dhileep N; Mallik, Bhabani S

    2017-04-19

    This study is aimed at characterising the structure, dynamics and thermophysical properties of five alkylammonium carboxylate ionic liquids (ILs) from classical molecular dynamics simulations. The structural features of these ILs were characterised by calculating the site-site radial distribution functions, g(r), spatial distribution functions and structure factors. The structural properties demonstrate that ILs show greater interaction between cations and anions when alkyl chain length increases on the cation or anion. In all ILs, spatial distribution functions show that the anion is close to the acidic hydrogen atoms of the ammonium cation. We determined the role of alkyl group functionalization of the charged entities, cations and anions, in the dynamical behavior and the transport coefficients of this family of ionic liquids. The dynamics of ILs are described by studying the mean square displacement (MSD) of the centres of mass of the ions, diffusion coefficients, ionic conductivities and hydrogen bonds as well as residence dynamics. The diffusion coefficients and ionic conductivity decrease with an increase in the size of the cation or anion. The effect of alkyl chain length on ionic conductivity calculated in this article is consistent with the findings of other experimental studies. Hydrogen bond lifetimes and residence times along with structure factors were also calculated, and are related to alkyl chain length.

  18. Crystal structure of ethyl 2,4-dichloroquinoline-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Alberto Cabrera

    2015-12-01

    Full Text Available In the crystal structure of the title compound, C12H9Cl2NO2, the mean planes through the quinoline and carboxylate groups have r.m.s. deviations of 0.006 and 0.021 Å, respectively, and form a dihedral angle of 87.06 (19°. In the crystal, molecules are linked via very weak C—H...O hydrogen bonds, forming chains, which propagate along the c-axis direction.

  19. Sensitive method for dosing carboxylic functions of carbons and its application to the study of thermally processed carbon blacks

    International Nuclear Information System (INIS)

    Bernardin, Jacques

    1968-01-01

    This research thesis reports the development of a sensitive method for the dosing of carboxylic functions present at the surface of carbon blacks, and the use of this method to study the evolution of a carbon black during heat treatments. After a brief description of modes of fabrication of carbon blacks and of their structure, the author proposes an overview of knowledge on their oxidation and functional analysis. After having outlined that existing methods do not allow the measurement of function quantities less than ten micro-equivalent per gram of carbon, the author reports the development of a method which allows such measurements. By using this method, the author shows that carboxylic groups of a carbon black, oxidized by air or not, decompose during degassing by forming carbon dioxide, and that, reciprocally, the released carbon dioxide is exclusively produced by the decomposition of carboxylic groups [fr

  20. Group versus individual stress management intervention in breast cancer patients for fatigue and emotional reactivity: a randomised intervention study.

    Science.gov (United States)

    Rissanen, Ritva; Arving, Cecilia; Ahlgren, Johan; Nordin, Karin

    2014-09-01

    Fatigue and emotional reactivity are common among women suffering from breast cancer and might detrimentally affect these women's quality of life. This study evaluates if the stress management delivered either in a group or individual setting would improve fatigue and emotional reactivity among women with a newly diagnosed breast cancer. Participants (n = 304) who reported elevated levels of distress at three-month post-inclusion were randomised between stress management in a group (GSM) (n = 77) or individual (ISM) (n = 78) setting. Participation was declined by 149 women. Participants completed the Multidimensional Fatigue Inventory (MFI-20) and the Everyday Life Stress Scale (ELSS) at the time of inclusion, 3- and 12-month post-inclusion. Analyses were made according to intention to treat and per-protocol principles. Mann-Whitney tests were used to examine differences between the two intervention groups. No significant differences were detected between the GSM and ISM groups on fatigue or emotional reactivity. In addition, there were no changes over time for these outcomes. There were no differences between the two intervention arms with reference to fatigue or emotional reactivity; however, a clinically interesting finding was the low number of women who were interested in participating in a psychosocial intervention. This finding may have clinical implications when psychosocial support is offered to women with a newly diagnosed breast cancer and also in the planning of future studies.

  1. (2S,4R-4-Fluoropyrrolidinium-2-carboxylate

    Directory of Open Access Journals (Sweden)

    David B. Hobart Jr

    2012-08-01

    Full Text Available The crystal structure of the title compound, C5H8FNO2, at 100 K, displays intermolecular N—H...O hydrogen bonding between the ammonium and carboxylate groups as a result of its zwitterionic nature in the solid state. The five-membered ring adopts an envelope conformation with the C atom at the 3-position as the flap. The compound is of interest with respect to the synthesis and structural properties of synthetic collagens. The absolute structure was determined by comparison with the commercially available material.

  2. Association of C-reactive protein positivity among groups of patients with knee osteoarthritis in Erbil

    Directory of Open Access Journals (Sweden)

    Helen Ahmed Pirdawood

    2017-08-01

    Full Text Available Background and objective: Osteoarthritis is the most common joint disease and a leading cause of disability. Increased circulating levels of C-reactive protein have been associated with prevalent knee osteoarthritis. This study aimed to assess the association between C- reactive protein positivity in patients with knee osteoarthritis in Erbil Methods: Data from100 participants in this case-control study were enrolled from May 1st to December 1st, 2015 in Rizgary Teaching Hospital in Erbil city. Data were divided into two groups. The cases included 50 patients (17 male and 33 female with a mean age of 58.9 ±3.8 years and diagnosed with primary knee osteoarthritis of one or both knee joints. Controls included 50 persons (17 male and 33 female with a mean age of 58.1 ±3.9 years without knee osteoarthritis and matched for age, sex, and body mass index. C-reactive protein qualitatively measured. Patients were radiologically assessed by Kellgren and Lawrence grading scale (grade 0-4. Results: C-reactive protein was positive in 41 out of 50 (82% of knee osteoarthritis patients compared to 3 out of 50 (6% of healthy controls (P = 0.001. C- reactive protein positivity among knee osteoarthritis patients were significantly associated with body mass index, positive family history of knee osteoarthritis, duration of diseases, and Kellgren and Lawrence grade (P 0.05. Conclusion: C-reactive protein positivity was significantly associated with knee osteoarthritis compared to healthy controls. Furthermore, body mass index, positive family history of knee osteoarthritis, early osteoarthritis, and Kellgren and Lawrence grade II, were significantly associated with positive C-reactive protein in knee osteoarthritis.

  3. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    Science.gov (United States)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  4. Substrate specificity within a family of outer membrane carboxylate channels.

    Directory of Open Access Journals (Sweden)

    Elif Eren

    2012-01-01

    Full Text Available Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  5. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    It is generally expected that the hydrogen bond strength in a D-H-A adduct is predicted by the difference between the proton affinities of D and A, measured by the adduct stabilization, and demonstrated by the IR redshift of the D-H bond stretching vibrational frequency. These criteria do...... not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...... carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength....

  6. Cellulose bearing Schiff base and carboxylic acid chelating groups: a low cost and green adsorbent for heavy metal ion removal from aqueous solution.

    Science.gov (United States)

    Saravanan, R; Ravikumar, L

    2016-10-01

    Chemically modified cellulose bearing metal binding sites like Schiff base and carboxylic acid groups was synthesized and characterized through Fourier transform infrared and solid state 13 C-nuclear magnetic resonance (NMR) analysis. The chemically modified cellulose (Cell-PA) adsorbent was examined for its metal ion uptake ability for Cu(II) and Pb(II) ions from aqueous solution. Kinetic and isotherm studies were carried out under optimum conditions. Pseudo-second-order kinetics and Langmuir isotherm fit well with the experimental data. Thermodynamic studies were also performed along with adsorption regeneration performance studies. The adsorbent (Cell-PA) shows high potential for the removal of Cu(II) and Pb(II) metal ions, and it shows antibacterial activity towards selected microorganisms.

  7. Understanding dissolved organic matter reactivity in a global context: tribute to Dr. George Aiken's many contributions

    Science.gov (United States)

    McKnight, Diane

    2017-04-01

    As Dr. George Aiken emphasized throughout his distinguished research career, the diversity of sources of dissolved organic material (DOM) is associated with a diversity of dissolved organic compounds with a range of chemistries and reactivities that are present in the natural environment. From a limnological perspective, dissolved organic matter (DOM) can originate from allochthonous sources on the landscape which drains into a lake, river, wetland, coastal region, or other aquatic ecosystem, or from autochthonous sources within the given aquatic ecosystem. In many landscapes, the precursor organic materials that contribute to the DOM of the associated aquatic ecosystem can be derived from diverse sources, e.g. terrestrial plants, plant litter, organic material in different soil horizons, and the products of microbial growth and decay. Yet, through his focus on the underlying chemical processes a clear, chemically robust foundation for understanding DOM reactivity has emerged from Aiken's research. These processes include the enhancement in solubility due to ionized carboxylic acid functional groups and the reactions of organic sulfur groups with mercury. This approach has advanced understand of carbon cycling in the lakes of the Mars-like barren landscapes of the McMurdo Dry Valleys in Antarctica and the rivers draining the warming tundra of the Arctic.

  8. Optimized Diazo Scaffold for Protein Esterification

    Science.gov (United States)

    Mix, Kalie A.

    2015-01-01

    The O-alkylation of carboxylic acids with diazo compounds provides a means to esterify carboxylic acids in aqueous solution. A Hammett analysis of the reactivity of diazo compounds derived from phenylglycinamide revealed that the p-methylphenylglycinamide scaffold has an especially high reaction rate and ester:alcohol product ratio, and esterifies protein carboxyl groups more efficiently than does any known reagent. PMID:25938936

  9. Edge-carboxylated graphene nanoflakes from nitric acid oxidised arc-discharge material

    OpenAIRE

    NICOLOSI, VALERIA

    2010-01-01

    PUBLISHED Graphene nanoflakes (GNFs) with average diameters of 30 nm have been prepared by a single-step oxidation procedure using single-wall carbon nanotube arc-discharge material and nitric acid. The GNFs are predominately single sheets containing a small number of internal defects. The edges are decorated with primarily carboxylic acid groups which allow facile chemical functionalisation and cross-linking of the fragments using multivalent cations

  10. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    International Nuclear Information System (INIS)

    Elhadi, S. A.

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, 1 H-and 13 C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  11. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Elhadi, S A [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, {sup 1}H-and {sup 13}C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  12. Additional Nucleophile-Free FeCl3-Catalyzed Green Deprotection of 2,4-Dimethoxyphenylmethyl-Protected Alcohols and Carboxylic Acids.

    Science.gov (United States)

    Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao

    2016-01-01

    The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.

  13. Density functional theory prediction of pKa for carboxylated single-wall carbon nanotubes and graphene

    Science.gov (United States)

    Li, Hao; Fu, Aiping; Xue, Xuyan; Guo, Fengna; Huai, Wenbo; Chu, Tianshu; Wang, Zonghua

    2017-06-01

    Density functional calculations have been performed to investigate the acidities for the carboxylated single-wall carbon nanotubes and graphene. The pKa values for different COOH-functionalized models with varying lengths, diameters and chirality of nanotubes and with different edges of graphene were predicted using the SMD/M05-2X/6-31G* method combined with two universal thermodynamic cycles. The effects of following factors, such as, the functionalized position of carboxyl group, the Stone-Wales and single vacancy defects, on the acidity of the functionalized nanotube and graphene have also been evaluated. The deprotonated species have undergone decarboxylation when the hybridization mode of the carbon atom at the functionalization site changed from sp2 to sp3 both for the tube and graphene. The knowledge of the pKa values of the carboxylated nanotube and graphene could be of great help for the understanding of the nanocarbon materials in many diverse areas, including environmental protection, catalysis, electrochemistry and biochemistry.

  14. Grass pollen immunotherapy induces highly cross-reactive IgG antibodies to group V allergen from different grass species

    NARCIS (Netherlands)

    van Ree, R.; Brewczyński, P. Z.; Tan, K. Y.; Mulder-Willems, H. J.; Widjaja, P.; Stapel, S. O.; Aalberse, R. C.; Kroon, A. M.

    1995-01-01

    Sera from two groups of patients receiving grass pollen immunotherapy were tested on IgG reactivity with group V allergen from six different grass species. One group of patients was treated with a mixture of 10 grass species, and the other with a mixture of five. Only Lolium perenne, Dactylis

  15. Uranium (IV) carboxylates - I

    Energy Technology Data Exchange (ETDEWEB)

    Satpathy, K C; Patnaik, A K [Sambalpur Univ. (India). Dept. of Chemistry

    1975-11-01

    A few uranium(IV) carboxylates with monochloro and trichloro acetic acid, glycine, malic, citric, adipic, o-toluic, anthranilic and salicylic acids have been prepared by photolytic methods. The I.R. spectra of these compounds are recorded and basing on the spectral data, structure of the compounds have been suggested.

  16. Pd(II)/Bipyridine-Catalyzed Conjugate Addition of Arylboronic Acids to α,β-Unsaturated Carboxylic Acids. Synthesis of β-Quaternary Carbons Substituted Carboxylic Acids.

    Science.gov (United States)

    Liu, Rui; Yang, Zhenyu; Ni, Yuxin; Song, Kaixuan; Shen, Kai; Lin, Shaohui; Pan, Qinmin

    2017-08-04

    Pd(II)/bipyridine-catalyzed conjugate addition of arylboronic acids to α,β-unsaturated carboxylic acids (including β,β-disubstituted acrylic acids) was developed and optimized, which provided a mild and convenient method for the highly challenging synthesis of β-quaternary carbons substituted carboxylic acids.

  17. Photodecarboxylative Cyclizations of ω-Phthalimido-para-phenoxy Carboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ae Rhan; Lee, Younsik; Yoo, Dong Jin [Chonbuk National Univ., Jeonju (Korea, Republic of); Cho, Hyunseung [Seonam Univ., Namwon (Korea, Republic of)

    2012-10-15

    The chemistry of electronically-excited phthalimides is dictated by electron and/or hydrogen transfer reactions. The photochemistry of phthalimides has been intensively studied, and numerous synthetically useful transformations with high chemical and quantum yields have been developed. 3 Among the synthetic applications, intra- and intermolecular photodecarboxylation (PDC) of ω-phthalimidoalkyl carboxylates has been developed by Griesbeck and coworkers as a versatile pathway to medium- and large-ring heterocycles. Model reactions were further realized on macro- and micro-scales. We recently described PDC cyclizations of ω-phthalimidoalkynoates to produce macrocyclic alkynes with ring-sizes up to 17. In recent study, we expanded the portfolio of this reaction and investigated the photochemistry of related aryl-linked phthalimides in Scheme 1. Based on these approaches, we demonstrated that ω-phthalimido-ortho/meta-phenoxy carboxylates undergo efficient PDC cyclizations. While the yields of ω-phthalimido-ortho-phenoxy carboxylates steadily decreased with increasing chain-length and the maximum yield of the 6-membered product was obtained in 75%, the yields of meta-phenoxy carboxylates steadily increased with increasing chain-length and the extended 16-membered product was subsequently obtained in 48% yield.

  18. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    Science.gov (United States)

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Convenient One-Pot Method for the Synthesis of N-Methoxy-N-methyl Amides from Carboxylic Acids

    International Nuclear Information System (INIS)

    Kim, Joong Gon; Jang, Doo Ok

    2010-01-01

    We have developed a mild and convenient method for one-pot synthesis of Weinreb amides from carboxylic acids. The process is general for the preparation of Weinreb amides from a variety of carboxylic acids. The reaction was also applicable to the preparation of α-amino Weinreb amides and proceeded without deprotection of the N-Fmoc protecting group or racemization of the stereogenic centers. N-Methoxy-N-methyl amides, or Weinreb amides, have been widely used as versatile synthetic intermediates in organic syntheses. These amides serve as excellent acylating agents for organolithium or organomagnesium reagents and as robust aldehyde group equivalents. The utility of Weinreb amides has been extended to the preparation of N-protected amino aldehydes, useful intermediates for many chemoselective transformations in peptide chemistry

  20. Synthesis and complexation properties towards uranyl cation of carboxylic acid derivatives of p-tert-butyl-calix[6]arene

    International Nuclear Information System (INIS)

    Souane, R.

    2005-03-01

    In the fuel reprocessing plants radioactive metals, and more particularly, uranium in UO 2 2+ form in the various installations, have many varied physico-chemical forms and there is a risk of exposure and internal contamination in the nuclear industry. It is necessary to exert a medical control to ensure the protection of the health of the workers. This medical control is done by dosing uranyl cation in the urine of the exposed people. This work forms part of this context. Indeed, we prepared a ligand able to complex the ion uranyl and which is also to be grafted on a solid support. In the family of calixarenes, the calix[6]arenes functionalized by three or four carboxylic functions were selected like chelating molecules of the ion uranyl. The properties of complexation of these calixarenes were studied by potentiometry in methanol, under these conditions balances of protonation and complexation were determined and the constant partners were obtained using the Hyperquad program. We synthesized tri-carboxylic calix[6]arenes comprising of the groupings nitro (NO 2 ) in para position of phenol in order to see the influence of a substitution in para position on the complexation. We also synthesized calix[6]arenes tetra-carboxylic in order to show the role of an additional carboxylic acid grouping. The potentiometric study determined thermodynamic parameters of protonation and complexation of carboxylic calix[6]arenes. The results of the complexation highlighted which complex UO 2 L corresponding to the ligand para-tert-butyl-calix[6]arene tetra-acid is more stable than that corresponding to the ligand mono-nitro calix[6]arene tri-acid (ΔlogΒ110 = 4.3), and than the effect of the groupings nitro in para position has low influence on the complexation of UO 2 2+ . This makes it possible to consider as possible the grafting of the calix[6]arenes which one knows the behaviour of trapping. To this end we synthesized the ligand 23. (author)

  1. Reactive extraction of carboxylic acids from apolar hydrocarbons using aqueous solutions of sodium hydrogen carbonate with back-recovery using carbon dioxide under pressure

    NARCIS (Netherlands)

    Kuzmanovic, B.; Kuipers, N.J.M.; de Haan, A.B.; Kwant, Gerard

    2005-01-01

    A combination of using an aqueous solution of sodium hydrogen carbonate for forward-extraction of carboxylic acids from a dilute apolar organic solvent, and carbon dioxide under pressure for its back-recovery, is studied. Used in combination, these two steps might provide a technique for the

  2. Calculating the Ionization Constant of Functional Groups of Carboxyl Ion Exchangers

    Science.gov (United States)

    Meychik, N. R.; Stepanov, S. I.; Nikolaeva, Yu. I.

    2018-02-01

    The potentiometric titration of a weakly basic carboxyl cation exchanger, obtained via alkaline hydrolysis of an acrylonitrile copolymer with divinyl benzene (degree of crosslinking, 12%) in a wide range of variation in a solution of pH (2-12) and NaCl (concentration 0.01, 0.1, 0.5, 1 M), is considered. The maximum ion-exchange capacity of the ion exchanger for Na+ is determined (10.10 ± 0.088 mmol/g of the dry mass) and found to be independent of the solution's ionic strength. It is established that in the investigated range of NaCl concentrations and pH, the acid-base balance is adequately described by Gregor's equation. The parameters of this equation are calculated as a function of the NaCl concentration: p K a = 8.13 ± 0.04, n = 1.50 ± 0.02 for 0.01 M; p K a = 6.56 ± 0.04, n = 2.60 ± 0.07 for 0.1 M; and p K a = 5.66 ± 0.6, n = 2.62 ± 0.06 for 0.5 and 1 M. It is shown that to describe the acid-base balance correctly within the proposed model we must estimate the adequacy of the experimental and calculated values of the ion exchanger's capacity at each pH value according to the calculated parameters of Gregor's equation.

  3. Porous Silica Sol-Gel Glasses Containing Reactive V2O5 Groups

    Science.gov (United States)

    Stiegman, Albert E.

    1995-01-01

    Porous silica sol-gel glasses into which reactive vanadium oxide functional groups incorporated exhibit number of unique characteristics. Because they bind molecules of some species both reversibly and selectively, useful as chemical sensors or indicators or as scrubbers to remove toxic or hazardous contaminants. Materials also oxidize methane gas photochemically: suggests they're useful as catalysts for conversion of methane to alcohol and for oxidation of hydrocarbons in general. By incorporating various amounts of other metals into silica sol-gel glasses, possible to synthesize new materials with broad range of new characteristics.

  4. High-level production of C-11-carboxyl-labeled amino acids

    International Nuclear Information System (INIS)

    Washburn, L.C.; Sun, T.T.; Byrd, B.L.; Hayes, R.L.; Butler, T.A.; Callahan, A.P.

    1979-01-01

    Carbon-11-labeled amino acids have significant potential as agents for positron tomographic functional imaging. We have developed a rapid, high-temperature, high-pressure modification of the Buecherer--Strecker amino acid synthesis and found it to be quite general for the production of C-11-carboxyl-labeled neutral amino acids. Production of C-11-carboxyl-labeled DL-tryptophan requires certain modifications in the procedure. Twelve different amino acids have been produced to date by this technique. Synthesis and chromatographic purification require approximately 40 min, and C-11-carboxyl-labeled amino acids have been produced in yields of up to 425 mCi. Two C-11-carboxyl-labeled amino acids are being investigated clinically for tumor scanning and two others for pancreatic imaging. Over 120 batches of the various agents have been produced for clinical use over a three-year period

  5. Dancing multiplicity states supported by a carboxylated group in dicopper structures bonded to O2

    KAUST Repository

    Poater, Albert

    2013-01-29

    The present study pretends to assign the correct multiplicity state to dinuclear copper complexes when interacting with free molecular oxygen. Recently, the formation of a bridge butterfly μ-η2: η2-peroxo dicopper core structure stabilized by the direct interaction of the counterion, a carboxylate group that allows the double bridge linking both metal-centre atoms, was characterized by crystallography. This system was assigned as a diradical singlet with Ms = 0. However, after new calculations it has turned out to be triplet (Ms = 1) despite the stabilization for this latter multiplicity state is not high. Here, the factors that contribute to make this structure display a multiplicity different with respect to the previously expected diradical singlet are described. In the present theoretical study, the roles of the αSp ligand constraints and the counterion are unravelled. On the other hand, the relative stability between the butterfly μ-η2: η2-peroxo structure and the isomeric bis(μ-oxo) species is also on discussion. Despite the relative stabilities of all these either structural or electronic isomeric species are supposed to depend on the computational method, which is a difficulty to reach a definite conclusion about the nature of the active species, all DFT methods using either pure or not pure DFT functionals here reach the same conclusion, favoring the triplet as the ground state for the butterfly μ-η2: η2-peroxo dicopper core structure, and the bis(μ-oxo) species when removing the benzoate counterion. © Springer-Verlag Berlin Heidelberg 2013.

  6. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid

    KAUST Repository

    Zhao, Junpeng

    2014-03-11

    The effectiveness of carboxylic acid as initiator for the anionic ring-opening polymerization of ethylene oxide was investigated with a strong phosphazene base (t-BuP4) used as promoter. Kinetic study showed an induction period, i.e., transformation of carboxylic acid to hydroxyl ester, followed by slow chain growth together with simultaneous and fast end-group transesterification, which led to poly(ethylene oxide) (PEO) consisting of monoester (monohydroxyl), diester, and dihydroxyl species. An appropriate t-BuP4/acid ratio was proven to be essential to achieve better control over the polymerization and low dispersity of PEO. This work provides important information and enriches the toolbox for macromolecular and biomolecular engineering with protic initiating sites. © 2014 American Chemical Society.

  7. Design of co-crystals/salts of some Nitrogenous bases and some derivatives of thiophene carboxylic acids through a combination of hydrogen and halogen bonds.

    Science.gov (United States)

    Jennifer, Samson Jegan; Muthiah, Packianathan Thomas

    2014-01-01

    The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. Meanwhile, pyridines and pyrimidines have been frequently chosen in the area of crystal engineering for their multipurpose functionality. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids. Fourteen crystals involving various substituted thiophene carboxylic acid derivatives and nitrogenous bases were prepared and characterized by using single crystal X-ray diffraction. The 14 crystals can further be divided into two groups [1a-7a], [8b-14b] based on the nature of the nitrogenous base. Carboxylic acid to pyridine proton transfer has occurred in 3 compounds of each group. In addition to the commonly occurring hydrogen bond based pyridine/carboxylic acid and pyrimidine/carboxylic acid synthons which is the reason for assembly of primary motifs, various other interactions like Cl…Cl, Cl…O, C-H…Cl, C-H…S add additional support in organizing these supermolecules into extended architectures. It is also interesting to note that in all the compounds π-π stacking occurs between the pyrimidine-pyrimidine or pyridine-pyridine or acid-acid moieties rather than acid-pyrimidine/pyridine. In all the compounds (1a-14b) either neutral O-H…Npyridyl/pyrimidine or charge-assisted Npyridinium-H…Ocarboxylate hydrogen bonds are present. The HT (hetero trimers) and LHT (linear heterotetramers) are dominant in the crystal structures of the adducts containing N-heterocyclic bases with two proton acceptors (1a-7a). Similar type supramolecular ladders are observed in 5TPC44BIPY (8b), TPC44BIPY (9b), TPC44TMBP (11b). Among the seven compounds [8b-14b] the extended ligands are linear in all except for the TMBP (10b, 11b, 12b). The

  8. Diazo compounds for the bioreversible esterification of proteins† †Electronic supplementary information (ESI) available: Experimental procedures, analytical data, and spectral data for novel compounds. See DOI: 10.1039/c4sc01768d Click here for additional data file.

    Science.gov (United States)

    McGrath, Nicholas A.; Andersen, Kristen A.; Davis, Amy K. F.; Lomax, Jo E.

    2015-01-01

    A diazo compound is shown to convert carboxylic acids to esters efficiently in an aqueous environment. The basicity of the diazo compound is critical: low basicity does not lead to a reaction but high basicity leads to hydrolysis. This reactivity extends to carboxylic acid groups in a protein. The ensuing esters are hydrolyzed by human cellular esterases to regenerate protein carboxyl groups. This new mode of chemical modification could enable the key advantages of prodrugs to be translated from small-molecules to proteins. PMID:25544883

  9. Effect of alkali metal ions on the pyrrole and pyridine π-electron systems in pyrrole-2-carboxylate and pyridine-2-carboxylate molecules: FT-IR, FT-Raman, NMR and theoretical studies

    Science.gov (United States)

    Świderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W.

    2011-05-01

    The FT-IR, FT-Raman and 1H and 13C NMR spectra of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium, rubidium and caesium pyrrole-2-carboxylates were recorded, assigned and compared in the Li → Na → K → Rb → Cs salt series. The effect of alkali metal ions on the electronic system of ligands was discussed. The obtained results were compared with previously reported ones for pyridine-2-carboxylic acid and alkali metal pyridine-2-carboxylates. Calculations for pyrrole-2-carboxylic acid and Li, Na, K pyrrole-2-carboxylates in B3LYP/6-311++G ** level and Møller-Plesset method in MP2/6-311++G ** level were made. Bond lengths, angles and dipole moments as well as aromaticity indices (HOMA, EN, GEO, I 6) for the optimized structures of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium pyrrole-2-carboxylates were also calculated. The degree of perturbation of the aromatic system of ligand under the influence of metals in the Li → Cs series was investigated with the use of statistical methods (linear correlation), calculated aromaticity indices and Mulliken, NBO and ChelpG population analysis method. Additionally, the Bader theory (AIM) was applied to setting the characteristic of the bond critical points what confirmed the influence of alkali metals on the pyrrole ring.

  10. Carboxylic acid exchangers in analytical chemistry

    International Nuclear Information System (INIS)

    Venkateswarlu, Ch.

    1976-01-01

    The literature on the use of carboxylic acid exchangers in inorganic analytical chemistry is reviewed. It is classified under two heads, based on the ionic form in which the exchanger is employed, viz., the salt form and the acid form. In the salt form, the separations reported in the beginning are mostly carried out in alkaline medium, employing ammonia and its derivatives as complexing agents to hold cations in solution. This was followed by the use of ammonium ion as an eluent from heavy weakly or neutral solutions. There are a few separations reported making use of EDTA as eluent. It appears that separation of some anions from cations can be achieved with greater ease with these exchangers than with sulphonic acid type. Contary to the general belief, carboxylic acid exchangers are used in H + form to achieve some analytical separations of cations of interest. These exchangers exhibit better sorption of some cations in presence of complexing agents containing basic nitrogen as a donor. In fact, a careful study of these exchangers with different matrices might yield really selective exchangers, than the chelating ones known commercially. From the separation cited, carboxylic acid exchangers appear to have greater potentialities in their applications, than what is normally expected. (author)

  11. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates

    International Nuclear Information System (INIS)

    Roepe, P.; Ahl, P.L.; Gupta, S.K.D.; Herzfeld, J.; Rothschild, K.J.

    1987-01-01

    The role of tyrosines in the bacteriorhodopsin (bR) photocycle has been investigated by using Fourier transform infrared (FTIR) and UV difference spectroscopies. Tyrosine contributions to the BR 570 → M 412 FTIR difference spectra recorded at several temperatures and pH's were identified by isotopically labeling tyrosine residues in bacteriorhodopsin. The frequencies and deuterium/hydrogen exchange sensitivities of these peaks and of peaks in spectra of model compounds in several environments suggest that at least two different tyrosine groups participate in the bR photocycle during the formation of M 412 . One group undergoes a tyrosinate → tyrosine conversion during the BR 570 → K 630 transition. A second tyrosine group deprotonates between L 550 and M 412 . Low-temperature UV difference spectra in the 220-350-nm region of both purple membrane suspensions and rehydrated films support these conclusions. The UV spectra also indicate perturbations(s) of one or more tryptophan group(s). Several carboxyl groups appear to undergo a series of protonation changes between BR 570 and M 412 , as indicated by infrared absorption changes in the 1770-1720-cm -1 region. These results are consistent with the existence of a proton wire in bacteriorhodopsin that involves both tyrosine and carboxyl groups

  12. Synthesis and crystal structures of 2-methyl-4-aryl-5-oxo-5H-indeno [1,2-b] pyridine carboxylate derivatives

    DEFF Research Database (Denmark)

    Pandian, Ramesh; Naushad, Edayadulla; Vijayakumar, Vinodhkumar

    2014-01-01

    pyridine derivatives through oxidation. Consequently, the interest in this aromatization reaction, investigation of a wide range of 1, 4-DHPs continues to attract the attention of researchers. Herein, we report the preparation of pyridine derivatives and the crystal structures determined by X......-ray crystallographic methods.Results: The crystal structures and conformational studies of two organic compounds, namely ethyl 2-methyl-4-phenyl-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate (I) and ethyl 2-methyl-4-(4 chlorophenyl)-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate (II) are reported. The terminal ethyl......) dimer running along 011 direction.Conclusion: The crystal structures ethyl 2-methyl-4-phenyl-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate and ethyl 2-methyl-4-(4 chlorophenyl)-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate have been investigated in detail. The terminal ethyl group of compound I...

  13. Derivatization of carboxylic acids with 4-APEBA for detection by positive-ion LC-ESI-MS(/MS) applied for the analysis of prostanoids and NSAID in urine

    NARCIS (Netherlands)

    Kretschmer, A.; Giera, M.A.; Wijtmans, M.; de Vries, L.; Lingeman, H.; Irth, H.; Niessen, W.M.A.

    2011-01-01

    In order to develop a generic positive ionization ESI LC-MS method for a variety of interesting substance classes, a new derivatization strategy for carboxylic acids was developed. The carboxylic acid group is labeled with the bromine containing 4-APEBA reagent based on carbodiimide chemistry. The

  14. Properties of the Carboxylate ion exchange resins

    International Nuclear Information System (INIS)

    Allard, Bert; Dario, Maarten; Boren, Hans; Torstenfelt, Boerje; Puigdomenech, Ignasi; Johansson, Claes

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  15. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    International Nuclear Information System (INIS)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian

    2016-01-01

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL"−"1, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  16. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian, E-mail: songdq@jlu.edu.cn

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL{sup −1}, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  17. Synthesising highly reactive tin oxide using Tin(II2- ethylhexanoate polynucleation as precursor

    Directory of Open Access Journals (Sweden)

    Alejandra Montenegro Hernández

    2009-01-01

    Full Text Available Tin oxide is a widely used compound in technological applications, particularity as a catalyst, gas sensor and in making varistors, transparent conductors, electrocatalytic electrodes and photovoltaic cells. An ethylhexanoate tin salt, a carboxylic acid and poly-esterification were used for synthesising highly reactive tin oxide in the present study. Synthesis was controlled by Fourier transform infrared (FTIR spectroscopy and recording changes in viscosity. The tin oxide characteristics so obtained were determined using FTIR spectroscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The SnO2 dust synthesised and heat-treated at 550°C yielded high density aggregates, having greater than 50 μm particle size. This result demonstrates the high reactivity of the ceramic powders synthesised here.

  18. The Distant Double Bond Determines the Fate of the Carboxylic Group in the Dissociative Photoionization of Oleic Acid.

    Science.gov (United States)

    Heringa, Maarten F; Slowik, Jay G; Goldmann, Maximilian; Signorell, Ruth; Hemberger, Patrick; Bodi, Andras

    2017-12-15

    The valence threshold photoionization of oleic acid has been studied using synchrotron VUV radiation and imaging photoelectron photoion coincidence (iPEPICO) spectroscopy. An oleic acid aerosol beam was impacted on a copper thermodesorber, heated to 130 °C, to evaporate the particles quantitatively. Upon threshold photoionization, oleic acid produces the intact parent ion first, followed by dehydration at higher energies. Starting at ca. 10 eV, a large number of fragment ions slowly rise suggesting several fragmentation coordinates with quasi-degenerate activation energies. However, water loss is the dominant low-energy dissociation channel, and it is shown to be closely related to the unsaturated carbon chain. In the lowest-barrier process, one of the four allylic hydrogen atoms is transferred to the carboxyl group to form the leaving water molecule and a cyclic ketone fragment ion. A statistical model to analyze the breakdown diagram and measured rate constants yields a 0 K appearance energy of 9.77 eV, which can be compared with the density functional theory result of 9.19 eV. Alternative H-transfer steps yielding a terminal C=O group are ruled out based on energetics and kinetics arguments. Some of the previous photoionization mass spectrometric studies also reported 2 amu and 26 amu loss fragment ions, corresponding to hydrogen and acetylene loss. We could not identify such peaks in the mass spectrum of oleic acid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Kinetics study of thermal decomposition of calcium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2013-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (calcium acetate, and two types of mixed calcium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for calcium acetate was 556.75 kJ mol −1 , and the activation energies for the two mixed calcium carboxylate salts were 232.87, and 176.55 kJ mol −1 . In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak–Berggren model provides the best universal fit for all three salt types. -- Highlights: •Calcium carboxylate salts from fermentation broth thermally decompose to ketones. •Activation energy varies with conversion for all three salt types. •Sestak–Berggren model provides best fit overall for all three salt types

  20. Kinetics study of thermal decomposition of sodium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2012-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (sodium acetate, and two types of mixed sodium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for sodium acetate was 226.65 kJ/mol, and the activation energies for the two mixed sodium carboxylate salts were 195.61, and 218.18 kJ/mol. In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak-Berggren model fits all three salt types best. -- Highlights: ► Sodium carboxylate salts from fermentation broth thermally decompose to ketones. ► Activation energy varies with conversion for all three salt types. ► Sestak-Berggren model provides best fit for all three salt types.

  1. Substituent effects on the photolysis of methyl 2-carboxylate substituted aliphatic 2 H-azirines

    Science.gov (United States)

    Gómez-Zavaglia, Andrea; Kaczor, Agnieszka; Cardoso, Ana L.; Pinho e Melo, Teresa M. V. D.; Fausto, Rui

    2007-05-01

    In this study, the UV induced photochemical reactions of two 2 H-azirines - methyl 2-chloro-3-methyl-2 H-azirine-2-carboxylate (MCMAC) and methyl 3-methyl-2 H-azirine-2-carboxylate (MMAC) - isolated in argon matrices are compared. For both compounds, irradiation with λ > 235 nm led to observation of two primary photoprocesses: (a) C sbnd C bond cleavage, with production of nitrile ylides (P1-type products), and (b) C sbnd N bond cleavage, with production of methylated ketene imines (P2-type products). However, subsequent photoprocesses were found to be different in the two cases. In MCMAC, both primary photoproducts were shown to undergo further reactions: P1-type products decarboxylate, giving [(1-chloroethylidene)imino]ethanide, which bears a C dbnd N +dbnd C - group (P3-type product); P2-type products decarbonylate, yielding a substituted ylidene methanamine (P4-type product). In MMAC, only P2-type primary photoproducts appeared to react, undergoing decarbonylation or decarboxylation (both reactions leading to P4-type products), whereas P1-type products were found to be non-reactive. The non-observation of any secondary photoproduct resulting from photolysis of P1-MMAC revealed the higher photostability of this species when compared with the corresponding photoproduct obtained from MCMAC. The C sbnd N photochemical cleavage is an unusual process in aliphatic 2 H-azirines. In the studied compounds, its preference over the commonly observed C sbnd C azirine-ring bond photocleavage is attributed to the presence of electron withdrawing substituents (methylcarboxy group in both azirines and also the chlorine atom in MCMAC), which accelerates intersystem crossing towards the triplet state from where the cleavage of the C sbnd N bond takes place. The lack of the chlorine atom in MMAC may be partially compensated by the significantly higher stabilization of the P2-type photoproduct derived from this molecule ( ca. -52 kJ mol -1) relatively to the reactant, when

  2. 3-Carboxyquinolin-1-ium-2-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2012-03-01

    Full Text Available The title compound, C11H7NO4·H2O, contains a 3-carboxyquinolin-1-ium-2-carboxylate (qda zwitterion and one water molecule. In the crystal, pairs of N—H...O hydrogen bonds link the molecules into inversion dimers, and these dimers are further connected by O—H...O hydrogen bonds into a three-dimensional supramolecular architecture. In addition, π–π interactions occur between pyridine and benzene rings from different qda ligands [centroid–centroid distance = 3.749 (1 Å] and the dihedral angles of the –CO2H and –CO2 groups to the quinoline system are 8.47 (3 and 88.16 (6°, respectively.

  3. Development of perturbation theory expressions for the evaluation of reactivity effects and sensitivity coefficient of reactivity effect to the group cross-sections on the basis of improved coarse mesh method for 3D diffusion problem

    International Nuclear Information System (INIS)

    Seregin, A.S.

    2000-01-01

    In the paper the formulae for perturbation theory functionals calculation are given and equations are based on improved coarse mesh discretization of diffusion problem in 3-dimensional geometry (Hex-Z). Expressions for the reactivity effect components and reactivity coefficients, written in the framework of the first order perturbation theory, are presented. On this basis the formulae for estimation of the sensitivity coefficients of different reactivity effects group cross-sections were derived. Expressions for the reactivity effect and its components obtained in the framework of the strict perturbation theory, are also presented in the paper. (author)

  4. Do carboximide–carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2015-05-01

    Full Text Available Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular interactions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.

  5. Transition metal-catalyzed carboxylation reactions with carbon dioxide.

    Science.gov (United States)

    Martin, Ruben; Tortajada, Andreu; Juliá-Hernández, Francisco; Borjesson, Marino; Moragas, Toni

    2018-05-03

    Driven by the inherent synthetic potential of CO2 as an abundant, inexpensive and renewable C1 chemical feedstock, the recent years have witnessed renewed interest in devising catalytic CO2 fixations into organic matter. Although the formation of C-C bonds via catalytic CO2 fixation remained rather limited for a long period of time, a close look into the recent literature data indicates that catalytic carboxylation reactions have entered a new era of exponential growth, evolving into a mature discipline that allows for streamlining the synthesis of carboxylic acids, building blocks of utmost relevance in industrial endeavours. These strategies have generally proven broadly applicability and convenient to perform. However, substantial challenges still need to be addressed reinforcing the need to cover metal-catalyzed carboxylation arena in a conceptual and concise manner, delineating the underlying new principles that are slowly emerging in this vibrant area of expertise. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhen; Ma Lijian; Li Shuqiong; Geng Junxia; Song Qiang; Liu Jun; Wang Chunli; Wang Hang; Li Juan [College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Chengdu 610064 (China); Qin Zhi [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li Shoujian, E-mail: sjli000616@scu.edu.cn [College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Chengdu 610064 (China)

    2011-08-01

    It was found that a large number of oxygen-containing functional groups (OFGs) could be created on the surface of hydrothermal carbon (HTC) by simply heating at lower temperature in air during the course of our preliminary experiments which focused on oxidation pre-treatment of pristine HTC for the purpose of grafting functionalization. Especially carboxyl groups on HTC would increase significantly, from 0.53 to 3.70 mmol/g after heat treatment at 300 deg. C. So, effects of heat-treatment on the OFGs on the carbon microsphere were deeply studied to confirm and explain the findings. Experiments involving different materials (HTC, activated carbon and glucose) were performed under varying conditions (heating temperature and time, in air or in Ar atmosphere). A reaction mechanism for newly generating carboxyl groups on HTC surface during heat-treatment process was supposed based on the results from the sample characterization using Boehm titrations, infrared spectra, X-ray photoelectron spectroscopy, energy dispersive spectrometry and elemental analysis. In addition, the as heat-treated product has excellent sorption capability for Pb{sup 2+} and Cd{sup 2+} ions.

  7. Remediation of groundwater contaminated with the lead-phenol binary system by granular dead anaerobic sludge-permeable reactive barrier.

    Science.gov (United States)

    Faisal, Ayad A H; Abd Ali, Ziad T

    2017-10-01

    Computer solutions (COMSOL) Multiphysics 3.5a software was used for simulating the one-dimensional equilibrium transport of the lead-phenol binary system including the sorption process through saturated sandy soil as the aquifer and granular dead anaerobic sludge (GDAS) as the permeable reactive barrier. Fourier-transform infrared spectroscopy analysis proved that the carboxylic and alcohol groups are responsible for the bio-sorption of lead onto GDAS, while phosphines, aromatic and alkane are the functional groups responsible for the bio-sorption of phenol. Batch tests have been performed to characterize the equilibrium sorption properties of the GDAS and sandy soil in lead and/or phenol containing aqueous solutions. Numerical and experimental results proved that the barrier plays a potential role in the restriction of the contaminant plume migration and there is a linear relationship between longevity and thickness of the barrier. A good agreement between these results was recognized with root mean squared error not exceeding 0.04.

  8. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    Science.gov (United States)

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Stress Reactivity in Insomnia.

    Science.gov (United States)

    Gehrman, Philip R; Hall, Martica; Barilla, Holly; Buysse, Daniel; Perlis, Michael; Gooneratne, Nalaka; Ross, Richard J

    2016-01-01

    This study examined whether individuals with primary insomnia (PI) are more reactive to stress than good sleepers (GS). PI and GS (n = 20 per group), matched on gender and age, completed three nights of polysomnography. On the stress night, participants received a mild electric shock and were told they could receive additional shocks during the night. Saliva samples were obtained for analysis of cortisol and alpha amylase along with self-report and visual analog scales (VAS). There was very little evidence of increased stress on the stress night, compared to the baseline night. There was also no evidence of greater stress reactivity in the PI group for any sleep or for salivary measures. In the GS group, stress reactivity measured by VAS scales was positively associated with an increase in sleep latency in the experimental night on exploratory analyses. Individuals with PI did not show greater stress reactivity compared to GS.

  10. CYLFUX, Fast Reactor Reactivity Transients Simulation in LWR by 2-D 2 Group Diffusion

    International Nuclear Information System (INIS)

    Schmidt, A.

    1973-01-01

    1 - Nature of physical problem solved: A 2-dimensional calculation of the 2-group, space-dependent neutron diffusion equations is performed in r-z geometry using an arbitrary number of groups of delayed neutron precursors. The program is designed to simulate fast reactivity excursions in light water reactors taking into account Doppler feedback via adiabatic heatup of fuel. Axial motions of control rods may be considered including scram action on option. 2 - Method of solution: The differential equations are solved at each time step by an explicit finite difference method using two time levels. The stationary distributions are obtained by using the same algorithm. 3 - Restrictions on the complexity of the problem: No restriction to the number of space points and delayed neutron energy groups besides the computer size

  11. Adsorption Equilibrium Equation of Carboxylic Acids on Anion-Exchange Resins in Water.

    Science.gov (United States)

    Kanazawa, Nobuhiro; Urano, Kohei; Kokado, Naohiro; Urushigawa, Yoshikuni

    2001-06-01

    The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.

  12. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Saikat; Wu, Kevin C.-W., E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Kao, Hsien-Ming, E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw [Department of Chemistry, National Central University, Chung-Li 32054, Taiwan (China)

    2014-11-01

    This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (–COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and {sup 13}C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.

  13. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    International Nuclear Information System (INIS)

    Dutta, Saikat; Wu, Kevin C.-W.; Kao, Hsien-Ming

    2014-01-01

    This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (–COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and 13 C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion of fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed

  14. How Hyperarousal and Sleep Reactivity Are Represented in Different Adult Age Groups: Results from a Large Cohort Study on Insomnia.

    Science.gov (United States)

    Altena, Ellemarije; Chen, Ivy Y; Daviaux, Yannick; Ivers, Hans; Philip, Pierre; Morin, Charles M

    2017-04-14

    Hyperarousal is a 24-h state of elevated cognitive and physiological activation, and is a core feature of insomnia. The extent to which sleep quality is affected by stressful events-so-called sleep reactivity-is a vulnerability factor for developing insomnia. Given the increasing prevalence of insomnia with age, we aimed to investigate how hyperarousal and sleep reactivity were related to insomnia severity in different adult age groups. Data were derived from a large cohort study investigating the natural history of insomnia in a population-based sample ( n = 1693). Baseline data of the Arousal Predisposition Scale (APS) and Ford Insomnia Response to Stress Test (FIRST) were examined across age and sleep/insomnia subgroups: 25-35 ( n = 448), 35-45 ( n = 528), and 45-55 year olds ( n = 717); good sleepers ( n = 931), individuals with insomnia symptoms ( n = 450), and individuals with an insomnia syndrome ( n = 312). Results from factorial analyses of variance (ANOVA) showed that APS scores decreased with increasing age, but increased with more severe sleep problems. FIRST scores were not significantly different across age groups, but showed the same strong increase as a function of sleep problem severity. The findings indicate that though arousal predisposition and sleep reactivity increase with more severe sleep problems, only arousal decreases with age. How arousing events affect an individual during daytime thus decreases with age, but how this arousal disrupts sleep is equivalent across different adult age groups. The main implication of these findings is that treatment of insomnia could be adapted for different age groups and take into consideration vulnerability factors such as hyperarousal and stress reactivity.

  15. N-Alkylation Using Sodium Triacetoxyborohydride with Carboxylic Acids as Alkyl Sources.

    Science.gov (United States)

    Tamura, Satoru; Sato, Keigo; Kawano, Tomikazu

    2018-01-01

    A versatile N-alkylation was performed using sodium triacetoxyborohydride and carboxylic acid as an alkyl source. The combination of these reagents furnished products different from those given previously by a similar reaction. Moreover, the mild conditions of our method allowed some functional groups to remain through the reaction, whereas they would react and be converted into other moieties in the similar reductive N-alkylation reported previously. Herein, we provide a new procedure for the preparation of various compounds containing nitrogen atoms.

  16. Characterisation and application of new carboxylic acid-functionalised ruthenium complexes as dye-sensitisers for solar cells

    DEFF Research Database (Denmark)

    Duprez, Virginie; Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    A series of ruthenium complexes with and without TiO2, anchoring carboxylic acid groups have been synthesised and characterised using nuclear magnetic resonance (NMR), UV-vis and luminescence. These complexes were adsorbed on thin films of the wide band-gap semiconductor anatase and were tested a...

  17. Reactive Chemical Vapor Deposition Method as New Approach for Obtaining Electroluminescent Thin Film Materials

    Directory of Open Access Journals (Sweden)

    Valentina V. Utochnikova

    2012-01-01

    Full Text Available The new reactive chemical vapor deposition (RCVD method has been proposed for thin film deposition of luminescent nonvolatile lanthanide aromatic carboxylates. This method is based on metathesis reaction between the vapors of volatile lanthanide dipivaloylmethanate (Ln(dpm3 and carboxylic acid (HCarb orH2Carb′ and was successfully used in case of HCarb. Advantages of the method were demonstrated on example of terbium benzoate (Tb(bz3 and o-phenoxybenzoate thin films, and Tb(bz3 thin films were successfully examined in the OLED with the following structure glass/ITO/PEDOT:PSS/TPD/Tb(bz3/Ca/Al. Electroluminescence spectra of Tb(bz3 showed only typical luminescent bands, originated from transitions of the terbium ion. Method peculiarities for deposition of compounds of dibasic acids H2Carb′ are established on example of terbium and europium terephtalates and europium 2,6-naphtalenedicarboxylate.

  18. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  19. Multifunctional PEG-carboxylate copolymer coated superparamagnetic iron oxide nanoparticles for biomedical application

    Science.gov (United States)

    Illés, Erzsébet; Szekeres, Márta; Tóth, Ildikó Y.; Szabó, Ákos; Iván, Béla; Turcu, Rodica; Vékás, Ladislau; Zupkó, István; Jaics, György; Tombácz, Etelka

    2018-04-01

    Biocompatible magnetite nanoparticles (MNPs) were prepared by post-coating the magnetic nanocores with a synthetic polymer designed specifically to shield the particles from non-specific interaction with cells. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomers and acrylic acid (AA) small molecular monomers were chemically coupled by quasi-living atom transfer radical polymerization (ATRP) to a comb-like copolymer, P(PEGMA-co-AA) designated here as P(PEGMA-AA). The polymer contains pendant carboxylate moieties near the backbone and PEG side chains. It is able to bind spontaneously to MNPs; stabilize the particles electrostatically via the carboxylate moieties and sterically via the PEG moieties; provide high protein repellency via the structured PEG layer; and anchor bioactive proteins via peptide bond formation with the free carboxylate groups. The presence of the P(PEGMA-AA) coating was verified in XPS experiments. The electrosteric (i.e., combined electrostatic and steric) stabilization is efficient down to pH 4 (at 10 mM ionic strength). Static magnetization and AC susceptibility measurements showed that the P(PEGMA-AA)@MNPs are superparamagnetic with a saturation magnetization value of 55 emu/g and that both single core nanoparticles and multicore structures are present in the samples. The multicore components make our product well suited for magnetic hyperthermia applications (SAR values up to 17.44 W/g). In vitro biocompatibility, cell internalization, and magnetic hyperthermia studies demonstrate the excellent theranostic potential of our product.

  20. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    International Nuclear Information System (INIS)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying; Kim, Nayoung; Wang, Jing

    2015-01-01

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH 3 CO 2 NH 4 ) and sodium acetate (CH 3 CO 2 Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example

  1. Palladium-Catalyzed Direct C-H Arylations of Dioxythiophenes Bearing Reactive Functional Groups: A Step-Economical Approach for Functional π-Conjugated Oligoarenes

    KAUST Repository

    Liu, Ching-Yuan

    2015-06-25

    A Pd-catalyzed and single-step C-H arylation of dioxythiophene derivates bearing unprotected reactive functional groups (-OH, -COOH, -N3) in a phosphine-free manner has been developed. Various dioxythiopene-based oligoarenes with extended π-conjugation are obtained with good yields (up to 90%). These oligoarenes display suitable optical properties (absorption and emission maxima, quantum yields) and contain reactive functional groups suitable for further conjugations with bioactive molecules. This new methodology is step economical (fewer synthetic steps), environmental friendly (no toxic metal-containing side-poducts) and the oligoarenes synthesized are potentially applicable for bio-labeling, bioimaging, and biosensing.

  2. Palladium-Catalyzed Direct C-H Arylations of Dioxythiophenes Bearing Reactive Functional Groups: A Step-Economical Approach for Functional π-Conjugated Oligoarenes

    KAUST Repository

    Liu, Ching-Yuan; Chong, Hui; Lin, Hsing-An; Yamashita, Yoshiro; Zheng, Bin; Huang, Kuo-Wei; Hashizume, Daisuke; Yu, Hsiao-hua

    2015-01-01

    A Pd-catalyzed and single-step C-H arylation of dioxythiophene derivates bearing unprotected reactive functional groups (-OH, -COOH, -N3) in a phosphine-free manner has been developed. Various dioxythiopene-based oligoarenes with extended π-conjugation are obtained with good yields (up to 90%). These oligoarenes display suitable optical properties (absorption and emission maxima, quantum yields) and contain reactive functional groups suitable for further conjugations with bioactive molecules. This new methodology is step economical (fewer synthetic steps), environmental friendly (no toxic metal-containing side-poducts) and the oligoarenes synthesized are potentially applicable for bio-labeling, bioimaging, and biosensing.

  3. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwei [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Meng, Linghui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fan, Liquan [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wu, Guangshun; Ma, Lichun; Zhao, Min [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yudong, E-mail: ydhuang.hit1@yahoo.com.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2016-01-30

    Graphical abstract: - Highlights: • Carbon fibers are functionalized with benzoic acid groups via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 66%. • Tensile strength of the carbon fibers is preserved after grafting reaction. • The treatment in molten urea can improve modification efficiency greatly. • Using molten urea as the reaction medium can avoid pollution from organic solvents. - Abstract: Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17–10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  4. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    International Nuclear Information System (INIS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Graphical abstract: - Highlights: • Carbon fibers are functionalized with benzoic acid groups via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 66%. • Tensile strength of the carbon fibers is preserved after grafting reaction. • The treatment in molten urea can improve modification efficiency greatly. • Using molten urea as the reaction medium can avoid pollution from organic solvents. - Abstract: Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17–10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  5. Formation and High-order Carboxylic Acids (RCOOH) in Interstellar Analogous Ices of Carbon Dioxide (CO2) and Methane(CH4)

    Science.gov (United States)

    Zhu, Cheng; Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91 ± 14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18 ± 3 eV). The traces of the {{{H}}}2{{C}}= {{C}}({OH}{)}2+ (m/z = 60) fragment—a link to linear carboxylic acids—implied that higher-order acids (C n H2n+1COOH, n ≥ 5) are likely branched, which correlates with the recent analysis of the structures of the monocarboxylic acids in the Murchison meteorite.

  6. Identification of Key Residues for Enzymatic Carboxylate Reduction

    Directory of Open Access Journals (Sweden)

    Holly Stolterfoht

    2018-02-01

    Full Text Available Carboxylate reductases (CARs, E.C. 1.2.1.30 generate aldehydes from their corresponding carboxylic acid with high selectivity. Little is known about the structure of CARs and their catalytically important amino acid residues. The identification of key residues for carboxylate reduction provides a starting point to gain deeper understanding of enzymatic carboxylate reduction. A multiple sequence alignment of CARs with confirmed activity recently identified in our lab and from the literature revealed a fingerprint of conserved amino acids. We studied the function of conserved residues by multiple sequence alignments and mutational replacements of these residues. In this study, single-site alanine variants of Neurospora crassa CAR were investigated to determine the contribution of conserved residues to the function, expressability or stability of the enzyme. The effect of amino acid replacements was investigated by analyzing enzymatic activity of the variants in vivo and in vitro. Supported by molecular modeling, we interpreted that five of these residues are essential for catalytic activity, or substrate and co-substrate binding. We identified amino acid residues having significant impact on CAR activity. Replacement of His 237, Glu 433, Ser 595, Tyr 844, and Lys 848 by Ala abolish CAR activity, indicating their key role in acid reduction. These results may assist in the functional annotation of CAR coding genes in genomic databases. While some other conserved residues decreased activity or had no significant impact, four residues increased the specific activity of NcCAR variants when replaced by alanine. Finally, we showed that NcCAR wild-type and mutants efficiently reduce aliphatic acids.

  7. Host-cell reactivation of ultraviolet-irradiated SV 40 DNA in five complementation groups of xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Abrahams, P.J.; Eb, A.J. van der

    1976-01-01

    Host-cell reactivation of UV-irradiated double-stranded SV40 DNA was studied in BSC-1 monkey cells, normal human cells, heterozygous Xeroderma pigmentosum xp cells, representative cell strains of the five complemention groups of XP and in XP 'variant' cells. The following percentages of survival of the plaque-forming ability of double-stranded SV40 DNA were found in XP cells compared with the value found in normal monkey and human cells: groupA, 13%; group B, 30%; group C, 18%; group D, 14%; group E, 59%; and in the heterozygous XP cells almost 100%. The survival in XP 'variant' cells was 66%. The survival of single-stranded SV40 DNA in BSC-1 cells was much lower than that of double-stranded SV40 DNA in XP cells of complementation group A, which possibly indicates that some repair of UV damage occurs even in XP cells of group A

  8. High-performance supercapacitors of carboxylate-modified hollow carbon nanospheres coated on flexible carbon fibre paper: Effects of oxygen-containing group contents, electrolytes and operating temperature

    International Nuclear Information System (INIS)

    Phattharasupakun, Nutthaphon; Wutthiprom, Juthaporn; Suktha, Phansiri; Iamprasertkun, Pawin; Chanlek, Narong; Shepherd, Celine; Hadzifejzovic, Emina; Moloney, Mark G.; Foord, John S.; Sawangphruk, Montree

    2017-01-01

    Although functionalized carbon-based materials have been widely used as the supercapacitor electrodes, the optimum contents of the functional groups, the charge storage mechanisms, and the effects of electrolytes and operating temperature have not yet been clearly investigated. In this work, carboxylate-modified hollow carbon nanospheres (c-HCN) with different functional group contents synthesized by an oxidation process of carbon nanospheres with nitric acid were coated on flexible carbon fibre paper and used as the supercapacitor electrodes. An as-fabricated supercapacitor of the c-HCN with a finely tuned 6.2 atomic % of oxygen of the oxygen-containing groups in an ionic liquid electrolyte exhibits a specific capacitance of 390 F g"−"1, a specific energy of 115 Wh kg"−"1, and a maximum specific power of 13548 W kg"−"1 at 70 °C. The charge storage mechanism investigated is based on the chemical adsorption of the ionic liquid electrolyte on the c-HCN electrode. This process is highly reversible leading to high capacity retention. The supercapacitor in this work may be practically used in many high energy and power applications.

  9. Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling

    KAUST Repository

    Burkhardt, Stephen E.

    2013-01-22

    The full realization of a renewable energy strategy hinges upon electrical energy storage (EES). EES devices play a key role in storing energy from renewable sources (which are inherently intermittent), to efficient transmission (e.g., grid load-leveling), and finally into the electrification of transportation. Organic materials represent a promising class of electrode active materials for Li-ion and post-Li-ion batteries. Organics consist of low-cost, lightweight, widely available materials, and their properties can be rationally tuned using the well-established principles of organic chemistry. Within the class of organic EES materials, carboxylates distinguish themselves for Li-ion anode materials based on their observed thermal stability, rate capability, and high cyclability. Further, many of the carboxylates studied to date can be synthesized from renewable or waste feedstocks. This report begins with a preliminary molecular density-functional theory (DFT) study, in which the calculated molecular properties of a set of 12 known Li-ion electrode materials based on carboxylate and carbonyl redox couples are compared to literature data. Based on the agreement between theoretical and experimental data, an expanded study was undertaken to identify promising materials and establish design principles for anodes based on Li-carboxylate salts. Predictive computational studies represent an important step forward for the identification of organic anode materials. © 2012 American Chemical Society.

  10. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Can, Mustafa [Izmir Katip Celebi University, Faculty of Engineering, Department of Engineering Sciences, Çiğli, Izmir (Turkey); Havare, Ali Kemal [Toros University, Faculty of Engineering, Electric and Electronic Department, Mersin (Turkey); Aydın, Hasan; Yagmurcukardes, Nesli [Izmir Institute of Technology, Material Science and Engineering, Izmir (Turkey); Demic, Serafettin [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey); Icli, Sıddık [Ege University, Solar Energy Institute, Izmir (Turkey); Okur, Salih, E-mail: salih.okur@ikc.edu.tr [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey)

    2014-09-30

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  11. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    International Nuclear Information System (INIS)

    Can, Mustafa; Havare, Ali Kemal; Aydın, Hasan; Yagmurcukardes, Nesli; Demic, Serafettin; Icli, Sıddık; Okur, Salih

    2014-01-01

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  12. Functional immunoglobulin E cross-reactivity between Pas n 1 of Bahia grass pollen and other group 1 grass pollen allergens.

    Science.gov (United States)

    Davies, J M; Dang, T D; Voskamp, A; Drew, A C; Biondo, M; Phung, M; Upham, J W; Rolland, J M; O'Hehir, R E

    2011-02-01

    Grass pollens are major triggers of allergic rhinitis and asthma, but the immunological relationships between pollen allergens of the subtropical Bahia grass, Paspalum notatum, and temperate grasses are unresolved. To assess serum IgE cross-reactivity between subtropical P. notatum and temperate Lolium perenne (Ryegrass) pollen allergens. Serum IgE reactivities of grass pollen-allergic patients with P. notatum, L. perenne and Cynodon dactylon (Bermuda grass) pollen extracts and their respective purified group 1 allergens, Pas n 1, Lol p 1 and Cyn d 1, were compared by immunoblotting, ELISA and basophil activation. In a cohort of 51 patients from a temperate region, a high frequency of IgE reactivity with each grass pollen was detected, but reactivity with L. perenne pollen was substantially greater than with P. notatum and C. dactylon pollen. Similarly, serum IgE reactivity with Lol p 1 was greater than with Pas n 1 or Cyn d 1. For seven of eight sera studied in detail, asymmetric serum IgE cross-reactivity was observed; L. perenne pollen inhibited IgE reactivity with P. notatum pollen but not the converse, and IgE reactivity with Pas n 1 was inhibited by Lol p 1 but IgE reactivity with Lol p 1 was not inhibited by Pas n 1 or Cyn d 1. Importantly, P. notatum pollen and Pas n 1 activated basophils in grass pollen-allergic patients from a temperate region, although stimulation was greater by pollen of L. perenne than P. notatum or C. dactylon, and by Lol p 1 than Pas n 1 or Cyn d 1. In contrast, a cohort of 47 patients from a subtropical region showed similar IgE reactivity with P. notatum and L. perenne pollen, and reciprocal cross-inhibition of IgE reactivity between L. perenne and P. notatum. Pollen allergens of the subtropical P. notatum, including Pas n 1, show clinically relevant IgE cross-reactivity with pollen allergens of L. perenne but also species-specific IgE reactivity. © 2011 Blackwell Publishing Ltd.

  13. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying [ETH Zurich, Institute of Environmental Engineering (Switzerland); Kim, Nayoung [EMPA, Building Energy Materials and Components (Switzerland); Wang, Jing, E-mail: jing.wang@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering (Switzerland)

    2015-10-15

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH{sub 3}CO{sub 2}NH{sub 4}) and sodium acetate (CH{sub 3}CO{sub 2}Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example.

  14. Nitrile rubber and carboxylated nitrile rubber resistance to soybean biodiesel

    Directory of Open Access Journals (Sweden)

    Felipe Nunes Linhares

    2018-03-01

    Full Text Available Abstract Biodiesel has been considered a suitable substitute for petroleum diesel, but their chemical composition differs greatly. For this reason, biodiesel interacts differently than petroleum diesel with various materials, including rubbers. Therefore, the resistance of some elastomers should be thoroughly evaluated, specifically those which are commonly used in automotive industry. Nitrile rubber (NBR is widely used to produce vehicular parts that are constantly in contact with fuels. This paper aimed to assess the resistance of carboxylated nitrile rubber (XNBR with 28% of acrylonitrile content to soybean biodiesel in comparison with non-carboxylated nitrile rubber samples, with high and medium acrylonitrile content (33 and 45%. NBR with medium acrylonitrile content showed little resistance to biodiesel. However, carboxylated nitrile rubber even with low acrylonitrile content had similar performance to NBR with high acrylonitrile content.

  15. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  16. Biosynthesis of quinoxaline antibiotics: Purification and characterization of the quinoxaline-2-carboxylic acid activating enzyme from Streptomyces triostinicus

    International Nuclear Information System (INIS)

    Glund, K.; Schlumbohm, W.; Bapat, M.; Keller, U.

    1990-01-01

    A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis

  17. Control of Surface Functional Groups on Pertechnetate Sorption on Activated Carbon

    International Nuclear Information System (INIS)

    Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

    2006-01-01

    99 Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO 4 - ). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K d ) varying from 9.5 x 10 5 to 3.2 x 10 3 mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K d remaining more or less constant (1.1 x 10 3 - 1.8 x 10 3 mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO 4 - can be improved by enhancing the formation of carboxylic subgroups A and B during material processing

  18. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Ponkratov, Yuriy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Abdullin, Khabibulla [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Skakov, Mazhyn [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  19. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Baklanov, Viktor; Ponkratov, Yuriy; Abdullin, Khabibulla; Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Skakov, Mazhyn

    2017-01-01

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  20. Functionalization of LDPE and mLLDPE via grafting trans-ethylene-1,2-dicarboxylic acid by reactive extrusion

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available An investigation was made of grafting trans-ethylene-1,2-dicarboxylic acid (TEDA onto metallocene-linear low-density polyethylene (mLLDPE and low-density polyethylene (LDPE in the course of reactive extrusion. The initiator was 1,3-bis-(tert-butyl-peroxyisopropylbenzene. The graft efficiency of TEDA has been shown to increase with increasing initiator concentration, irrespective of polyethylene type. The graft values for LDPE were higher than for mLLDPE over the initiator concentration range (0.05 to 0.4 wt%. The rheological properties of mLLDPE were found to undergo more tangible changes during functionalization than those of LDPE. These changes were caused by side reactions, mainly macromolecular crosslinking. It has been established that some carboxyl groups get transformed to anhydride groups in the grafted product. The concentration of end double bonds reduces, but intramolecular unsaturation in both polyethylenes increases. Data are presented on thermal and stress-strain (mechanical properties of virgin and functionalized polymers, as well as rheological and viscoelastic properties of their melts.

  1. Substituted Amides of Pyrazine-2-carboxylic acids: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Katarina Kralova

    2002-03-01

    Full Text Available Condensation of 6-chloro-, 5-tert-butyl- or 6-chloro-5-tert-butylpyrazine-2-carboxylic acid chloride with ring substituted anilines yielded a series of amides, which were tested for their in vitro antimycobacterial, antifungal and photosynthesis-inhibiting activities. The highest antituberculotic activity (72% inhibition against Mycobacterium tuberculosis and the highest lipophilicity (log P = 6.85 were shown by the 3,5-bistrifluoromethylphenyl amide of 5-tert-butyl-6-chloropyrazine-2-carboxylic acid (2o. The 3-methylphenyl amides of 6-chloro- and 5-tert-butyl-6-chloro-pyrazine-2-carboxylic acid (2d and 2f exhibited only a poor in vitro antifungal effect (MIC = 31.25-500 μmol·dm-3 against all strains tested, although the latter was the most active antialgal compound (IC50 = 0.063 mmol·dm-3. The most active inhibitor of oxygen evolution rate in spinach chloroplasts was the (3,5-bis-trifluoromethylphenylamide of 6-chloropyrazine-2-carboxylic acid (2m, IC50 = 0.026 mmol·dm-3.

  2. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Loree Joanne [Univ. of California, Berkeley, CA (United States); King, C. Judson [Univ. of California, Berkeley, CA (United States)

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO2 and H2S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The

  3. Enhancement of carboxylic acid degradation with sulfate radical generated by persulfate activation.

    Science.gov (United States)

    Criquet, J; Nebout, P; Karpel Vel Leitner, N

    2010-01-01

    The aim of this work was to investigate the generation of sulfate radical for the removal of two carboxylic acids in aqueous solution: acetic and citric acids. From photochemical and radiolytic processes, kinetics of the degradation of these two carboxylic acids was studied as a function of the pH of the solution. It was shown that the maximum of acetic acid degradation occurred at pH 5. Above this pH, competitive reactions with the carbon mineralized inhibit the reaction of with the solute. In the case of citric acid, pH has only a little effect on the kinetic of citric acid degradation. The determination of mineralization yields shows several differences depending on carboxylic acids and pH. The degradation of both carboxylic acids was also studied in the radiolysis process whether with or without persulfate addition. A comparison of the processes of sulfate radical production is presented.

  4. Analytical study of zirconium and hafnium α-hydroxy carboxylates

    International Nuclear Information System (INIS)

    Terra, V.R.

    1991-01-01

    The analytical study of zirconium and hafnium α-hydroxy carboxylates was described. For this purpose dl-mandelic, dl-p-bromo mandelic, dl-2-naphthyl glycolic, and benzilic acids were prepared. These were used in conjunction with glycolic, dl-lactic, dl-2-hydroxy isovaleric, dl-2-hydroxy hexanoic, and dl-2-hydroxy dodecanoic acids in order to synthesize the zirconium(IV) and hafnium(IV) tetrakis(α-hydroxy carboxylates). The compounds were characterized by melting point determination, infrared spectroscopy, thermogravimetric analysis, calcination to oxides and X-ray diffractometry by the powder method. (C.G.C)

  5. Structure and Dynamics of Hydroxyl-Functionalized Protic Ammonium Carboxylate Ionic Liquids.

    Science.gov (United States)

    Thummuru, Dhileep Nagi Reddy; Mallik, Bhabani S

    2017-10-26

    We performed classical molecular dynamics simulations to investigate the structure and dynamics of protic ionic liquids, 2-hydroxy ethylammonium acetate, ethylammonium hydroxyacetate, and 2-hydroxyethylammonium hydroxyacetate at ambient conditions. Structural properties such as density, radial distribution functions, spatial distribution functions, and structure factors have been calculated. Dynamic properties such as mean square displacements, as well as residence and hydrogen bond dynamics have also been calculated. Hydrogen bond lifetimes and residence times change with the addition of hydroxyl groups. We observe that when a hydroxyl group is present on the cation, dynamics become very slow and it forms a strong hydrogen bond with carboxylate oxygen atoms of the anion. The hydroxyl functionalized ILs show more dynamic diversity than structurally similar ILs.

  6. Controlled Electrochemical Carboxylation of Graphene To Create a Versatile Chemical Platform for Further Functionalization

    DEFF Research Database (Denmark)

    Bjerglund Pedersen, Emil; Kongsfelt, Mikkel; Shimizu, Kyoko

    2014-01-01

    An electrochemical approach is introduced for the versatile carboxylation of multi-layered graphene in 0.1 M Bu4NBF4/MeCN. First, the graphene substrate (i.e., graphene chemically vapor-deposited on Ni) is negatively charged at -1.9 V versus Ag/AgI in a degassed solution to allow for intercalation...... of Bu4N+ and, thereby, separation of the individual graphene sheets. In the next step, the strongly activated and nucleophilic graphene is allowed to react with added carbon dioxide in an addition reaction, introducing carboxylate groups stabilized by Bu4N+ already present. This procedure may be carried...... solution at the graphene electrode for a given time. The same functionalization degree is obtained for all multi-layered regions, independent of the number of graphene sheets, which is due to the fact that the entire graphene structure is opened in response to the intercalation of Bu4N+. Hence...

  7. Thermal stability of carboxylic acid functionality in coal; Sekitanchu ni sonzaisuru karubokishiruki no netsubunkai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Y.; Aida, T. [Kinki University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    Carboxyl in coal was focused in discussing its pyrolytic behavior while tracking change of its absolute amount relative to the heating temperatures. A total of four kinds of coals, consisting of two kinds brown coals, sub-bituminous coal and bituminous coal were used. Change in the absolute amount of carboxyl due to heating varies with coalification degree. Decomposition starts in the bituminous coal from around 300{degree}C, and is rapidly accelerated when 400{degree}C is exceeded. Carboxyls in brown coals exist two to three times as much as those in bituminous and sub-bituminous coals, of which 40% is decomposed at a temperature as low as about 300{degree}C. Their pyrolytic behavior at temperatures higher than 400{degree}C resembles that of the bituminous coal. Carboxyls consist of those easy to decompose and difficult to decompose. Aromatic and aliphatic carboxylic acids with simple structure are stable at temperatures lower than 300{degree}C, and decompose abruptly from about 400{degree}C, hence their behavior resembles that of carboxyls in bituminous and sub-bituminous coals. Structure of low-temperature decomposing carboxyls in brown coals is not known, but it is assumed that humic acid originated from natural materials remains in the structure. 4 refs., 3 figs., 1 tab.

  8. Phase equilibria in chemical reactive fluid mixtures

    International Nuclear Information System (INIS)

    Maurer, Gerd

    2011-01-01

    Downstream processing is a major part of nearly all processes in the chemical industries. Most separation processes in the chemical (and related) industries for fluid mixtures are based on phase equilibrium phenomena. The majority of separation processes can be modelled assuming that chemical reactions are of no (or very minor) importance, i.e., assuming that the overall speciation remains unchanged during a separation process. However, there are also a large number of industrially important processes where the thermodynamic properties are influenced by chemical reactions. The phase equilibrium of chemical reactive mixtures has been a major research area of the author's group over nearly 40 years. In this contribution, three examples from that research are discussed. The first example deals with the vapour phase dimerisation of carboxylic acids and its consequences on phase equilibrium phenomena and phase equilibrium predictions. The second example deals with the solubility of sour gases (e.g., carbon dioxide and sulfur dioxide) in aqueous solutions of ammonia. That topic has been of interest for many years, e.g., in relation with the gasification and liquefaction of coal and, more recently, with the removal of carbon dioxide from flue gas in the 'chilled ammonia process'. The third example deals with phase equilibrium phenomena in aqueous solutions of polyelectrolytes. It deals with the phenomenon of 'counter ion condensation' and methods to model the Gibbs free energy of such solutions.

  9. Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    Eren Erken

    2013-06-01

    Full Text Available Reactive arthritis is an acute, sterile, non-suppurative and inflammatory arthropaty which has occured as a result of an infectious processes, mostly after gastrointestinal and genitourinary tract infections. Reiter syndrome is a frequent type of reactive arthritis. Both reactive arthritis and Reiter syndrome belong to the group of seronegative spondyloarthropathies, associated with HLA-B27 positivity and characterized by ongoing inflammation after an infectious episode. The classical triad of Reiter syndrome is defined as arthritis, conjuctivitis and urethritis and is seen only in one third of patients with Reiter syndrome. Recently, seronegative asymmetric arthritis and typical extraarticular involvement are thought to be adequate for the diagnosis. However, there is no established criteria for the diagnosis of reactive arthritis and the number of randomized and controlled studies about the therapy is not enough. [Archives Medical Review Journal 2013; 22(3.000: 283-299

  10. The mechanism of mediated oxidation of carboxylates with ferrocene as redox catalyst in absence of grafting effects. An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Hernández-Muñoz, Lindsay S.; Galano, Annia; Astudillo-Sánchez, Pablo D.; Abu-Omar, Mahdi M.; González, Felipe J.

    2014-01-01

    Graphical abstract: - Highlights: • The mechanism of mediated oxidation of carboxylates. • Thermodynamics of the mediated Kolbe and Non-Kolbe mechanisms. • The oxidation of acetate and diphenylacetate ions by using ferrocene as redox catalyst. • Simulation and DFT calculations of the mediated oxidation of carboxylates. • Radical and carbocationic pathways in the carboxylate oxidation in acetonitrile. - Abstract: The oxidation of tetrabutylammonium carboxylates by using ferrocene derivatives as redox mediators has been recently used to perform the covalent grafting of carbon surfaces with organic and organometallic groups. Due to the intervention of this surface process, a partial description of the reaction mechanism has only been stated. Therefore, this article concerns about two features of the oxidation of carboxylates mediated by ferrocene. In the first part, it is discussed that in the oxidation of acetate ions by using ferrocene as redox catalyst, the gap between both oxidation potentials is very high, which means that the homogeneous electron transfer between the acetate ion and the electrochemically generated ferrocenium ion is energetically unfavorable. However, by using density functional theory calculations, it has been shown that the whole set of coupled chemical reactions involved either in a Kolbe or Non-Kolbe pathway drive the overall mechanisms towards a thermodynamically favorable situation. In order to avoid the strong covalent grafting process that occurs during the mediated oxidation of acetate ions, the second part of this work deals with the oxidation of tetrabutylammonium diphenylacetate by using ferrocene as a redox mediator in acetonitrile on glassy carbon electrodes. With this carboxylate, no electrode inhibition process occurs and, therefore cyclic voltammetry simulation was done to propose the electrochemical and chemical steps that are present when a carboxylate oxidation is performed in the presence of ferrocene derivatives

  11. Carboxyl group modification significantly altered the kinetic properties of purified carboxymethylcellulase from Aspergillus niger.

    Science.gov (United States)

    Siddiqui; Saqib; Rashid; Rajoka

    2000-10-01

    Carboxymethylcellulase (CMCase) from Aspergillus niger NIAB280 was purified by a combination of ammonium sulphate precipitation, ion-exchange, hydrophobic interaction and gel filtration chromatography on FPLC with 9-folds increase in specific activity. Native and subunit molecular weights were found to be 36 kDa each. The purified CMCase was modified by 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) in the presence of glycinamide for 15 min (GAM15) and glycinamide plus cellobiose for 75 min (GAM75). Similarly, the enzyme was modified by EDC in the presence of ethylenediamine dihydrochloride plus cellobiose for 75 min (EDAM75). The neutralization (GAM15 and GAM75) and reversal (EDAM75) of negative charges of carboxyl groups of CMCase had profound effect on the specificity constant (k(cat)/K(m)), pH optima, pK(a)'s of the active-site residues and thermodynamic parameters of activation. The specificity constants of native, GAM15, GAM75, and EDAM75 were 143, 340, 804, and 48, respectively. The enthalpy of activation (DeltaH(#)) of Carboxymethylcellulose (CMC) hydrolysis of native (50 and 15 kJ mol(-1)) and GAM15 (41 and 16 kJ mol(-1)) were biphasic whereas those of GAM75 (43 kJ mol(-1)) and EDAM75 (41 k J mol(-1)) were monophasic. Similarly, the entropy of activation (DeltaS(#)) of CMC hydrolysis of native (-61 and -173 J mol(-1) K(-1)) and GAM15 (-91 and -171 J mol(-1) K(-1)) were biphasic whereas those of GAM75 (-82 J mol(-1) K(-1)) and EDAM75 (-106 J mol(-1) K(-1)) were monophasic. The pH optima/pK(a)'s of both acidic and basic limbs of charge neutralized CMCases increased compared with those of native enzyme. The CMCase modification in the presence of glycinamide and absence of cellobiose at different pH's periodically activated and inhibited the enzyme activity indicating conformational changes. We believe that the alteration of the surface charges resulted in gross movement of loops that surround the catalytic pocket, thereby inducing changes in the vicinity

  12. Physicochemical properties of prepared ion-exchangers from cellulose incorporated with different functional groups

    International Nuclear Information System (INIS)

    Nada, A.M.A.; Adel, A.M.

    2005-01-01

    Bagasse raw material and bleached bagasse pulp was used to prepare carbamoyl ethyl and Carboxylated cellulose ion exchangers. The effect of presence of lignin in the bagasse on the properties of the produced resin was estimated. The effect of crosslinking on the properties of the carbamoyl ethyl and carboxyl cellulose was investigated. The molecular structure of the produced resin is followed by using infrared spectroscopy. A new bands was seen at wavenumber 2152 cm-1 and a shoulder at 3140 cm-1 which are characteristic to the cyano group in cyanoethylated cellulose and to amino group in the carbamoyl ethyl cellulose. Also, a band was formed at 1715 cm-1 which formed by hydrolysis of cyanoethyl or carbamoyl ethyl cellulose and was characteristic to carboxyl group. A thermal gravimetric of the produced resin was investigated. The cyano group and carbamoyl group increases the resistance of cellulose toward thermal treatment. The efficiency of the produced resin toward metal ion uptake (Cu, Ni and Cr) from solution was studied

  13. Structural and Functional Models of Non-Heme Iron Enzymes : A Study of the 2-His-1-Carboxylate Facial Triad Structural Motif

    NARCIS (Netherlands)

    Bruijnincx, P.C.A.

    2007-01-01

    The structural and functional modeling of a specific group of non-heme iron enzymes by the synthesis of small synthetic analogues is the topic of this thesis. The group of non-heme iron enzymes with the 2-His-1-carboxylate facial triad has recently been established as a common platform for the

  14. One step synthesis of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon spheres with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Lingling [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Luo, Zhijun, E-mail: lzj@ujs.edu.cn [School of the Environment, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China); Tang, Chao [Maple Leaf International High School, Zhenjiang 212013 (China)

    2013-11-15

    Graphical abstract: Functional groups of sodium gluconate play synergetic roles in the formation of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon core–shell nanosturctures (Bi@Bi{sub 2}O{sub 3}@CRCSs). Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation. - Highlights: • One step synthesis of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon spheres. • Functional groups of sodium gluconate play synergetic roles in the formation of Bi@Bi{sub 2}O{sub 3}@CRCSs. • Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits enhanced photocatalytic activity under visible light irradiation. - Abstract: Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon core-shell nanosturctures (Bi@Bi{sub 2}O{sub 3}@CRCSs) have been synthesized via a one-step method. The core–shell nanosturctures of the as-prepared samples were confirmed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Raman spectroscopy. The formation of Bi@Bi{sub 2}O{sub 3}@CRCSs core–shell nanosturctures should attribute to the synergetic roles of different functional groups of sodium gluconate. Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation (λ > 420 nm) and shows an O{sub 2}-dependent feature. According to trapping experiments of radicals and holes, hydroxyl radicals were not the main active oxidative species in the photocatalytic degradation of MB, but O{sub 2}·{sup −} are the main active oxidative species.

  15. Preparation, Characterization, and In Vitro and Vivo Antitumor Activity of Oridonin-Conjugated Multiwalled Carbon Nanotubes Functionalized with Carboxylic Group

    Directory of Open Access Journals (Sweden)

    Chuanjin Wang

    2016-01-01

    Full Text Available Carbon nanotubes have shown great potential in tumor therapy. Oridonin (ORI is a poorly water-soluble diterpenoid compound (C20H28O6 used in the treatment of esophageal and hepatic carcinoma for decades. For the purpose of enhancing the antitumor potency and reducing cytotoxicity of ORI, multiwalled carbon nanotubes functionalized with carboxylic group (MWCNTs-COOH were used as ORI carrier. ORI was noncovalently encapsulated into (or onto the functionalized carbon nanotubes (MWCNTs-ORI. The obtained MWCNTs-ORI has been characterized. The ORI loading efficiency in MWCNTs-COOH carrier was studied to be about 82.6% (w/w. In vitro cytotoxicity assay on MWCNTs-ORI gave IC50 of 7.29±0.5 μg/mL and ORI-F gave IC50 of 14.5±1.4 μg/mL. The antitumor effect studies in vivo showed that MWCNTs-ORI improved antitumor activity of ORI in comparison with ORI-F. The tumor inhibition ratio for MWCNTs-ORI (1.68×10-2 g·Kg−1·d−1 was 86.4%, higher than that of ORI-F (1.68×10-2 g·Kg−1·d−1 which was 39.2%. This can greatly improve the pharmaceutical efficiency and reduce potential side effects.

  16. Properties of the Carboxylate ion exchange resins; Karboxylatjonbytarmassans egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Bert; Dario, Maarten [Oerebro Univ. (Sweden); Boren, Hans [Linkoepings Univ. (Sweden); Torstenfelt, Boerje [Swedpower, Stockholm (Sweden); Puigdomenech, Ignasi; Johansson, Claes [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  17. New photoresponsive (meth)acrylate (co)polymers containing azobenzene pendant sidegroups with carboxylic and dimethylamino substituents .2. Synthesis and characterization of polymers and copolymers

    NARCIS (Netherlands)

    Haitjema, HJ; Buruma, R; VanEkenstein, GORA; Tan, YY; Challa, G

    1996-01-01

    The title (co)polymers, used for our investigations on their photoresponsive behaviour were obtained by free radical (co)polymerization. The monomer was either an acrylate or a methacrylate to which an azobenzene group, modified with a para-placed dimethylamino or a carboxylic pendant group, was

  18. Crystal structure of 7,7-dimethyl-6-methylidenetricyclo[6.2.1.01,5]undecane-2-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Noureddine Beghidja

    2015-02-01

    Full Text Available In the title compound, C15H22O2, both five-membered rings display an envelope conformation whereas the six-membered ring displays a chair conformation. In the crystal, pairs of O—H...O hydrogen bonds between carboxylic groups link molecules, related by a twofold rotation axis, into supramolecular dimers.

  19. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    International Nuclear Information System (INIS)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-01-01

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H"+) and hydroxide (OH"−) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H"+ and OH"− ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the

  20. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lu; Shao, Jinyou, E-mail: jyshao@mail.xjtu.edu.cn; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-15

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H{sup +}) and hydroxide (OH{sup −}) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H{sup +} and OH{sup −} ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results

  1. Systematic evaluation and optimization of modification reactions of oligonucleotides with amines and carboxylic acids for the synthesis of DNA-encoded chemical libraries.

    Science.gov (United States)

    Franzini, Raphael M; Samain, Florent; Abd Elrahman, Maaly; Mikutis, Gediminas; Nauer, Angela; Zimmermann, Mauro; Scheuermann, Jörg; Hall, Jonathan; Neri, Dario

    2014-08-20

    DNA-encoded chemical libraries are collections of small molecules, attached to DNA fragments serving as identification barcodes, which can be screened against multiple protein targets, thus facilitating the drug discovery process. The preparation of large DNA-encoded chemical libraries crucially depends on the availability of robust synthetic methods, which enable the efficient conjugation to oligonucleotides of structurally diverse building blocks, sharing a common reactive group. Reactions of DNA derivatives with amines and/or carboxylic acids are particularly attractive for the synthesis of encoded libraries, in view of the very large number of building blocks that are commercially available. However, systematic studies on these reactions in the presence of DNA have not been reported so far. We first investigated conditions for the coupling of primary amines to oligonucleotides, using either a nucleophilic attack on chloroacetamide derivatives or a reductive amination on aldehyde-modified DNA. While both methods could be used for the production of secondary amines, the reductive amination approach was generally associated with higher yields and better purity. In a second endeavor, we optimized conditions for the coupling of a diverse set of 501 carboxylic acids to DNA derivatives, carrying primary and secondary amine functions. The coupling efficiency was generally higher for primary amines, compared to secondary amine substituents, but varied considerably depending on the structure of the acids and on the synthetic methods used. Optimal reaction conditions could be found for certain sets of compounds (with conversions >80%), but multiple reaction schemes are needed when assembling large libraries with highly diverse building blocks. The reactions and experimental conditions presented in this article should facilitate the synthesis of future DNA-encoded chemical libraries, while outlining the synthetic challenges that remain to be overcome.

  2. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules

    KAUST Repository

    Guo, Lin; Rueping, Magnus

    2018-01-01

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  3. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules.

    Science.gov (United States)

    Guo, Lin; Rueping, Magnus

    2018-05-15

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  4. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules

    KAUST Repository

    Guo, Lin

    2018-04-13

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  5. Synthesis of carboxyl-capped and bright YVO4:Eu,Bi nanoparticles and their applications in immunochromatographic test strip assay

    International Nuclear Information System (INIS)

    Luo, Min; Sun, Tian-Ying; Wang, Jia-Hong; Yang, Peng; Gan, Liang; Liang, Li-Lei; Yu, Xue-Feng; Gong, Xing-Hou

    2013-01-01

    Graphical abstract: - Highlights: • The morphology and properties of YVO 4 :Eu,Bi nanoparticles were investigated. • YVO 4 :Eu,Bi were coupled with IgG for bioprobes due to their good properties. • YVO 4 :Eu,Bi were applied to immunochromatographic test strip assay. - Abstract: Carboxyl-capped YVO 4 :Eu,Bi nanoparticles with average diameter of ∼10 nm were synthesized via a copolymer of phosphono and carboxylic acid mediated hydrothermal method. Under a 350 nm ultraviolet light excitation, the YVO 4 :Eu,Bi NPs exhibit sharp and bright red emission peaked at 615 nm and with highest quantum yield of ∼43%. Furthermore, the nanoparticles show good water/buffer stability and feasible bioconjugation benefiting from the carboxylic groups on their surface. Based on these kind optical and surface properties of the YVO 4 :Eu,Bi nanoparticles, an immunochromatographic test strip assay for quantitative determination of human IgG was achieved. This protocol can be extended to other rare-earth nanoparticles with the purpose of developing bioprobes for desired applications

  6. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: dany@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Jia, Shaojie [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Fodjo, Essy Kouadio [Laboratory of Physical Chemistry, University Felix Houphouet Boigny, 22 BP 582, Abidjan 22, Cote d’Ivoire (Cote d' Ivoire); Xu, Hu [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Wang, Yuhong, E-mail: yuhong_wang502@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Deng, Wei [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China)

    2016-03-30

    Graphical abstract: The orientation of anthraquinone-2-carboxylic acid (AQ-2-COOH) has been investigated by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) on silver surface. - Highlights: • The adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on Ag electrode is influenced by the pH. • The pH-dependant adsorption of AQ-2-COOH has been confirmed by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). • The results can provide insights into electron transfer reactions of AQ-2-COOH in biological systems. - Abstract: In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from −0.3 to −0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from −0.3 to −0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  7. Microbial synthesis of a branched-chain ester platform from organic waste carboxylates

    Directory of Open Access Journals (Sweden)

    Donovan S. Layton

    2016-12-01

    Full Text Available Processing of lignocellulosic biomass or organic wastes produces a plethora of chemicals such as short, linear carboxylic acids, known as carboxylates, derived from anaerobic digestion. While these carboxylates have low values and are inhibitory to microbes during fermentation, they can be biologically upgraded to high-value products. In this study, we expanded our general framework for biological upgrading of carboxylates to branched-chain esters by using three highly active alcohol acyltransferases (AATs for alcohol and acyl CoA condensation and modulating the alcohol moiety from ethanol to isobutanol in the modular chassis cell. With this framework, we demonstrated the production of an ester library comprised of 16 out of all 18 potential esters, including acetate, propionate, butanoate, pentanoate, and hexanoate esters, from the 5 linear, saturated C2-C6 carboxylic acids. Among these esters, 5 new branched-chain esters, including isobutyl acetate, isobutyl propionate, isobutyl butyrate, isobutyl pentanoate, and isobutyl hexanoate were synthesized in vivo. During 24 h in situ fermentation and extraction, one of the engineered strains, EcDL208 harnessing the SAAT of Fragaria ananassa produced ~63 mg/L of a mixture of butyl and isobutyl butyrates from glucose and butyrate co-fermentation and ~127 mg/L of a mixture of isobutyl and pentyl pentanoates from glucose and pentanoate co-fermentation, with high specificity. These butyrate and pentanoate esters are potential drop-in liquid fuels. This study provides better understanding of functional roles of AATs for microbial biosynthesis of branched-chain esters and expands the potential use of these esters as drop-in biofuels beyond their conventional flavor, fragrance, and solvent applications. Keywords: Carboxylate platform, Ester platform, Branched-chain ester, Modular cell, Biological upgrading, Organic waste, Lignocellulosic biomass, Isobutyl esters

  8. Preparations and applications in UV curing coatings of epoxy acrylates containing carboxyl

    International Nuclear Information System (INIS)

    Wu Yu Min

    1999-01-01

    This paper introduces preparations of epoxy acrylates containing carboxyl through the reactions of epoxy acrylates with butanedioic anhydride, pentanedioic anhydride, cis-butenedioic anhydride, phthalic anhydride, tetrabromophthalic anhydride and -tetrahydrophthalic anhydride. These epoxy acrylates containing carboxyl have been applied to UV-curing coatings and their effects on properties of UV-curing coatings have been studied

  9. Synthesis and Characterization of PEDOT Derivative with Carboxyl Group and Its Chemo/Bio Sensing Application as Nanocomposite, Immobilized Biological and Enhanced Optical Materials

    International Nuclear Information System (INIS)

    Zhang, Long; Wen, Yangping; Yao, Yuanyuan; Xu, Jingkun; Duan, Xuemin; Zhang, Ge

    2014-01-01

    indicate that chemo/bio-sensors based on PC4 possess excellent chemo/bio sensing performance and enhanced optical response, and its carboxylic group can realize the immobilization of biologically active species, self-assembly of inorganic nanomaterials

  10. Cure and mechanical properties of carboxylated nitrile rubber (XNBR) vulcanized by alkaline earth metal compounds

    Science.gov (United States)

    Tulyapitak, Tulyapong

    Compounds of carboxylated nitrile rubber (XNBR) with alkaline metal oxides and hydroxide were prepared, and their cure and mechanical properties were investigated. Magnesium oxide (MgO) with different specific surface areas (45, 65, and 140 m2/g) was used. Increased specific surface area and concentration of MgO resulted in higher cure rate. Optimum stiffness, tensile strength, and ultimate strain required an equimolar amount of acidity and MgO. The effect of specific surface area on tensile properties was not significant. Crosslink density of XNBR-MgO vulcanizates increased with increased amounts of MgO. ATR-IR spectroscopy showed that neutralization occurs in two steps: (1) During mixing and storage, MgO reacts with carboxyl groups (RCOOH) to give RCOOMgOH. (2) Upon curing, these react bimolecularly to form RCOOMgOOCR and Mg(OH)2. Dynamic mechanical thermal analysis revealed an ionic transition at higher temperature, in addition to the glass transition. The ionic transition shifts to higher temperature with increasing MgO concentration. Like MgO-XNBR systems, cure rates of XNBR-calcium hydroxide (Ca(OH)2) and XNBR-barium oxide (BaO) compounds increased with increased content of curing agents. Curing by these two agents resulted in ionic crosslinks. To ensure optimum tensile properties, equimolar amounts of carboxyl groups and curing agents were required. Dynamic mechanical analysis revealed the ionic transition in these two systems. It shifted to higher temperature with increased amounts of curing agents. In contrast to MgO, Ca(OH)2, and BaO, calcium oxide (CaO) gave results similar to those for thermally cured samples. No ionic transition was observed in XNBR-CaO systems. Tensile strength of XNBR depended on the strength of ionic crosslinks, which was dependent on the size of the alkaline metal ions.

  11. Crystal and Molecular Structure Studies of Ethyl 4-(4-Hydroxyphenyl-6-(6-methoxy-2-naphthyl-2-oxocyclohex-3-ene-1-carboxylate and Ethyl 4-(3-Bromophenyl-6-(6-methoxy-2-naphthyl-2-oxocyclohex-3-ene-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Badiadka Narayana

    2012-08-01

    Full Text Available The crystal and molecular structures of the title compounds, ethyl 4-(4-hydroxyphenyl-6-(6-methoxy-2-naphthyl-2-oxocyclohex-3-ene-1-carboxylate (I and ethyl 4-(3-bromophenyl-6-(6-methoxy-2-naphthyl-2-oxocyclohex-3-ene-1-carboxylate (II, are reported and confirmed by single crystal X-ray diffraction data. Compound (I, C26H24O5, crystallizes from a methanol solution in the monoclinic C2/c space group with eight molecules in the unit cell. The unit cell parameters are: a = 25.4114(5 Å, b = 8.47440(10 Å, c = 20.6921(4 Å, β = 108.328(2° and V = 4229.92(13 Å3. Disorder is observed throughout the entire molecule with an occupancy ratio 0.690(2:0.310(2. Compound (II, C26H23O4Br, crystallizes from an ethyl acetate solution in the monoclinic P21/c spacegroup with four molecules in the unit cell. The unit cell parameters are a = 17.8991(9 Å, b = 11.4369(6 Å, c = 10.8507(5 Å, β = 92.428(4° and V = 2219.25(19 Å3. Disorder is observed in the cyclohexenone ring and the carboxylate group with an occupancy ratio 0.830(6:0.170(6. Weak O–H...O (I or C–H...O (II intermolecular interactions are observed which influence crystal packing stability. These chalcone derivative types of molecules are important in their ability to act as activated unsaturated systems in conjugated addition reactions of carbanions in the presence of basic catalysts which exhibit a multitude of biological activities.

  12. Electronic and magnetic properties of infinite 1D chains of paddlewheel carboxylates M2(COOR)4 (M = Mo, W, Ru, Rh, Ir, Cu)

    KAUST Repository

    Peskov, Maxim; Miao, Xiaohe; Heryadi, Dodi; Eppinger, Jö rg; Schwingenschlö gl, Udo

    2013-01-01

    Dinuclear complexes of transition metals bridged by four carboxylate-groups are examples of stable atomic configurations serving as fundamental building blocks of catalysts and prototypical molecular electronic devices. The electronic structure

  13. Vitamin K-dependent carboxylation of pulmonary surfactant-associated proteins

    International Nuclear Information System (INIS)

    Rannels, S.R.; Gallaher, K.J.; Wallin, R.; Rannels, D.E.

    1987-01-01

    Rat type II pneumocytes expressed vitamin K-dependent carboxylase activity that incorporated 14 CO 2 into microsomal protein precursors of molecular weights similar to those of surfactant-associated proteins (SAP). Compared to carboxylated precursor proteins present in the liver, these molecules appeared to be unique to the lung. Antibodies raised against purified rat surfactant reacted with SAP resolved by NaDodSO 4 /PAGE and with surfactant-containing lamellar bodies in type II pneumocyte cytoplasm. NaDodSO 4 /PAGE of microsomal proteins, after carboxylase-catalyzed incorporation of 14 CO 2 , demonstrated radiolabeled, immunoreactive products identical to SAP. The presence of γ-carboxyglutamic acid in these proteins was confirmed by HPLC analysis of SAP hydrolysates. Furthermore, lung carboxylase activity and SAP matured over similar time courses during fetal lung development. These results show that SAP are carboxylated by type II cells via a vitamin K-dependent pathway analogous to that for hepatic carboxylation of clotting factors. Further analogy to the clotting system suggest that γ-carboxyglutamic acid residues in SAP polypeptides play a role in Ca 2+ binding and thus in the known requirements for both cation and SAP in the physiological function of pulmonary surfactant

  14. Catalytic transformation of functionalized carboxylic acids using multifunctional rhenium complexes.

    Science.gov (United States)

    Naruto, Masayuki; Agrawal, Santosh; Toda, Katsuaki; Saito, Susumu

    2017-06-13

    Carboxylic acids (CAs) are one of the most ubiquitous and important chemical feedstocks available from biorenewable resources, CO 2 , and the petrochemical industry. Unfortunately, chemoselective catalytic transformations of CH n CO 2 H (n = 1-3) groups into other functionalities remain a significant challenge. Herein, we report rhenium V complexes as extremely effective precatalysts for this purpose. Compared to previously reported heterogeneous and homogeneous catalysts derived from high- or low-valent metals, the present method involves a α-C-H bond functionalization, a hydrogenation, and a hydrogenolysis, which affords functionalized alcohols with a wide substrate scope and high chemoselectivity under relatively mild reaction conditions. The results represent an important step toward a paradigm shift from 'low-valent' to 'high-valent' metal complexes by exploring a new portfolio of selective functional group transformations of highly oxygenated organic substrates, as well as toward the exploitation of CAs as a valuable biorenewable feedstock.

  15. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform.

    Science.gov (United States)

    Agler, Matthew T; Wrenn, Brian A; Zinder, Stephen H; Angenent, Largus T

    2011-02-01

    Our societies generate increasing volumes of organic wastes. Considering that we also need alternatives to oil, an opportunity exists to extract liquid fuels or even industrial solvents from these abundant wastes. Anaerobic undefined mixed cultures can handle the complexity and variability of organic wastes, which produces carboxylates that can be efficiently converted to useful bioproducts. However, to date, barriers, such as inefficient liquid product separation and persistence of methanogens, have prevented the production of bioproducts other than methane. Here, we discuss combinations of biological and chemical pathways that comprise the 'carboxylate platform', which is used to convert waste to bioproducts. To develop the carboxylate platform into an important system within biorefineries, we must understand the kinetic and thermodynamic possibilities of anaerobic pathways, understand the ecological principles underlying pathway alternatives, and develop superior separation technologies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Science.gov (United States)

    Li, Dan; Jia, Shaojie; Fodjo, Essy Kouadio; Xu, Hu; Wang, Yuhong; Deng, Wei

    2016-03-01

    In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from -0.3 to -0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from -0.3 to -0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  17. A spin-crossover complex based on a 2,6-bis(pyrazol-1-yl)pyridine (1-bpp) ligand functionalized with a carboxylate group.

    Science.gov (United States)

    Abhervé, Alexandre; Clemente-León, Miguel; Coronado, Eugenio; Gómez-García, Carlos J; López-Jordà, Maurici

    2014-07-07

    Combining Fe(ii) with the carboxylate-functionalized 2,6-bis(pyrazol-1-yl)pyridine (bppCOOH) ligand results in the spin-crossover compound [Fe(bppCOOH)2](ClO4)2 which shows an abrupt spin transition with a T1/2 of ca. 380 K and a TLIESST of 60 K due to the presence of a hydrogen-bonded linear network of complexes.

  18. Carboxylic acid effects on the size and catalytic activity of magnetite nanoparticles.

    Science.gov (United States)

    Hosseini-Monfared, Hassan; Parchegani, Fatemeh; Alavi, Sohaila

    2015-01-01

    Magnetite nanoparticles (Fe3O4-NPs) were successfully synthesized in diethylene glycol in the presence of carboxylic acids. They were characterized using XRD, SEM and FTIR. Carboxylic acid plays a critical role in determining the morphology, particle size and size distribution of the resulting particles. The results show that as-prepared magnetite nanoparticles are monodisperse and highly crystalline. The nanoparticles can be easily dispersed in aqueous media and other polar solvents due to coated by a layer of hydrophilic polyol and carboxylic acid ligands in situ. Easily prepared Fe3O4-NPs have been shown to be an active, recyclable, and highly selective catalyst for the epoxidation of cyclic olefins with aqueous 30% H2O2. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian

    2014-01-01

    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order...

  20. Evolution of Functional Groups during Pyrolysis Oil Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Stankovikj, Filip [Department; Tran, Chi-Cong [Department; Kaliaguine, Serge [Department; Olarte, Mariefel V. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Garcia-Perez, Manuel [Department

    2017-07-14

    In this paper, we examine the evolution of functional groups (carbonyl, carboxyl, phenol, and hydroxyl) during stabilization at 100–200 °C of two typical wood derived pyrolysis oils from BTG and Amaron in a batch reactor over Ru/C catalyst for 4h. An aqueous and an oily phase were obtained. The content of functional groups in both phases were analyzed by GC/MS, 31P-NMR, 1H-NMR, elemental analysis, KF titration, carbonyl groups by Faix, Folin – Ciocalteu method and UV-Fluorescence. The consumption of hydrogen was between 0.007 and 0.016 g/g oil, and 0.001-0.020 g of CH4/g of oil, 0.005-0.016 g of CO2/g oil and 0.03-0.10 g H2O/g oil were formed. The content of carbonyl, hydroxyl, and carboxyl groups in the volatile GC-MS detectable fraction decreased (80, 65, and ~70% respectively), while their behavior in the total oil and hence in the non-volatile fraction was more complex. The carbonyl groups initially decreased having minimum at ~125-150°C and then increased, while the hydroxyl groups had reversed trend. This might be explained by initial hydrogenation of the carbonyl groups to form hydroxyls, followed by continued dehydration reactions at higher temperatures that may increase their content. The 31P-NMR was on the limit of its sensitivity for the carboxylic groups to precisely detect changes in the non-volatile fraction, however the more precise titration method showed that the concentration of carboxylic groups in the non-volatile fraction remains constant with increased stabilization temperature. The UV-Fluorescence results show that repolymerization increases with temperature. ATR-FTIR method coupled with deconvolution of the region between 1490 and 1850 cm-1 showed to be a good tool for following the changes in carbonyl groups and phenols of the stabilized pyrolysis oils. The deconvolution of the IR bands around 1050 and 1260 cm-1 correlated very well with the changes in the 31P-NMR silent O groups (likely ethers). Most of the H2O formation could be

  1. Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Mengjie; Wang, Shubin; Yu, Yalin; Feng, Qihang; Yang, Jiping; Zhang, Boming

    2017-01-01

    Highlights: • Carboxyl functionalized CF is acquired by simple chemical oxidation method. • These CF have preserved the tensile strength, better electrochemical properties. • The presence of H_3PO_4 prevented the turbostratic carbon from over-oxidization. • There CF can be used as anodes of multifunctional structural battery. • The preservation and improvement is result from the hindered over-oxidization. - Abstract: Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical properties were acquired through a simple chemical oxidation method, and the proposed underlying mechanism was verified. The surface of carboxyl functionalizing carbon fibers is necessary in acquiring functional groups on the surface of carbon fibers to further improve the thermal, electrical or mechanical properties of the fibers. Functionalization should preserve the tensile strength and electrochemical properties of carbon fibers, because the anodes of structural batteries need to have high strength and electrochemical properties. Functionalized with mixed H_2SO_4/HNO_3 considerably reduced the tensile strength of carbon fibers. By contrast, the appearance of H_3PO_4 preserved the tensile strength of functionalized carbon fibers, reduced the dispersion level of tensile strength values, and effectively increased the concentration of functional acid groups on the surface of carbon fibers. The presence of phosphoric acid hindered the over-oxidation of turbostratic carbon, and consequently preserved the tensile strength of carbon fibers. The increased proportion of turbostratic carbon on the surface of carbon fibers concurrently enhanced the electrochemical properties of carbon fibers.

  2. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  3. Approaches to α-amino acids via rearrangement to electron-deficient nitrogen: Beckmann and Hofmann rearrangements of appropriate carboxyl-protected substrates

    Directory of Open Access Journals (Sweden)

    Sosale Chandrasekhar

    2012-08-01

    Full Text Available The titled approaches were effected with various 2-substituted benzoylacetic acid oximes 3 (Beckmann and 2-substituted malonamic acids 9 (Hofmann, their carboxyl groups being masked as a 2,4,10-trioxaadamantane unit (an orthoacetate. The oxime mesylates have been rearranged with basic Al2O3 in refluxing CHCl3, and the malonamic acids with phenyliodoso acetate and KOH/MeOH. Both routes are characterized by excellent overall yields. Structure confirmation of final products was conducted with X-ray diffraction in selected cases. The final N-benzoyl and N-(methoxycarbonyl products are α-amino acids with both carboxyl and amino protection; hence, they are of great interest in peptide synthesis.

  4. 40 CFR 721.2088 - Carboxylic acids, (C6-C9) branched and linear.

    Science.gov (United States)

    2010-07-01

    ... linear. 721.2088 Section 721.2088 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.2088 Carboxylic acids, (C6-C9) branched and linear. (a) Chemical... as carboxylic acids, (C6-C9) branched and linear (PMNs P-93-313, 314, 315, and 316) are subject to...

  5. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    Energy Technology Data Exchange (ETDEWEB)

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  6. Effects of carboxylic acids on nC60 aggregate formation

    International Nuclear Information System (INIS)

    Chang Xiaojun; Vikesland, Peter J.

    2009-01-01

    The discovery that negatively charged aggregates of C 60 fullerene (nC 60 ) are stable in water has raised concerns regarding the potential environmental and health effects of these aggregates. In this work, we show that nC 60 aggregates produced by extended mixing in the presence of environmentally relevant carboxylic acids (acetic acid, tartaric acid, citric acid) have surface charge and morphologic properties that differ from those produced by extended mixing in water alone. In general, aggregates formed in the presence of these acids have a more negative surface charge and are more homogeneous than those produced in water alone. Carboxylic acid identity, solution pH, and sodium ion concentration, which are all intricately coupled, play an important role in setting the measured surface charge. Comparisons between particle sizes determined by analysis of TEM images and those obtained by dynamic light scattering (DLS) indicate that DLS results require careful evaluation when used to describe nC 60 aggregates. - The effects of carboxylic acids on the formation of nC 60 aggregates are discussed

  7. Complexation of carboxylate on smectite surfaces.

    Science.gov (United States)

    Liu, Xiandong; Lu, Xiancai; Zhang, Yingchun; Zhang, Chi; Wang, Rucheng

    2017-07-19

    We report a first principles molecular dynamics (FPMD) study of carboxylate complexation on clay surfaces. By taking acetate as a model carboxylate, we investigate its inner-sphere complexes adsorbed on clay edges (including (010) and (110) surfaces) and in interlayer space. Simulations show that acetate forms stable monodentate complexes on edge surfaces and a bidentate complex with Ca 2+ in the interlayer region. The free energy calculations indicate that the complexation on edge surfaces is slightly more stable than in interlayer space. By integrating pK a s and desorption free energies of Al coordinated water calculated previously (X. Liu, X. Lu, E. J. Meijer, R. Wang and H. Zhou, Geochim. Cosmochim. Acta, 2012, 81, 56-68; X. Liu, J. Cheng, M. Sprik, X. Lu and R. Wang, Geochim. Cosmochim. Acta, 2014, 140, 410-417), the pH dependence of acetate complexation has been revealed. It shows that acetate forms inner-sphere complexes on (110) in a very limited mildly acidic pH range while it can complex on (010) in the whole common pH range. The results presented in this study form a physical basis for understanding the geochemical processes involving clay-organics interactions.

  8. Synthesis, crystal structure, spectral analysis, dft studies and antimicrobial activity of ethyl 6-(4-(ethoxycarbonyl)-1h-1,2,3-triazol-1-yl)pyridine-3-carboxylate

    International Nuclear Information System (INIS)

    Ahmed, M.N.; Yasin, K.A.; Khan, R.A.H.; Mahmood, T.; Ayub, K.; Malik, D.

    2017-01-01

    Ethyl-6-(4-(ethoxycarbonyl)-1H-1,2,3-triazol-1-yl)pyridine-3-carboxylate (1), was synthesized via click reaction between ethyl tetrazolo[1,5-a]pyridine-6-carboxylate and ethyl propiolate in tetrahydrofuran (THF) in the presence of catalytic amount of a copper acetate. The structure was confirmed by single-crystal X-ray diffraction, NMR, FT-IR and MS. The compound crystallizes in the triclinic system, space group P-1 with a = 4.9122 (5), b = s9.5891 (11), c = 15.4851 (18) Å, a = 92.371 (5), beta = 90.015 (4), gamma = 101.722 (5) Z = 2 and V (Å /sup 3/) = 713.55 (14). Packing diagram indicates that there is dimeric interaction between two units via N(2)H(7). The crystal structure of the title compound 1 is stabilized by several nonboding interactions. Space filling model also revealed C-H...π and the π-π interactions in the molecule. Theoretical investigations were executed by using the Gaussian 09 software to enable comparison with X-ray structure as well as spectroscopic results, and to further probe the structural properties. The molecular electrostatic potential (MEP) analysis gave the idea about chemical reactivity and the Mulliken charge analysis gave quantitative estimate of the charges on the atoms. Frontier molecular orbitals analysis (electronic properties) was used to find the energy gap between the HOMO and the LUMO. The target compound was screened against three different bacterial strains like S. typhimurium, M. luteus and B. bronchiseptica as well as three different fungal strains i.e Aspergilus niger, Mucor specie and Aspergilus flavus. Moderate activities have been displayed by the target compound against tested strains. (author)

  9. Quantification of functional groups and modeling of their ionization behavior in the active layer of FT30 reverse osmosis membrane.

    Science.gov (United States)

    Coronell, Orlando; Mariñas, Benito J; Zhang, Xijing; Cahill, David G

    2008-07-15

    A new experimental approach was developed to measure the concentration of charged functional groups (FGs) in the active layer of thin-film composite reverse osmosis (RO) and nanofiltration (NF) membranes as a function of solution pH. FT30 RO membrane, with a fully aromatic polyamide (PA) active layer sandwiched between a polysulfone support and a coating layer, was used. The experiments consisted of saturating charged FGs with heavy ion probes, and determining the ion probe concentration by Rutherford backscattering spectrometry (RBS). Deprotonated carboxylic groups were saturated with Ag+, and protonated amine groups with W04(2-). The ionization behavior of carboxylic and amine groups was modeled based on acid-base equilibrium theory. While the ionization behavior of amine groups was satisfactorily described by one dissociation constant (pKa = 4.74), two pKa values (5.23 and 8.97) were necessary to describe the titration curve of carboxylic groups. These results were consistent with the bimodal pore size distribution (PSD) of FT30 active layer reported in the literature. The calculated total concentrations of carboxylic and amine groups in the active layer of the FT30 RO membrane studied were 0.432 and 0.036 M, respectively, and the isoelectric point (IEP) was 4.7. The total concentration of carboxylic and amine groups revealed that the degree of cross-linking of the PA active layer of the FT30 RO membrane studied was 94%.

  10. Precipitation stripping of neodymium from carboxylate extractant with aqueous oxalic acid solutions

    International Nuclear Information System (INIS)

    Konishi, Yasuhiro; Asai, Satoru; Murai, Tetuya

    1993-01-01

    This paper describes a precipitation stripping method in which neodymium ions are stripped from carboxylate extractant in organic solvent and simultaneously precipitated with aqueous oxalic acid solution. For the single-stage process, a quantitative criterion for precipitating oxalate powders was derived theoretically, and stripping experiments were done under the precipitation conditions. The resultant precipitates were neodymium oxalate, which is completely free from contamination by the carboxylate extractant and the organic solvent. The overall rate of stripping was controlled by the transfer of neodymium carboxylate in the organic solution, indicating that the presence of oxalic acid in the aqueous phase has no effect on the stripping rate. These findings demonstrate the feasibility of combining the conventional stripping and precipitation stages in a solvent extraction process for separation and purification of rare earths

  11. Silver-Catalyzed Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols

    DEFF Research Database (Denmark)

    Ghalehshahi, Hajar Golshadi; Madsen, Robert

    2017-01-01

    A simple silver-catalyzed protocol has been developed for the acceptorless dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The procedure uses 2.5 % Ag2 CO3 and 2.5-3 equiv of KOH in refluxing mesitylene to afford the potassium carboxylate which is then converted...... into the acid with HCl. The reaction can be applied to a variety of benzylic and aliphatic primary alcohols with alkyl and ether substituents, and in some cases halide, olefin, and ester functionalities are also compatible with the reaction conditions. The dehydrogenation is believed to be catalyzed by silver...

  12. Extraction characteristics of trivalent lanthanides and actinides in mixtures of dinonylnaphthalenesulfonic acid and carboxylic acids

    International Nuclear Information System (INIS)

    West, M.H.

    1983-03-01

    Dinonylnaphthalenesulfonic acid (HDNNS) has been shown to be an effective liquid cation exchanger for the extraction of metal ions. This extractant has proven to be successful in the extraction of trivalent lanthanides and actinides in the pH range of 2.0 to 3.0, although it shows little selectivity for individual ions because of its strong acid character. In an effort to improve the selectivity of HDNNS between trivalent lanthanides and actinides, carboxylic acids were added to the organic phase and the effects on the extraction characteristics of HDNNS were investigated. Three carboxylic acids - nonanoic, cyclohexanecarboxylic, and cyclohexanebutyric - were studied with the following metals: Am(III), Cm(III), Ce(III), Eu(III), and Tm(III). The distributions of the metal ions were studied holding the HDNNS concentration constant while varying the carboxylic acid concentrations over a range of 1.0 x 10 -5 M to 1.0 M. Results indicated that the greatest enhancement of the extraction occurred at a carboxylic acid concentration of 1.0 x 10 -2 M with negative effects occurring at 0.5 M and 1.0 M. The effects on the extraction of the trivalent lanthanides and actinides were interpreted in terms of the structural differences of the carboxylic acids, the effect of the carboxylic acids on the HDNNS extraction mechanism, and the ionic properties of the metals studied

  13. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications.

    Science.gov (United States)

    Yang, Jianping; Shen, Dengke; Li, Xiaomin; Li, Wei; Fang, Yin; Wei, Yong; Yao, Chi; Tu, Bo; Zhang, Fan; Zhao, Dongyuan

    2012-10-22

    In this paper, we report a facile one-step hydrothermal method to synthesize phase-, size-, and shape-controlled carboxyl-functionalized rare-earth fluorescence upconversion phosphors by using a small-molecule binary acid, such as malonic acid, oxalic acid, succinic acid, or tartaric acid as capping agent. The crystals, from nano- to microstructures with diverse shapes that include nanospheres, microrods, hexagonal prisms, microtubes, microdisks, polygonal columns, and hexagonal tablets, can be obtained with different reaction times, reaction temperatures, molar ratios of capping agent to sodium hydroxide, and by varying the binary acids. Fourier transform infrared, thermogravimetric analysis, and upconversion luminescence spectra measurements indicate that the synthesized NaYF(4):Yb/Er products with hydrophilic carboxyl-functionalized surface offer efficient upconversion luminescent performance. Furthermore, the antibody/secondary antibody conjugation can be realized by the carboxyl-functionalized surfaces of the upconversion phosphors, thus indicating the potential bioapplications of these kinds of materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. catalysed ortho-carboxylation of acetanilide with CO

    Indian Academy of Sciences (India)

    Abstract. The mechanism of palladium(II)-catalysed carboxylation of acetanilide with CO has been investi- gated using density functional theory calculation done at the B3LYP/6-31G(d, p)(SDD for Pd) level of theory. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum.

  15. Carboxylate ligands drastically enhance the rates of oxo exchange and hydrogen peroxide disproportionation by oxo manganese compounds of potential biological significance.

    Science.gov (United States)

    Dubois, Lionel; Pécaut, Jacques; Charlot, Marie-France; Baffert, Carole; Collomb, Marie-Noëlle; Deronzier, Alain; Latour, Jean-Marc

    2008-01-01

    To mimic the carboxylate-rich active site of the manganese catalases more closely we introduced carboxylate groups into dimanganese complexes in place of nitrogen ligands. The series of dimanganese(III,IV) complexes of tripodal ligands [Mn(2)(L)(2)(O)(2)](3+/+/-/3-) was extended from those of tpa (1) and H(bpg) (2) to those of H(2)(pda) (3) and H(3)(nta) (4) (tpa=tris-picolylamine, H(bpg)=bis-picolylglycylamine, H(2)(pda)=picolyldiglycylamine, H(3)(nta)=nitrilotriacetic acid). While 3 [Mn(2)(pda)(2)(O)(2)][Na(H(2)O)(3)] could be synthesized at -20 degrees C and characterized in the solid state, 4 [Mn(2)(nta)(2)(O)(2)](3-) could be obtained and studied only in solution at -60 degrees C. A new synthetic procedure for the dimanganese(III,III) complexes was devised, using stoichiometric reduction of the dimanganese(III,IV) precursor by the benzil radical with EPR monitoring. This enabled the preparation of the parent dimanganese(III,III) complex 5 [Mn(2)(tpa)(2)(O)(2)](ClO(4))(2), which was structurally characterized. The UV/visible, IR, EPR, magnetic, and electrochemical properties of complexes 1-3 and 5 were analyzed to assess the electronic changes brought about by the carboxylate replacement of pyridine ligands. The kinetics of the oxo ligand exchanges with labeled water was examined in acetonitrile solution. A dramatic effect of the number of carboxylates was evidenced. Interestingly, the influence of the second carboxylate substitution differs from that of the first one probably because this substitution occurs on an out-of-plane coordination while the former occurs in the plane of the [Mn(2)O(2)] core. Indeed, on going from 1 to 3 the exchange rate was increased by a factor of 50. Addition of triethylamine caused a rate increase for 1, but not for 3. The abilities of 1-3 to disproportionate H(2)O(2) were assessed volumetrically. The disproportionation exhibited a sensitivity corresponding to the carboxylate substitution. These observations strongly suggest that

  16. Vitamin K-Dependent Carboxylation of Matrix Gla Protein Influences the Risk of Calciphylaxis.

    Science.gov (United States)

    Nigwekar, Sagar U; Bloch, Donald B; Nazarian, Rosalynn M; Vermeer, Cees; Booth, Sarah L; Xu, Dihua; Thadhani, Ravi I; Malhotra, Rajeev

    2017-06-01

    Matrix Gla protein (MGP) is a potent inhibitor of vascular calcification. The ability of MGP to inhibit calcification requires the activity of a vitamin K-dependent enzyme, which mediates MGP carboxylation. We investigated how MGP carboxylation influences the risk of calciphylaxis in adult patients receiving dialysis and examined the effects of vitamin K deficiency on MGP carboxylation. Our study included 20 patients receiving hemodialysis with calciphylaxis (cases) and 20 patients receiving hemodialysis without calciphylaxis (controls) matched for age, sex, race, and warfarin use. Cases had higher plasma levels of uncarboxylated MGP (ucMGP) and carboxylated MGP (cMGP) than controls. However, the fraction of total MGP that was carboxylated (relative cMGP concentration = cMGP/[cMGP + uncarboxylated MGP]) was lower in cases than in controls (0.58±0.02 versus 0.69±0.03, respectively; P =0.003). In patients not taking warfarin, cases had a similarly lower relative cMGP concentration. Each 0.1 unit reduction in relative cMGP concentration associated with a more than two-fold increase in calciphylaxis risk. Vitamin K deficiency associated with lower relative cMGP concentration in multivariable adjusted analyses ( β =-8.99; P =0.04). In conclusion, vitamin K deficiency-mediated reduction in relative cMGP concentration may have a role in the pathogenesis of calciphylaxis. Whether vitamin K supplementation can prevent and/or treat calciphylaxis requires further study. Copyright © 2017 by the American Society of Nephrology.

  17. Methyl 3-(Quinolin-2-ylindolizine-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Roumaissa Belguedj

    2015-12-01

    Full Text Available A novel compound, methyl 3-(quinolin-2-ylindolizine-1-carboxylate (2 has been synthesized by cycloaddition reaction of 1-(quinolin-2-ylmethylpyridinium ylide (1 with methyl propiolate in presence of sodium hydride in THF. The structure of this compound was established by IR, 1H-NMR, 13C-NMR and MS data

  18. Giant regular polyhedra from calixarene carboxylates and uranyl

    Science.gov (United States)

    Pasquale, Sara; Sattin, Sara; Escudero-Adán, Eduardo C.; Martínez-Belmonte, Marta; de Mendoza, Javier

    2012-01-01

    Self-assembly of large multi-component systems is a common strategy for the bottom-up construction of discrete, well-defined, nanoscopic-sized cages. Icosahedral or pseudospherical viral capsids, built up from hundreds of identical proteins, constitute typical examples of the complexity attained by biological self-assembly. Chemical versions of the so-called 5 Platonic regular or 13 Archimedean semi-regular polyhedra are usually assembled combining molecular platforms with metals with commensurate coordination spheres. Here we report novel, self-assembled cages, using the conical-shaped carboxylic acid derivatives of calix[4]arene and calix[5]arene as ligands, and the uranyl cation UO22+ as a metallic counterpart, which coordinates with three carboxylates at the equatorial plane, giving rise to hexagonal bipyramidal architectures. As a result, octahedral and icosahedral anionic metallocages of nanoscopic dimensions are formed with an unusually small number of components. PMID:22510690

  19. Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mengjie [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang, Shubin, E-mail: shubinwang@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yu, Yalin; Feng, Qihang; Yang, Jiping; Zhang, Boming [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2017-01-15

    Highlights: • Carboxyl functionalized CF is acquired by simple chemical oxidation method. • These CF have preserved the tensile strength, better electrochemical properties. • The presence of H{sub 3}PO{sub 4} prevented the turbostratic carbon from over-oxidization. • There CF can be used as anodes of multifunctional structural battery. • The preservation and improvement is result from the hindered over-oxidization. - Abstract: Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical properties were acquired through a simple chemical oxidation method, and the proposed underlying mechanism was verified. The surface of carboxyl functionalizing carbon fibers is necessary in acquiring functional groups on the surface of carbon fibers to further improve the thermal, electrical or mechanical properties of the fibers. Functionalization should preserve the tensile strength and electrochemical properties of carbon fibers, because the anodes of structural batteries need to have high strength and electrochemical properties. Functionalized with mixed H{sub 2}SO{sub 4}/HNO{sub 3} considerably reduced the tensile strength of carbon fibers. By contrast, the appearance of H{sub 3}PO{sub 4} preserved the tensile strength of functionalized carbon fibers, reduced the dispersion level of tensile strength values, and effectively increased the concentration of functional acid groups on the surface of carbon fibers. The presence of phosphoric acid hindered the over-oxidation of turbostratic carbon, and consequently preserved the tensile strength of carbon fibers. The increased proportion of turbostratic carbon on the surface of carbon fibers concurrently enhanced the electrochemical properties of carbon fibers.

  20. Carboxylated dithiafulvenes and tetrathiafulvalene vinylogues: synthesis, electronic properties, and complexation with zinc ions

    Directory of Open Access Journals (Sweden)

    Yunfei Wang

    2015-06-01

    Full Text Available A class of carboxyl and carboxylate ester-substituted dithiafulvene (DTF derivatives and tetrathiafulvalene vinylogues (TTFVs has been synthesized and their electronic and electrochemical redox properties were characterized by UV–vis spectroscopic and cyclic voltammetric analyses. The carboxyl-TTFV was applied as a redox-active ligand to complex with Zn(II ions, forming a stable Zn-TTFV coordination polymer. The structural, electrochemical, and thermal properties of the coordination polymer were investigated by infrared spectroscopy, cyclic voltammetry, powder X-ray diffraction, and differential scanning calorimetric analyses. Furthermore, the microscopic porosity and surface area of the Zn-TTFV coordination polymer were measured by nitrogen gas adsorption analysis, showing a BET surface of 148.2 m2 g−1 and an average pore diameter of 10.2 nm.

  1. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates

    Science.gov (United States)

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  2. (15)N NMR spectroscopy unambiguously establishes the coordination mode of the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) in Ru(ii) complexes.

    Science.gov (United States)

    Battistin, Federica; Balducci, Gabriele; Demitri, Nicola; Iengo, Elisabetta; Milani, Barbara; Alessio, Enzo

    2015-09-21

    We investigated the reactivity of three Ru(ii) precursors -trans,cis,cis-[RuCl2(CO)2(dmso-O)2], cis,fac-[RuCl2(dmso-O)(dmso-S)3], and trans-[RuCl2(dmso-S)4] - towards the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) or its parent compound 4-methyl-2-(2'-pyridyl)pyrimidine ligand (mpp), in which a methyl group replaces the carboxylic group on the pyrimidine ring. In principle, both cppH and mpp can originate linkage isomers, depending on how the pyrimidine ring binds to ruthenium through the nitrogen atom ortho (N(o)) or para (N(p)) to the group in position 4. The principal aim of this work was to establish a spectroscopic fingerprint for distinguishing the coordination mode of cppH/mpp also in the absence of an X-ray structural characterization. By virtue of the new complexes described here, together with the others previously reported by us, we successfully recorded {(1)H,(15)N}-HMBC NMR spectra at natural abundance of the (15)N isotope on a consistent number of fully characterized Ru(ii)-cppH/mpp compounds, most of them being stereoisomers and/or linkage isomers. Thus, we found that (15)N NMR chemical shifts unambiguously establish the binding mode of cppH and mpp - either through N(o) or N(p)- and can be conveniently applied also in the absence of the X-ray structure. In fact, coordination of cppH to Ru(ii) induces a marked upfield shift for the resonance of the N atoms directly bound to the metal, with coordination induced shifts (CIS) ranging from ca.-45 to -75 ppm, depending on the complex, whereas the unbound N atom resonates at a frequency similar to that of the free ligand. Similar results were found for the complexes of mpp. This work confirmed our previous finding that cppH has no binding preference, whereas mpp binds exclusively through N(p). Interestingly, the two cppH linkage isomers trans,cis-[RuCl2(CO)2(cppH-κN(p))] (5) and trans,cis-[RuCl2(CO)2(cppH-κN(o))] (6) were easily obtained in pure form by exploiting their different

  3. Structural and thermal properties of carboxylic acid functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    Ariane de França Mescoloto

    2014-01-01

    Full Text Available Polythiophenes functionalized with polar groups at the end of side-chain have emerged as an alternative method to obtain good compatibility between this class of conjugated polymers and electron acceptor compounds. The aim is to prevent phase segregation and to improve the efficiency of the polythiophene technological devices. However, homopolymers synthesized from thiophene rings with high polar groups at the end of the side-chain, such as hydroxyl and carboxylic acid groups, are poorly soluble in common volatile organic solvents. We report on a systematic preparation of copolymers of 3-hexylthiophene (HT and thiophene-3-acetic acid (TAA, using different feed ratios. The chemical structures of the copolymers were confirmed by FTIR and ¹H-NMR. The TAA content in these copolymers were 33, 38 and 54 mol %. HPSEC results did not show any remarkable correlation with TAA contents in the copolymers. In contrast, the thermal analyses showed a decrease in the thermal stability and an increase in rigidity of their backbones, for the copolymers with high amounts of TAA. The solubility and optical property of copolymers were also related to the TAA contents. Thus, the properties of these copolymers can be modulated by a simple control of feed ratio of TAA in the copolymerization.

  4. Chemical rescue of the post-translationally carboxylated lysine mutant of allantoinase and dihydroorotase by metal ions and short-chain carboxylic acids.

    Science.gov (United States)

    Ho, Ya-Yeh; Huang, Yen-Hua; Huang, Cheng-Yang

    2013-04-01

    Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase. Although DHOase is a metalloenzyme, purified DHOase showed high activity without additional metal supplementation in a reaction mixture or bacterial culture. However, unlike DHOase, ALLase had no activity unless some specific metal ions were added to the reaction mixture or culture. Substituting the metal binding sites H59, H61, K146, H186, H242, or D315 with alanine completely abolished the activity of ALLase. However, the K146C, K146D and K146E mutants of ALLase were still active with about 1-6% activity of the wild-type enzyme. These ALLase K146 mutants were found to have 1.4-1.7 mol metal per mole enzyme subunit, which may indicate that they still contained the binuclear metal center in the active site. The activity of the K146A mutant of the ALLase and the K103A mutant of DHOase can be chemically rescued by short-chain carboxylic acids, such as acetic, propionic, and butyric acids, but not by ethanol, propan-1-ol, and imidazole, in the presence of Co2+ or Mn2+ ions. However, the activity was still ~10-fold less than that of wild-type ALLase. Overall, these results indicated that the 20 natural basic amino acid residues were not sufficiently able to play the role of lysine. Accordingly, we proposed that during evolution, the post-translational modification of carboxylated lysine in the cyclic amidohydrolase family was selected for promoting binuclear metal center self-assembly and increasing the nucleophilicity of the hydroxide at the active site for enzyme catalysis. This kind of chemical rescue combined with site-directed mutagenesis may also be used to identify a binuclear metal

  5. Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Bong, Miri; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo

    2009-11-01

    Three anionic homologues of a novel partially fluorinated carboxylate-type anionic gemini surfactant, N,N'-di(3-perfluoroalkyl-2-hydroxypropyl)-N,N'-diacetic acid ethylenediamine (2C(n)(F) edda, where n represents the number of carbon atoms in the fluorocarbon chain (4, 6, and 8)) were synthesized. In these present gemini surfactants, the relatively small carboxylic acid moieties form hydrophilic head groups. The surface properties or structures of the aggregates of these surfactants are strongly influenced by the nonflexible fluorocarbons and small head groups; this is because these surfactants have a closely packed molecular structure. The equilibrium surface tension properties of these surfactants were measured at 298.2K for various fluorocarbon chain lengths. The plot of the logarithm of the critical micelle concentration (cmc) against the fluorocarbon chain lengths for 2C(n)(F) edda (n=4, 6, and 8) showed a minimum for n=6. Furthermore, the lowest surface tension of 2C(6)(F) edda at the cmc was 16.4mNm(-1). Such unique behavior has not been observed even in the other fluorinated surfactants. Changes in the shapes and sizes of these surfactant aggregate with concentration were investigated by dynamic light scattering and transmission electron microscopy (TEM). The TEM micrographs showed that in an aqueous alkali solution, 2C(n)(F) edda mainly formed aggregates with stringlike (n=4), cagelike (n=6), and distorted bilayer structures (n=8). The morphological changes in the aggregates were affected by the molecular structure composed of nonflexible fluorocarbon chains and flexible hydrocarbon chains.

  6. Electrochemical impedance and spectroscopy study of the EDC/NHS activation of the carboxyl groups on poly(ε-caprolactone/poly(m-anthranilic acid nanofibers

    Directory of Open Access Journals (Sweden)

    Z. Guler

    2016-02-01

    Full Text Available Electrochemical impedance spectroscopy (EIS and spectroscopy was applied to investigate the surface activation of carboxyl group (–COOH containing nanofibers by the reaction of 1-ethyl-3-(dimethyl-aminopropyl carbodiimide hydrochloride (EDC/N-hydroxyl succinimide (NHS in different concentrations. Poly(!-caprolactone/poly(m-anthranilic acid (PCL/P3ANA nanofibers were fabricated by electrospinning and were activated with 5/0.5, 0.5/5, 5/5 and 50/50 mM of EDC/NHS. The surface activation was investigated by Attenuated Total Reflectance Fourier transform infrared spectroscopy (FTIR-ATR and activation yield was estimated. Albumin was immobilized after surface activation and the amount of covalently immobilized protein was determined by bicinchoninic acid (BCA assay. Morphology and composition of albumin immobilized nanofibers were characterized by Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy (SEM/EDX and Atomic force microscope (AFM. EIS measurements indicated that nanofibers become resistant after albumin immobilization. The obtained data revealed that the highest amount of albumin bound to nanofibers activated with 50/50 mM of EDC/NHS which was found to be the optimum concentration for the activation of PCL/P3ANA nanofibers.

  7. Structure-Activity Relationship Study of Ionotropic Glutamate Receptor Antagonist (2S,3R)-3-(3-Carboxyphenyl)pyrrolidine-2-carboxylic Acid

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Storgaard, Morten; Møller, Charlotte

    2015-01-01

    Herein we describe the first structure-activity relationship study of the broad-range iGluR antagonist (2S,3R)-3-(3-carboxyphenyl)pyrrolidine-2-carboxylic acid (1) by exploring the pharmacological effect of substituents in the 4, 4', or 5' positions and the bioisosteric substitution of the distal...... carboxylic acid for a phosphonic acid moiety. Of particular interest is a hydroxyl group in the 4' position 2a which induced a preference in binding affinity for homomeric GluK3 over GluK1 (Ki = 0.87 and 4.8 μM, respectively). Two X-ray structures of ligand binding domains were obtained: 2e in GluA2-LBD...... and 2f in GluK1-LBD, both at 1.9 Å resolution. Compound 2e induces a D1-D2 domain opening in GluA2-LBD of 17.3-18.8° and 2f a domain opening in GluK1-LBD of 17.0-17.5° relative to the structures with glutamate. The pyrrolidine-2-carboxylate moiety of 2e and 2f shows a similar binding mode as kainate...

  8. A new reactivity mode for the diazo group: diastereoselective 1,3-aminoalkylation reaction of β-amino-α-diazoesters to give triazolines.

    Science.gov (United States)

    Kuznetsov, Alexey; Gulevich, Anton V; Wink, Donald J; Gevorgyan, Vladimir

    2014-08-18

    A novel mode of reactivity for the diazo group, the 1,3-addition of a nucleophile and an electrophile to the diazo group, has been realized in the intramolecular aminoalkylation of β-amino-α-diazoesters to form tetrasubstituted 1,2,3-triazolines. The reaction exhibited a broad scope, good functional group tolerance, and excellent diastereoselectivity. In addition, a new Au-catalyzed intramolecular transannulation reaction of the obtained propargyl triazolines to give pyrroles has been discovered. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and HPLC evaluation of carboxylic acid phases on a hydride surface.

    Science.gov (United States)

    Pesek, Joseph J; Matyska, Maria T; Gangakhedkar, Surekha; Siddiq, Rukhsana

    2006-04-01

    Three organic moieties containing carboxylic acid functional groups are attached to a particulate silica surface through silanization/hydrosilation. Two compounds (undecylenic acid and 10-undecynoic acid) have 11 carbon chains and the other is a five-carbon acid (pentenoic acid). Bonding is confirmed through carbon elemental analysis, diffuse reflectance infrared fourier transform spectroscopy, and carbon-13 and silicon-29 CP-MAS NMR spectroscopy. The bonded phases are tested by HPLC using PTH amino acids, nucleic acids, theophylline-related compounds, anilines, benzoic acid compounds, choline, and tobramycin. The latter two compounds are used to investigate the aqueous normal phase properties of the three bonded materials.

  10. Acyl and silyl group effects in reactivity-based one-pot glycosylation: synthesis of embryonic stem cell surface carbohydrates Lc4 and IV(2)Fuc-Lc4.

    Science.gov (United States)

    Hsu, Yun; Lu, Xin-An; Zulueta, Medel Manuel L; Tsai, Chih-Ming; Lin, Kuo-I; Hung, Shang-Cheng; Wong, Chi-Huey

    2012-03-14

    Relative reactivity evaluations showed the graded arming of toluenyl thioglucosides by variously positioned silyl groups but not by their acyl counterparts. These findings were applied in reactivity-based one-pot assembly of linker-attached Lc(4) and IV(2)Fuc-Lc(4), which are components of human embryonic stem cell surface. The sugar-galectin-1 binding was also examined.

  11. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with atmospheric ... molecular weight carboxylic acids in aerosol samples collected from a rural ... include biomass burning, agriculture, livestock and soil dust. Tropical ...

  12. A Precise Method for Processing Data to Determine the Dissociation Constants of Polyhydroxy Carboxylic Acids via Potentiometric Titration.

    Science.gov (United States)

    Huang, Kaixuan; Xu, Yong; Lu, Wen; Yu, Shiyuan

    2017-12-01

    The thermodynamic dissociation constants of xylonic acid and gluconic acid were studied via potentiometric methods, and the results were verified using lactic acid, which has a known pKa value, as a model compound. Solutions of xylonic acid and gluconic acid were titrated with a standard solution of sodium hydroxide. The determined pKa data were processed via the method of derivative plots using computer software, and the accuracy was validated using the Gran method. The dissociation constants associated with the carboxylic acid group of xylonic and gluconic acids were determined to be pKa 1  = 3.56 ± 0.07 and pKa 1  = 3.74 ± 0.06, respectively. Further, the experimental data showed that the second deprotonation constants associated with a hydroxyl group of each of the two acids were pKa 2  = 8.58 ± 0.12 and pKa 2  = 7.06 ± 0.08, respectively. The deprotonation behavior of polyhydroxy carboxylic acids was altered using various ratios with Cu(II) to form complexes in solution, and this led to proposing a hypothesis for further study.

  13. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  14. Fluorescence properties of dansyl groups covalently bonded to the surface of oxidatively functionalized low-density polyethylene film

    Science.gov (United States)

    Holmes-Farley, S. R.; Whitesides, G. M.

    1985-12-01

    Brief oxidation of low-density polyethylene film with chromic acid in aqueous sulfuric acid introduced carboxylic acid and ketone and/or aldehyde groups onto the surface of the film. The carboxylic acid moieties can be used to attach more complex functionality to the polymer surface. We are developing this surface-functionalized polyethylene (named polyethylene carboxylic acid, PE-CO2H, to emphasize the functional group that dominates its surface properties) as a substrate with which to study problems in organic surface chemistry--especially wetting, polymer surface reconstruction, and adhesion--using physical-organic techniques. This document describes the preparation, characterization, and fluorescence properties of derivatives of PE-CO2H in which the Dansyl (5-dimethylaminonaphthalene-1-sulfonyl) group has been covalently attached by amide links to the surface carbonyl moieties.

  15. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    Science.gov (United States)

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.

  16. Adsorption behavior of carboxylated cellulose nanocrystal—polyethyleneimine composite for removal of Cr(VI) ions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Jin, Ru-Na; Ouyang, Xiao-kun, E-mail: xkouyang@zjou.edu.cn; Wang, Yang-Guang

    2017-06-30

    Highlights: • A carboxylated cellulose nanocrystal-polyethyleneimine composite (CCN-PEI) was prepared. • The as-prepared CCN-PEI was characterized by SEM, TEM, FT-IR, and XPS. • Results suggested that the reusable CCN-PEI could remove Cr(VI) from aqueous solutions with a high adsorption capacity. • The adsorption isotherm, thermodynamics, and kinetics of the adsorption process are also discussed. - Abstract: In this study, a composite adsorbent (CCN-PEI) composed of carboxylated cellulose nanocrystals (CCN) and polyethyleneimine (PEI) was prepared through an amidation reaction between the carboxyl groups of the CCN and the amine groups of the PEI. The adsorption performance of the CCN-PEI was tested by removing Cr(VI) ions from aqueous solutions. The physicochemical properties of the CCN and the Cr(VI) ion-loaded CCN-PEI were studied using scanning electron microscopy (SEM), transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. To investigate the adsorption kinetics of Cr(VI) ions onto this newly developed CCN-PEI, we performed experiments under different adsorption conditions, by varying the contact time, solution pH, initial Cr(VI) ion concentration, and adsorption temperature. The prepared CCN-PEI exhibited an encouraging uptake capacity of 358.42 mg × g{sup −1}. The adsorption process was fast: within the first 100 min, Cr(VI) ion adsorption onto the CCN-PEI was about 65%, and the adsorption equilibrium was reached within 250 min. Kinetics experiments indicated that the adsorption process could be described by a pseudo-second-order kinetic model. Furthermore, our adsorption equilibrium data fit the Langmuir isotherms well. The calculated thermodynamic parameters, such as the free energy change (ΔG = −2.93 kJ × mol{sup −1}), enthalpy change (ΔH = −5.69 kJ × mol{sup −1}), and entropy change (ΔS = −9.14 kJ × mol{sup −1}), indicate that the adsorption of Cr(VI) ions onto CCN

  17. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  18. Versatile lanthanide-azide complexes with azide/carboxylate/hydroxy mixed bridged chain exhibiting magnetic and luminescent properties

    International Nuclear Information System (INIS)

    Wang Haichao; Xue Min; Guo Qian; Zhao Jiongpeng; Liu Fuchen; Ribas, Joan

    2012-01-01

    Two new lanthanide-azide complexes, [Ln 2 (N 3 )(isonic) 2 (OH) 3 (Hisonic)(H 2 O)] n (Ln=Yb for 1 and Tb for 2, isonic=isonicotinate), were obtained in hydrothermal condition. X-ray diffraction analysis indicated the two complexes are isomorphic chain structure in which the Ln III ions are mixed bridged by the azide anions, hydroxyl anions and carboxylate groups of the isonicotinate ligands. Further studies indicated weak antiferromagnetic interactions between the Ln III ions in 1 and 2, and complex 2 exhibit green sensitized Luminescent character of Tb III ion. - Graphical abstract: Two new 1D lanthanide-azide complexes, [Ln 2 (N 3 )(isonic) 2 (OH) 3 (Hisonic)(H 2 O)] n (Ln=Yb III for 1 and Tb III for 2, isonic=isonicotinate), were synthesized by hydrothermal reaction and exhibit interesting magnetism and fluorescence properties. Highlights: ► The research provided a new method for synthesizing lanthanide-azide complexes. ► The complexes have an interesting azide/hydroxyl/carboxylate mixed bridged1D chain structure. ► The antiferromagnetic coupling between the complexes and 2 displays green luminescence.

  19. Role of Carboxylate ligands in the Synthesis of AuNPs: Size Control, Molecular Interaction and Catalytic Activity

    KAUST Repository

    Aljohani, Hind Abdullah

    2016-05-22

    Nanoparticles (NPs) are the basis of nanotechnology and finding numerous applications in various fields such as health, electronics, environment, personal care products, transportation, and catalysis. To fulfill these functions, the nanoparticles must be synthesized, passivated to control their chemical reactivity, stabilized against aggregation and functionalized to achieve specific performances. The chemistry of metal nanoparticles especially that of noble metals (Gold, Platinum…) is a growing field. The nanoparticles have indeed different properties from those of the corresponding bulk material. These properties are largely influenced by several parameters; the most important are the size, shape, and the local environment of the nanoparticles. One of the most common synthetic methods for the preparation of gold nanoparticles (AuNPs) is based on stabilization by citrate. Since it was reported first by Turkevich et al. in 1951, this synthetic scheme has been widely used, studied and a substantial amount of important information regarding this system has been reported in the literature. The most popular method developed by Frens for controlling the size of the noble gold nanoparticles based on citrate was achieved by varying the concentration of sodium citrate. Despite a large number of investigations focused on utilizing Cit-AuNPs, the structural details of citrate anions adsorbed on the AuNP surface are still unknown. It is known only that citrate anions “coordinate” to the metal surface by inner sphere complexation of the carboxylate groups and there are trace amounts of AuCl4−, Cl−, and OH− on the metal surface. Moreover, it is generally accepted that the ligand shell morphology of Au nanoparticles can be partly responsible for important properties such as oxidation of carbon monoxide. The use of Au-NPs in heterogeneous catalysis started mostly with Haruta who discovered the effect of particle size on the activity for carbon monoxide oxidation at

  20. Stereoselective Synthesis of Functionalized 1,3-Disubstituted Isoindolines via Rh(III)-Catalyzed Tandem Oxidative Olefination-Cyclization of 4-Aryl-cyclic Sulfamidate-5-Carboxylates.

    Science.gov (United States)

    Achary, Raghavendra; Jung, In-A; Son, Se-Mi; Lee, Hyeon-Kyu

    2017-07-21

    A new method for the direct, stereoselective synthesis of highly functionalized 1,3-disubstituted isoindolines 6 from enantiomerically enriched cyclic 4-aryl-sulfamidate-5-carboxylates (5) is described. The process involves sulfamidate directed, Rh(III)-catalyzed tandem ortho C-H olefination of the 4-aryl-sulfamidate-5-carboxylates and subsequent cyclization by aza-Michael addition. In the reaction, which generates trans-1,3-disubstituted isoindolines exclusively, the configurational integrity of the stereogenic center in the starting cyclic sulfamidate is completely retained in the product. Examples are provided which show that the cyclic sulfamidate moiety not only serves as a chiral directing group but also as a versatile handle for further functionalization of the generated isoindoline ring system.

  1. Insertion material for controlling reactivity

    International Nuclear Information System (INIS)

    Baba, Iwao.

    1994-01-01

    Moderators and a group of suspended materials having substantially the same density as the moderator are sealed in a hollow rod vertically inserted to a fuel assembly. Specifically, the group of suspended materials is adapted to have a density changing stepwise from density of the moderator at the exit temperature of the reactor core to that at the inlet temperature of the reactor core. Reactivity is selectively controlled for a portion of high power and a portion of high reactivity by utilizing the density of the moderator and the distribution of the density. That is, if the power distribution is flat, the density of the moderators changes at a constant rate over the vertical direction of the reactor core and the suspended materials stay at a portion of the same density, to form a uniform distribution. Further, upon reactor shutdown, since the liquid temperature of the moderators is lowered and the density is increased, all of beads are collected at the upper portion to remove water at the upper portion of the reactor core of low burnup degree thereby selectively controlling the reactivity at a portion of high power and a portion of high reactivity. (N.H.)

  2. Altered Brain Reactivity to Game Cues After Gaming Experience.

    Science.gov (United States)

    Ahn, Hyeon Min; Chung, Hwan Jun; Kim, Sang Hee

    2015-08-01

    Individuals who play Internet games excessively show elevated brain reactivity to game-related cues. This study attempted to test whether this elevated cue reactivity observed in game players is a result of repeated exposure to Internet games. Healthy young adults without a history of excessively playing Internet games were recruited, and they were instructed to play an online Internet game for 2 hours/day for five consecutive weekdays. Two control groups were used: the drama group, which viewed a fantasy TV drama, and the no-exposure group, which received no systematic exposure. All participants performed a cue reactivity task with game, drama, and neutral cues in the brain scanner, both before and after the exposure sessions. The game group showed an increased reactivity to game cues in the right ventrolateral prefrontal cortex (VLPFC). The degree of VLPFC activation increase was positively correlated with the self-reported increase in desire for the game. The drama group showed an increased cue reactivity in response to the presentation of drama cues in the caudate, posterior cingulate, and precuneus. The results indicate that exposure to either Internet games or TV dramas elevates the reactivity to visual cues associated with the particular exposure. The exact elevation patterns, however, appear to differ depending on the type of media experienced. How changes in each of the regions contribute to the progression to pathological craving warrants a future longitudinal study.

  3. Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Yuheng Deng

    2010-05-01

    Full Text Available This paper provides a brief review of recent progress in the field of metal coordination polymers assembled from azole-containing carboxylic acids and gives a diagrammatic summary of the diversity of topological structures in the resulting infinite metal-organic coordination networks (MOCNs. Azole-containing carboxylic acids are a favorable kind of multifunctional ligand to construct various metal complexes with isolated complexes and one, two and three dimensional structures, whose isolated complexes are not the focus of this review. An insight into the topology patterns of the infinite coordination polymers is provided. Analyzed topologies are compared with documented topologies and catalogued by the nature of nodes and connectivity pattern. New topologies which are not available from current topology databases are described and demonstrated graphically.

  4. Ionic elastomers based on carboxylated nitrile rubber (XNBR and magnesium aluminum layered double hydroxide (hydrotalcite

    Directory of Open Access Journals (Sweden)

    A. Laskowska

    2014-06-01

    Full Text Available The presence of carboxyl groups in carboxylated nitrile butadiene rubber (XNBR allows it to be cured with different agents. This study considers the effect of crosslinking of XNBR by magnesium aluminum layered double hydroxide (MgAl-LDH, known also as hydrotalcite (HT, on rheometric, mechano-dynamical and barrier properties. Results of XNBR/HT composites containing various HT loadings without conventional curatives are compared with XNBR compound crosslinked with commonly used zinc oxide. Hydrotalcite acts as an effective crosslinking agent for XNBR, as is particularly evident from rheometric and Fourier transform infrared spectroscopy (FTIR studies. The existence of ionic crosslinks was also detected by dynamic mechanical analysis (DMA of the resulting composites. DMA studies revealed that the XNBR/HT composites exhibited two transitions – one occurring at low temperature is associated to the Tg of elastomer and the second at high temperature corresponds to the ionic transition temperature Ti. Simultaneous application of HT as a curing agent and a filler may deliver not only environmentally friendly, zinc oxide-free rubber product but also ionic elastomer composite with excellent mechanical, barrier and transparent properties.

  5. Silver(I) and copper(II)-imidazolium carboxylates: Efficient catalysts ...

    Indian Academy of Sciences (India)

    GANESAN PRABUSANKAR

    the reaction between corresponding carboxylic acid ligands and metal salts. These new metal .... g), DMF (2 mL) and water (1 mL) was added; then, the sus- pension was ..... ence of five mol% potassium hydroxide as base in 1 and. Scheme 3.

  6. The effect of HLA mismatches, shared cross-reactive antigen groups, and shared HLA-DR antigens on the outcome after pediatric liver transplantation

    NARCIS (Netherlands)

    Sieders, E; Hepkema, BG; Peeters, PMJG; Ten Vergert, EM; De Jong, KP; Porte, RJ; Bijleveld, CMA; van den Berg, AP; Lems, SPM; Gouw, ASH; Slooff, MJH

    2005-01-01

    The aim of this study was to analyze the effect of human leukocyte antigen (HLA) class I and HLA-DR mismatching, sharing cross-reactive antigen groups (CREGs), and sharing HLA-DR antigens on the outcome after pediatric liver transplantation. Outcome parameters were graft survival, acute rejection,

  7. Interactions of Kraft lignin and wheat gluten during biomaterial processing: evidence for the role of phenolic groups.

    Science.gov (United States)

    Kaewtatip, Kaewta; Menut, Paul; Auvergne, Remi; Tanrattanakul, Varaporn; Morel, Marie-Helene; Guilbert, Stephane

    2010-04-14

    The chemical interactions between Kraft lignin and wheat gluten under processing conditions were investigated by determining the extent of the protein network formation. To clarify the role of different chemical functions found in lignin, the effect of Kraft lignin was compared with that of an esterified lignin, in which hydroxyl groups had been suppressed by esterification, and with a series of simple aromatics and phenolic structures with different functionalities (conjugated double bonds, hydroxyl, carboxylic acid, and aldehyde). The protein solubility was determined by using the Kjeldahl method. The role of the hydroxyl function was assessed by the significantly lower effect of esterified lignin. The importance of the phenolic radical scavenging structure is evidenced by the effect of guaiacol, which results in a behavior similar to that of the Kraft lignin. In addition, the significant effect of conjugated double bonds on gluten reactivity, through nucleophilic addition, was demonstrated.

  8. Carbon dioxide utilization via carbonate-promoted C-H carboxylation.

    Science.gov (United States)

    Banerjee, Aanindeeta; Dick, Graham R; Yoshino, Tatsuhiko; Kanan, Matthew W

    2016-03-10

    Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO3(2-)) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)--a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO3(2-)-promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.

  9. New Synthesis, Structure and Analgesic Properties of Methyl 1-R-4-Methyl-2,2-Dioxo-1H-2λ6,1-Benzothiazine-3-Carboxylates

    Directory of Open Access Journals (Sweden)

    Liliana Azotla-Cruz

    2017-01-01

    Full Text Available According to the principles of the methodology of bioisosteric replacements a series of methyl 1-R-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates has been obtained as potential analgesics. In addition, a fundamentally new strategy for the synthesis of compounds of this chemical class involving the introduction of N-alkyl substituent at the final stage in 2,1-benzothiazine nucleus already formed has been proposed. Using nuclear magnetic resonance (NMR spectroscopy, mass spectrometry and X-ray diffraction analysis it has been proven that in the DMSO/K2CO3 system the reaction of methyl 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate and alkyl halides leads to formation of N-substituted derivatives with good yields regardless of the structure of the alkylating agent. The peculiarities of NMR (1Н and 13С spectra of the compounds synthesized, their mass spectrometric behavior and the spatial structure are discussed. In N-benzyl derivative the ability to form a monosolvate with methanol has been found. According to the results of the pharmacological testing conducted on the model of the thermal tail-flick it has been determined that replacement of 4-ОН-group in methyl 1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates for the methyl group is actually bioisosteric since all methyl 1-R-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates synthesized demonstrated a statistically significant analgesic effect. The majority of the substances can inhibit the thermal pain response much more effective than piroxicam in the same dose. Under the same conditions as an analgesic the N-methyl-substituted analog exceeds not only piroxicam, but more active meloxicam as well. Therefore, it deserves in-depth biological studies on other experimental models.

  10. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    Science.gov (United States)

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  11. First principles investigations on the electronic structure of anchor groups on ZnO nanowires and surfaces

    International Nuclear Information System (INIS)

    Dominguez, A.; Lorke, M.; Rosa, A. L.; Frauenheim, Th.; Schoenhalz, A. L.; Dalpian, G. M.; Rocha, A. R.

    2014-01-01

    We report on density functional theory investigations of the electronic properties of monofunctional ligands adsorbed on ZnO-(1010) surfaces and ZnO nanowires using semi-local and hybrid exchange-correlation functionals. We consider three anchor groups, namely thiol, amino, and carboxyl groups. Our results indicate that neither the carboxyl nor the amino group modify the transport and conductivity properties of ZnO. In contrast, the modification of the ZnO surface and nanostructure with thiol leads to insertion of molecular states in the band gap, thus suggesting that functionalization with this moiety may customize the optical properties of ZnO nanomaterials.

  12. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    International Nuclear Information System (INIS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln 2 (phen) 2 (SO 4 ) 3 (H 2 O) 2 ] n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)] n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO 4 2− anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of 5 D 0 → 7 F J (J=0–4) of the Eu(III)

  13. Synthesis and Characterisation of Tris(1-carboxyl-2-phenyl-1,2-ethyl eno dithiol enic-S,S') Tungsten Complex as Photo catalyst for Photolysis of H2O Molecules

    International Nuclear Information System (INIS)

    Fadhli Hadana Rahman; Rusli Daik; Mohammad Kassim; Khuzaimah; Wan Ramli Wan Daud

    2008-01-01

    Tris(1-carboxyl-2-phenyl-1,2-ethylenodithiolenic-S,S ' ) tungsten complex is one of the most promising photo catalyst to be used in photolysis of water to produce hydrogen. The first step of the synthesis involves a metathesis reaction of tetrapropylammonium bromide [((C 3 H 7 ) 4 N)Br] and ammonium tetrathiotungstate [(NH 4 ) 2 WS 4 ] to form a tetrapropylammonium tetrathiotungstate [((C 3 H 7 ) 4 N) 2 WS 4 ] (precursor). Then, the precursor was reacted with phenyl acetylenecarboxylic acid (C 9 H 6 O 2 ) to form tris(1-carboxyl-2-phenyl-1,2-ethylenodithiolenic-S,S ' ) tungsten complex (C 27 H 18 O 2 S 6 W). The infra-red, ultra violet/ visible (UV/ Vis) spectrum, nuclear magnetic resonance (NMR) and elemental micro-analysis of C, H, N and S agreed with the characteristic of the tris(1-carboxyl-2-phenyl-1,2-ethylenodithiolenic-S,S ' ) tungsten complex. The (W-S), (C-S) and (C=O) stretching frequencies were detected at 511, (1470 and 1035) and 1655 cm -1 , respectively. The 1 H NMR spectrum showed six protons in the complex. The 13 C NMR showed only 7 signals for carbon atom in the benzene ring, ethylene groups and carboxylic acid pendant group due to the symmetry of the molecules. The reaction yield was about 50 percent. Photolysis of acetone spiked H 2 O showed that the catalyst was able to produced 1.8 μmol/ h hydrogen. (author)

  14. CARBOXYLIC ACIDS OF HERB OF THYMUS CRETACEUS KLOK. ET SCHOST

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2014-01-01

    Full Text Available We have studied carboxylic acids of the herb of Thymus cretaceus Klok. et Schost which is widespread on a territory of some regions (Belgorod, Voronezh. The study was carried out using gas-liquid chromatography at Agilent Technologies 6890 chromatographer with massspectrometric detector 5973 N. Acids concentration was calculated by means of inner standard.We have established that carboxylic acids of Thymus cretaceus are represented by 34 compounds. Palmitic (1779.02 mg/kg, behenic (1084.15 mg/kg, levulinic (986.24 mg/kg and linoleic acids (678.82 mg/kg predominate among fatty acids; citric (9835.14 mg/kg, malonic (447.91 mg/kg and oxalic acids (388.32 mg/kg predominate among organic acids; andferulic acid predominate amongphenolcarbonic acids.

  15. Computational screening of functional groups for capture of toxic industrial chemicals in porous materials.

    Science.gov (United States)

    Kim, Ki Chul; Fairen-Jimenez, David; Snurr, Randall Q

    2017-12-06

    A thermodynamic analysis using quantum chemical methods was carried out to identify optimal functional group candidates that can be included in metal-organic frameworks and activated carbons for the selective capture of toxic industrial chemicals (TICs) in humid air. We calculated the binding energies of 14 critical TICs plus water with a series of 10 functional groups attached to a naphthalene ring model. Using vibrational calculations, the free energies of adsorption were calculated in addition to the binding energies. Our results show that, in these systems, the binding energies and free energies follow similar trends. We identified copper(i) carboxylate as the optimal functional group (among those studied) for the selective binding of the majority of the TICs in humid air, and this functional group exhibits especially strong binding for sulfuric acid. Further thermodynamic analysis shows that the presence of water weakens the binding strength of sulfuric acid with the copper carboxylate group. Our calculations predict that functionalization of aromatic rings would be detrimental to selective capture of COCl 2 , CO 2 , and Cl 2 under humid conditions. Finally, we found that forming an ionic complex, H 3 O + HSO 4 - , between H 2 SO 4 and H 2 O via proton transfer is not favorable on copper carboxylate.

  16. Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly(hydroxyethylmethacrylate)-grafted lignocellulosics.

    Science.gov (United States)

    Anirudhan, T S; Divya, L; Suchithra, P S

    2009-01-01

    This study investigated the feasibility of using a new adsorbent prepared from coconut coir pith, CP (a coir industry-based lignocellulosic residue), for the removal of uranium [U(VI)] from aqueous solutions. The adsorbent (PGCP-COOH) having a carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto CP using potassium peroxydisulphate-sodium thiosulphite as a redox initiator and in the presence of N,N'-methylenebisacrylamide as a crosslinking agent. IR spectroscopy results confirm the graft copolymer formation and carboxylate functionalization. XRD studies confirm the decrease of crystallinity in PGCP-COOH compared to CP, and it favors the protrusion of the functional group into the aqueous medium. The thermal stability of the samples was studied using thermogravimetry (TG). Surface charge density of the samples as a function of pH was determined using potentiometric titration. The ability of PGCP-COOH to remove U(VI) from aqueous solutions was assessed using a batch adsorption technique. The maximum adsorption capacity was observed at the pH range 4.0-6.0. Maximum removal of 99.2% was observed for an initial concentration of 25mg/L at pH 6.0 and an adsorbent dose of 2g/L. Equilibrium was achieved in approximately 3h. The experimental kinetic data were analyzed using a first-order kinetic model. The temperature dependence indicates an endothermic process. U(VI) adsorption was found to decrease with an increase in ionic strength due to the formation of outer-sphere surface complexes on PGCP-COOH. Equilibrium data were best modeled by the Langmuir isotherm. The thermodynamic parameters such as DeltaG(0), DeltaH(0) and DeltaS(0) were derived to predict the nature of adsorption. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC-50, with carboxylate functionality for comparison. Utility of the adsorbent was tested by removing U(VI) from simulated nuclear industry wastewater

  17. Pd(II)-Catalyzed C–H Functionalizations Directed by Distal Weakly Coordinating Functional Groups

    Science.gov (United States)

    Li, Gang; Wan, Li; Zhang, Guofu; Leow, Dasheng; Spangler, Jillian

    2015-01-01

    Ortho-C(sp2)–H olefination and acetoxylation of broadly useful synthetic building blocks phenylacetyl Weinreb amides, esters, and ketones are developed without installing an additional directing group. The interplay between the distal weak coordination and the ligand-acceleration is crucial for these reactions to proceed under mild conditions. The tolerance of longer distance between the target C–H bonds and the directing functional groups also allows for the functionalizations of more distal C–H bonds in hydrocinnamoyl ketones, Weinreb amides and biphenyl Weinreb amides. Mechanistically, the coordination of these carbonyl groups and the bisdentate amino acid ligand with Pd(II) centers provides further evidence for our early hypothesis that the carbonyl groups of the potassium carboxylate is responsible for the directed C–H activation of carboxylic acids. PMID:25768039

  18. A soft biomolecule actuator based on a highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups.

    Science.gov (United States)

    Wang, Fan; Jeon, Jin-Han; Park, Sukho; Kee, Chang-Doo; Kim, Seong-Jun; Oh, Il-Kwon

    2016-01-07

    Upcoming human-related applications such as soft wearable electronics, flexible haptic systems, and active bio-medical devices will require bio-friendly actuating materials. Here, we report a soft biomolecule actuator based on carboxylated bacterial cellulose (CBC), ionic liquid (IL), and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) electrodes. Soft and biocompatible polymer-IL composites were prepared via doping of CBC with ILs. The highly conductive PSS layers were deposited on both sides of the CBC-IL membranes by a dip-coating technique to yield a sandwiched actuator system. Ionic conductivity and ionic exchange capacity of the CBC membrane can be increased up to 22.8 times and 1.5 times compared with pristine bacterial cellulose (BC), respectively, resulting in 8 times large bending deformation than the pure BC actuators with metallic electrodes in an open air environment. The developed CBC-IL actuators show significant progress in the development of biocompatible and soft actuating materials with quick response, low operating voltage and comparatively large bending deformation.

  19. A comparison of properties between carboxylated acrylic rubbers prepared by γ-ray irradiation and chemical method

    International Nuclear Information System (INIS)

    Wang Weiwei; Chang Zhenqi; Wang Mozhen; Zhang Zhicheng; Lv Pin

    2006-01-01

    Acrylic rubbers (ACM) carboxylated by acrylic acid or itaconic acid were prepared by 60 Co γ-ray or chemical-initiator (K 2 S 2 O 8 ) induced emulsion copolymerization. The polymers were characterized by Fourier transform infrared spectroscopy (FT-IR). Acid value, molecular weight and polydispersity index (PDI) of the polymers were determined by non-aqueous titration method and gel permeation chromatography (GPC), respectively. Vulcanization and mechanical properties of the filled ACM were studied by rheometric measurement, gel fraction analysis, mechanical property tests and dynamic mechanical thermal analysis (DMTA). The results show that the ACMs prepared by γ-ray irradiation have lower acid value, higher molecular weight and narrower PDI than chemically prepared ACMs of the same compositions. The itaconic acid carboxylated ACM has better cure characteristics and mechanical properties than the acrylic acid carboxylated ACM. The itaconic acid carboxylated ACM prepared by γ-ray irradiation has higher gel fraction and better cure characteristics as well as mechanical properties than that prepared by chemical method. (authors)

  20. Postocclusive reactive hyperemia in hand-arm vibration syndrome

    Directory of Open Access Journals (Sweden)

    Zlatka Stoyneva

    2016-08-01

    Full Text Available Objectives: To assess laser Doppler-recorded postocclusive reactive hyperemic responses in vibration-induced Raynaud’s phenomenon and compare it with primary and secondary to sclerodermy Raynaud’s phenomenon. Material and Methods: Thirty patients with vibration-induced Raynaud’s phenomenon and 30 healthy controls and patients with primary and secondary to sclerodermy Raynaud’s phenomenon were investigated. Fingerpulp skin blood flow was monitored by laser Doppler flowmetry during postocclusive reactive hyperemia test. Results: Lower initial perfusion values were established in all the patients with Raynaud’s phenomenon compared to the healthy controls (p < 0.0001. The postocclusive reactive hyperemic peak was lower in all the Raynaud’s phenomenon groups compared to the controls (p < 0.0001. The postocclusive and basal perfusions were lower in the secondary Raynaud’s phenomenon groups compared to the control and the primary Raynaud’s phenomenon groups (p < 0.0001. The velocities to postocclusive hyperemic peak were lower in all the Raynaud’s phenomenon patients (p < 0.0001, so were in the vibration-induced (p < 0.002 and the sclerodermy Raynaud’s phenomenon (p < 0.004 groups in relation to the primary Raynaud’s phenomenon group. The perfusion values and the velocities were significantly influenced by the initial superficial skin temperatures and perfusions, while the velocities were dependent also on gender, and the hyperemic peak on age. Conclusions: Postocclusive reactive hyperemia is abnormal in all Raynaud’s phenomenon patients. Laser Doppler-recorded reactive hyperemia test contributes to diagnosing Raynaud’s phenomenon and has proved to be valuable for group analysis. The applied method is not sensitive enough to discriminate adequately the type of Raynaud’s phenomenon among individual cases.

  1. Introduction of 5'-terminal functional groups into synthetic oligonucleotides for selective immobilization

    NARCIS (Netherlands)

    Bischoff, Rainer; Coull, J.M.; Regnier, F.E.

    1987-01-01

    Oligodeoxyribonucleotides terminating in a 5'-primary amine group are synthesized using solid-phase supported phosphoramidite chemistry. The 5'-terminal amine group in the deprotected oligomers is further derivatized with either succinic anhydride to give 5'-carboxylic acid or with

  2. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Wortham, H.; Marchand, N. [Univ Aix Marseille, CNRS, Lab Chim Provence, Equipe Instrumentat and React Atmospher, UMR 6264, F-13331 Marseille 3 (France); Jaffrezo, J.L. [Univ Grenoble 1, CNRS, UMR 5183, Lab Glaciol and Geophys Environm, F-38402 St Martin Dheres (France)

    2010-07-01

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCIMS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R' respectively) and precursor ion (nitro groups, R-NO{sub 2}) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalization rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional

  3. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dron

    2010-08-01

    Full Text Available The functional group composition of various organic aerosols (OA is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS. The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R´ respectively and precursor ion (nitro groups, R-NO2 scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular to 13.5% (o-xylene photooxidation of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60

  4. Affective and cognitive reactivity to mood induction in chronic depression.

    Science.gov (United States)

    Guhn, Anne; Sterzer, Philipp; Haack, Friderike H; Köhler, Stephan

    2018-03-15

    Chronic depression (CD) is strongly associated with childhood maltreatment, which has been proposed to lead to inefficient coping styles that are characterized by abnormal affective responsiveness and dysfunctional cognitive attitudes. However, while this notion forms an important basis for psychotherapeutic strategies in the treatment of CD, there is still little direct empirical evidence for a role of altered affective and cognitive reactivity in CD. The present study therefore experimentally investigated affective and cognitive reactivity to two forms of negative mood induction in CD patients versus a healthy control sample (HC). For the general mood induction procedure, a combination of sad pictures and sad music was used, while for individualized mood induction, negative mood was induced by individualized scripts with autobiographical content. Both experiments included n = 15 CD patients versus n = 15 HC, respectively. Interactions between affective or cognitive reactivity and group were analyzed by repeated measurements ANOVAs. General mood induction neither revealed affective nor cognitive reactivity in the patient group while the control group reported the expected decrease of positive affect [interaction (IA) affective reactivity x group: p = .011, cognitive reactivity x group: n.s.]. In contrast, individualized mood induction specifically increased affective reactivity (IA: p = .037) as well as the amount of dysfunctional cognitions in patients versus controls (IA: p = .014). The experiments were not balanced in a crossover design, causal conclusions are thus limited. Additionally, the differences to non-chronic forms of depression are still outstanding. The results suggest that in patients with CD, specific emotional activation through autobiographical memories is a key factor in dysfunctional coping styles. Psychotherapeutic interventions aimed at modifying affective and cognitive reactivity are thus of high relevance in the treatment of CD. Copyright

  5. Cloning of phenazine carboxylic acid genes of Fusarium fujikuroi ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    Mar 8, 2010 ... genetic modification can improve the efficacy of biological control agents (Van Loon, 1998). Bacterial secondary ... WCS358r was modified to produce the antifungal com- pound phenazine-1-carboxylic acid (PCA) ( ..... control of Rhizoctonia solani in tomato. J. Biotechnol. 6: 115-127. Raaijmakers JM ...

  6. Dimerization of Carboxylic Acids: An Equation of State Approach

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas

    2017-01-01

    The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess...

  7. Acute toxicity assessment of perfluorinated carboxylic acids towards the Baltic microalgae.

    Science.gov (United States)

    Latała, Adam; Nędzi, Marcin; Stepnowski, Piotr

    2009-09-01

    The presence of high-energy carbon-fluorine bonds in perfluoro compounds lends them great stability and causes them to be environmentally persistent. Relatively little is known about the acute toxicity of perfluorinated carboxylic acids (PFCAs) to ecotoxicological markers such as aquatic plants and animals. This study tested the toxicity of these compounds to the green alga Chlorella vulgaris, the diatom Skeletonema marinoi and the blue-green alga Geitlerinema amphibium, which are species representative of the algal flora of the Baltic Sea. The EC(50) values obtained range from 0.28 mM to 12.84 mM. A distinct relationship between hydrophobicity and toxicity is demonstrated. For every extra perfluoromethylene group in the alkyl chain, the toxicity increases twofold. LogEC(50) values are very well correlated linearly with both the number of carbon atoms in the perfluoroalkyl chain and the partition coefficients. The results also indicate that there are clear differences between the responses of particular taxonomic groups of algae: blue-green algae and diatoms are far more sensitive to PFCAs than green algae, probably because of differences in cell wall structure.

  8. Water-soluble Manganese and Iron Mesotetrakis(carboxyl)porphyrin: DNA Binding, Oxidative Cleavage, and Cytotoxic Activities.

    Science.gov (United States)

    Shi, Lei; Jiang, Yi-Yu; Jiang, Tao; Yin, Wei; Yang, Jian-Ping; Cao, Man-Li; Fang, Yu-Qi; Liu, Hai-Yang

    2017-06-29

    Two new water-soluble metal carboxyl porphyrins, manganese (III) meso -tetrakis (carboxyl) porphyrin and iron (III) meso -tetrakis (carboxyl) porphyrin, were synthesized and characterized. Their interactions with ct-DNA were investigated by UV-Vis titration, fluorescence spectra, viscosity measurement and CD spectra. The results showed they can strongly bind to ct-DNA via outside binding mode. Electrophoresis experiments revealed that both complexes can cleave pBR322 DNA efficiently in the presence of hydrogen peroxide, albeit 2-Mn exhibited a little higher efficiency. The inhibitor tests suggest the oxidative DNA cleavage by these two complexes may involve hydroxyl radical active intermediates. Notably, 2-Mn exhibited considerable photocytotoxicity against Hep G2 cell via triggering a significant generation of ROS and causing disruption of MMP after irradiation.

  9. Rapid and selective derivatizatin method for the nitrogen-sensitive detection of carboxylic acids in biological fluids prior to gas chromatographic analysis

    NARCIS (Netherlands)

    Lingeman, H.; Haan, H.B.P.; Hulshoff, A.

    1984-01-01

    A rapid and selective derivatization procedure is described for the pre-column labelling of carboxylic acids with a nitrogen-containing label. The carboxylic acid function is activated with 2-bromo-1-methylpyridinium iodide and the activated carboxylic acid function reacts with a primary or a

  10. Reactivity of the functional groups in functional polymers. Use of T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Imaizumi, Hiroshi; Hasegawa, Shinobu.

    1997-01-01

    In order to reveal the reactivity of several functional polymers, the following two experiments were carried out: observing the hydrogen-isotope exchange reaction (T-for-H exchange reaction) between one of T-labeled functional polymers and 0.500 mol·l -1 aniline dissolved in p-xylene, observing the degree of the T dispersed from the surface area of the polymer under the several conditions. Consequently, the following six matters have been quantitatively obtained. The T-for-H exchange reaction occurred between each T-labeled polymer and aniline, and is more predominant than other chemical reactions within the range of 50-90degC. The reactivity of the polymers are strongly affected by their matrix structures. The degree of the T dispersed from the surface area of each T-labeled polymer is hardly affected by humidity. The higher the temperature is, the larger is the degree of the T dispersed from the surface area. At the same temperature, the degree of the T dispersed from the surface area of each polymer is strongly affected by the physical form of the polymer even if the polymer has the same functional group as the others, and the T existing in the surface area of a T-labeled glassy polymer is less dispersed than that of a porous one. The degree of the T dispersed from the surface area of a T-labeled polymer is small when the degree of the polymerization of the polymer is high. (author)

  11. Reactivity of group IV (100) semiconductor surfaces towards organic compounds

    Science.gov (United States)

    Wang, George T.

    The reactions of simple and multifunctional organic compounds with the clean silicon, germanium, and diamond (100)-2 x 1 semiconductor surfaces have been investigated using a combination of multiple internal reflection infrared spectroscopy and quantum chemistry density functional theory calculations. From these studies, an improved understanding of the atomic level reactivity of these semiconductor surfaces has been obtained, along with insights into how to achieve their selective coupling with organics of desired and varied functionality. In addition to the Si(100) and Ge(100) surfaces, our results show that cycloaddition chemistry can also be extended to the diamond (100) surface. At room temperature, 1,3-butadiene was found to form a Diels-Alder product with the diamond (100) surface, as evidenced by isotopic substitution experiments and comparison of the surface adduct with its direct molecular analogue, cyclohexene. The reactions of other classes of molecules in addition to alkenes on the Si(100) and Ge(100) surfaces, including a series of five-membered cyclic amines, were also examined. For tertiary aliphatic amines on Si(100) and both secondary and tertiary aliphatic amines on Ge(100), a majority of the molecules were observed to become stably trapped in dative-bonded precursor states rather than form energetically favorable dissociation products. For pyrrole, aromaticity was found to play a defining role in its reactivity, and a comparison of its molecular and surface reactivity reveals interesting similarities. To probe the factors controlling the selectivity of organic reactions on clean semiconductor surfaces, the adsorption of acetone and a series of unsaturated ketones was also investigated. The reaction of acetone on Ge(100) was found to be under thermodynamic control at room temperature, resulting in the formation of an "ene" product rather than the kinetically favored [2+2] C=O cycloaddition product previously observed on the Si(100) surface. In

  12. Preparation of conjugated poly(ethyl acetylene carboxylate) as optical limiter of laser radiation

    International Nuclear Information System (INIS)

    Allaf, A. W.; Al-Zier, A.; Al-Naima, D.

    2009-03-01

    The optical limiting action of poly (ethylacetylene carboxylate) dissolved in dichloroethane were investigated under irradiation with 8 ns laser pulses at 532 nm. The optical limiting measurements were performed at a series of concentrations. The threshold limiting fluence was observed for high concentrations at 5 J/cm 2 with a transmission of about 20 %. No optical limiting action was observed at very low concentration of the prepared polymer in the dichloroethane solvent. The observed data show that poly (ethylacetylene carboxylate) has the potential for the use as optical limiting material for future applications. (author)

  13. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  14. An enantioselective approach toward 3,4-dihydroisocoumarin through the bromocyclization of styrene-type carboxylic acids.

    Science.gov (United States)

    Chen, Jie; Zhou, Ling; Tan, Chong Kiat; Yeung, Ying-Yeung

    2012-01-20

    A facile and enantioselective approach toward 3,4-dihydroisocoumarin was developed. The method involved an amino-thiocarbamate catalyzed enantioselective bromocyclization of styrene-type carboxylic acids, yielding 3-bromo-3,4-dihydroisocoumarins with good yields and ee's. 3-Bromo-3,4-dihydroisocoumarins are versatile building blocks for various dihydroisocoumarin derivatives in which the Br group can readily be modified to achieve biologically important 4-O-type and 4-N-type 3,4-dihydroisocoumarin systems. In addition, studies indicated that, by refining some parameters, the synthetically useful 5-exo phthalide products could be achieved with good yields and ee's.

  15. Low-molecular-weight poly-carboxylate as crystal growth modifier in ...

    Indian Academy of Sciences (India)

    Biomineralization; growth modifier; amino acid; low-molecular-weight chiral poly- carboxylate; calcium ... They are also used as gravity sensors, for metal storage and .... The pH of the solutions was maintained at ~10⋅0 for different periods of ...

  16. Light dependence of carboxylation capacity for C3 photosynthesis models

    Science.gov (United States)

    Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...

  17. Metal-Catalyzed Intra- and Intermolecular Addition of Carboxylic Acids to Alkynes in Aqueous Media: A Review

    Directory of Open Access Journals (Sweden)

    Javier Francos

    2017-11-01

    Full Text Available The metal-catalyzed addition of carboxylic acids to alkynes is a very effective tool for the synthesis of carboxylate-functionalized olefinic compounds in an atom-economical manner. Thus, a large variety of synthetically useful lactones and enol-esters can be accessed through the intra- or intermolecular versions of this process. In order to reduce the environmental impact of these reactions, considerable efforts have been devoted in recent years to the development of catalytic systems able to operate in aqueous media, which represent a real challenge taking into account the tendency of alkynes to undergo hydration in the presence of transition metals. Despite this, different Pd, Pt, Au, Cu and Ru catalysts capable of promoting the intra- and intermolecular addition of carboxylic acids to alkynes in a selective manner in aqueous environments have appeared in the literature. In this review article, an overview of this chemistry is provided. The synthesis of β-oxo esters by catalytic addition of carboxylic acids to terminal propargylic alcohols in water is also discussed.

  18. Novel Isoniazid cocrystals with aromatic carboxylic acids: Crystal engineering, spectroscopy and thermochemical investigations

    Science.gov (United States)

    Diniz, Luan F.; Souza, Matheus S.; Carvalho, Paulo S.; da Silva, Cecilia C. P.; D'Vries, Richard F.; Ellena, Javier

    2018-02-01

    Four novel cocrystals of the anti-tuberculosis drug Isoniazid (INH), including two polymorphs, with the aromatic carboxylic acids p-nitrobenzoic (PNBA), p-cyanobenzoic (PCNBA) and p-aminobenzoic (PABA) were rationally designed and synthesized by solvent evaporation. Aiming to explore the possible supramolecular synthons of this API, these cocrystals were fully characterized by X-ray diffraction (SCXRD, PXRD), spectroscopic (FT-IR) and thermal (TGA, DSC, HSM) techniques. The cocrystal formation was found to be mainly driven by the synthons formed by the pyridine and hydrazide moieties. In both INH-PABA polymorphs, the COOH acid groups are H-bonded to pyridine and hydrazide groups giving rise to the acid⋯pyridine and acid⋯hydrazide heterosynthons. In INH-PNBA and INH-PCNBA cocrystals these acid groups are only related to the pyridine moiety. In addition to the structural study, supramolecular and Hirshfeld surface analysis were also performed based on the structural data. The cocrystals were identified from the FT-IR spectra and their thermal behaviors were studied by a combination of DSC, TGA and HSM techniques.

  19. Comprehensive evaluation of carboxylated nanodiamond as a topical drug delivery system.

    Science.gov (United States)

    Lim, Dae Gon; Kim, Ki Hyun; Kang, Eunah; Lim, Sun Hee; Ricci, Jeremy; Sung, Si Kwon; Kwon, Myoung Taek; Jeong, Seong Hoon

    2016-01-01

    The best strategy in the development of topical drug delivery systems may be to facilitate the permeation of drugs without any harmful effects, while staying on the skin surface and maintaining stability of the system. Nanodiamonds (NDs) play a key role with their excellent physicochemical properties, including high biocompatibility, physical adsorption, reactive oxygen species (ROS) scavenging capability, and photostabilizing activity. Z-average sizes of carboxylated ND (ND-COOH) agglutinate decreased significantly as the pH increased. Fluorescein-conjugated ND was observed only on the stratum corneum, and no sample diffused into the dermal layer even after 48 hours. Moreover, ND-COOH and ND-COOH/eugenol complex did not show significant toxic effects on murine macrophage cells. ND improved in vitro skin permeation >50% acting as a "drug reservoir" to maintain a high drug concentration in the donor chamber, which was supported by quartz crystal microbalance results. Moreover, ND-COOH could adsorb a drug amount equivalent to 80% of its own weight. A photostability study showed that ND-COOH increased the photostability ~47% with regard to rate constant of the eugenol itself. A significant decrease in ROS was observed in the ND-COOH and ND-COOH/eugenol complex compared with the negative control during intracellular ROS assay. Moreover, ROS and cupric reducing antioxidant capacity evaluation showed that ND-COOH had synergistic effects of antioxidation with eugenol. Therefore, ND-COOH could be used as an excellent topical drug delivery system with improved permeability, higher stability, and minimized safety issue.

  20. Experimental and Theoretical Studies on Corrosion Inhibition of Niobium and Tantalum Surfaces by Carboxylated Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Valbonë Mehmeti

    2018-05-01

    Full Text Available The corrosion of two different metals, niobium and tantalum, in aqueous sulfuric acid solution has been studied in the presence and absence of carboxylated graphene oxide. Potentiodynamic measurements indicate that this nanomaterial inhibits corrosion due to its adsorption on the metal surfaces. The adsorbed layer of carboxylated graphene hinders two electrochemical reactions: the oxidation of the metal and the transport of metal ions from the metal to the solution but also hydrogen evolution reaction by acting as a protective barrier. The adsorption behavior at the molecular level of the carboxylated graphene oxide with respect to Nb, NbO, Ta, and TaO (111 surfaces is also investigated using Molecular Dynamic and Monte Carlo calculations.

  1. A radioimmunoassay for abscisic acid

    International Nuclear Information System (INIS)

    Walton, D.; Dashek, W.; Galson, E.

    1979-01-01

    We have developed a radioimmunoassay (RIA) for abscisic acid (ABA) in the 0.1 ng to 2.5 ng range. Antibodies were obtained from rabbits immunized with ABA bound via its carboxyl group to bovine serum albumin. Cross-reactivity studies indicate that ABA esters are completely cross-reactive with ABA, while trans, trans abscisic acid (t-ABA) phaseic acid (PA) and dihydrophaseic acid (DPA) have much lower but significant cross-reactivities. Purification methods which reduce the levels of cross-reacting substances are described. (orig.) 891 AJ/orig. 892 MKO [de

  2. Structural studies on the actinide carboxylates. 4. The crystal and molecular structure of succinate dioxouranium(VI) monohydrate

    Energy Technology Data Exchange (ETDEWEB)

    Bombieri, G; Benetollo, F [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi; Del Pra, A; Rojas, R

    1979-01-01

    The structure of the title compound, UO/sub 2/(CH/sub 2/COO)/sub 2/.H/sub 2/O, has been determined from three-dimensional X-ray data. The crystals are orthorhombic, space group Pbcn with four formula units in a cell. The coordination geometry about the uranium atom is pentagonal bipyramidal. The uranyl ions are equatorially surrounded by one water oxygen and by four carboxylate oxygen atoms of different succinic ligands. Each ligand is shared by four uranyl units giving rise to a polymeric-like structure.

  3. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents.

    Science.gov (United States)

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-01-19

    Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.

  4. A roadmap for OH reactivity research

    Science.gov (United States)

    Williams, Jonathan; Brune, William

    2015-04-01

    A fundamental property of the atmosphere is the frequency of gas-phase reactions with the OH radical, the atmosphere's primary oxidizing agent. This reaction frequency is called the OH reactivity and is the inverse the lifetime of the OH radical itself, which varies from a few seconds in the clean upper troposphere to below 10 ms in forests and polluted city environments. Ever since the discovery of the OH radical's importance to tropospheric chemistry, the characterization of its overall loss rate (OH reactivity) has remained a key question. At first, this property was assessed by summing the reactivity contributions of individually measured compounds; however, as improving analytical technology revealed ever more reactive species in ambient air, it became clear that this approach could provide only a lower limit. Approximately 15 years ago, the direct measurement of total OH reactivity was conceived independently by two groups. The first publications demonstrated direct OH reactivity measurements in the laboratory (Calpini et al., 1999) based on LIDAR and in the ambient air (Kovacs and Brune, 2001) based on in situ laser induced fluorescence detection of OH.

  5. A Capillary Electrochromatographic Microchip Packed with Self-Assembly Colloidal Carboxylic Silica Beads

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Sun; Kim, Shin Seon; Park, Jong Man [Konkuk University, Seoul (Korea, Republic of)

    2012-04-15

    An electrochromatographic microchip with carboxyl-group-derivatized mono-disperse silica packing was prepared from the corresponding colloidal silica solution by utilizing capillary action and self-assembly behavior. The silica beads in water were primed by the capillary action toward the ends of cross-patterned microchannel on a cyclic olefinic copolymer (COC) substrate. Slow evaporation of water at the front of packing promoted the self-assembled packing of the beads. After thermally binding a cover plate on the chip substrate, reservoirs for sample solutions were fabricated at the ends of the microchannel. The packing at the entrances of the microchannel was silver coated to fix utilizing an electroless silver-plating technique to prevent the erosion of the packed structure caused by the sudden switching of a high voltage DC power source. The electrochromatographic behavior of the microchip was explored and compared to that of the microchip with bare silica packing in basic borate buffer. Electrophoretic migration of Rhodamine B was dominant in the microchip with the carboxyl-derivatized silica packing that resulted in a migration approximated twice as fast, while the reversible adsorption was dominant in the bare silica-packed microchip. Not only the faster migration rates of the negatively charged FITC-derivatives of amino acids but also the different migration due to the charge interaction at the packing surface were observed. The electrochromatographic characteristics were studied in detail and compared with those of the bare silica packed microchip in terms of the packing material, the separation potential, pH of the running buffer, and also the separation channel length

  6. Heterocycles [h]-Fused Onto 4-Oxoquinoline-3-Carboxylic Acid, Part VIII [1]. Convenient Synthesis and Antimicrobial Properties of Substituted Hexahydro[1,4]diazepino[2,3-h]quinoline-9-carboxylic acid and Its Tetrahydroquino[7,8-b]benzodiazepine Analog

    Directory of Open Access Journals (Sweden)

    Yusuf M. Al-Hiari

    2008-11-01

    Full Text Available [1,4]Diazepino[2,3-h]quinolone carboxylic acid 3 and its benzo-homolog tetrahydroquino[7,8-b]benzodiazepine-3-carboxylic acid 5 were prepared via PPAcatalyzed thermal lactamization of the respective 8-amino-7-substituted-1,4-dihydroquinoline-3-carboxylic acid derivatives 8, 10. The latter compounds were obtained by reduction of their 8-nitro-7-substituted-1,4-dihydroquinoline-3-carboxylic acid precursors 7, 9 which, in turn, were prepared by reaction of 7-chloro-1-cyclopropyl-6-fluoro-8-nitro-1,4-dihydroquinoline-3-carboxylic acid (6 with each of β-alanine and anthranilic acid. All intermediates and target compounds were characterized using elemental analysis, NMR, IR and MS spectral data. The prepared targets and the intermediates have shown interesting antibacterial activity mainly against Gram positive strains. In particular, compound 8 showed good activity against S. aureus (MIC = 0.39 μg/mL and B. subtilis (MIC = 0.78 μg/mL. Compounds 5a and 9 have also displayed good antifungal activity against C. albicans (MIC = 1.56 μg/mL and 0.78 μg/mL, respectively. None of the compounds tested showed any anticancer activity against solid breast cancer cell line MCF-7 cells or a human breast adenocarcinoma cell line.

  7. A Concise Synthesis and the Antibacterial Activity of 5,6-Dimethoxynaphthalene-2-carboxylic Acid

    OpenAIRE

    GÖKSU, Süleyman; UĞUZ, Metin Tansu

    2014-01-01

    5,6-Dimethoxynaphthalene-2-carboxylic acid was synthesized in 7 steps and with an overall yield of 46%. Bromination of 2-naphthol, and methylation with dimethyl sulfate followed by Friedel-Crafts acylation with AcCl gave 2-acetyl-5-bromo-6-methoxynaphthalene. 2-Acetyl-5-bromo-6-methoxynaphthalene was converted to 5-bromo-6- methoxynaphthalene-2-carboxylic acid by a haloform reaction. The esterification of the acid with methanol, methoxylation with NaOCH3 in the presence of CuI and s...

  8. Carboxylated fullerene at the oil/water interface

    OpenAIRE

    Li, R; Chai, Y; Jiang, Y; Ashby, PD; Toor, A; Russell, TP

    2017-01-01

    © 2017 American Chemical Society. The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust,...

  9. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Science.gov (United States)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-08-01

    The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2) as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10-10-10-11 M s-1). The chemical composition (marine or continental origin) had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5. In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH) radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10-12 M) led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10-14 M), microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach. Combining these two approaches (experimental and theoretical), our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more efficient than its biodegradation; the biodegradation of acetate and succinate seemed to exceed their photodegradation.

  10. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao; Croue, Jean-Philippe

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation

  11. Study on the Effects of Corrosion Inhibitor According to the Functional Groups for Cu Chemical Mechanical Polishing in Neutral Environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Won; Kim, Jae Jeong [Institute of Chemical Process, Seoul National University, Seoul (Korea, Republic of)

    2015-08-15

    As the aluminum (Al) metallization process was replaced with copper (Cu), the damascene process was introduced, which required the planarization step to eliminate over-deposited Cu with Chemical Mechanical Polishing (CMP) process. In this study, the verification of the corrosion inhibitors, one of the Cu CMP slurry components, was conducted to find out the tendency regarding the carboxyl and amino functional group in neutral environment. Through the results of etch rate, removal rate, and chemical ability of corrosion inhibitors based on 1H-1,2,4-triazole as the base corrosion inhibitor, while the amine functional group presents high Cu etching ability, carboxyl functional group shows lower Cu etching ability than base-corrosion inhibitor which means that it increases passivation effect by making strong passivation layer. It implies that the corrosion inhibitor with amine functional group was proper to apply for 1st Cu CMP slurry owing to the high etch rate and with carboxyl functional group was favorable for the 2nd Cu CMP slurry due to the high Cu removal rate/dissolution rate ratio.

  12. Research of three-dimensional transient reactivity feedback in fast reactor

    International Nuclear Information System (INIS)

    Xu Li; Shi Gong; Ma Dayuan; Yu Hong

    2013-01-01

    To solve the three-dimensional time-spatial kinetics feedback problems in fast reactor, a mathematical model of the direct reactivity feedback was proposed. Based on the NAS code for fast reactor and the reactivity feedback mechanism, a feedback model which combined the direct reactivity feedback and feedback reflected by the cross section variation was provided for the transient calculation. Furthermore, the fast reactor group collapsing system was added to the code, thus the real time group collapsing calculation could be realized. The isothermal elevated temperature test of CEFR was simulated by using the code. By comparing the calculation result with the test result of the temperature reactivity coefficient, the validity of the model and the code is verified. (authors)

  13. Thermodynamic studies of the complexation of plutonium(IV) by linear and macrocyclic poly-amino-carboxylate ligands

    International Nuclear Information System (INIS)

    Burgat, Romain

    2007-01-01

    In the framework of a collaboration between the CEA (Commissariat a l Energie Atomique) of Valduc and the ICMUB (Institut de Chimie Moleculaire de l Universite de Bourgogne), a study platform of the structural and physico-chemical properties of the radioelements U, Pu and Am complexes has been implemented. The plutonium(IV) complexation has been studied in a molar nitrate medium. The affinity of three linear poly-amino-carboxylates (EDTA, CDTA and DTPA) towards plutonium(IV) has then been estimated. For the three ligands, the formation constants of the monoleptic complexes Pu(EDTA), Pu(CDTA) and [Pu(DTPA)] - have been determined in a (H,K)NO 3 1 M medium and then extrapolated at a zero ionic force with the specific interactions theory (SIT). For the three complexes, mono-hydroxylated monoleptic species have been observed. With the EDTA and the CDTA, protonated dileptic complexes of a general formula [Pu(L) 2 H h ] (4-h)- have been revealed too. Nevertheless, the steric hindrance around the metallic center is too important to allow to a second molecule of DTPA to coordinate the Pu 4+ cation. The exclusive formation of the species [Pu(DTPA)] - and [Pu(DTPA)(OH)] 2- has been confirmed by capillary electrophoresis (EC-ICP-MS). On account of the preliminary results obtained during the titration of the cyclame tetraacetic product (TETRA) in presence of plutonium(IV), the adding of a competitive ligand such as EDTA has been considered for the study of the complexation of this radioelement by macrocyclic ligands. At last, the affinity of different macrocyclic ligands containing either four amide functions (TETAMMe 2 and TETAMMEt 2 ) or carboxylate groups (TETA, DOTPr and TETPr) towards lanthanides(III) has been estimated too. Although the complexation reaction be fast with the two first ligands, these complexes are less stable than those formed with the carboxylic macrocycles. (O.M.)

  14. The investigation of the reactions of some pyrazole-3-carboxylic acids with various diamines and diols

    Directory of Open Access Journals (Sweden)

    Rahmi Kasımoğulları

    2012-06-01

    Full Text Available In this study, some new derivatives were synthesized of 4-benzoyl-1-(3-nitrophenyl-5-phenyl-1H-pyrazole-3-carboxylic acid (1 and 4-(ethoxycarbonyl-1-(3-nitrophenyl-5-phenyl-1H-pyrazole-3-carboxylic acid (2 that they were pyrazole carboxylic acid derivatives. Firstly, 1 and 2 reacted with SOCl2 to transform them into acyl chlorides (3, 4. Then various bis-carboxamide derivatives (5–8 were obtained from the reaction of 3 and 4 with various diamines and also a ;#946;-hydroxy ester (9 derivative was obtained from the reaction of 3 with ethylene glycol. The structures of synthesized compounds were elucidated with using FT-IR, 1H NMR, 13C NMR and elemental analysis methods.

  15. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Dimple Mody Quyn; Hongwei Wu; Jun-ichiro Hayashi; Chun-Zhu Li, [Monash University, Monash, Vic. (Australia). CRC for Clean Power from Lignite, Department of Chemical Engineering

    2003-03-01

    The purpose of this study is to investigate the catalytic effects of Na as NaCl or as sodium carboxylates ( COONa) in Victorian brown coal on the char reactivity. A Na-exchanged coal and a set of NaCl-loaded coal samples prepared from a Loy Yang brown coal were pyrolysed in a fluidised-bed/fixed-bed reactor and in a thermogravimetric analyser (TGA). The reactivities of the chars were measured in air at 400{sup o}C using the TGA. The experimental data indicate that the Na in coal as NaCl and as sodium carboxylates ( COONa) had very different catalytic effects on the char reactivity. It is the chemical form and dispersion of Na in char, not in coal, that govern the catalytic effects of Na. For the Na-form (Na-exchanged) coal, the char reactivity increased with increasing pyrolysis temperature from 500 to 700{sup o}C and then decreased with pyrolysis temperature from 700 to 900{sup o}C. The increase in reactivity with pyrolysis temperature (500 700{sup o}C) is mainly due to the changes in the relative distribution of Na in the char matrix and on the pore surface. For the NaCl-loaded coals, when Cl was released during pyrolysis or gasification, the Na originally present in coal as NaCl showed good catalytic effects for the char gasification. Otherwise, Cl would combine with Na in the char to form NaCl during gasification, preventing Na from becoming an active catalyst. Controlling the pyrolysis conditions to favour the release of Cl can be a promising way to transform NaCl in coal into an active catalyst for char gasification. 38 refs., 5 figs.

  16. Effects of alkyl chain length and solvents on thermodynamic dissociation constants of the ionic liquids with one carboxyl group in the alkyl chain of imidazolium cations.

    Science.gov (United States)

    Chen, Yuehua; Wang, Huiyong; Wang, Jianji

    2014-05-01

    Thermodynamic dissociation constants of the Brønsted acidic ionic liquids (ILs) are important for their catalytic and separation applications. In this work, a series of imidazolium bromides with one carboxylic acid substitute group in their alkyl chain ([{(CH2)nCOOH}mim]Br, n = 1,3,5,7) have been synthesized, and their dissociation constants (pKa) at different ionic strengths have been determined in aqueous and aqueous organic solvents at 0.1 mole fraction (x) of ethanol, glycol, iso-propanol, and dimethyl sulfoxide by potentiometric titrations at 298.2 K. The standard thermodynamic dissociation constants (pKa(T)) of the ILs in these solvents were calculated from the extended Debye-Hückel equation. It was found that the pKa values increased with the increase of ionic strength of the media and of the addition of organic solvent in water. The pKa(T) values also increased with the increase of the alkyl chain length of cations of the ILs. In addition, the effect of solvent nature on pKa(T) values is interpreted from solvation of the dissociation components and their Gibbs energy of transfer from water to aqueous organic solutions.

  17. Radiotherapy and peculiarities of immunological reactivity in uterine and cervical cancer

    International Nuclear Information System (INIS)

    Mechev, D.S.; Stolyarova, O.Yu.

    2005-01-01

    The peculiarities of immunological reactivity in uterine and cervical cancer was studied. The study involved 94 patients who were administered combination radiation therapy for the above cancer. Before the treatment, the investigated group of the patients was characterized by the changes in a number of parameters of immunological reactivity (increased IgG, IgA, IgM serum concentrations, reduction of CD3+ and CD4+ amount, increased expression of CD95). The majority of changes were noticed immediately after the radiation therapy. Three and six month later the majority of immunological reactivity parameters did not differ from the respective values in the healthy group. Investigation of immunological reactivity in patients with uterine and cervical cancer allows to choose adequate treatment for this group of patients and improve its efficacy

  18. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Atmospheric aerosol samples of PM2.5 and PM10 were collected in April–May 2011 from a rural site in Tanzania and analyzed for water-soluble inorganic ions and low molecular weight carboxylic acids using ion chromatography. PM2.5 and PM10 low-volume samplers with quartz fibre filters were deployed and aerosol ...

  19. Bienzymatic Acetylcholinesterase and Choline Oxidase Immobilized Biosensor Based on a Phenyl Carboxylic Acid-Grafted Multiwalled Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    So-Ra Lee

    2014-01-01

    Full Text Available Bienzymatic acetylcholinesterase (AChE and choline oxidase (ChOx immobilized biosensor based on a phenyl carboxylic acid-grafted multiwalled carbon nanotube (MWNT modified glass carbon electrode (GCE and carbon-screen printed electrode (SPE was fabricated for acetylcholine detection in human blood samples. Phenyl carboxylic acid-modified MWNT supports were prepared by electrochemical polymerization of 4-carboxyphenyl diazonium salts, which were synthesized by an amine group and sodium nitrite, on the surface of the MWNT-modified GCE and SPE in 0.1 M PBS. The successful fabrication of the AChE-ChOx-immobilized biosensor was confirmed via scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, electrochemical impedance spectroscopy (EIS, and cyclic voltammetry (CV. The sensing range of the biosensor based on a GCE and SPE was 1.0~10 μM and 10~100 μM, respectively. The interfering effect of 0.1 M L-ascorbic acid, 0.1 M L-cysteine, and 0.1 M uric acid to 0.1 M acetylcholine was 3.00%, 9.00%, and 3.00%, respectively. Acetylcholine in a human blood sample was detected by the AChE-ChOx-immobilized biosensor.

  20. Metal extraction by amides of carboxylic acids

    International Nuclear Information System (INIS)

    Skorovarov, D.I.; Chumakova, G.M.; Rusin, L.I.; Ul'anov, V.S.; Sviridova, R.A.; Sviridov, A.L.

    1988-01-01

    Extraction ability of various amides was studied. Data on extraction of rare earths, vanadium, molybdenum, rhenium, uranium, niobium, tantalum by N,N-dibutyl-amides of acetic, nonanic acids and fatly synthetic acids of C 7 -C 9 fractions are presented. Effect of salting-out agents, inorganic acid concentrations on extraction process was studied. Potential ability of using amides of carboxylic acids for extractional concentration of rare earths as well as for recovery and separation of iron, rhenium, vanadium, molybdenum, uranium, niobium, and tantalum was shown

  1. Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111)

    International Nuclear Information System (INIS)

    Boecking, Till; Wong, Elicia L.S.; James, Michael; Watson, Jolanta A.; Brown, Christopher L.; Chilcott, Terry C.; Barrow, Kevin D.; Coster, Hans G.L.

    2006-01-01

    Poly(amidoamine) dendrimers were attached to activated undecanoic acid monolayers, covalently linked to smooth silicon surfaces via Si-C bonds. The resulting ultra-thin dendrimer films were characterized by X-ray photoelectron spectroscopy (XPS), X-ray reflectometry (XR) and atomic force microscopy (AFM). XPS results suggested amide bond formation between the dendrimer and the surface carboxylic acid groups. XR yielded thicknesses of 10 A for the alkyl region of the undecanoic acid monolayer and 12 A for the dendrimer layer, considerably smaller than the diameter of these spherical macromolecules in solution. This was consistent with AFM images showing collapsed dendrimers on the surface. It was concluded that the deformation arose from a large number of amine groups on the surface of each dendrimer reacting efficiently with the activated surface, whereby the dendrimers can deform to fill voids while spreading over the activated surface to form a homogeneous macromolecular layer

  2. Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids

    NARCIS (Netherlands)

    Liao, George P; Abdelraheem, Eman M M; Neochoritis, Constantinos G; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; McGowan, David C; Dömling, Alexander

    2015-01-01

    The direct macrocycle synthesis of α-isocyano-ω-carboxylic acids via an Ugi multicomponent reaction is introduced. This multicomponent reaction (MCR) protocol differs by being especially short, convergent, and versatile, giving access to 12-22 membered rings.

  3. A temperature induced ferrocene–ferrocenium interconversion in a ferrocene functionalized μ3-O chromium carboxylate

    International Nuclear Information System (INIS)

    Mereacre, Valeriu; Schlageter, Martin; Powell, Annie K.

    2015-01-01

    The infrared spectra and 57 Fe Mössbauer measurements of a ferrocenecarboxylate functionalized {Cr 3 O} complex in solid state are reported. It was established that conjugation of ferrocene Cp orbitals with the π orbitals of the adjacent carboxylic group stabilizes the trapped mixed-valence state leading to an intriguing coexistence of ferrocene and ferrocenium species giving rise to a new type of compound showing valence tautomerism in the solid state. - Highlights: • A stabilized ferrocene trapped mixed-valence state is reported. • New type of compound showing valence tautomerism in solid state. • A thermally induced electron transfer and a mixed-valence state near room temperature

  4. The potential impact of carboxylic-functionalized multi-walled carbon nanotubes on trypsin: A Comprehensive spectroscopic and molecular dynamics simulation study.

    Directory of Open Access Journals (Sweden)

    Maryam Noordadi

    Full Text Available In this study, we report a detailed experimental, binding free energy calculation and molecular dynamics (MD simulation investigation of the interactions of carboxylic-functionalized multi-walled carbon nanotubes (COOH-f-MWCNTs with porcine trypsin (pTry. The enzyme exhibits decreased thermostability at 330K in the presence of COOH-f-MWCNTs. Furthermore, the activity of pTry also decreases in the presence of COOH-f-MWCNTs. The restricted diffusion of the substrate to the active site of the enzyme was observed in the experiment. The MD simulation analysis suggested that this could be because of the blocking of the S1 pocket of pTry, which plays a vital role in the substrate selectivity. The intrinsic fluorescence of pTry is quenched with increase in the COOH-f-MWCNTs concentration. Circular dichroism (CD and UV-visible absorption spectroscopies indicate the ability of COOH-f-MWCNTs to experience conformational change in the native structure of the enzyme. The binding free energy calculations also show that electrostatics, π-cation, and π-π stacking interactions play important roles in the binding of the carboxylated CNTs with pTry. The MD simulation results demonstrated that the carboxylated CNTs adsorb to the enzyme stronger than the CNT without the-COOH groups. Our observations can provide an example of the nanoscale toxicity of COOH-f-MWCNTs for proteins, which is a critical issue for in vivo application of COOH-f-MWCNTs.

  5. Photochemistry of Fe(Iii)-Carboxylates in Polysaccharide-Based Materials with Tunable Mechanical Properties

    Science.gov (United States)

    Giammanco, Giuseppe E.

    We present the formulation and study of light-responsive materials based on carboxylate-containing polysaccharides. The functional groups in these natural polymers allow for strong interactions with transition metal ions such as Fe(III). The known photochemistry of hydroxycarboxylic acids in natural waters inspired us in exploring the visible light induced photochemistry of the carboxylates in these polysaccharides when coordinated to Fe(III) ions. Described in this dissertation are the design and characterization of the Fe(III)-polysaccharide materials, specifically the mechanistic aspects of the photochemistry and the effects that these reactions have on the structure of the polymer materials. We present a study of the quantitative photochemistry of different polysaccharide systems, where the presence of uronic acids was important for the photoreaction to take place. Alginate (Alg), pectate (Pec), hyaluronic acid (Hya), xanthan gum (Xan), and a polysaccharide extracted from the Noni fruit (NoniPs), were among the natural uronic acid-containing polysaccharide (UCPS) systems we analyzed. Potato starch, lacking of uronate groups, did not present any photochemistry in the presence of Fe(III); however, we were able to induce a photochemical response in this polysaccharide upon chemical manipulation of its functional groups. Important structure-function relationships were drawn from this study. The uronate moiety present in these polysaccharides is then envisioned as a tool to induce response to light in a variety of materials. Following this approach, we report the formulation of materials for controlled drug release, able to encapsulate and release different drug models only upon illumination with visible light. Furthermore, hybrid hydrogels were prepared from UPCS and non-responsive polymers. Different properties of these materials could be tuned by controlling the irradiation time, intensity and location. These hybrid gels were evaluated as scaffolds for tissue

  6. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.

    Science.gov (United States)

    Luca, Oana R; Fenwick, Aidan Q

    2015-11-01

    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Synthesis of first row transition metal carboxylate complexes by ring ...

    Indian Academy of Sciences (India)

    tion of pyromellitic dianhydride with methanol and ring opening of pyromellitic dianhydride takes place. The corresponding carboxylate complex formed dur- ing the process can be crystallised by adding biden- tate nitrogen donor ligands such as 1,10-phenanthroline or 2,2 - bipyridine.20 From the reaction with 1,10-.

  8. Guest-host chemistry with dendrimers—binding of carboxylates in aqueous solution

    DEFF Research Database (Denmark)

    Ficker, Mario; Petersen, Johannes Fabritius; Hansen, Jon Stefan

    2015-01-01

    Recognition and binding of anions in water is difficult due to the ability of water molecules to form strong hydrogen bonds and to solvate the anions. The complexation of two different carboxylates with 1-(4-carbomethoxypyrrolidone)-terminated PAMAM dendrimers was studied in aqueous solution using...... the carboxylate-dendrimer interaction selectively. The binding stoichiometry for 3-hydroxy-2-naphthoate was found to be two strongly bound guest molecules per dendrimer and an additional 40 molecules with weak binding affinity. The NOESY NMR showed a clear binding correlation of sodium 3-hydroxy-2-naphthoate...... with the lyophilic dendrimer core, possibly with the two high affinity guest molecules. In comparison, sodium 2-naphthoate showed a weaker binding strength and had a stoichiometry of two guests per dendrimer with no additional weakly bound guests. This stronger dendrimer interaction with sodium 3-hydroxy-2...

  9. Alkali metals and group IIA metals

    International Nuclear Information System (INIS)

    Fenton, D.E.

    1987-01-01

    This chapter on the coordination complexes of the alkali metals of group IIA starts with a historical perspective of their chemistry, from simple monodentate ligands, metal-β-diketonates to the macrocyclic polyethers which act as ligands to the alkali and akaline earth metals. Other macrocyclic ligands include quarterenes, calixarenes, porphyrins, phthalocyanines and chlorophylls. A section on the naturally occurring ionophores and carboxylic ionophores is included. (UK)

  10. Corrosion and Heat Transfer Characteristics of Water Dispersed with Carboxylate Additives and Multi Walled Carbon Nano Tubes

    Science.gov (United States)

    Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli

    2016-10-01

    This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.

  11. Adjusted neutron spectra of STEK cores for reactivity calculations

    International Nuclear Information System (INIS)

    Dekker, J.W.M.; Dragt, J.B.; Janssen, A.J.; Heijboer, R.J.; Klippel, H.Th.

    1978-02-01

    Neutron flux and adjoint flux spectra form a pre-requisite in the analysis of reactivity worth data measured in the STEK facility. First, a survey of all available information about these spectra is given. Next a special application of a general adjustment method is described. This method has been used to obtain adjusted STEK group flux and adjoint flux spectra, starting from calculated spectra. These theoretical spectra were adjusted to reactivity worths of natural boron (nat. B) and 235 U as well as a number of fission reaction rates. As a by-product in this adjustment calculation adjusted fission group cross sections of 235 U were obtained. The results, viz. group fluxes and adjoint fluxes and adjusted fission cross sections of 235 U are given. They have been used for the interpretation of fission product reactivity worth measurements made in STEK

  12. Synthesis and protonation behavior of carboxylate-functionalized poly(propylene imine) dendrimers

    NARCIS (Netherlands)

    Duijvenbode, van R.C.; Rajanayagam, A.; Koper, G.J.M.; Baars, M.W.P.L.; Waal, de B.F.M.; Meijer, E.W.; Borkovec, M.

    2000-01-01

    Five generations of carboxylate-functionalized poly(propyleneimine) dendrimers have been synthesized starting from a double Michael addition of amine-functionalized poly(propyleneimine) dendrimers to methyl acrylate followed by basic hydrolysis using LiOH in a water/methanol mixture. The dendritic

  13. (Liquid + liquid) equilibria measurements for ternary systems (sulfolane + a carboxylic acid + n-heptane) at T = 303.15 K and at 0.1 MPa

    International Nuclear Information System (INIS)

    Cele, N.P.; Bahadur, I.; Redhi, G.G.; Ebenso, E.E.

    2016-01-01

    Highlights: • The (liquid + liquid) equilibrium for (sulfolane + a carboxylic acid + heptane) was measured. • Selectivity values for solvent separation efficiency were calculated. • Separation of carboxylic acids from heptane is feasible by extraction. • Three parameter equations have been fitted to the binodal curve data. • The NRTL and UNIQUAC models were used to correlate the experimental data. - Abstract: In the present work, new (liquid + liquid) equilibrium (LLE) values are reported for ternary systems {sulfolane(1) + acetic acid, or propanoic acid, or butanoic acid, or 2-methylpropanoic acid, or pentanoic acid, or 3-methylbutanoic acid (2) + n-heptane (3)} at T = 303.15 K and at p = 0.1 MPa. The mutual solubility of carboxylic acid in sulfolane is dependent on the length and structure of the alkyl chain of the carboxylic acid; it progressively increases with an increase in the alkyl chain of the carboxylic acid. The single phase homogenous region increases as the alkyl chain of the carboxylic acid increases. The n-heptane is most soluble in the carboxylic acid mixtures with long alkyl chain, that is, (3-methylbutanoic acid + sulfolane) and (pentanoic acid + sulfolane) systems and least soluble in the carboxylic acid with short alkyl chain (acetic acid + sulfolane) system. Carboxylic acid together with many other oxygenates and hydrocarbons are produced by SASOL Company in South Africa using the Fischer–Tropsch process. The details about this process are given in introduction section. The NRTL and UNIQUAC models were used to correlate the experimental tie-lines and to calculate the phase compositions of the ternary systems. It was found that the NRTL model fits the experimental values significantly better than the UNIQUAC model.

  14. Quantum mechanics/molecular mechanics simulation of the ligand vibrations of the water-oxidizing Mn4CaO5 cluster in photosystem II.

    Science.gov (United States)

    Nakamura, Shin; Noguchi, Takumi

    2016-10-11

    During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO 2 , in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn 4 CaO 5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S 1 to S 2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III) 2 Mn(IV) 2 , satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.

  15. Quantitative determination of acidic groups in functionalized graphene by direct titration

    Czech Academy of Sciences Publication Activity Database

    Ederer, J.; Janoš, P.; Ecorchard, Petra; Štengl, Václav; Bělčická, Zuzana; Šťastný, Martin; Pop-Georgievski, Ognen; Dohnal, V.

    2016-01-01

    Roč. 103, JUN (2016), s. 44-53 ISSN 1381-5148 R&D Projects: GA ČR(CZ) GA14-05146S Institutional support: RVO:61388980 ; RVO:61389013 Keywords : Acid-base titration * Carboxylic functional groups * Graphene oxide * Phenolic functional groups * Proton-binding model Subject RIV: CA - Inorganic Chemistry ; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 3.151, year: 2016

  16. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 2. Tyrosine-26 and -64

    International Nuclear Information System (INIS)

    Roepe, P.; Scherrer, P.; Ahl, P.L.; Gupta, S.K.D.; Bogomolni, R.A.; Herzfeld, J.; Rothschild, K.J.

    1987-01-01

    Low-temperature Fourier transform infrared (FTIR) and UV difference spectroscopies combined with selective tyrosine nitration and tyrosine isotopic labeling have been used to investigate the participation of tyrosines-26 and -64 in the bacteriorhodopsin (bR) photocycle. Nitration of Tyr-26 has no detectable effect on the FTIR or UV difference spectra of the BR 570 → K 630 or BR 570 → M 412 transitions. In contrast, nitration of Tyr-64 causes changes in both the FTIR and UV spectra of these transitions. However, this nitration does not alter tyrosine peaks in the FTIR difference spectra which have previously been associated with the protonation of a tyrosinate by K 630 and the deprotonation of a tyrosine by M 412 . Instead, Tyr-64 nitration appears to affect other tyrosine peaks. These results and changes in UV difference spectra upon Tyr-64 nitration are consistent with the deprotonation of Tyr-64 by M 412 as concluded previously. Effects on chromophore vibrations caused by Tyr-64 nitration are unaltered upon reducing the nitrotyrosine to aminotyrosine with sodium dithionite. Finally, nitro-Tyr-64 causes a shift in the frequency of a positive peak at 1739 cm -1 in the BR 570 → M 412 FTIR difference spectrum which reflects the protonation of a carboxyl-containing residue. The shift does not occur for samples containing amino-Tyr-64. These data suggest that Tyr-64 may interact with this carboxyl group

  17. Portable digital reactivity meter for power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, G [Nuklear-Ingenieur Service G.m.b.H., Hanau (Germany, F.R.)

    1977-07-01

    A digital reactivity meter has been developed, which can be used for all kinds of kinetic reactivity measurements in PWR's and BWR's. The input signals may be supplied by standard neutron detectors of the reactor. The hardware configuration consists of a minicomputer with ADC and DAC, a 'Silent' terminal and a high speed paper tape reader/punch. It is easily transportable. The reactivity meter solves the inverse kinetics equations for 6 delayed neutron groups, simultaneously for up to 8 logarithmic or linear neutron flux signals. It has been successfully tested at Biblis A PWR and the KRB BWR.

  18. Elevated Striatal Reactivity Across Monetary and Social Rewards in Bipolar I Disorder

    Science.gov (United States)

    Dutra, Sunny J.; Cunningham, William A.; Kober, Hedy; Gruber, June

    2016-01-01

    Bipolar disorder (BD) is associated with increased reactivity to rewards and heightened positive affectivity. It is less clear to what extent this heightened reward sensitivity is evident across contexts and what the associated neural mechanisms might be. The present investigation employed both a monetary and social incentive delay task among adults with remitted BD type I (N=24) and a healthy non-psychiatric control group (HC; N=25) using fMRI. Both whole-brain and region-of-interest analyses revealed elevated ventral and dorsal striatal reactivity across monetary and social reward receipt, but not anticipation, in the BD group. Post-hoc analyses further suggested that greater striatal reactivity to reward receipt across monetary and social reward tasks predicted decreased self-reported positive affect when anticipating subsequent rewards in the HC, but not BD, group. Results point toward elevated striatal reactivity to reward receipt as a potential neural mechanism of reward reactivity. PMID:26390194

  19. Predictive value of C-reactive protein in critically ill patients after abdominal surgery

    Directory of Open Access Journals (Sweden)

    Frédéric Sapin

    Full Text Available OBJECTIVES: The development of sepsis after abdominal surgery is associated with high morbidity and mortality. Due to inflammation, it may be difficult to diagnose infection when it occurs, but measurement of C-reactive protein could facilitate this diagnosis. In the present study, we evaluated the predictive value and time course of C-reactive protein in relation to outcome in patients admitted to the intensive care unit (ICU after abdominal surgery. METHODS: We included patients admitted to the ICU after abdominal surgery over a period of two years. The patients were divided into two groups according to their outcome: favorable (F; left the ICU alive, without modification of the antibiotic regimen and unfavorable (D; death in the ICU, surgical revision with or without modification of the antibiotic regimen or just modification of the regimen. We then compared the highest C-reactive protein level on the first day of admission between the two groups. RESULTS: A total of 308 patients were included: 86 patients had an unfavorable outcome (group D and 222 had a favorable outcome (group F. The groups were similar in terms of leukocytosis, neutrophilia, and platelet count. C-reactive protein was significantly higher at admission in group D and was the best predictor of an unfavorable outcome, with a sensitivity of 74% and a specificity of 72% for a threshold of 41 mg/L. No changes in C-reactive protein, as assessed based on the delta C-reactive protein, especially at days 4 and 5, were associated with a poor prognosis. CONCLUSIONS: A C-reactive protein cut-off of 41 mg/L during the first day of ICU admission after abdominal surgery was a predictor of an adverse outcome. However, no changes in the C-reactive protein concentration, especially by day 4 or 5, could identify patients at risk of death.

  20. Kinetic studies on the carboxylation of 6-amino-penicillanic acid to 8-hydroxy-penillic acid

    DEFF Research Database (Denmark)

    Henriksen, Claus Maxel; Holm, SS; Schipper, D.

    1997-01-01

    The carboxylation in aqueous solution of 6-amino-penicillanic acid (6-APA) to 8-hydroxy-penillic acid (8-HPA) was studied at 25 degrees C and pH 6.5. During sparging with either a citrate buffer or a chemically defined cultivation medium containing 6-APA with mixtures of carbon dioxide and air (2.......7-41% (v/v) CO2), the kinetics for conversion of 6-APA was followed by HPLC. In the citrate buffer 6-APA was converted by two competitive reactions each following first order kinetics with respect to the concentration of 6-APA: 1. carboxylation into 8-HPA; and 2. slow conversion into an unknown compound....... Formation of the unknown compound was not observed in the cultivation medium. The carboxylation of 6-APA was also found to be first order with respect to the concentration of dissolved carbon dioxide. The rate constant for formation of 8-HPA did not differ significantly in the cultivation medium compared...

  1. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  2. Synthesis of aminocarbonyl N-acylhydrazones by a three-component reaction of isocyanides, hydrazonoyl chlorides, and carboxylic acids.

    Science.gov (United States)

    Giustiniano, Mariateresa; Meneghetti, Fiorella; Mercalli, Valentina; Varese, Monica; Giustiniano, Francesco; Novellino, Ettore; Tron, Gian Cesare

    2014-10-17

    A novel one-pot multicomponent synthesis of α-aminocarbonyl N-acylhydrazones starting from readily available hydrazonoyl chlorides, isocyanides, and carboxylic acids is reported. The strategy exploits the ability of the carboxylic acid as a third component to suppress all competing reactions between nitrile imines and isocyanides, channeling the course of the reaction toward the formation of this novel class of compounds.

  3. RSA Reactivity in Current and Remitted Major Depressive Disorder

    Science.gov (United States)

    Bylsma, Lauren M.; Salomon, Kristen; Taylor-Clift, April; Morris, Bethany H.; Rottenberg, Jonathan

    2014-01-01

    Objective Low resting respiratory sinus arrhythmia (RSA) levels and blunted RSA reactivity are thought to index impaired emotion regulation capacity. Major Depressive Disorder (MDD) has been associated with abberant RSA reactivity and recovery to a speech stressor task relative to healthy controls. Whether impaired RSA functioning reflects aspects of the depressed mood state or a stable vulnerability marker for depression is unknown. Methods We compared resting RSA and RSA reactivity between individuals with MDD (n=49), remitted depression (RMD, n=24), and healthy controls (n=45). ECG data were collected during a resting baseline, a paced-breathing baseline, and two reactivity tasks (speech stressor, cold exposure). Results A group by time quadratic effect emerged (F=4.36(2,109), p=.015) for RSA across phases of the speech stressor (baseline, instruction, preparation, speech, recovery). Follow-up analyses revealed that those with MDD uniquely exhibited blunted RSA reactivity, whereas RMD and controls both exhibited normal task-related vagal withdrawal and post-task recovery. The group by time interaction remained after covariation for age, sex, waist circumference, physical activity, and respiration, but not sleep quality. Conclusions These results provide new evidence that abberant RSA reactivity marks features that track the depressed state, such as poor sleep, rather than a stable trait evident among asymtomatic persons. PMID:24367127

  4. 1-Allyl-3-amino-1H-pyrazole-4-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Feng-Ling Yang

    2008-12-01

    Full Text Available The title compound, C7H9N3O2, was prepared by alkaline hydrolysis of ethyl 1-allyl-3-amino-1H-pyrazole-4-carboxylate. The crystal structure is stabilized by three types of intermolecular hydrogen bond (N—H...O, N—H...N and O—H...N.

  5. The reactivity meter and core reactivity

    International Nuclear Information System (INIS)

    Siltanen, P.

    1999-01-01

    This paper discussed in depth the point kinetic equations and the characteristics of the point kinetic reactivity meter, particularly for large negative reactivities. From a given input signal representing the neutron flux seen by a detector, the meter computes a value of reactivity in dollars (ρ/β), based on inverse point kinetics. The prompt jump point of view is emphasised. (Author)

  6. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Directory of Open Access Journals (Sweden)

    M. Vaïtilingom

    2011-08-01

    Full Text Available The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2 as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10−10–10−11 M s−1. The chemical composition (marine or continental origin had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5.

    In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10−12 M led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10−14 M, microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach.

    Combining these two approaches (experimental and theoretical, our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more

  7. Acidic surface functional groups and mineral elements in Lakra coal (Sindh, Pakistan)

    International Nuclear Information System (INIS)

    Saeed, K.; Ishaq, M.; Ahjmad, I.; Shakirullah, M.; Haider, S.

    2010-01-01

    Surface acidity of virgin coal (Lakra Sindh, Pakistan) and variously extracted/leached coal samples with HNO/sub 3/ NaOH, and KMnO/sub 4/, were investigated by aqueous potentiometric titration employing KOH as a titrant. The titration curve of virgin coal showed that its surface might contain carboxylic, carbonyl, phenolic and other weak acidic functional groups such as enols and C-H bond. The titration curves of leached coal samples showed inflections at pH 4-11, being not similar the inflections of carboxylic groups. This inflection might be given by functional groups like CO/sub 2/, phenolic, enols and C-H. Mineral matter such as Fe, K, Zn, Mn and Ni were determined in the ash of coal by atomic absorption spectrophotometer and was found that Fe (3104 micro g/g) in the highest and Ni (36.05 micro g/g) in the lowest quantity is present in virgin coal sample. (author)

  8. Interaction Between the Biotin Carboxyl Carrier Domain and the Biotin Carboxylase Domain in Pyruvate Carboxylase from Rhizobium etli†

    Science.gov (United States)

    Lietzan, Adam D.; Menefee, Ann L.; Zeczycki, Tonya N.; Kumar, Sudhanshu; Attwood, Paul V.; Wallace, John C.; Cleland, W. Wallace; Maurice, Martin St.

    2011-01-01

    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a new series of catalytic snapshots in PC and offer a revised perspective on catalysis in the biotin-dependent enzyme family. PMID:21958016

  9. Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Jianbo Tan

    2017-12-01

    Full Text Available Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT dispersion copolymerization of methyl methacrylate (MMA and methyl methacrylic (MAA for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB with NaBH4 as a reductant.

  10. Selectivity in stripping of alkali-metal cations from crown ether carboxylate complexes

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Walkowiak, W.; Robison, T.W.

    1992-01-01

    To probe the effect of structural variations within the ionophore upon the efficiency and selectivity of solvent extraction, a variety of crown ether carboxylic acids and phosphonic acid monoesters have been synthesized. In other studies the influence of the organic diluent upon extraction efficiency and selectivity has been probed for such proton-ionizable crown ethers. In the present investigation, attention is focused upon selectivity in the stripping step. Although the efficiency of metal ion stripping is often examined in solvent extraction studies, the selectivity of competitive metal ion release under different conditions is much less frequently considered. In this study, competitive stripping of metal ions from chloroform solutions of five-alkali-metal crown ether carboxylates by varying concentrations of aqueous hydrochloric acid is examined. Alkali metals used were Li, Na, K, Rb, and Cs

  11. pH-specific hydrothermal assembly of binary and ternary Pb(II)-(O,N-carboxylic acid) metal organic framework compounds: correlation of aqueous solution speciation with variable dimensionality solid-state lattice architecture and spectroscopic signatures.

    Science.gov (United States)

    Gabriel, C; Perikli, M; Raptopoulou, C P; Terzis, A; Psycharis, V; Mateescu, C; Jakusch, T; Kiss, T; Bertmer, M; Salifoglou, A

    2012-09-03

    Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.

  12. Basicity of carboxylic acids: resonance in the cation and substituent effects

    Czech Academy of Sciences Publication Activity Database

    Böhm, S.; Exner, Otto

    2005-01-01

    Roč. 29, - (2005), s. 336-342 ISSN 1144-0546 R&D Projects: GA MŠk(CZ) LN00A032 Institutional research plan: CEZ:AV0Z4055905 Keywords : basicity * carboxylic acids Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.574, year: 2005

  13. A temperature induced ferrocene–ferrocenium interconversion in a ferrocene functionalized μ{sub 3}-O chromium carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Mereacre, Valeriu, E-mail: valeriu.mereacre@kit.edu [Institut für Anorganische Chemie, Karlsruher Institut für Technologie, D-76131 Karlsruhe (Germany); Schlageter, Martin [Institut für Nanotechnologie, Karlsruher Institut für Technologie, D-76344 Eggenstein-Leopoldshafen (Germany); Powell, Annie K., E-mail: annie.powell@kit.edu [Institut für Anorganische Chemie, Karlsruher Institut für Technologie, D-76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, D-76344 Eggenstein-Leopoldshafen (Germany)

    2015-05-01

    The infrared spectra and {sup 57}Fe Mössbauer measurements of a ferrocenecarboxylate functionalized {Cr_3O} complex in solid state are reported. It was established that conjugation of ferrocene Cp orbitals with the π orbitals of the adjacent carboxylic group stabilizes the trapped mixed-valence state leading to an intriguing coexistence of ferrocene and ferrocenium species giving rise to a new type of compound showing valence tautomerism in the solid state. - Highlights: • A stabilized ferrocene trapped mixed-valence state is reported. • New type of compound showing valence tautomerism in solid state. • A thermally induced electron transfer and a mixed-valence state near room temperature.

  14. Role of Sulfhydryl Sites on Bacterial Cell Walls in the Biosorption, Mobility and Bioavailability of Mercury and Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Myneni, Satish C. B. [Princeton Univ., NJ (United States). Dept. of Geosciences; Fein, Jeremy [Univ. of Notre Dame, IN (United States). Dept. of Civil Engineering and Geological Sciences; Mishra, Bhoopesh [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-16

    Bacteria are ubiquitous in a wide-range of low temperature aqueous systems, and can strongly affect the distribution and transport of metals and radionuclides in the environment. However, the role of metal adsorption onto bacteria, via the reactive cell wall functional groups, has been largely overlooked. Previous macroscale metal sorption, and XAS studies have shown that carboxyl and phosphoryl functional groups to be the important metal binding groups on bacterial cell walls and the sulfhydryl groups were not considered. The goal of our investigation was to evaluate the density of the sulfhydryl sites on different bacterial cell membranes that are common to soil systems, the binding affinities of these reactive groups towards Hg, and how this binding modifies the speciation of Hg in the natural waters.

  15. Analytical advantages of copolymeric microspheres for fluorimetric sensing - tuneable sensitivity sensors and titration agents.

    Science.gov (United States)

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2017-01-15

    Analytical benefits related to application of copolymeric microspheres containing different number of carboxylic acid mers have been studied on example of acrylate copolymers. These structures can be used as a reagent in heterogeneous pH titration, benefiting from different number of reactive groups - i.e. different concentration of a titrant - within the series of copolymers. Thus introducing the same amount of different microspheres from a series to the sample, different amount of the titrant is introduced. Copolymeric microspheres also can be used as optical sensors - in this respect the increasing number of reactive groups in the series is useful to improve the analytical performance of microprobes - sensitivity of determination or/and response range. The increase in ion-permeability of the spheres with increasing number of reactive mers is advantageous. It is shown that for pH sensitive microspheres containing higher number of carboxyl groups the higher sensitivity for alkaline pH samples is observed for an indicator present in the beads. The significant increase of optical responses is related to enhanced ion transport within the microspheres. For zinc or potassium ions model sensors tested it was shown that by choice of pH conditions and type of microspheres from the series, the optical responses can be tuned - to enhance sensitivity for analyte concentration change as well as to change the response pattern from sigmoidal (higher sensitivity, narrow range) to linear (broader response range). For classical optode systems (e.g. microspheres containing an optical transducer - pH sensitive dye and optically silent ionophore - receptor) copolymeric microspheres containing carboxylic acid mers in their structure allow application of the sensor in alkaline pH range, which is usually inaccessible for applied optical transducer. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    International Nuclear Information System (INIS)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-01-01

    Three new metal-organic coordination polymers [Co(4-bbc) 2 (bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H 2 O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H 2 pdc=3,5-pyridinedicarboxylic acid, 1,4-H 2 ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co II ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3 2 ·4·5·6 2 ·7 4 ) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphical abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated

  17. Enhanced electrochemical response in oxidative differential pulse voltammetry of dopamine in the presence of ascorbic acid at carboxyl-terminated boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Takeshi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)], E-mail: t.kondo@ci.kagu.tus.ac.jp; Niwano, Yu; Tamura, Akira; Imai, Junichi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Honda, Kensuke [Department of Chemistry and Earth Sciences, Faculty of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8521 (Japan); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-0012 (Japan); Tryk, Donald A. [Fuel Cell Nanomaterials Center, University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi 400-8511 (Japan); Fujishima, Akira [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012 (Japan); Kawai, Takeshi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2009-03-01

    The differential pulse voltammetric (DPV) peak for dopamine (DA) oxidation was found to be highly amplified by the addition of ascorbic acid (AA) when carboxyl-terminated boron-doped diamond (BDD) electrodes were used as the working electrode. The DP voltammogram for a solution containing DA and AA obtained using a 4-pentenoic acid-modified BDD (4PA-BDD) electrode showed well-separated oxidation peaks for DA and AA at 0.4 and 0.6 V vs. Ag/AgCl, respectively. In addition, as the DA concentration increased at constant AA concentration, a simultaneous increase in the DA peak current density and decrease in the AA peak current density were observed. The slope of the calibration curve for the [DA] range of 1-10 {mu}M in the presence of AA (500 {mu}M) was seven times larger than that obtained in the absence of AA. Such an enhancement was found to be more efficient at 4PA-BDD than at oxidized-BDD, partly due to simple electrostatic effects and partly due to suppression of the polymerization of DA oxidation products by the terminal carboxyl groups. The enhanced detection method using a carboxyl-terminated BDD electrode should be an effective analytical tool, especially for determining low concentrations of DA in the presence of high concentrations of AA.

  18. Enhanced electrochemical response in oxidative differential pulse voltammetry of dopamine in the presence of ascorbic acid at carboxyl-terminated boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Kondo, Takeshi; Niwano, Yu; Tamura, Akira; Imai, Junichi; Honda, Kensuke; Einaga, Yasuaki; Tryk, Donald A.; Fujishima, Akira; Kawai, Takeshi

    2009-01-01

    The differential pulse voltammetric (DPV) peak for dopamine (DA) oxidation was found to be highly amplified by the addition of ascorbic acid (AA) when carboxyl-terminated boron-doped diamond (BDD) electrodes were used as the working electrode. The DP voltammogram for a solution containing DA and AA obtained using a 4-pentenoic acid-modified BDD (4PA-BDD) electrode showed well-separated oxidation peaks for DA and AA at 0.4 and 0.6 V vs. Ag/AgCl, respectively. In addition, as the DA concentration increased at constant AA concentration, a simultaneous increase in the DA peak current density and decrease in the AA peak current density were observed. The slope of the calibration curve for the [DA] range of 1-10 μM in the presence of AA (500 μM) was seven times larger than that obtained in the absence of AA. Such an enhancement was found to be more efficient at 4PA-BDD than at oxidized-BDD, partly due to simple electrostatic effects and partly due to suppression of the polymerization of DA oxidation products by the terminal carboxyl groups. The enhanced detection method using a carboxyl-terminated BDD electrode should be an effective analytical tool, especially for determining low concentrations of DA in the presence of high concentrations of AA

  19. Aminolysis of resin-bound N-nosylaziridine-2-carboxylic acids

    DEFF Research Database (Denmark)

    Olsen, Christian A; Christensen, Caspar; Nielsen, Birgitte

    2006-01-01

    [Structure: see text] Solid-phase synthesis is a rapidly developing area of organic chemistry, of particular importance for medicinal chemistry and chemical biology. Aziridines have previously only rarely been applied in solid-phase synthesis. In the present work, aminolysis of resin-bound, sprin......-loaded N-nitrobenzenesulfonyl-activated aziridine-2-carboxylic acids has been optimized and employed in the synthesis of a number of open-chain and heterocyclic scaffolds, including enantiopure products....

  20. Optimization of polycrystalline platinum catalytic activity opposite to carboxylic acids oxidation

    International Nuclear Information System (INIS)

    Le Naour, C.; Moisy, P.; Blanc, P.; Madic, C.

    1994-01-01

    In electro nuclear industry, in the aim to reduce the quantity of wastes coming from the spent fuels reprocessing, the use of reagents as some carboxylic acids is considered: after use, these reagents are completely decomposed in gaseous products, which can be filtered and released in environment

  1. n-Octyl gallate as inhibitor of pyruvate carboxylation and lactate gluconeogenesis.

    Science.gov (United States)

    Eler, Gabrielle Jacklin; Santos, Israel Souza; de Moraes, Amarilis Giaretta; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2015-04-01

    The alkyl gallates are found in several natural and industrial products. In the latter products, these compounds are added mainly for preventing oxidation. In the present work, the potencies of methyl gallate, n-propyl gallate, n-pentyl gallate, and n-octyl gallate as inhibitors of pyruvate carboxylation and lactate gluconeogenesis were evaluated. Experiments were done with isolated mitochondria and the isolated perfused rat liver. The potency of the gallic acid esters as inhibitors of pyruvate carboxylation in isolated mitochondria obeyed the following decreasing sequence: n-octyl gallate > n-pentyl gallate > n-propyl gallate > methyl gallate. A similar sequence of decreasing potency for lactate gluconeogenesis inhibition in the perfused liver was found in terms of the portal venous concentration. Both actions correlate with the lipophilicity of the compounds. The effects are harmful at high concentrations. At appropriate concentrations, however, octyl gallate should act therapeutically because its inhibitory action on gluconeogenesis will contribute further to its proposed antihyperglycemic effects. © 2014 Wiley Periodicals, Inc.

  2. LIQUID-CHROMATOGRAPHIC ANALYSIS OF CARBOXYLIC-ACIDS USING N-(4-AMINOBUTYL)-N-ETHYLISOLUMINOL AS CHEMILUMINESCENT LABEL - DETERMINATION OF IBUPROFEN IN SALIVA

    NARCIS (Netherlands)

    STEIJGER, OM; LINGEMAN, H; BRINKMAN, UAT; HOLTHUIS, JJM; SMILDE, AK; DOORNBOS, DA

    1993-01-01

    N-(4-Aminobutyl)-N-ethylisoluminol was used for labelling of carboxylic acids. The derivatization reaction was carried out with 1-hydroxybenzotriazole as pre-activator of the carboxylic acid function and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide as the coupling reagent. Optimum conditions for

  3. Liquid chromatographic analysis of carboxylic acids using N-(4-aminobutyl)-N-ethylisoluminol as chemiluminescent label: determination of ibuprofen in saliva

    NARCIS (Netherlands)

    Steijger, O. M.; Lingeman, H.; Brinkman, U. A.; Holthuis, J. J.; Smilde, A. K.; Doornbos, D. A.

    1993-01-01

    N-(4-Aminobutyl)-N-ethylisoluminol was used for labelling of carboxylic acids. The derivatization reaction was carried out with 1-hydroxybenzotriazole as pre-activator of the carboxylic acid function and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide as the coupling reagent. Optimum conditions for

  4. Coordination Architectures of energetic Cd (II) coordination polymers constructed by the bifunctional substituted-tetrazole-carboxylate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lei; Bai, Yu; Min, Yu-Ting; Jia, Tian-Tian; Wu, Qi; Wang, Jing; Geng, Fei; Cheng, Hong-Jian [Department of Chemistry & Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500 (China); Zhu, Dun-Ru [College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Yang, Jie, E-mail: jieyang@cslg.edu.cn [Department of Chemistry & Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500 (China); Yang, Gao-Wen, E-mail: ygwsx@126.com [Department of Chemistry & Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500 (China)

    2016-12-15

    Three different tetrazole-carboxylate ligands, monotetrazole-carboxylate H{sub 2}tza (H{sub 2}tza=1,5-tetrazole-diacetic acid), Hpztza (Hpztza=5-(2-pyrazinyl)tetrazole-2(1-methyl)acetic acid), ditetrazole-carboxylate H{sub 2}tzpha (H{sub 2}tzpha=1,3-di(tetrazole-5-yl)benzene-N2,N2′-diacetic acid) have been chosen to react with CdCl{sub 2}·6H{sub 2}O, resulting in the formation of three new compounds [Cd{sub 2}(tza){sub 2}] (1), [Cd(pztza){sub 2}] (2) and [Cd(tzpha)(CH{sub 3}OH){sub 2}] (3). The coordinate sites of the three ligands are major influenced by the different substituted group of tetrazole ring. These compounds have been characterized by elemental analysis, IR and single crystal X-ray diffraction. Compound 1 displays a complex 3D structure; compound 2 shows a 3D network and compound 3 features a 2D layer network. Furthermore, the luminescence properties investigated at room temperature in the solid state showed excellent ligand-centered luminescence. The obvious enhancement in luminescence makes these compounds potential materials for optical use. The differential scanning calorimetry (DSC) and thermogravimetric-differential thermogravimetric (TG-DTG) analyses were applied to evaluate the thermal decomposition behavior of such compounds, showing that compounds 2 and 3 can be used as potential energetic materials. The relevant thermodynamic parameters ΔH, ΔS and ΔG were calculated as well. - Graphical abstract: H{sub 2}tza, Hpztza and H{sub 2}tzpha have been prepared. Three novel Cd (II)compounds were synthesized by reactions of CdCl{sub 2}·6H{sub 2}O, namely three dimensional [Cd{sub 2}(tza){sub 2}] (1), three dimensional [Cd(pztza){sub 2}] (2), and two dimensional [Cd(tzpha)(CH{sub 3}O){sub 2}] (3). The luminescences were investigated. Furthermore, the DSC show compounds 1 and 3 can be used as potential explosive materials.

  5. Chemical characterization of agroforestry solid residues aiming its utilization as adsorbents for metals in water

    Directory of Open Access Journals (Sweden)

    Francisco H. M. Luzardo

    2015-01-01

    Full Text Available In this work, a study of the correlation between the functional groups present in the chemical structure of the fibers of coconut shells, cocoa and eucalyptus, and their adsorption capacity of Cd+2 and Cu+2 ions from water was performed. The content of soluble solids and reactive phenols in aqueous extracts were determined. The chemical functional groups present in the fibers were examined using the IR spectra. The adsorption capacity of the peels was determined using atomic absorption spectrophotometer. For Cd+2, a significant correlation between the adsorption capacity and some specific chemical functional groups present in the fiber was verified. The potential use of these peels, as adsorbent of Cd+2 ions, is based on the presence of OH functional groups such as aryl-OH, aryl-O-CH2 of phenol carboxylic acids, as well as carbonyl groups derived from carboxylic acid salts, in these fibers.

  6. Modeling Donnan Dialysis Separation for Carboxylic Anion Recovery

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Møllerhøj, Martin; Jørgensen, Sten Bay

    2010-01-01

    layers and membranes. Donnan equilibrium, flux continuity of the transported ions, the electroneutrality condition and Faraday's law are employed to describe the electrical potential and concentration discontinuities at the interfaces. The Nernst-Planck equation is used to model the ion transport though...... boundary layers and membranes. The model consists of a system of partial differential equations that are solved numerically. The aim of this paper is to corroborate this general model for several monoprotic carboxylic acids reported in the literature. The model reproduces satisfactorily experimental fluxes...

  7. Biocompatibility studies of polyacrylonitrile membranes modified with carboxylated polyetherimide

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, S.; Rajesh, S.; Jayalakshmi, A.; Mohan, D., E-mail: mohantarun@gmail.com

    2013-10-15

    Poly (ether-imide) (PEI) was carboxylated and used as the hydrophilic modification agent for the preparation of polyacrylonitrile (PAN) membranes. Membranes were prepared with different blend compositions of PAN and CPEI by diffusion induced precipitation. The modified membranes were characterized by thermo gravimetric analysis (TGA), mechanical analysis, scanning electron microscopy (SEM) and contact angle measurement to understand the influence of CPEI on the properties of the membranes. The biocompatibility studies exhibited reduced plasma protein adsorption, platelet adhesion and thrombus formation on the modified membrane surface. The complete blood count (CBC) results of CPEI incorporated membranes showed stable CBC values and significant decrease in the complement activation were also observed. In addition to good cytocompatibility, monocytes cultured on these modified membranes exhibited improved functional profiles in 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Thus it could be concluded that PAN/CPEI membranes with excellent biocompatibility can be useful for hemodialysis. Highlights: • Carboxylated PEI was prepared and utilized as hydrophilic modification agent. • CPEI incorporated into PAN to improved biocompatibility and cyto compatibility • Biocompatibility of membranes was correlated with morphology and hydrophilicity. • Antifouling studies of the PAN/CPEI membranes was studied by BSA as model foulant.

  8. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    International Nuclear Information System (INIS)

    Fahmy, Karim; Oertel, Jana; Solioz, M.

    2017-01-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  9. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim; Oertel, Jana [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Obeid, M. [Technische Univ. Dresden (Germany); Solioz, M. [Bern Univ. (Switzerland)

    2017-06-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  10. Growth kinetics of racemic heptahelicene-2-carboxylic acid nanowires on calcite (104)

    Czech Academy of Sciences Publication Activity Database

    Einax, M.; Richter, T.; Nimmrich, M.; Rahe, P.; Stará, Irena G.; Starý, Ivo; Kühnle, A.; Maass, P.

    2016-01-01

    Roč. 145, č. 13 (2016), č. článku 134702. ISSN 0021-9606 Institutional support: RVO:61388963 Keywords : heptahelicene-2-carboxylic acid nanowires * nc-AFM * calcite * growth kinetics Subject RIV: CC - Organic Chemistry Impact factor: 2.965, year: 2016

  11. High-Performance Supercapacitor of Functionalized Carbon Fiber Paper with High Surface Ionic and Bulk Electronic Conductivity: Effect of Organic Functional Groups

    International Nuclear Information System (INIS)

    Suktha, Phansiri; Chiochan, Poramane; Iamprasertkun, Pawin; Wutthiprom, Juthaporn; Phattharasupakun, Nutthaphon; Suksomboon, Montakan; Kaewsongpol, Tanon; Sirisinudomkit, Pichamon; Pettong, Tanut; Sawangphruk, Montree

    2015-01-01

    Highlights: • A supercapacitor of organic functionalized carbon fiber paper (f-CFP) exhibits high areal and volumetric capacitances. • The performance of the supercapacitor depends on the organic functional group on the surface of the f-CFP. • Hydroxyl and carboxylic groups modified on the surface of f-CFP have higher pseudocapacitive property than amide and amine functional groups. • The f-CFP exhibits high surface ionic and bulk electrical conductivities. - Abstract: Although carbon fiber paper (CFP) or nonwovens are widely used as a non-corrosive and conductive substrate or current collector in batteries and supercapacitors as well as a gas diffusion layer in proton exchange membrane fuel cells, the CFP cannot store charges due to its poor ionic conductivity and its hydrophobic surface. In this work, the chemically functionalized CFP (f-CFP) consisting of hydroxyl and carboxylic groups on its surface was produced by an oxidation reaction of CFP in a mixed concentrated acid solution of H 2 SO 4 :HNO 3 (3:1 v/v) at 60 °C for 1 h. Other amide and amine groups modified CFP were also synthesized for comparison using a dehydration reaction of carboxylic modified CFP with ethylenediamine and n-butylamine. Interestingly, it was found that hydroxyl and carboxylic groups modified CFP behave as a pseudocapacitor electrode, which can store charges via the surface redox reaction in addition to electrochemical double layer capacitance. The aqueous-based supercapacitor of f-CFP has high areal, volumetric, and specific energy (49.0 μW.h/cm 2 , 1960 mW.h/L, and 5.2 W.h/Kg) and power (3.0 mW/cm 2 , 120 W/L, and 326.2 W/Kg) based on the total geometrical surface area and volume as well as the total weight of positive and negative electrodes. High charge capacity of the f-CFP stems from high ionic charge and pseudocapacitive behavior due to hydroxyl and carboxylic groups on its surface and high bulk electronic conductivity (2.03 mS/cm) due to 1D carbon fiber paper. The

  12. 5-Hydroxymethylfurfural (5-HMF Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System

    Directory of Open Access Journals (Sweden)

    Nadine Essayem

    2012-09-01

    Full Text Available 5-Hydroxymethylfurfural (5-HMF is an important bio-sourced intermediate, formed from carbohydrates such as glucose or fructose. The treatment at 150–250 °C of glucose or fructose in pure water and batch conditions, with catalytic amounts of most of the usual acid-basic solid catalysts, gave limited yields in 5-HMF, due mainly to the fast formation of soluble oligomers. Niobic acid, which possesses both Lewis and Brønsted acid sites, gave the highest 5-HMF yield, 28%, when high catalyst/glucose ratio is used. By contrast, we disclose in this work that the reaction of fructose in concentrated aqueous solutions of carboxylic acids, formic, acetic or lactic acids, used as reactive solvent media, leads to the selective dehydration of fructose in 5-HMF with yields up to 64% after 2 hours at 150 °C. This shows the potential of such solvent systems for the clean and easy production of 5-HMF from carbohydrates. The influence of adding solid catalysts to the carboxylic acid media was also reported, starting from glucose.

  13. Effect of tamoxifen on the coronary vascular reactivity of spontaneously hypertensive female rats

    Directory of Open Access Journals (Sweden)

    M.V. Borgo

    2011-08-01

    Full Text Available Tamoxifen has been associated with a reduction in the incidence of myocardial infarction. However, the effects of tamoxifen on coronary reactivity have not been fully elucidated. The objective of this study was to determine the effects of chronic treatment with tamoxifen on coronary vascular reactivity in spontaneously hypertensive rats (SHR. Female SHR were divided into four groups (N = 7 each: sham-operated (SHAM, sham-operated and treated with tamoxifen (10 mg/kg by gavage for 90 days (TAMOX, ovariectomized (OVX, and ovariectomized and treated with tamoxifen (OVX+TAMOX. Mean arterial pressure (MAP, heart rate (HR, coronary perfusion pressure (CPP, and coronary vascular reactivity were measured. MAP and HR were reduced (9.42 and 11.67%, respectively in the OVX+TAMOX group compared to the OVX group (P < 0.01. The coronary vascular reactivity of the OVX+TAMOX group presented smaller vasoconstrictor responses to acetylcholine (2-64 µg when compared to the OVX group (P < 0.01 and this response was similar to that of the SHAM group. The adenosine-induced vasodilator response was greater in the TAMOX group compared to the SHAM and OVX groups (P < 0.05. Baseline CPP was higher in OVX+TAMOX and TAMOX groups (136 ± 3.6 and 130 ± 1.5 mmHg than in OVX and SHAM groups (96 ± 2 and 119 ± 2.3 mmHg; P < 0.01. Tamoxifen, when combined with OVX, attenuated the vasoconstriction induced by acetylcholine and increased the adenosine-induced vasodilatory response, as well as reducing the MAP, suggesting beneficial effects of tamoxifen therapy on coronary vascular reactivity after menopause.

  14. Facile syntheses of isotope-labeled chiral octahydroindole-2-carboxylic acid and its N-methyl analog

    International Nuclear Information System (INIS)

    Yinsheng Zhang

    2012-01-01

    We have synthesized deuterium and carbon-14 labeled enantiomerically pure octahydroindole-2-carboxylic acid (PD0140417), N-methyl octahydroindole-2-carboxylic acid (PD0348183) and their racemic analogs (PD0108405 and PD0338055). [ring-U- 14 C]PD0140417 was prepared from [ring-U- 14 C]benzoic acid in a seven-step synthesis in 6.2% overall radiochemical yield. [ 14 C]PD0348183 was prepared from [ 14 C]BaCO 3 in a five-step synthesis in 16% radiochemical yield. Additionally, [D]PD0108405 and [D]PD0338055 were synthesized by direct platinum-catalyzed hydrogenation with deuterium gas. (author)

  15. [Chloroquine analogues from benzofuro- and benzothieno[3,2-b]-4-pyridone-2-carboxylic acid esters].

    Science.gov (United States)

    Gölitzer, K; Meyer, H; Jomaa, H; Wiesner, J

    2004-08-01

    The amides 7 were synthesized from the annulated methyl 4-pyridone-2-carboxylates 4 via the carboxylic acids 5 and their acid chlorides by reacting with the novaldiamine base 6. The alcohol 8b, obtained from DIBAH reduction of the ester 4b, was transformed to the chloromethyl derivative 9 which reacted with 6 and 18-crown-6 leading to the 2-novaldiaminomethyl-4-pyridone 10. Compound 10 was obtained with higher yield from DIBAH reduction of the amide 7b. The substances 7 and 10 were inactive when tested against the chloroquine resistant Plasmodium falciparum strain Dd2.

  16. Carboxylated magnetic nanoparticles as MRI contrast agents: Relaxation measurements at different field strengths

    Energy Technology Data Exchange (ETDEWEB)

    Jedlovszky-Hajdu, Angela, E-mail: angela.hajdu@net.sote.hu [Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad Sq 4, H-1089 Budapest (Hungary); Tombacz, Etelka, E-mail: tombacz@chem.u-szeged.hu [Department of Physical Chemistry and Material Science, University of Szeged, Aradi Vt. Sq 1, Szeged 6720 (Hungary); Banyai, Istvan, E-mail: banyai.istvan@science.unideb.hu [Department of Colloid and Environmental Chemistry, University of Debrecen (Hungary); Babos, Magor, E-mail: babosmagor@yahoo.com [Euromedic Diagnostics Szeged Ltd., Semmelweis St 6, Szeged 6720 (Hungary); Palko, Andras, E-mail: palko@radio.szote.u-szeged.hu [Faculty of Medicine, Department of Radiology, University of Szeged (Hungary)

    2012-09-15

    At the moment the biomedical applications of magnetic fluids are the subject of intensive scientific interest. In the present work, magnetite nanoparticles (MNPs) were synthesized and stabilized in aqueous medium with different carboxylic compounds (citric acid (CA), polyacrylic acid (PAA), and sodium oleate (NaOA)), in order to prepare well stabilized magnetic fluids (MFs). The magnetic nanoparticles can be used in the magnetic resonance imaging (MRI) as contrast agents. Magnetic resonance relaxation measurements of the above MFs were performed at different field strengths (i.e., 0.47, 1.5 and 9.4 T) to reveal the field strength dependence of their magnetic responses, and to compare them with that of ferucarbotran, a well-known superparamagnetic contrast agent. The measurements showed characteristic differences between the tested magnetic fluids stabilized by carboxylic compounds and ferucarbotran. It is worthy of note that our magnetic fluids have the highest r2 relaxivities at the field strength of 1.5 T, where the most of the MRI works in worldwide. - Highlights: Black-Right-Pointing-Pointer Magnetic resonance relaxation measurements were done at different field strengths. Black-Right-Pointing-Pointer Results show characteristic differences between the tested carboxylated MFs. Black-Right-Pointing-Pointer r1 and r2 relaxivities depend on the thickness of the protecting layer. Black-Right-Pointing-Pointer MFs have high r2/r1 ratios at each magnetic field.

  17. Difference between Extra- and Intracellular T1 Values of Carboxylic Acids Affects the Quantitative Analysis of Cellular Kinetics by Hyperpolarized NMR

    DEFF Research Database (Denmark)

    Karlsson, Magnus; Jensen, Pernille Rose; Ardenkjær-Larsen, Jan Henrik

    2016-01-01

    on the quantification of intracellular metabolicactivity. It is expected that the significantly shorter T1valueof the carboxylic moieties inside cells is a result of macro-molecular crowding. An artificial cytosol has been preparedand applied to predict the T1of other carboxylic acids. Wedemonstrate the value......Incomplete knowledge of the longitudinal relaxationtime constant (T1) leads to incorrect assumptions in quantita-tive kinetic models of cellular systems, studied by hyper-polarized real-time NMR. Using an assay that measures theintracellular signal of small carboxylic acids in living cells...

  18. The reactivity of natural phenols

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2009-11-30

    This review surveys physicochemical data of natural phenols published in recent years. The structures of some compounds of this class are given. A complete set of the dissociation energies of the O-H bonds for 71 natural phenols is presented. Kinetic characteristics of the reactions of peroxyl, alkyl and thiyl radicals with natural phenols, exchange reactions of phenoxyl radicals with phenols and reactions of phenoxyl radicals with lipids, hydroperoxides, cysteine and ascorbic acid are compiled and described systematically. The reactivity of phenols in radical reactions and the factors that determine the reactivity (the enthalpy of reaction, triplet repulsion, the electronegativities of atoms at the reaction centre, the presence of pi-electrons adjacent to the reaction centre, the radii of atoms at the reaction centre, steric hindrance, the force constants of the reacting bonds) are discussed. An important role of hydrogen bonding between surrounding molecules and the OH groups of natural phenols in decreasing their reactivities is noted.

  19. Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products

    International Nuclear Information System (INIS)

    Horak, Daniel; Rittich, Bohuslav; Spanova, Alena

    2007-01-01

    Magnetite nanoparticles about 14nm in diameter were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts with aqueous ammonia in the presence of poly(ethylene glycol) (PEG). Magnetic poly(glycidyl methacrylate) (PGMA) microspheres about 1μm in diameter were prepared by dispersion polymerization of GMA in aqueous ethanol in the presence of PEG-coated magnetite nanoparticles. The microspheres were hydrolyzed and carboxyl groups introduced by oxidation with KMnO 4 . The particles reversibly bound bacterial DNA of Bifidobacterium and Lactobacillus genera in the presence of high concentrations of PEG 6000 and sodium chloride from crude cell lysates of various dairy products (butter milk, cheese, yoghurt, probiotic tablets) or from cell lyophilisates. The presence of Bifidobacterium and Lactobacillus DNA in samples was confirmed by PCR amplification

  20. Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Sq. 2, 162 06 Prague 6 (Czech Republic)]. E-mail: horak@imc.cas.cz; Rittich, Bohuslav [Masaryk University Brno, Tvrdeho 14, 602 00 Brno (Czech Republic)]. E-mail: rittich@sci.muni.cz; Spanova, Alena [Masaryk University Brno, Tvrdeho 14, 602 00 Brno (Czech Republic)]. E-mail: spanova@sci.muni.cz

    2007-04-15

    Magnetite nanoparticles about 14nm in diameter were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts with aqueous ammonia in the presence of poly(ethylene glycol) (PEG). Magnetic poly(glycidyl methacrylate) (PGMA) microspheres about 1{mu}m in diameter were prepared by dispersion polymerization of GMA in aqueous ethanol in the presence of PEG-coated magnetite nanoparticles. The microspheres were hydrolyzed and carboxyl groups introduced by oxidation with KMnO{sub 4}. The particles reversibly bound bacterial DNA of Bifidobacterium and Lactobacillus genera in the presence of high concentrations of PEG 6000 and sodium chloride from crude cell lysates of various dairy products (butter milk, cheese, yoghurt, probiotic tablets) or from cell lyophilisates. The presence of Bifidobacterium and Lactobacillus DNA in samples was confirmed by PCR amplification.

  1. Multi-walled carbon nanotubes functionalized by carboxylic groups: Activation of TiO{sub 2} (anatase) and phosphate olivines (LiMnPO{sub 4}; LiFePO{sub 4}) for electrochemical Li-storage

    Energy Technology Data Exchange (ETDEWEB)

    Kavan, Ladislav; Zukalova, Marketa [J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, CZ-18223 Prague 8 (Czech Republic); Bacsa, Revathi; Tunckol, Meltem; Serp, Philippe [Laboratoire de Chimie de Coordination, UPR CNRS 8241, composante ENSIACET, Universite de Toulouse UPS-INP-LCC 4, Allee Emile Monso, BP 74233, 31432, Toulouse (France); Zakeeruddin, Shaik M.; Le Formal, Florian; Graetzel, Michael [Laboratoire de Photonique et Interfaces, EPFL, Ecublens, CH-1015 Lausanne (Switzerland)

    2010-08-15

    Multi-walled carbon nanotubes functionalized by carboxylic groups, exhibit better affinity towards TiO{sub 2} (P90, Degussa) as compared to that of pristine nanotubes. Also the electrochemical performance of TiO{sub 2} is improved by nanotube networking, but the Li-storage capacity of TiO{sub 2} is unchanged. Whereas the composite of TiO{sub 2} with non-functionalized nanotubes demonstrates simple superposition of the behavior of pure components, the composite with functionalized nanotubes shows unique faradaic pseudocapacitance which is specific for this composite only. The surface functionalization of nanotubes enhances charge storage capacity and reversibility of a composite with LiMnPO{sub 4} (olivine), but mediates also the electrolyte breakdown at potentials >4.2 V. Whereas the electrochemical activation of LiMnPO{sub 4} (olivine) by functionalized nanotubes is quite modest, excellent performance was found for LiFePO{sub 4} (olivine) in composite materials containing only 2 wt% of functionalized nanotubes. (author)

  2. Carboxyl-terminated PAMAM dendrimer interaction with 1-palmitoyl-2-oleoyl phosphocholine bilayers

    Science.gov (United States)

    Polycationic polymers and liposomes have a great potential use as individual drug delivery systems and greater potential as a combined drug delivery system. Thus, it is important to better understand the interactions of polymers with phospholipid bilayers. A mechanistic study of carboxyl-terminate...

  3. Insights into the reactivation of cobalamin-dependent methionine synthase

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Datta, Supratim; Pattridge, Katherine A.; Smith, Janet L.; Matthews, Rowena G.; (Michigan)

    2009-12-10

    Cobalamin-dependent methionine synthase (MetH) is a modular protein that catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to produce methionine and tetrahydrofolate. The cobalamin cofactor, which serves as both acceptor and donor of the methyl group, is oxidized once every {approx}2,000 catalytic cycles and must be reactivated by the uptake of an electron from reduced flavodoxin and a methyl group from S-adenosyl-L-methionine (AdoMet). Previous structures of a C-terminal fragment of MetH (MetH{sup CT}) revealed a reactivation conformation that juxtaposes the cobalamin- and AdoMet-binding domains. Here we describe 2 structures of a disulfide stabilized MetH{sup CT} ({sub s-s}MetH{sup CT}) that offer further insight into the reactivation of MetH. The structure of {sub s-s}MetH{sup CT} with cob(II)alamin and S-adenosyl-L-homocysteine represents the enzyme in the reactivation step preceding electron transfer from flavodoxin. The structure supports earlier suggestions that the enzyme acts to lower the reduction potential of the Co(II)/Co(I) couple by elongating the bond between the cobalt and its upper axial water ligand, effectively making the cobalt 4-coordinate, and illuminates the role of Tyr-1139 in the stabilization of this 4-coordinate state. The structure of {sub s-s}MetH{sub CT} with aquocobalamin may represent a transient state at the end of reactivation as the newly remethylated 5-coordinate methylcobalamin returns to the 6-coordinate state, triggering the rearrangement to a catalytic conformation.

  4. Level of C - reactive protein as an indicator for prognosis of premature uterine contractions.

    Science.gov (United States)

    Najat Nakishbandy, Bayar M; Barawi, Sabat A M

    2014-01-01

    high concentrations of maternal C-reactive protein have been associated with adverse pregnancy outcome, and premature uterine contraction may be predicted by elevated levels of C-reactive protein. This may ultimately be simple and cost-effective enough to introduce as a low-risk screening program. an observational case control study was performed from May 1st, 2010 to December 1st, 2010 at Maternity Teaching Hospital-Erbil/ Kurdistan Region/ Iraq. The sample size was (200) cases. Hundred of them were presented with premature uterine contractions at 24(+0)-36(+6) weeks. The other hundred were control group at same gestational ages. The level of C-reactive protein was determined in both groups and both groups were followed till delivery. (93) out of (100) women with premature uterine contractions had elevated level of C-Reactive protein and 91% delivered prematurely while in the control group only (9) out of (100) women had elevated level of C-reactive protein and only 8% of them delivered preterm. Differences were statistically highly significant. C-reactive protein can be used as a biomarker in prediction of premature delivery when it is associated with premature uterine contractions. As well it can be used as a screening test to detect cases that are at risk of premature delivery.

  5. The acidic functional groups of humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shanxiang, Li; Shuhe, Sun; Zhai Zongxi, Wu Qihu

    1983-09-01

    The acidic functional groups content, pK value, DELTAH and DELTAS of humic acid (HA) and nitro-humic acid (NHA) were determined by potentiometry, conductometry and calorimetric titration. The thermodynamic parameters of carboxylic groups and phenolic hydroxyl groups of humic acid are similar to that of simple hydroxy-benzoic acid. The configuration sites of acidic functional groups in humic acid from different coals are different. The carbonyl groups on aromatic rings are probably ortho to phenolic -OH for HA and NHA extracted from Huangxian's brown coal and Japanese lignite, while those from Lingshi's weathered coal are not. The weak -COOH groups of the latter possess higher chemical activity. The -COOH content in HA increases, phenolic -OH group decreases and the chemical acidity of acidic functional groups increases when HA is oxidized by nitric acid. (14 refs.)

  6. 4-Methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic Acid. Peculiarities of Preparation, Structure, and Biological Properties

    Directory of Open Access Journals (Sweden)

    Igor V. Ukrainets

    2018-03-01

    Full Text Available In order to determine the regularities of the structure–analgesic activity relationship, the peculiarities of obtaining, the spatial structure, and biological properties of 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid and some of its derivatives have been studied. Using nuclear magnetic resonance (NMR spectroscopy and X-ray diffraction analysis, it has been proven that varying the reaction conditions using alkaline hydrolysis of methyl 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate makes it possible to successfully synthesize a monohydrate of the target acid, its sodium salt, or 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine. The derivatographic study of the thermal stability of 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid monohydrate has been carried out; based on this study, the optimal conditions completely eliminating the possibility of unwanted decomposition have been proposed for obtaining its anhydrous form. It has been shown that 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine is easily formed during the decarboxylation of not only 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid, but also its sodium salt, which is capable of losing СО2 both in rather soft conditions of boiling in an aqueous solution, and in more rigid conditions of dry heating. The NMR spectra of the compounds synthesized are given; their spatial structure is discussed. To study the biological properties of 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid and its sodium salt, the experimental model of inflammation caused by subplantar introduction of the carrageenan solution in one of the hind limbs of white rats was used. The anti-inflammatory activity and analgesic effect were assessed by the degree of edema reduction and the ability to affect the pain response compared to the animals of control groups. According to the results of the tests performed, it has been found that after intraperitoneal injection

  7. Studies on carboxylated graphene oxide incorporated polyetherimide mixed matrix ultrafiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kaleekkal, Noel Jacob, E-mail: noeljacob89@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Thanigaivelan, A., E-mail: thanichemstar@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Rana, Dipak, E-mail: rana@uottawa.ca [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, Ontario, K1N 6N5 (Canada); Mohan, D., E-mail: mohantarun@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India)

    2017-01-15

    In this work the graphene oxide prepared by the modified Hummers’ method was effectively carboxylated. These carboxylated graphene oxide (c-GO) microsheets was characterized by X-ray diffraction analysis, Raman shift, zeta potential, and their morphology was observed using a high resolution scanning/transmission electron microscopy. Polyetherimide mixed matrix membranes (MMMs) were fabricated by the non-solvent induced phase separation technique with varying concentration of this microsheet. The presence of these microsheets on the membrane surface was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and could also be confirmed visually by optical images. The membranes were further characterized; they showed a greater water flux, higher porosity, and sufficient thermal stability. Incorporation of these microsheets improved the hydrophilicity of the membrane confirmed by the lower contact angle values, which in turn explained the lower interfacial free energy, the increase in work of adhesion, the higher solid-vapor free energy and the spreading coefficient. Membranes loaded with 0.3 wt% of c-GO showed a flux recovery of 94% and only a small flux decline even after 180 min of filtration of humic acid (HA) solution. The efficiency of these membranes in removal of HA, toxic metal ions was also investigated. The bacterial anti-adhesion property of c-GO in the membranes was also explored using Escherichia coli, as a model bio-foulant. The charge of the microsheets and their unique architecture imparts higher hydrophilicity and greater fouling resistance along with improved permeation flux when incorporated into the polymer matrix. - Highlights: • Novel membranes by incorporating carboxylated GO into polyetherimide matrix. • Modified membranes exhibited greater porosity, flux and high humic acid rejection. • Nanoplatelets improved the flux recovery ratio to >94%. • Liquid phase polymer based retention utilized for toxic heavy metal

  8. Spectroscopic Observation of Water-Mediated Deformation of the CARBOXYLATE-M2+ (M= Mg, Ca) Contact Ion Pair

    Science.gov (United States)

    Kelleher, Patrick J.; DePalma, Joseph W.; Johnson, Mark

    2016-06-01

    The binding of alkaline earth dications to the biologically relevant carboxylate ligand has previously been studied using vibrational sum frequency generation (VSFG) spectroscopy of the air-water interface, infrared multiple photon dissociation (IRMPD) spectroscopy of clusters, and DFT methods. These results suggest the presence of both monodentate and bidentate binding motifs of the M2+ ions to the cayboxyl head groups depending on the extent of solvation. We revisit these systems using vibrational predissociation spectroscopy to measure the gas-phase vibrational spectra of the D2-tagged microhydrated [MgOAc(H2O)n=1-5]+ and [CaOAc(H2O)n=1-6]+ clusters. The spectra show that [MgOAc(H2O)n]+ switches from bidentate to monodentate binding promptly at n = 5, while [CaOAc(H2O)n]+ retains its bidentate attachment such that the sixth water molecule initiates the second solvation shell. The difference in binding behavior between these two divalent metal ions is analyzed in the context of the local acidity of the solvent water molecules and the strength of the metal-carboxylate and metal-water interactions. This cluster study provides insight into the chemical physics underlying the unique and surprising impacts of Mg2+ and Ca2+ on the chemistry mediated by sea spray aerosols. Funding for this work was provided by the NSF's Center for Aerosol Impacts on Climate and the Environment.

  9. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    Science.gov (United States)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  10. The titration of carboxyl-terminated monolayers revisited: in situ calibrated fourier transform infrared study of well-defined monolayers on silicon.

    Science.gov (United States)

    Aureau, D; Ozanam, F; Allongue, P; Chazalviel, J-N

    2008-09-02

    The acid-base equilibrium at the surface of well-defined mixed carboxyl-terminated/methyl-terminated monolayers grafted on silicon (111) has been investigated using in situ calibrated infrared spectroscopy (attenuated total reflectance (ATR)) in the range of 900-4000 cm (-1). Spectra of surfaces in contact with electrolytes of various pH provide a direct observation of the COOH COO (-) conversion process. Quantitative analysis of the spectra shows that ionization of the carboxyl groups starts around pH 6 and extends over more than 6 pH units: approximately 85% ionization is measured at pH 11 (at higher pH, the layers become damaged). Observations are consistently accounted for by a single acid-base equilibrium and discussed in terms of change in ion solvation at the surface and electrostatic interactions between surface charges. The latter effect, which appears to be the main limitation, is qualitatively accounted for by a simple model taking into account the change in the Helmholtz potential associated with the surface charge. Furthermore, comparison of calculated curves with experimental titration curves of mixed monolayers suggests that acid and alkyl chains are segregated in the monolayer.

  11. Synthesis and complexation properties towards uranyl cation of carboxylic acid derivatives of p-tert-butyl-calix[6]arene; Synthese et proprietes complexantes vis-a-vis de l'ion uranyle de derives carboxyliques du p-tert-butyl-calix[6]arene

    Energy Technology Data Exchange (ETDEWEB)

    Souane, R

    2005-03-15

    In the fuel reprocessing plants radioactive metals, and more particularly, uranium in UO{sub 2}{sup 2+} form in the various installations, have many varied physico-chemical forms and there is a risk of exposure and internal contamination in the nuclear industry. It is necessary to exert a medical control to ensure the protection of the health of the workers. This medical control is done by dosing uranyl cation in the urine of the exposed people. This work forms part of this context. Indeed, we prepared a ligand able to complex the ion uranyl and which is also to be grafted on a solid support. In the family of calixarenes, the calix[6]arenes functionalized by three or four carboxylic functions were selected like chelating molecules of the ion uranyl. The properties of complexation of these calixarenes were studied by potentiometry in methanol, under these conditions balances of protonation and complexation were determined and the constant partners were obtained using the Hyperquad program. We synthesized tri-carboxylic calix[6]arenes comprising of the groupings nitro (NO{sub 2}) in para position of phenol in order to see the influence of a substitution in para position on the complexation. We also synthesized calix[6]arenes tetra-carboxylic in order to show the role of an additional carboxylic acid grouping. The potentiometric study determined thermodynamic parameters of protonation and complexation of carboxylic calix[6]arenes. The results of the complexation highlighted which complex UO{sub 2}L corresponding to the ligand para-tert-butyl-calix[6]arene tetra-acid is more stable than that corresponding to the ligand mono-nitro calix[6]arene tri-acid ({delta}log{beta}110 = 4.3), and than the effect of the groupings nitro in para position has low influence on the complexation of UO{sub 2}{sup 2+}. This makes it possible to consider as possible the grafting of the calix[6]arenes which one knows the behaviour of trapping. To this end we synthesized the ligand 23

  12. Synthesis, Characterization and catalytic activity of triorganotin(IV) carboxylates for the production of biodiesel from rocket seed oil

    International Nuclear Information System (INIS)

    Tariq, M.; Ali, S.

    2013-01-01

    Organotin(IV) carboxylates have a wide range of industrial applications such as antifouling paints, PVC stabilization, ion carries in electrochemical membranes and homogeneous catalysts. The catalytic application of organotin carboxylates are in the field of silicone curing, polyurethane formation and esterification. Only a limited literature is available regarding the use of organotin carboxylates in the transesterification of vegetable oil to produce biodiesel . The present study deals with the synthesis of some new triorganotin(IV) carboxylates for their subsequent use as catalyst for transesterification of rocket seed oil to produce biodiesel. The three new triorganotin(IV) i.e. (Me/sub 3/SnL) (1),(Bu/sub 3/Snl) (2) and (Ph/sub 3/SnL) (3), were synthesized by refluxing sodium salt of ligand (NaL), where L=O/sub 2/C(CH/sub 3/)C=CHC/sub 6/H/sub 4/F with trimethyl, tributyl and triphenyl tin(IV) chlorides, respectively for 10 hrs. The synthesized compounds were characterized by instrumental techniques like FT-IR and NMR (1H, 13C). The catalytic activity of these compounds was assessed for transesterification of triglycerides in rocket seed oil to produce biodiesel. All the tested compounds showed good catalytic activity in the order 1> 2 > 3. (author)

  13. [Frequency of skin reactivity to food allergens in allergic patients].

    Science.gov (United States)

    Camero-Martínez, Heriberto; López-García, Aída Inés; Rivero-Yeverino, Daniela; Caballero-López, Chrystopherson Gengyny; Arana-Muñoz, Oswaldo; Papaqui-Tapia, Sergio; Rojas-Méndez, Isabel Cristina; Vázquez-Rojas, Elizabeth

    2017-01-01

    Food allergy is deemed to have a worldwide prevalence ranging from 2 to 10 %. To determine the frequency of skin reactivity to food allergens by age groups. Cross-sectional, descriptive, prolective, observational study. Patients aged from 2 to 64 years with symptoms consistent with allergic disease were included. Skin prick tests were carried out with food allergens. Frequencies and percentages were estimated. One-hundred and ninety-one patients were included, out of which 63.4% were females. Mean age was 22.5 years; 19.3 % showed positive skin reactivity to at least one food. Distribution by age group was as follows: preschool children 13.5 %, schoolchildren 24.3 %, adolescents 2.7 % and adults 59.5 %. Diagnoses included allergic rhinitis in 84.3 %, asthma in 19.4 %, urticaria in 14.1 % and atopic dermatitis in 8.4 %. Positive skin reactivity frequency distribution in descending order was: soybeans with 5.2 %, peach with 4.7 %, grapes, orange and apple with 3.6 %, nuts with 3.1 %, pineapple, avocado, tomato and tuna with 2.6 %. The frequency of skin reactivity to food allergens was similar to that reported in the national and Latin American literature, but sensitization to each specific allergen varied for each age group.

  14. Spectral characterization of superficial coal groups

    International Nuclear Information System (INIS)

    Ahmad, I.; Khan, M.A.; Ishaq, M.; Shakirullah; Bahadur, A.

    2004-01-01

    Spectral characterization of superficial coal groups was performed in KBr pellets. KBr Pellets were prepared for virgin and variously pretreated coal samples. Spectra of satisfactory resolution were obtained in wave number range-4000-400 cm /sup -1/. Presence of broad absorption bands corresponds to hydroxyl, carbonyl, carboxyl and phenolic functionalities in the spectra clearly define their presence in all samples understudy. Forced oxidation proved effective for oxidation of both aliphatic and aromatic configurations, which can be revealed from the respective spectra. (author)

  15. Chemically Functional Alkanethiol Derivitized Magnetic Nanoparticles

    Science.gov (United States)

    2003-01-01

    reactive groups such as alcohols, amines and carboxylic acids . This paper presents our preliminary investigations of the voltammetry of the former class of...1.62 mmol) TOPO, 1.75g (7.25 mmol) HDA and 0. l4mL (1.06 mmol) Fe(CO)5 is heated and injected into the TOPO mixture, and stirred for at least an

  16. Appetitive Motivation and Negative Emotion Reactivity among Remitted Depressed Youth

    Science.gov (United States)

    Hankin, Benjamin L.; Wetter, Emily K.; Flory, Kate

    2012-01-01

    Depression has been characterized as involving altered appetitive motivation and emotional reactivity. Yet no study has examined objective indices of emotional reactivity when the appetitive/approach system is suppressed in response to failure to attain a self-relevant goal and desired reward. Three groups of youth (N = 98, ages 9-15; remitted…

  17. Non-Covalent Functionalisation of C30 Fullerene by Pyrrole-n-Carboxylic Acid (n=2, 3): Density Functional Theory Studies

    Science.gov (United States)

    Harismah, Kun; Mirzaei, Mahmoud; Ghasemi, Nahid; Nejati, Mohammad

    2017-12-01

    For functionalisation of a representative C30 fullerene nanostructure by pyrrole-n-carboxylic acid (PnCA; n=2, 3) their stabilities and properties were investigated based on density functional theory calculations. Parallel calculations were also done for C60 fullerene as evidence for comparing the results. Non-covalent interactions are considered to make the functionalised structures. In contrast with the spherical shape of C60, the shape of C30 fullerene is elliptical; therefore, the functionalisation processes were done for both axial and equatorial elliptical positions (AC30 and EC30). The results indicated that both the positions of C30 have almost equivalent chances to be functionalised by PnCA; but functionalisation by P2CA is slightly more favourable than P3CA, either for C60. The illustrated molecular orbitals' distributions indicated that the direction of charge transfer could be considered from PnCA counterparts to fullerene counterparts. The molecular properties indicated more reactivity for C30 than for C60 fullerene. Finally, the atomic scale quadrupole coupling constants indicated different roles for N and O atoms of PnCA in the functionalised models.

  18. The influence of addition of papain enzyme and Carboxyl Methyl Cellulose on the textural properties of Tofu

    Science.gov (United States)

    Faridah; Fachraniah; Arifien; Sari, C. M.

    2018-03-01

    Papain enzyme and carboxyl methyl cellulosa was used in tofu production as coagulant and thickener. Papain enzyme is a protease enzyme that can break proteins. Papain enzymeuseful as coagulant to replace acid and base coagulant. The goal of this study is to observe papain enzyme as coagulant and carboxyl methyl cellulose as thickener to increase characteristic of tofu. Tofu is from soy milk has been pasteurized at 70 °C with the addition of papain enzyme and carboxyl methly cellulose. The concenration of papain enzyme is varied such as 200, 400, 800, and 1000 ppm. After Temperature reachs at 90 °C, carboxyl methyl cellulosa is added in soy milk to produce tofu. This study focuses on introducing papain enzyme as coagulant as well as investigating its potential in improving tofu making process productivity. Further the present work attempts to determine the synergistic effect of combining CMC/enzyme in tofu characteristic. This research was conducted with soy milk pasteurized at 70 °C with increasing papain enzyme. Protein from tofu was determined by using Spectrophotometer UV-VIS Shimadzu UV-1800 type. The highest protein concentration of the papain enzyme was found in 1000 ppm with CMC concentration of 0.6% w/v and based on organoleptic tests that the adding CMC and enzyme papain does not effect the taste, smell, texture and color of tofu. The taste of tofu produced is similar to the taste of tofu in the market.

  19. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  20. Acid-base titrations of functional groups on the surface of the thermophilic bacterium Anoxybacillus flavithermus: comparing a chemical equilibrium model with ATR-IR spectroscopic data.

    Science.gov (United States)

    Heinrich, Hannah T M; Bremer, Phil J; Daughney, Christopher J; McQuillan, A James

    2007-02-27

    Acid-base functional groups at the surface of Anoxybacillus flavithermus (AF) were assigned from the modeling of batch titration data of bacterial suspensions and compared with those determined from in situ infrared spectroscopic titration analysis. The computer program FITMOD was used to generate a two-site Donnan model (site 1: pKa = 3.26, wet concn = 2.46 x 10(-4) mol g(-1); site 2: pKa = 6.12, wet concn = 6.55 x 10(-5) mol g(-1)), which was able to describe data for whole exponential phase cells from both batch acid-base titrations at 0.01 M ionic strength and electrophoretic mobility measurements over a range of different pH values and ionic strengths. In agreement with information on the composition of bacterial cell walls and a considerable body of modeling literature, site 1 of the model was assigned to carboxyl groups, and site 2 was assigned to amino groups. pH difference IR spectra acquired by in situ attenuated total reflection infrared (ATR-IR) spectroscopy confirmed the presence of carboxyl groups. The spectra appear to show a carboxyl pKa in the 3.3-4.0 range. Further peaks were assigned to phosphodiester groups, which deprotonated at slightly lower pH. The presence of amino groups could not be confirmed or discounted by IR spectroscopy, but a positively charged group corresponding to site 2 was implicated by electrophoretic mobility data. Carboxyl group speciation over a pH range of 2.3-10.3 at two different ionic strengths was further compared to modeling predictions. While model predictions were strongly influenced by the ionic strength change, pH difference IR data showed no significant change. This meant that modeling predictions agreed reasonably well with the IR data for 0.5 M ionic strength but not for 0.01 M ionic strength.

  1. Kinetic analysis of the reactivity of aromatic amino acids in the T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Yoshida, Akira; Imaizumi, Hiroshi; Sato, Takayuki; Kano, Naoki

    2009-01-01

    To quantitatively evaluate the influence of tritium ( 3 H or T) on ecosystem, the hydrogen isotope exchange reaction (T-for-H exchange reaction) between each aromatic amino acid (L-tyrosine, L-phenylalanine, or L-2-phenylglycine) and HTO vapor was observed at 50-70degC in the gas-solid system. Applying the A''-McKay plot method to data (obtained in the exchange reaction), the rate constants (k) of functional groups of each aromatic amino acid in this reaction was obtained. Comparing the rate constants, following six matters have been found in the T-for-H exchange reaction. (1) The reactivity of the functional groups in each amino acid increases with increasing temperature. (2) The reactivity of the functional groups of the amino acids (used) increases in the order of L-tyrosine, L-phenylalanine, and L-2-phenylglycine. (3) As to l-tyrosine, 1) the temperature dependence of each functional group increases in the order of COOH group, OH one, and NH 2 one, 2) the reactivity of OH group is 3.8 times greater than that of NH 2 one, and 3) the reactivity of COOH group is 2.0 times greater than NH 2 one. (4) As to the influence of the substituent, the reactivity of NH 2 group is larger than that of the COOH one. (5) Using the A''-McKay plot method, the reactivity of each functional group in an amino acid can be nondestructively and simultaneously clarified without using masking reagent. (6) The results obtained in this work is useful for preventing T contamination and for evaluating the influence of T on environment. (author)

  2. Design and synthesis of reactive separation systems

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, M.F.

    1992-01-01

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  3. Synthesis and antifungal activity of the derivatives of novel pyrazole carboxamide and isoxazolol pyrazole carboxylate.

    Science.gov (United States)

    Sun, Jialong; Zhou, Yuanming

    2015-03-09

    A series of pyrazole carboxamide and isoxazolol pyrazole carboxylate derivatives were designed and synthesized in this study. The structures of the compounds were elucidated based on spectral data (infrared, proton nuclear magnetic resonance and mass spectroscopy). Then, all of the compounds were bioassayed in vitro against four types of phytopathogenic fungi (Alternaria porri, Marssonina coronaria, Cercospora petroselini and Rhizoctonia solani) using the mycelium growth inhibition method. The results showed that some of the synthesized pyrazole carboxamides displayed notable antifungal activity. The isoxazole pyrazole carboxylate 7ai exhibited significant antifungal activity against R. solani, with an EC50 value of 0.37 μg/mL. Nonetheless, this value was lower than that of the commercial fungicide, carbendazol.

  4. Use of technical mixtures of carboxylic acids to the extraction of silver

    International Nuclear Information System (INIS)

    Smulek, W.

    1983-01-01

    The application of technical mixtures of carboxylic acids, obtained from a Polish oil mill, to the extraction of silver, gold, and europium is described. The distribution ratio is given as a function of HNO 3 and H 2 SO 4 concentrations, extractant and metal concentrations, and nature of diluent. (author)

  5. Atmospheric chemistry of perfluorinated carboxylic acids: Reaction with OH radicals and atmospheric lifetimes

    DEFF Research Database (Denmark)

    Hurley, MD; Andersen, Mads Peter Sulbæk; Wallington, TJ

    2004-01-01

    Relative rate techniques were used to study the kinetics of the reactions of OH radicals with a homologous series of perfluorinated acids, F(CF2)(n)COOH (n = 1, 2, 3, 4), in 700 Torr of air at 296 +/- 2 K. For n > 1, the length of the F(CF2)(n) group had no discernible impact on the reactivity of...

  6. tert-Butyl 4-carbamoyl-3-methoxyimino-4-methylpiperidine-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Yucheng Wang

    2008-12-01

    Full Text Available The title compound, C13H23N3O4, was prepared starting from ethyl N-benzyl-3-oxopiperidine-4-carboxylate through a nine-step reaction, including hydrogenation, Boc (tert-butoxycarbonyl protection, methylation, oximation, hydrolysis, esterification and ammonolysis. In the crystal structure, molecules are linked by intermolecular N—H...O hydrogen bonds to form a porous three-dimensional network with solvent-free hydrophobic channels extending along the c axis.

  7. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling

    Science.gov (United States)

    Duncan, Kyle D.; Volmer, Dietrich A.; Gill, Chris G.; Krogh, Erik T.

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H]-) ions with limited selective fragmentation. However, carboxylates cationized with Ba2+ have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba]+ precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH]+ and [BaOH]+). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  8. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling.

    Science.gov (United States)

    Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  9. Copper coordination polymers constructed from thiazole-5-carboxylic acid: Synthesis, crystal structures, and structural transformation

    Energy Technology Data Exchange (ETDEWEB)

    Meundaeng, Natthaya; Rujiwatra, Apinpus [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prior, Timothy J., E-mail: t.prior@hull.ac.uk [Chemistry, University of Hull, Kingston upon Hull HU6 7RX (United Kingdom)

    2017-01-15

    We have successfully prepared crystals of thiazole-5-carboxylic acid (5-Htza) (L) and three new thiazole-5-carboxylate-based Cu{sup 2+} coordination polymers with different dimensionality, namely, 1D [Cu{sub 2}(5-tza){sub 2}(1,10-phenanthroline){sub 2}(NO{sub 3}){sub 2}] (1), 2D [Cu(5-tza){sub 2}(MeOH){sub 2}] (2), and 3D [Cu(5-tza){sub 2}]·H{sub 2}O (3). These have been characterized by single crystal X-ray diffraction and thermogravimetry. Interestingly, the 2D network structure of 2 can directly transform into the 3D framework of 3 upon removal of methanol molecules at room temperature. 2 can also undergo structural transformation to produce the same 2D network present in the known [Cu(5-tza){sub 2}]·1.5H{sub 2}O upon heat treatment for 2 h. This 2D network can adsorb water and convert to 3 upon exposure to air. - Highlights: • Rare examples of coordination polymers of thiazole-5-carboxylic acid were prepared. • Non-covalent interactions play a key role on the assembly of the complexes in solid state. • Structural transformation of a 2D framework to a 3D upon removal of methanol is observed.

  10. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  11. The chemical reactivity and structure of collagen studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wess, T.J.; Wess, L.; Miller, A. [Univ. of Stirling (United Kingdom)

    1994-12-31

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon.

  12. The chemical reactivity and structure of collagen studied by neutron diffraction

    International Nuclear Information System (INIS)

    Wess, T.J.; Wess, L.; Miller, A.

    1994-01-01

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon

  13. On the intermediacy of carboxyphosphate in biotin-dependent carboxylations

    International Nuclear Information System (INIS)

    Ogita, Takeshi; Knowles, J.R.

    1988-01-01

    In the ATP-dependent carboxylation of biotin that is catalyzed by most biotin-dependent carboxylases, a fundamental mechanistic question is whether the ATP activates bicarbonate (via the formation of carboxyphosphate as an intermediate) or whether the ATP activates biotin (via the formation of O-phosphobiotin). The authors have resorted to three mechanistic tests using the biotin carboxylase subunit of acetyl-CoA carboxylase from Escherichia coli: positional isotope exchange, intermediate trapping, and 18 O tracer experiments on the ATPase activity. First, no catalysis of positional isotope exchange in adenosine 5'-([α,β- 18 O,β,β- 18 O 2 ]triphosphate) was observed when either biotin or bicarbonate was absent, nor was any exchange seen in the presence of both N-1-methylbiotin and bicarbonate. Second, the putative carboxyphosphate intermediate could not be trapped as its trimethyl ester, under conditions of incubation and analysis where the authentic triester was shown to be adequately stable. In the third test, however, they showed that the ATPase activity of biotin carboxylase that is seen in the absence of biotin, an activity that is known to parallel the normal carboxylase reaction when biotin is present, occurs with the transfer of an 18 O label directly from [ 18 O]bicarbonate into the product P i . This result suggests that the bicarbonate-dependent biotin-independent ATPase reaction catalyzed by biotin carboxylase goes via carboxyphosphate and that the carboxylation of biotin itself may proceed analogously

  14. Diaqua­bis­(pyridine-2-carboxyl­ato-κ2 N,O)manganese(II) dimethyl­formamide hemisolvate

    Science.gov (United States)

    Golenya, Irina A.; Boyko, Alexander N.; Kalibabchuk, Valentina A.; Haukka, Matti; Tomyn, Stefania V.

    2011-01-01

    There are two crystallographically independent complex mol­ecules with very similar geometries in the unit cell of the title compound, [Mn(C6H4NO2)2(H2O)2]·0.5C3H7NO. The central ion is situated in a distorted octa­hedral environment of two N- and four O-donor atoms from two pyridine-2-carboxyl­ate ligands and two cis-disposed water mol­ecules. The carboxyl­ate ligands are coordinated in a chelate fashion with the formation of two five-membered rings. In the crystal, the complex mol­ecules are connected by O—H⋯O hydrogen bonds between the coordinated water mol­ecules and the uncoordinated carboxyl­ate O atoms, thus forming hydrogen-bonded walls disposed perpendicularly to the bc plane. PMID:22219799

  15. Experimental and theoretical investigation on corrosion inhibition of AA5052 aluminium alloy by L-cysteine in alkaline solution

    International Nuclear Information System (INIS)

    Wang, Dapeng; Gao, Lixin; Zhang, Daquan; Yang, Dong; Wang, Hongxia; Lin, Tong

    2016-01-01

    The corrosion inhibition of L-cysteine on AA5052 aluminium alloy in 4 mol/L NaOH solution was investigated by hydrogen gas evolution experiment, polarisation curve, galvanostatic discharge, electrochemical impedance spectroscopy measurements and quantum chemical calculations. The adsorption of L-cysteine on aluminium alloy surface obeyed the amended Langmuir's adsorption isotherm. The polarisation curves indicated that L-cysteine acted as a cathodic inhibitor to inhibit cathodic reaction. The inhibition mechanism was dominated by the geometric covering effect. The galvanostatic discharge shows that the additives restrain the hydrogen evolution and increase the anodic utilization rate. Quantum chemical calculations indicated that L-cysteine molecules mainly interacted with on the carboxyl groups on the aluminium alloy surface. A strong hybridization occurred between the s-orbital and p-orbital of reactive sites in the L-cysteine molecule and the sp-orbital of Aluminium. - Highlights: • L-cysteine was used as corrosion inhibitor for Al alloy in alkaline solution. • Adsorption of L-cysteine on Al alloy surface obeyed the amended Langmuir's isotherm. • L-cysteine molecules interacted with the carboxyl groups on the Al alloy surface. • A strong orbital hybridization occurred between the reactive sites in L-cysteine and Al.

  16. Monolayer arrangement of fatty hydroxystearic acids on graphite: Influence of hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Medina, S. [Laboratorio de Rayos-X, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Benítez, J.J.; Castro, M.A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Cerrillos, C. [Servicio de Microscopía, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Millán, C. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Alba, M.D., E-mail: alba@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain)

    2013-07-31

    Previous studies have indicated that long-chain linear carboxylic acids form commensurate packed crystalline monolayers on graphite even at temperatures above their melting point. This study examines the effect on the monolayer formation and structure of adding one or more secondary hydroxyl, functional groups to the stearic acid skeleton (namely, 12-hydroxystearic and 9,10-dihydroxystearic acid). Moreover, a comparative study of the monolayer formation on recompressed and monocrystalline graphite has been performed through X-ray diffraction (XRD) and Scanning Tunneling Microscopy (STM), respectively. The Differential Scanning Calorimetry (DSC) and XRD data were used to confirm the formation of solid monolayers and XRD data have provided a detailed structural analysis of the monolayers in good correspondence with obtained STM images. DSC and XRD have demonstrated that, in stearic acid and 12-hydroxystearic acid adsorbed onto graphite, the monolayer melted at a higher temperature than the bulk form of the carboxylic acid. However, no difference was observed between the melting point of the monolayer and the bulk form for 9,10-dihydroxystearic acid adsorbed onto graphite. STM results indicated that all acids on the surface have a rectangular p2 monolayer structure, whose lattice parameters were uniaxially commensurate on the a-axis. This structure does not correlate with the initial structure of the pure compounds after dissolving, but it is conditioned to favor a) hydrogen bond formation between the carboxylic groups and b) formation of hydrogen bonds between secondary hydroxyl groups, if spatially permissible. Therefore, the presence of hydroxyl functional groups affects the secondary structure and behavior of stearic acid in the monolayer. - Highlights: • Hydroxyl functional groups affect structure and behavior of acids in the monolayer. • Acids on the surface have a rectangular p2 monolayer structure. • Lattice parameters of acids are uniaxially

  17. Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction

    DEFF Research Database (Denmark)

    Persson, Tobias; Yde, Christina W.; Rasmussen, Jakob Ewald

    2007-01-01

    Densely functionalised pyrazole carboxamides and carboxylic acids were synthesised in an expedient manner through saponification and transamidation, respectively, of ester-functionalised pyrazoles. This synthetic protocol allowed for three diversifying steps in which appendages on the pyrazole...

  18. Haemoglobins with multiple reactive sulfhydryl groups: reactions of ...

    African Journals Online (AJOL)

    The pH dependence profile of kapp for the slow phase resembles the titration curve of a monoprotic acid. Quantitative analysis indicates that the sulfhydryl group to which this phase may be attributed is linked to a single ionizable group with a pKa of 6.1 0.2. Examination of the structure of guinea pig haemoglobin near the ...

  19. Frequency of skin reactivity to food allergens in allergic patients

    Directory of Open Access Journals (Sweden)

    Heriberto Camero-Martínez

    2017-10-01

    Full Text Available Background: Food allergy is deemed to have a worldwide prevalence ranging from 2 to 10 %. Objective: To determine the frequency of skin reactivity to food allergens by age groups. Methods: Cross-sectional, descriptive, prolective, observational study. Patients aged from 2 to 64 years with symptoms consistent with allergic disease were included. Skin prick tests were carried out with food allergens. Frequencies and percentages were estimated. Results: One-hundred and ninety-one patients were included, out of which 63.4% were females. Mean age was 22.5 years; 19.3 % showed positive skin reactivity to at least one food. Distribution by age group was as follows: preschool children 13.5 %, schoolchildren 24.3 %, adolescents 2.7 % and adults 59.5 %. Diagnoses included allergic rhinitis in 84.3 %, asthma in 19.4 %, urticaria in 14.1 % and atopic dermatitis in 8.4 %. Positive skin reactivity frequency distribution in descending order was: soybeans with 5.2 %, peach with 4.7 %, grapes, orange and apple with 3.6 %, nuts with 3.1 %, pineapple, avocado, tomato and tuna with 2.6 %. Conclusion: The frequency of skin reactivity to food allergens was similar to that reported in the national and Latin American literature, but sensitization to each specific allergen varied for each age group.

  20. Effect of organic bases on extraction of gadolinium carboxylates

    International Nuclear Information System (INIS)

    Sukhan, V.V.; Frankovskij, V.A.

    1982-01-01

    The effect of pyridine, 2-aminopyridine, benzylamine, antipyrine and o-phenanthroline on the extraction of capronates and bromocapronates of gadolinium with chloroform is studied. Out of the studied organic bases benzylamine produces the highest synergetic effect. In the absence of organic bases gadolinium carboxylates, solvated by three molecules of carbonic acids, are extracted into organic phase. A possihility of extractional separation of gadolinium from comparable amounts of iron with the mixture of 1 M solutions of caproic or bromocaproic acids with 1 M benzylamine from 0.1 M solution of tartaric acids is shown [ru